
ZBasic 4th Edition with 3rd Edition Appendixes (1987)(Zedcor).pdf

Interactive BASIC Compiler

by
Andrew R. Gariepy,
Scott Terry, David Overton,

Greg Branche and Halbert Liang

Documentation by
Michael A. Gariepy

© Copyright 1985, 1986, 1987

All Rights Reserved

Zbasic™ is a Trademark of Zedcor, Inc.

Fourth Edition: 4/87
First Edition: 8/85

Second Edition: 10/85
Third Edition: 5/86

TECHNICAL SUPPORT: 1-(602) 795-3996
Support hours: Monday-Friday, Noon to 5PM, Mountain Standard Time

Zedcor provides free phone support. Be sure to have your invoice number and license agreement number ready. You
 may need them to get support. Also be sure you understand the problem clearly and describe it is simply as possible.
It is usually a good idea to test the problem a few times before calling. Sometimes it’s just a syntax problem. Collect
or toll free calls will not be accepted for technical support.

In addition, you may contact us on the Genie Information Service by sending electronic mail (EM AIL) to:
ZBASIC. We check our mailbox semi-regularly and will respond to you via electronic mail. We also have topics set up
on the various Round-Table Bulletin Boards for general information.

Notes on the Fourth Edition

This edition of the Zbasic ™ manual contains all the computer appendices. This includes the appendix for MS-DOS™,
APPLE™ //e, //c (DOS 3.3 and ProDOS), MACINTOSH™, CP/M™, and TRS-80™ Model 1, 3 and TRS-80 Model 4.

The appendices are at the back of the manual and the new index includes entries for both the reference section and
the appendices. It is important to study the appendix for the computer you are using since there are usually
enhancements and variations that are important to note.

Acknowledgements

Special thanks to John Kemeny and Thomas Kurtz for creating BASIC, the easiest and most powerful of all the
general purpose languages. To Joanne Gariepy for many late hours of editing. An extra special thanks to the
programming teams that have meant so much to the success of the product. Scott Terry, Dave Overton , Greg
Branche and Hal Liang and to Thomas Dimitri and David Cooper for their help with the MSDOS version. Special
thanks to Karen Moesh and Leyla Blisard for making sure Zbasic gets mailed as fast as it does and to Apple
Computer, Inc. for the Macintosh™, Laserwriter™, MacDraw, and MacPaint graphic software and to Microsoft for
Word™; on which this entire manual was composed and printed (both text and graphics).

Many thanks to the multitudes of Zbasic™ users who provided helpful suggestions for this fourth edition.

Copyright Notice

The Zbasic software and manual are © Copyright 1985, 1986, 1987, Zedcor Inc., All Rights Reserved. It is against
the law to copy the Zbasic software or Documentation on cassette, diskette, tape, listing or any other medium for
any purpose other than the purchaser’s archival use without the express written permission of Zedcor Inc.

Trademarks

Because Zbasic™ runs on so many different products, this manual makes reference to many manufacturers and products that are trademarks of their
respective owners. We acknowledge these companies and thank those that have been so helpful in making Zbasic™ a success: Zbasic™ is a
trademark of Zedcor, Inc. Apple, //GS, //e, II+, //c, Macintosh Plus, MAC XL, LISA and Macintosh™ are registered or licensed trademarks of Apple
Computer, IBM PC, IBM PCjr., IBM PC-XT, PC-AT, and PC-DOS are registered trademarks of International Business Machines Corporation.
MSBASIC, MS, Xenix, and MS-DOS are registered trademarks of Microsoft Corporation. CP/M is a registered trademark of Digital Research. Turbo
Pascal is a registered trademark of Borland International. TRS-80, Radio Shack, Tandy 2000, Tandy and Tandy 1000, 1200, 3000 are registered
trademarks of Tandy Corporation. Kaypro II, 4, 10, 16 and 286I are registered trademarks of Kaypro Corporation. Amiga, Commodore 64 and 128 are
trademarks of Commodore International. Franklin Ace 1000 is a trademark of Franklin Corporation. Osborne is a trademark of Osborne Corporation.
Compaq and Deskpro are trademarks of Compaq Computers. Panasonic Senior and Executive Partners are trademarks of Panasonic Industrial
Corporation. Data General One is a trademark of Data General Corporation. Quadram is a trademark of Quadram Corporation. VAX is a trademark of
Digital Equipment Corporation. Unix is a trademark of AT&T Corporation. We apologize for any unintentional omissions.

Zedcor Incorporated reserves the right to make changes to the specifications of Zbasic™ and to the Zbasic™ documentation without obligation to
notify any persons or organization of such changes.

ZEDCOR, INC.
4500 East Speedway Blvd. Suite 22

Tucson, Arizona 85712-5305
(602) 795-3996
(602) 881-8101

Orders: 800- 482-4567

TABLE OF CONTENTS

Introduction 5

Getting Started 7

Configuration 11

Standard Line Editor 14
Adding, Inserting and Deleting Lines 14
The Line Editor 15

 Renumber, Calculator, SAVE, LOAD, DIRectory 18

Running Zbasic Programs 22
RUN, RUN+, RUN* 23
Breaking Out of Executing Programs 24

Chaining Programs 26

Compile and Runtime Errors 28

Terms and Definitions 32

Math 36
Operators 36

 Expression Evaluation types 37
Other Math Functions 40
Derived Math Functions 41
Order of Precedence 42
Conditional and Logical Operators 44

Numeric Conversions 46

Constants 48

Variables 50
Integer Variables 53

 Floating Point Variables (REAL) 54
Configuring Accuracy 57

 String Variables 61
Defining String Lengths with DIM and DEFLEN 64

INDEX$ 67
Arrays 72

Shell and Quick Sort examples 76

Graphics 110

Table of Contents 2

TABLE OF CONTENTS

Files 98
 Terms 100
File Structure 106
Sequential Method 108
Random Method 115
Mixing File Methods 120
Disk Errors 122

Screen and Printer 126

Keyboard Input 130

Loops FOR-NEXT, WHILE-WEND, DO-UNTIL 135

Functions and Subroutines 140
DEF FN 140
 LONG FN 141

Machine Language 143

Program Structure 147

Debugging Tools 153

Porting Programs 156

Converting Old Programs 161

Keywords 168

Glossary 170
The reference section contains a complete alphabetical list of all
Standard ZBasic commands, statements, functions and operators
with cross reference to other commands and sections of the
manual.

Also see the appropriate appendix for special commands or
enhancements for a particular computer model.

3 Table of Contents

TABLE OF CONTENTS

Computer Appendices
VERSION NOTES
Throughout this manual are notes to different versions of ZBasic.
An Icon representing the various computer type is used.

Remember the icon for your computer type. If you see the icon
in the standard reference manual, a note will follow it describing
something of importance for that version.

MSDOS

IBM(r) PC, MSDOS(tm), PC-DOS(tm) and compatibles A

Z80

Z80(tm), TRS-80(tm) Model 1,3 and 4 and CP/M(tm)-80 B

Apple DOS 3.3
Apple ProDOS

Apple(r) IIe, IIc, Laser 128(tm) and //GS: DOS 3.3 C
Apple(r) II+, //e, //c Laser 128(tm) and //GS ProDOS D

Macintosh

Macintosh(tm), Macintosh Plus(tm), MAC XL(tm),
Macintosh SE(tm), Macintosh II(tm) and
LISA(tm) with Macworks(tm) E

INDEX END

Table of Contents 4

INTRODUCTION

As the original developer of ZBasic and the head of the programming
team I want to thank you for your support.

I’ve been involved in writing Zbasic for eight years now and am very
proud of what we’ve accomplished. It hasn’t been easy but it’s sure
been fun. How many times does a complex product like ZBasic ever
make it to market?

Over the years I have received thousands of suggestions from
programmers. I’ve tried to implement as many of these suggestions as I
could. I still need your feedback and comments so I can make ZBasic
the most powerful programming tool available. Send your suggestions
to the "ZBasic Wish-List Department" or to my attention.

Special thanks to my wife Janis for putting up with my programming late
into the night and to the many ZBasic users that have taken the time to
send letters of encouragement.

Andrew R. Gariepy
April, 1997

 5 Introduction

INTRODUCTION

ZBasic has come a long way since it was introduced in 1985. Many
thousands of copies, on many different computers, have been distributed
all over the planet.

We have accomplished what we set out out to do; to provide a powerful,
fast, interactive, simple-to-use, inexpensive BASIC compiler that works
the same way on many different computers so you only have to learn a
language once.

I’ve worked hard to make the manual simple to follow and easy to
understand.

I highly recommend that you subscribe to the ZBasic newsletter; "Z". It
covers all sorts of topics about ZBasic and has listings for public domain
ZBasic subroutines on diskette you can get cheap. It’s jammed with hints
and tricks from other ZBasic users all over the world and from the ZBasic
programmers themselves. Call 800-482-4567 to order.

Thank you for your support of ZBasic. Please let us know if you have any
ideas of how to improve the product.

Michael A. Gariepy
April, 1987

Introduction 6

GETTING STARTED

 7 Getting Started

GETTING STARTED

GETTING STARTED

ZBasic is provided on a diskette for your computer. Before loading ZBasic do the following:

1. Read, sign and return the License agreement in the front of this manual.
Keep track of your serial number, you may need it for support.

2. Read the Appendix for your computer. It will explain any variations or
enhancements for your version of ZBasic and also has important
information about hardware requirements or limitations.

3. MAKE A BACKUP COPY OF THE ORIGINAL ZBasic DISKETTE. Never
use the original diskette. If you do not know how to make backups,
refer to your DOS or User Manual.

4. Using the BACKUP, load ZBasic according to the instructions for your
computer below:

MS-DOS From A>: ZBASIC
CP/M-80 From A>: ZBASIC
TRS-80 From DOS READY: ZBASIC
Apple DOS 3.3 From FP prompt: BRUN ZBASIC
Apple ProDOS From FP prompt: -/ZBASIC/ZBASIC.SYSTEM
Macintosh Using the mouse: Double Click ZBasic Icon

HOW TO BE A ZBASIC EXPERT IN TEN MINUTES OR LESS

The following is a quick-and-dirty course that teaches you how to TYPE, RUN, SAVE, QUIT
and LOAD a program using ZBasic.

First LOAD ZBasic according to the instructions for your computer above or in your
computer appendix. Some versions require that you press <E> to enter the editor. If a
prompt appears asking for input, press <E>. See CONFIGURE for more information about
the options being offered.

Macintosh users note that the following lessons are done in the COMMAND window.

Getting Started 8

GETTING STARTED

LESSON ONE: TYPING IN A SIMPLE PROGRAM

When you see the message; ZBasic Ready, you may begin entering programs. So
we may demonstrate the simplicity of ZBasic, please type in the following program exactly as
 shown. Always type COMMANDS in UPPERCASE and remember to press <ENTER> or
<RETURN> at the end of each line.

10 FOR Count = 1 to 10
20 PRINT "Hi, I’m ZBasic!---"
30 NEXT Count

Congratulations, you’ve just entered your first ZBasic program. To see a listing of the
program type: LIST<ENTER>. To find out more about entering and editing programs,
see: STANDARD LINE EDITOR. Also see your computer appendix for information about
using a full screen editor (if your version has one).

LESSON TWO: RUNNING THE PROGRAM

To run the program you just entered type:

RUN

The program will print the message; Hi, I’m ZBasic!--- ten times. ZBasic
actually compiles the program but does it so fast that you’ll barely notice. When the program
 is finished you’re back in the editor. That’s the beauty of interactive compiling.

LESSON THREE: SAVING THE PROGRAM

To save your program, make sure you have an unprotected diskette in the drive and type:

SAVE MYPROG

The program will be saved to disk for future use.

LESSON FOUR: EXITING ZBASIC

To exit ZBasic type:

QUIT

You will now be back in the operating system. It’s a good idea to save your programs before
doing this.

LESSON FIVE: HOW TO LOAD EXISTING PROGRAMS

To load the previously saved program, first re-load ZBasic then type:

LOAD MYPROG

The program you saved is now back in memory. To see it, type LIST:

10 FOR Count = 1 to 10
20 PRINT "Hi, I’m ZBasic!---"
30 NEXT Count

 9 Getting Started

GETTING STARTED

A NOTE TO EXPERIENCED BASIC PROGRAMMERS:

Since the ZBasic Compiler is very similar to the BASIC interpreters found on most
microcomputers (except for graphic commands and file I/O), use the Reference Section
and your Computer Appendix to check syntax differences from other BASIC’s. Use the
Index to find more in-depth answers. The appendices in the back of this manual contain the
commands and enhancements for specific computers. These appendices are also very
useful for converting programs from one machine to another.

If you have been frustrated with incredibly slow interpreters and awkward, complicated
compilers, you will be pleased with the power and ease of ZBasic.

A NOTE TO INEXPERIENCED BASIC PROGRAMMERS

This manual is not intended to teach you BASIC programming from scratch. If you lack
programming experience we suggest picking up some of the BASIC tutorials for the IBM
PC, CP/M systems or the TRS-80, available from most major bookstores and libraries.
Once you learn the beginning concepts of BASIC programming, like GOSUB, FOR/NEXT
and that type of thing, this manual should be all you need.

ZBasic is very similar to the IBM PC, TRS-80, MSBASIC and GW BASIC interpreters;
however, most Graphic commands and Random File commands are different (sequential file
commands are very similar).

For those with some experience, this section and the section "Standard Line Editor" are
written in a tutorial format.

Be sure to examine the appendix in the back of this manual for your computer. It will tell you
about any differences and enhancements that are important to know before you start.

Getting Started 1 0

CONFIGURATION

 1 1 Configuration

CONFIGURATION

CONFIGURATION OPTIONS

Since no two programmers are alike, we allow you to configure your version of ZBasic. Most
versions start with a screen something like this:

As you can see below, configuring your version of ZBasic is simple. Simply set the
parameters the way you want, then save the reconfigured ZBasic:

<E>dit Type "E" to enter the Standard Line Editor. Once in the editor, you may
LOAD, TYPE, RUN, EDIT, SAVE or DEBUG your programs.

<C>onfigure Typing "C" allows you to configure certain parts of ZBasic. Note that in most
cases you will not have to change parameters. See next page for options.

<S>ave Typing "S" allows you to save ZBasic with the configuration defaults set to your
options. This way you don’t have to reconfigure ZBasic every time you load it.

<P>atch Type "P" allows you to make patches to ZBasic. If we make minor changes you
won’t have to return you disk to us for an upgrade. Not available on all versions.

Configuration 1 2

CONFIGURATION

CHANGING CONFIGURATION

It is simple to change configurations. If the default value is not to your liking simply type in
the value you want. Press <ENTER> to skip inputs, Press <BREAK> or <CNTR C> to go
back to the main menu.

STANDARD CONFIGURE QUESTIONS HEX Decimal INPUT
1. Double Precision Accuracy 6-54 000E 00014 ?_
2. Single Precision Accuracy 2-52 0006 00006 ?_
3. Scientific Precision 2-Double Prec. 0006 00006 ?_
4. Maximum File Buffers Open 0 - 99 0002 00002 ?_
5. Array Base 0 or 1 0000 00000 ?_
6. Rounding Number 0 - 99 0031 00049 ?_
7. Default Variable Type:
 <S>ingle, <D>ouble, <I>nteger I ?_
8. Test Array Bounds <Y/N> N ?_
9. Convert to uppercase <Y/N> N ?_
10. *Optimize expressions as Integer? Y/N Y ?_
11. *Space required after Keywords? Y/N N ?_

* Not all versions.

DEFINITIONS OF THE STANDARD CONFIGURE QUESTIONS
1. Set from six to 54 digits of precision for Double Precision math. Defaults to 14.
2. Set from four up to two digits less than Double precision. Defaults to 6.
3. Digits of math precision for Scientific functions (ATN, COS etc.)
4. Set the number of files you want OPEN at one time. Up to 99. Two is the default.
5. Array Base 0 or 1. Set zero or one as ARRAY start. Zero is default.
6. Rounding Factor. Sets rounding for PRINT USING and other things.
7. Set variable default to Integer, Single or Double precision.
 Press I, S or D key. Same as DEFDBL, DEFSNG, DEFINT A-Z.
8. Check the runtime program (object code) for array values going out of DIM bounds.
 (Slows the program down but is very good for debugging purposes)
9. Tells ZBasic to convert all lowercase entries to UPPERCASE.
 The variable "FRED" is the same as the variable "Fred" if this is done.
10. Two ways to evaluate expressions. Integer or Floating Point.
 Defaults to integer for speed and size. Set to NO if you want defaults as real.
11. Forcing a space after keywords allows you to embed keywords in variables.

IMPORTANT NOTE: If you change configuration, make sure all CHAINED programs have
EXACTLY THE SAME CONFIGURATION. Otherwise unpredictable results may occur.

Macintosh: Select the "Configure" menu item to change or save configuration options.
MSDOS and ProDOS versions of ZBasic have a CONFIG command that allows resetting
the options from the Standard line editor. *CP/M, Apple DOS 3.3 and TRS-80 versions
may not have the last two options offered. Check the appropriate appendix for specifics.

 1 3 Configuration

STANDARD LINE EDITOR

STANDARD EDITOR
ZBasic comes with a Standard Editor that works the same way on all computers. While most
versions of ZBasic now come with a full screen editor which is easier and faster to use, the
Standard Editor allows you to do quick-and-dirty editing and direct commands like an
interpreter.

Learning the Standard Editor will allow you to jump from one version of ZBasic to another
without having to re-learn the full screen editor for that particular machine.

ENTERING THE EDITOR

Load ZBasic. When the screen says: ZBasic Ready you have entered the ZBasic
Interactive Programming Environment (a fancy name for the Standard Editor) and may enter
programs and type direct commands.

The Standard Line Editor requires each line of a program to have a line number for editing
and reference purposes (labels are available too.) Line numbers may range from 0-65534.
Each line can be up to 250 characters long. To add a line, type a line number and the text,
or use the AUTO command to have ZBasic assign line numbers automatically (some
versions of ZBasic will allow you to enter programs without using line numbers. Check your
appendix). If you are loading a program without line numbers, they will be added
automatically. Line numbers are used for editing in the Standard Line Editor only.

Important Note: Always type keywords and commands in uppercase. Select "Convert to
Uppercase" under Configure if you don’t want to worry about it.

Important Note: This entire section deals with commands that are to be executed from
the Standard Line Editor. If you are in the full screen editor you will need to switch to the
Standard Editor. See your computer appendix for Specifics.

This section of the manual refers to the COMMAND window. Switching between the
COMMAND and EDIT windows is accomplished with COMMAND E.

Interactive Programming Environment 14

STANDARD LINE EDITOR

ENTERING AND DELETING LINES
Type in the following example. Enter it exactly as shown, as we will use this text to illustrate
the use of the line editor. Remember to use <ENTER> at the end of each line. This is how
ZBasic recognizes a line and stores it in memory:

 10 THIS IS AN EXAMPLE OF ADDING A LINE
 20 THIS IS THE SECOND LINE
 30 THIS IS THE THIRD LINE

If you make a mistake use <BACKSP> or to delete it. If you <ENTER> a line
incorrectly just type it over again. To see the complete program type LIST:

LISTING A PROGRAM

To list a line, or range of lines, use LIST or just L:

YOU TYPE ZBASIC RESPONDS
LIST or L Lists the complete program to the screen
LIST "SUBROUTINE" Lists the line with that label
LIST "FRED"- List all lines after and including the line with the label "FRED"
LIST 100-200 Lists lines from 100-200
LLIST-100 Lists lines up to 100 to printer
LIST 100- or L100- Lists lines from 100 on
<period> Lists the last line listed or edited
<UP ARROW> Lists previous line (or plus <+> key)
<DOWN ARROW> Lists next line (or minus <-> key)
L+ Lists program without line numbers
LLIST+ Lists to printer without line numbers
L+-100 Lists up to line 100 without showing line numbers
<SPACE> Single steps long listings. <ENTER> continues listing
</> Lists PAGE of lines (10 lines) to screen
LIST* Some systems: Highlights keywords on screen while listing

DELETING LINES

Deleting lines is accomplished in a number of ways. Examples:

YOU TYPE ZBASIC RESPONDS
1000 <ENTER> Deletes line 1000
DEL 1000 Delete line 1000
DEL 10-50 Delete lines 10 through 50
DELETE 50 Delete line 50
DELETE 50- Delete line 50 and all lines after
NEW Delete the entire program Careful!

NOTE: Labels may be used in place of line numbers (except first example)

ADDING OR INSERTING A NEW PROGRAM LINE

Add or insert a line by typing in a new line number followed by text (be careful not to use the
 number of a line already being used unless you want to replace it). To insert a line between
line 10 and line 20, assign a number such as 15 to the new line (or another number
between 10 and 20). To add a line at the end of the program, assign the line a number
greater than the largest line in the program.

 1 5 Interactive Programming Environment

STANDARD LINE EDITOR

HOW TO EDIT TEXT ON A LINE

The Standard Line editor is used to edit lines in a program and to give commands directly to
the compiler. Deleting inserting, changing or adding new text is easy and fast.

EDIT ANYTHING ON A LINE... EVEN LINE NUMBERS!

Unlike most BASICs, ZBasic allows you to edit anything on a line, even the line number.
When a line number is edited, ZBasic creates a new line with that line number. The old line
will not be deleted or changed. Very handy for avoiding redundant typing.

The ZBasic line editor functions the same way on all versions of ZBasic. Here are ALL the
line edit keys you need to remember:

STANDARD LINE EDITOR KEYS

CURSOR MOVEMENT DELETE TEXT INSERT TEXT
<SPACE> Move RIGHT <D>elete one character <I> insert characters
<BACKSP> Move LEFT <K> ill, Delete up to <letter> e<X> tend line
<S>earch for <letter> <H>ack to end of line <ESC>ape Insert mode

OTHER
<A>bort changes <C>hange character under the cursor
<ENTER> Keep changes <BREAK> Abort changes (CTRL C on some systems)

CURSOR ARROW keys are often used instead of <SPACE> and <BACKSP>.

Macintosh: <ESC>=<TAB>, <COMMAND Period>=<BREAK>. MSDOS and Apple //: Cursor
keys=<SPACE> and <BACKSP>. Delete key also works as <BACKSP>. <CNTRL C>=<BREAK>.
MSDOS : Insert key = <I>. CP/M: <CNTRL C>=<BREAK>. TRS-80: <SHIFT up-arrow>=<ESC>.

USING THE LINE EDITOR

The command to edit a line is "EDIT" (or just "E") followed by a line number (or label). If no
line number is used, the last line LIST(ed) or EDIT(ed) will be assumed (<COMMA> without
<ENTER> will also edit the current line).

"EDIT 20" and "E20" do the same thing.

The following page describes the simple commands used to edit the characters on the line.

Interactive Programming Environment 1 6

STANDARD LINE EDITOR

LEARNING THE COMPLETE STANDARD LINE EDITOR
IN 10 MINUTES OR LESS

LISTING THE LINE YOU ARE EDITING <L>
To see the complete line you are editing, and put the cursor at the beginning of the line, press the <L>
key. Remember: Line editor commands do not require <ENTER>.

MOVING THE CURSOR ON THE LINE n <SPACE> <BACKSPACE>
To move the cursor back and forth on a line, use <SPACE> or <BACKSP> (some systems)
(don’t use <ENTER>). To move the cursor multiple positions, use a number first.

SEARCH FOR CHARACTER n <S>
To move the cursor to a specific character on a line quickly, use the <S> key, (SEARCH), followed by
the character to find. To move the cursor from the "T" in "THIS" to the "L" in "EXAMPLE", just type <S>
and <L>.

00010 THIS IS AN EXAMPLE OF ADDING A LINE
00010 THIS IS AN EXAMP_

CHANGE CHARACTER UNDER CURSOR n <C>
To change the character under the cursor, press <C> followed by the new character. To change five
characters, press the <5> key first, the <C> key, then the five keys to replace the old characters.

ABORT (UNDO) CHANGES <A>
To undo changes press the <A> key. All changes, additions and deletions will be aborted.

DELETE CHARACTERS n <D>
To delete characters in a line use the <D> key. Pressing <D> will delete the character under the
cursor. To delete five characters press <D> 5 times or press the <5> key and the <D> key.

ESCAPE PRESENT MODE <ESC>
To escape from INSERT, SEARCH, CHANGE, EXTEND or KILL modes, press <ESC>.

DELETE UP TO A SPECIFIC CHARACTER n <K>
To delete, or KILL, a range of characters from the cursor to a specified character, use the <K> key.

INSERT CHARACTERS <I>
To insert text in a line, position the cursor where insertion is desired. Press the <I> key. Type in text
or <BACKSP> to erase text. Almost any key may be typed except <ESC>, <ENTER> or <BREAK>.

<ESC>ape exits the INSERT mode.

DELETE TO END OF LINE <H>
To delete all the characters from the cursor position to the end of the line, press the <H> key (Hacks
off the remainder of the line).

MOVE TO END OF LINE AND ADD <X>
To move the Cursor to the end of the line and enter the INSERT MODE, press the "X" key (For
eXtend). <ESC> will return to the regular line editor mode.

EXIT THE LINE EDITOR <ENTER> or <BREAK>
<ENTER>: Exit the line edit mode and ACCEPT all changes and additions.
<BREAK>: To exit the line edit mode and IGNORE all changes and additions.

* n is a number. If you type 4D, four characters are deleted, n=nth occurrence or n times.

 1 7 Interactive Programming Environment

STANDARD LINE EDITOR

USING OTHER EDITORS OR WORD PROCESSORS

Most versions of ZBasic now come with a Full Screen Editor. Check your computer
appendix to see if you have one for your version. If you choose, you may also edit ZBasic
programs with a word processor or some other editor. You will need to save the ZBasic
program in ASCII using the SAVE* or SAVE+ commands before editing.

In order for ZBasic to load a text file it requires that:

Line lengths must be less that 250 characters
Every line must be followed by a Carriage Return

If the text file does not contain line numbers, ZBasic will assign line numbers to the program
starting with one, in increments of one. Use RENUM to renumber a program. ASCII text
takes longer to LOAD and SAVE.

RENUMBER PROGRAM LINES

ZBasic renumbers lines in a program using the RENUM command.
Format:

RENUM [[NEW LINE NUMBER][[, OLD START,][INCREMENT]]]

YOU TYPE ZBASIC RESPONDS
RENUM Lines start with 10, Increments of 10
RENUM 100,,5 Lines start with 100, Increments of 5
RENUM 100,20,5 Renumber From line 20, Start with 100, Increments of 5
RENUM,,100 Renumbers all lines by 100

THE CALCULATOR (DIRECT MODE)

ZBasic has a built in calculator. Use "?" or "PRINT" in front of a calculation to see the results.
You may also convert number bases like HEX, Binary, Octal and Unsigned Integer. (See
BASE CONVERSIONS) Examples:

YOU TYPE ZBASIC RESPONDS
PRINT 123.2*51.3 6320.16
?SQR(92.1) 9.5968745
PRINT 3/2*6 6 (Calculated in INTEGER)
?3./2*6 9 (Calculated in FLOATING POINT)
?320/.0001 3200000

NOTE: Unless you have configured ZBasic to default to floating point, Integer is
assumed. If configured for "Optimize expressions as Integer", use a decimal point in an
expression to force the result of a calculation to be floating point (see CONFIGURE).

Interactive Programming Environment 1 8

STANDARD LINE EDITOR

SAVE, LOAD, APPEND and MERGE

ZBASIC uses the LOAD and SAVE commands to load and save programs. Subroutines
saved in ASCII without line numbers may be inserted in your program with APPEND.To
SAVE in ASCII use "*". To SAVE ins ASCII without line numbers use "+". Examples:

SAVE MYPROG Saves in tokenized format.
SAVE CHECKERS 2 Saves tokenized to TRS-80 drive 2.
SAVE* MYPROG Saves MYPROG in ASCII.
SAVE+ TEST Saves TEST without line#’s in ASCII.
LOAD CHECKERS Loads Checkers.
LOAD* CHECKERS Loads Checkers but strips REMarks and Spaces.
MERGE MYPROG Merges program MYPROG.
MERGE* MYPROG Merges ASCII program, strips REM’s and Spaces.
APPEND 2000 MYSUB Loads non-line# ASCII subroutine, MYSUB, to line 2000.
APPEND* 50 SORT Loads SORT to line 50 in increments of 1, strips all

REM’s and Spaces from the routine.

NOTE: Only non-line numbered ASCII programs may be APPENDED (SAVE+). Only line
numbered programs may be merged (SAVE or SAVE*).

When LOAD(ing) programs without line numbers, ZBasic assumes the end-of-line is
terminated with <CR>, <CRLF> or 250 characters, whichever comes first. Lines are
assigned line numbers starting with one, in increments of one.

FILE DIRECTORY OR CATALOG

To see the names of files on the current storage device type DIR. Examples:

MS-DOS (also see PATH and CHDIR)
Apple DOS 3 .3 and CP/M :
DIR Lists all the files on the present drive
DIR B: Lists the files on drive B
DIR A: Lists all the files on drive A
DIR C: Lists all the files on drive C

NOTE: The Apple DOS 3.3 version of ZBasic uses A, B, C... for drive
specs instead of D1, D2...

APPLE ProDOS: (also see PATH)
DIR Lists all files in current directory
DIR FRED Lists all files in subdirectory FRED
DIR FRED/TOM Lists all files in subdirectory TOM

TRSDOS:
DIR 0 Lists the files on drive zero
DIR 2 Lists the files on drive two
DIR 1 Lists the files on drive one

Macintosh: (also see FILES$)
DIR HD30:Fred Lists files in folder called "Fred" on root directory call HD30
LDIR HD30:Fred Lists all files to the printer

Be sure to see your COMPUTER APPENDIX for variations.

 1 9 Interactive Programming Environment

STANDARD LINE EDITOR

THE MINI-COMPILER (Direct mode similar to an interpreter)

The Mini-compiler permits compilation of one line programs while in the standard editor. This
is very convenient for testing logic or math without having to run the entire program. You
are limited to one line but may use a colon ":" to divide a line into multiple statements.

Remember to use ? or PRINT to see the results. Examples:

YOU TYPE ZBASIC RESPONDS
PRINT LEFT$("HELLO",2) HE
PRINT CHR$(65) A
PRINT ASC("A") 65
FOR X=1 TO 500:? X;:NEXT 1 2 3 4 5 ...500
? ABS(TAN(1)* EXP(2)+ LOG(9)) 13.704997622614
: LPRINT "HELLO" Prints "HELLO" to the printer
PLOT 0,0 TO 1024, 767 Plots a line across the screen
? &AB 171 (HEX to decimal)

*Note: A Mini-Compiler line may not start with an "E" or "L" since these are used for
abbreviations for EDIT and LIST. To do a command that starts with "E" or "L", use a colon ":"
first; :LPRINT

THE FIND COMMAND

ZBASIC will FIND variables, quoted strings, labels, line numbers and commands within a
program quickly and easily. In most cases simply type FIND followed by the text you want to
find. The only two exceptions are:

1. To find quoted strings, use one leading quote; FIND "HELLO
Note 1: First characters in quoted string are significant.
Note 2: "A" and "a" are considered different characters.

2. Use "#" in front of a line number reference: FIND #1000

YOU TYPE ZBASIC FINDS
FIND "HELLO 01010 A=20:PRINT"HELLO THERE"
FIND A$ 01022 Z=1:A$=B$:PRINTA$+B$

or... 01333 ABA$="goodbye"
FIND 99 05122 F=2:X=X+2+F/999
FIND #12345 (line number) 08000 GOTO 12345
FIND 100 (not a line number) 02000 X=100
FIND X(C) 03050 A=1:T=ABS(X(C)/9-293+F)

or... 03044 ZX(C)=4
FIND PRINT 00230 A=92:PRINTA
FIND "SUB5 00345 "SUB500": CLS

or... 03744 GOSUB "SUB500"
FIND OPEN 03400 OPEN"R",1,"FILE54",23
FIND X=X+2 09922 F=2:X=X+2+F/999
FIND <ENTER> Finds next occurrence
<;> (semi-colon key) Finds next occurrence

To FIND data in remarks or DATA statements use FIND REM ..., FIND DATA ...

Note: If your version of ZBasic comes with a full screen editor, you may have other FIND or REPLACE options.
See your computer appendix for specifics.

Interactive Programming Environment 2 0

STANDARD LINE EDITOR

SETTING CHARACTER WIDTH AND MARGINS FOR PROGRAM LISTINGS

ZBasic has powerful formatting commands for making program listings to the screen or
printer easier to read.

WIDTH, WIDTH LPRINT AN DPAGE

Since screen and printer widths vary depending on the hardware, the user may set the
width of listing to either the printer or the screen.

COMMAND RESULT
WIDTH=0 THROUGH 255 Sets Screen width for listings.
WIDTH LPRINT= 0 THROUGH 255Sets the printer width for listings.

PAGE 0-255(1), 0-255(2), 0-255(3) Formats LINES PER PAGE for printer.
(1) Desired lines printed per page
(2) Actual lines per page
(3) Top Margin

An example of using these commands for printer listings: To set the top and bottom
margins to 3 lines each (to skip perforations) and the printer width to 132, type:

WIDTH LPRINT=132: PAGE 60,66,3

NOTE: WIDTH, WIDTH LPRINT and PAGE may also be used from within a program. Check
the reference section for specifics. (In a program, the PAGE function returns the last line
printed. The PAGE statement will send a form feed to the printer. A ZERO value disables all
the functions above.

AUTOMATIC LOOP AND STRUCTURE INDENTING

For readability, loops are automatically indented two spaces. When WIDTH is set, lines that
 wrap around will be aligned for readability as in line 10. Completed loops on the same line
will show an asterisk at the beginning of the line as in line 120:

LIST+ (without line numbers) LIST (with line numbers)
CLS: REM THIS IS A LONG 00010 CLS: REM THIS IS A LONG
STATEMENT THAT CONTINUES... STATEMENT THAT CONTINUES...
FOR X= 1 TO 10 00020 FOR X= 1 TO 10
 DO G=G+1 00025 DO G=G+1
 GOSUB "Graphics" 00030 GOSUB "Graphics"
 UNTIL G=3 00035 UNTIL G=3
NEXT 00040 NEXT
"MENU" 00050 "MENU"
CLS 00060 CLS
END 00070 END
"Graphics": X=0 00080 "Graphics": X=0
DO X=X+16 00090 DO X=X+16
 PLOT X, 0 TO X, 767 00100 PLOT X, 0 TO X, 767
UNTIL X>1023 00115 UNTIL X>1023
*FOR X= 1 TO 100: NEXT 00120 *FOR X= 1 TO 100: NEXT
RETURN 00125 RETURN

Note: LLIST*+ may also be used to do program listings to the Imagewriter or Laserwriter
without line numbers and with keywords highlighted as above.

 2 1 Interactive Programming Environment

RUNNING ZBASIC PROGRAMS

RUNNING ZBASIC PROGRAMS

There are a number of ways to compile your programs with ZBasic. The most commonly
used is a simple RUN. This lets you compile and debug interactively. Definitions:

RUN COMPILE PROGRAM IN MEMORY AND EXECUTE

The interactive mode is the easiest and fastest way to write and debug your programs. In
many ways it is similar to a BASIC interpreter since you may:

1. RUN a program to check for errors
2. *BREAK out of a running program by pressing <BREAK>.
3. Return to ZBasic to re-edit the program.

Interactive compiling is limited to available memory. If a program gets too large you will have
to use one of the methods below. ZBasic will tell you when this is necessary with and "Out of
Memory" message.

RUN filename COMPILE PROGRAM FROM DISK AND RUN

If a program gets too large for interactive compiling using just RUN, the program text may be
saved (not in ASCII), compiled, and executed. This is possible because the text to be
compiled is no longer resident and frees up memory for the compiled program.

RUN* COMPILE PROGRAM IN MEMORY AND SAVE TO DISK
RUN* filename COMPILE FROM DISK AND SAVE TO DISK

Compiles the program from memory (RUN*) or disk (RUN* "filename") and saves it to disk. A
few moments later ZBasic will request the filename of the resulting compiled program to be
saved (For IBM or CP/M use a .COM suffix. For TRS-80 use a /CMD suffix).

This method frees up the most memory for the final program because the source code and
ZBasic are no longer resident in memory. Compiled programs saved to disk are machine
language programs and should be executed from the operating system like any other
machine language program. See column three of the COMPILE MEMORY CHART.

RUN+ COMPILE PROGRAM IN MEMORY AND SAVE AS CHAIN PROGRAM
RUN+ filename COMPILE FORM DISK AND SAVE AS CHAIN

See CHAINING PROGRAMS for details.

Running ZBasic Programs 22

RUNNING ZBASIC PROGRAMS

DETERMINING MEMORY REQUIREMENTS

MEM returns the available memory. (The table may vary on some versions).

TYPE MEM: MEANING
00123 Text Program text memory used (source code).
49021 Memory Free memory.
00000 Object Compiled program size of object code.*
00000 Variable Memory required for variables.*

*Type MEM immediately after compiling to get the correct totals. At other
times the results of "Object and Variable" may be invalid.

TYPICAL MEMORY USAGE BY "RUN" TYPE

RUN RUN filename RUN* [filename]
Program text is resident in The program text is saved to The program is compiled
memory with ZBasic, the disk and compiled from the from memory or disk and the
compiled program and the disk to memory and RUN. resulting machine language
variables used by that Larger programs may be program is saved to disk.
program. The user may compiled this way because The program is executed as a
press <BREAK> when running the program to be compiled machine language program.
the program, re-enter is not in memory. When this program is executed

the editor and debug any the program text and ZBasic
mistakes and re-compile. are no longer resident, leaving

more memory for the program.

*See your Computer Appendix to determine actual memory usage.

 2 3 Running ZBasic Programs

RUNNING ZBASIC PROGRAMS

<BREAK>ING OUT OF RUNNING PROGRAMS

To make a program STOP when the <BREAK> key is pressed, use TRON, TRONS,
TRONB or TRONX.

TRONB Checks at the start of every line to see if the <BREAK> key
has been pressed. If pressed ZBasic returns control to DOS or
to the Standard line editor (if in interactive mode). To disable
TRONB use the TROFF command.

TRONS Single step trace. CNTR Z to engage/disengage
any other key to single step through the program a statement
at a time.

TRON Displays line numbers during runtime.

TRONX Checks for the <BREAK> key at the beginning of that line only.

NOTE: TRONX, TRON, TRONS and TRONB may cause INKEY$ to miss keys. TROFF
turns all the TRON functions off. All TRONs will slow down programs AND increase size.

USING INKEY$ TO SET BREAK POINTS

You may also use INKEY$ to break out of a program. Put the following line in a program loop
or wherever you may want to escape:

IF INKEY$="S" THEN STOP
Program will stop if the "S" key is pressed (any key could have been used).

CASES WHERE BREAK WILL NOT FUNCTION

Since ZBasic compiles your programs into machine language, there occurs certain
situations where the <BREAK> key will be ignored. Remember; the <BREAK> key is
checked only at the beginning of a line. The following example will not break:

 TRONB
 *FOR X= 1 TO 10: X=1: NEXT

This is obviously and endless loop (X never gets to 10). One obvious way around this is to
avoid putting the entire loop construct on one line.

Examples of other cases where the <BREAK> key is ignored; INPUT, LINE INPUT, DELAY
and SOUND statements.

Macintosh: <BREAK>=<COMMAND Period>. <CNTR Z>=<COMMAND <Z>. Most people use
BREAK ON instead of TRONB with the Macintosh. See Appendix. Apple //: <BREAK> means:
<CNTR C>, <CNTR RESET> may be preferable. MSDOS : <BREAK> means: <CNTR C>. CP/M:
<BREAK> means: <CNTR C>: TRS-80 : <BREAK> means the <BREAK> key.

Running ZBasic Programs 2 4

CHAINING

 2 5 Chaining

CHAINING

CHAINING PROGRAMS TOGETHER

Chaining is convenient when programs are too large for memory and must be broken into
smaller programs. There are three ways to chain programs:

o CHAIN WITH SHARED VARIABLES (GLOBAL or COMMON VARIABLES)
o CHAIN WITH INDEPENDENT VARIABLES
o CHAIN WITH SOME VARIABLES COMMON AND OTHERS NOT

Macintosh CHAIN programs are limited to 28k. See "SEGMENT" and "SEGMENT
RETURN" in the appendix for instructions on using the Macintosh memory manager.

EXAMPLES OF CHAINING PROGRAMS WITH SHARED VARIABLES

Programs that will share variables must have those variables defined in exactly the same
order in all the programs being chained. ZBasic allows common or shared variables to be
DEFINED within DIM statements (even if they are not arrays). CLEAR or CLEAR END
should always be used to clear variables that are not shared. Examples:

"STARTB"
DIM A(10),100A$(100),Z,F5,W99
OPEN"I",1,"PROG1" :REM Always execute this program 1st
RUN 1 :REM This is just a starter program

"CHAIN1" "CHAIN2"
REM THIS IS PROG1 REM THIS IS PROG2
TRONB: REM ENABLE <BREAK> KEY TRONB
DIM A(10),100A$(100),Z,F5,W99 DIM A(10),100A$(100),Z,F5,W99
CLEAR END CLEAR END
TV=23: PR=4 ZZ=99: MYVAR=9191
CLS: PRINT"THIS IS PROGRAM #1" PRINT "THIS IS PROGRAM #2"
PRINT"Z=";Z,"F5=";F5 PRINT"Z=";Z,"F5=";F5
Z=RND(10) :F5=RND(10) Z=RND(10) :F5=RND(10)
PRINT"Z=";Z;" F5=";F5 PRINT"Z=";Z;" F5=";F5
PRINT"JUMPING TO PROGRAM #2" PRINT"JUMPING TO PROGRAM #1"
DELAY 2000 DELAY 2000
OPEN"I",1,"PROG2" OPEN"I",1,"PROG1"
RUN 1: REM RUNs Prog2 RUN 1:REM RUNs Prog1

Chaining 2 6

CHAINING

COMPILING THE EXAMPLE PROGRAMS

1. RUN* STARTB and save as START
Always RUN* a START program. This is a dummy program and is used only to get the
chained programs started and contains the runtime routines. Any filename will do.

2. RUN+ CHAIN1 and save as PROG1
3. RUN+ CHAIN2 and save as PROG2

NOTE: Always compile a START program using the RUN* command so that the chained
programs have a runtime package. All chained programs must be compiled using RUN+.

USE "DIM" TO DEFINE SHARED OR COMMON VARIABLES

When chained together, both PROG1 and PROG2 will share variables defined on line 10
after the DIM. If F5 equals 10 in PROG1, it will still equal 10 when you RUN PROG2.

Because variables "TV" and "PR" are unique to PROG1 and the variables "ZZ" and
"MYVAR" are unique to PROG2, CLEAR END must be used to initialize them (they must
be assigned values). Otherwise false values will be passed from other CHAIN programs.

The example programs (PROG1 and PROG2) will chain back and forth until you press
<BREAK>. Lines 80 and 90 are where the programs branch off to the other program.

CLEARING NON-SHARED VARIABLES WHEN CHAINING

Always use CLEAR END to clear variables that are not common between the programs.
All variables that follow a CLEAR END will be unique to that program and will start out as null
values.

(1) (2)
10 DIM 200A$(100), 65B$(300) 10 DIM 200A$(100), 65B$(300)
20 CLEAR END 20 CLEAR END
30 DIM FR(900) 30 A9=10: Z=33

In the above examples, the array variables A$ and B$ are shared and will contain the same
values, while all other variables in the program following the CLEAR END statement will
be null or zero and unique to that program. FR(n) is unique to program (1) and A9 and Z are
unique to program (2).

This statement may be used in non-chained programs as well. It is a handy way to null or
zero out selected variables (the variables still exist, they are just set to zero or null).

CHAINING PROGRAMS WITHOUT SHARING VARIABLES

This is done exactly as the same as the previous examples for shared variables, except
CLEAR is used on the first line of each chained program.

In the example programs CHAIN1 and CHAIN2, add a line:

 3 CLEAR

Variables are not shared and CLEAR clears all variables (sets them to zero or null) each
time a program is entered or chained.

To selectively share some variables and not others use the CLEAR END statement
described on the previous page and in the reference section.

 2 7 Chaining

ERRORS

ERRORS

There are different types of error messages. When errors are encountered during
compilation, compiling is stopped and the offending line is displayed. This is a Compile
Time error. Errors encountered during execution of a program are called Runtime Errors.

COMPILE TIME ERRORS

After typing RUN, ZBASIC compiles the program. If errors are encountered, ZBASIC will
stop compiling and display the error on the screen along with the offending line (when
compiling form disk using RUN "Filename" or RUN*, ZBasic will stop compiling, load the
Source Code, and LIST the line where the error occurred.) The Statement within the line
and the line number will be displayed. The following program would cause ZBASIC to print
an error during compile:

00010 CLS
00020 PRINT "HELLO THERE MR. COMPUTER USER!"
00030 PRINT "I AM A COMPUTER"
00040 Z=Z+1: X=X+Z: PWINTX

RUN

Syntax Error in Stmt 03 at Line 00040
00040 Z=Z+1: X=X=Z: PWINT X

NOTE: The error will be marked in some way depending on the computer system being
used. The error marker indicates the general error location on the line where compilation
stopped. To edit line 40 above type: EDIT 40 (or just comma). Fix the spelling of PRINT.

ZBasic will often display the missing character it expected.

00010 INPUT"Enter a number" A$
RUN
";" expected error in Stmt 01 at line 00010
00010 INPUT"Enter a number"_A$

00010 DIM A(10,10)
00020 A(X)=100
RUN
"," expected error in Stmt 01 at line 00020
00020 A(X_)

Error Messages 28

ERRORS

COMPILE TIME ERROR MESSAGES

A compile time error is one that ZBasic encounters after you type RUN (while it is compiling
your program). More often than not, the error is a syntax error. Edit the line to fix the error
an type RUN again until all the errors have been deleted.

COMPILE TIME
ERROR MESSAGE DEFINITIONS and POSSIBLE REMEDIES
DIM Error in Stmt... Only constants may be used in DIM statements:

DIM A(X) or Z(A+4) are not allowed. If you have a need to erase and
reuse dynamic staring arrays see: INDEX$, CLEAR INDEX$, MEM.

No DIM Error in ... Array variable being used was not Dimmed. Make sure variable is
Dimmed correctly. Most interpreters allow ten elements of an array
before and DIM is required. A compiler requires a DIM for every array.

Overflow Error in ... DEF LEN or DIM string length is less than one or greater than 255.
Also if CLEAR =zero or CLEAR is too large. Check an d adjust range.

Syntax Error in ... Anything ZBasic does not understand. Check for spelling, formatting
errors and syntax. The offending part of the line is often highlighted.

Too Complex Error... String function is too complex to compile. Break up complex strings.

Re-DEF Error... An FN or LONG FN was defined twice.

Variable Error in... String assignment problem: A$=123:Change to A$=STR$(123)

Out of Memory Error in... Program is getting too large. Check large DIM statements and defined
string lengths, or compile using RUN*. For very large programs you
may wish to CHAIN programs together.

Line # Error in... GOTO, GOSUB, ON GOTO, ON GOSUB, THEN or some other
branching command can’t find line number or a label.

Mismatch error in... The assignment to a variable is the wrong type.

Structure Error in... FOR without NEXT, DO without UNTIL, WHILE without WEND,
LONG IF without END IF or LONG FN without and END FN.

Structure Error in 65535* Missing NEXT, WEND, END IF, END FN, or UNTIL. If unable to find
error quickly, LLIST the program. structures are indented two spaces.
backtrack from the end of the program until the extra indentation is located.

"?" Expected error in ... ZBasic expected some form of punctuation that was not provided.
Check cursor position in displayed line for error.

*NOTE: Each ZBasic loop command must have one, and only one, matching partner. Each
FOR need a NEXT, each WHILE needs a WEND, each LONG FN needs and End FN, each
LONG IF needs an END IF and each DO needs an UNTIL.

 29 Error Messages

ERRORS

RUN TIME ERRORS

A Run Time (execution) error is an error that occurs when the compiled program is running
(Object Code). The only Run Time error messages produced are:

DISK ERRORS (Unless trapped by the user). See Disk Errors in the FILES section of
this manual.

OUT OF MEMORY ERROR when loading a compiled program saved to disk that is too
large to execute in memory.

ARRAY BOUNDS ERROR will be shown if the user configures ZBasic to check for this.
This will slow down a program execution but is extremely handy during the debug phase of
programming. You may turn this off after the program is completely tested. If access to an
array element out of bounds is made, the program is stopped and the line number with the
error printed.

STRING LENGTH ERROR. Some versions of ZBasic have a configure option that tells
ZBasic to check for string assignments greater than the length allowed. This does slow
execution speed and add memory overhead, so you may want to remove this error
checking after the program is debugged. See your appendix for specifics. If an attempt is
made to assign a string a value longer than its length, the program is stopped and the line
number with the error is printed.

RECOVERING FORM FATAL RUNTIME ERRORS

Since ZBasic is a compiler and converts your code into machine language, there is always a
risk that you may unintentionally enter an endless loop or hang up the system (the
computer will not respond to anything).

In these instances you may not be able to get a response form the computer or be able to
<BREAK> out o f the program. The system may have to be reset or turned off, and back on
again to regain control. To avoid losing valuable time, it is very important that you SAVE
PROGRAMS and MAKE BACKUPS FREQUENTLY. See you computer appendix for
possible alternatives.

USING SINGLE STEP DEBUGGING TO FIND THE SOURCE OF "CRASHES"

Should you encounter a situation where your program goes so far and then the system
hangs-up or you get a system error of some kind that you just can’t locate, there is a simple
way to find the problem.

First put a TRONS and TRON in the program somewhere before the crash occurs. The
TRON is added so that you can see a listing of the line numbers as the program executes.
Press the space bar a statement at a time, keeping track of the line numbers as they go by.

When the system crashes, make a note of the line number where the crash occurred and fix
the problem in your program.

Error Messages 3 0

TERMS AND DEFINITIONS

 3 1 Terms and Definitions

TERMS AND DEFINITIONS

TERMS AND DEFINITIONS
I use terms throughout this manual that may be unknown to you. The following terms are
used to make reading the technical information easier.

IMPORTANT NOTE
"The Hand" is pointing out something of importance for that section. Read it!

OPTIONAL
Items [enclosed in brackets] are OPTIONAL. You may or may not include that part of a
command, function or statement.

REPETITION
Three periods (ellipsis) mean repetition ... when they appear after the second
occurrence of something.

PUNCTUATION
Any punctuation such as commas, periods, colons and semi-colons included in
definitions, other than brackets or periods described above, must be included as shown.
Any text in Courier font, like this: COURIER FONT TEXT, means it is something for
you to type in or a simulation of the way it will look on your screen like a program listing.

COMPUTER APPENDIX
Refers to the appendix in the back of this manual, ABOUT YOUR COMPUTER.

SPECIAL 32
The superscripted 32 means this command, function or statement only works on 32 bit
computers. See you COMPUTER APPENDIX to see if your computer supports 32 bits.
In this edition of the manual it refers to the Macintosh computer only.

ABBREVIATIONS
Frequently used line editor commands have convenient abbreviations:

USE WITH <ENTER> USE WITHOUT <ENTER>
? PRINT ,comma EDIT present line
DEL DELETE .period LIST present line
E EDIT /slash LIST next 10 lines
L LIST ;(semi-colon) FIND next occurrence

Terms and Definitions 32

TERMS AND DEFINITIONS

DIFFERENT (KEY) STROKES FOR DIFFERENT FOLKS

Since ZBASIC operates on many different computers, reference is made to the same
keys throughout this manual.

MANUAL USES YOUR COMPUTER MAY USE
<SPACE> SPACE BAR
<BACKSP> BACKSPACE, DELETE, LEFT ARROW
<BREAK> CONTROL C, COMMAND PERIOD
<ENTER> RETURN, CARRIAGE RETURN
<ESC> ESCAPE, CNTRL UP ARROW, TAB
<UP ARROW> CURSOR UP, PLUS KEY<+>
<DOWN ARROW> CURSOR DOWN, MINUS KEY<->
<letter> Press the Key with that letter

See your COMPUTER APPENDIX for variations or enhancements.

LABELS ON LINES

A line may have a label directly following the line number consisting of upper or lowercase,
alphanumeric characters, or symbols in any order enclosed in quotes. The length of a
label is limited to the length of a line. ZBasic recognizes only the first occurrence of a label.

Line numbers are essential only for line EDIT(ing), MERGE, and APPEND. Statements
like; LIST, EDIT APPEND, GOTO, ON GOTO, GOSUB, ON GOSUB, DEL, etc., may
use either Labels or line numbers. List programs without line numbers by using LIST+.

SIMPLE STRINGS

Quoted strings: "Hello", "This is within quotes"

Any String variables: A$, NAME$, FF$, BF$(23).

Any of the following string functions:
MKI$, MKB$, CHR$, HEX$, OCT$, BIN$, UNS$, STR$, ERRMSG$, INKEY$,
INDEX$(9).

COMPLEX STRINGS

Complex strings are any combination of SIMPLE STRINGS. Any string operations
containing one of the following commands: simple string + simple string, LEFT$,
RIGHT$, MID$, STRING$, SPACE$, UCASE$

ZBasic allows only one level of COMPLEX STRING expression. Complex strings MAY
NOT be used with IF THEN statements. Convert all multi-level complex strings to simple
strings:

CHANGE COMPLEX STRINGS TO SIMPLE STRINGS
B$=RIGHT$(A$+C$,2) B$=A$+C$: B$=RIGHT$(B$,2)
B$=UCASE$(LEFT$(A$,3)) B$LEFT$(A$,3): B$=UCASE$(B$)
IF LEFT$(B$,2)="IT"THEN 99 D$=LEFT$(B$,2): IFD$="IT"THEN 99

The Macintosh version allows much deeper levels of complex strings.

 33 Terms and Definitions

TERMS AND DEFINITIONS

VARIABLE TYPES

A$, A#, A!, A%, and A%(n,n) represent different variables. If no type is given, integer is
assumed (unless configured differently by the user or changed with DEF DBL, DEF
SNG or DEF STR). A and A% would be the same variable. Types:

% Integer variable
& 4 byte Integer (32 bit machines only)
! Single precision variable
Double precision variable
$ String variable

EXPRESSIONS

Throughout this manual reference is made to expressions. There are different types of
expressions and the following words will be used to refer to specific expressions.

DEFINITION OF EXPRESSION

EXPRESSION refers to a combination of constants, variables, relational operators or math
operators in either integer, floating point or string used to yield a numeric result. The
following UNDERLINED examples are EXPRESSIONS.

CLEAR 2000

A= T+1

TEST= X^ 2.23* 5+1

IF X*3.4 <= Y*98.3 THEN Z= 45*84^R

IF A$>B$ AND B$<>C$ THEN GOTO 1000

Terms and Definitions 34

TERMS AND DEFINITIONS

BYTE EXPRESSION

A BYTE EXPRESSION always results in a number from 0 to 255. The expression may
be floating point, integer or string, but if the actual result is more than 255 or less than 0,
the final result will return the positive one byte remainder. ZBasic will not return an error if
the calculation result is out of this range.

INTEGER EXPRESSION

An INTEGER EXPRESSION results in an integer number form
-32768 to 32767. The expression may be floating point, integer or string, but if the
actual result is more than 32767 or less than -32768, the final result will return the integer
remainder which is incorrect. ZBasic will not return an error if the calculation result is out of
integer range.

Note: 32 bit computers have a LongInteger range of +-2,147,483,647.

UNSIGNED INTEGER EXPRESSION

An UNSIGNED INTEGER EXPRESSION always results in an unsigned integer
number from 0 to 65535. The expression may be floating point or integer but if the actual
result is more than 65535 or less than 0 the final result will return the remainder which will
be incorrect. See UNS$ for displaying signed integers as unsigned.

Note: 32 bit computers have an unsigned LongInteger range of 0 to 4,294,967,300.

CONDITIONAL EXPRESSION

Conditional expressions like A=B, A>B, A<B etc., will return negative one if
TRUE(-1), and zero (0) if FALSE.

It should be noted that a condition like IF X THEN... would be TRUE if X is non-zero and
FALSE if X=zero.

IMPORTANT NOTE ABOUT MATH EXPRESSIONS: If you have configured
numeric expressions to be optimized as integer, the final result of an expression will be
evaluated by ZBasic as integer UNLESS one of the following conditions is found within
that expression:

* Constant with a type of (#, !, or exponent: D or E)
* Constant with a decimal point (period). Example: .34 or 1.92
*Non-integer variable. (Single or Double precision #, !)
* MATH Functions: COS, SIN, ATN, SQR, LOG, EXP, TAN, VAL, CVB, FRAC, AND FIX.
* Floating point math symbols \, ^ or [

Note: One expression may be made up of other expressions within parentheses. Each
expression is evaluated separately and must meet the criteria above.

 3 5 Terms and Definitions

MATH

MATH OPERATORS

+ ADDITION
- SUBTRACTION
* MULTIPLY
/ DIVIDE
\ DIVIDE (Floating point Divide or Integer Divide)*
 * If configured as "Optimize Expressions as Integer" the \ is

forced floating point divide, otherwise it is forced integer divide.
^ or [EXPONENTIATION (raise to the power)
MOD REMAINDER OF INTEGER DIVIDE (MODulo)
<< SHIFT LEFT (BASE2 MULTIPLY)
>> SHIFT RIGHT (BASE2 DIVIDE)

NEGATION

Negation will reverse the sign of an expression, variable or constant. Examples: -A, -12,
-.32, -(X*B+3^7), -ABS(Z*R)

SHIFT (binary multiply and divide)

Since computers do internal calculations in binary (BASE 2), SHIFT is used to take
advantage of this computer strength. Multiply or divide SHIFTS are faster than floating
point multiply or divide and may be used when speed is a factor. (Integer Shift Right loses
sign). A good example; ATN(1)<<2 = pi (instead of the slower; ATN(1)*4)

>>n Shift right (Divide by 2^n)
<<n Shift left (Multiply by 2^n)

(n Truncates to an integer number)

SHIFT BASE 2 DECIMAL
FUNCTIONS Equivalent* Equivalent RESULT
4>>1 (Divide) 4/2^1 4/2 2
4<<1 (Multiply) 4*2^1 4*2 8

89.34<<2 89.34*22 89.34*4 357.36

.008>>1 .008/21 .008/2 4E-3

999.>>7 999/27 999/128 7.8046875

*21=2, 23 is the same as 2*2*2, 2^7 is the same as 2*2*2*2*2*2*2
With 10>>8.231 or 10<<8.231 the 8.231 would be converted to integer 8

Math Functions and Operators 3 6

MATH

REGULAR MATH EXPRESSIONS AND ZBASIC EQUIVALENTS

Regular math and algebraic expressions are quite similar to ZBasic expressions. The user
should, however, be aware of some important differences. As in regular algebraic
expressions, parentheses determine the part of the expression that is to be completed
first. Examples:

FORCING EXPRESSION EVALUATION TO DEFAULT TO FLOATING POINT

ZBasic normally optimizes expression evaluation by assuming integer if no floating point
types are seen in the expression. This can cause confusion for those used to MSBASIC
or other languages without this capability. Setting "OPTIMIZE EXPRESSIONS FOR
INTEGER MATH?" to "NO" sets the expression evaluator to interpret expressions as most
other computer languages do; that is, all expressions will default to floating point if
parentheses or any part of the expressions contain a floating point operator. While this
makes it easier to follow the logic in an expression, the speed of execution time will suffer
greatly.

It should be noted that a compiler cannot determine if an expression like C%=A%*B%
returns a floating point number. If A%=20000 and B%=20000 an overflow will occur.

NOTE: Some versions of ZBasic, most notably versions older than 4.0, will not allow you
to configure the expression evaluator. Older versions default to optimized integer math
as described below.

WHY OPTIMIZE EXPRESSIONS FOR INTEGER MATH?

ZBasic defaults to a unique way of interpreting math expressions. Under CONFIGURE,
you are given the option of setting expression evaluation to optimized integer or regular
floating point. The default is INTEGER. This requires some extra thought on the part of
the user but forces programs to execute much faster and much more efficiently.

 3 7 Math Functions and Operators

MATH

UNDERSTANDING EXPRESSIONS THAT ARE OPTIMIZED FOR INTEGER MATH

Optimized Integer Expressions return the final result of an expression in integer or
floating point, depending on how the expression is evaluated.

To optimize program speed and size, *integer is assumed UNLESS one of the following
is found in an expression: decimal Point, scientific function, \(floating point divide: SEE
NEXT PAGE DEFINITIONS OF DIVIDE SYMBOLS) , #, ! or a constant>65,535.

The following examples will give you an idea how ZBasic evaluates expressions as Integer
or floating point. (B=10)

EXPRESSION RESULT EXPRESSION EVALUATED AS
B* .123 1.23 FLOATING POINT (Decimal point force REAL)
B* 23 230 INTEGER
B *23# 230 FLOATING POINT (# forces Double Precision)
B* 32000 -11264 INTEGER (Overflow error)
B* 32000. 320000 FLOATING POINT (Decimal point)
SIN(B) -.54402111 FLOATING POINT (Scientific Function)
B*0+65535 -1 INTEGER (UNS$(-1)=65535)
B*4800 -17536 INTEGER (UNS$(-17536)=48000)

*Note: You may configure ZBasic to assume floating point by setting "Optimize
expressions for integer math" to "NO". See "Configure" in the beginning of this manual.

PARENTHESES IN OPTIMIZED INTEGER EXPRESSION EVALUATION

Parentheses are used to force an expression to be evaluated in a certain order. (See
ORDER OF PRECEDENCE)

ZBasic evaluates an expression by examining the outermost portions. In the expression:
X*(2*(4.03+4))*5, the innermost portion of 4.03+4 is floating point, but since the
outermost portions of X* and *5 are integer the whole expression is returned as an
integer. (B=10 in examples)

EXPRESSION RESULT EXPRESSION EVALUATED AS
B*(32000+1) -7670 INTEGER (Out of range error)
B*(32000.+1)+0! 320010 FLOATING POINT (! forces REAL)
B+(.23)+1200 1210 INTEGER
B+(.23)+1200. 1210.23 FLOATING POINT (period forces REAL)
B+(200*(.001^2)) 10 INTEGER
B+200*.001^2 10.0002 FLOATING POINT
B+ATN(2) 11.107149 FLOATING POINT (Scientific Function)

The expression within each level of parentheses is still evaluated according to the
precision in that level.

NOTE: Newer versions of ZBasic may be configured to expression evaluation you are
more used to . See "OPTIMIZE EXPRESSIONS FOR INTEGER MATH" above.

Math Functions and Operators 3 8

MATH

INTEGER AND FLOATING POINT DIVIDE SYMBOLS

It should be noted that the Divide symbols / and \ take on different meanings depending
on the type of expression evaluation being used:

Optimized for Integer "YES" Optimized of Integer "NO"
/ = Integer Divide / =Floating Point Divide
\ =Floating Point divide \ =Integer Divide

SCIENTIFIC FUNCTIONS

ZBasic offers several scientific and trigonometric math functions for making many
calculations easier.

SQR(expression) SQUARE ROOT of expression.
Returns the number multiplied by itself
that equals expression. SQR(9)=3

LOG(expression) Natural LOGARITHM if expression
(sometimes referred to as LN(n)).
Common LOG10 =LOG(n)/LOG(10)

EXP (expression) Natural logarithm base value:
e=2.718281828459045235602874135266249775724
TO THE POWER of EXPRESSION. Inverse of LOG.

LOG and EXP may speed up calculations dramatically in certain situations. Some
comparative equalities using LOG and EXP:

X*Y = EXP (LOG(X) + LOG(Y))
X /Y = EXP (LOG(X) - LOG(Y))
X^Y = EXP (LOG(X) * Y)

CONFIGURING SCIENTIFIC ACCURACY

Scientific function accuracy may be configured up to 54 digits of accuracy (32 bit
machines may be higher). Default accuracy is 6 digits. Scientific accuracy may be
configured from two digits of accuracy, up to Double Precision accuracy (not necessarily
the same as Single or Double precision).

Precision is set when loading ZBasic under <C>onfigure. Scientific math functions are
complicated; the more digits of precision used, the longer the processing time required.
See "Setting Accuracy" in the floating point section of this manual for information about
accuracy, speed charts and memory requirements.

SCIENTIFIC MATH SPEED

When speed is more important than accuracy, configure DIGITS OF PRECISION (under
configure at start-up) to 6 digits for DOUBLE, 4 digits for SINGLE and 6 digits for SCIENTIFIC.

 3 9 Math Functions and Operators

MATH

TRIGONOMETRIC FUNCTIONS

TAN(expr) TANGENT of expression in radians.
TAN(A)=Y/X, X=Y/TAN(A), Y=TAN(A)*X

ATN(expr) ARCTANGENT of the expression in radians.
A=ATN(Y/X), Pi=ATN(1)<<2

COS(expr) COSINE of the expression in radians.
COS(A)=X/H, H*COS(A)=X, X/COS(A)=H

SIN (expr) SINE of the expression in radians.
SIN(A)=Y/H, Y=H*SIN(A), H=Y/SIN(A)

SQR(expr) SQUARE ROOT of expression.
H=SQR(X*X+Y*Y)

TAN, ATN, COS AND SIN return results in Radians.

OTHER ZBASIC MATH FUNCTIONS

FRAC(expr) Returns FRACTIONAL portion of an expression
FRAC(23.232)-.232, FRAC(-1.23)=-.23

INT(expr) Returns expression as a whole number
INT(3.5)=3, INT(99231.2)+0=99231

SGN(expr) Returns the SIGN of an expression
SGN(-23)=-1, SGN(990)=1, SGN(0)=0

ABS(expr) Returns the ABSOLUTE VALUE of an expression
ABS(-15)=15, ABS(152)=152, ABS(0)=0

FIX (expr) Returns the whole number of an expression
FIX(99999.23)=99999, FIX(122.6231)=122
(Like INT but forces floating point mode)

expr MOD expr Returns the remainder of an integer divide (MODulo)
9 MOD 2=1, 10 MOD 2=0, 20 MOD 6=2

RND(expr) Returns a random number between 1 and expr
RND(10) randomly returns 1,2,3,4...10

MAYBE Randomly returns -1 or 0. (50-50 chance)
 IF MAYBE PRINT "HEADS" ELSE PRINT "TAILS"

Math Functions and Operators 4 0

MATH

DERIVED MATH FUNCTIONS

MATH FUNCTION TERM ZBasic EQUIVALENT EQUATION
PI (∏) PI ATN(1)<<2 (accurate to double precision)
e e EXP(1)
Common LOG 10 LOG LOG(X)/LOG(10)
Area of a CIRCLE ∏R^2 Y#=(ATN(1)<<2)*Radius*Radius
Area of a SQUARE Y#=Length*Width
Volume of a RECTANGLE Y#=Length*Width*Height
Volume of a CUBE Y#=Length*length*length
Volume of a CYLINDER Y#=(ATN(1)<<2)*Height*Radius*Radius
Volume of a CONE Y#=(ATN(1)<<2)*Height*Radius*Radius/3
Volume of a SPHERE Y#=(ATN(1)<<2)*Radius*Radius*Radius*4/3

SECANT SEC(X) Y#=1/COS(X)
COSECANT CSC(X) Y#=1/SIN(X)
COTANGENT COT(X) Y#=1/TAN(X)

Inverse SINE ARCSIN(X) Y#ATN(X/SQR(1-X*X))
Inverse COSINE ARCCOS(X) Y#ATN(1)*2-ATN(X/SQR(1-X*X))
Inverse COSECANT ARCCSC(X) Y#ATN(1/SQR(X*X-1))+(X<0)*(ATN(1)<<2)
Inverse COTANGENT ARCCOT(X) Y#=ATN(1)*2-ATN(X)

Hyperbolic Sine SINH(X) Y#(EXP(X)-EXP(-X))/2.
Hyperbolic Cosine COSH(X) Y#=(EXP(X)+EXP(-X))/2.
Hyperbolic Tangent TANH(X) Y#=(EXP(X)-EXP(-X))/(XP(X)+EXP(-X))
Hyperbolic Secant SECH(X) Y#=2./(EXP(X)+EXP(-X))
Hyperbolic Cosecant CSCH(X) Y#=2./(EXP(X)-EXP(-X))
Hyperbolic Cotangent COTH(X) Y#=(EXP(X)+EXP(-X))/(EXP(X)-EXP(-X))

Inverse Hyperbolic Sine ARCSINH(X) Y#=LOG(X+SQR(X*X+1))
Inverse Hyperbolic Cosine ARCCOSH(X) Y#=LOG(X+SQR(X*X-1))
Inverse Hyperbolic Tangent ARCTANH(X) Y#=LOG((1+X)/(1-X))/2
Inverse Hyperbolic Secant ARCSECH(X) Y#=LOG((1+SQR(1-X*X))/X)
Inverse Hyperbolic Cosecant ARCCSCH(X) Y#=LOG((1-SGN(X)*SQR(1+X*X))/X)
Inverse Hyperbolic Cotangent ARCCOTH(X) Y#=LOG((X+1)/(X-1))/2

Derivative of LN(X) (Natural LOG) Y3=1/X
Derivative of SIN(X) Y#=COS(X)
Derivative of TAN(X) Y#=1+TAN(X)^2
Derivative of COT(X) Y#=-(1+(1/TAN(X)^2)))
Derivative of ARCSIN(X) Y#=SQR(1-X*X)
Derivative of ARCCOS(X) Y#=-SQR(1-X*X)
Derivative of ARCTAN(X) Y#=1/(1+X*X)
Derivative of ARCCOT(X) Y#=1/(X*X+1)
Derivative of ARCSEC(X) Y#=1/(X*SQR(X*X-1))
Derivative of ARCCSC(X) Y#=-1/(X*SQR(X*X-1))
Derivative of ARCSINH(X) Y#=1/SQR(1+X*X)
Derivative of ARCCOSH(X) Y#=-1/SQR(X*X-1)
Derivative of ARCTANH(X) Y#=1/(1-X*X)
Derivative of ARCCOTH(X) Y#=-1/(X*X-1)
Derivative of ARCSECH(X) Y#=-1/(X*SQR(1-X*X))
Derivative of ARCCOSSECH(X) Y#=-1/(SQR(1+X*X))

See DEF FN and LONG FN for adding these math functions to your programs.

 4 1 Math Functions and Operators

MATH

ORDER OF PRECEDENCE

In order to determine which part of a math expression is done first an order of precedence
is used. The following math operators are performed in the this order.

1. (((1st)2nd)3rd) Innermost expressions within parentheses always
performed first

2. - Negation (not subtraction)

3. NOT Logical operator

4. ^ or [Exponential

5. *,/,\,MOD Multiply, Divide, Floating point Divide, MODulo

6. +,- Addition, Subtraction

7. =,>=,=>,<=,=<, Conditional operators
 >,<,<>,><

 >>, << Shifts

8. AND, OR, XOR Logical operator

ZBasic will calculate each operation of an expression in order of precedence, as defined
by the table above. The final result of an expression depends on the order of operations.

If there are items of equal precedence in a n expression, ZBasic will perform those
operations from left to right.

 A#=2+5-3*6+1/4

This expression is performed in the following order;

1. 3*6
2. 1/4
3. 2+5
4. (2+5) - (3*6)
5. (2+5-(3*6)) + (1/4.)

A#=-10.75

Important Note: If expressions are optimized for Integer Math, the decimal point after
the 4 forces the result of the expression to be floating point. If the decimal point had been
omitted, the result would be -11. See CONFIGURE.

Math Functions and Operators 42

MATH

USING PARENTHESES TO FORCE PRECEDENCE

Parentheses are used in math expressions to force ZBasic to calculate that part of an
expression first. If a math operation is enclosed in parentheses, which in turn is enclosed
within parentheses, the innermost expression will be calculated first.

A#=2+5-3*6+1/4

To force the 2+5-3 part of the above equation to be calculated first, and then multiply that
by 6 and add 1 second, with division by 4 last, you would express the equation like this:

A#=((2+5-3) * 6+1) / 4.

The order of operations in this expression would be:

1. (2+5-3)
2. (2+5-3)*6+1
3. ((2+5-3)*6+1)/4.

A#=6.25

Note: If Expressions are optimized for Integer Math; the outermost expression is used by
ZBasic to determine whether the final result will be returned as integer or floating point.

The decimal point after the 4 forces the expression to be calculated as floating point
(although each expression within parentheses is evaluated as floating point or integer
depending on the rules of expressions). If the decimal point had been omitted the result
would have been 6.

To use the standard rules of expression evaluation, set "Optimize Expression evaluation
to Integer" to NO under configure. Math expressions will be done in the usual manner if
this is done.

 43 Math Functions and Operators

MATH

CONDITIONAL OPERATORS

The conditional operators return:

0 (zero) If the Comparison is FALSE
-1 (negative one) If the Comparison is TRUE

A non-zero expression Is always TRUE
A zero expression Is always FALSE

These symbols are used for comparing expressions and conditions.

= Equal To
<>,>< Not Equal To
< Less Than
> Greater Than
>=, => Greater Than OR Equal To
<=, =< Less Than OR Equal To

Examples: (A$"HELLO" AND A%=2000)

CONDITIONAL EXPRESSION RESULT
X=12<20 X=-1
PRINT 23=45 0
IF 10>5 THEN PRINT "SURE IS" SURE IS
IF A%-2000>100-99 PRINT A% Nothing
IF VAL(A$)=0 THEN PRINT A$ HELLO
PRINT 2>5, 3<5, 5>5 0 -1 0
IF A%>120 THEN PRINT "OK" OK
IF A%*5>=10000 THEN STOP Program STOPs
IF A% PRINT "YES" YES (Non zero is True)
PRINT 50>50 0
PRINT 50>=50 -1
IF A%>30000 THEN PRINT "OK" Nothing
X=1: IF X THEN PRINT "YEP" YEP
X=0: IF X THEN PRINT "YEP" Nothing
X=77.321>77.320+1 0

X= "HELLO"="HELLO" X=-1
IF A$="HELLO" PRINT "YES" YES
IF A$="HELLLO" PRINT "YES" Nothing
IF A$>"HEL" THEN PRINT A$ HELLO
IF A$<>"GOON" THEN PRINT "NO" NO
IF STR$(A%)=" 2000" PRINT "YES" YES

Math Functions and Operators 4 4

MATH

LOGICAL OPERATORS

Zbasic makes use of the logical operators AND, OR, NOT, SHIFTS and XOR. These
operators are used for comparing two 16 bit conditions and binary operations (except on
32 bit computers which can compare 32 bits). When used in comparative operations a
negative one (-1) is returned for TRUE, and a zero (0) is returned for FALSE.

Logical Operators RETURNS
condition AND condition TRUE(-1) if both conditions TRUE, else FALSE(0)
condition OR condition TRUE(-1) if either or both is TRUE, else FALSE(0)
condition XOR condition TRUE(-1) if only one condition is TRUE, else FALSE(0)
condition SHIFT condition TRUE(-1) if any non-zero value returned, else FALSE(0)
NOT condition TRUE(-1) if condition FALSE, else FALSE(0) if TRUE

EQV (emulate with)
NOT (condition XOR condition) TRUE(-1) if both conditions FALSE or both conditions

TRUE, else FALSE(0)

IMP (emulate with)
(NOT condition) OR condition FALSE(0) if first condition TRUE and second condition

FALSE, else TRUE(-1)

AND BOOLEAN "16 BIT" LOGIC
1 AND 1 = 1 00000001 00000111
0 AND 1 = 0 AND 00001111 AND 00001111
1 AND 0 = 0 = 00000001 = 00000111
0 AND 0 = 0

OR
1 OR 1 = 1 00000001 10000101
0 OR 1 = 1 OR 00001111 OR 10000111
1 OR 0 = 1 = 00001111 = 10000111
0 OR 0 = 0

XOR
1 XOR 1 = 0 00000001 10000101
0 XOR 1 = 1 XOR 00001111 OR 10000111
1 OR 0 = 1 = 00001110 = 00000010
0 XOR 0 = 0

SHIFT >>, <<
255 >> 2 = 63 11111111 00010111
23 << 3 =184 >> 00000010 << 00000011

= 00111111 = 10111000

NOT
NOT 1 = 0 NOT 11001100 NOT 01111011
NOT 0 = 1 = 00110011 = 10000100

With the Macintosh, 32 bit integers may also be used with logical operators (LongInteger&).

 4 5 Math Functions and Operators

NUMERIC CONVERSIONS

INTEGER BASE and SIGN CONVERSIONS

ZBasic has functions for converting integer constants to hexadecimal (BASE 16), octal
(BASE 8), binary (BASE 2), unsigned integer and back to decimal (BASE 10).
UNS$, HEX$, OCT$ and BIN$ are the functions used to convert an integer to the string
representation of that SIGN or BASE.

DECIMAL TO BASE CONVERSION

HEX OCTAL BINARY
HEX$(48964) OCT$(54386) BIN$(255)
="BF44" ="152162" ="0000000011111111"

HEX$(32) OCT$(8) BIN$(512)
="0020" ="000010" ="0000000100000000"

BASE TO DECIMAL CONVERSION

HEX OCTAL BINARY
VAL("&0030") VAL("&O000011") VAL("&X0000000001100011")
=48 =9 = 99

DISPLAYING UNSIGNED INTEGERS

To display or print an unsigned integer number use UNS$. UNS$ returns the unsigned
value of the number by not using the leftmost bit as a sign indicator:
UNS$(-1)=65,535, UNS$(-2311)=63,225

ZBasic interprets the integers, -1 and 65,535 as the same value. In BINARY format they
are both 1111111111111111. The left-most bit sets the sign of the number to positive
or negative. This is the same unsigned integer format used by many other languages.

The same holds true with LongIntegers, only 32 bits are used instead of 16 bits. The
signed range is +- 2,147,483,647. The unsigned range is 0 to 4,294,967,293. See
DEFSTR LONG in the appendix for ways of using 32 bit HEX$, OCT$, UNS$ and BIN$.

Numeric Conversions 46

NUMERIC CONVERSIONS

CONVERSION BETWEEN DIFFERENT VARIABLE TYPES

ZBasic will convert variables from one type to another as long as the conversion is within
the range of the target variable.

DOUBLE or SINGLE PRECISION VARIABLE =INTEGER VARIABLE will
convert exactly (unless single precision is set less then 6 digits).

INTEGER VARIABLE=DOUBLE or SINGLE PRECISION VARIABLE will
convert correctly if the double or single precision variables are within the integer range of
-32,768 to 32,767 (unsigned 0 to 65,535). Any fractional part of the number will be
truncated. Results outside integer range will be the rounded integer result, which is
incorrect, and no error will be generated.

SINGLE PRECISION VARIABLE=DOUBLE PRECISION VARIABLE
conversions will be exact to the number of significant digits set for single precision since
the calculations are done in double precision. If the single precision default is 6 digits and
double precision is 14 digits, the 14 digit number would be rounded down to 6 digits in
this example (precision is configurable by the user).

STRING VARIABLE=STR$(INTEGER, DOUBLE OR SINGLE PRECISION
VARIABLE) will convert exactly. The first character of the string produced is used for
holding the sign. If the number is positive or zero, the first character of the string
produced will be a SPACE, otherwise the first character of the string will be a minus (-).

INTEGER VARIABLE=VAL(STRING VARIABLE) will convert correctly, up to the
first non-numeric character, if the string variable represents a number in integer range.
Fractional portions will be ignored. Zero will be returned if not convertible.

DOUBLE OR SINGLE PRECISION VARIABLE=VAL(STING VARIABLE) will
convert correctly within the range of floating point precision set by the user (rounding will
occur if it is more digits than the set precision).

LongInteger conversions are the same as regular integers with the exception that
the range is much larger. Since all internal integer calculations are done in LongInteger,
conversions are simple. See DEFSTR LONG in the Macintosh appendix.

 47 Numeric Conversions

CONSTANTS

CONSTANTS

Constants are values used in expressions, variable assignments, or conditionals. In the
following underlined program lines, the constants values remain constant, while values
of A$, Z and T are variable.

10 PRINT"HELLO THERE": PRINT A$: Z=Z+T+2322.12

ZBasic users both string (alphanumeric) and numeric constants.

INTEGER CONSTANTS

An integer constant is in the range of -32,768 to 32,767 (or unsigned integer in the range
of 0 to 65,535).

The BASE of an integer may be represented in Decimal, Hexadecimal, Octal or Binary.
See "Numeric Conversions" for information about converting integers to and from HEX,
OCTAL, BINARY and DECIMAL.

MEMORY REQUIRED FOR INTEGER CONSTANTS

Two bytes each in the same format as integer variables.

The Macintosh also has LongInteger constants with a range of +-2,147,483,647.
LongInteger constants require four bytes memory each. Macintosh format of integer is
the opposite of other versions. i.e. MSB is first and LSB is last.

Constants 4 8

CONSTANTS

FLOATING POINT CONSTANTS

The range of floating point constants is +-1.0E-64 to +-9.999E+63*. Constants may be
expressed in scientific notation and/or up to 54 digits of significant accuracy.

Floating point constants are significant up to the double precision accuracy set by the
user. If the number of digits is greater than the accuracy of double precision, it will be
rounded to that precision. If the double precision default of 14 digits is assumed, a
constant of 1234567890.123456 will be rounded to 1234567890.12345.

Constants may be forced as double or single precision by including a decimal point in the
constant or by using # for double precision or ! for single precision.

MEMORY REQUIRED FOR FLOATING POINT CONSTANTS

ZBasic will store floating point constants in Binary Coded Decimal format (See Floating
point variables memory requirements). This is based on the actual memory requirement
of each constant, with a minimum memory requirement of 3 bytes per constant. To
calculate the memory requirements of a specific constant use the formula:

NUMBER of DIGITS in the constant/2+1=Bytes needed*
Minimum of 3 bytes required per Floating point constant.

*the range of Double precision constants is E+-16,383 (single precision remains the same
for compatibility). To calculate the memory required use the following equation ; Number
of Digits/2+2=bytes needed (single precision is the same as above).

Important Note: Some versions of ZBasic offer an optional high speed binary-floating-
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

STRING CONSTANTS

String constants are alphanumeric information enclosed in double quotes with the
number of characters limited by line length (255 characters maximum).

"This is a string of characters"
"12345 etc."
"Hello there Fred"

Any character except quotes may be included between the quotes. To include quotes in
string constants use CHR$(34). PRINT CHR$(34) ;"HELLO";CHR$(34) would print:
"HELLO". To conserve memory when using many string constants see PSTR$.

MEMORY REQUIRED FOR STRING CONSTANTS
One byte plus the number of characters, including spaces, within the string constant.
See PSTR$ for ways of conserving memory with string constants.

 4 9 Constants

VARIABLES

VARIABLES

The word VARIABLE describes the label used to represent alterable values. ZBasic
differentiates between four types of variables.

VARIABLE TYPE TYPE OF STORAGE RANGE
STRING ALPHANUMERIC 0 TO 255 CHARACTERS
INTEGER INTEGER NUMBERS +-32,767
SINGLE PRECISION FLOATING POINT NUMBERS E+- 63
DOUBLE PRECISION FLOATING POINT NUMBERS E+- 63

In addition to the variable types described above this version also supports LongInteger
and an extended double precision range (single precision is the same as above).
LONG INTEGER FOUR BYTE INTEGER +-2,147,483,647
DOUBLE PRECISION FLOATING POINT NUMBERS E+-16,383

Important Note: Some versions of ZBasic offer an optional high speed binary-floating-point-
option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

VARIABLE TYPE DECLARATION

Variable names may be followed by a type symbol:

$ STRING VARIABLE
% INTEGER VARIABLE
! SINGLE PRECISION VARIABLE
DOUBLE PRECISION VARIABLE

If type is not given, integer is assumed (unless configured differently). A, A!, A$, A#,
A(2,2), A#(2,2), A!(2,2) and A$(2,2) are considered different variables. Note: A and A%
are the same variable if ZBasic is configured to Integer.

Type declaration for LongInteger is; &

Variables 5 0

VARIABLES

DEFINING VARIABLE TYPES

If you want to define variables beginning with a specific letter to be a specific type, use the
DEF statement at the beginning of a program.

DEFSTR A-M,Z Defines all variables starting with A thru M and Z as string
variables. M and M$ are the same variable.

DEFSNG A-C Defines all variables starting with A thru C as single
precision variables. C and C! are the same variable.

DEFDBL F,W Defines all variables starting with F and
W as Double precision variables. F and F# are the same.

DEFINT A,G,T-W Defines all variables starting with A,G and T thru W as
integer variables. No % needed. A and A% are
considered the same variable.

Note: Even if a range of letters is defined as a certain type, a declaration symbol will still
force it to be that type. For instance, if A-Z are defined as integer using DEFINT, A$ is still
considered a string, and A# is still considered a double precision variable.

DEFDBL INT A-M Defines variables starting with A thru M as LongIntegers. No &
needed. A and A& are the same variable.

VARIABLE NAMES

Variable names must have the following characteristics:

o Variable names may be up to 240 characters in length but only the first 15 characters
are recognized as a unique variable.

o First character must be in the alpha range of A-Z, or a-z.
o Additional characters are optional and may be alphanumeric or underline.
o Symbols not allowed: ",^/+->=<][()? etc.

SPACE REQUIRED AFTER KEYWORDS

Many versions of ZBasic have this as a configure option. See "Configure". If you don’t
want to worry about embedding keywords in variables, set "Space Required after
Keywords" option to "yes". It will require that keywords be followed by spaces or non-
variable symbols. This allows variable names like FORD or TOM.

If you do not set this parameter, or do not have this option for your version of ZBasic, you
must not embed keywords in variables.

UPPER/LOWERCASE WITH VARIABLES

If you want the variable TOM and the variable tom to be the same variable, you must
configure "Convert to Uppercase" to "yes". See "Configure".

If you do not set this parameter, or do not have this option for your version of ZBasic, you
must match case when using variables. i.e. TOM and tom are different variables.

 5 1 Variables

VARIABLES

MEMORY REQUIRED FOR VARIABLES

VARIABLES MEMORY REQUIRED
INTEGER % 2 bytes

STRING $ 256 bytes (default). String variable length is definable
 from 1 to 255 characters (plus one for length byte).

SINGLE PRECISION ! 4 bytes (default)

DOUBLE PRECISION # 8 bytes (default)
If Single or Double precision digits of precision is
changed, use this equation to calculate memory
requirements:
DIGITS of ACCURACY /2+1=BYTES REQUIRED*

ARRAY VARIABLES

ARRAY VARIABLES MEMORY REQUIRED PER ELEMENT
INTEGER % 2 bytes per element

STRING $ 256 bytes (default) per element. String variable length
 is definable from 1 to 255 characters per element.
Add one byte per element to the defined length of the
string for the length byte. DEFLEN 200=201 bytes
required per element.

INDEX$(element) 1 byte plus the number of characters in an element

SINGLE PRECISION ! 4 bytes (default) per element

DOUBLE PRECISION # 8 bytes (default) per element
If FLOATING POINT digits of precision are changed,
use this equation to calculate memory requirements:
NUMBER OF DIGITS/2+1=BYTES REQUIRED*

Note: Remember to count the zero element if BASE zero is used.

Important Note:Some versions of ZBasic offer a high speed binary-floating-point
option. While the speed of binary math packages is superior, the accuracy, range and
memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

*LongInteger variables and arrays use four bytes each. To determine double precision
memory requirements for the Macintosh version: DIGITS/2+2=BYTES REQUIRED per
variable or per double precision array element.

Variables 5 2

VARIABLES

INTEGER VARIABLES

Because ZBasic always attempts to optimize execution size and speed, it will always
assume a variable is integer unless the variable is followed by a type declaration (#, !, $,
&) or that range of letters has been defined DEFSTR, DEFDBL, DEFDBL INT or
DEFSTR. Although it will slow down program performance, you may force ZBasic to
assume floating point variables under configuration. See "Configure". Integer
calculations may be 100 to 200 times faster than floating point!

INTEGER RANGE

-32,768 to +32767

LongInteger range is +-2,147,483,647. Speed is as fast as regular integers.

DEFINING VARIABLES AS INTEGER

ZBasic assumes all unDEFined variables, or variables without type declarations (#,!,$,&),
are integer (unless configured differently by the user).

DEFINT may be used to force a range of variables starting with a certain letter to be
integer with the DEFINT statement followed by a list of characters. For example: DEFINT
A-G defines all variables starting with A,B,C...G to be integer. (G and G% would be the
same in this case.)

To force a specific variable to be integer, even if that letter type has been DEF(ined)
differently, follow a variable with %. TEST%, A% and F9% are integer variables.

INTEGER OVERFLOW RESULTS

If a program calculation in an integer expression exceeds the range of an integer number,
ZBasic will return the overflowed integer remainder of that calculation. The result will be
incorrect. ZBasic does not return an Integer Overflow Error. Check program
logic to insure results of an operation remain within integer range.

HOW INTEGER VARIABLES ARE STORED IN MEMORY

Integer variables and integer array elements require two bytes* of memory. To find the
address (location in memory) of an integer variable:

ADDRESS1 = VARPTR(INTEGER VARIABLE [(SUBSCRIPT[,SUBSCRIPT[,Ö.])])

ADDRESS2 = ADDRESS1 +1

The value of INTEGER VARIABLE is calculated using this equation:

INTEGER VARIABLE=VALUE OF ADDRESS2*256 + VALUE OF ADDRESS1

*Requires four bytes for LongInteger. The MSB and LSB are stored in reverse order with
regular integers. See the Macintosh appendix for more information.

 5 3 Variables

VARIABLES

FLOATING POINT (BCD) VARIABLES

There are three floating point precisions that may be configured by the programmer to
return accuracy up to 54 significant digits:

ZBasic does all BCD calculations in DOUBLE PRECISION. This is extremely important
when speed is a factor. If you only need 6 or 7 digits of precision and speed is important
be sure to CONFIGURE DIGITS OF ACCURACY AS FOLLOWS:

DOUBLE PRECISION = 6
SINGLE PRECISION = 4
SCIENTIFIC PRECISION = 4

This setting will give you maximum speed in BCD floating point. See the appendix for
your computer for variations or enhancements. This is not a factor for the optional binary
math package available for some version of ZBasic.

The Macintosh accuracy can be configured up to 240 digits. Optimum BCD speed is
realized by configuring double precision to 8, single and scientific precision to 6.

Important Note: Some versions of ZBasic offer an optional high speed binary-floating-
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

DEFINING VARIABLES AS SINGLE OR DOUBLE PRECISION

To force the precision of a specific variable to be single precision, follow every occurrence
of that variable with an exclamation point (!).

To force a variable to be double precision, follow the variable name with a pound sign (#).
To force ZBasic to define a range of variables as double or single precision, use the
DEFDBL or DEFSNG statement:

DEFDBL A-G Makes all variables beginning with A-G as Double precision.
A# and A would be the same variable in this case.

DEFSNG C Makes all variables beginning with C as Single precision.
C! and C would be the same variable.

Note: Some versions of BASIC default to single precision variables instead of integer. Use
DEFSNG A-Z in programs being converted or configure to assume Floating Point. Also
see "Optimize Expression Evaluation as Integer" under "Configure".

Variables 5 4

VARIABLES

SCIENTIFIC - EXPONENTIAL NOTATION

ZBasic expresses large numbers like:

50,000,000,000
like this: 5E+10 or 5E10

The plus sign (+) after the "E" indicates the decimal point moves to the right of the
number. Ten places in this example.
Technically: 5*10*10*10*10*10*10*10*10*10*10 or 5*10^10.

ZBasic expresses very small numbers like:

.000005
like this: 5E-06

A minus sign after the "E" indicates the decimal point is moved to the left of the number
that many places, six in this example. Technically: 5/10/10/10/10/10/10 or 5*10^(-6).

STANDARD NOTATION SCIENTIFIC NOTATION
9,123,000,000,000,000 9.123E+15 (or E15)
-3,400,002,000,000,000,000 -3.400002E18 (or E+18)
.000,000,000,000,000,000,011 1.1E-20
-.000,012 -1.2E-05

Note: Some BASICs use scientific notation with a "D" instead of an "E". (like 4.23D+12
instead of 4.23E+12) ZBasic will read old format values correctly but will use the more
common "E" when printing scientific notation.

WHEN SCIENTIFIC NOTATION IS EXPRESSED

Constants and variables will be expressed in scientific notation when the value is less than
.01 or exceeds 10 digits to the left of the decimal point.

You can force ZBasic to print all significant digits in regular notation with: PRINT USING

See PRINT USING in the Reference Section of this manual.

RANGE OF ZBASIC FLOATING POINT VARIABLES

The range of floating point numbers, regardless of the accuracy configured is:

+-1E-64 to +-9.9E+63.*

The digits of accuracy are 14 digits for double and 6 digits for single (this is the default for
most systems and may be set by the user).

Double Precision exponent may range from E-16,384 to E+16,383. Single Precision
exponent is the same for compatibility with 8 and 16 bit machines.

 5 5 Variables

VARIABLES

OVERFLOW RESULTS

If an expression results in a number greater then +-9.999E+63, a result of 9.999E+63
will be returned.

If the number is less then +-1.0E-64 the result will be zero. ZBasic will not give an
overflow or underflow error. Check program logic so that numbers do not exceed
floating point range.

BCD FLOATING POINT SPEED

To obtain maximum speed out of BCD floating point math be sure to configure the digits of
accuracy to:

DOUBLE PRECISION = 6
SINGLE PRECISION = 4
SCIENTIFIC PRECISION = 4

Normally these settings are fine at 14 and 6 digits. The should only be changed when
speed is extremely important. Converting equations to integer will greatly increase speed
as well. These settings are important because ZBasic does all calculations in Double
precision. Single precision is used for saving memory only.

Important Note: Some versions of ZBasic offer an optional high speed binary-floating-
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

SINGLE AND DOUBLE PRECISION DIGITS OF ACCURACY

The only difference between Single and Double Precision is that Single Precision holds
fewer significant digits than Double Precision. ALL ZBASIC FLOATING POINT
CALCULATIONS ARE PERFORMED IN DOUBLE PRECISION.

The default digits of accuracy are 6 digits for Single Precision and 14 digits for Double
Precision. The accuracy is configurable from 6 to 54 digits for Double and 2 to 52 digits
for Single Precision.*

ACTUAL SINGLE DOUBLE
NUMBER PRECISION* PRECISION*
12,000,023 12000000 120000023
.009,235,897,4 9.2359E-03 9.2358974E-03
988,888 988,888 988,888
.235,023,912,323,436,129 .235024 .23502391232344
9,999,999 .999,900,001,51 10000000 9999999.9999
88.000,000,912,001,51 88 88.000000912002
12.34147 12.3415 12.34147

*Defaults are 8 and 12 digits for the Macintosh. Both are configurable up to 240 digits.

Variables 5 6

VARIABLES

ROUNDING

If the digit just to the right of the least significant digit is greater than 5, it will round up,
adding one to the least significant digit.

In the example for .009,235,898,4 above, the last significant 6 digit number is
nine, but since the digit after 9 is 7, the 9 is rounded up by one to 10 (and subsequently
the 8 is rounded up to 9 to give us 9.2359E-03, which more accurately represents the
single precision value. See "Configure" for ways of setting the rounding factor.

NUMBER DEFAULT ROUNDING FACTOR IS: 49
####49 .49+.49 = .98 which is less than one No Rounding
####50 .50+.49 = .99 which is less than one No Rounding
####51 .51+.49 = 1 which is equal to one Rounds up
####52 .52+.49 = 1.1 which is greater than one Rounds up

This rounding option will not be available for optional binary floating point packages.

CONFIGURING ACCURACY

ZBasic allows the user to configure the digits of accuracy for single, double or scientific
precision functions (like LOG, TAN, SIN, etc.)

LIMITATIONS:
Double precision must be at least 2 digits more significant than single.
Digits of Accuracy must be in multiples of two (four with Macintosh).

TYPE MINIMUM DIGITS MAXIMUM DIGITS
PRECISION OF ACCURACY OF ACCURACY*
SINGLE 2 DIGITS 2 DIGITS less than Dbl.
DOUBLE 6 DIGITS 54 DIGITS
SCIENTIFIC 2 DIGITS 54 DIGITS

*Note: All floating point calculations are done in DOUBLE PRECISION. For
programs where floating point speed is important be sure to set the digits of accuracy to:

DOUBLE PRECISION = 6
SINGLE PRECISION = 4
SCIENTIFIC PRECISION = 4

Important Note: Some versions of ZBasic offer an optional high speed binary-floating-
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

WARNING: Programs sharing disk files and CHAINED programs with single or double
precision variables must have the same accuracy configuration. If one program is set for 6
and 14 digits, and another program is set for 10 and 20 digits, the programs will not be
able to read and write each others files.

Configurable up to 240 digits. For hi-speed set Double to 8, single and scientific to 6.

 5 7 Variables

VARIABLES

ACCURACY AND MEMORY REQUIREMENTS

The number of bytes of memory or disk space required for storing single and double
precision variables is dependent on the digits of accuracy. If you do not change the
accuracy, ZBasic will assume 6 digits for single precision (which requires 4 bytes), and 14
digits for double precision (which requires 8 bytes).*

When you change accuracy, disk files, variables, and constants memory requirements will
change as well. The equation to calculate memory or disk file space required for single or
double precision variables is:

Digits of Accuracy / 2+1=Bytes required per Floating Point variable

DIGITS of DISK FILE AND
ACCURACY VARIABLE MEMORY REQUIREMENTS
2 digits 2 bytes
4 digits 3 bytes
5 digits Will round odd digits UP to the next even number, 6 here
6 digits 4 bytes (Single precision default if not configured by user)
.
.
.
14 digits 8 bytes (Double precision default if not configured by user)
.
.
.
52 digits 27 bytes
54 digits 28 bytes

*The Macintosh defaults to 8 digits for single (four bytes) and 12 digits for double (eight
bytes). Digits of accuracy are configurable in multiples of four (instead of two as above).
To figure memory: Digits of Accuracy/2+2=bytes required.

WARNING: Different ZBasic programs sharing files and CHAINED programs MUST be
set to the same accuracy. Failure to do this will result in program errors, faulty data reads or
program crashes.

Important Note: Some versions of ZBasic offer an optional high speed binary-floating-
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

Variables 5 8

VARIABLES

HOW BCD FLOATING POINT VARIABLES ARE STORED IN MEMORY

Single precision default is 6 digits (4 bytes). Double precision default is 14 digits (8 bytes).
To locate the address (memory location) of either a Single or Double precision variable:

ADDRESS1=VARPTR(FLOATING POINT VARIABLE [(SUBSCRIPT[,SUBSCRIPT[,...])])

Single and Double precision variables are stored in Binary Coded Decimal format (BCD).

 Bit 7 6 5 ... 0

*ADDRESS1=
Bit 7: Mantissa sign (0=POSITIVE, 1=NEGATIVE)
Bit 6: The exponent sign (0-E+, 1=E-)
Bit 5-0: The exponent value (0 to 64)

ADDRESS2 Digit 1 and 2 (Four bits for each digit)
ADDRESS3 Digit 3 and 4
ADDRESS4 Digit 5 and 6 (Single precision default)
ADDRESS5 Digit 7 and 8
ADDRESS6 Digit 9 and 10
ADDRESS7 Digit 11 and 12
ADDRESS8 Digit 13 and 14 (Double precision default)
.
.
ADDRESS28 Digit 53 and 54 (Limit of significant digits)

*Single precision defaults to 4 bytes (six digits) and Double precision defaults to 8 bytes
(12 digits). Macintosh computers use two bytes for mantissa and exponent for its high
precision double precision variable type:

ADDRESS1 & 2 Bit 15 14 13 ... 0
...............

Bit 15: Mantissa sign
Bit 14: Exponent sign
Bit 13-0 Exponent value 0-16383

Range of 32 bit double precision is +-1.0E-16,383 to +-9.999E+16,384

Note: Single precision range is the same on all machines.

Important Note: Some versions of ZBasic offer an optional high speed binary-floating-
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

 5 9 Variables

VARIABLES

ACCURACY VERSUS PROCESSING SPEED

While ZBasic is capable of configuration to extremely high accuracy, you should be aware
that calculation time is in direct relation to the number of digits of accuracy.

The following chart will clarify the relationship of processing time to accuracy.

ACCURACY versus PERFORMANCE
Math Relative |----------- Digits of Accuracy ---------
|Function Speed 4 /6 * 6 /6 * 14 24 36 54 INTEGER
Add/Subtract 1 2/3 1 1.20 1.50 2.0 1/77
Multiply 3 1/7 1 1.25 3.10 5.8 1/33
Divide 12 1/6 1 1.25 1.75 3.0 1/33
SQR 50 1/5 1/4 1 2.50 5.75 13.0
SIN 70 1/5 1/4 1 2.50 5.75 13.0 See USR8(0)
COS 70 1/5 1/4 1 2.50 5.75 13.0 See USR9(0)
TAN 150 1/5 1/4 1 2.50 5.75 13.0
EXP 100 1/5 1/4 1 2.50 5.75 13.0
LOG 65 1/5 1/4 1 2.50 5.75 13.0
ATN 80 1/5 1/4 1 2.50 5.75 13.0
X^n 140 1/5 1/4 1 2.50 5.75 13.0
X^(integer) 30 1/2 1 1.67 2.75 5.0
Shift <<,>> 2 3/4 1 1.25 1.75 2.2 1/20

EXPLANATIONS OF HEADINGS

Math Function The type of math function being timed.

Relative Speed All speeds are relative to ADD and SUBTRACT (SQR takes 50 times
longer than add and subtract). The numbers also correspond to the
approximate time (in milliseconds) it takes to perform 14 digit math on a
Z80 at 4 MHZ.

Digits of accuracy The numbers under the digits are all relative to 14 digit accuracy.
Examples: 54 digit divide takes 3 times longer than 14 digit
6 digit divide takes 1/7th the time of 14 digit multiply.

INTEGER Integer calculations are relative to 14 digit processing time. Integer add
and subtract operations take 1/77th the time of 14 digit operations.

*4 /6 Scientific Accuracy operations were set for LOG, TAN, EXP, ^, SIN,
COS and ATN only. Other functions remain at double precision.

SPEED To obtain maximum speed with BCD floating point calculations, configure the digits of
precision to : DOUBLE PRECISION=6, SINGLE PRECISION=4, SCIENTIFIC
PRECISION=4. ZBasic does ALL calculations in DOUBLE PRECISION.

Important Note: Some versions of ZBasic offer an optional high speed binary-floating-
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

Variables 6 0

VARIABLES

STRING VARIABLES

String variables are used for storing alphanumeric, symbol, and control characters.

ZBasic string variables may hold up to a maximum of 255 characters. Any character with
 an ASCII code in the range of zero to 255 may be used. ASC(A$) will return zero if A$ is a
null string: IF LEN(A$)>0 AND ASC(A$)= 0 THEN ASCII CODE=0

STRING, NUMBER CONVERSIONS

VAL Converts a string to a number: X=VAL(A$)
STR$ Converts a number to a string: A$=STR$(43)
CVI, CVB Converts a condensed string to a number
MKI$, MKB$ Converts numbers to condensed strings.

See DEFSTR LONG for using CVI and MKI$ with LongIntegers

DEFINING STRING VARIABLES

Use a $ symbol following a variable name to make it a string variable. A$ will always be a
string variable because of the $.

To define a range of variables beginning with a certain character to be string variables (so
 you do not have to use $ every time), use the statement DEFSTR:

DEFSTR A-M Makes all variables starting with A, B, C. up
to M as string variables. A is the same as A$

DEFSTR X,Y,Z Makes all variables starting with X,Y and Z
as string variables. Z is the same as Z$.

STRING VARIABLE ASSIGNMENTS

String variables are assigned alphanumeric values like this:

A$="Hello there"
ART$="VanGogh"+" DaVinci" (+) connects the strings (concatenates)
Z$=B$
Z$=B$+C$
Z$="Hello"+C$+TEST$
MID$(A$,2,3)="YES" Puts "YES" into A$ starting at position 2

 6 1 Variables

VARIABLES

STRING FUNCTIONS AND RELATED COMMANDS

String variables are used for storing and manipulating character information. Here are
some examples of ZBasic's string capabilities:

STRING FUNCTIONS DEFINITION
DIM 10 A$ sets the string variable A$ to a length of ten.
DEF LEN 20 Sets the following strings to 20 character length.
W$=LEFT$(A$,3) W$= 3 characters from the left of A$.
W$=RIGHT$(A$,1) W$= 1 character from the right of A$.
B$=MID$(A$,4,2) B$=2 characters from A$ beginning at position 4.
MID$(A$,2,3)=B$ Puts first 3 characters of B$ into A$ starting at position 2.
C$=CHR$(65) C$= the character represented by ASCII 65 (letter A).
X=ASC("A") X= the ASCII code of "A" (65).
X=INSTR(2,A$,B$) Looks for B$ in A$ starting at position 2, and makes X equal to the

position if found, otherwise X=zero.
A$=STR$(2345) Makes A$ equal "2345"
X=VAL(A$) Makes X equal the VALue of A$ (2345 if above).
X=LEN(A$) X= the number of characters in A$.
INPUTA$ Gets input from the keyboard and stores it in A$.
LINEINPUTA$ Accepts any keyboard characters, stores them in A$ and terminates

input only with the <ENTER> key.
A$=INKEY$ Makes A$= the last key pressed without using <ENTER>
A$=UCASE$("Hello") Converts A$ to UPPERCASE. (A$ now equals "HELLO").
X=VARPTR(A$) X= the memory address of the variable A$.
WRITE#1,A$;20 Writes 20 characters of A$ out to the disk file#1.
READ#1,A$;20 Reads 20 characters off the disk into A$.
A$=STRING$(10,"#") Makes A$ equal to "##########".
PRINT SPACE$(4) PRINTs 4 spaces.
SWAP A$,B$ Make A$ equal B$ and B$ equal A$.
LPRINTA$ Prints A$ out to the printer.
PRINT A$ Prints A$ to the screen.
PRINT #2,A$ Prints A$ to disk file 2.
OPEN"R",1,F$,129 Opens the random access file named F$.
KILL A$ Erases the file specified by A$ off the storage device.
A$=DATE$ Puts the date into A$ (MM/DD/YY) (Most systems).
A$=TIME$ Puts the time into A$ (HH/MM/SS) (Most systems).
A$=B$+C$ Makes A$ equal to B$ plus C$ (Concatenates).
A$="HI"+"THERE" Makes A$ equal to "HI THERE".
PSTR$ Special command to avoid duplication of string constants.

SPECIAL INDEX$ COMMANDS

INDEX$ (n)="simple string" INDEX$="Simple string"
INDEX$I (n)=A$ INSERT A$ at INDEX$(n), moves up all other elements.
INDEX$D(n) DELETE element (n) of INDEX$ and move up other elements.
X=INDEXF(A$) Looks for A$ in INDEX$ (all) X equals element if A$ found. Else equals -1.
X=INDEXF("END",950) Look for "END" in INDEX$ starting at the 950th element.
CLEAR nnnnn Set aside nnnnn bytes for INDEX$.
CLEAR INDEX$ Nullify the contents of the entire INDEX$ array.

Variables 6 2

VARIABLES

STRING CONDITIONALS

Strings may be compared using conditional operators just like numbers. The difference is
that they are compared by the value of the ASCII code for that number. For instance, the
ASCII code for "A" is 65 and "B" is 66. Therefore the expression "A"<"B" would be true (-1).

See ASCII Chart in your computer manual. ASCII characters may vary from computer to
computer and from printer to printer.

Be aware that ZBasic differentiates between upper and lowercase characters. "a" is
greater than "A" because the ASCII code for "a" is 97 and the ASCII code for "A" is 65. If
you want ZBasic to look at a string variable as uppercase only, use the UCASE$ function
to convert it.

ZBasic "looks" at all the characters in a string when doing comparisons. "Aa" is greater
than "AA". "AAAAAAa" is greater than "AAAAAAAA" etc. ZBasic will compare characters
in a string to the last character in that string.

CONDITION RESULT
"RRRRR"<"S" True (-1)
"FRANK"="FRANK" True (-1)
"abc">"ABC" True (-1)
TEST$="Hello"(If TEST$="Hello") True (-1)
"A">"B" False (0)
"YES"="yes" False (0)

SIMPLE STRINGS

Quoted string: "Hello", "This is within quotes"
String variable: A$, NAME$, FF$, BF$(2,3)
Any of the following string commands: MKI$, MKB$, CHR$, HEX$, OCT$,
BIN$, UNS$, STR$, ERRMSG$, TIME$, DATE$, INKEY$, INDEX(n)

COMPLEX STRINGS

May be any combination of SIMPLE STRINGS.

String operations containing one of the following commands: simple- string +
simplestring. LEFT$, RIGHT$, MID$, STRING$, SPACE$, UCASE$ would be a
complex string.

COMPLEX STRINGS MAY NOT BE USED WITH IF-THEN STATEMENTS.

ZBasic allows only one COMPLEX STRING per statement. If you wish to perform more
than one complex sting at a time, simply divide the complex string expression into
multiple statements like this:

CHANGE complex strings TO simple strings
B$=RIGHT$(A$+C$,2) B$=A$+C$: B$=RIGHT$(B$,2)
B$=UCASE$(LEFT$(A$,3)) B$=LEFT$(A$,3): B$=UCASE$(B$)
IF LEFT$(B$,2)="IT" THEN 99 D$=LEFT$(B$,2): IFD$="IT" THEN 99

 6 3 Variables

VARIABLES

USING STRING VARIABLES EFFICIENTLY

String variables will require 256 bytes of memory for each string used if the string lengths
are not defined by the user. It is important to realize that extensive use of string variables
or string array variables may require the user to define string lengths to avoid running out
of memory.

Note: Some BASIC(s) have what is referred to as "Garbage collection". ZBasic's
method of storing strings NEVER creates time wasting "Garbage Collection".

DEFINING THE LENGTH OF STRING VARIABLES

ZBasic strings have a default length of 255 characters. This can cause excessive memory
usage. To obtain maximum memory efficiency, there are two ways of defining the length
of string variables and string array variables:

DEF LEN = number (Numbers only. No expressions .)
DIM number STRING VARIABLE, or number STRING ARRAY, ...

DEFINING STRING LENGTHS WITH DIM

DIM X$(10), 20 A$, Z$(5), 45 TEST$, 10 MD$(20,20)

In this example the strings are allocated:

X$(10) 255 each element (255 is the default. 2816 bytes)

A$ 20 (21 bytes)

Z$(5) each element of Z$ as 20*
(21*6=105 total bytes of memory used.)

TEST$ 45 (46 bytes)

MD$(20, 20) each element of MD$(20,20) as 10.
(21 * 21 *11=4851 total bytes of memory used.)

* If no length is defined, the last given length in that DIM statement is used (20 for A$ in
this example). If no length was defined in that DIM statement then the DEFined LENgth is
assumed (255 if the string length has not been previously defined)

Note: Add one to the defined length of each string to determine the actual memory
requirement of the string PLUS ONE for the LENGTH BYTE.

Variables 6 4

VARIABLES

DEFINING STRING LENGTHS WITH DEFLEN

Another command for DEF(ining) the LEN(gth) of string variables is:

DEF LEN = NUMBER (No expressions)
(In the range of 1 to 255)

Each string variable located AFTER the statement will have that length, unless another
DEFLEN or DIM statement is used.

DIM A$(9,9), X(99), H#(999), 4Bull$
DEF LEN=50:B$="HOPE"
C$="HELLO"
DEF LEN=100
ART$="COOL"
DIM Coolness$(9)
A$=ART$

In the example:

A$(9,9) allocated 255 characters for each array element (ZBasic
automatically allocates 255 if length has not been defined).

Bull$ allocated 4 characters.

B$ and C$ allocated 50 characters each.

ART$ allocated 100 characters

Coolness$ allocated 100 characters for each element.

A$ allocated 100 characters.

Note: The actual memory required for each string (each string element in an array) is the
defined length plus one byte for the length byte.

 6 5 Variables

VARIABLES

HOW STRING VARIABLES ARE STORED IN MEMORY

ADDRESS=VARPTR(STRING VARIABLE [(SUBSCRIPT[,SUBSCRIPT[,Ö.])])

ADDRESS Length Byte: Holds number of characters in the string.
ADDRESS+1 First character of the string variable
ADDRESS+2 Second character
.
.
.
ADDRESS+n Last character of the string variable
ADDRESS+255 Last address available for undefined string variable
ADDRESS+Defined Length Last address available for defined string variable

WARNING 1: Strings should never be assigned a character length longer than the
assigned length. If the length of A$ is 5 and a program line is executed that has:
A$="1234567890", the characters "6" through "0" will overwrite the variables following
A$, possibly causing system errors or faulty data.

WARNING 2: If using INPUT to input strings with set length, always make sure the string
length is at least one longer than the length being used for input.

For most versions of ZBasic, no error is generated if string assignments exceed the
length of the string.

See "Configure" in the Macintosh appendix for setting string length error checking.

Variables 6 6

INDEX$

 6 7 INDEX$ Variables

INDEX$

SPECIAL INDEX$ STRING ARRAY

INDEX$ is a special ZBasic string array with some powerful and unique capabilities.

The following commands work with INDEX$ variables only.

INDEX$ COMMAND MEANING
INDEX$(n)=simple string Assigns a value to INDEX$(n)

INDEX$ I(n)=simple string Move element n and all consecutive elements
up one and INSERT simple string at element n
(the value in element 3 moves up to element
4). Actually inserts the value into the array
without destroying any other elements.

INDEX$ D(n) DELETE element n and move all
consecutive elements back down to fill
the space (value in element 4 moves down to
element 3).

X=INDEXF(simple string [,start#]) FIND simplestring in INDEX$.
Begin looking at element START#.
If found X=element number
If not found X = -1.

USING INDEX$

INDEX$ array variables may be assigned values like other string variables. To illustrate the
power of INDEX$, the following values have been stored into INDEX$ elements
INDEX$(0) through INDEX$(3) and will be used in the examples on the following pages:

ELEMENT # DATA
INDEX$(0)= "AL"
INDEX$(1)= "BOB"
INDEX$(2)= "DON"
INDEX$(3)= "ED"

INDEX$ Variables 6 8

INDEX$

INSERTING ELEMENTS INTO INDEX$

INDEX$ I (n) To INSERT "CHRIS" into INDEX$, between "BOB" and "DON", you would use the
command INDEX$ I(2)="CHRIS".

This instructs ZBasic to move "DON" and "ED" down and insert "CHRIS" in
element 2. (INDEX$ I(2)=A$ would also be legitimate) INDEX$ would now look like
 this:

ELEMENT # DATA
INDEX$(0)= "AL"
INDEX$(1)= "BOB"
INDEX$(2)= "CHRIS"
INDEX$(3)= "DON"
INDEX$(4)= "ED"

DELETING ELEMENTS FROM INDEX$

INDEX$ D (n) To DELETE "BOB" from INDEX$ use the command INDEX$ D(1). This instructs ZBasic
to delete element one, and move "CHRIS" and "DON" and all the other elements up to fill
 in that space. The INDEX$ array would now look like this:

ELEMENT # DATA
INDEX$(0)= "AL"
INDEX$(0)= "CHRIS"
INDEX$(0)= "DON"
INDEX$(0)= "ED"

FIND A STRING IN INDEX$

X=INDEXF(simplestring [,element n])
ZBasic will begin searching from element n (element zero if not specified) for the string
specified by simple string. Examples:

IF FOUND IF NOT FOUND
X=ELEMENT NUMBER X=NEGATIVE ONE(-1)

To FIND "DON" in the above list let's say that A$="DON". Using the command
X=INDEXF(A$), X would return 2 to show that "DON" is in element 2 of INDEX$.

To FIND "CHR" (part of "CHRIS"), you would use the command X=INDEXF("CHR"). X
would return with the value of 1 since a match was found in the first three characters of
 "CHRIS".

If you tried to FIND "RIS": X=INDEXF("RIS"), X would return with a value of -1 (negative
one) since the FIND command begins the search at the first character of each element,
which MUST be significant ("C" must be part of the search).

If the command had been INDEXF("CHRIS", 3), X would have equaled -1 since the
search began at element 3 and "CHRIS" is at element 1 it would never find "CHRIS."

 6 9 INDEX$ Variables

INDEX$

INDEX$ MEMORY REQUIREMENTS

INDEX$ variable elements use memory only if there are characters stored in that element
and only as much memory as needed to hold those characters (plus one for length byte).
CLEAR nnnnn is used to allocate memory for INDEX$. CLEAR INDEX$ will clear
(nullify) the present contents of INDEX$.

INDEX$ LIMITATIONS

INDEX$ may not be used with SWAP.

USES OF INDEX$

INDEX$ is a valuable tool for disk indices, in-memory data bases, creating word
processors, holding lists of strings with varying lengths and much more.

INDEX$ is especially useful anytime unknown string elements lengths are needed.

USING INDEX$ FOR AN INSERTION SORT

A good example of the power of INDEX$ is using it to create a perpetual sort. It allows you
to add items to a list instantly and always have the list in order:

CLEAR 10000: TRONB
DO
 INPUT"Input String";A$: GOSUB "INSERTION SORT"
UNTIL A$="END" <--- Type END to end inserting
GOTO "PRINT LIST"
:
"INSERTION SORT"
REM N=Number of items
REM A$= New to string to insert
:
B=N: S=0
DO
 H=(B-S+1)>>1.
 LONG IF A$ <= INDEX$(B-H)
 B=B-H
 XELSE
 S=S+H
 END IF
UNTIL B=S
INDEX$ I(B)=A$
N=N+1
RETURN
:
"PRINT LIST"
FOR X=1 TO N
 PRINT INDEX$(X)
NEXT
END

INDEX$ Variables 7 0

INDEX$

HOW INDEX$ ARRAY VARIABLES ARE STORED IN MEMORY

The INDEX$ array is stored in memory in one contiguous block. The distance between
each element is the number of characters in the string plus one byte for the length byte of
the string.

WARNING: It is suggested that strings in INDEX$ not be manipulated with PEEK and
POKE.

Note: CLEAR is used on some computers to allocate memory for INDEX$. CLEAR
INDEX$ is used to nullify the contents of INDEX$.

This version has the ability to use up to ten INDEX$ arrays at the same time. See
appendix for details. Also see MEM(-1) for determining memory remaining for INDEX$.

 7 1 INDEX$ Variables

ARRAY VARIABLES

ARRAY VARIABLES

An Array variable is a multi-celled variable followed by coordinates for specifying which cell
is to be used. The following is an example of a one dimension string array with 101 elements.

ARRAY ELEMENT VALUE
NAME$(0)= "ABE"
NAME$(1)= "ADAM"
NAME$(2)= "ALEX"
NAME$(3)= "AMOS"
.
.
.
NAME$(100) "ZORRO"

Separate variables could be used for each value, like NAME1$="ABE",
NAME2$="ADAM"Ö but typing a hundred different variables would become very tiring.

Array variables are much easier to use when inputting, saving, loading, printing long lists,
moving data around in a list, sorting lists of information, etc. This example shows how
easy it is to print a complete list of the names in the array of variables.

FOR X= 0 TO 100
 PRINT NAMES$(X)
NEXT

Computers are very good at manipulating large amounts of data and using regular
variables to do this is very impractical.

MULTI-DIMENSIONED ARRAYS

ZBasic will allow arrays of 1,2,3 or more dimensions, depending on the amount of
memory available on your computer.

Array Variables 7 2

ARRAY VARIABLES

TWO DIMENSION ARRAY EXAMPLE

The following chart shows a two dimensional integer array; A(3,3). The number of
elements are determined by the BASE OPTION that was configured when loading
ZBasic. The default is Base 0:

A(3,3) BASE 0 dimensions are 4 elements down (0,1,2 and 3) and 4 elements across
(0,1,2 and 3). Base zero utilizes all the elements including the italicized.

A(3,3) BASE 1 dimensions are 3 elements down (1,2,3) and 3 elements across (1,2,3)
(not the italicized):

This array was DIM(med) A(3,3). A(1,3) represents the cell underlined above. Accessing
a cell only requires giving the correct coordinate after the variable name.

Variables, constants or expressions may be used in specifying coordinates:

A(3,2) , A(X,Y), A(2,X) , A(X*2/3,2+Y).

BASE OPTION

Zero is considered an element unless you set the BASE OPTION to one when
configuring ZBasic. See "Configure" for more information about setting the Base option.
The default BASE is zero.

DEFINING THE DIMENSIONS OF AN ARRAY

All variable arrays MUST be DIMensioned at the beginning of a program. When you RUN
a program, memory is set aside for the array based on the number of elements you have
DIMensioned.

An example of DIM:

DIM A%(10,10,10), A#(5), A!(9,7), B$(10), 5Cool$(20)

Only numbers may be used within DIM statement parentheses. The following DIM
expressions are Illegal:

DIM A(X), A(2*X), A(FR).

 7 3 Array Variables

ARRAY VARIABLES

HOW ARRAYS USE MEMORY

The following chart shows how to calculate the memory requirements of the arrays
DIMensioned above with a BASE OPTION of zero (default value).

Bytes per How to Memory
ARRAY Type Element Calculate** Required
A%(10,10,10) INTEGER 2 11*11*11*2 2662 Bytes
A#(5) DOUBLE PREC. 8 6*8 48 Bytes
A!(9,7) SINGLE PREC. 4 10*8*4 320 Bytes
B$(10) STRING 256 11*256 2816 Bytes
Cool$(20) STRING 6 21*6 126

**Note: If you use a BASE OPTION of ONE, you will not need to add one to the
dimension. For instance, in the first example the way to calculate the memory required
would be: 10*10*10*2. Also see DEF LEN and DIM under STRING VARIABLES for info
about defining sting lengths.

Macintosh also has LongInteger arrays. Each element takes 4 bytes.

ARRAY BOUNDS CHECKING

During the initial stages of writing a program, it is a good idea to configure ZBasic to check
array bounds in runtime. See "Configure" for more information.

OUT OF MEMORY ERROR FROM DIMMING

It is necessary to have an understanding of how arrays use memory. DIMensioning an
array larger than available memory will cause ZBasic to give an OUT OF MEMORY error at
Compile time or RUN time. When calculating large arrays be sure to check if memory is
sufficient.

Array Variables 7 4

ARRAY VARIABLES

PRINTING ARRAYS

Arrays were designed to make manipulating large lists of data easy. The following routines
print the values of ARRAY(50) and/or ARRAY(50,5) to the screen (Substitute LPRINT for
PRINT or use ROUTE 128 to print to the printer). Use AUTO or make your own line
numbers. It does not matter which numbers are used.

“One Dimension array PRINT routine”

DIM ARRAY(50)
FOR X=0 TO 50
 PRINT ARRAY(X)
NEXT

“Two Dimension array PRINT routine”

DIM ARRAY(50,5)
FOR X=0 TO 50
 FOR X2=0 TO 5
 PRINT ARRAY(X,X2),
 NEXT X2
 PRINT
NEXT X

MAKING AN ENTIRE ARRAY ONE VALUE

The following examples show how to make an entire array (ARRAY(50) or ARRAY(50,5))
equal to a certain value. This would be convenient if you wanted to zero out an array or
have all the elements start the same values.

“One Dimension array ASSIGNMENT routine”

DIM ARRAY(50)
FOR X=0 TO 50
 ARRAY(X)=VALUE
NEXT

“Two Dimension array ASSIGNMENT routine”

DIM ARRAY(50,5)
FOR X=0 TO 50
 FOR X2=0 TO 5
 ARRAY(X,X2)=VALUE
 NEXT X2
NEXT X

 7 5 Array Variables

ARRAY VARIABLES

USING ARRAYS FOR SORTING

Arrays are also very convenient for organizing large lists of data alphabetically or
numerically, in ascending or descending order.

The first program below creates random data to sort. This program is for example
purposes only and should not be included in your programs. These programs are
included on your master disk.

Follow the GOSUB with the label of the sort routine you wish to use (either “QUICK
SORT” or “SHELL SORT”). Any line numbers may be used. These sort routines may be
copied and saved to disk (using SAVE* or +) as a subroutine to be loaded with APPEND.
See APPEND.

SORT.BAS FILL ARRAY WITH RANDOM DATA FOR SORTING
DIM SA(500), ST(30,1): REM ST (30,1) FOR QUICK SORT ONLY.
NI=500: REM Change DIM 500 and NI if sort larger
FOR X=0TO NI
 SA(X)=RND(1000): REM Stores random numbers for sorting
NEXT
PRINT”Start Time:”;TIME$
GOSUB “QUICK SORT”: REM Or SHELL SORT
PRINT”Finish Time:”;TIME$
FOR =NI-10 TO NI
 PRINT SA (X): REM Print last to make sure SORT worked.
NEXT
END

SHELL.APP SHELL-METZNER SORT
“SHELL SORT” Y=NI
“Z1” Y=Y/2
IF Y=0 THEN RETURN: REM Sort complete
Z99=NI-Y
FOR K9=1 TO Z99
 I=K9
 “X2” E2=I+Y
 REM: In line below change <= to >= for descending order
 IF SA (I) <= SA (E2) THEN “X3” ELSE SWAP SA (I), SA (E2)
 I=I-Y
 IF I>0 THEN “X2”
“X3” NEXT K9
GOTO “Z1”
END

Note: To sort string arrays instead of numeric arrays add a “$” to the appropriate variables.

Also see “Perpetual Sort” using INDEX$ in the previous chapter.

Array Variables 7 6

ARRAY VARIABLES

QUICK.APP QUICK SORT

“QUICK SORT”
REM Improve Quicksort submitted by Johan Brouwer, Luxembourg.
REM Thanks for the submission, Johan.
SP=0:ST(0,0)=0:ST(0,1)=0
ST(0,1)=NI
DO
 L=ST(SP,0): R=ST(SP,1):SP=SP-1
 DO
 LI=L: R1=R: SA=SA((L+R)/2)
 DO
 WHILE SA(LI) < SA
 LI=LI+1
 WEND
 WHILE SA(RI)>SSA
 RI=RI-1
 WEND
 LONG IF LI<= RI
 SWAP SA(LI), SA(RI)
 LI=LI+1:RI=RI-1
 END IF
 UNTIL LI>RI
 LONG IF (R-LI) >(RI-L)
 LONG IF L<RI
 SP=SP+1:ST(SP,0)=L: ST(SP,1)=RI
 END IF
 L=LI
 XELSE
 LONG IF LI<R
 SP=SP+1:ST(SP,0)=LI:ST(SP,1)=R
 END IF
 R=R1
 ENDIF
 UNTIL R<=L
UNTIL SP=-1
RETURN: REM QUICK SORT FINISHED HERE
END

Note: To use the QUICK SORT or SHELL SORT with STRING variables, use DEFSTR with
the appropriate variables on the first line of the program or put a “$” after all variables that are
strings.

Be sure to use DEFLEN or DIM to define the length of the string variables. If each element
needs 50 characters, then set the length of SA$ to 50. The default is 256 bytes per
element for string variables if you do not define the length.

HINTS ON TYPING IN THE PROGRAM: First of all, use line numbers of your own choosing.
Indentation in this program is the way ZBasic shows the loops or repetitive parts of the
program. You do not need to type in spaces (Make everything flush left). ZBasic will indent
the listing automatically when you type LIST or LLIST.

Also see “Perpetual Sort” using INDEX$ in the previous chapter.

 7 7 Array Variables

ARRAY VARIABLES

ARRAY ELEMENT STORAGE

The following chart illustrates how array elements for each type of variable are stored in memory.

Assumptions:

1. Memory starts at address zero (0)

2. Strings were dimmed: DIM 15 VAR$(1,2,2) (Each element uses 16 bytes*)

3. Other arrays dimmed: DIM VAR%(1,2,2) VAR!(1,2,2), VAR#(1,2,2)
(SINGLE and DOUBLE precision assumed as 6 and 14 digit accuracy.)

4. BASE OPTION of ZERO is assumed.

 RELATIVE ADDRESSES
Array SINGLE DOUBLE
ELEMENTS STRING$ INTEGER% Precision! Precision#
VAR(0,0,0) 00000 00000 00000 00000
VAR(0,0,1) 00016 00002 00004 00008
VAR(0,0,2) 00032 00004 00008 00016
VAR(0,1,0) 00048 00006 00012 00024
VAR(0,1,1) 00064 00008 00016 00032
VAR(0,1,2) 00080 00010 00020 00040
VAR(0,2,0) 00096 00012 00024 00048
VAR(0,2,1) 00112 00014 00028 00056
VAR(0,2,2) 00128 00016 00032 00064
VAR(1,0,0) 00144 00018 00036 00072
VAR(1,0,1) 00160 00020 00040 00080
VAR(1,0,2) 00176 00022 00044 00088
VAR(1,1,0) 00192 00024 00048 00096
VAR(1,1,1) 00208 00026 00052 00104
VAR(1,1,2) 00224 00028 00056 00112
VAR(1,2,0) 00240 00030 00060 00120
VAR(1,2,1) 00256 00032 00064 00128
VAR(1,2,2) 00272 00034 00070 00136

*Length byte adds one extra byte in front of each string element.

Note: Arrays are limited to 32,768 (0-32,767) elements.

LongInteger arrays are also supported. Each element takes four bytes. Macintosh is
limited to 2,147,483,647 elements.

MSDOS version 4.0 has a limit of 32,768 (0-32,767) elements for integer arrays and a limit
of 65,536 (0-65535) for string and floating point arrays.

Array Variables 7 8

GRAPHICS

 7 9 Graphics

GRAPHICS

GRAPHICS

Graphics are an extremely important way of communicating ideas. The old adage “A picture is
worth a thousand words” is very true. ZBasic offers many powerful screen imaging
commands and functions to take advantage of your computer’s graphics capabilities.

In addition to having powerful graphic commands,, ZBasic defaults to utilizing the same
graphic coordinates regardless of the system you happen to be programming on. This is
ideal for moving programs from one machine to another without having to make changes to
the graphic commands or syntax. Quite a change from the old days.

Definitions of some commonly used graphic terms:

PIXEL The smallest graphic point possible for a given system. Some
systems allow you to set the color of a pixel.

RESOLUTION Refers to the number of pixels (dots of light) on a screen. A
computer with a resolution of 400 x 400 has 160,000 pixels (high
resolution). A computer with 40 x 40 resolutions has only 1600 pixels
(low resolution).

COORDINATE By giving a horizontal and vertical coordinate you can describe a
specific screen location easily. With ZBasic the origin (0,0) is the
upper left hand corner of the screen or window.

With a standard device independent coordinate system you can
specify a location on the screen without worrying about pixel

positions.

Graphics 8 0

GRAPHICS

ZBASIC’S DEVICE INDEPENDENT GRAPHIC COORDINATE SYSTEM

ZBasic uses a unique DEVICE INDEPENDENT COORDINATE SYSTEM to describe the
relative positions on a video screen, instead of a pixel system which describes specific
graphic dots on the screen.

The standard coordinate system is 1024 points across (0-1023) by 768 points down
(0-767). The width is broader to be in proportion to a normal video monitor.

This approach allows writing graphic programs the same way regardless of a computer’s
graphic capabilities.

Device independent graphics means the coordinate syntax is the same regardless of the
device or type of graphics being used!

The ZBasic approach to graphics makes commands function the same way EVEN ON
DIFFERENT COMPUTERS! ZBasic handles all the transformations needed to match
up the ZBasic coordinates to the actual resolution of the computer. This is an ideal way of
handling graphics in a standardized way.

, ,
On the Macintosh the standard coordinates apply to the current window, not to the
screen. Macintosh and MSDOS versions of ZBasic have the extra commands;
COORDINATE and COORDINATE WINDOW which allow you to set relative coordinates of
your own or pixel coordinates, respectively. See the Apple appendix for ways of
configuring ZBasic to pixel coordinates. Some Z80 See appendix for specifics.

 8 1 Graphics

GRAPHICS

SCREEN PIXEL versus SCREEN POSITION

It is important to realize that ZBasic’s standard coordinate system of 1024 x 768 has a direct
relation to the screen, NOT to the actual pixel resolution of the computer being used. It is
important not to confuse the pixel coordinate with the position coordinate:

You can see that plotting coordinates; 0,0 through 3,2, sets the same pixel on a screen with
256 x 256 resolution. If the pixel resolution of a computer is 64 x 64 then PLOTing 0,0 or
15,11 will plot the same pixel (16 to 1 horizontal and 12 to 1 vertical).

Fortunately this Information is rarely Important. ZBasic takes care of the tedious
transformations between different graphic modes and resolutions. Skills learned on one
machine may be used on any other machine that uses ZBasic!

OFF SCREEN COORDINATES

ZBasic allows coordinates to be given with graphic commands that are out of bounds of the
actual screen coordinates. This allows drawing lines, circles or rectangles off the screen, with
only that part of the graphics that are within bounds to be shown on the screen. ZBasic ‘clips’
the rest of the drawing.

The limits are from -8191 to +8192. Any coordinates given out of this range will cause an
overflow and the actual result will be the overflowed amount without generating an error.

Graphics 8 2

GRAPHICS

DIFFERENT TYPES OF GRAPHICS

Graphic appearance and quality will depend on the resolution of the computer or terminal you
are using. Resolution is the number of graphics pixels on a screen. A computer with a
resolution of 40 x 40 has 1600 different pixels. This is low resolution graphics because the
graphic pints (pixels) are very large.

For computers without graphics, ZBasic will simulate the graphics as closely as possible
using an asterisk. The resolution would be the number of characters across by characters
down. See MODE.

GRAPHICS TYPE RESOLUTION
HIGH RESOLUTION about 200 x 150 or More
LOW RESOLUTION about 150 x 100 or Less
CHARACTER TEXT graphics simulation.

A COMPARISON OF LOW AND HIGH RESOLUTION IMAGES

Notice the variation in quality. Programmers porting programs over to other machines should
keep the resolution of the target computer in mind when creating programs.

 8 3 Graphics

GRAPHICS

MORE GRAPHIC EXAMPLES AT DIFFERENT RESOLUTIONS

Quality deteriorates as graphic complexity increases and screen resolution decreases,
although usually the lower the resolution the faster the execution speed. I this line example
you can see the variation of quality.

The ZBasic statement to create all the lines in the first example was the same:
PLOT 60,660 TO 1000, 10:

Additional examples of more complex graphics forms in different resolutions:

Graphics 8 4

GRAPHICS

MODE

ZBasic offers different modes of text and graphics output depending on hardware and
model. The ability to change modes allows you to simulate the output for different machines.
Syntax:

MODE expression

The following chart gives the modes for some popular microcomputers, and illustrates how
modes are grouped according to resolution.

Note: Check your computer appendix for variations.

 8 5 Graphics

GRAPHICS

PLOTTING POINTS AND LINES

To set a specific screen position(s) to the current color or to draw lines from one screen
position To another, TO another..., or to draw from the last screen position used (in another
ZBasic statement) TO another...

PLOT [TO] horizontal , vertical [TO [horizontal , vertical [TO...]]]]

PLOT draws with the last color defined by COLOR. COLOR=0 is the background color of
most computers, while COLOR=-1 is the foreground color. If you have a system with a black
background, COLOR -1 is white and COLOR 0 is black. See COLOR in this chapter.

As with all other graphic commands, PLOT uses the standard ZBasic coordinates of 1024 x
768 regardless of the computer being used. When TO is used, ZBasic will plot a line from
the first position TO the next position, TO the next position...

EXAMPLES OF PLOTTING RESULT
PLOT 4,5 Turns on the pixel at the graphic position

4 positions over and 5 positions down.

PLOT 0,0 TO 1023,767 Plots a line from upper left corner
of the screen down to the lower
right corner of the screen.

PLOT TO 12,40 Draws a line from the last position
used with the PLOT command TO
the point on the screen 12 positions
over by 40 positions down.

PLOT 0,0 TO 400,0 TO 0,300 TO 0,0 Plots a triangle in the upper left
corner of the screen.

Note : All the examples above will plot in the current COLOR.

Graphics 8 6

GRAPHICS

POINT

POINT (horizontal coordinate, vertical coordinate)

Returns the COLOR of the pixel at the ZBasic coordinate. Point is available on many
computers to inquire about the COLOR of a specific screen graphic position (some
computers do not have the capability to “see” pixels).

As with other commands, ZBasic Device Independent Graphic coordinates may overlap
pixels. The following illustration shows the pixels and color types associated with them.

In this example: 0=BACKGROUND (WHITE) 1=FOREGROUND (BLACK)

As with all other ZBasic graphic commands the standard device independent coordinate
system of 1024 x 768 is used.

Note: The ZBasic device independent coordinate system specifies positions on the screen,
not pixels. See below for ways of setting your system to actual pixel coordinates, if needed.

, , ,
Macintosh and MSDOS systems can be set to use pixel coordinates with COORDINATE
WINDOW. See Apple appendix for ways of configuring to pixel coordinates. Z80 see your
hardware technical manual and the Z80 appendix for specifics of your machine.

 8 7 Graphics

GRAPHICS

CIRCLE

CIRCLE [FILL] horizontal, vertical, radius

CIRCLE draws a circle in the currently defined COLOR and RATIO. COLOR=0 is the
background color of most computers, while COLOR=-1 is the foreground color. If you have
a system with a black background, COLOR -1 is white and COLOR 0 is black.

See RATIO for ways of changing the shapes of circles. Also see CIRCLE TO and CIRCLE
PLOT for creating PIES and ARCS.

If FILL is used, the circle will be a solid ball in the current color.

As with all ZBasic graphic commands, the Device Independent Graphic Coordinates of 1024
x 768 are the default.

FILL is taken from PEN pattern; PEN,,,,n. Where n is one of the pen patterns used under the
control panel. Quickdraw circles are also available using toolbox calls. See appendix.

Graphics 8 8

GRAPHICS

GRAPHICS THAT EXTEND OFF THE SCREEN (CLIPPING)

If coordinates are given that exceed the limits of the ZBasic screen coordinates, that part
of the image exceeding the limits will be “CLIPPED”.

It is still permissible to use these numbers and in many cases it is important to have them
available for special effects.

CIRCLE, or other graphic commands like PLOT, BOX, PRINT% etc., with coordinates
that are off the screen but are within the limits of -8192 to +8192 are permissible and that
part out of range will be “clipped”:

As with all ZBasic graphic commands, the Device Independent Coordinates of 1024 x 768
are used.

 8 9 Graphics

GRAPHICS

SEGMENT OF A CIRCLE (PIE)

To draw an enclosed segment of the circumference of a circle (PIE), use this syntax:

CIRCLE h,v,radius TO starting BRAD degree, number of BRADs (counter clockwise)

CIRCLE draws with the last color defined by COLOR. COLOR=0 is the background color of
most computers, while COLOR=-1 is the foreground color. If you have a system with a black
background, COLOR -1 is white and COLOR 0 is black. See COLOR in this chapter.

SEGMENT OF A CIRCLE (ARC)

To draw a segment of the circumference of a circle (an ARC) use the syntax:

CIRCLE h, v, radius PLOT starting BRAD degree, number of BRADs (counter clockwise)

CIRCLE draws with the last color defined by COLOR. COLOR=0 is the background color of
most computers, while COLOR=-1 is the foreground color. If you have a system with a black
background, COLOR -1 is white and COLOR 0 is black. See COLOR in this chapter.

Note: 256 BRADS=360 DEGREES. See the BRAD chart on the next page. As with all ZBasic
graphic commands, the standard coordinates of 1024 x 768 are used.

FILL may be used with the CIRCLE FILL x,y,r, TO s,n statement on this version. The FILL
pattern is taken from PEN pattern; PEN,,,,n. Where n is one of the pen patterns used under
the control panel. Quickdraw arcs are also available using toolbox calls.

Graphics 9 0

GRAPHICS

BRADS

Brads are used with ZBasic CIRCLE commands to determine a position on the circumference
of a circle. Instead of DEGREEs of zero to 359, BRADs range from zero to 255. (Starting at
3 O’clock going counter-clockwise.)

CONVERSIONS FROM ONE TYPE TO ANOTHER
RADIANS=DEGREES*ATN(1)/45 GRADS=10 * DEGREES/9
RADIANS=9*GRADS/10 GRADS=RADIANS*63.66197723
RADIANS=BRADS/40.7436666 GRADS=BRADS*1.5625

DEGREES=RADIANS*45/ATN(1) BRADS=DEGREES/1.40625
DEGREES=BRADS*1.40625 BRADS=GRADS/1.5625
DEGREES=GRAD/63.66197723 BRADS=RADIANS*40.743666

Also see USR8 and USR9 for high-speed Integer SIN and COS.

 9 1 Graphics

GRAPHICS

RATIO

ZBasic allows you change the aspect ratio of any CIRCLE, ARC or PIE with the graphic
statement RATIO:

RATIO Width (-128 thru + 127), Height(-128 thru +127)
(See CIRCLE)

Examples:

Ratio settings are executed immediately and all CIRCLE commands will be adjusted to the
last ratio.

+127 = 2 times normal
+64 = 1.5 times normal
+32 = 1.25 times normal
0 = 0 Normal proportion
-32 = .75 times normal
-64 = .5 times normal
-96 = .25 times normal
-128 = 0 (no width or height)

Quickdraw circles use box coordinates to set circle shape. See toolbox section of appendix.

Graphics 9 2

GRAPHICS

BOX
Box is used for drawing rectangles in the current color. The size of a rectangle is specified by
giving the coordinates of opposing corners.

BOX [FILL] h1, v1 TO h2, v2

h1, v2 The first corner coordinate of the BOX.
h2, v2 The opposite corner coordinate of the BOX.

The BOX is plotted in the current color. If FILL is used the BOX will be filled with the current
COLOR.

As with all ZBasic graphic commands, the device independent coordinates of 1024 x 768 are
used. Notice the different quality of BOXes on various computers and different modes.

FILL is taken from PEN pattern; PEN,,,,n. Where n is one of the pen patterns used under the
control panel. Quickdraw boxes are also available using toolbox calls. See appendix.

 9 3 Graphics

GRAPHICS

FILL

FILL Horizontal expression, Vertical expression

The fill command will fill a screen position from upper left most position it can reach
without finding a color other than the background color, and down to the right and to the left
until a non-background color is found.

This command will not function on computers lacking the capability to read screen pixel
coordinates. See computer appendix.

Example:

As with all ZBasic graphic commands, the Device Independent Coordinates of 1024 x 768
are used.

Also see CIRCLE FILL and BOX FILL

FILL pattern is taken from PEN pattern; PEN,,,,n. Where n is one of the pen patterns used
under the control panel. A much faster way to fill screen segments is using Quickdraw FILL
with polygons, circles and rectangles. See appendix.

Graphics 9 4

GRAPHICS

COLOR

COLOR is used to signify the color to be used with PLOT, CIRCLE, BOX and FILL. All
systems support zero and -1 for background and foreground colors. (BLACK and WHITE
respectively on most systems).

COLOR [=] expression

The following chart represents the color codes for IBM PC and compatible systems with color
graphics. Colors codes vary significantly from system to system so check your computer
appendix for variations.

 IBM PC and Compatible COLOR codes
0= BLACK 8= GRAY
1= BLUE 9= LIGHT BLUE
2= GREEN 10= LIGHT GREEN
3= CYAN 11=LIGHT CYAN
4= RED 12= LIGHT RED
5= MAGENTA 13= LIGHT MAGENTA
6= BROWN 14= YELLOW
7= WHITE 15= BRIGHT WHITE

Color intensities will vary depending on the graphics hardware and monitor being used.
Check your computer appendix for variations.

While most Macintoshes are black and white, COLOR is useful when printing to the
ImageWriter II with a color ribbon. See appendix for details.

CLS, CLSLINE, CLSPAGE

CLS is used to clear the entire screen of graphics or text quickly. Optionally, the text screen
may be filled with a specific ASCII character (in most modes). Check your computer appendix
for variations.

CLS [ASCII code:0-255]

CLS LINE is used to clear a text line of text and graphics from the current cursor position to
the end of that line.

CLS LINE

CLS PAGE is used to clear a text screen of text and graphics from the current cursor position
to the end of the screen.

CLS PAGE

See Computer Appendix

 9 5 Graphics

GRAPHICS

BUSINESS GRAPHS, CHARTS ETC.

Business graphs and charts are easily accomplished with ZBasic graphics. An added benefit
is that the graphs are also easily transported to different computers.

To further assist you in porting graph programs, ZBasic has two text commands that
correspond to the graphic position on the screen instead of the text position:

PRINT%(h,v) Prints from the position specified by the
ZBasic graphic coordinates.

INPUT%(h,v) Positions the input to be from the graphic
position specified by h,v.

The syntax of these commands is the same as PRINT and INPUT. Also see PRINT@.

Graphics 9 6

GRAPHICS

SPECIALIZED GRAPHICS

The Apple, MSDOS, Macintosh and some Z80 versions of ZBasic have some added
powerful features for graphics. See the appendix for your version of ZBasic for specific
information:

APPLE // GRAPHICS

Double Hi-Res with 16 colors is supported for the Apple //e, //c and //GS with 128k or more.
Text and graphic may be integrated on the screen and customizable character sets are also
supported. LONG FN’s for DRAW, BLOAD and BSAVE are on the master disk.

IBM PC, MSDOS GRAPHICS

Version 4.0 supports most of the graphic modes of IBM PC’s and compatibles including;
Hercules Monochrome Graphics, Hercules PLUS, Enhanced Graphics Adaptor (EGA), Color
Graphics Adaptor (CGA), Monochrome and all other graphics modes.

Also supported are GET and PUT graphic commands, PLOT USING, COORDINATE and
COORDINATE WINDOW. See appendix for specifics.

MACINTOSH GRAPHICS

The master disk contains examples of printing and displaying MacPaint graphics and TIFF bit
images. Also supported is GET and PUT graphics. PICTURE, TEXT, Apple’s QuickDraw and
toolbox routines, PEN and many more. See appendix for specifics.

TRS-80, CP/M-80 GRAPHICS

Most TRS-80 graphics are supported including Radio Shack’s Hi-Res and Micro-Lab’s Hi-Res
boards on the Model 4 in MODE 8 and 15 (text and graphic integration is not supported with
the Radio Shack Hi-Res board). Hi-Res is not supported on the model one or three.

Because of the diversity of machines for CP/M systems and because of a lack of common
interface, graphics are not supported with CP/M systems (although we have special graphics
versions for Kaypro 4 and 10 with graphics capabilities).

 9 7 Graphics

FILES

FILE HANDLING

ZBasic file commands are the same on all versions. This section explains file commands
and statements. ZBasic file concepts are similar to a file cabinet:

EVERYDAY TERMS ZBASIC TERMS
FILE CABINET DISK OPERATING SYSTEM
Holds files in drawers. Holds files on diskettes, cartridges etc.

FILE FILENAME, FILENUMBER
Contains data for a mail list or inventory Contains data for a mail list or inventory
control system among other things. control system among other things.

RECORD RECORD
One logical part of a file: All the data for One logical part of a file: All the data for
Mr. Smith in a mail list (name, address...) Mr. Smith in a mail list file (name, address...)

PARTS OF A RECORD LOCATION
One part of a Record: The address or One part of a RECORD: The address in
the City in a mail list record. a mail list record or even one character

in the address.

Files 9 8

FILES

GLOSSARY OF ZBASIC FILE TERMS

DOS: The Disk Operating System is a program residing in a computer's memory which
takes care of the actual reading, writing and file control on a storage device such as floppy
drives, hard drives, tape backup devices, etc. ZBasic works with the formats and syntax of
each disk operating system using its syntax for such things as filenames, drive specs, etc.

FILENAME: Tells ZBasic which file to access. A string constant or variable is used.

FILESPEC: The part of a filename (or some other indicator) that specifies the device,
directory or sub-directory a file is on. See your DOS manual for correct filespec syntax.

FILENUMBER: ZBasic may be configured to have from 0 to 99 files OPEN at the same
time (if DOS and available memory permit). Filenumbers are used in a program with disk file
commands to instruct ZBasic which file is being referred to. For example; if you open a file
called "Fred" as number one, when doing file commands you need only refer to file number
one, not "Fred". This saves a lot of typing.

RECORD: A record is one segment of a file. A mail list record might include Name,
Address, City, State, ZIP, etc. If you want data from a specific record, it is called up using
the RECORD command. The first record in a ZBasic file is RECORD 0. There may be up to
65,535 RECORDs in a file.* RECORD #filenumber, record, location.

SEQUENTIAL METHOD: This is a method of reading a file one element or record at a
time, in order ---one after another i.e. 1,2,3,.. .

RANDOM METHOD: This is the method of reading file items randomly--- out of order. i.e.
RECORD 20,90,1,22

FILE POINTER: It is often important to know how to manipulate the file pointer. ZBasic
allows you to position the file pointer by using RECORD, and tells you where the file pointer
is currently positioned by using REC(filenumber) and LOC(filenumber).

COMPATIBILITY WITH MSBASICTM

Experienced BASIC programmers will like the power and simplicity of ZBasic file commands.
For the first time, BASIC file handling commands have been made compatible and portable.
All ZBasic disk commands function the same way regardless of the computer being used.

Sequential file commands are very similar. The main difference being that items written with
PRINT# should be separated with quoted commas in ZBasic if being read back with INPUT#.

Random file commands have been made simpler, yet just as powerful. Those experienced
with MSBASIC file commands should find the conversion painless:

ZBASIC COMMANDS MSBASIC EQUIVALENTS
READ, WRITE, RECORD FIELD, GET, PUT, MKI$, CVI, MKS$,

CVS, MKD$,CVD, LSET, RSET
PRINT#, INPUT#, LINEINPUT# PRINT#, INPUT#, LINEINPUT#

 9 9 Files

FILES

FILE COMMANDS COVERED IN THIS SECTION

This outline gives an overall perspective of file commands available in this section and
groups commands in logical order. This section of the manual provides lots of examples
and a tutorial for the file commands of ZBasic.

OPENING AND CLOSING FILES
 OPEN
 CLOSE

DELETING OR ERASING FILES
 KILL

RENAMING A FILE
 RENAME

POSITIONING THE FILE POINTER
 RECORD

WRITING TO A FILE
 WRITE#
 PRINT#
 PRINT#, USING
 ROUTE

READING FROM A FILE
 READ#
 INPUT#
 LINEINPUT#

GETTING IMPORTANT FILE INFORMATION
 LOF
 LOC
 REC

, , ,
Be sure to read the appendix for your computer. Many versions have extra commands that
take advantage of a particular system.

Files 1 0 0

FILES

CREATING AND OPENING FILES

OPEN ["O, I or R"], filenumber, "filename" [,record length]

All ZBasic files must be opened before processing.

OPEN "O"
Opens a file for "O"utput only. If the file does not exist, it is created. If it does exist, all data
and pointers are erased and it is opened as a new file.

OPEN "I"
Opens a file for "I"nput only. If the file does not exist, a "File Not Found" error is generated
for that file number.

OPEN "R"
Opens a "R"andom access file for reading and/or writing. If the file does not exist, it is
created. If the file exists, it is opened, as is, for reading or writing.

filenumber
ZBasic may be configured to have from 1 to 99 files open at one time in a program
(depending on the DOS and available memory for that computer). Files are assigned
numbers so ZBasic knows to which file it is being referred. The original copy of ZBasic is
configured to allow up to two open files at a time. If you wish to have more files open, you
may configure ZBasic for up to 99 open files. See "Configure".

record length
Record length is optional. If it is omitted, a record length of 256 characters is assumed.
Maximum record length is 65,535 characters, or bytes (check appendix for variations).

EXAMPLES OF OPENING FILES

OPEN "O", 2, "NAMES", 99
Opens filenumber 2 as "NAMES", with a record length of 99 characters, for OUTPUT only. If
"NAMES" doesn't exist, a file named "NAMES" is created. If a file called "NAMES" exists, all
data and pointers in it are deleted and it is opened as a new file.
OPEN "I",1, A$
Opens filenumber 1 whose filename is the contents of A$, with assumed record length of
256 for INPUT only. If A$ doesn't exist, a "File Not Found" error is generated for filenumber
one. See "Disk Error Trapping" for more information.
OPEN "R", 2, "BIGFILE" , 90
Opens filenumber 2 named "BIGFILE", with a record length of 90, for Reading and Writing.

OPEN"IR", "OR", "RR" for resource forks. OPEN "A" for append also supported. Volume
number is used after record number i.e. OPEN"R",1,"Fred",99, vol%. A number of other
enhancements are covered in the appendix.

 1 0 1 Files

FILES

CLOSING FILES

CLOSE [# filenumber [, filenumber,...]]

All files should be closed when processing is finished or before ending a program. Failure
to close files may result in lost data.

CLOSE without a filenumber closes all open files (STOP and END will also CLOSE all files).
It is very important to close all opened files before exiting a program. When a file is closed,
the end-of-file-marker is updated and any data in the disk buffer is then written to the disk.

After you close a file, that filenumber may be used again with another OPEN.

DELETING FILES

KILL "filename"

Files may be deleted from the disk from within a program or from the editor with the "KILL"
command. From the editor the filename must be in quotes on Macintosh and Z80 versions.

Filename is a simplestring and may be represented by a string constant or variable:

TRONB
INPUT"FILE TO KILL: ";FILE$
INPUT"ARE YOU SURE? ";A$
IF A$<>"YES" THEN END
KILL FILE$
END

RENAMING FILES

RENAME "oldfilename" TO [or comma] "newfilename"

Files may be renamed on the disk from within a program or directly using RENAME.

Filenames may be a string constant or variable. Example:

TRONB
INPUT"FILE TO RENAME";OLDFILE$
INPUT"NEW NAME: ";NEWFILE$
RENAME OLDFILE$ TO NEWFILE$

The TRS-80 Model 1,3 version does not support RENAME.

, ,
Macintosh: Both KILL and RENAME also use Volume number. See appendix for syntax.
MSDOS: CHDIR and Pathnames may be used. APPLE ProDOS: Pathnames may be used.

Files 1 0 2

FILES

WRITING TO A FILE USING PRINT#, WRITE# AND ROUTE#

PRINT#

PRINT# filenumber, (variables, constants or equations)[;","...]

PRINT# is used for writing data in TEXT format. It is saved to the disk quite like an image is
saved to paper using LPRINT. PRINT# is useful for many things but it is not the fastest way
or most efficient way to save data. See WRITE# below. Examples:

PRINT#1, A$;","; C$;","; Z% ;","; X#
Prints A$, C$, Z%, and X#, to filenumber one starting at the current file pointer. A carriage
return* is written after the X#. This command stores data the same way it would be printed.
Syntax is compatible with older versions of BASIC. The file pointer will point at the location
in the file directly following the carriage return.*

PRINT#1, USING "##.##"; 12.1
Formats output to filenumber one starting at the current file pointer (stores 12.10).
Functions like PRINT USING.

*Data MUST be separated by a delimiter of a quoted comma or a carriage return if reading
data back using INPUT#. Some systems write a carriage return and a linefeed (two bytes).

WRITE#

WRITE[#] filenumber, variable [, variable...]

WRITE# is used for storing data in condensed format at the fastest speed. WRITE# may
only be used with variables and data is read back with the READ# statement. Example:

WRITE#1, A$;10, Z%, K$;2
Writes 10 characters from A$, the value of Z%, and 2 characters from K$ to filenumber one,
starting at the current file pointer. In the example; A$;10 stores A$ plus enough spaces, if
any, to make up ten characters (or truncates to ten characters if longer).

ROUTE#

ROUTE [#] device

ROUTE is used to route output to a specific device. Device numbers are:

0 video monitor (default) 1-99 DISK filenumber (1-99)
128 PRINTER (same as LPRINT) -1 or -2 SERIAL port 1 or 2*

Example of routing screen data to a disk file or serial port:

1. Open a file for output (use OPEN "C" and -1 or -2 for serial ports)
2. ROUTE to filenumber or serial port number that was opened.
 all screen PRINT statements will be routed to the device specified.
3. ROUTE 0 (so output goes back to the video)
4. Close the file or port using: CLOSE# n.

* Be sure to see your computer appendix for specifics.

 1 0 3 Files

FILES

READING FROM A FILE USING INPUT#, LINEINPUT# AND READ#

INPUT#

INPUT# filenumber, variable[, variable...]

INPUT# is used to read text data from files normally created with PRINT#. The data must be
read back in the same format as it was sent with PRINT#. When using PRINT# be sure to
separate data items with quoted comma or carriage return delimiters, otherwise data may be
read incorrectly or out of sequence. Example:

INPUT#1, A$, C$, Z%, X#
Inputs values from filenumber one from the current RECORD and LOCATION pointer, into
A$, C$, Z%, and X#. In this example the data is input which was created using the PRINT#
example on the previous page. The file pointer will be pointing to the next location after X#.

LINEINPUT#

LINEINPUT# filenumber, variable (One variable only)

LINEINPUT# is used primarily for reading text files without the code limitations of INPUT#.
Commas, quotes and other many other ASCII characters are read without breaking up the
line. It will accept all ASCII codes accept carriage returns or linefeeds. TEXT is read until a
carriage return or linefeed is encountered or 255 characters, whichever comes first:

LINEINPUT#5, A$
Inputs a line into A$ from filenumber five from the current file pointer. Accepts all ASCII
codes including commas and quotes, except linefeed (chr10) and carriage return (chr 13).
Terminates input after a chr 13, chr 10, End-of-file, or 255 characters.

READ#

READ [#] filenumber, variable [, variable...]

READ# is the counterpart of WRITE#. It is used to read back data created with WRITE# in
condensed high-speed format. This is the most efficient way of reading files. Example:

READ#1 , A$;10, Z%, K$;2
Reads 10 characters into A$, an integer number into Z%, and 2 characters into K$ from
filenumber one, from the current file pointer. The file pointer will be pointing to the location
directly following the last character in K$ (includes trailing spaces if string was less than ten).

GETTING IMPORTANT INFORMATION ABOUT A SPECIFIC FILE

Syntax Description
REC(filenumber) Returns the current RECORD number location for filenumber.

LOC(filenumber) Returns the current location within the current RECORD for
filenumber (the byte offset).

LOF(filenumber) Returns the last RECORD number of filenumber. If there
are one or zero records in the file, LOF will return one.
Due to the limitations of some disk operating systems this
function is not always exact on some systems. Check the
COMPUTER APPENDIX for specifics.

Files 1 0 4

FILES

ZBASIC FILE STRUCTURE

All ZBasic files are a contiguous string of characters and/or numbers (bytes). The order and
type of characters or numbers depends on the program that created the file.

In the illustration, the name "Fred Stein" was stored in RECORD six of "TESTFILE". To
point to the "d" in FILENUMBER 1, RECORD 6, LOCATION 3 use the syntax:

RECORD#1, 6, 3

The location within a record is optional, zero is assumed if no location is given. If RECORD 1,
6 had been used (without the 3), the pointer would have been positioned at the "F" in
"Fred" which is LOCATION zero.

If RECORD is not used, reading or writing starts from the current pointer position. If a file
has just been OPEN(ed), the pointer is at the beginning of the file. (RECORD#n,0,0)

After each read or write, the file pointer is moved to the next available position in the file.

Macintosh: RECORD length and number of records is 2,147,483,647.

 1 0 5 Files

FILES

POSITIONING THE FILE POINTER

RECORD [#] filenumber, RECORD number [, LOCATION number]

To point to any LOCATION in any RECORD in any FILE, use:

RECORD 3,23,3 Sets the pointer of filenumber 3 to RECORD 23, LOCATION 3.
If RECORD 23 contained "JOHN", then LOCATION 3
of this record would be "N", since zero is significant.

RECORD #3,23 Sets the pointer for file#3 to location zero in RECORD 23. If
RECORD 23 contained JOHN, the character being pointed at
would be "J".

RECORD IS OPTIONAL

If the RECORD statement is not used in a program, the pointer will have a starting position of
RECORD 0, LOCATION 0 and is automatically incremented to the next position (for reading
or writing) depending on the length of the data.

FILE SIZE LIMITATIONS*

The file size limitations for sequential files are either the physical limitations of the storage
device or the limit of the Disk Operating system for that computer.

The limitation for Random access files is 65,536 records with each record containing up to
65,536 characters. Maximum file length is 4,294,967,296 characters (although multiple
files may be linked to create larger files).

It is important to note that most Disk Operating Systems do not have this capability. Check
your DOS manual for maximum file sizes and limitations.

Macintosh: RECORD length and number of records is 2,147,483,647.

CONFIGURING THE NUMBER OF FILES IN A ZBASIC PROGRAM

If the number of files is not configured, ZBasic assumes only 2 files will be used and sets
aside only enough memory for two files.

To use more than 2 files, configure ZBasic for the number of files you need under
"Configure".

ZBasic allows the user to configure up to 99 disk files for use in a program at one time
(memory and disk operating system permitting). Each type of computer requires a different
amount of buffer (memory) space for each file used so check your computer appendix for
specifics (usually there are 256-1024 bytes allocated per file; 10 files would require
between 2,560-10,240 bytes).

*See computer appendix for variations.

Files 1 0 6

SEQUENTIAL METHOD

 1 0 7 Sequential File Method

SEQUENTIAL METHOD

SEQUENTIAL METHOD

This section covers some of the methods that may used when reading or writing files
sequentially. It covers the use of READ, WRITE, PRINT#, INPUT# and LINEINPUT#.

SEQUENTIAL METHOD USING PRINT# AND INPUT#

These two programs demonstrate how to create, write, and read a file with PRINT# and
INPUT# using the Sequential Method:

PRINT# INPUT#
OPEN"O",1,"NAMES" OPEN"I",1,"NAMES"
DO: INPUT"Name: ";NAME$ DO: INPUT#1, NAME$, AGE
 INPUT "Age:"; AGE PRINT NAME$","AGE
 PRINT#1, NAME$","AGE UNTIL NAME$="END"
UNTIL NAME$="END" CLOSE#1:END
CLOSE#1: END

Type "END" to finish inputting names in the PRINT# program. The INPUT#
program will INPUT the names until "END" is read.

Unless a semi-colon is used after the last data being printed to the disk, the
end of each PRINT# statement is marked with a carriage return.

PRINT# USING

USING is used to format the PRINT# data. See "PRINT USING".

COMMAS IN PRINT# AND INPUT#

It is important to remember when using PRINT# with more than one data item,
that quoted commas (",") must be used to set delimiters for data being written. If
commas are not quoted, they will merely put spaces to the disk (as to the printer)
and INPUT# will not be able to discern the breaking points for the data.

Sequential File Method 1 0 8

SEQUENTIAL METHOD

SEQUENTIAL METHOD USING READ# AND WRITE#

Other commands which may be used to read and write sequential data are READ# and
WRITE#. The main difference between READ#--WRITE# and PRINT#--INPUT# is that the
latter stores numeric data and string data, much the same way as it appears on a printer;
READ# and WRITE# store string and numeric data in a more condensed and predictable
format. In most cases this method is also much faster.

VARIABLES MUST BE USED WITH READ# AND WRITE#

READ# and WRITE# require that variables be used for data. Constants or expressions may
not be used with these commands except the string length, which may be an expression,
constant or variable.

HOW STRINGS ARE STORED USING WRITE#

When using WRITE# or READ# with strings, you must follow the string variable with the
length of the string:

WRITE#1,A$;10,B$;LB READ#1, A$;10, B$;LB

An expression may be used to specify the string length and must be included. When
WRITE#ing strings that are shorter than the specified length, ZBasic will add spaces to the
string to make it equal to that length. If the string is longer than the length specified, it will be
"Chopped off" (If the length of A$ is 20 and you WRITE#1,A$;10, the last 10 characters of
A$ will not be written to the file).

Normally, you will READ# strings back exactly the same way you WRITE# them. Notice that
the spaces become a part of the string when they are READ# back. If you WRITE# A$;5,
and A$="HI" when you READ# A$;5, back, A$ will equal "HI " (three spaces at the end of
it). The length of A$ will be 5.

To delete the spaces from the end of a string (A$ in this example), use this statement
directly following a READ# statement:

WHILE ASC(RIGHT$(A$,1))=32: A$LEFT$(A$,LEN(A$)-1): WEND

You can use READ# and WRITE# using variable length strings as well. See the two format
examples on the following pages.

 1 0 9 Sequential File Method

SEQUENTIAL METHOD

READ# AND WRITE# IN CONDENSED NUMBER FORMAT

Numbers are stored in condensed format when using READ# and WRITE#. This is done to
conserve disk space AND to make numeric space requirements more predictable. ZBasic
automatically reads and writes condensed numbers in this format. Just be sure to read the
data in exactly the same order and precision with which it was written. Space requirements
by numeric variable type are as follows:

PRECISION MAXIMUM DIGITS SPACE REQUIRED
INTEGER 4.3 (+-32,767) 2 bytes
SINGLE PRECISION 6 (default) 4 bytes
DOUBLE PRECISION 14 (default) 8 bytes

Since single and double precision may be configured by the user, use this equation to
calculate the disk space required if different than above:

(Digits of precision / 2) +1 = number of bytes per variable

LongInteger has 9.2 digits and requires 4 bytes for storage. To calculate the storage
needs for Macintosh Double precision; Digits/2+2=space required per variable.

INTEGER NUMBER CONVERSIONS

For those programmers that want to control conversions these commands are available.
They are not required with READ and WRITE since these commands do it automatically.

X=CVI (simplestring) Converts the first two bytes of simple-string to integer (X).
A$=MKI$ (integer) Converts an integer to a 2 byte string

SINGLE AND DOUBLE PRECISION NUMBER CONVERSIONS

For those programmers that want to control conversions these commands are available.
They are not required with READ and WRITE since these commands do it automatically.

X#=CVB (simplestring) Converts up to the first 8 bytes* of simplestring to an uncond-
ensed double precision equivalent and stores the value in X#.
(If string length is less than eight characters, only that many
characters will be converted. At least two bytes are needed.)

 A$=MKB$ (X#) Converts a Double precision number to an 8 byte string.*

X!=CVB (simplestring) Converts the first 4 bytes* of simplestring into a single precision
number and stores the value in X! If string length is less than
eight characters, only that many characters will be converted.
At least two bytes are needed.

A$=MKB$ (X!) Converts a single precision number to a 4 byte string.*

*Note: The number of bytes of string space in the conversions depends on the precision
set by the user. Use the equation above for calculating the space requirements. ZBasic
assumes 8 bytes for double precision and 4 bytes for single precision if the user does not
set precision.

To manipulate LongIntegers with MKI$/CVI use DEFSTR LONG. See Macintosh appendix.

Sequential File Method 1 1 0

SEQUENTIAL METHOD

SEQUENTIAL FILE METHOD USING READ# AND WRITE#

The following programs illustrate how to use READ# and WRITE# using the sequential file
method.

USING READ# AND WRITE# WITH SET LENGTH STRINGS

The programs below create and read back a file with the sequential method using READ#
and WRITE#. String length is set to 10 characters by the “10” following NAME$. ZBasic
adds spaces to a string to make it 10 characters in length, then saves it to the disk.

AGE is assumed to be an integer number since it was not defined and is stored in
condensed integer format.

WRITE# READ#
OPEN”O”,1,”NAMES” OPEN”I”,1,”NAMES”
DO: INPUT”Name: “; NAME$ DO: READ#1, NAME$;10, AGE
 INPUT”Age:”; AGE PRINT NAME$;”,”;AGE
 WRITE#1,NAME$;10, AGE A$=LEFT$(NAME$,3)
UNTIL NAME$=”END” UNTIL NAME$=”END”
CLOSE#1: END CLOSE#1:END

Type “END” to finish inputting names for the WRITE# program. The READ# program will
READ the names until “END” is encountered.

FIXED STRING LENGTH WRITE#

This illustration shows how strings saved with set lengths appear in a disk file:

The reason the ages 23, 45 and 17 are not shown in the file boxes is because the numbers
are stored in condensed format (2 byte integer).

 1 1 1 Sequential File Method

SEQUENTIAL METHOD

USING READ# AND WRITE# with VARIABLE LENGTH STRINGS

READ# and WRITE# offer some benefits over PRINT# and INPUT# in that they will read and
write strings with ANY ASCII characters. This includes quotes, commas, carriage returns or
any ASCII characters with a code in the range of 0-255. The following programs will save
strings in condensed format, using the amount of storage required for each string variable.

WRITE# READ#
OPEN”O”,1,”NAMES” OPEN”I”,1,”NAMES”
DO: INPUT”Name: “; NAME$ REM
 INPUT”Age:”; AGE DO: READ#1,LB$;1
 LBCHR(LEN(NAME$)) READ#1, NAME$;ASC(LB$), AGE
 WRITE#1, LB$;1 PRINT NAME$”,”AGE
 WRITE#1, NAME$;ASC(LB$),AGE UNTIL A$=”END”
UNTIL NAME$=”END” CLOSE#1
LAST$=”END”: END
WRITE#1,LAST$;3;CLOSE#1
END

The WRITE# program stores a one byte string called LB$ (for Length Byte). The ASCII of
LB$ (a number from 0 to 255) tells us the length of NAME$.

VARIABLE STRING LENGTH WRITE#

This illustration shows how the data is saved to the disk when string data is saved using the
variable length method. LB for “Tom” would be 3, LB for “Harry” would be 5, etc...

Sequential File Method 1 1 2

SEQUENTIAL METHOD

APPENDING DATA TO AN EXISTING FILE CREATED
USING THE SEQUENTIAL METHOD

Sometimes it is faster (and easier) to append data to the end of an existing text file, instead
of reading the file back in, and then out again.

This may be accomplished by using “R”, for random access file when opening the file, and
keeping track of the last position in a file using REC(filenumber) and LOC(filenumber) and
putting a character 26 at the end of the file.

To append sequentially to a text file created with other programs try using this example
program. The key is setting the record length to the right amount. The MS-DOS version
uses 128. Other versions will vary.

This example creates a function called: FN Open(f$, F%) and will OPEN the file named f$,
with file number f%, for appending. The RECORD pointer will be positioned to the next
available space in the file.

To close a file properly for future appending, use the function called FN Close (f$,f%).

LONG FN Open (f$,f%): REM FN OPEN(f$, f%)
 OPEN “R”, f%, f$,128:REM Change 128 to correct # for your DOS
 Filelen%=LOF(f%): NextRec%=FileLen%: NextLoc%=0
 LONG IF FileLen%>0
 NextRec%=NextRec%-1
 RECORD #f%, NextRec%, NextLoc%
 READ #f%, NextRec$;128: REM Change this 128 too!
 NextLoc%=INSTR(1,NextRec$,CHR$(26)): REM (zero on Apple)
 IF NextLoc%>0 THEN NextLoc%=NextLoc%-1 ELSE NextRec%=NextRec%+1
 END IF
 RECORD #%f, NextRec%, NextLoc%
END FN

LONG FN Close (f$, F%)
REM TCLOSE the file correctly with an appended chr 26.
PRINT#f%, CHR(26);
CLOSE#f%
END FN

Note: This method will work with ASCII text files ONLY!

See Open “A” in the appendix for opening files for Append.

 1 1 3 Sequential File Method

RANDOM METHOD

CREATING FILES USING THE RANDOM ACCESS METHOD

Random access methods are very important in disk file handling. Any data in a file may be
stored or retrieved without regard to the other data in the file. A character or field from the
last record in a file may be read (or written) without having to read any other records.

A simple example of the Random access method is the following program that reads or
writes single characters to any LOCATION in a file:

RANDOM ACCESS EXAMPLE USING A ONE BYTE RECORD LENGTH

OPEN “R” , 1 ,”DATA”,1
REM RECORD LENGTH = 1 character

“Get record number”
DO: INPUT “Record number: “;RN
 INPUT “<R>ead, <W>rite, <E>nd: “;A$
 IF A$=”R” GOSUB “Read” ELSE IF A$ = “W” GOSUB “Write”
UNTIL A$=”E”: CLOSE#1: END

“Write”
INPUT “Enter character: “ ‘ A$
RECORD #1, RN
WRITE #1,A$;1 :RETURN

“Read”
RECORD #1,RN :REM Point at record# RN
READ #1,A$;1
PRINT” Character in RECORD# “; RN ;” was “ ;A$: RETURN

To change this program to one that would read or write people’s names, merely change the
RECORD LENGTH to a larger number and increase the number after the A$ in the READ#
and WRITE# statements.

The following pages will demonstrate a more practical use of the Random Access method
by creating a mail list program in easy to understand, step by step procedures.

Random Access File Method 1 1 4

RANDOM METHOD

CREATING A MAIL LIST USING THE RANDOM ACCESS METHOD

This mail list uses: First and Last name, Address, City, State, Zip, Age and Money
spent. The first thing to do is calculate the record length for the mail list file. This is
done by calculating the space requirements for each field in a RECORD.

FIELD VARIABLE TYPE SPACE NEEDED
FIRST NAME STRING$ 10 characters
LAST NAME STRING$ 18 characters
ADDRESS STRING$ 35 characters
CITY STRING$ 25 characters
STATE STRING$ 15 characters
ZIP DOUBLE PRECISION 8 bytes (holds up to 14 digits)
AGE INTEGER 2 bytes (Holds up to 32,767)
MONEY SPENT SINGLE PRECISION 4 bytes (Holds up to 6 digits)
Totals: 8 VARIABLES 117 bytes per RECORD

The following illustration illustrates how the mail list data is stored within each
RECORD. LOCATION numbers are shown by position.

 1 1 5 Random Access File Method

RANDOM METHOD

MAIL LIST PROGRAM

The following program will READ# and WRITE# mail list data as described on previous
pages. The names are input from the user and a mail list record is created for each
name.

You will be able to retrieve, print, and search for names in the mail list and, with some simple
modifications (like using the sort routines in the ARRAY section of this manual) you will
have a complete mail list program ready to use.

EXPLANATIONS OF THE MAIL LIST PROGRAM BY LINE NUMBER

10-21 Asks if you want to create a new file. If you say
yes the old data is written over.

22 If old data is being used, the data in RECORD zero is READ
to find out how many names are on the disk. NR holds the
number of records on the disk.

25-77 Puts a menu on the screen and awaits user input.

80 “END” routine. Closes file and exits the program.

100-210 “ADD” names to mail list. Gets data from user,
checks if OK. If not OK starts over. Note that the spaces in the
input statements are for looks only. Space may be omitted.

220 If not OK then redo the input.

230-255 Gets the disk record (DR) from NR. Saves the
variables to disk, then increments the number of
records. (NR=NR+1) and saves it to disk record zero.

500-590 PRINT(s) all the names in the file to the printer.
(Change LPRINT to PRINT for screen output).

700-780 “FIND” all occurrences of LAST NAME or PART of a LAST NAME.
To find all the names that start with “G” just type in “G”.
To find “SMITH” type in “SMITH” or “SMIT” or “SM”.

1000-1040 “READ A MAIL LIST ITEM”
READ(s) RECORD DR from the disk into the variables
FIRST_NAME$, LAST_NAME$, ADDRESS$, ...

1100-1140 “WRITE A MAIL LIST ITEM”
WRITES the variables FIRST_NAME$, LAST_NAME$,
ADDRESS$, ... out to the RECORD specified by DR.

HINTS: Spaces are not important when typing in the program, except between double
quotes (if you have set “Spaces required between keywords” they will be required).

Random Access File Method 1 1 6

RANDOM METHOD

MAIL LIST PROGRAM EXAMPLE

0010 CLS
0015 OPEN”R”,1,”MAIL”,117
0016 INPUT”CREATE A NEW FILE:Y/N”;A$: IF A$><“Y” THEN 22
0021 NR=1: RECORD1,0: WRITE#1,NR:REM NR=Number of names in list
0022 RECORD 1,0: READ#1, NR
0025 DO: CLS
0030 PRINT”MAIL LIST PROGRAM”
0040 PRINT”1. Add names to list”, “Number of names: “;NR-1
0050 PRINT”2. Print list”
0052 PRINT”3. Find names”
0055 PRINT”4. End”
0060 INPUT@ (0,7)”Number: “;ANSWER: IF ANSWER<1 OR ANSWER>4THEN60
0075 ON ANSWER GOSUB “ADD”, “PRINT”, “FIND”
0077 UNTIL ANSWER=4
0079 :
0080 “END”: CLOSE#1: END
0099 :
0100 “ADD”
101 CLS
102 PRINT”MAIL LIST INPUT”: PRINT
0130 INPUT”First Name: “;FIRST_NAME$
0140 INPUT”Last Name: “;LAST_NAME$
0150 INPUT”Address: “;ADDRESS$
0160 INPUT”City: “;CITY$
0170 INPUT”State: “;STATE$
0180 INPUT”ZIP: “ZIP#
0190 INPUT”AGE: “;AGE%
0200 INPUT”Money Spent:”;SPENT!
0210 PRINT
0220 INPUT”Is everything correct? Y/N: “;A$: IFA$<>”Y”THEN “ADD”
0230 RECORD 1,0:READ#1,NR: DR=NR: NR=NR+1: REM NR is incremented
0240 GOSUB”WRITE A MAIL LIST ITEM”: REM when names added
0250 RECORD 1,0: WRITE#1, NR : REM Stores records to record zero
0255 RETURN
0260 :
0261 :
0500 “PRINT”
0510 REM Change LPRINT to PRINT if screen output preferred
0515 RECORD 1,0: READ#1,NR
0520 FOR X=1TO NR-1: DR=X :REM DR=DISK RECORD
0530 GOSUB”READ A MAIL LIST ITEM”
0540 LPRINT FIRST_NAME$;” “;LAST_NAME$
0550 LPRINT ADDRESS$
0560 LPRINT CITY$;”,”;STATE$;” “;ZIP#
0570 LPRINT AGE%, “SPENT:”; USING”$###,###.##”;SPENT!
0575 LPRINT:IF FLAG=99 RETURN
0580 NEXT
0585 DELAY 3000
0590 RETURN

Continued next page

 1 1 7 Random Access File Method

RANDOM METHOD

0700 “FIND”
0704 CLS
0705 RECORD 1,0:READ#1, NR
0710 IF NR=1 THEN PRINT “No names to find!”:DELAY 999:RETURN
0720 INPUT”NAME TO FIND: “;F$:F$=UCASE$(F$)
0730 FOR X=1 TO NR-1
0740 DR= X: GOSUB”READ A MAIL LIST ITEM”
0750 T$=UCASE$(LAST_NAME$) :REM CASE must match
0755 IF INSTR(1,T$,F$) THEN FLAG=99: GOSUB 540: FLAG=0
0760 NEXT
0770 INPUT “LOOK FOR ANOTHER? Y/N:”;A$:IFA$=”Y” THEN 700
0780 RETURN
0781 :
0782 :
1000 “READ A MAIL LIST ITEM”
1001 REM:This routine READS RECORD DR
1020 RECORD 1, DR
1030 READ#1, FIRST_NAME$;10, LAST_NAME$;18, ADDRESS$;35,
1035 READ#1, CITY$;25, STATE$;15, ZIP#, AGE%, SPENT!
1040 RETURN
1041 :
1042 :
1100 “WRITE A MAIL LIST ITEM”
1101 REM: This routine WRITES RECORD DR
1110 REM CALL WITH DR=DISK RECORD NUMBER TO WRITE
1120 RECORD 1,DR
1130 WRITE#1, FIRST_NAME$;10, LAST_NAME$;18, ADDRESS$;35
1135 WRITE#1, CITY$;25, STATE$;15, ZIP#, AGE%, SPENT!
1140 RETURN: END

Random Access File Method 1 1 8

MIXING FILE METHODS

 1 1 9 Mixing File Methods

MIXING FILE METHODS

MIXING SEQUENTIAL AND RANDOM FILE METHODS

Since ZBasic stores data as a series of bytes whether sequential methods or random
methods are used, these methods may be intermixed.

The following program uses both methods. The program reads files from the mail list
program created with the random access method earlier in this chapter.

The second and third lines read the number of records in the file. Then the list is read off
the disk sequentially using the DO/UNTIL loop.

To read and print the mail list in sequential order:

OPEN”I”,1”MAIL”,117
RECORD 1.0:READ#1, NR:REM Gets a number of records to read
RECORD 1,1: REM Set the pointer to the first record
REM Change LPRINT to PRINT if screen output preferred
DO: NR=NR-1: REM Counts down the number of names
 READ#1, FIRST_NAME$;10, LAST_NAME$;18, ADDRESS$;35,
 CITY$;25, STATE$;15, ZIP#, AGE% SPENT!
 LPRINT FIRST_NAME$;” “;LAST_NAME$
 LPRINT ADDRESS$
 LPRINT CITY$;”,”;STATE$;” “;ZIP#
 LPRINT AGE%, “SPENT: “; USING”$###,###.##”;SPENT!
 LPRINT
UNTIL NR=1: REM Until the last name is read
CLOSE#1
END

The READ#1 after the DO reads the data in. Whenever read or write functions are
executed, ZBasic automatically positions the file pointer to the next position.

Mixing File Methods 1 2 0

DISK ERRORS

 1 2 1 Disk Errors

DISK ERRORS

DISK ERROR MESSAGES

If a disk error occurs while a program is running, ZBasic will print a message something like
this:

File Not Found Error in File #02
 (C)ontinue or (S)top?

If you type “S”, ZBasic will stop execution of the program and return to the disk operating
system (or to the editor if you are in interactive mode).

If you press “C”, ZBasic will ignore the disk error and continue with the program. This could
destroy disk data!!

The following pages will describe how to “TRAP” disk errors and interpret disk errors which
may occur.

END OF FILE CHECKING

Some versions do not have and “END OF FILE” command because some operating systems
do not have this capability. Example of END OF FILE checking for some versions:

ON ERROR GOSUB 65535: REM Set for User Error trapping
OPEN”I”,1,”DEMO”:IF ERROR PRINT ERRMSG$(ERROR):STOP
DO
 LINEINPUT#1,A$
UNTIL ERROR <>0
IF ERROR >< 257 THEN PRINT ERRMSG$(ERROR): STOP
REM 257=EOF Error in filenumber 1 (See error messages)
ERROR=0:REM You MUST reset the ERROR flag.
ON ERROR RETURN:REM Give error checking back to ZBasic
CLOSE#1

Note: Many versions have an EOF function. See your appendix for details.

Disk Errors 1 2 2

DISK ERRORS

TRAPPING DISK ERRORS

ZBasic provides three functions for disk error trapping:

ON ERROR GOSUB 65535 Gives complete error trapping control
to the user. User must check ERROR
(if ERROR<>0 then a disk error has
occurred) and take corrective action if
any disk errors occur. (Remember to set
ERROR=0 after a disk error occurs). ZBasic
will not jump to a subroutine when the error
occurs. The 65535 is just a dummy number.
See the ON ERROR GOSUB line:

ON ERROR GOSUB line GOSUB to the line number or
label specified whenever and wherever,
ZBasic encounters a disk error.

ON ERROR RETURN Gives error handling control
back to ZBasic. Disk error messages
will be displayed if a disk error occurs.

When you are doing the ERROR trapping it is essential that ERROR be set to zero after an
error is encountered (as in line#45 and #1025 in the program example). Failure to set
ERROR=0 will cause additional disk errors.

DISK ERROR TRAPPING EXAMPLE

The following program checks to see if a certain data file is there. If disk error 259 occurs
(File Not Found error for file #1), a message is printed to insert the correct diskette:

10 ON ERROR GOSUB “CHECK DISK ERROR”
15 REM Line above Jumps to line 1000 if any disk error occurs
20 OPEN”I”,1,”TEST”
30 IF ERROR=0 THEN 50
40 INPUT”Insert Data diskette: press <ENTER>”;A$
45 ERROR=0:REM You MUST reset ERROR to zero!
46 GOTO 20 :REM Check diskette again...
50 ON ERROR RETURN: REM ZBASIC DOES DISK ERROR MESSAGES NOW...
 .
 .
 .
1000 “CHECK DISK ERROR”
1003 REM ERROR 259 is “File Not Found Error in File #01”
1005 IF ERROR=259 RETURN
1010 PRINT ERRMSG$(ERROR) :REM Prints error if not 259
1015 INPUT” (C)ont. or (S)top? “;A$
1020 A$=UCASE$(A$) : IFA$<>”C” THEN STOP
1025 ERROR=0:REM You MUST reset ERROR to zero!
1030 RETURN

Note: This method may not work on some Disk Operating Systems (like CP/M). Check
your computer appendix for specifics.

 1 2 3 Disk Errors

DISK ERRORS

DISK ERROR CODES AND MESSAGES

If you wish to do the disk error trapping yourself (using ON ERROR GOSUB), ZBasic will
return the ERROR CODE in the reserved variable word “ERROR”.

For instance, if a “File not Found Error in file# 2” occurs, then ERROR will equal 515. To
decode the values of ‘ERROR’, follow this table:

DISK ERROR CODES & MESSAGES

ERROR ERROR CODE
No Error in File # 0
End of File Error in File # 1 (257=file#1, 513=file#2, 769=file#3, etc.)
Disk Full Error in File # 2
File Not Found Error in File # 3
File Not Open Error in File # 4
Bad File Name Error in File # 5
Bad File Number Error in File # 6
Write Only Error in File # 7
Read Only Error in File # 8
Disk Error in File # 9-255

ERROR CODE=ERROR AND 255
FILE NUMBER=ERROR>>8

ERROR FUNCTION

ERROR returns a number between 0 and 32,767. IF ERROR does not equal zero than a
disk error has occurred. The disk error code of the value returned in ERROR is deciphered
by using one of the following equations or statements:

IF ERROR =515 calculate the disk error type by:
ERROR AND 255 =3 File Not Found Error in File #
ERROR>>8 =2 File Number is 2
ERRMSG$(ERROR)= File Not Found Error in File #02

Also See ERROR and ERRMSG$ in the reference section.

Important Note: To avoid getting the same error again...ALWAYS set ERROR back to
zero after and error occurs; ERROR=0.

Also see SYSERROR in the Macintosh appendix.

Disk Errors 1 2 4

SCREEN AND PRINTER

 1 2 5 Screen and Printer Control

SCREEN AND PRINTER

SCREEN AND PRINTER

ZBasic has several functions and commands for screen and printer control. PRINT
or LPRINT are the most frequently used. The following syntax symbols are used to
control the carriage return and TAB for either PRINT or LPRINT:

PRINT SYNTAX RESULT
Semi-Colon “;” Suppress Carriage return and linefeed after printing.

subsequent prints will start at the cursor position.

Comma “,” TAB over to the next TAB stop. The default is 16: TAB stops are:
16, 32, 48, 64, ... 25 (also see DEF TAB below).

DEF TAB=n Defines the space between the TAB stops for comma (,). Any
number from 1-255. If 10 is used then positions 10, 20, 30,
...250, are designated as TAB stops.

PRINT EXAMPLES RESULT
PRINT”HI” Screen PRINT “HI” to the current cursor position and move to the

beginning of the next line. <CR>

PRINT “HI”; Screen PRINT “HI” and DON’T move to next line (the semi-colon
suppresses the carriage return)

PRINT “HI”, Screen PRINT “HI” and move over to next TAB position.

PRINT TAB(20)”HI” Print “HI” at the 20th position over from the left or at the current
position if past column 20.

PRINT ,”HI” Print “HI” at the next TAB stop position. See “ DEF TAB”.

PRINT USING”##.##”;23.2 PRINTS 23.20 and moves to the next line. See “USING” in the
reference section for further information.

POS(0) Returns the horizontal cursor position on the screen where the
next character will be printed.

POS(1) Returns horizontal cursor position of the printer where the next
character will be printed.

Screen and Printer Control 1 2 6

SCREEN AND PRINTER

PRINTING AT A SPECIFIC SCREEN LOCATION

PRINT @(H,V)”HI” Start print H characters over horizontally
and V lines down vertically from the upper left hand
corner of the screen, then move to the
beginning of the next line (Use a SEMI-COLON or
COMMA to control the carriage return).

PRINT %(Ghoriz,m Gvert) Position the print output to be at the graphics
coordinates specified by Ghoriz, Gvert (or as close as
possible for that computer. Great for easy porting of
programs.

CLS [ASCII] Fill Screen with spaces to the end of the LINE or to the
end of the PAGE (screen).

STRING$(Qty, ascii or string) Used to print STRINGS of characters. STRING$(10,”X”)
prints 10 X’s to the current cursor position.
STRING$ (25, 32) will print 25 spaces.

SPACE$(n) or SPC(n) Prints n spaces from current cursor position.

COLOR [=] n Sets the color of Graphics output and sometimes
text. (0= background color, usually black.
-1= foreground, usually white).*

MODE [=] n Sets screen attributes. Some computers allow
80 character across or 40 characters across, etc..
Graphics may also be definable.*

ROUTE byte integer Used to route output to the screen, printer or
disk drive. *

* See Computer Appendix for specifics.

 1 2 7 Screen and Printer Control

SCREEN AND PRINTER

PRINT %

The PRINT % command functions exactly the same way as PRINT @ except
the X-Y coordinate specifies a screen graphic position instead of a character
position.

Since ZBasic utilizes device independent graphics, this is a handy way of
making sure the text goes to the same place on the screen regardless of the
computer being used.

Use MODE to set certain character styles for some computers.

Examples:

PRINT % (512, 383) Print to middle of screen
PRINT % (0,0) Upper left corner of screen
PRINT % (0,767) Lower left corner of screen

Same as the toolbox MOVETO function. ZBasic coordinates unless
COORDINATE WINDOW is used.

TYPICAL VIDEO CHARACTER LAYOUTS

Here are some of the typical character layouts for a few of the more popular
computers:

COMPUTER Columns (across) Rows (down)
IBM PC and compatible 80 or 40 25
APPLE //E, //C 80 or 40 24
TRS-80 Model I, III 64 or 32 16
TRS-80 Model 4, 4p 80 or 40* 24
CP/M-80 computers 80 24
Macintosh Almost anything... See appendix

*Will also run TRS-80 models 1,3 version.

Screen and Printer Control 1 2 8

KEYBOARD INPUT

 1 2 9 Keyboard Input

KEYBOARD INPUT

KEYBOARD INPUT

ZBasic utilizes the INPUT and LINEINPUT statements of getting keyboard data from
a user. There are many options allowed so that input may be configured for most
input types. Parameters may be used together or by themselves in any order.
Syntax for INPUT and LINEINPUT:

[LINE]INPUT[;][[@or%] (horiz,vert);] [!] [& n,] [“string constant”;] ar [, var[,...]

LINEINPUT Optional use if INPUT. Allows inputting quotes, commas, and
some control characters.

; A semi-colon directly following “INPUT” disables the carriage
return (cursor stays on same line after input).

& n, “&” directly following “INPUT” or semi-colon, sets the limit of
input characters to n. Length of strings used in INPUT must
be one greater than n.

! An exclamation point used with “&” terminates the INPUT
when the character limit, defined by “&” , is reached, without
pressing <ENTER>. If “!” is not used, <ENTER> ends input.

@(horiz, vert); Positions the INPUT message to appear at character
coordinates horiz characters over & vert lines down.

%(horiz, vert); Positions the INPUT message to appear at the closest
graphic coordinates horiz pixels over & vert pixels down.

“string constant”; Prints a message in front of the input.

var [,var][,...] The variable(s) to receive the input. Using more than one
variable at a time is allowed except with LINEINPUT.

Important Note: When using strings with INPUT make sure that you define the
length of the string at least one character more than will be input.

Keyboard Input 1 3 0

KEYBOARD INPUT

EXAMPLES OF REGULAR INPUT

EXAMPLE RESULT
INPUT A$ Wait for input from the keyboard and store the input in

A$. Quotes, commas and control characters cannot be
input. <ENTER> to finish. A carriage return is generated
when input is finished (cursor moves to beginning of
next line).

INPUT”NAME: “;A$ Prints “NAME: “ before input. A semi-colon must follow
the last quote. A carriage return is generated after input
(cursor moves to next line).

INPUT;A$ Same as INPUT A$ above, only the semi-colon directly
after INPUT disables the carriage return (cursor stays on
the same line).

EXAMPLES OF LIMITING THE NUMBER OF CHARACTERS WITH INPUT

EXAMPLE RESULT
INPUT &10, A$ Same as INPUT A$ only a maximum of ten characters may

be input. (&10) A carriage return is generated after
input (cursor moves to the beginning of the next line).
The limit of input is set for ALL variables, not each.

INPUT ;&10, I% Same as INPUT &10, except the SEMI-COLON following
INPUT stops the carriage return (cursor stays on line).

INPUT !&10, A$ Same as INPUT & 10 except INPUT is terminated as soon
as 10 characters are typed (or <ENTER> is pressed).

INPUT ;!&10, “NAME: “;A$ Same as INPUT ;&10,A$ except no carriage return is
generated (semi-colon). INPUT is terminated after 10
characters(&10 and Exclamation pint). and the
message “NAME: “ is printed first.

LINEINPUT;!&5,”NAME: “;A$ LINEINPUT A$ until 5 characters or <ENTER> is
pressed. (no carriage return after <ENTER> or after the
5 characters are input. Accepts commas and quotes.)

Note 1: Wherever INPUT is used, LINEINPUT may be substituted when commas,
quotes or some other control characters need to be input (except with multiple
variables).

Note 2: If more than one variable in INPUT, commas must be included from the user to
separate input. If all the variables are not input, the value of those variables will be null.

In certain cases EDIT FIELD, MENU or BUTTON may be preferable. See appendix.

 1 3 1 Keyboard Input

KEYBOARD INPUT

INPUTTING FROM A SPECIFIC SCREEN LOCATION

INPUT @(H,V); A$ Wait for input at TEXT screen POSITION defined by Horizontal
and Vertical coordinates. No "?" is printed. A carriage return is
generated.

INPUT %(gH,gV);A$ Input from a graphic coordinate. Syntax is the same as "@".
Very useful for maintaining portability without having to worry
about different screen widths or character spacing.

INPUT@(H,V);!10,"AMT: ";D# Prints "AMT:" at screen position H characters over by V
characters down. D# is input until 10 characters, or <ENTER>,
are typed in, and the input is terminated without generating a
carriage return (the cursor DOES NOT go to the beginning of

 the next line).

INPUT%(H,V);!10,"AMT: ";D# Prints "AMT:" at Graphic position H positions over by V
positions down. D# is input until 10 characters, or <ENTER>,
are typed in, and the input is terminated without generating a
carriage return (the cursor DOES NOT go to the beginning of
the next line).

Note: Replace INPUT with LINEINPUT whenever there is a need to input quotes, commas and
control characters (except with multiple variables).

Keyboard Input 1 3 2

KEYBOARD INPUT

INPUT %

The INPUT % command functions exactly the same way as INPUT@ except
the X-Y coordinate specifies a screen graphic position instead of a character
position.

Since ZBasic utilizes device independent graphics, this is a handy way of
making sure the INPUT goes to the same place on the screen regardless of the
computer being used.

Use MODE to set certain character styles for some computers.

Examples:

INPUT%(512, 383) middle of screen
INPUT%(0,0) upper left corner of screen
INPUT%(0,767) lower left corner of screen

Although all parameters above function properly, EDIT FIELD, MENU or
BUTTON are preferable for getting user input. See appendix.

TYPICAL VIDEO CHARACTER LAYOUTS

Here are some of the typical character layouts for a few of the more popular
computers:

COMPUTER Columns (across) Rows (down)
IBM PC and compatible 80 or 40 25
APPLE // series 80 or 40 24
TRS-80 Model I, III 64 or 32 16
TRS-80 Model 4, 4p 80 or 40 24
CP/M-80 computers 80 24
Macintosh Almost anything... See appendix

 1 3 3 Keyboard Input

KEYBOARD INPUT

INKEY$

Unlike INPUT which must WAIT for characters, INKEY$ can receive characters from
the keyboard "on the fly". When INKEY$ is encountered in a program, the
keyboard buffer is checked to see if a key has been pressed. For computers with
no buffer, the keyboard is checked when the command is encountered. If a key is
pressed, INKEY$ returns the key. If no key has been pressed, INKEY$ returns a
null string. Examples:

I$=INKEY$ When the program reaches the line with this
command on it, ZBasic checks to see if a
character is in the input buffer. If a key has
been pressed it will be returned in I$.
Otherwise I$ will contain nothing (I$ will equal
"" or LEN(I$)=zero).

IF INKEY$="S" STOP If the capital "S" key is pressed the program will
stop. Sometimes more appropriate than using
TRONB or TRONX for debugging purposes.

DO: UNTIL LEN(INKEY$) Wait for any key press, then continue
DO: UNTIL LEN(INKEY$)=0 Clears characters out of INKEY$ buffer

Note: TRONX, TRON or TRONB may cause INKEY$ to function improperly!

,
Macintosh: If doing EVENT Trapping or any TRON type, the INKEY$ function may operate
incorrectly. Use DIALOG(16) instead. See appendix for examples. MSDOS : See
appendix for special ways of getting function keys (INKEY$ returns two characters).

INKEY$ EXAMPLE

The program below will wait awhile for a key to be pressed. If you make it wait to long, it will
complain loudly. If you do press a key, it will tell you which key was pressed. If you press "S"
or "s", the program will stop.

"Start": CLS
DO
 A$INKEY$:REM Check if a key has been pressed
 X=X+1: IF X>3000 THEN GOSUB"YELL FOR INPUT!":REM Timer
UNTIL LEN(A$): REM If a key is pressed then LEN(A$)=1
PRINT "You pressed ";A$
X=0: REM Reset timer
IF A$="S" OR A$="s" THEN STOP: REM PRESS "S" to STOP!
GOTO "Start":REM Go look for another key
:
"YELL FOR INPUT!": REM This routine complains
PRINT"HURRY UP AND PRESS A KEY! I'M TIRED OF WAITING"
X=0:REM Reset Timer
RETURN

Keyboard Input 1 3 4

LOOPS

 1 3 5 Loops

LOOPS

LOOPS

Loops are sections of a program that repeat over and over again until a condition is
met.

Loops are used to make programs easier to read by avoiding IF THEN and GOTO,
(although these commands may also be used to loop). ZBasic has a number of
ways of looping or executing a routine until a condition is met.

* FOR, NEXT, STEP
*DO, UNTIL
 WHILE, WEND

* Each of these loop types is executed at least once.

ENTERING OR EXITING LOOPS

ZBasic loops may be entered or exited without ill affects. Some compilers require
you to use a loop EXIT statement. This is not required with ZBasic. Just use a
GOTO or RETURN to exit as appropriate.

IMPORTANT LOOP REQUIREMENTS

ZBasic requires that each FOR has one, and only one, NEXT. Each WHILE must
have one WEND and each DO must have one UNTIL. Otherwise a STRUCTURE
error will result when you attempt to RUN the program.

AUTOMATIC INDENTING OF LOOPS

ZBasic automatically indents loops two characters in listings for readability (LIST).

Loops 1 3 6

LOOPS

FOR-TO-STEP
NEXT

FOR VAR counter= start expression TO end expression [STEP expression]
 Program flow...
NEXT [VAR counter]

STEP is an optional part of FOR/NEXT. If STEP is omitted, the step is one. An
example of a FOR-NEXT-STEP loop:

FOR X=0 TO 20 STEP 2
 PRINT X;
NEXT X
program continues...

LINE 1: Begin the loop where X is incremented in STEPs of 2 (0,2,4,6...20)
LINE 2: Prints the value of X each time the loop is executed.
LINE 3: If X => 20 the loop falls through to line 4. X will equal 22 in line 4 of this
 example program.

FOR-NEXT loops will go through the loop at least once regardless of
the values in the FOR instruction. See WHILE-WEND for immediate exiting.

To count backwards in a FOR/NEXT loop set STEP to a negative number.

Note 1: STEP zero will cause and endless loop.

*Note 2: With integer loops, be sure the maximum number is less than 32,767;
otherwise an endless loop may occur for some systems. The reason for this is that
the sign of the number increments to -32768 after 32767 which restarts the loop all
over again! Endless loop example:

FOR X%= 1 TO 32767 <--Endless loop!
NEXT X%

Note 3: STEP number must stay within the integer range. STEP 32767 would
create an endless loop.

Note 4: Unlike most other languages, FOR-NEXT loops may be entered or exited
in the middle with no ill effects.

*The same problem arises with four byte integers when the maximum LongInteger
number in the FOR loop exceeds 2,147,483,647.

 1 3 7 Loops

LOOPS

DO
UNTIL

DO
 Program flow...
UNTIL conditional expression is TRUE

DO
 X=X+2
 PRINT X;
UNTIL X>19
program continues...

LINE 1: Start of the DO loop
LINE 2: Make X=X+2
LINE 3: PRINT the value of X each time the loop is executed.
LINE 4: If X<20 then go back to the beginning of the loop. When X>19 program
 falls through to the next statement (line 4 in example)

A DO loop will execute at least once. In contrast to WHILE-WEND, which
checks the condition at the beginning of the loop, DO-UNTIL checks the condition
at the end of the loop. Use WHILE-WEND when you need to check the condition at
the beginning.

Note: Unlike most other languages, the loop may be entered or exited in the
middle with no ill effects. For instance, in line 2 above, you could used: IF X>10
then RETURN. This would not cause any problems in the program.

Loops 1 3 8

LOOPS

WHILE
WEND

WHILE conditional expression
 Program flow...
WEND end loop here when condition of WHILE is FALSE

WHILE X<20
 X=X+2
 PRINT X;
WEND

 program continues...

LINE 1: Continue the loop while X is less than 20.
LINE 2: Make X=X+2
LINE 3: Print the value of X each time the loop is executed.
LINE 4: If X is less than or equal 20 then go back to the WHILE and do the loop
 again, otherwise continues at the first statement after WEND.

In contrast to DO-UNTIL and FOR-NEXT (which check the condition at the end of a
loop), WHILE-WEND checks the condition at the beginning of the loop
and will exit immediately if the condition is not met.

Note: Unlike most other languages, a WHILE-WEND loop may be entered or exited
in the middle with no ill effects. For instance, in line 30 above, you could have used:
IF X>10 then RETURN. This would not cause any problems in the program.

 1 3 9 Loops

FUNCTIONS AND SUBROUTINES

FUNCTIONS AND SUBROUTINES

ZBasic contains some powerful tools for creating re-usable subroutines and
appending or inserting them into other ZBasic programs that you create.

APPEND

APPEND is a command that will take an un-line numbered subroutine and insert it
anywhere in an existing program. The syntax for the command is APPEND
line number or label, filespec.

To save a subroutine or program without line numbers, use the SAVE+ command.
MERGE is available for merging subroutines or programs with line numbers into an
existing program.

DEF FN

Zbasic incorporates the DEF FN and FN statements similar to many other BASIC
languages. This is very handy for creating functions that may be used like
commands in a program.

A function is given a name and may be called and passed variables. FN's save
program space. Note that functions may utilize other functions within definitions
and program code.

Examples of using DEF FN to create Derived Math functions.
DEF FN e# = EXP(1.)
DEF FN Pi# = ATN(1) << 2
DEF FN SEC# (X#) = 1. \ COS (X#)
DEF FN ArcSin# (X#) = ATN (X# \ SQR(1-X# * X#))
DEF FN ArcCos#(X#) = ATN(1.)*2-FN ArcSin# (X#)

Examples of program use:
PRINT FN Pi#
Angle# = SIN (FN ArcSin#(I#))
PRINT FN ArcCos#(G#)

Note: Be sure to define the function at the beginning of the program before
attempting to use it otherwise an UN DEF error will result at compile time.

Functions and Subroutines 1 4 0

FUNCTIONS AND SUBROUTINES

LONG FN

Included is a sophisticated and powerful multiple line function called LONG FN.

LONG FN allows you to create multi-line functions as large as a subroutine and
allows you to pass variables to the routine. This comes in very handy for creating
reusable subroutines that you can insert or APPEND to other programs.

LONG FN is similar to DEF FN except that the function being defined may be many
lines long. Use END FN to end the LONG FN subroutine. WARNING: Do not exit a
LONG FN except at END FN otherwise system errors may result.

Example of LONG FN to remove trailing spaces from a string:

LONG FN Remove trailing spaces from a string:
 WHILE ASC(RIGHT$(x$,1)=32
 x$= LEFT$(x$, LEN(x$)-1)
 WEND
END FN= x$
Name$="ANDY "
PRINT X$, FN RemoveSpace$(Name$)
z$=FN RemoveSpace$(fred$)

Example of a LONG FN for doing a simple matrix multiplication:

DIM A%(1000)
LONG FN MatrixMult%(number%, last%)
 FOR temp%= 0 to last%
 A%(temp%)=A%(temp%)*number%
 NEXT
END FN
A% (0)=1: A%(1)=2:A%(2)=3
FN MatrixMult%(10,3)
PRINT A%(0), A%(1), A%(2)

SYNTAX OF DEF FN AND LONG FN NAMES

FN names have the same syntax as variable names. A function that returns a string
value should end with a $. A function that returns a double precision value should
end with a #.

AUTOMATIC INDENTATION

ZBasic automatically indents that code between a LONG FN and END FN so
programs are easier to read.

SAVING FUNCTIONS FOR USE IN OTHER PROGRAMS

To save DEF FN'S or LONG FN's (or any subroutine) for future use, use SAVE+.
This saves the subroutine without line numbers so it may be used in other programs
by loading with the APPEND command (be sure to avoid line number references
and GOTOs in subroutines to make them easily portable).

 1 4 1 Functions and Subroutines

FUNCTIONS AND SUBROUTINES

MORE EXAMPLES OF LONG FN

The following example will check to see if a random file specified by the filename
file$ exists. If it does it will open it as a random file. If it does not exist, it will return a
disk error.

Remember; with OPEN"R" if the file exists it is opened, if it doesn't exist it is
created. You may not want it created in certain circumstances (like if the wrong
diskette is in a drive).

LONG FN Openfile%(files$, filenum%, reclen%)
 ON ERROR 65535: REM Disk error trapping on
 "Open file"
 OPEN"I",filenum%,file$
 LONG IF ERROR
 LONG IF (ERROR AND 255) <>3
 PRINT@(0,0);"Could not find ";file$;" Check disk drive"
 INPUT"and press <ENTER> when ready";temp%
 ERROR=0: GOTO "Open file"
 END IF
 XELSE
 CLOSE# filenum%
 END IF
ON ERROR RETURN: REM Give error checking back to ZBasic
OPEN"R",filenum%, file$, reclen%
END FN

EASY GETKEY FUNCTION

LONG FN GetKey$(Key$)
 DO
 Key$=INKEY$
 UNTIL LEN(Key$)
END FN - Key$

Functions and Subroutines 1 4 2

MACHINE LANGUAGE SUPPORT

 1 4 3 Machine Language Support

MACHINE LANGUAGE SUPPORT

MACHINE LANGUAGE

Occasionally it is important to be able to use machine language programs with your
program, whether for speed or to utilize special features of the hardware of that
machine. ZBasic incorporates a number of special commands to integrate machine
language subroutines into your programs.

CAUTION: Unless you have a working knowledge of the machine language of the
source computer and target computer, use extreme caution when porting programs
with machine language commands or subroutines.

MACHLG

This statement allows you to put bytes or words directly into your program:

CALL LINE "Machlg": END
"Machlg": REM EXAMPLE ONLY--> DO NOT USE!
MACHLG 10, 23 ,233, 12, 0, B%, A, 34, 12, &EF
MACHLG 23, 123, 222, 123, 2332, GameScore%, &AA

Hex, Binary, Octal or Decimal constants, Integer variables, or VARPTR may be
used. Be sure to put a machine language RETURN at the end of the routine if
using CALL. Be sure you understand the machine language of your computer
before using this command.

LINE

This gives you the address of a specific line as it appears in the object code. This
allows you to CALL machine language programs starting at specific line numbers or
labels. Syntax is

 LINE label
or LINE line number

Since the Macintosh is a 16 bit machine, MACHLG code is stored in WORDS not
BYTES. The code above would be stored in every other byte. With LINE
parentheses are required because it is also a toolbox call i.e. LINE (n).

Machine Language Support 1 4 4

MACHINE LANGUAGE SUPPORT

CALL

Allows you to CALL a machine language program. The syntax is:

CALL address

Be sure the routine being called has a RETURN as the last statement if you wish to
return control to your program.

If you wish to CALL a machine language subroutine in your program that was made
with MACHLG, use CALL LINE line number or label.

,
These versions have additional parameter passing capabilities. See appropriate
appendix under CALL for specifics.

The ProDOS version provides a special interface to the ProDOS Machine
Language Interface (MLI). See appendix for specifics.

DEF USR 0 - 9

Allows you to set up to 10 different machine language user routines. The syntax
for using this statement is:

DEFUSR digit =address

This command may be used to pass parameters or registers. See your computer
appendix for the specifics about your computer. There are also default routines.
See USR in the reference section.

INTEGER BASE CONVERSIONS

ZBasic makes integer BASE conversions simple. Some of the commands for
converting between BASED:

BIN$, &X UNS$
HEX$, &H or & OCT$, &O

See “Numeric Conversions” for specifics.

See DEFSTR LONG for configuring conversions above for LongInteger (and also
CVI and MKI$).

 1 4 5 Machine Language Support

MACHINE LANGUAGE SUPPORT

OTHER MACHINE LANGUAGE COMMANDS

Other tools for machine language programmers include powerful PEEK and POKE
statements that can work with 8, 16 or 32 bit numbers and BOOLEAN MATH

PEEK, POKE

In addition to the “standard” BYTE PEEK and POKE provided by many versions of
BASIC, WORD (16 bit) and LONG (*32 bit) PEEK and POKE are also provided:

PEEK 8 BIT POKE 8 BIT
PEEKWORD 16 BIT POKEWORD 16 BIT
PEEKLONG *32 BIT POKELONG *32 BIT

* Macintosh only at this time.

BINARY/BOOLEAN MATH FUNCTIONS

 OR AND
 XOR NOT
 SHIFT LEFT SHIFT RIGHT

EXP and IMP may be emulated easily. See “Logical Operators” in the “Math” section
of the manual.

VARIABLE POINTER

VARPTR (variable) will return the address of that variable.

,
Macintosh: Remember to use LongIntegers to store the address since Macintosh
memory exceeds 65,535 (the limit of regular integers). Also see DEFSTR LONG for
defining integer functions to do LongInteger. MSDOS: Check appendix for way of
determining SEG of variable.

Machine Language Support 1 4 6

STRUCTURED PROGRAMMING

 1 4 7 Structure

STRUCTURED PROGRAMMING

STRUCTURE

Much has been said about the difficulty of reading BASIC programs and the so-
called spaghetti code created (the program flow is said to resemble the
convoluted intertwinings of string spaghetti).

While we believe structure is important, we don’t believe that a language
should dictate how a person should compose a program. This inhibits
creativity and may even paint programmers into corners.

Nevertheless, we have provided powerful structure support in ZBasic.

THAT NASTY “GOTO” STATEMENT

The GOTO statement has been classified by many as a programmer’s
nightmare. If you want programs that are easy to read, do not use this
command. If you must use GOTO, do not use line numbers, use labels to
make the code easier to follow.

LINE NUMBERS VERSUS LABELS

The standard line editor (command mode) uses line number for three reasons:

1. Remain compatible with older versions of BASIC
2. For the Standard line editor commands
3. To give more easily understandable error messages

To make programs easier to read you should use alphanumeric labels for
subroutines or any other area of a program that does a specific function.

It is much easier to follow the flow of a program if GOSUB, GOTO and other
branching statements use labels instead of line numbers.

To LIST programs without line numbers use LIST+. Many versions of ZBasic
now use full screen editors that don’t require line numbers. See your appendix
for specifics.

Structure 1 4 8

STRUCTURED PROGRAMMING

INDENTATION OF LOOPS, LONG FN and LONG IF

Some versions of structured languages require that you manually indent
nested statements for readability.

ZBasic does all the indenting automatically!

Each nested portion of a program will be indented 2 spaces when the program
is listed. Program statements like FOR-NEXT, WHILE-WEND, DO-UNTIL,
LONG FN, LONG-IF etc. will be indented.

Example using LIST+:

LONG FN KillFile(file$)
 PRINT@(0,10);”Erase “;file$;” Y/N”;
 DO
 temp$=INKEY$
 UNTIL LEN(temp$)
 LONG IF temp$=”y” or temp$=”Y”
 KILL temp$
 END IF
END FN
FOR X=1 TO 100
 DO : G=G+1
 WHILE X<95
 PRINT “HELLO”
 LONG IF J< 4
 J=J+1
 END IF
 WEND
 UNTIL G >= 3.5
NEXT X

MULTIPLE LINE STATEMENTS

ZBasic allows putting more than one statement on a line with “:” (colon). While
this is handy for many reasons, over-use of this capability can make a program
line very difficult to understand.

UNSTRUCTURED 10*FORX=1TO100:DO:G=G+1:PRINT G:UNTILG=99:NEXT

STRUCTURED FOR X = 1 TO 100
 DO : G=G+1
 PRINT G
 FOR V=1 TO 20:NEXT
 UNTIL G=99
NEXT X

 *FOR V=1 TO 20:NEXT

*Note: An asterisk will appear at the beginning of a line containing a complete
loop if that line is not already indented. In that case the line will be un-indented
two spaces (as in the examples above).

 1 4 9 Structure

STRUCTURED PROGRAMMING

SPACES BETWEEN WORDS

To make code more readable, you should insert spaces between words,
variables and commands, just as you do when writing in English. While
ZBasic does not care if spaces are used (unless you configure ZBasic to require
spaces), it is a good practice to insert spaces at appropriate places to make
reading the program easier.

Hard to Read IFX=93*24THENGOSUB”SUB56”ELSEEND
Easier to Read IF X=93*24 THEN GOSUB “SUB56” ELSE END

VARIABLE NAMES

To make code more readable, use logical words for variables.

Hard to Read B=OP+I
Easier to Read Balance = Old_Principle + Interest

ZBasic allows variable name lengths up to the length of a line, but only the first
15 characters in the name are significant. Do not use spaces or symbols to
separate words in a name, use underlines; Building_Principle, Freds_House.

Keywords may not be used in variable names unless they are in lowercase and
“Convert to Uppercase” is “NO” (this is the default). Also see next paragraph.

INCLUDING KEYWORDS IN VARIABLES

To allow keyword in variables configure ZBasic for; “Spaces Required after
Keywords” (not available on all systems). See “Configure”.

HOW CASE AFFECTS VARIABLE NAMES

To make the variable “FRED” and “fred” the same variable configure ZBasic for
“Convert to Uppercase”. See “Configure”.

GLOBAL VERSUS LOCAL VARIABLES

Programmers familiar with LOCAL variables in PASCAL and some other
languages can structure their variable names to approximate this in ZBasic. (all
ZBasic variables are global.)

GLOBAL variables should start with a capital letter.

LOCAL variables should start with lowercase. Many programmers also use
(and re-use) variables like temp$ or local$ for local variables.

Structure 1 5 0

STRUCTURED PROGRAMMING

DEFINING FUNCTIONS

Use DEF FN or LONG FN to define functions and then call that function by
name. This is easy reading for people trying to decipher your programs. It
saves program space as well. FN names have the same definition as variable
names. Passing values to functions in variables is also very easy.

LONG FN may be used when a function the size of a subroutine is needed.
One FN may call previously defined functions.

LOADING PREVIOUSLY CREATED SUBROUTINES

To insert subroutines you have used in previous programs, use the APPEND
command. This will append (or insert) a program saved with SAVE+ (a non-line
numbered program or subroutine), into the current program starting at the line
number you specify; APPEND linenumber or label filename

Be sure to avoid the use of line numbers or GOTO statements in your
subroutine to make then more easily portable.

If using variables that are to be considered LOCAL, we recommend keeping
those variables all lowercase characters to differentiate them for GLOBAL
variables (all ZBasic variables are GLOBAL).

Sometimes LONG FN may be more appropriate for re-usable subroutines.

LISTINGS WITHOUT LINE NUMBERS

To make program listings easier to read, use LIST+ or LLIST+ to list a program
without line numbers.

ZBasic automatically indents nested statements with LIST for even more
readability.

,
Macintosh: Listings can be sent to the Screen,m LaserWriter or ImageWriter
without linenumbers and with keywords boldfaced by using LLIST+*.
MSDOS: Screen listings with highlighted keywords and no linenumbers are
accomplished with LIST+* (no printer support for highlighted keywords).

 1 5 1 Structure

STRUCTURED PROGRAMMING

LONG IF

For more control of the IF statement, ZBasic provides LONG IF for improved
readability and power.

UNSTRUCTURED
10 IIFX=ZTHENY=10+H:G=G+Y:F=F+RELSEGOSUB122:T=T-1

STRUCTURED LONG IF X=Z
 Y=10+H
 G=G+Y
 F=F+R
XELSE
 GOSUB”READ”
 T=T-1
END IF

UNSTRUCTURED
10 FORI=-3TO3:PRINT”I= “;I:IF I> THEN IF I>-3 AND I<3
PRINT I;”>0”,ELSEPRINT”Inner If False”:GOTO 30
20 *PRINT I;”<=0”,:X=-4:DO:X=X+1:PRINT”X=”;X:UNTILX=I
30 NEXT I

STRUCTURED
FOR I = -3 TO 3: PRINT “I= “;I
 LONG IF I> 0
 LONG IF I > -3 AND I < 3
 PRINT I;”> 0”,
 XELSE
 PRINT “Inner LONG IF false”
 END IF
 XELSE
 PRINT I;”<= 0”,
 X = -4
 DO X=X+1
 PRINT”X=”;X
 UNTIL X=I
 END IF
NEXT I

Important Note: Any loops enclosed in LONG IF structures must be
completely contained with the LONG IF, END IF construct.

,
The Macintosh and IBM versions also support SELECT CASE, a structured,
multi-conditional LONG IF statement. See appendices for syntax.

Structure 1 5 2

DEBUGGING TOOLS

 1 5 3 Debugging Tools

DEBUGGING TOOLS

DEBUGGING TOOLS

To get programs running bug-free in the shortest amount of time, ZBasic has incorporated
some powerful error catching tools.

TRON Display program flow

Turns on the line trace statement. As the program is running, ZBasic will display the line
number where the program is being executed on the screen.

Also see TRON 128 for sending the line numbers to the printer so the display is not
affected.

TRONS Single Step
 SINGLE STEP line trace debugging. Allows you to single step through that part of a
program. To activate single step mode press CTRL Z. To single step press any key. To
return to regular mode press CTRL Z again. To single step and display line numbers use
TRONS:TRON. Note: CTRL S and CTRL Z will function during any TRON type.

TRONB Check for <BREAK> key

Sets a break point on that line and all the following lines of that program (until a TROFF is
encountered). As each line is executed, the program will check if CTRL C or <BREAK> is
being pressed.

If <BREAK> is pressed, the program will return to the edit mode (the operating system if
RUN* was used). Without a break point the program will not respond to the <BREAK> key.
No line numbers are displayed unless TRON was also used.

BREAK ON is often preferable as a check for <COMMAND PERIOD>. See appendix.

Debugging Tools 1 5 4

DEBUGGING TOOLS

TRONX Check for <BREAK> on that line only

Sets a break point only on that line. If CTRL C or <BREAK> is pressed as that line is
executed, the program will return to the edit mode (if interactive) or to the operating system.

TROFF Disable all TRON modes

Turns off TRON, TRONB, TRONX and TRONS. Line number display and <BREAK> points
will be disabled in the program flow following this statement.

ARRAY BOUNDS CHECKING

Set “Check Array Bounds” to “YES” when configuring ZBasic to make sure you do not
exceed DIM limits. This is a RUN TIME error check and is very important for use during the
debug phase.

Exceeding array limits could cause overwriting of other variables and faulty data.

After you have finished debugging your program, disable this function since it will slow
execution speed and increase program size.

STRING LENGTH CHECKING (not all versions; check your appendix)

Set “String Length Checking” to “YES” when configuring ZBasic to make sure you do not
exceed defined string length limits. This is a RUN TIME error check and is very important
for use during the debug phase.

Exceeding string lengths could cause overwriting of other variables and/or faulty data.

After you have finished debugging your program, you may wish to disable this function
since it will slow execution speed and increase program size.

COMPILE TIME ERROR CHECKING

ZBasic compile time error messages help you pinpoint the cause of the problem
immediately by highlighting the error on the line and printing a descriptive message instead
of an error number.

Unlike BASIC interpreters, ZBasic will not execute a program with syntax errors in it. If the
program compiles without an error you can be sure it is at least free of syntax errors.

DISK ERROR CHECKING

ZBasic gives the programmer a choice of trapping disk errors themselves or letting ZBasic
display the disk error. See “Disk Error Trapping” for more information.

1 5 5 Debugging Tools

PORTING PROGRAMS

PORTING PROGRAMS

Porting means taking a program from one computer and moving it to another computer of
different type or model. As from an Apple to an IBM.

Because most ZBasic commands contained in the reference section of this manual (except
USR, OUT, INP, PEEK, POKE, VARPTR, CALL and MACHLG) function the same way, it is
very easy to move the source code from one machine to another.

The following pages will describe some of the problems and solutions of porting programs.

OBJECT CODE AND SOURCE CODE

There are two separate types of programs created with ZBasic and you should understand
the differences.

SOURCE CODE This is the text part of a program you type into the computer and
looks like the commands and functions you see in this manual. In
order to turn SOURCE CODE into OBJECT CODE, ZBasic compiles
it when you type RUN (or RUN* or RUN+).

OBJECT CODE The OBJECT CODE is what ZBasic creates from the SOURCE
CODE after you type RUN. Object code is specific to a certain
machine. i.e. an IBM PC uses an 8088 CPU and an Apple // uses a
6502 CPU. The ZBASIC OBJECT CODE for each of these
machines is different and cannot be ported. Port the SOURCE
CODE to the target machine and then recompile it into the OBJECT
CODE of that computer.

FILE COMMANDS

ZBasic file commands work almost exactly the same way from one computer to the next.
The areas to be aware of when porting code from one machine to another are covered in
the following two paragraphs.

Porting Programs 1 5 6

PORTING PROGRAMS

DISK CAPACITIES

Make sure the target machine has enough storage space to accommodate the program and
program files being ported.

COMMON DRIVE CAPACITIES
IBM PC, XT, jr. 5.25” 320K-360K

3.50” 780K
IBM PC AT 5.25 360K

3.50” 780K
variable density 1200k

Apple // series 5.25” 143k
3.50” 800k

Macintosh single sided 400K
Macintosh Plus double sided 800K
Other:
SSSD 5.25” 80K
SSSD 8.00” 200-500K
SSDD 5.25” 160K
DSDD 5.25” 320K
DSDD 8.00” 600-2000K

SSSD: Single sided Single density
SSDD: Single sided Double density
DSDD: Double sided Double density

FILESPECS

ZBasic filenames/filespecs work within the limitations of the disk operating system. When
porting programs make sure the filespecs are corrected. For instance; if porting a program
from a TRS-80 Model 3 to an IBM PC, you must change all references to a file like; FRED:1
to A:Fred

Some computers cannot do RENAME or EOF. Others are incapable of certain DISK
ERRORS. Be sure to study the DOS manual of the target machine for variations.

MEMORY

Memory is another area of importance when porting programs from one machine to another.

Porting from smaller machines to machines with larger memory should not be a problem, as
long as other hardware is similar. Programs from TRS-80 MODEL I, III, 4, Apple //e and //c
and CP/M 80 machines should port over to an IBM PC or Macintosh with little or no changes.

Porting a large program (128K or more) from a larger machine like an IBM PC or Macintosh to
a smaller machine will require a number of memory saving measures covered in the following
paragraphs:

CHAINING PROGRAMS TOGETHER

If a 128K program is being moved to a 64K system, you will have to split it up into two or
more separate programs and CHAIN them together. Since ZBasic allows sharing variables
while chaining, this should solve most problems.

 1 5 7 Porting Programs

PORTING PROGRAMS

CHECK STRING MEMORY ALLOCATION

ZBasic allows the user to change the size of strings. Since some programmers on larger
machines may not be concerned with creating efficient code or keeping variable memory
use down, check if string size has been set. Setting string size from the 256 byte default to
32 or 64 will reduce string variable memory requirements dramatically.

See DEFLEN, DIM and “String Variables” in this manual for more information about
allocating memory for strings.

QUOTED STRINGS

Excessive use of quoted strings often occurs on larger computers because there is so
much free memory. Shortening quoted strings may save memory. Also see ZBasic
PSTR$ function for an extremely efficient way of utilizing string constants in DATA
statements and in regular statements.

EFFICIENT CODE

Careful examination of source code may uncover ways to decrease code size by making
repeated commands into subroutines or FN’s, or just cleaning up inefficiencies.

RAM DISKS

Some smaller computers allow the use of RAM disks. The Apple // ProDOS version for
example, allows RAM disks up to 8 megabytes, while program and variable size are limited to
40K-50K. Utilizing a RAM disk to store indices, large arrays or whatever is nearly as fast as
having that data in direct memory.

USE DISK INSTEAD OF MEMORY

If very large arrays or indices have been used in a large program you may have to store and
access them from disk in a random file. This is slower than RAM access but is usually quite
acceptable on most systems.

TEXT WIDTHS

Some computers have only 64 or 40 characters across the screen or 16 rows down the
screen. You may have to adjust the program to accommodate this.

You should think about using the PRINT% or INPUT% commands if you plan on
porting programs often. PRINT% puts text at ZBasics’ device independent graphic
coordinates, not text column/row coordinates. This makes porting programs much
simpler. Here are some typical character layouts:

COMPUTER Columns (across) Rows (down)
IBM PC and compatible 80 or 40 25
Apple // series 80 or 40 24
TRS-80 Model I, III 64 or 32 16
TRS-80 Model 4, 4p 80, 64 or 32 16 or 24
CP/M (typical) 80 24
Macintosh Almost anything... See appendix

Porting Programs 1 5 8

PORTING PROGRAMS

CHARACTER SETS

Screen and printer characters vary form one computer to the next. Check the ASCII chart in
the owners manuals to see the differences. (Most between 32-127 are the same.)

KEYBOARD, JOYSTICK AND MOUSE

Keyboards vary from computer to computer so be sure the target computer has the same
keys available. If not, make changes in the program to use other keys.

Joystick and MOUSE devices vary considerably. Test the controls on the target computer
and make adjustments for the hardware.

SOUND

Sound tone may vary from machine to machine. Check program and make any adjustments
needed. Some machines may not have this capability at all.

DEVICE INDEPENDENT GRAPHICS

ZBasic makes use of very powerful and simple graphic commands that work the same way
regardless of the graphic capabilities of the target computer (or lack of).

You will have to determine if the graphic hardware on the target computer is of sufficient
quality to display the graphics of your program. Note: Colors and grey levels may have to be
adjusted. Here are some of the typical graphic types available for some major computers:

COMPUTER Horizontal x Vertical pixels
IBM PC and compatibles CGA: 640x200 (3 color) or 320x200 (8 color)

EGA: 640x348 (many colors)
HERCULES and HERCULES PLUS: 720x348
MDA: 80x25 (text simulation)

Apple //e, //c, //GS Hi-Res 280x192 (6 color)
Apple //e,//c,//GS Double Hi-Res 560x192 (16 color)
Macintosh 512,340 (larger monitors also supported)
TRS-80 Model I, III 128x48
TRS-80 Model 4,4p 160x72

RS and Micro-Lab’s hi-res boards 640-240
CP/M-80 (typical) 80x24 (text simulation)
KAYPRO with graphics 160x100

MACHINE DEPENDENT SUBROUTINES

If the program being ported contains machine language subroutines, you will need to
rewrite those routines in the machine language of the target computer. Watch out for:

DEFUSR USR OUT INP
MACHLG LINE CALL
PEEK PEEKWORD PEEKLONG
POKE POKEWORD POKELONG

Unless you completely understand the machine language of both the target and source
computer, use extreme caution when porting programs with these commands.

 1 5 9 Porting Programs

PORTING PROGRAMS

MACHINE SPECIFIC COMMANDS

In order to take advantage of unique or special features of some computers, ZBasic offers
special commands that will not work or function on others. Be sure the program you are
porting contains only commands from the reference section of this manual.

Special ZBasic commands may have to be rewritten for the target computer.

Be sure to read the ZBasic appendices for both the Target and Source computers. They
will explain in detail the special commands for each system (you must purchase a version of
ZBasic for each computer you wish to compile from).

METHODS OF TRANSFERRING SOURCE CODE FROM ONE MACHINE TO ANOTHER

Telephone Modem Transfer
Transfer files using a Modem and simple communications software routines like the ones
under OPEN”C” in the main reference section of this manual.

Serial (RS-232) Transfer
Transfer files over the Serial (RS-232) ports of the two computers using a good
communication software package like Crosstalk or SmartCom. Crosstalk is available at
computer or software stores nationally.

Diskette File Transfer Utility Programs
Use Diskette file transfer utility programs like Uniform or Interchange. These programs will
convert a file from one disk format, like from a TRS-80 diskette to another disk format, like
MS-DOS or CP/M. These programs are available from computer or software dealers
nationally.

Re-type the Program
Type the program into the other computers. This may be acceptable for small programs but
you will save plenty of time by using one of the options above.

See OPEN”C” in the reference section for a ZBasic terminal routine that may be used to
transfer files.

Important Note: Always transfer files in ASCII. Tokens are not necessarily the same from
one version of ZBasic to another and from old versions to newer versions on the same
machine.

Porting Programs 1 6 0

CONVERTING OLD PROGRAMS

 1 6 1 Converting old Programs

CONVERTING OLD PROGRAMS

CONVERTING PROGRAMS WRITTEN IN OTHER VERSIONS OF BASIC

ZBasic is a very powerful and improved version of BASIC. Many of the
traditional BASIC commands have been retained to make conversion as easy as
possible. Nevertheless, ZBasic is not 100% compatible with every BASIC.
You will have to make some changes to your old programs if you wish to convert
them to ZBasic.

If file and graphic handling are not used, conversion will normally be very simple.
If files or graphics are used the conversion will take a little more thinking. The
following pages will give you important insights into making the conversion
process as easy as possible.

The following pages will give you some ideas about converting your older
BASIC programs. Following the paragraphs step-by-step will make conversion
much easier.

SAVE YOUR OLD BASIC PROGRAM AS ASCII OR TEXT

Save your old BASIC program in ASCII or TEXT format so it can be loaded into
ZBasic. ZBasic tokens are different from other BASIC tokens so loading them
without first converting them to ASCII will make programs loaded look like
random control codes or the wrong commands (if the program will load at all).

See the owners manual for the older BASIC to determine how to save in ASCII
or TEXT format for your computer. The typical syntax is; SAVE “filename”,A.

Note: When upgrading to newer versions of ZBasic, programs may have to be
saved in ASCII in the older version before loading into the newer version since
tokens may have changed.

Converting old Programs 1 6 2

CONVERTING OLD PROGRAMS

CONFIGURING ZBASIC TO MAKE CONVERSIONS A LOT EASIER

ZBasic has been configured to give you maximum performance. When
converting older BASIC programs this can be a problem. Often they are
configured for ease of use instead of performance. ZBasic allows you to
configure options so that converting your programs is simpler. Setting some of
the options below will also make ZBasic more like BASIC you may be used
to (like MSBASIC and BASICA).

Be sure to see “Configure” in the main reference section and in your appendix
for details about other ways of configuring ZBasic.

To solve many of the problems encountered in converting we suggest setting
the following options when converting other programs. Be sure to set these
options BEFORE LOADING your program:

CONFIGURE OPTION SET TO
1. Double precision digits of accuracy 6 or 8
2. Single precision Accuracy 4 or 6
3. Array bounds checking Y/N Y
4. Default Variable type <S>ingle, <D>ouble, <I>nteger S
5. Convert to Uppercase Y/N Y
*6. Optimize expressions for Integer Y/N N
*7. Spaces Required between Keywords Y/N Y

1. Since ZBasic does all floating point operations in double precision, it is
important to configure ZBasic for the speed and accuracy that you need. In
most cases the configuration above will be suitable (but not in all cases). If
you wish disk files and memory requirements to be the same as MSBASIC
leave the digits of accuracy at 14 and 6 as they take up 8 bytes of Double
and 4 bytes for single (the same as MSBASIC).

2. Set to two digits less than Double precision.

3. Sets array bounds checking to give runtime errors. Set to “N” when your
program is debugged.

4. Set to Single (S) if you want code to be most like other BASICs. We highly
recommend you set it to integer if possible. Integer will often increase
program speeds 10 to 100 times.

5. Setting allows variables like “Fred” and “FRED” to be the same variable. If
you want CASE to be significant, do not change the configuration.

6. ZBasic gives you two options for deciding how expressions may be
evaluated. ZBasic defaults to optimizing expressions for Integer to get the
fastest and smallest code. Most other languages do not. Set to “N” for
easier conversions. See “Math” for explanation of ZBasic options for
expression evaluations.

7. Some BASICs allow using keywords in variables (like INTEREST). To
allow this, spaces or other non-variable type characters are required
around keywords. Set this for easier conversion in most cases (especially
IBM PC and Macintosh BASIC type programs).
*Note: Not available on all versions of ZBasic.

 1 6 3 Converting old Programs

CONVERTING OLD PROGRAMS

CONVERTING RANDOM FILES

ZBasic incorporates FIELD, LSET, MKI$, MKS$, MKD$, CVI, CVS and CVD into the READ
and WRITE statements saving the programmer a lot of time. RECORD is used instead of
GET and PUT for positioning the file pointer.

The OPEN and CLOSE statements are the same for both BASICs except for MSBASIC use
of OPEN FOR RANDOM type. This is changed easily.

ZBASIC statements MSBASIC equivalents
OPEN”R” OPEN”R” or OPEN FOR RANDOM

READ, WRITE, RECORD FIELD, GET, PUT, LSET, RSET, CVS, CVD,
MKS$, MKD$,CVI, MKI$

Note: While ZBasic also supports MKI$, CVI and MKB$, CVB, they are not necessary for
use n Random files since ZBasic’s READ and WRITE automatically store and retrieve
numeric data in the most compact format (ZBasic’s MKI$, CVI, MKB$ and CVB are most
useful for condensing numbers for other reasons). Since ZBasic allows using any variable
type in READ and WRITE statements, the user is not faced with complicated conversions of
strings-to-numbers and numbers-to-strings.

CONVERTING SEQUENTIAL FILES

Most ZBasic Sequential file commands are very similar or the same to MSBASIC.

ZBASIC statements MSBASIC equivalents
OPEN”I” or OPEN”O” OPEN”I”, OPEN”O” or OPEN”A” or OPEN FOR INPUT,
OPEN”A” some versions OUTPUT or APPEND some versions
EOF(n) some versions EOF(n) some versions

LINEINPUT, INPUT, PRINT LINEINPUT,INPUT,PRINT

Note: The biggest difference when converting sequential file statements is that ZBasic’s
PRINT# statements should have quoted commas:
MSBASIC: PRINT#1, A$,B$,C$ or PRINT#1, A$ B$ C$
ZBASIC: PRINT#1, A$”,”B$”,”C$

DISK ERROR TRAPPING

ZBASIC statement MSBASIC equivalent
ON ERROR GOSUB ON ERROR GOSUB

Read “ON ERROR” and “Disk Error Trapping” in this manual for detailed information. ZBasic
error codes are much different from MSBASIC.

Important Note: ZBasic does not necessarily store data in disk files in the
same way or format as other versions of BASIC. You may have to convert
existing BASIC files to ZBasic format.

Converting old Programs 1 6 4

CONVERTING OLD PROGRAMS

CONVERTING GRAPHIC COMMANDS

ZBasic’s Device Independent Graphics are very powerful and simple to understand.
Conversion should be painless in most cases:

ZBASIC GRAPHICS MSBASIC equivalent
PLOT LINE,PSET,PRESET
CIRCLE CIRCLE
BOX LINE (with parameters)
COLOR COLOR (PSET, PRESET black and white)
MODE SCREEN
POINT POINT
GET, PUT (some systems) GET, PUT (some systems)
RATIO aspect parameter of CIRCLE
FILL PAINT
PLOT USING DRAW

ZBasic defaults to a relative coordinate system of 1024x768. This system does
not pertain to pixels but to imaginary positions on the screen. Most older
versions of BASIC use pixel coordinates.

,
Macintosh and MSDOS: Use COORDINATE WINDOW at the beginning of
program to set a program to pixel coordinates. Apple: See appendix for ways
of using POKE to set system to pixel coordinates.

LOOP PAIRS

All ZBasic FOR-NEXT, WHILE-WEND and DO-UNTIL loops must have matching pairs.
Some BASIC interpreters allow the program to have two NEXTs for on FOR, or two
WENDs for one WHILE. Since ZBasic is a compiler it will not allow this. A STRUCTURE
ERROR will be generated when you compile a program with unmatched LOOP pairs.

Another way to find unmatched pairs is to LIST a program. Since ZBasic automatically
indents loops, just read back from the end of the LISTing, looking for the extra indent, to
find the unmatched statement.

COMPLEX STRINGS

Complex strings may have to be converted to simple strings (some machines).

Improper B$=LEFT$(Right$(A$,12), 13)
Proper B$=RIGHT$(A$,12): B$=LEFT$(B$,13)

IF-THEN statements may have only one level of complex string.

Improper IF B$=LEFT$(A$,5) THEN GOSUB “END”
Proper C$=LEFT$(A$,5): IF B$=C$ THEN GOSUB “END”

 1 6 5 Converting old Programs

CONVERTING OLD PROGRAMS

LONG LINES

Multiple statement lines with over 253-256 characters (depending on computer) will
automatically be shortened by ZBasic when loading. That part of the line longer than
253 will be added to a new line number. Most programs do not have lines of that length.

TIMING LOOPS

Timing loops may have to be lengthened to make up for ZBasic’s faster
execution time. For some BASIC Languages a FOR-NEXT loop of 1000 would
take second or two. (About 1/1000 of a second in ZBasic!) Replace these
types of delay loops with the ZBasic DELAY statement.

STRING MEMORY ALLOCATION

Important Note: ZBasic assumes a 255 character length for every string and string
array element and allocates 256 bytes for each (255+1 for length byte) unless string
length is defined with DIM or DEF LEN.

Many versions of BASIC, like BASICAtm, MSBASICtm, APPLESOFTtm and others,
allocate string memory as a program needs.

While this may seem efficient on the surface, immense amounts of time are wasted in
“String Garbage Collection”. Garbage Collection is what happens when your program
suddenly stops and hangs up for two or three minutes while BASIC rearranges strings in
memory. This makes this method unusable for most serious programming.

HOW DIMMING STRING ARRAYS AFFECT PROGRAM CONVERSION

MSBASICTM: CLEAR 10000 Sets aside 10,000 bytes for ALL strings
DIM A$(1000) Uses memory allocated with CLEAR plus

3-8 byte pointers per element.
ZBASICTM: DIM A$(1000) 256,256 bytes allocated (100x256)
ZBASICTM: DIM 10 A$(1000) 10,010 bytes allocated (1001x10)

Many BASICs use CLEAR to set aside memory for strings. Each string in ZBasic is
allocated memory at compile time.

A problem you may encounter while converting: Out of Memory Error from DIMension
statements, like the ones above (just define the length of the string elements).

ZBasic allows you to define the length of any string with DEFLEN or DIM statements.
Check the string requirements of the program you wish to convert and set the lengths
accordingly.

If you have large string arrays that must have elements with wide ranging lengths
(constantly changing from zero to 255 characters), use ZBasic’s special INDEX$ string
array. Like other BASIC’s CLEAR is used to set aside memory for this array (no “Garbage
collecting” here either).

See INDEX$, DEFLEN, DIM and “String Variables” for more information.

Converting old Programs 1 6 6

CONVERTING OLD PROGRAMS

OTHER INFORMATION

Check your appendix for more information about converting programs.

A good resource for information about converting from one version of BASIC to
another is David Lien’s “The BASIC Handbook”.

CONVERTING OLD COMMANDS

Some BASIC(s) have commands that may be converted over quickly using a word
processing program. Simply load the BASIC ASCII file into the word processor and use the
FIND and REPLACE commands. (You may also use ZBasic FIND command if you choose.)

A good example would be converting Applesofttm’s HOME commands into ZBasic’s CLS
command. Have the word processor FIND all occurrences of HOME and change them to
CLS.

If you don’t have a word processor try using this simple ZBasic convert program to change
commands in a BASIC file quickly (file MUST have been saved in ASCII using SAVE*).

SINGLE COMMAND CONVERSION PROGRAM

ON ERROR GOSUB “DISK ERROR”: REM Trap Disk Error
INPUT”Command to Change:”;Old$
INPUT$”Change to:”;New$
CLS: PRINT” Changing File....One Minute please”
OLDFILE$=”oldfile”:NEWFILE$=”newfile”: REM <-- Change to correct filenames
OPEN”I”,1, OLDFILE$
OPEN”O”,2, NEWFILE$
WHILE ERROR=0
 LINEINPUT#1, Line$
 DO
 Line$=LEFT$(Line$,I-1)+New$+RIGHT$(Line$,LEN(Line$)-I+1+LEN(Old$))
 I=INSTR(1, Line$, Old$)
 UNTIL I=0
 PRINT#2, Line$
WEND
“Done changing”
ERROR=0
CLOSE
PRINT “All ‘”;Old$;”’ have been converted to ‘”;New$;”’”
INPUT”Rename OLD file? Y/N: “;A$: A$=UCASE$(A$)
IF A$=”Y” THEN KILL OLDFILE$
RENAME “NEWFILE” TO OLDFILE$
END
“DISK ERROR”
PRINT ERRMSG$(ERROR)
CLOSE: STOP

Important: Practice on a dummy file until you are sure the program is working properly.

 1 6 7 Converting old Programs

KEYWORDS

STANDARD STATEMENTS, FUNCTIONS AND OPERATORS

ABS FIX MOD SIN
AND FN MODE SOUND
ASC FOR MOUSE SPACE$
ATN FRAC NEXT SPC
BIN$ GOSUB NOT SQR
BOX GOTO OCT$ STEP
CALL HEX$ ON STOP
CHR$ IF OPEN STR$
CIRCLE INDEX$ OR STRING$
CLEAR INDEXF OUT SWAP
CLOSE INKEY$ PAGE TAB
CLS INP PEEK TAN
COLOR INPUT PLOT THEN
COS INSTR POINT TIME$
CVB INT POKE TO
CVI KILL POS TROFF
DATA LEFT$ PRINT TRON
DATE$ LEN PSTR$ UCASE$
DEF LET RANDOM UNS$
DEFDBL LINE RATIO UNTIL
DEFINT LOC READ USING
DEFSNG LOCATE REC USR
DEFSTR LOF RECORD VAL
DELAY LOG REM VARPTR
DIM LONG RENAME WEND
DO LPRINT RESTORE WHILE
ELSE MACHLG RETURN WIDTH
END MAYBE RIGHT$ WORD
ERRMSG$ MEM RND WRITE
ERROR MID$ ROUTE XELSE
EXP MKB$ RUN XOR
FILL MKI$ SGN

IMPORTANT: See your computer appendix for other keywords that pertain to your
version of ZBasic. Most versions of ZBasic offer more and also use two-word keywords like
LONG FN, POKE WORD etc.

Keywords 1 6 8

KEYWORDS

STANDARD COMMANDS

APPEND HELP NEW
AUTO LIST, L or period ”.” QUIT
DELETE or DEL LLIST RENUM
DIR LOAD RUN
EDIT, E or comma “,” MEM SAVE
FIND or semicolon “;” MERGE

 1 6 9 Keywords

STANDARD REFERENCE

STANDARD REFERENCE GLOSSARY

This reference section is an alphabetical listing of the "Standard ZBasic Commands". The
following paragraphs describe the information layout and syntax of this section.

TYPE OF INFORMATION CONTAINED IN THIS REFERENCE SECTION

function Returns a value; used wherever an expression is used
statement Executed by itself
command Used from the standard line editor mode; EDIT, SAVE...
operator Like AND, OR, XOR or NOT

COMPATIBLE COMMANDS

BLACK BAR Indicates the command is the same on all versions of ZBasic.

SPECKLED BAR Indicates the command may not be available on all versions.
Check to see if your system does not support that command.

PAGE LAYOUT

The pages are layed out in the same way. Whenever possible descriptions are kept to one
page. The header has the command type and description. Paragraph layout is:

FORMAT Correct syntax for that statement, function or command
DEFINITION Definition or explanation of usage
EXAMPLE Program example or direct example of usage. Note that

linenumbers are usually omitted. Add linenumbers if needed.
REMARK Other information of importance and usually a reference to other

related sections that will aid the understanding of that item.

IMPORTANT NOTE ABOUT DIVIDE

ZBasic compiles divide symbols based on configuration.

If the default expression evaluator; "Optimize Expressions as Integer?" is YES;
/=integer divide \=floating point divide
If the expression evaluator; "Optimize Expressions as Integer?" is NO;
/=floating point divide \=integer divide
See "Configure" and "Converting Old Programs" and "Math expressions" for more
information about the options offered for expression types and how they are evaluated.

continued next page...

Standard Reference 170

STANDARD REFERENCE

CROSS REFERENCE

These commands work the same way on almost every version of ZBasic. There is an
extensive cross-reference to other commands and how a command works on specific
machines. The reference section uses a computer icon to bring attention to a specific
version of ZBasic. The following icons are used:

Apple // DOS 3.3 and ProDOS versions.

MSDOS and IBM PC and compatible versions.

The Macintosh versions (all except the 128k machine).

Z80 machines; Amstrad, CP/M-80 2.x and higher, Kaypro Graphics versions and TRS-80
model 1, 3 and 4 versions.

SYNTAX GLOSSARY

GLOSSARY DEFINITION
RUN or COMMAND What follows is program or command output.
[brackets] Items within the brackets are optional (may be omitted)
{ A|B|C } Any one of A, B or C may be used
... repeats Three periods following items indicates a repeating sequence
Courier text Something you type in, a program example, or program output
expression or expr Numeric: Any; including integer and floating point
byte expression Numeric: 0-255
word expression Numeric: 0 to 65,535 or +-32,767
long expression Numeric: 0 to 4,294,966,293 or +-2,147,483,647
variable or var Any Variable
var$, var%, var&, var!, var# String, integer, LongInteger, single or

double precision variable types, respectively
"string" Quoted strings (string constants)
simplestring or string String variable, string constant, BIN$, CHR$, HEX$, INDEX$,

OCT$, PSTR$, STR$, SPACE$, STRING$ or UNS$.
filenumber File number: An expression 1-99. See "Configure"
filename A legal filename for that operating system filename
filespec Drive or storage volume specifier
line A line number from 0 to 65,534 or a "label"
number Requires a number. No variable or expression allowed
var name A valid variable name

Be sure to take note when you see this hand. It is pointing out important information about
using that command. If there is the message "Important Note" with the hand it is even
more critical that you read the notes.

 171 Standard Reference

function ABS

FORMAT ABS (expression)

DEFINITION Returns the absolute value of an expression. The absolute value is the value without
regard to the sign (negative, zero or positive).

The result of ABS will always be a positive number or zero.

EXAMPLE A=-15: B=15
PRINT ABS(A), ABS(B), ABS(-555)
X=ABS(0)
PRINT X

RUN

15, 15, 555
0

REMARK The SGN function will return the sign of an expression.

Standard Reference 172

AND operator

FORMAT expression1 AND expression2

DEFINITION Used to determine if BOTH conditions are true. If both expression1 AND
expression2 are true (non-zero), the result is true. Returns -1 for true, 0 for false.

Also used to compare bits in binary number operations. 1 AND 1 return a 1, all other
combinations of 0's and 1's produce 0. See truth tables below.

EXAMPLE IF 30>20 AND 20<30 THEN PRINT "TRUE "
IF "Hi"="hello" AND 6-5=1 THEN PRINT "TRUE TOO!"

RUN

TRUE

PRINT BIN$(&X00001111 AND &X11111111)
PRINT 4 AND 255

RUN

0000000000001111
4

REMARK See OR, XOR and NOT.

AND TRUTH TABLE

condition AND condition TRUE(-1) if both conditions TRUE, else FALSE(0)

AND BOOLEAN "16 BIT" LOGIC
1 AND 1 = 1 00000001 00000111
0 AND 1 = 0 AND 00001111 AND 00001111
1 AND 0 = 0 = 00000001 = 00000111

LongInteger will function with this operator in 32 bits.

 173 Standard Reference

command APPEND

FORMAT APPEND line or label ["] filename["]
APPEND* line or label ["] filename["]

DEFINITION Used to append or insert a program segment or subroutine (saved with SAVE+) into
the present program in memory.

A non-line numbered ASCII program file is required to append a subroutine into the
present program in memory at the specified line number. Line numbers will be
assigned in increments of one.

APPEND* will strip REM(arks) and spaces to free up more memory for the program as
the program is inserted.

EXAMPLE 10 "TEST ROUTINE"
20 FOR I = 1 TO 10
30 PRINT I
40 NEXT I
50 RETURN

SAVE+ TEST.APP

APPEND 31 TEST.APP

LIST

00010 "TEST ROUTINE"
00020 FOR I = 1 TO 10
00030 PRINT I
00031 "TEST ROUTINE" <----Subroutine inserted here
00032 FOR I = 1 TO 10 <----(Example only, program will not run)
00033 PRINT I
00034 NEXT I
00035 RETURN
00040 NEXT I
00050 RETURN

REMARK The program to be appended must be in ASCII format and not contain line numbers.
Use the SAVE+ command to save programs without line numbers.

If any line number being used in APPEND already exists, it will overwrite the existing
line. Also see MERGE, LOAD, SAVE, SAVE*, SAVE+.

Standard Reference 174

ASC function

FORMAT ASC(string)

DEFINITION Returns the ASCII code value (a number between 0 and 255) of the first character in a
string. ASCII stands for American Standard Code for Information Interchange.

EXAMPLE PRINT ASC("A"), ASC("B")
PRINT CHR$(65), CHR$(66)
PRINT ASC("America")

RUN

65 66
A B
65

REMARK ASC returns 0 if the length of string is zero or the ASCII code of the string is zero. Use
this logic to determine the true status if an ASCII zero is the result:

LONG IF ASC(A$)=0 AND LEN(A$)>0
 PRINT "ASCII code of A$ =0"
XELSE
 PRINT"A$ is an empty string"
END IF

The inverse function of ASC is CHR$. To return the character represented by the
ASCII code, use CHR$(ASCII number)

ASCII codes may vary from machine to machine.

ASCII codes 32 through 127 are usually the same for all microcomputers. See CHR$
with example ASCII listing.

 175 Standard Reference

function ATN

FORMAT ATN(expression)

DEFINITION Returns the angle, in radians, for the inverse tangent of expression.

EXAMPLE Pi#=ATN(1) << 2
PRINT Pi#

RUN

3.141592... <---Based on digits of accuracy set in configuration.

REMARK ATN is a scientific function. Using ATN in an expression will force ZBasic to calculate
that part of an expression in Double Precision.

ZBasic allows you to configure the accuracy for scientific functions separately for both
Double and Single Precision. See "Configure".

Also see "Expressions" and "Derived math functions" in the "MATH" section of this
manual.

Standard Reference 176

AUTO command

FORMAT AUTO
AUTO starting line
AUTO starting line, increment
AUTO , increment

DEFINITION This command automatically generates line numbers in the Standard Line editor to
save time. The two optional parameters are:

starting line Starting line number (default is 10)
increment Line spacing (default is 10)

To end AUTO line numbering press either <BREAK> or <CTRL C> at the first line
number you will not use.

EXAMPLE AUTO

10 <--- Type in text then <ENTER> to go to next line.
20
30 <BREAK>

AUTO 100,20

100
*120 <---- Careful, this line already exists!!
130 <BREAK>

REMARK An asterisk appearing before a line number indicates an occupied line. Pressing
<ENTER> will skip that line leaving the original contents intact and resume auto line
numbering with the next line. To remove the line type a space and <ENTER>.

Also see LIST, EDIT

 177 Standard Reference

statement BEEP

FORMAT BEEP

DEFINITION Sounds the speaker.

EXAMPLE FOR X=1 TO 10
 BEEP
NEXT

RUN

BEEP, BEEP...

REMARK Also see SOUND.

,
BEEP is not supported with Apple // or Z80 computers. For Apple // and most CP/M
computers use PRINT CHR$(7) instead. See your SOUND and your computer
appendix for other ways of creating audio output.

Standard Reference 178

BASE OPTION configuration

FORMAT Array Base 0 or 1?

DEFINITION An option in the ZBasic configuration routine to set the array BASE to either zero or 1.
The default is zero.

EXAMPLE See "Configure" in the beginning of this manual for an explanation of configuring
your version of ZBasic to your preferences.

ARRAY BASE ZERO
DIM A(100) <-- elements 0-100 (101 elements)
DIM Tables(22) <-- elements 0-22 (23 elements)

ARRAY BASE ONE
DIM A(100) <-- elements 1-100 (100 elements)
DIM Tables (22) <-- elements 1-22 (22 elements)

REMARKS See DIM and "Array Variables".

 179 Standard Reference

function BIN$

FORMAT BIN$ (expression)

DEFINITION Returns a 16 character string which represents the binary (BASE 2) value of the
result of the integer expression. Some typical binary numbers:

0000000000000001 = 1
0000000000000011 = 3
0000000000000111 = 7
0000000011111111 = 255
0000000100000000 = 256
1111111111111111 = -1 (65,535 unsigned)

EXAMPLE The following program will convert a decimal number to binary or a binary number to
decimal:

"Binary Conversion"
CLS
DO
 INPUT"Decimal number to convert: ";Decimal%
 PRINT BIN$(Decimal%)
 INPUT"Binary number to convert: ";Binary$
 Binary$="&X"+Binary$
 PRINT VAL(Binary$)
UNTIL Decimal% = 0

RUN

Decimal number to convert: 255
0000000011111111

Binary number to convert: 0000000000000011
3

REMARK Note that conversions are possible from any base to any other base that ZBasic
supports. &X is the inverse function of BIN$.

Also see HEX$, OCT$, UNS$ and "Numeric Conversions".

Use DEFSTR LONG to set BIN$ and &X to work in LongInteger (32bits).

Standard Reference 180

BOX statement

FORMAT BOX [TO] expr x1, expr y1 [TO expr x2,expr y2 ...]

BOX FILL [TO] expr x1, expr y1 [TO expr x2,expr y2 ...]

DEFINITION Draws a BOX from the coordinates defined by the first corner (x1,y1) to the
coordinates defined by the opposite corner (x2,y2) in the current COLOR.

If BOX TO x,y is used the first corner will be the last graphic point used. If undefined
then 0,0 will be the default.

If the optional FILL appears directly after the command, the BOX will be painted as a
solid BOX in the current color.

The default screen positions are given using Device Independent Coordinates of
1024 across by 768 down.

EXAMPLE

REMARK The output will vary depending on the graphic capability of the host computer. Also
see CIRCLE, MODE, FILL, PLOT, RATIO and COLOR.

 181 Standard Reference

statement CALL

FORMAT CALL number
CALL LINE line or label

DEFINITION CALL will execute a machine language subroutine at the address specified by
number or the address of the compiled line.

EXAMPLE Use these examples only if you understand machine language.

REM TRS80 I & III, CALL DEBUG
CALL &H440D
:
REM CPM 80, CALL WARM START (Exits to DOS)
CALL 0
:
REM APPLE CALL TO SOUND BELL TONE
CALL -198
:
10 REM CALL LINE examples
20 CALL LINE 40
30 CALL LINE "LABEL"
40 MACHLG 34, 21, x%, 255, 9: RETURN
50 "LABEL": MACHLG . . . : RETURN

REMARK CALL is useful for transferring program control to a machine language subroutine
from which a return to the ZBasic program is desired. The routine to be called must be
terminated by that machine's instruction for RETURN.

Also see MACHLG, USR, LINE and DEFUSR.

WARNING: Use of this command requires an understanding of machine language
programming and the computer hardware being used. Porting of this code may not
be possible without re-writing the machine language routines.

See CALL in your appendix for enhancements.

Standard Reference 182

CASE statement

FORMAT SELECT [CASE] [expression]
CASE [IS] relational condition [, relational condition] [,...]

statement [:statement:...]]
CASE [IS] condition [, condition] [,...]

statement [:statement:...]]
CASE boolean expression

statement [:statement:...]]
CASE ELSE

statement [:statement:...]]
END SELECT

DEFINITION When SELECT/CASE is encountered, the program checks the value of the
controlling expression or variable, finds the CASE that compares true and executes
the statements directly following the CASE statement. After these statements are
performed, the program continues at the line after the END SELECT statement:

CASE relational,... If the expression after SELECT compares true to any one of
a number of relational conditions, the statements following
the CASE are executed and the program continues after the
END SELECT:

SELECT 12
 CASE >10
 PRINT "This is the right answer"
 CASE >20, <10
 PRINT "This is not true"
END SELECT
program continues here...

CASE condition,... If the expression following SELECT equals any one of a
number of conditions the statements following the CASE are
executed (program continues after the END SELECT).

A=23
SELECT A
 CASE 10
 PRINT "This is the wrong answer"
 CASE 10,23,11,10
 PRINT "This would be true"
END SELECT

CASE boolean If and expression after SELECT is omitted, you may use a
boolean or TRUE/FALSE condition. The statements after
the first TRUE (non-zero) CASE condition will be executed.
Only one boolean statement is allowed following CASE.

A=10:B=20
SELECT
 CASE (A=10 AND A>20)
 PRINT "This is the correct answer"
 CASE (A>B OR A=B)
 PRINT "This is the wrong answer"
END SELECT

 183 Standard Reference

statement CASE

CASE ELSE If all of the CASE statements in the SELECT CASE structure
are false the statements following the CASE ELSE are
executed.

"Start"
A$="Maybe"
SELECT A$
 CASE "Yes"
 PRINT "Thank you for saying Yes"
 CASE "No"
 PRINT "Thank you for saying No"
 CASE ELSE
 PRINT "You smart aleck!"<--Does this one
END SELECT

REMARK This is a powerful structured way of doing complicated IF-THEN-ELSE or LONG IF
statements especially when there are multiple lines of complicated comparisons.

This structure is also much easier to read than complicated IF statements.

See SELECT for more information.

Important Note: Never exit a SELECT CASE structure using GOTO. This will
introduce problems into the stack and cause unpredictable system errors. Always
exit the structure at the END SELECT. Be sure to enclose loops and other constructs
completely within the SELECT-CASE and CASE ELSE constructs.

The Z80 versions do not support SELECT CASE. See LONG IF and IF for ways of
doing the same thing.

The Apple DOS 3.3 and ProDOS versions does not support SELECT CASE. See
LONG IF and IF for ways of doing the same thing.

Standard Reference 184

CHR$ function

FORMAT CHR$ (expression)

DEFINITION Returns a single character string with the ASCII value of the result of expression. The
range for the value of expression is 0 to 255.

The inverse function of CHR$ is ASC;

EXAMPLE "Print ASCII character set for this computer"
CLS
REM Use ROUTE 128 here to send output to printer.
FOR I=32 TO 127 STEP 8
 FOR J= 0 TO 7: X =I+J
 PRINT USING "###=";X;CHR$(X);" ";
 NEXT J :PRINT
NEXT I

RUN

32= 33=! 34=" 35=# 36=$ 37=% 38=& 39='
40=(41=) 42=* 43=+ 44=, 45=- 46=. 47=/
48=0 49=1 50=2 51=3 52=4 53=5 54=6 55=7
56=8 57=9 58=: 59=; 60=< 61== 62=> 63=?
64=@ 65=A 66=B 67=C 68=D 69=E 70=F 71=G
72=H 73=I 74=J 75=K 76=L 77=M 78=N 79=O
80=P 81=Q 82=R 83=S 84=T 85=U 86=V 87=W
88=X 89=Y 90=Z 91=[92=\ 93=] 94=^ 95=_
96=` 97=a 98=b 99=c 100=d 101=e 102=f 103=g
104=h 105=i 106=j 107=k 108=l 109=m 110=n 111=o
112=p 113=q 114=r 115=s 116=t 117=u 118=v 119=w
120=x 121=y 122=z 123={ 124=| 125=} 126=~ 127=#

PRINT CHR$(64)
PRINT ASC("A")

RUN

A
64

REMARK When the program above is run, the character set for that computer will be displayed.
Some of the characters above may differ from what you get on your system. Try
changing the range above from 127 to 255. Some computers have extra characters
or graphic symbols for these codes.

Characters in the range of 0-31 are usually reserved for control codes like linefeed
(10), carriage return (13)...

If the PRINT statement is changed to LPRINT the printer's character set will be
printed. If expression is less than 0 or greater than 255, only the low order byte will
be used.

CHR$(256) = CHR$(0)
CHR$(257) = CHR$(1)

 185 Standard Reference

statement CIRCLE

FORMAT CIRCLE [FILL] expr1, expr2, exprR
CIRCLE expr1, expr2, exprR TO exprs, exprB
CIRCLE expr1, expr2, exprR PLOT exprs, exprB

DEFINITION Draws a CIRCLE in the current COLOR.

If the optional FILL is used directly after the command, the CIRCLE will be filled with
the current COLOR. If TO is used, a PIE segment will be displayed (shaped like pie
slices). If PLOT is used, only the ARC segment will be displayed (a segment of the
circumference).

expr1 horizontal center
expr2 vertical center
exprR radius (diameter of circle) in graphic coordinates
exprs start of angle in brads (zero starts at 3:00 o'clock)
exprB Number of brads to draw ARC or PIE (counter clockwise).

EXAMPLE SEE ILLUSTRATIONS OF FOLLOWING PAGE.

REMARK CIRCLE uses the ZBasic Device Independent Graphic Coordinates of 1024 x 768.
For more details see the CIRCLE in the "Graphics" section in this manual. Also see
RATIO,MODE,PLOT,COLOR,FILL and BOX.

 ,
Macintosh: See COORDINATE WINDOW for pixel coordinates and toolbox for ways
of using QuickDraw for creating boxes. MSDOS: See COORDINATE WINDOW for
converting to pixel coordinates. Apple: See appendix for ways of converting to pixel
graphics.

Standard Reference 186

CIRCLE statement

EXAMPLE CIRCLE expr1, expr2, exprR
CIRCLE FILL expr1, expr2, exprR

 187 Standard Reference

statement CLEAR

FORMAT CLEAR
CLEAR number
CLEAR END
CLEAR INDEX$

DEFINITION Used to reserve memory or clear all or specified variables (sets the values of the
variables to null or zero).

CLEAR Sets all variables and INDEX$ to zero or null.

CLEAR number Sets aside number bytes for the INDEX$ array.
CLEAR END CLEARS all variables which have not yet been assigned in the

program. This form of CLEAR is normally used to clear all
variables not being used when chaining. See "Chain" in the
front section for more information.

CLEAR INDEX$ Sets all elements of the INDEX$ array to null.

EXAMPLE INPUT"Name: ";Name$
PRINT Name$
CLEAR
PRINT Name$

RUN

Fred
<-----Nothing printed here since Name$ was cleared at line 3.

REMARK Only one CLEAR number is allowed in a program and must appear before any
variables are encountered. Be sure to CLEAR one extra byte for each element in the
INDEX$ array. Also see "Special INDEX$ Array" and "CHAIN".

A CLEAR is performed at the beginning of each program created with RUN or RUN*.
RUN+ or warm start programs will not CLEAR variables at startup.

See INDEX$ in Mac appendix for added enhancements available on this version.

Standard Reference 188

CLOSE statement

FORMAT CLOSE [[#] expression1[, [#] expression2...]]

DEFINITION This statement is used to CLOSE one or more OPEN files or other devices.

The parameter expression indicates a device number or file number.

If no file or device numbers are declared all OPEN devices will be closed.

EXAMPLE OPEN"I",1,"FILE1",10
OPEN"I",2,"FILE2",100
READ#1, A$;10
READ#2, B$;10
CLOSE#1,2 <---File1 and 2 are closed
OPEN"R",1,"FILE3" <---File1 may now be used again
CLOSE <---All files are closed

REMARK All files should be closed before leaving a program to insure that data will not be lost or
destroyed. If a program exit is through END or STOP, all files will be closed.

 189 Standard Reference

statement CLS

FORMAT CLS
CLS expression
CLS LINE
CLS PAGE

DEFINITION These statements will clear all, or portions, of the screen of text and graphics.

CLS Clears the entire screen of text and graphics.
Cursor ends up at the top left corner of screen.

CLS expression In TEXT mode this fills screen with the ASCII character
specified by expression and places the cursor at the top
left corner of the screen*.

CLS expression In GRAPHICS mode this will fill the screen with the color
specified by expression.

CLS LINE Clears from the cursor position to the end of
the line. Cursor will remain where it was.

CLS PAGE Clears from the cursor position to the end of
the screen. Cursor will remain where it was.

EXAMPLE CLS
CLS 65 <----Fills screen with A's
CLS ASC("*") <----Fills screen with *'s
LOCATE 0,10
CLS LINE <----Clears line 10 of text and graphics
LOCATE 0,12
CLS PAGE <----Clears screen from line 12 down.

REMARK See LOCATE,PRINT@,PRINT%,FILL and MODE. See your computer appendix for
possible variations.

CLS clears the current window (not the entire screen). CLS expression will clear the
screen with white if expression=0 and black if expression><0.

Standard Reference 190

COLOR statement

FORMAT COLOR [=] expression

DEFINITION Sets the COLOR to be used by all graphic drawing commands. Color values will vary
from one computer to the next. See your computer appendix for specifics. For most
computers 0 is the background color and -1 is the foreground color.

If you have a black and white monitor, 0 is Black, -1 is white.

If your computer is incapable of graphics or your are using one of the character modes,
the expression will determine the ASCII character to be used. (With some graphics
modes, zero=space, all others=asterisk "*").

EXAMPLE CLS: MODE 6 <----even modes are character graphics with some versions
COLOR ASC("*") <----Uses asterisks for graphics (not all versions)
PLOT 0, 256
MODE=7 <----odd modes are actual graphics
CIRCLE 768,200,50
COLOR=6 <----Sets COLOR to 6
BOX 0,0 TO 10,10
END

REMARK Also see MODE,PLOT,CIRCLE,BOX,POINT and FILL. Colors vary by mode,
graphic type, monitors and other hardware criteria. Check hardware manual and the
ZBasic appendix for your computer for specific color codes.

Macintosh: NOT(0) =black, 0=white. See appendix for variations especially with
Macintosh II which supports a number of colors and grey levels.

MSDOS : COLOR is also used to change text color, background color, blinking,
underline etc. See appendix for specifics. See CGA colors below.

Apple: Color chart below and the Apple appendix.

TRS-80 and Kaypro: Black=0, -1=white.

EXAMPLE COLORS CODES

IBM PC and compatibles Apple // ProDOS and DOS 3.3
CGA MODE 5 MODE 5 MODES 1,3 and 7
0= BLACK 8=GRAY 0=BLACK1 0=BLACK 8=BROWN
1=BLUE 9=LT BLUE 1=GREEN 1=MAGENTA 9=ORANGE
2=GREEN 10=LT GREEN 2=VIOLET 2=DARK BLUE 10=GREY
3=CYAN 11=LT CYAN 3=WHITE1 3=PURPLE 11=PINK
4=RED 12=LT RED 4=BLACK2 4=DARK GREEN 12=GREEN
5=MAGENTA 13=LT MAGENTA5=ORANGE 5=GREY 13=YELLOW
6=BROWN 14=YELLOW 6=BLUE 6=MED. BLUE 14=AQUA
7=WHITE 15=Bright WHITE 7=WHITE2 7=LIGHT BLUE 15=WHITE

 191 Standard Reference

statement COMMON

FORMAT COMMON variable list...

DEFINITION Identical to the ZBasic DIM statement. It is used to allocate memory for variables and
for declaring variables common to chained programs.

The order of the variables declared in COMMON is important when chaining
programs. The COMMON statement in one program must be exactly the same and in
exactly the same order in other programs being chained.

EXAMPLE See DIM.

REMARK See DIM and "Chaining" in this manual.

This statement is added to make ZBasic compatible with other versions of BASIC.

Not available on the Apple // or Z80 version of ZBasic. Use DIM.

Standard Reference 192

COMPILE command

FORMAT [L] COMPILE

DEFINITION Compiles a program and lists all of the compile time errors that are encountered.

If optional "L" is used, the error listings are sent to the printer.

This command is essentially the same as RUN except the compiler does not stop
at the first error.

EXAMPLE PWINT "Hello"
X=X+1
INPUT "Yes or No:"A$
GOSUB "Routine"
END

COMPILE

Syntax Error in Stmt 01 at Line 00001
00001 PWINT "Hello"

";" Expected Error in Stmt 01 at line 00003
00003 INPUT "Yes or No:"_A$

Line# Error in Stmt 01 at Line 00004
00004 GOSUB "Routine"

REMARK See RUN and the section in the front of the manual called "Errors".

Not supported. Use RUN.

Not supported. Use RUN.

 193 Standard Reference

command CONFIG

FORMAT CONFIG

DEFINITION Invokes the configuration prompts that allow you to set preferences for a number of items including:

Digits of precision
Default variable types
Integer or floating point expression evaluation
Spaces between keywords
Convert to uppercase
Number of files that can be opened
The Rounding factor for PRINT USING
Test Array bounds

and a number of special options for your computer.

EXAMPLE See "Configure" in the front of this manual and the section in your appendix for
specific configuration options available for your version of ZBasic.

REMARK This command is not available on all versions. See below.

The Z80 versions of ZBasic do not offer this command. The option to configure is
offered only when you first load ZBasic.

CONFIG is not offered as a command but "Configure" is always available as a menu
item. See appendix for the options specific to this version.

Standard Reference 194

COORDINATE statement

FORMAT COORDINATE [[WINDOW] horizontal , vertical]

DEFINITION Allows you to change the coordinate system used for graphic functions and
statements.

ZBasic defaults to a coordinate system of 1024 x 768. This allows programs created
on one computer work on other computers with different graphic hardware.

COORDINATE horiz,vert Set the relative coordinate system to the specified
limits minus one. COORDINATE 100,100 would allow
setting the coordinates from 0 to 99 for both the
horizontal and vertical.

COORDINATE WINDOW Sets the system to pixel coordinates. This allows you
calculate the graphic positions by the actual
resolution of the screen. While this is not
recommended for programs that will be ported to
other computers, some people prefer it for certain
applications.

EXAMPLE PLOT 1023, 767 <--- Puts a graphic dot at the ZBasic
: default coordinates (lower right corner)
COORDINATE WINDOW
PLOT 100,100 <--- Puts a graphic dot at the pixel coordinate
:
COORDINATE 1000,500
PLOT 100,100 <--- Puts a graphic dot at the relative coordinate

REMARK Some versions do not support this statement. See below for alternatives to changing
coordinate systems.

Not supported on Z80 versions although COORDINATE WINDOW may be emulated
by using this instruction: POKE&xx3F,&C9 to enable pixel graphics and
POKE&xx3F,&C3 to return to the default coordinates of 1024x768. The value of xx
varies by version type: CP/M-80=01, TRS-80 1,3=52 and TRS-80 model 4=30.

Not supported on these versions although COORDINATE WINDOW may be
emulated using the statements below:

Apple ProDOS: POKEWORD &85,0 for pixel coordinates for that mode of graphics.
Use MODE to set back to regular coordinates.

Apple DOS 3.3: POKE &F388,&60 for pixel coordinates of that mode. POKE
&F88,&A9 to set back to the default coordinates of 1024x768.

 195 Standard Reference

function COS

FORMAT COS (expression)

DEFINITION Returns the Cosine of the expression in radians.

EXAMPLE Using COS in an expression will force ZBasic to calculate that expression in floating
point. COS is a scientific function. You may configure BCD scientific accuracy
separately for both Double and Single Precision immediately after loading ZBasic.

Integer Cosine may be accomplished with the predefined ZBasic USR function;
USR9(angle in Brads). This returns the integer cosine of an angle in the range +-255
(corresponding to +-1). The angle must be in Brads. This example program will draw a
sine wave using USR9:

MODE7 :CLS
FOR I=0 TO 255
 PLOT I<<2,-USR9(I)+384
NEXT I

For more information about scientific functions and derived math functions see the
"Math" section of this manual. See CIRCLE for more about BRADS. Also see ATN,
SIN,TAN,EXP,SQR.

Standard Reference 196

CSRLIN function

FORMAT CSRLIN

DEFINITION Returns the line where the cursor is positioned.

EXAMPLE CLS
PRINT
PRINT
PRINT CSRLIN

RUN

2

REMARK See POS to determine the horizontal cursor position.

,
Not supported with the Apple // or Z80 versions of ZBasic. For Apple // use
PEEK(37) to get the current cursor line.

 197 Standard Reference

function CVB

FORMAT CVB (string)

DEFINITION Returns the binary floating point value of the first n characters of the condensed
number in string (depending on whether Single or Double Precision is used).

Double Precision Returns the digits of accuracy defined in configure for
double precision. (default is 8 digits i.e. the first 8 string
characters.)*

Single Precision Returns the digits of accuracy defined in configure for single
precision. (default is 4 digits i.e. the first 4 string characters.)

This function is the compliment of MKB$.

EXAMPLE A#=12345.678: B!=12345.678
:
A$=MKB$(A#): B$=MKB$(B!)
PRINT LEN(A$), LEN(B$)
:
C#=CVB(A$): D!=CVB(B$)
PRINT C#, D!

RUN

8 8
12345.678 12345.7

REMARK This function is used with some versions of BASIC to save space on disk when
storing large amounts of numeric data in strings with FIELD. ZBasic does this
automatically but CVB is still useful for string packing, etc. Also see MKI$,CVI,MKB$,
READ# AND WRITE#. This command is not compatible with CVS or CVD.

A few things to remember concerning CVB:

Null strings or 1 character strings return 0
Two character strings will return 2 digits of accuracy. Four character strings will return
four digits. See "Floating Point Variables" for more information.

*See "Floating Point Variables" for detailed information on how extended double
precision variables are stored and the added range of this precision for the Mac.

Standard Reference 198

CVI function

FORMAT CVI (string)

DEFINITION Returns the binary integer value of the first 2 characters of string.

This function is the compliment of MKI$.

EXAMPLE A$=MKI$(30000)
PRINT LEN(A$)
:
Z%=CVI(A$)
PRINT Z%
END

RUN

2
30000

REMARK Also see MKI$,CVB,MKB$,READ# AND WRITE#.

A few things to remember concerning CVI:
Null string returns 0
One character strings will return the ASCII value.
Two character strings will return an integer value.
ASC(second character)*256 + ASC(first character)

This function was used with MBASIC to save space on disk when storing large
amounts of numeric data. ZBasic does this automatically when using WRITE# and
READ# but CVI is still useful for string packing, etc.

See DEFSTR LONG in the Mac appendix for using this function with LongIntegers.
When LongIntegers are used the memory requirements are four bytes instead of two
bytes. MSB and LSB are stored in reverse order for regular integers with this version.

 199 Standard Reference

statement DATA

FORMAT DATA data item [,data item[,...]]

DEFINITION The DATA statement is used to hold information that may be read into variables using
the READ statement. DATA items are a list of string or numeric constants separated
by commas and may appear anywhere in a program.

No other statements may follow the DATA statement on the same line.

Items are read in the order they appear in a program. RESTORE will set the pointer
back to the beginning of the first DATA statement. RESTORE n will set the pointer to
the nth DATA item.

EXAMPLE DATA Tom, Dick, Harry, 12.32, 233
READ A$, B$, C$, A#, B%
:
DEF TAB 6
PRINT "DATA items are: ";A$,B$,C$,A#,C%

RUN

 DATA items are: Tom Dick Harry 12.32 233

DATA Tom, Dick, Harry, 12.32, 233
:
RESTORE 3
READ Name$
:
PRINT "Third DATA item is: ";Name$

RUN

Third DATA item is: Harry

REMARK Alphanumeric string information in a DATA statement need not be enclosed in
quotes if the first character is not a number, math sign or decimal point.

Leading spaces will be ignored (unless in quotes). DATA statements can be
included anywhere within a program and will be read in order.

Typical storage requirements for DATA items:

Number with zero value 2 bytes
Non-zero integer 3 bytes
Strings Length of string + 2
Floating Point BCD "See Floating Point Constants"
Floating Point Binary "See Floating Point Constants"

See READ, PSTR$ DIM and RESTORE for common statements used with DATA.

Note: See PSTR$ for extremely efficient way of retrieving strings in DATA
statements.

Standard Reference 200

DATE$ function

FORMAT DATE$

DEFINITION Returns an eight character string containing the system date using the format
MM/DD/YY,where MM=month, DD=day and YY=year.

EXAMPLE DATA January, February, March, April, May, June
DATA July, August, September, October, November, December
:
A$=DATE$
:
Day$=MID$(A$,4,2)
REM If leading zero; peel off on next line
If ASC(DAY$)=ASC("0") THEN DAY$=RIGHT$(DAY$,1)
:
Month%=VAL(A$)
RESTORE Month%
READ Month% <---Get month name from DATA
:
Year$="19"+RIGHT(A$,2)
:
PRINT "Computer date: ";TAB(20);DATE$
PRINT "Human date: ";TAB(20);Month$;" ";Day$;", ";Year$

RUN

Computer date:08/03/88
Human date: August 3, 1988

REMARK If the system does not support a date function, 00/00/00 will be returned. See your
computer appendix for more information.

Also see TIME$ and DELAY

, , ,
Macintosh: Date can only be changed from the "Control Panel DA"

MSDOS: Date may be set in program: DATE$="MM/DD/YY"

Apple: Date must be set from the system.

CP/M-80 3.0 and Plus: DATE$ supported. CP/M 2.x does not support date.

 201 Standard Reference

statement DEF

FORMAT DEFINT letter [- letter] [, letter [- letter],...]
DEFSNG letter [- letter] [, letter [- letter],...]
DEFDBL letter [- letter] [, letter [- letter],...]
DEFSTR letter [- letter] [, letter [- letter],...]
*DEFDBL INT letter [- letter] [, letter [- letter],...]

DEFINITION These statements define which variable type ZBasic will assume when encountering
a variable name with letter as a first character and not followed by a type declaration
symbol (% integer, ! single, # double, $ string, & double integer).

DEFINT Integer
DEFSNG Single Precision
DEFDBL Double Precision
DEFSTR String
*DEFDBL INT LongInteger (Macintosh only)

ZBasic will assume that all variables are integers unless followed by a type declaration
symbol or defined by a DEF type statement.

See "Configure" for another way of defining the default variable type.

letter Letter from A to Z. Case is not significant.
letter - letter Defines an inclusive range of letters.

EXAMPLE DEFSNG A <--- A and A! are the same variable (A$ is still a string).
DEFDBL B <--- B and B# are the same variable (B% is still an integer).
DEFINT F <--- F and F% are the same variable (F! is still single prec.).
DEFSTR B-D, X,Y,Z <--- B,C,D,X,Y and Z all strings
DEFDBL A, F-J, T <--- A,F,G,H,I,J and T all Double precision
DEFSGL A, G, B-E <--- A,G,B,C,D and E all Single Precision

REMARK Other versions of BASIC may assume all numeric variables are single precision unless
otherwise defined. See the sections on "Floating Point Variables", "Math" and
"Converting Old Programs" in the front of this manual for more information.

*Also see DEFSTR LONG in appendix for way of forcing HEX$, OCT$, UNS$, CVI and
MKI$ to default to LongInteger instead of regular integer.

Standard Reference 202

DEF FN statement

FORMAT DEF FN name [(variable[, variable[,...]])] = expression

DEFINITION This statement allows the user to define a function that can thereafter be called by FN
name. This is a handy way of adding functions not provided in the language.

The expression may be a numeric or string expression and must match the type the
FN name would assume if it was a variable name.

The name must adhere to variable name syntax.

The variable used in the definition of the function is a dummy variable. When using
FN the dummy variables, other variables or expressions may be used to pass the
values to the function. The variable should be of the right type used in the function.

EXAMPLE DEF FN e# = EXP(1.)
DEF FN Pi#= ATN(1)<<2
DEF FN Sec#(x#) = 1.\COS(x#)
DEF FN ArcSin#(x#) = ATN (x# \ SQR(1 - x# * x#))
:
PRINT FN Pi#
I#=4.2312
Planet#= FN ArcSin#(Sin(I#))* FN e#+ FN Sec# (Elipse#)

RUN

3.14159...
__

REM A Handy rounding function
REM Send the routine the number and places to round
:
DEF FN Round#(num#, places)=INT(num#*10^places+.5)/10^places
:
PRINT FN Round#(823192.12345675676,5)
X#=202031.12332
PRINT FN Round#(X#,2)
END

RUN

823192.12457
202031.12

REMARK One function may call another function as long as the function was defined first.

LONG FN is another form of DEF FN that allows multiple lines of code. It is very
powerful for creating reusable subroutines.

See "Derived Math functions", "Functions and Subroutines", LONG FN, END FN
and FN.

 203 Standard Reference

statement DEF LEN

FORMAT DEF LEN[=] number

DEFINITION The DEF LEN statement is used to reset the default length of string variables until
the next DEF LEN statement is encountered. The number must be from 1 to 255.

If DEF LEN is not used string length default is 255 characters each. Each string will
consume 256 bytes; 1 byte for length byte, the rest for characters.

Since strings will consume so much memory if their length is not defined; it is
imperative that thought be given to string length, especially if memory is at a premium.

EXAMPLE C$="Welcome" <---Length of C$ defaults to 255 characters.
:
DEF LEN 20
DIM A$(10) <---A$() allocated 20 characters per element.
Greeting$="Hello" <---Greeting$ allocated 20 characters
:
DEF LEN 200
B$="Goodbye" <---B$ allocated 200 characters
:
DIM 50 Z$ <---Z$ allocated 50 characters. See DIM

REMARK DEF LEN will allocate the specified amount of memory to every string that is defined
after it (unless defined differently in DIM or another DEF LEN).

Strings that appear before the DEF LEN statement are not affected. For example, in
the above program, C$ is allocated the default length of 255 characters because it
appeared BEFORE the DEF LEN statement.

DIM may also be used to set the length of string variables. See DIM.

Also see "String Variables" and "Converting Old Programs" in the front section for
important information about strings and how they use memory.

Important Note: Always allocate one extra character for strings used with INPUT.
Never use a one character string for INPUT. The extra character position is needed
for the carriage return.

Standard Reference 204

DEF MOUSE statement

FORMAT DEF MOUSE [=] expression

DEFINITION The DEF MOUSE statement is used to define the device to be used with the MOUSE
functions and statements, or the type of mouse commands to use with the program.

DEF MOUSE=0 Regular ZBasic MOUSE commands for a mouse device. See
MOUSE in this reference section.

MSDOS: Uses MicrosoftTM compatible mouse devices. Be
sure to "Configure" ZBasic for a mouse.

Apple //: Assumes a mouse is connected.

Macintosh: Standard MOUSE commands in this section of the
reference manual. See DEF MOUSE=1 to do
MSBASIC type mouse commands.

Z80: NOT SUPPORTED.

DEF MOUSE=n Tells ZBasic that other devices are to be used instead of a
MOUSE (in the case of the Macintosh it tells ZBasic to use
MSBASIC mouse syntax).

MSDOS: n=1 defines joystick/paddle A*
n=2 defines joystick/paddle B*
n=3 defines a lightpen device

Apple //: n=1 defines a joystick/paddle device*

*Mouse(3) function returns button status:
0=No button pressed
1=Button zero pressed
2=Button one pressed
3=Both buttons pressed

Macintosh: n= non-zero sets commands to MSBASIC mouse
commands. See Macintosh appendix for specifics.

Z80: NOT SUPPORTED.

EXAMPLE See the appendix for your computer for specifics.

REMARK See MOUSE in this reference section and in your appendix for specifics.

MOUSE or DEF MOUSE is not supported with any Z80 versions of ZBasic. This is
due to the fact that most Z80 computers do not offer this hardware device.

 205 Standard Reference

statement DEF TAB

FORMAT DEF TAB [=] expression

DEFINITION The DEF TAB statement is used to define the number of characters between tab
stops for use in PRINT,PRINT# or LPRINT statements

Tab stops are the number of spaces to move over when the comma is encountered in
a PRINT statement.

The expression must be a number from 1 to 255. TAB default is 16.

EXAMPLE PRINT 1,2,3 <---Tab stop default is 16, 32, 48...
DEF TAB = 8 <---Tab stops now set to 8, 16, 24...
PRINT 1,2,3: PRINT
:
FOR X=1 TO 5
 DEF TAB=X
 PRINT 1,2,3
NEXT X

RUN

1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

REMARK Also see TAB,WIDTH,WIDTH LPRINT and PAGE.

Standard Reference 206

DEF USR statement

FORMAT DEF USR digit = expression

DEFINITION The DEF USR statement is used to define the addresses of up to 10 machine
language user subroutines; USR0 to USR9.

EXAMPLE Examples only. Do Not Use!

REM Calls graphic routine at memory address 5000
DEFUSR1=5000
X=USR0(45)
:
DEFUSR2=23445
PRINT USR2(x)

REMARK A machine language return is needed at the end of the routine to return program
control to ZBasic.

See USR,MACHLG,CALL,LINE,VARPTR,BIN$,HEX$,OCT$,UNS$,PEEK,
PEEKWORD,POKE,POKEWORD and the chapter "Machine Language".

Some other default USR functions are included in the appendix for your computer.

Warning: Use of this command requires a knowledge of machine language and a
computer's hardware. Porting of programs with this statement may not be possible
without re-writing the routines.

 207 Standard Reference

statement DELAY

FORMAT DELAY expression

DEFINITION The DELAY statement will cause a program to pause a specified amount of time.

The expression sets the delay in milliseconds; thousandths of a second.

EXAMPLE CLS
FOR I = 1 TO 5
 PRINT "DELAYING ";I;"SECONDS"
 DELAY I * 1000
NEXT I
END

RUN

DELAYING 1 SECONDS
DELAYING 2 SECONDS (after 1 second)
DELAYING 3 SECONDS (after 2 second)
DELAYING 4 SECONDS (after 3 second)
DELAYING 5 SECONDS (after 4 second)
__

FOR X=1000 TO 0 STEP -50
 PRINT X
 DELAY X
NEXT

(try it)

REMARK The <BREAK> key is not scanned during DELAY. Any negative expression will
cause delays in excess of 32 seconds (the unsigned value). Note that DELAY -1 will
delay over 65 seconds (unsigned -1 = 65,535).

There may be a slight time variation from machine to machine due to processor
speed, interrupts, hardware differences, etc.

Also see DATE$ and TIME$.

Also see TIMER.

Standard Reference 208

DELETE command

FORMAT DEL [ETE] line
DEL [ETE] -line
DEL [ETE] line - line
DEL [ETE] line-

DEFINITION This command will remove a line or range of lines from a program in memory.

DELETE is used from the Standard Line Editor.

EXAMPLE 10 CLS
20 FOR I = 1 TO 10
30 PRINT "NUMBER "; I
40 NEXT I
50 END

DEL 10-20

LIST

30 PRINT "NUMBER "; I
40 NEXT I
50 END
__

10 "FRED" PRINT "NUMBER ";I
20 PRINT "Fred was here"
30 END

DELETE "FRED"

LIST

20 PRINT "Fred was here"
30 END

REMARK Use this command with care as recovery of deleted lines is not possible.

 209 Standard Reference

statement DIM

FORMAT DIM [len] var [type] [(number [,number ..])][,...]

DEFINITION The DIM statement is used to allocate memory for variables and array variables and to
define common variables for chained programs.

len Defines the length a of a string (how many characters it may hold). This is
optional and defines the length of all the following string variables in that
DIM statement or until a new length is encountered in that statement. The
default is 255 characters unless changed by a previous DEFLEN.

var The name of a variable (any variable type).

type Forces the variable to be of that type .

%=Integer
&=LongInteger (Macintosh only)
!=Single Precision
#=Double Precision
$=String

Also see "Variables" in the front section of this manual.
number The maximum number of elements that a dimension may contain from 1 to

32,767 elements (add one if array BASE option is set to zero. default=0).
Only numbers may be used, not variables.

EXAMPLE See the following page for more information and examples.

REMARK Use care when allocating memory with the DIM statement.

See BASE OPTION,DEFLEN,"Array Variables","String Variables",INDEX$ and
RUN+ for more important information about using DIM.

,
Macintosh: This version is limited to 2,147,483,648 elements in an array.
MSDOS: In order to optimize performance; integer variables and integer array
variables are limited to one 64k segment. String and BCD arrays may cross segment
borders to use up to available memory.

continued next page...

Standard Reference 210

DIM statement

DIM continued

DETERMINING THE MEMORY NEEDS OF DIMMED ARRAYS

DIM A%(10,10,10), A#(5), A!(9,7), B$(10), 5Cool$(20
DIM Long&(10): REM Macintosh Only

The following chart shows how to calculate the memory requirements of the arrays
dimensioned above with a BASE OPTION of zero.

Bytes per How to Memory
ARRAY TYPE Element Calculate** Required
A%(10,10,10) Integer 2 11*11*11*2 2662
A#(5) Double Precision 8 6*8 48
A!(9,7) Single Precision 4 10*8*4 320
B$(10) String 256 11*256 2816
Cool$(20) String 6 21*6 126
Long&(10) LongInteger 4 11*4 44

DEFINING STRING LENGTHS WITH DIM

DIM X$(10), 20A$, Z$(5), 45TEST$, 10MD$(20,20)

In the example above the maximum character capacities are:

X$ 255 (default is 255)
A$ 20
Z$ (5) each element if Z$ as 20* (21*5=105 total bytes)
TEST$ 45
MD$(20,20) each element of MD$(20,20) as 10.

(20*20*11=4400 total bytes of memory used)

* If no length is defined, the last given length in that DIM statement is used. In the
example each element of Z$(n) gets a length of twenty. If no length is defined in that DIM
statement then 255 characters is the default (or the last length used in DEF LEN).

**If you configure BASE OPTION 1 you will not need to add one to the dimension. To
calculate the memory required for A%(10,10,10): 10*10*10*2. See "Configure".

Note: Add one to the defined length of each string for the length byte to determine the
actual memory requirement of the string. This extra byte is the "Length byte" and it is the
first byte in the string. It is wheat is pointed at by VARPTR(var$).

Important Note: Unpredictable system errors may result if an attempt is made to assign
a string variable a string longer then its allocated length. It is also important to define the
length of a string at least one greater than the maximum number of characters received in
an INPUT or LINEINPUT statement.

 211 Standard Reference

command DIR

FORMAT DIR [drivespec]

DEFINITION DIR will display the directory of the disk drive specified by drivespec.

The drivespec will vary from one computer to the next. See your Computer's Disk
Operating System reference manual for syntax.

EXAMPLE DIR <ENTER>

LEDGER.COM MAY.LEDJUN.LED
JUL.LEDAUG.LED

ZBasic Ready

REMARK The appearance of the directory layout will vary by computer. See appendix for further
information. This is a command so it does not operate during runtime.

See below, or your appendix, for possible ways of getting directories at runtime.

Macintosh: Syntax is DIR "rootname or foldername". To get a directory during
runtime see FILES$ in the appendix. LDIR will output the directory to a printer.

MSDOS: Use DIR *.BAS to see all the .BAS files or DIR Z*.* to see all the files starting
with Z. To get a directory during runtime see FILES.

Apple ProDOS: To get a directory during runtime; OPEN"I" the directory
pathname. Example: OPEN"I",1,"ZBASIC". See directory layout in ProDOS
reference manual for more information about directory file layout. This version also
supports LDIR to list the directory to the printer. CAT may be used as well as DIR.

Apple DOS 3.3: To get a directory during runtime:

LONG FN DIR (slot,drive)
 POKE &AA6A,slot
 POKE &AA68, drive
 CALL &A56E
END FN

Z-80: See appropriate section in appendix for your computer and DOS. Some Z80
versions do not allow getting a directory at runtime.

Standard Reference 212

DO statement

FORMAT DO
.
.
UNTIL expression

DEFINITION The DO statement is used to define the beginning of a loop with the UNTIL statement
defining the end.

Program functions and statements appearing between the DO and UNTIL will be
executed over and over again until the expression defined at the UNTIL statement is
TRUE.

EXAMPLE DO
 PRINT"Hi!"
UNTIL LEN(INKEY$)
END

RUN

Hi!
Hi!
Hi!
Hi! <-----You press a key and it stops
__

DO
 X=X+1
UNTIL X=2492
PRINTX
END

RUN

2492

REMARK The statements in a DO loop will be executed at least once. See WHILE-WEND for a
loop type that ends immediately if the condition is false.

ZBasic automatically indents text appearing between a DO and UNTIL two spaces.
This is helpful in debugging and documenting programs.

See the "Structure" and "Loops" sections of this manual for more information.

Also see FOR-NEXT-STEP and WHILE-WEND.

 213 Standard Reference

command EDIT

FORMAT E line
EDIT line

DEFINITION EDIT is used from the Standard Line Editor to specify the line you wish to edit.

EDIT may be abbreviated to E. A comma will start editing at the line currently selected
by ZBasic's line pointer. List of the EDIT sub-commands:

SUB-COMMAND DEFINITION
[n]<SPACE> - MOVE CURSOR RIGHT (n characters)
[n]<BACKSPACE> - MOVE CURSOR LEFT (n characters)
I - Begin INSERT mode at cursor position
X - Goto the end of the line and EXTEND it
<ESC> - Exit INSERT mode (you will still be in line edit mode)
[n]D - DELETE characters (if n is used deletes n characters)
[n]C key - CHANGE character to <key> [n] times
H - HACK to end of line and enter INSERT
[n]S key - SEARCH for [n]the occurrence of <key>
L - LIST line being edited, home cursor
A - ABORT changes, restore original line
[n]K key - KILL text to [n]the occurrence of <key>
<ENTER> - EXIT editing with changes intact
<BREAK> - ABORT EDIT SESSION (no changes made)

Note: n is a number from 1 to 255. If n is not used, one is assumed.

EXAMPLE 10 FOR I = 1 TO 20
20 PRINT I
30 NEXT I

EDIT 20 <---- or E20 (comma if 20 was the last line used.)

20 _ <---- Press spacebar or backspace to move cursor.
 Use keys above to edit this line.

REMARK If you want to edit the current line, press the comma key <,> in command mode. It will
do the same as E <ENTER>.

Line numbers may be edited in ZBasic. The line being edited will remain unchanged,
the edited line with the new line number will be created.

See the "Standard Line Editor" section in the beginning of this manual.

Also see FIND,DELETE,AUTO and LIST.

, ,
These versions offer full screen editors as well as the Standard Line Editor. See "Full
Screen Editor" in the appropriate appendix for details.

Standard Reference 214

ELSE statement

FORMAT IF-THEN-ELSE line or label
IF-THEN-ELSE statement(s)

DEFINITION ELSE is used with an IF statement to route control on a false condition.

ELSE may refer to a linenumber or label or it may be followed by one or more
statements that will be executed if the condition in the IF statement is FALSE.

EXAMPLE X=99
IF X = 100 THEN STOP ELSE PRINT X
END

RUN

99
__

IF X=100 THEN STOP ELSE "End"
END
:
PRINT"Stopped here."
END

RUN

Stopped here.

REMARK All statements on a line following an ELSE are conditional on that ELSE.

See "Structure",IF-THEN,LONG IF,XELSE and ENDIF.

,
Also see SELECT CASE.

 215 Standard Reference

statement END

FORMAT END

DEFINITION END is used to stop the execution of a program.

END will return control to the Standard Line Editor if program was executed using
RUN, or to the operating system if the program was compiled using RUN* or RUN+.

EXAMPLE PRINT "HELLO"
END
PRINT "THERE"

RUN

HELLO

REMARK END will close all open files.

Also see STOP and TRONB.

See SHUTDOWN.

Standard Reference 216

END FN statement

FORMAT LONG FN
.
.
END FN [= expression]

DEFINITION Marks the end of a LONG FN statement.

The optional expression MUST be numeric for numeric functions (#,%,&,!) and
MUST be a string ($) for string functions.

EXAMPLE REM Removes spaces from the end of a string
LONG FN RemoveSpace$(x$)
 WHILE ASC(RIGHT$(x$,1)=32
 x$= LEFT$(x$, LEN(x$)-1)
 WEND
END FN= x$
Name$="ANDY "
PRINT "Before:";Name$;"*"
PRINT" After:"; FN RemoveSpace$(Name$);"*"

RUN

ANDY * ANDY*

REM Example of a simple Matrix Multiplication
DIM A%(1000)
:
LONG FN MatrixMult%(number%, last%)
 FOR temp%= 0 TO last%
 A%(temp%)=A%(temp%)*number%
 NEXT
END FN
:
A%(0)=1: A%(1)=2:A%(2)=3
FN MatrixMult%(10,3)
PRINT A%(0), A%(1), A%(2)

RUN

10 20 30

REMARK If an END FN is omitted in a LONG FN construct, a structure error will occur. You
must exit a function from and END FN otherwise problems will occur internally.

Also see "Functions and subroutines","Structure",LONG FN,FN statement,FN
function and DEF FN.

Important Note: Loops like FOR-NEXT, DO-UNTIL or WHILE-WEND must be
entirely contained within a LONG FN-END FN. Do not exit a function except at the
END-FN.

 217 Standard Reference

statement END IF

FORMAT LONG IF expression
.
[XELSE]
.
END IF

DEFINITION This is an end marker for the LONG IF statement.

Program execution will continue normally at the END IF after completion of a LONG IF
or XELSE.

EXAMPLE Love$="Forever"
LONG IF Love$="Forever"
 PRINT "How Romantic!"
XELSE
 PRINT "How heartbreaking!"
END IF
END

RUN

How Romantic!

REMARK If an END IF is omitted in a LONG IF construct, a structure error will occur.

See "Structure",LONG IF,IF-THEN,ELSE and XELSE.

,
Also see SELECT CASE.

Standard Reference 218

END SELECT statement

FORMAT SELECT [CASE] [expression]
 CASE [IS] relational condition1[,relational condition][,...]
 statement(s)
 CASE [IS] condition[,condition][,...]
 statement(s)
 CASE [IS] boolean expression
 statement(s)
 CASE ELSE
 statement [:statement:...]]
END SELECT

DEFINITION END SELECT is the end marker for the SELECT/CASE structure.

When SElECT/CASE is encountered, the program checks the value of the
controlling expression or variable, finds the CASE that compares true and executes
the statements directly following the CASE statement. After these statements are
performed, the program continues at the line after the END SELECT statement:

EXAMPLE A=100
SELECT A
 CASE >100
 PRINT "A>100"
 CASE 100
 PRINT "A=100"
 CASE ELSE
 PRINT"None of the above"
END SELECT
PRINT "Program continues..."
END

RUN

A=100
Program continues...

REMARK Also see SELECT and CASE.

SELECT CASE is not supported with the Z80 versions. See IF and LONG IF for
accomplishing the same thing.

SELECT CASE is not supported with this version. See IF and LONG IF for
accomplishing the same thing.

 219 Standard Reference

function EOF

FORMAT EOF (filenumber)

DEFINITION Returns true if end-of-file condition exists for filenumber, returns zero if the end-
of-file has not yet been reached. This function is only available on the Macintosh and
MSDOS versions of ZBasic.

EXAMPLE OPEN"I",1,"FILE.TXT"
DO
 LINEINPUT#1, A$
 PRINT A$
UNTIL EOF(1)
CLOSE#1
END

What to do if you don't have EOF on your computer.
ON ERROR GOSUB 65535 <--- Enable disk error trapping
OPEN"I",1,"FILE.TXT"
IF ERROR GOSUB"Error message"
DO
 LINEINPUT#1, A$
 PRINT A$
UNTIL ERROR <>0
IF ERROR <> 257 THEN GOSUB "Error messsage"
ERROR=0 <---Error 257 is an end-of-file error. Reset Error here then continue.
CLOSE#1
END
:
"Error message"
PRINT "A disk error occured: "; ERRMSG$(ERROR)
INPUT"<C>ontinue or <S>top? ";temp$
If temp$="C" THEN ERROR=0:RETURN
STOP

REMARK Some versions of ZBasic do not support EOF because of system reasons. Also see
ERROR function and statement, ON ERROR and ERRMSG$

EOF is not supported on Z80 versions of ZBasic. Use the second example above to
accomplish the same thing.

EOF is not supported on the Apple // ProDOS or DOS 3.3 versions of ZBasic. Use
the second example above to accomplish the same thing.

Standard Reference 220

ERRMSG$ function

FORMAT ERRMSG$ (expression)

DEFINITION Returns the error message string for the error number specified by expression. In
most cases you will use the number returned by the ERROR function when a disk
error has occured.

EXAMPLE OPEN "I",1, "OLDFILE"
ON ERROR GOSUB "Error message"
.
.
.
"Error message"
PRINT "A disk error has occurred!!"
PRINT "The error was: ";ERRMSG$(ERROR)
ERROR=0:REM ALWAYS SET ERROR TO ZERO AFTER ERROR OCCURS!
RETURN

RUN

A disk error has occured!!
The error was: File Not Found Error in File #1
__

FOR X=0 TO 255
 PRINT ERRMSG$(X)
NEXT X

RUN

PRINTS ALL THE ERROR MESSAGES FOR THAT COMPUTER.

REMARK ZBasic will display disk errors for you unless you use the ON ERROR disk trapping
options.

The ERROR function is commonly used for error trapping and display purposes. The
expression is stored as follows:

The low byte is used for the ERROR number (ERROR AND 255)
The high byte is used for the file number (ERROR>>8) or (ERROR/256)

See "Disk Errors", ON ERROR GOSUB and ERROR functions and statements.

 221 Standard Reference

function ERROR

FORMAT ERROR

DEFINITION Returns the number of an ERROR condition, if any.

Zero (0) is returned if no error has occured.

This function is available to programmers who wish to trap disk errors using the ON
ERROR statement.

EXAMPLE ON ERROR GOSUB 65535:REM User disk trapping enabled
OPEN "I",1,"OLDFILE"
IF ERROR=259 GOSUB"NOT FOUND"" GOTO 20
ON ERROR RETURN: REM Let ZBasic do the error checking now!
.
.
.
"NOT FOUND"
REM ERROR 259 is: File Not Found error in Filenumber 1
PRINT" The file is not on that disk!"
PRINT" Please insert the correct disk"
PRINT" and press <ENTER>"
INPUT A$:ERROR=0:RETURN

REMARK ERROR may also be used as a statement. See ERROR statement, ERRMSG$ and
ON ERROR GOSUB.

Important Note: If you do the disk error trapping, ERROR must be reset to zero
after a disk error occurs or ERROR function will continue to return an error value.

, ,
Macintosh: Also see SYSERROR in appendix.

MSDOS: See appendix for ways of doing critical error handling.

Apple ProDOS: See appendix for additional ways of trapping ProDOS errors.

Standard Reference 222

ERROR statement

FORMAT ERROR [=] expression

DEFINITION Allows the programmer to set or reset ERROR conditions for the purpose of disk
error trapping.

Important Note: If you do the disk error trapping, ERROR must be reset to zero
after a disk error occurs or ERROR function will continue to return an error value.

EXAMPLE REM This routine checks to see if a file exists. If it
REM does exist it is opened as random, if it doesn't
REM exist an error message is returned.
:
LONG FN Openfile%(files$, filenum%, reclen%)
 ON ERROR GOSUB 65535: REM Disk error trapping on
 "Open file"
 OPEN"I",filenum%,file$
 LONG IF ERROR
 LONG IF (ERROR AND 255) <>3
 PRINT@(0,0);"Could not find: ";file$;" Check drive"
 INPUT"and press <ENTER> when ready";temp%
 ERROR=0: GOTO "Open file"
 END IF
 XELSE
 CLOSE# filenum%
 END IF
ON ERROR RETURN: REM Give error checking back to ZBasic
OPEN"R",filenum%, file$, reclen%
END FN

REMARK ERROR may also be used as a function. See "Disk Error Trapping",ERROR function,
ERRMSG$ and ON ERROR.

, ,
Macintosh: Also see SYSERROR in appendix.

MSDOS : See appendix for ways of doing critical error handling.

Apple ProDOS: See appendix for additional ways of trapping ProDOS errors.

 223 Standard Reference

function EXP

FORMAT EXP (expression)

DEFINITION Returns e raised to the power of expression. This function is the compliment of LOG.
The BCD internal constant of the value of e is:

2.71828182845904523536028747135266249775724709369995957

The result will be rounded to the digits of precision configured for Double Precision
accuracy.

EXAMPLE DEFDBL A-Z
DO
 INPUT "ENTER A NUMBER ";X
 PRINT "e RAISED TO X =" ; EXP(X)
UNTIL X=0
END

RUN

ENTER A NUMBER _ 1
e RAISED TO X = 20718281828459 <--- 14 digit accuracy

REMARK This is a scientific function. See "Configure" for information about configuring
scientific accuracy.

For more information about scientific functions see "Math","Math expressions",
"Floating Point Variables", COS,SIN,ATN,TAN,SQR and raise to the power"A".

Standard Reference 224

FILL statement

FORMAT FILL expressionx, expressiony

DEFINITION The purpose of FILL is to paint an area of the screen in the current COLOR. The
point defined by the two expressions are:

expressionx (horizontal position) and expressiony (vertical position).

Fill will search for the uppermost point in the contained area that has the background
color, then start filling from left to right and down. For this reason irregular shapes
may not fill completely with one fill command. It may be necessary to use a fill
statement for each appendage.

EXAMPLE

COLOR=1
FILL 0,284

RUN

See chart.

REMARK FILL may not be available on machines without the capability of seeing pixels on the
screen. See computer appendix. Also see CIRCLE FILL,BOX FILL,POINT
and PLOT.

BOX FILL,CIRCLE FILL and the QuickDraw routines like FILLPOLY,FILLRGN,
FILLRECT etc. are much faster ways of filling areas.

 225 Standard Reference

command FIND

FORMAT FIND commands or keywords
FIND # line
FIND " quoted string text or labels
FIND REM items in REM statements
FIND DATA items in DATA statements

DEFINITION FIND is used in the Standard Line Editor to locate text in a program.

To FIND additional occurrences, press semi-colon (;) or FIND <ENTER>.

EXAMPLE YOU TYPE ZBASIC FINDS
FIND "HELLO 01010 A=20:PRINT"HELLO THERE"
FIND A$ 01022 Z=1:A$=B$:PRINTA$+B$

or... 01222 BA$="hello"
or... 01333 ABA$="goodbye"

FIND 99 05122 F=2:X=X+2+F/999
FIND #12345 (line#) 08000 GOTO 12345
FIND X(C) 03050 A=1:T=ABS(X(C)/9-293+F)

or... 03044 ZX(C)=4
FIND PRINT 00230 A=92:PRINTA
FIND "SUB5 00345 "SUB500": CLS

or... 03744 GOSUB "SUB500"
FIND OPEN 03400 OPEN"R",1,"FILE54",23
FIND CLOSE 09900 CLOSE#2
FIND REM This 02981 REM This is a remark
FIND DATA 123, 232 09111 DATA 123, 232
FIND DATA "Fred" 10233 DATA "Tom", "Dick", "Fred"

REMARK When finding a string inside quotes, you must supply all of the characters up to the
point that will insure the uniqueness of the string.

See "Standard Line Editor" in the beginning of this manual.

, ,
See "Full Screen Editor" in the appropriate appendix for other FIND commands.

Standard Reference 226

FIX function

FORMAT FIX (expression)

DEFINITION Truncates the digits on the right side of the decimal point.

EXAMPLE PRINT FIX (123.456),
A#=1293.21
PRINT FIX(A#),
PRINT FIX (.12340),
PRINT FIX (999999.455) + 0.

RUN

123 1293 0 999999

REMARK FIX works the same as INT in ZBasic. They are both included to maintain compatibility
with other forms of BASIC. FIX will consider an expression floating point.

FRAC is the opposite of FIX. It returns the fraction part of the number.

See FRAC and INT.

 227 Standard Reference

function FN

FORMAT FN name [(expression1 [,expression2 [,...]])]

DEFINITION FN calls a function by name which was previously defined by DEF FN or LONG FN.
The name of the function must follow the syntax of variable names, that is, a string FN
must have a name with a $, and integer FN must have a name with a %, etc.

The expressions must match the variable types as defined by the DEF FN or LONG
FN. Numeric expressions are not a problem, string expressions allow only simple
strings.

FN may not be used before it is defined with DEF FN or LONG FN.

EXAMPLE DEF FN e# = EXP(1.)
DEF FN Pi#= ATN(1) << 2
DEF FN Sec#(x#) = 1.\ COS(x#)
DEF FN ArcSin#(x#) = ATN (x# \ SQR(1-x# * x#))
:
PRINT FN Pi#

RUN

3.14159... <---Returned in the current digits of accuracy
__

REM Round number to the number of places indicated.
LONG FN ROUND#(number#, places)
 number#=INT(number#*10^places+.5)/10^places
END FN=number#
:
PRINT FN ROUND#(43343.327, 2)

RUN

43343.33

REMARK This function is useful for saving program space and for making a program easier to
read.

Also see "Functions and Subroutines","Structure",LONG FN,END FN,DEF FN,
APPEND and FN statement.

Standard Reference 228

FN statement

FORMAT FN name [(expression1 [,expression2 [,...]])]

DEFINITION FN calls a function by name which has previously been defined by a DEF FN or a
LONG FN.

The expressions must match the variable types as defined by DEF FN or LONG FN.

EXAMPLE DEF FN LastChr%(x) = PEEK(x + PEEK(x))
LONG FN RemoveSpace$(x$)
 WHILE FN LastChr$(VARPTR(x$)) = ASC(" ")
 x$= LEFT$(x$, LEN(x$)-1)
 WEND
END FN= x$
Name$="ANDY "
PRINT Name$;"*", FN RemoveSpace$(Name$);"*"

RUN

ANDY * ANDY*

REMARK Also see "Functions and Subroutines","Structure",LONG FN,END FN,DEF FN,
APPEND and FN function

 229 Standard Reference

statement FOR

FORMAT FOR variable = expression1 TO expression2 [STEP expression3]

.

.

.
NEXT[variable][,variable ...]

DEFINITION Permits the repeated execution of commands within the loop.

A FOR/NEXT loop will automatically increment variable by the amount set by STEP
and compare this to the end value, expression2, exiting the loop when var exceeds
this value after adding STEP. Default STEP = 1.

Note the loop will be executed at least once with the value of expression1.

EXAMPLE FOR Counter = 0 TO 100 STEP 2
 PRINT Counter;
NEXT

RUN

0 2 4 6 8 10 12 ... 100
__

FOR Counter = 100 TO 0 STEP -2
 PRINT Counter;
NEXT Counter

RUN

100 98 96 94 92 90 88 ... 0
__

FOR Counter# = 0.0 TO 1.0 STEP .01
 PRINT Counter#;
NEXT Counter#

RUN

0 .01 .02 .03 .04 ... 1

REMARK ZBasic will automatically indent all of its loop structures in listings. This is helpful in
debugging and documenting programs.

See chapter called "Loops" and WHILE-WEND and DO-UNTIL.

Note: If STEP is set to zero, the program will enter an endless loop. If the variable is
an integer, do not allow the loop to exceed 32,767 or you will enter an endless loop
(unsigned integer).

Standard Reference 230

FRAC function

FORMAT FRAC (expression)

DEFINITION FRAC returns the fractional part of expression. The digits to the left of the decimal
point will be truncated.

This function is the compliment of INT and FIX.

EXAMPLE A#=123.456
B#=99343.999
C#=3.5
:
PRINT A#, FRAC(A#)
PRINT B#, FRAC(B#)
PRINT C#, FRAC(C#)
PRINT 2.321, FRAC(2.321)

RUN

123.456.456
99343.999 .999
3.5 .5
2.321 .321

REMARK This function will automatically set floating point calculation.

FIX and INT are the opposite. They return the whole part of the number.

See FIX and INT.

 231 Standard Reference

statement GET

FORMAT GET (x1,y1)-(x2,y2), variable[array(index[, index...,])]

DEFINITION Stores a graphic image from the screen into a variable or variable array so that it may
be retrieved later and put to the screen with PUT.

GET and PUT are extremely fast and useful for sophisticated graphic animation.

x1,y1 Coordinates of the upper-left-corner of the graphic image on the screen.
x2,y2 Coordinates of the lower-right-corner of the image.

Coordinates are pixel coordinates; use with COORDINATE WINDOW.

The image is normally stored in memory specified by an integer array since it is easier
to calculate how much memory is required this way (although other variables may also
be used as long as the memory set aside is correct).

To calculate the amount of bytes to DIM for a graphic image, use this equation. Bits-
per-pixel (bpp) has to do with colors or grey levels available. See next page for
specifics:

6+ ((y2-y1)+1) * ((x2-x1+1) * bpp +7) / 8)

Failure to DIM enough memory for an image will cause unpredictable system errors
so be sure to carefully calculate the memory needed.

EXAMPLE DIM A(750) <---Bytes above divided by two for integer array
MODE 7 <---Not needed on the Macintosh version
COORDINATE WINDOW <---Pixel coordinates
:
CIRCLE 100,100,80
GET (0,0)-(100,100), A1
:
FOR x= 1 TO 200 STEP 3
 PUT (x, 90), A(1) <---Does twice to move the image across
 PUT (x, 90), A(1) the screen without disturbing the background
NEXT x
:
END

This routine moves a section of a circle across the screen. It is PUT to the screen
twice so the item doesn't repeat and it will appear to move across the screen without
disturbing the background (default PUT mode is XOR).

continued...

Standard Reference 232

GET statement

REMARK Important Note: Failure to DIM enough memory for the variables storing the
graphic images may result in unpredictable system problems.

Also see DIM and PUT.

Macintosh: With this version of ZBasic, PUT has another, optional, parameter:
PUT (x1,y1) [-(x2,y2)], var. The second parameter allows you to scale
the image, making it either larger or smaller by giving the rectangle size in which it is
to appear. The x2,y2 parameter is the lower-right corner of the image.

Bits-per-pixel (bpp) will vary by the type of Macintosh you have. The standard black
and white Macintoshes have one bit per pixel.

The Macintosh II may have up to 32 bits-per-pixel. Sixteen colors is 4 bpp, 256
colors is 8 bpp. Check addendum or "Inside Macintosh Volume V (Color Quickdraw)"
for the specifics of your color board.

MSDOS: Bits per pixel (bpp) will vary by the graphics adaptor board being used:

TYPE MODE(s) COLORS BITS PER PIXEL (bpp)
CGA 5 4 2
CGA 7 2 1
EGA 16-19 3-16 2 (64K or less on EGA card)
EGA 16-19 16 4 (More than 64K on card)
HERCULES 20 1 1

Z80: GET and PUT are not supported with these versions of ZBasic.

Apple // ProDOS and DOS 3.3: GET and PUT are not supported with these
versions. See DRAW example on ProDOS disk and the BLOAD and BSAVE
functions for possible alternatives.

 233 Standard Reference

statement GOSUB

FORMAT GOSUB line or label

DEFINITION GOSUB will call that part of a program starting with line or label and return to the next
statement following the GOSUB when RETURN is encountered.

EXAMPLE 10 GOSUB 40: PRINT "All Done!"
20 END
30 :
40 PRINT"Hello"
50 RETURN

RUN

HELLO
All Done!
__

GOSUB "Hello Routine"
PRINT "All Done!"
END
:
"Hello Routine"
PRINT "Hello"
RETURN

RUN

HELLO
All Done!

REMARK On multiple statement lines, a RETURN will return control to the next statement on
the line following the originating GOSUB.

To avoid errors, be certain there is a line with the number or label that you GOSUB. All
subroutines must be terminated with a RETURN statement.

Note: If ZBasic encounters a RETURN without a matching GOSUB, it will return to the
operating system or the editor. ZBasic does not check for stack overflow which may
cause errors if subroutines do not end with a RETURN.

See RETURN LINE,GOTO, ON GOTO and ON GOSUB.

See SEGMENT RETURN in appendix.

Standard Reference 234

GOTO statement

FORMAT GOTO line or label

DEFINITION GOTO will transfer control to a line or label in a program.

Note that excessive use of this statement is considered inappropriate for structured
code because in complex programs it becomes extremely hard to read.

In most programming situations GOSUB, DO-UNTIL, WHILE-WEND, FOR-NEXT or
other programming structures are much easier to follow.

EXAMPLE 10 X=X+1
PRINT X,
20 IF X<5 THEN GOTO 10

RUN

1 2 3 4

"Loop"
X=X+1
PRINT X,
IF X<5 THEN GOTO "Loop"

RUN

1 2 3 4

REMARK A line error will occur during compile if the destination line or label cannot be found.

See "Structure", GOSUB,ON GOTO,ON GOSUB,LONG FN,FN statement,WHILE,
DO,FOR,LONG IF.

 235 Standard Reference

command HELP

FORMAT HELP [number]

DEFINITION HELP without a number prints the HELP menu to the screen. This menu will give you
corresponding numbers to the help topics available. This command is used from the
Standard Line Editor.

Type HELP and a number to get answers to a specific topic.

Press the SPACE BAR to continue when you see "MORE".

EXAMPLE HELP

A menu for your version of ZBasic will be printed to the screen. To get help for an item
in the menu, type HELP and the number corresponding to that item.

REMARK HELP will return control to the Standard Line Editor upon completion of the listing.

If the help file has been deleted from the disk a File Not Found Error will occur. Check
your computer appendix for the filename of the HELP file.

The HELP window is brought up when you type this command or select "About
ZBasic" under the menu. The command does not work exactly as above. Just
double click the appropriate item with the mouse.

Standard Reference 236

HEX$ function

FORMAT HEX$(expression)

DEFINITION The HEX$ function converts a numeric expression to a four character HEXadecimal
string (BASE 16). The following program will convert a Decimal number to HEX or
HEX to Decimal. Some sample HEX numbers:

Decimal Hexadecimal
0-9 0-9
10 A
11 B
12 C
13 D
14 E
15 F

EXAMPLE DO
 INPUT"Decimal number to convert: ";Decimal%
 PRINT "Decimal";Decimal%;"= HEX ";HEX$(Decimal%)
 PRINT
 :
 INPUT"HEX number to convert: ";Hx$
 Hx$="&H"+Hx$
 PRINT"Decimal value of ";Hx$;"="VAL(Hx$)
 PRINT"The unsigned Decimal value of "Hx$"=" UNS$(VAL(Hx$))
UNTIL (Decimal% =0) OR (LEN(Hx$)=2)

RUN

Decimal number to convert: 255
Decimal 255= HEX FF

HEX number to convert: F9CD
Decimal value of F9CD = -1587
The unsigned Decimal value of F9CD = 63949

REMARK Floating point numbers will be truncated to integers.

See "Numeric Conversions",VAL,OCT$,BIN$ and UNS$.

See DEFSTR LONG in the appendix for doing LongInteger conversions in Hex,
Octal,CVI and MKI$. In this case HEX$ would return an eight character string.

 237 Standard Reference

statement IF

FORMAT IF expression THEN line [or label][ELSE line [or label]]
IF expression THEN statement [:statement: ...][ELSE statement [:statement: ...]]

DEFINITION The IF statement allows a program to do a number of things based on the result of
expression:

1.Branch to a line or label after the THEN if a condition is true; expression /=0
2.Execute statement(s) after the THEN if a condition is true; expression /=0
3.Branch to a line or label after the ELSE if a condition is false; expression=0
4.Execute statement(s) after the ELSE if a condition is false;expression=0

EXAMPLE X=99
IF X=99 THEN PRINT"X=99":PRINT"HELLO: ELSE STOP
:
IF X=99 THEN "CHECK AGAIN"
END
:
"CHECK AGAIN"
IF X=100 THEN PRINT"YEP" ELSE PRINT"NOT TODAY!";:PRINT X
END

RUN

X=99
HELLO
NOT TODAY! 99

REMARK Complex strings will generate an error if used in an IF statement.

Improper IF LEFT$(A$,2)="HI"THEN STOP
Proper B$=LEFT$(A$,2):IF B$="HI" THEN STOP

See LONGIF,ELSE,XELSE,WHILE-WEND and DO-UNTIL for more ways of doing
program comparisons.

Note: In many cases LONG IF is easier to read.

,
Also see SELECT CASE

Standard Reference 238

INDEX$ statement

FORMAT INDEX$ (expression) = string expression
INDEX$I (expression) = string expression
INDEX$D (expression)

DEFINITION INDEX$ is a special array unique to ZBasic. Expression indicates an element number.

Statement Definition
INDEX$(n)=simple string Assigns a value to INDEX$(n)
INDEX$I (n)=simple string Move element n (and all consecutive elements) up

and INSERT simple string at INDEX$ element n
INDEX$D(n) DELETE element n and move all consecutive

elements down to fill the space.

EXAMPLE INDEX$(0)="FRED" <---Normal assignments
INDEX$(1)="TOM"
INDEX$(2)="FRANK"
:
GOSUB"Print INDEX$"
INDEX$I(1)="HARRY" <---HARRY INSERTED between FRED and TOM
GOSUB"Print INDEX$"
:
INDEX$D(0) <---FRED is DELETED here
GOSUB"Print INDEX$"
END
:
"Print INDEX$": REM Routine prints contents of INDEX$
FOR X=0 TO 4
 PRINT X; INDEX$ (X)
NEXT: PRINT
RETURN

RUN

0 FRED
1 TOM
2 FRANK

0 FRED
1 HARRY
2 TOM <--- Notice how values move from one element to another
3 FRANK as items are inserted and deleted with INDEX$I and D.

0 HARRY
1 TOM
2 FRANK

REMARK INDEX$ provides for memory efficient string array manipulation and lends itself very
well to list management applications. See "Special INDEX$ Array",INDEX$ function,
CLEAR,CLEAR INDEX$ and MEM.

Allows up to ten simultaneous INDEX$ arrays. See INDEX$ in your appendix.

 239 Standard Reference

function INDEXF

FORMAT INDEXF (string [,expression])

DEFINITION INDEXF is a special INDEX$ array function used to FIND a leading string within an
INDEX$ array quickly.

IF INDEX$(1000) equaled "Hello", then X=INDEXF("Hel") would return 1000.

IF X=INDEXF("llo") X would equal -1 since "llo" would not be found. The leading
characters are significant.

EXAMPLE INDEX$(0)="FRED"
INDEX$(1)="MARY"
INDEX$(2)="TOM"
:
X=INDEXF("TOM") <--- Search for TOM
PRINT X
:
PRINT INDEXF("MARY") <--- Search for MARY
:
PRINT INDEXF("RED") <--- Search for RED
:
PRINT INDEXF("FRED",1) <--- Search for FRED starting at element 1

RUN

2 <----- TOM found at element two
1 <----- MARY found at element one
-1 <----- RED not found. The first characters are significant
-1 <----- FRED not found because search started at element 1

REMARK INDEX$ provides for memory efficient string array manipulation and lends itself very
well to list management and text editing applications.

See "Perpetual Sort" under "Special INDEX$ Array". Also see INDEX$,INDEX$I,
INDEX$D,CLEAR,CLEAR INDEX$ and MEM.

Allows up to ten simultaneous INDEX$ arrays. See INDEX$ in your appendix.

Standard Reference 240

INKEY$ function

FORMAT INKEY$

DEFINITION INKEY$ returns the character of the last key that was pressed or an empty string if no
key was pressed.

EXAMPLE WHILE A$<>"S": REM Press "S" to Stop
 DO
 A$=INKEY$
 UNTIL LEN(A$)
 A$=UCASE$(A$)
 PRINT A$;
WEND
END

RUN

GHUIJD,KEUG FAQCCQ OPU...S <---When <S> is pressed program stops

REM An easy function you can use to get a key
LONG FN Waitkey$(local$)
 DO
 local$=INKEY$
 UNTIL LEN(Local$)
END FN=local$
:
key$=FN Waitkey$(key$)
PRINT key$
END

RUN

(user presses "b")

b

REMARK When using INKEY$ for character entry, avoid having the TRON function active as this
may cause pressed keys to be missed.

See INPUT,LINEINPUT,INPUT#,ASC and CHR$. See your computer appendix for
variations or enhancements.

,
Macintosh: See DIALOG (16) for way of doing INKEY$ during event trapping.
MSDOS: INKEY$ returns two characters for function keys. ON INKEY$ does event
checking for function keys. See appendix for specifics.

 241 Standard Reference

function INP

FORMAT INP (expression)

DEFINITION The INP function is used to read an input port. The function returns the value that is
currently at the port specified by expression.

EXAMPLE X=INP(1)
PRINT X
PRINT INP(G-1)

RUN

0
255

REMARK Note: This function requires a knowledge of your computer hardware and may not be
portable to other computers (may not be available on your version of ZBasic or may
have an unrelated function).

See your computer appendix for specifics.

Not supported with this version. See INSLOT.

Not supported with this version. See OPEN"C" and "Toolbox" in the appendix for
accessing hardware ports.

Standard Reference 242

INPUT statement

FORMAT INPUT [(@ or %)(exprx,expry)][;][!][&expr,]["string ";] var[,var ...]

DEFINITION The INPUT statement is used to input values (string or numeric) from the keyboard
into variables.

Multiple variables must be separated by commas (this is bad form since users often
forget commas). If no value in INPUT, a zero or null string will be returned.

@(xprx,expry) Places cursor at text coordinate horiz,vert.

%(exprx,expry) Places cursor at graphic coordinate horiz,vert.
; Suppress carriage return/line feed.

! Automatic Carriage return after maximum characters
entered. User doesn't have to press <ENTER>.

&expr, Sets the maximum number of characters to be INPUT.
Default is 255. Will not allow more than expr characters.

"string "; Optional user prompt will replace question mark. If a null
string is used the question mark will be suppressed.

var May be any variable type integer, single,double or string.

EXAMPLE See examples on following pages...

REMARK Differences in screen width may affect operation.

See LOCATE and PRINT for more information on cursor positioning. Also see
INPUT#,LINEINPUT,LINEINPUT# and INKEY$ for others ways of getting input.

See "Keyboard input" in the technical section.

Important Note: String lengths MUST be one greater than maximum INPUT length
since a CHR$(13) is temporarily added. Never define a string used in an INPUT or
LINEINPUT as ONE.

In certain cases EDIT FIELD,MENU or BUTTON may be preferable. See appendix.

 243 Standard Reference

statement INPUT

INPUT continued

EXAMPLES OF REGULAR INPUT

EXAMPLE RESULT
INPUT A$ Wait for input from the keyboard and store the input in

A$. Quotes, commas and control characters cannot be
input. <ENTER> to finish. A carriage return is generated
when input is finished (cursor moves to beginning of
next line).

INPUT"NAME: ";A$ Prints "NAME: " before input. A semi-colon must follow
the last quote. A carriage return is generated after input
(cursor moves to next line).

INPUT;A$ Same as INPUT A$ above, only the semi-colon directly
after INPUT disables the carriage return (cursor stays on
the same line).

EXAMPLES OF LIMITING THE NUMBER OF CHARACTERS WITH INPUT

EXAMPLE RESULT
INPUT &10,A$ Same as INPUT A$ only a maximum of ten characters may

be input. (&10) A carriage return is generated after
input (cursor moves to the beginning of the next line).
The limit of input is set for ALL variables, not each.

INPUT ;&3,I% Same as INPUT &10, except the SEMI-COLON following
INPUT stops the carriage return (cursor stays on line).

INPUT !&10,A$ Same as INPUT & 10 except INPUT is terminated as soon
as 10 characters are typed (or <ENTER> is pressed).

INPUT;!&10,"NAME: ",A$ Same as INPUT ;&10,A$ except no carriage return is
generated (semi-colon). INPUT is terminated after 10
characters(&10 and Exclamation point). and the
message "NAME: " is printed first.

LINEINPUT;!&5,"NAME: ";A$ LINEINPUT A$ until 5 characters or <ENTER> is
pressed. (no carriage return after <ENTER> or after the
5 characters are input. Accepts commas and quotes.)

Note 1: Wherever INPUT is used, LINEINPUT may be substituted when commas,
quotes or some other control characters need to be input (except with multiple
variables).

Note 2: If more than one variable is INPUT, commas must be included from the user to
separate input. If all the variables are not input, the value of those variables will be null.

Standard Reference 244

INPUT statement

INPUT continued

INPUTTING FROM A SPECIFIC SCREEN LOCATION

INPUT@(H,V);A$Wait for input as TEXT screen POSITION defined by Horizontal
and Vertical coordinates. No "?" is printed. A carriage return is
generated.

INPUT%(gH,gV);A$ Input from a graphic coordinate. Syntax is the same as "@".
Very useful for maintaining portability without having to worry
about different screen widths or character spacing.

INPUT@(H,V);!10,"AMT: ";D# Prints "AMT: " at screen position H characters over by V
characters down. D# is input until 10 characters, or <ENTER>
are typed in, and the input is terminated without generating a
carriage return (the cursor DOES NOT go to the beginning of
the next line).

INPUT%(H,V);!10,"AMT: ";D# Prints "AMT: " at Graphic position H positions over by V
positions down. D# is input until 10 characters, or <ENTER>,
are typed in, and input is terminated without generating a
carriage return (the cursor DOES NOT go to the beginning of
the next line).

Note: Replace INPUT with LINEINPUT whenever there is a need to input quotes, commas and
control characters (except with multiple variables).

 245 Standard Reference

statement INPUT#

FORMAT INPUT # expression,var[,var[,...]]

DEFINITION This statement will read INPUT from a disk or other device specified by expression
until a carriage return, <COMMA>, End-Of-File or 255 characters are encountered.

Commas and leading spaces may be read into a string variable if the data on disk was
enclosed in quotes, otherwise leading spaces and line feeds will be ignored.

See LINEINPUT# for ways of inputting commas, quotes and some control characters.

EXAMPLE A$="HELLO"
B$="GOODBYE"
C$="WHAT?"
X#=12.345
:
OPEN"O",1"TEST.TXT":REM OPEN FOR OUTPUT
PRINT#1, A$","B$","C$","X# <--- Quoted commas important with PRINT#
CLOSE#1
:
OPEN"I",1,"TEST.TXT":REM OPEN FOR INPUT
INPUT#1, X$,Y$,Z$,A# <--- INPUT# in same order and type as PRINT#
END

RUN

HELLO GOODBYEWHAT? 12.345

REMARK See OPEN,CLOSE,PRINT#, and LINEINPUT#.

See your computer appendix for available devices.

Compatibility Note: ZBasic and MSBASIC have almost the same syntax with the
following exceptions:

MSBASIC ALLOWS ZBasic REQUIRES
PRINT#n, A$,B$,X#,C% PRINT#n, A$","B$","X#","C%
PRINT#n, A$ B$ C$ PRINT#n, A$","B$","C$

If you remember that ZBasic puts the image to the disk just as if it were going to the
printer or to the screen you will see why the syntax is important.

Standard Reference 246

INSTR function

FORMAT INSTR(expression, string1,string2)

DEFINITION Finds the first occurrence of string 2 in string 1, starting the search at the position
specified by expression.

expression Starting position of the search.
string1 String to be searched.
string2 String to search for.

EXAMPLE Humble$="I am cool!"
PRINT INSTR(1,Humble$, "cool")
:
B$="am"
PRINT INSTR(1,Humble$, B$)
:
X=INSTR(1, Humble$, "FRED")
PRINT X
END

RUN

6 <---"Cool" started in the sixth position
3 <---"am" started at the third position
0 <---There was no "FRED" in the string.
__

Name$="Fred Smith"
Lastname$=RIGHT$(Name$,LEN(Name$)-INSTR(1,Name$, " "))
PRINT "Hello there Mr.";Lastname$
END

RUN

Hello there Mr. Smith

REMARK If the string is not found, zero (0) will be returned.

See LEFT$,RIGHT$,MID$ and INDEXF.

 247 Standard Reference

function INT

FORMAT INT(expression)

DEFINITION Truncates all digits to the right of the decimal point of expression.

EXAMPLE DEFDBL A-Z
DEFTAB 8
PRINT" X","ABS(X),"INT(X)","FRAC(X)","SGN(X)"
:
FOR X = -15.0 TO +15.0 STEP 3.75
 PRINT USING"-##.##";X,
 PRINT USING"-##.##";ABS(X),
 PRINT USING"-##.##";INT(X),
 PRINT USING"-##.##";FRAC(X),
 PRINT USING"-##.##";SGN(X)
NEXT X
END

RUN

X ABS(X) INT(X) FRAC(X) SGN(X)
-15.00 15.00 -15.00 .00 -1.00
-11.25 11.25 -11.00 -.25 -1.00
- 3.75 3.75 -3.00 -.75 -1.00
 .00 .00 .00 .00 .00
 3.75 3.75 3.00 .75 1.00
 7.50 7.50 7.00 .50 1.00
 11.25 11.25 11.00 .25 1.00
 15.00 15.00 15.00 .00 1.00

REMARK INT works the same as FIX in that expression will be restricted to the integer range of
-32,768 to +32,767 only when the expression has not been defined as floating point.

INT is simply as a function that truncates an expression to a whole number.

To get the fractional part of a number use FRAC.

See FIX,SGN,ABS and FRAC.

INT range for the Macintosh is -2,147,483,648 to +2,147,483,647.

Standard Reference 248

KILL statement

FORMAT KILL simplestring

DEFINITION KILL will erase a disk file specified by simplestring.

KILL functions either as a command or from within a program.

EXAMPLE INPUT"File to erase:";A$
PRINT"Are you sure you want ";A$;" erased?";
INPUT B$
:
LONG IF B$<>"YES"
 PRINT"File not erased": STOP
XELSE
 KILL A$:PRINT A$;" is history."
END IF
:
END

RUN

File to erase: OldFile
Are you sure you want OldFile erased?
YES
Oldfile is history!

REMARK Use this statement with caution. When a file has been killed it is normally
unrecoverable.

See RENAME,ERROR,ON ERROR,ERRMSG$ and the "Files" section of this
manual for more information.

 249 Standard Reference

This page intentionally left blank.

Standard Reference 250

LEFT$ function

FORMAT LEFT$ (string , expression)

DEFINITION LEFT$ returns the left-most characters of string defined by expression. The string
will not be altered.

EXAMPLE Quote$="Early to Bed, Early to rise..."
:
PRINT LEFT$(Quote$, 5)
:
Part$= LEFT$(Quote$, 12)
PRINT Part$
:
PRINT LEFT$(Quote$, 50);
PRINT "Makes men healthy...at least"

RUN

Early
Early to Bed
Early to Bed, Early to rise... Makes men healthy...at least"

REMARK Also see RIGHT$,MID$,LEN,VAL,STR$,INSTR,INDEX$,SWAP and the "String
Variable" section of this manual for more information about using strings.

 251 Standard Reference

function LEN

FORMAT LEN (string)

DEFINITION Returns the number of characters that are stored in a string constant or string
variable. If zero is returned it indicates a null (empty) string.

EXAMPLE A$="FRED"
B$="SMITH"
:
PRINT A$;" has";LEN(A$);" characters."
PRINT B$;" has";LEN)B$);" characters."
:
PRINT LEN(A$)+LEN(B$)
:
PRINT LEN("Hello Fred")

RUN

FRED has 4 characters
SMITH has 5 characters
9
10

REMARK The maximum length of a string is 255 characters. You may set the length of strings
in ZBasic. See DIM,DEF LEN and the chapter on "String Variables" for more
information about defining string length.

Since the first character of a string stored in memory is the length byte,
PEEK(VARPTR(var$)) will also return the length of a string.

The memory required for a string variable is the defined length + one for the length
byte (256 bytes if not defined).

Standard Reference 252

LET statement

FORMAT [LET] variable = expression

DEFINITION LET is an optional statement that may be used to assign an expression to a variable.
Numbers, strings, numeric expressions, or other variables may be used to assign
values to a variable if the types are compatible or convertable.

EXAMPLE LET B=100
PRINT B
:
LET B=B+10
PRINT B
:
Z$="HELLO"+" THERE" <---Notice "LET" is optional
PRINT Z$

RUN

100
110
HELLO THERE

REMARK See SWAP,"Optimize expressions for Integer", "Math Expressions" and
"Conversions Between Variable Types" for more information about assignments.

 253 Standard Reference

function LINE

FORMAT LINE line number or label

DEFINITION Returns the starting address of a compiled line in memory. Normally used with CALL
to execute machine language subroutines created with MACHLG.

EXAMPLE 10 CALL LINE 30 <--- Example only. DO NOT RUN!
20 END
30 MACHLG 23,323,11,232,A%, 2,1,0,0,1:RETURN

"Start"
PRINT"THIS IS A TEST ",1,2,3
"END"
A = LINE "END" - LINE "START"
PRINT "The second line is ";A;" bytes long"

RUN

THIS IS A TEST 1 2 3
The second line is 36 bytes long

REMARK This statement is useful for calling machine language subroutines embedded in your
program or for calculating the number of bytes used by program lines.

Also see MACHLG and CALL.

, ,
Macintosh: Use LongIntegers for addresses. See CALL in the appendix.

MSDOS: See CALL in appendix.

Apple ProDOS: See MLI in ProDOS appendix.

Standard Reference 254

LINEINPUT statement

FORMAT LINEINPUT [(@ or %)(expr1,expr2)][;][!][&expr,]["string ";]var$

DEFINITION The LINEINPUT statement is used to input characters from the keyboard into a string
variable. It is different from INPUT in that quotes, commas and some control
characters may also be entered. LINEINPUT is terminated when <ENTER> is pressed.

@(expr1,expr2) Inputs from horizontal,vertical TEXT coordinate.
%(expr1,expr2) Inputs from horizontal,vertical GRAPHIC coordinate.

; Suppresses carriage-return/line-feed after input is complete.
(disable inputs that cause scrolling or overwriting.)

! Automatically executes a carriage return after the
maximum number of characters are entered. The user
doesn't have to press <ENTER>.

&expr, Sets the maximum number of characters to be input.

"string "; Optional string prompt will replace the question mark "?"
normally shown with LINEINPUT.

var$ Only string variables may be used with LINEINPUT.

EXAMPLE INPUT"Last name <COMMA> First name";A$
PRINT A$
:
LINEINPUT"Last name <comma> First name";B$
PRINT B$

RUN

Smith
Smith, Fred

REMARK See the chapter on "Keyboard Input" in the front of this manual for more examples.

The advantage of using LINEINPUT over INPUT is its ability to receive most of the
ASCII character set except:

<ENTER> CARRIAGE RETURN
<CTRL C> CONTROL "C"
<BACKSPACE> DELETE or LEFT ARROW
<CANCEL> DELETE CURRENT LINE
<NULL> NO CHARACTER

Important Note: String lengths MUST be at least one greater than the number of
characters being input, otherwise a string overflow condition will destroy
subsequent variables. Never use a one character string with LINEINPUT.

 255 Standard Reference

statement LINEINPUT#

FORMAT LINEINPUT # expression ,variable$

DEFINITION This statement will input ASCII or TEXT data from a disk file specified by expression
until <ENTER>, End-Of-File or 255 characters are encountered.

Useful for accepting commas, quotes and other characters that INPUT# will not
accept. A good example of using LINEINPUT would be for reading an ASCII or
TEXT file a line at a time (as in the example below).

EXAMPLE REM Read a text file and print it to the screen
REM Routine compatible with all versions of ZBasic
:
ON ERROR GOSUB 65535: REM Error trapping on to check for EOF
:
OPEN"I",1,"TEXT.TXT"
:
Counter=0
:
WHILE ERROR=0: REM Read file until an EOF error
 LINEINPUT#1, A$
 PRINT A$
WEND
IF ERROR <> 257 THEN PRINT ERRMSG$(ERROR): STOP
ERROR=0
:
ON ERROR RETURN: REM Give error trapping back to ZBasic
END

REMARK The advantage of using LINEINPUT# over INPUT# is its ability to receive most of the
ASCII character set. Leading linefeeds will be ignored on some systems.

If a CHR$(0) or CHR$(26) is encountered as a leading character it may assume EOF
and set ERROR = End Of File (varies by computer).

Also see INPUT#,LINEINPUT and "Keyboard Input" in the front section of the
manual.

,
These versions support an EOF function that would simplify the error trapping
techniques used above. See the appropriate appendix for details about EOF:

OPEN"I",1,"TEXT.TXT"
Counter=0
:
WHILE EOF=0: REM Read until EOF
 LINEINPUT#1, A$
 PRINT A$
WEND:CLOSE#1

Standard Reference 256

LIST command

FORMATS [L]L[IST] [+][*]
[L]L[IST] [+][*] line or label
[L]L[IST] [+][*] - line or label
[L]L[IST] [+][*] line or label - line or label

DEFINITION LIST (or L) is used from the Standard Line Editor to list the current program to the
screen. LLIST will list the current program to a printer.

+ Suppress line numbers
* Highlight keywords on the screen (some versions)

EXAMPLE YOU TYPE ZBASIC RESPONDS
LIST or L Lists complete program to the screen
LLIST Lists complete program to the printer
LIST 100-200 Lists lines from 100-200
LLIST-100 Lists lines up to 100 to printer
LIST "SUBROUTINE" Lists the line with that label
LIST 100- or L100- Lists the lines from 100 on
<period> Lists the last line listed or edited
<UP ARROW> Lists previous line (or plus <+> key)*
<DOWN ARROW> Lists next line (or minus <-> key)*
L+ Lists program without line numbers
LLIST+ Lists to printer without line numbers
L+-100 Lists up to line 100 without line numbers
<SPACE> PAUSE. <ENTER> continues
</> (slash key) PAGE AT A TIME: Lists 10 lines to the screen*

*See computer appendix for keyboard variations.

REMARK LIST automatically indents program lines two spaces between FOR-NEXT,DO-UNTIL,
WHILE-WEND,LONG IF-XELSE-END IF and LONG FN-END FN structures.

See PAGE, WIDTH,WIDTH LPRINT and the chapter; "Formatting Listings".

Note: Labels may be used in place of line numbers.

LLIST+* will format listings to an Imagewriter or Laserwriter with no line numbers and with
keywords in bold. While the output in of this format is extremely attractive and easy to
read, it should be noted that listings will take about twice as long to print.

 257 Standard Reference

command LOAD

FORMATS LOAD ["] filespec ["]
LOAD * ["] filespec ["]

DEFINITION LOAD is used from the Standard Line Editor to load a ZBasic tokenized or a regular
ASCII text file into memory.

ZBasic does not load tokenized files from other languages; the file must first be
saved in TEXT or ASCII format.

If the program does not have line numbers they are added in increments of one.

LOAD* will strip away remarks and unnecessary spaces from an ASCII file releasing
more room for the source and object code in systems with limited memory.

EXAMPLE LOAD PROGRAM <--- Loads a regular tokenized or text file
LOAD "SOURCE" <--- Double Quotes optional
LOAD* THISONE <--- Strips spaces and REM's while loading

REMARK Each operating system may require specific syntax for a drivespec.

Line numbers are optional in ASCII files.

If a program was created using another form of BASIC it must be in ASCII format
before the ZBasic editor can load it.

, ,
These version of ZBasic support a Full Screen Editor that may support other forms
of LOAD. See appropriate appendix for information about full Screen Editors.

Standard Reference 258

LOC function

FORMAT LOC (expression)

DEFINITION Returns the byte pointer position within the current RECORD of the filenumber
specified by expression.

EXAMPLE OPEN"R",1,"TESTFILE",30
RECORD#1, 6, 3 <---See illustration
PRINT LOC(1)
:
READ#1, Char$;1
PRINT LOC(1)
:
PRINT Char$
CLOSE#1

RUN

3
4
d

REMARK The LOC position is incremented to the next file position automatically when
READ#,WRITE#,INPUT#,LINEINPUT# or PRINT# are used. REC(filenumber)
returns the current RECORD. LOF returns the last record in the file. Also see "Files"
section for more information.

,
The record length limits are different for these versions. See appendix.

 259 Standard Reference

statement LOCATE

FORMAT LOCATE exprx,expry,[exprcursor]

DEFINITION Positions the cursor to the coordinates given by expry and optionally turns
on or off the cursor character (zero=off, not zero=on).

exprx The horizontal coordinate (characters across)

expry The vertical coordinate (lines down)

exprcursor Zero=cursor OFF. Non-zero = cursor ON

EXAMPLE LOCATE 0,0 <---sets cursor in upper left corner
LOCATE 10,0 <---sets Cursor 10 char to right at top
LOCATE 0,10,0 <---sets Cursor 10th line down. Cursor OFF
LOCATE 0,12,1 <---sets Cursor 12th line down. Cursor ON

REMARK This function is also useful with CLS LINE and CLS PAGE for clearing the screen to
the end of line and end of page.

See "Screen and Printer Control",PRINT@,PRINT%,INPUT@,LINEINPUT@,
LINEINPUT% and INPUT% for other ways of controlling the cursor positioning.

The ability to turn the cursor on or off may be limited by the hardware or software of
some computers.

, ,
These versions of ZBasic allow you swap the horizontal and vertical
coordinates under "Configure". This is handy for converting other BASIC
programs that use the vertical coordinate first (not Apple DOS 3.3).

Standard Reference 260

LOF function

FORMAT LOF (expression)

DEFINITION Returns the last valid RECORD number for the file specified by expression. LOF
stands for Last-Of-File.

Important Note: This function may not return the last record correctly on some
systems, especially if the record length of the file is different from the operating
system's internal record length or if a file is opened with a different record length
then that which it was opened originally. This is often remedied by simply setting
the record length to the system default record length or the record length of which it
was opened originally.

EXAMPLE See "Opening files for Append" in the "Files" section in the front of this manual for
methods of getting a pointer to the last position in a file.

REMARK LOF returns the last record in the file. The default record length is 256 and may
need to be changed to make LOF function properly.

See LOC and REC for getting file pointer information. See "Files" and "Disk Errors"
for more information. Some systems return one for both record zero and record one.

Note to better usage: If you need to keep track of the last byte position of a
sequential file or the last record of a random file, you might consider storing the last
REC and LOC of a file in record zero before it is closed. Examples:

OPEN"O",1,"Textfile.txt"
RECORD#1,1 <---Set file pointer to record one (zero will store last REC and LOC)
PRINT#1,A$","B$","X","Z# <---Save data
RECORD#1,0 <---- Position pointer to RECORD 0 to save last REC and LOC
R=REC(1):L=LOC(1)
WRITE#1, R,L <---Save pointers for future use
CLOSE#1

To add data to the end of the file later:
OPEN"R",1,"Textfile.txt"
RECORD#1,0
READ#1, R, L <--- Get last positions of file
RECORD#1, R,L <---- Position pointer to append data to the end of the file.
PRINT#1, A$ <--- Now you can append new data to the file

Don't forget to store the LOC and REC before closing! You could do the same thing
with random files by saving the last record.

Also supports: LOF(filenumber,[recordlength]). LOF(1,1) would return the length
of filenumber one in bytes.

 261 Standard Reference

function LOG

FORMAT LOG (expression)

DEFINITION Returns the natural logarithm of expression (LN). LOG is the compliment of EXP.

Common LOG10= LOG(n)\LOG(10)

EXAMPLE PRINT LOG(2)
X#=LOG(3)
PRINT X#

RUN

.69314718056
1.09861228857

REMARK LOG is a scientific function. Scientific precision may be configured by the user
differently from both single and double precision.

See "Configure" and "Math" in the beginning of this manual.

Also see COS,SIN,EXP,"^",ATN and TAN.

Standard Reference 262

LONG FN statement

FORMAT LONG FN name[(var[,var[,...]])]
.
.
END FN[= expression]

DEFINITION LONG FN is similar to DEF FN but allows the function to span over several lines. This
is useful for your own functions that you can use with ZBasic.

A re-usable, non-line-numbered function may be saved to the disk with SAVE+ and
retrieved later for use in other programs with APPEND.

The variables being passed to the function must not be arrays. The expression
must be numeric for numeric functions and string for string functions.

EXAMPLE LONG FN RemoveSpace$(x$)
 WHILE ASC(RIGHT$(x$),1)=32
 x$=LEFT$(x$,LEN(x$)-1)
 WEND
END FN= x$
:
Name$="ANDY "
:
PRINT Name$;"*"
:
Name$=FN RemoveSpace$(Name$)
PRINT Name$;"*"

RUN

ANDY *
ANDY*

REM Wait until key press. Return key in key$
LONG FN WaitKey$(key$)
 DO
 key$=INKEY$
 UNTIL LEN(key$)
END FN=key$
:
Z$=FN WaitKey$(Z$)
PRINT Z$

RUN

(returns key that was pressed)

REMARK Also see APPEND,SAVE+,DEF FN,FN statement,FN function and "Structure".

 263 Standard Reference

statement LONG IF

FORMAT LONG IF expression
.
[XELSE]
.
ENDIF

DEFINITION LONG IF allows multiple line IF-THEN-ELSE structures. Very useful for breaking
down complicated IF statements into more readable, logical structures. Two things
happen based on the result of expression:

* If expression is TRUE: Executes all the statements up to the XELSE (if used)
and then exits at the END IF.

* IF expression is FALSE: Executes all the statements between the XELSE and
END IF and then exits at the END IF. If XELSE is not
used it will simply exit at the END IF.

EXAMPLE INPUT"How old are you: ";Age%
LONG IF Age% >=30
 PRINT "You are Old aren't you !?"
XELSE
 PRINT "You're just a baby!"
END IF

RUN

How old are you: 30
You are Old aren't you!?

LONG IF Name$="Fred"
 PRINT"Hello Fred...Long time no-see!"
 PRINT"The balance you owe is";USING"$####.##";Due#
 PRINT"Thanks for asking."
XELSE
 PRINT "I don't know you! Go away!"
END IF

RUN

Hello Fred...Long Time no-see!"
The balance you owe is $1234.56
Thanks for asking.

REMARK No loop may be executed within a LONG IF construct unless it is completely
contained between a LONGIF and XELSE or between XELSE and ENDIF. The
entire LONG IF construct must be completely contained within loops or nested loops
in order to compile properly.

ZBasic will automatically indent program lines between LONG IF,XELSE and END IF
two spaces. See the chapter about "Structure" for more information.

Standard Reference 264

LPRINT statement

FORMAT LPRINT [variables , constants,...]

DEFINITION The LPRINT statement sends output to a printer.

To use LPRINT from the Standard Line Editor use a colon first (:LPRINT).

EXAMPLE LPRINT "REPORT OF THE CORPORATION"
LPRINT
LPRINT
LPRINT "SALES:";TAB(50);USING"$##,###,###.##";Sales#(1)
LPRINT
LPRINT "PROFITS:";TAB(50);USING"$##,###,###.##";Profits#(1)

RUN

REMARK Some systems may lock up if a printer is not connected. See your hardware manual
for required action.

See ROUTE 128,PRINT,LLIST,TAB,DEFTAB, PAGE, USING, WIDTH LPRINT
and POS(1).

, ,
Macintosh: See DEF LPRINT,PRCANCEL,DEF PAGE,PRHANDLE, TEXT and
ROUTE 128 in the appendix for more information about printing to the Imagewriter
and Laserwriter printers. See appendix for specifics.

MSDOS: To use more than one printer you may also use OPEN"I",1,"LPT2:" and
use PRINT#1,[variables,constants...]. Be sure to close the printer device when
finished. See MSDOS reference manual for more information about LPT2:,LPT1:
and any other devices you may have available for your hardware.

Apple ProDOS and DOS 3.3: See DEF LPRINT for setting the printer slot.

 265 Standard Reference

statement MACHLG

FORMAT MACHLG{[bytes,...]} -or- {[words,...]} -or-{[variables][,...]}

DEFINITION The MACHLG statement is used to insert bytes directly into a compiled program.
These bytes may be machine language programs, variables or other items.

It may be used to insert machine language into memory without using POKE.

bytes Numbers from 0 to 255

words Numbers from 0 to 65535. They are stored in standard format

variables Will create the address where the variable is located. See
appendix for specifics.

Note: ZBasic uses registers when calculating elements of an
array variable. Contents of these registers may be destroyed.

EXAMPLE X = LINE "Machine Language Routine"
FOR I = 0 TO 10
 PRINT PEEK(X+I);
NEXT I
END
:
"Machine Language Routine"
MACHLG 0,1,2,3,4,5,6,7,8,9,10

RUN

0 1 2 3 4 5 6 7 8 9 10

REMARK
See LINE,CALL,USR,DEFUSR,PEEK,POKE and the chapter about "Machine
Language" in the technical section of this manual.

Important Note: Use of this statement requires knowledge of the machine
language of the computer you are using. Machine language may not be portable to
other computers.

, ,
Macintosh: Since the Macintosh is a 32 bit machine, MACHLG puts the code into
word, not byte, positions.

MSDOS: See DEF SEG in appendix.

Apple ProDOS: See section entitled Machine Language Interface in appendix.

Standard Reference 266

MAYBE function

FORMAT MAYBE

DEFINITION MAYBE is a random function that returns either a TRUE(-1) or FALSE(0) with equal
probability.

MAYBE is faster than RND, convenient, and requires little program space.

EXAMPLE DEFTAB = 8: DIM Coin$(1)
Coin$(0)="HEADS":Coin$(1)="TAILS"
:
"Flip a Coin"
DO
 X=X+1
 PRINT Coin$(MAYBE+1),
UNTIL X=25
END

RUN

HEADS HEADS TAILS HEADS TAILS
TAILS TAILS TAILS HEADS HEADS
TAILS TAILS HEADS TAILS TAILS
HEADS HEADS HEADS HEADS TAILS
HEADS TAILS TAILS TAILS HEADS

REMARK This function is useful anytime a 50% random factor is needed.

MAYBE with logical operators:

MAYBE 50% TRUE 50% FALSE
MAYBE AND MAYBE 25% TRUE 75% FALSE
MAYBE OR MAYBE 75% TRUE 25% FALSE

 267 Standard Reference

command MEM

FORMAT MEM[ORY]

DEFINITION Typing either MEM or MEMORY in command mode will return information about
system memory use.

TEXT The number of bytes being used by the source code. The
source code is that part of the program that you type in.

MEMORY The number of bytes remaining for program use (varies; see your
computer appendix for details).

OBJECTThe size of the object code after compiling.
Valid only immediately after RUN.

VARIABLES The number of bytes required for variables. INDEX$ array, and
disk I/O buffers. This varies dramatically by version. See
computer appendix. Valid only immediately after RUN.

EXAMPLE MEM

00046 Text
41244 Memory
00039 Object
00388 Variable
(some versions may display more information)

REMARK These numbers are relative to that version of ZBasic being used. Varies significantly
by computer.

See your computer appendix for more information.

Also see MEM function,CLEAR,CLEAR INDEX$,CLEAR END,LOAD* and the
chapter about "Converting Old Programs".

Standard Reference 268

MEM function

FORMAT MEM

DEFINITION Returns the number of bytes available in the INDEX$ array.

EXAMPLE CLEAR 1000
PRINT MEM
A= MEM
INDEX$(0) = STRING$(49,"*")
PRINT MEM

RUN

1000
950

REMARK See also INDEX$, MEM command, and CLEAR INDEX$. This function varies by
version. See appendix for specifics.

MEM(index number) returns the memory available to that INDEX$ (there are ten
available on the Macintosh).

MEM(-1): Returns the maximum amount of memory available for variables. Also
forces unloading of all unlocked memory segments. Returns a LongInteger.

INDEX$ has many enhancements with this version. See appendix.

See appendix for various additions to the MEM function that return memory pointers
to arrays, strings, BCD variables and more.

 269 Standard Reference

command MERGE

FORMATS MERGE ["] filespec ["]
MERGE* ["] filespec ["]

DEFINITION MERGE is used to overlay a line numbered TEXT/ASCII program from disk onto the
current program text in memory. Program being merged must be in ASCII (saved
with SAVE*).

Incoming txt with the same line number(s) as resident text will replace resident text.

The asterisk is used to strip spaces and REM's from the incoming program.

EXAMPLE 010 REM Program one
120 DO
130 I$=INKEY$
140 UNTIL LEN(I$)
SAVE* "PROG1"
NEW

10 REM Program two
20 PRINT "MAIN MENU"
30 PRINT
40 PRINT "1. Do Inventory"
50 PRINT "2. Print Inventory"
60 PRINT "3. Delete Inventory"
MERGE "PROG1"
LIST

00010 REM Program one <---- Line from first program overwrote this line
00020 PRINT "MAIN MENU"
00030 PRINT
00040 PRINT "1. Do Inventory"
00050 PRINT "2. Print Inventory"
00060 PRINT "3. Delete Inventory"
00120 DO <---First program merged here
00130 I$=INKEY$
00140 UNTIL LEN(I$)

REMARK MERGE has the same affect as manually typing in text.

Programs that were written in another BASIC must be in ASCII format before being
MERGED into ZBasic.

Also see LOAD,SAVE*,RENUM,APPEND and DELETE

Standard Reference 270

MID$ function

FORMAT MID$ (string , expr1[,expr2])

DEFINITION Returns the contents of string starting at position expr1, and expr2 characters long.

string The string from which the copy will occur.

expr1 The distance from the left that the copy will begin.

expr2 Optional parameter that determines how many characters will be
copied. If omitted, all characters from expr1 to the end of the
string will be copied.

EXAMPLE A$="The Sun Shines Bright"
:
PRINT MID$(A$,5,3)
:
Z$=MID$(A$,15)
PRINT Z$
:
FOR Pointer = 1 TO LEN(A$)
 PRINT MID$(A$,Pointer,1)
NEXT

RUN

Sun
Bright
T
h
e

S
u
n
.
.
.
__

INPUT"First and Last name please:";Name$
PRINT "Thank you Mr. ";MID$(Name$,INSTR(1,Name$," ")+1)

RUN

First and Last name please: Fred Smith
Thank you Mr. Smith

REMARK See LEFT$,RIGHT$,INSTR,LEN, STR$ and the MID$ statement.

 271 Standard Reference

statement MID$

FORMAT MID$ (string1, expr1[,expr2]) = string2

DEFINITION Replace a portion of string1 starting at expr1, with expr2 characters of string2.

string1 Target string. String2 will be inserted or layed over this string.

string2 String to be inserted or layed over string 1.

expr1 Distance from the left of string1 where overlay is to begin

expr2 How many characters of string2 to insert into string1. Using 255
will assure that all characters are used.

EXAMPLE A$ = "SILLY BOY"
B$ = "SMART"
:
MID$(A$,1,5) = B$
PRINT A$

RUN

SILLY BOY
SMART BOY

REMARK This function is very useful for altering selected portions of strings.

Also see RIGHT$,LEFT$,MID$ function,STR$,INSTR,VAL,LEN,SPACE$,
STRING$.

Standard Reference 272

MKB$ function

FORMAT MKB$ (expression)

DEFINITION Returns a string which contains the compressed floating point value of a ZBasic BCD
expression.

This function works with either single or double precision. The amount of string
space used will vary depending on the digits of precision configured. See
"Configure".

To return the floating point values stored in strings use the CVB function.

EXAMPLE A$=MKB$(991721.645643)
PRINT "The length of A$=";LEN(A$)
X!=CVB(A$)
PRINT X!
:
PRINT
:
B$=MKB$(991721.645643)
PRINT "The length of B$=";LEN(B)
X#=CVB(B$)
PRINT X#

RUN

The length of A$=4 <--- Value returned depends on configured precision
991722

The length of B$=8 <--- Value returned depends on configured precision
991721.645643

REMARK Since ZBasic automatically compresses and decompresses BCD variables when
using READ# and WRITE#, this function is of primary interest to those people that
need to conserve memory for other reasons.

See also CVB,CVI,READ#,WRITE# and MKI$.

See your appendix for default accuracy and variations.

 273 Standard Reference

function MKI$

FORMAT MKI$ (expression)

DEFINITION Returns a two character string which contains a two byte integer specified by
expression.

To extract the integer stored in a string with MKI$, use the CVI function.

EXAMPLE A$=MKI$(12345)
PRINT"Length of A$=";LEN(A$)
B%=CVI(A$)
PRINT B%
PRINT
:
A$=STR$(12345)
PRINT "Length of A$=";LEN(A$)
PRINT VAL(A$)

RUN

Length of A$=2
 12345 <--- MKI$ saves space...(4 bytes compared to below)

Length of A$=6
 12345 <--- Leading blank reserved for the "SIGN"

REMARK Used in older versions of BASIC to convert integers to strings for FIELD statements.
ZBasic does this automatically when using READ# and WRITE#. Nevertheless,
MKI$ and CVI are still useful for packing strings to save memory-- especially on
systems with limited memory.

See also CVI,CVB,READ#, WRITE# and MKB$.

Use DEFSTR LONG to allow MKI$,CVI,HEX$,OCT$ and BIN$ to work with
LongIntegers. Use DEFSTR WORD to set back to regular integer. Note that MKI$
returns a four byte string with LongIntegers.

Standard Reference 274

MOD operator

FORMAT expression1 MOD expression2

DEFINITION MOD returns the remainder of an integer division with the sign of expression1.

EXAMPLE PRINT "9 DIVIDED BY 2=";INT(9/2);"REMAINDER =";9 MOD 2

RUN

9 DIVIDED BY 2= 4 REMAINDER= 1

PRINT "-4 DIVIDED BY 2=";INT(-4/2);"REMAINDER=";-4 MOD 2

RUN

-4 DIVIDED BY 2= -2 REMAINDER= 0

REMARK MOD replaces the old BASIC routines for finding the remainder of a division and is
also much faster:

OLD BASIC: X = (X - INT(X/N) * N)

ZBasic: X = X MOD N

 275 Standard Reference

statement MODE

FORMAT MODE expression

DEFINITION MODE is used to set the screen graphics or text format.

Most computers offer a number of different character and/or graphic modes. Use
MODE to choose the mode most applicable to the program.

For most systems EVEN modes are character graphics and ODD modes are regular
graphics. Not all machines have graphic capability. MODE for some popular
microcomputers:

REMARK MODE will reset COLOR to the default, usually the darkest background and lightest
foreground, and may clear the screen with some systems.

,
Macintosh: MODE is ignored with the Macintosh. See the TEXT statement for
setting character styles and sizes. To emulate other computers you will probably
want to use Monaco or Courier mono-spaced fonts. TEXT font, size, face, mode.

MSDOS: Modes 16-19 support EGA modes. Mode 20 supports Hercules graphics.
See appendix for details.

Standard Reference 276

MOUSE function

FORMAT MOUSE (expression)

DEFINITION Returns information concerning the position and status of a MOUSE or JOYSTICK if
one is connected to the system. The following values are returned.

MOUSE(0) Initializes the MOUSE on some systems (initialization is required
on the Apple // ProDOS and DOS 3.3 versions).

MOUSE(1) Returns the horizontal coordinate of the mouse.

MOUSE(2) Returns the vertical coordinate of the mouse.

MOUSE(3) Returns 0 if button not pressed. Non-zero if button pressed.

EXAMPLE MODE 5 :REM GRAPHIC MODE
CLS
X= MOUSE (0) <---Initialize mouse
:
WHILE LEN(INKEY$)=0 <--- Press any key to stop
 LONG IF MOUSE (3) <--- If button down then ok to draw
 PLOT MOUSE (1), MOUSE (2) <--- Plot where mouse (or joystick) is.
 END IF
WEND

REMARK The above example uses a mouse to draw on the screen. A joystick may also be
used (depending on the system). See your computer appendix for hardware
device specifics that may apply to these functions.

Also see DEF MOUSE.

, , ,
Macintosh Note: You may use the mouse functions above or configure ZBasic for
MSBASIC Mouse compatibility using DEF MOUSE=1. See Mac Appendix.

MSDOS: Compatible with Microsoft Mouse. ZBasic has to be configured to support
a mouse. See "Configure" in MSDOS appendix. If MOUSE(0) <> 0 then a mouse is
installed. MOUSE(3) return 0-3; Zero if both buttons up, three if both buttons
down, one or two if one button is pressed. MOUSE(4) and MOUSE(5) hide and
show the mouse cursor. DEF MOUSE=0 for Mouse, 1 or 2 for joysticks, 3 for
lightpens.

Apple ProDOS and DOS 3.3: Compatible with AppleMouse or joysticks. Use
DEF MOUSE=0 for AppleMouse or DEF MOUSE=1 for Joysticks. If using a joystick
MOUSE(3) returns 0-3. Zero if both buttons up, three if both buttons down, one or
two if one button pressed. See appendix for specifics.

Z80: MOUSE IS NOT SUPPORTED with Z80 versions of ZBasic.

 277 Standard Reference

statement NAME

FORMAT NAME string1 AS string2

DEFINITION Renames a file with a filename of string1 to string2. Same as the RENAME statement
except for syntax. This statement is provided to make ZBasic compatible with other
BASIC languages.

EXAMPLE DIR

FRED.BAS TOM.BAS
DICK.BAS HARRY.BAS

NAME FRED.BAS AS GEORGE.BAS

DIR

GEORGE.BAS TOM.BAS
DICK.BAS HARRY.BAS

REMARK See RENAME for more information.

,
Not available on Apple // or Z80 versions of ZBasic. See RENAME.

Standard Reference 278

NEW command

FORMAT NEW

DEFINITION NEW is used to clear the text buffer of the current program.

Since programs that have been erased in this manner are impossible to recover,
SAVE your program first!

EXAMPLE LIST+

CLS
PRINT"THIS IS A PROGRAM ';
PRINT"WHICH IS ABOUT TO BE LOST FOREVER AND EVER..."
END

NEW
LIST

(Nothing listed...)

REMARK Use this command with care. See LOAD.

 279 Standard Reference

statement NEXT

FORMAT FOR var = expression1 TO expression2 [STEP expression3]
.
.
NEXT [variable ,[variable ...]]

DEFINITION The NEXT statement is used as the end marker of a FOR loop. There must be a
matching NEXT for every FOR, otherwise a Structure Error will occur at compile time.

EXAMPLE FOR Count1= 1 TO 2
 FOR Count2 = 2 TO 4 STEP 2
 PRINT Count1, Count2
NEXT Count2, Count1

RUN

1 2
1 4
2 2
2 4
__

FOR X= 1 TO 2
 FOR Y= 1 TO 2
 PRINT X,Y
 NEXT
NEXT

RUN

1 1
1 2
2 1
2 2

REMARK The variable(s) following the NEXT statement are optional; however, if used they
must match the corresponding FOR variable(s).

A FOR-NEXT loop will execute AT LEAST ONCE!

A Structure Error will specify the line number if there is an extra NEXT, or will specify
line 65535 if a NEXT is missing. ZBasic automatically indents all loop structures
when you LIST your program. This may be used to find where the missing NEXT is
located by simply following the program listing back to the point where the extra
indent ends.

See "Loops" in the front of this manual and; WHILE-WEND, DO-UNTIL, LONGIF-
XELSE-ENDIF for other loop and structure types.

Standard Reference 280

NOT operator

FORMAT NOT expression

DEFINITION NOT returns the opposite of expression. True is False, False if TRUE. This is
equivalent to changing a logical true (-1) to a logical false(0) and vice versa.

With Boolean (binary) operations, the NOT function will toggle all bits in expression.
That is, all bits that are one will be changed to zero, and all bits that are zero will be
changed to one.

EXAMPLE A$="Hello"
IF NOT A$="Bye" THEN PRINT"True, it is False"
END

RUN

True, it is False

REMARK A logical true is -1 and logical false is 0. Also see XOR,OR,AND.

NOT condition TRUE(-1) if condition FALSE, else FALSE(0) if TRUE

NOT BOOLEAN "16 BIT" LOGIC
NOT 1 = 0 NOT 11001100 NOT 01111011
NOT 0 = 1 = 00110011 = 10000100

Will also function with 32 bit LongIntegers.

 281 Standard Reference

function OCT$

FORMAT OCT$ (expression)

DEFINITION OCT$ returns a 6 character string which represents the Octal value (base 8) of the
result of expression truncated to an integer. Octal digits are from 0-7.

OCTAL DECIMAL equivalent
0-7 0-7
10 8
11 9
12 10
13 11
14 12
15 13
16 14
17 15
20 16

EXAMPLE The following program will convert a decimal number to Octal or an Octal number to
decimal:

CLS
DO
 INPUT"Decimal number: ";Decimal%
 PRINT "Octal Equivalent: ";OCT$(Decimal%)
 :
 INPUT"Octal number: ";Octal$
 Octal$="&O"+Octal$
 PRINT"Decimal Equivalent: ";VAL(Octal$)
UNTIL (DECIMAL%=0) OR (LEN(Octal$)=2)

RUN

Decimal number: 8
Octal Equivalent: 000010

Octal number: 100
Decimal Equivalent: 80

REMARK Conversions are possible from any base to any other base that ZBasic supports.

See the Chapter "Numeric Conversions" in the front of this manual. See also BIN$,
HEX$ and UNS$.

Use DEFSTR LONG if you want to use OCT$,HEX$,BIN$,UNS$,MKI$or CVI with
LongIntegers. Use DEFSTR WORD to set back to regular integer.

Standard Reference 282

ON ERROR statement

FORMAT ON ERROR GOSUB Line or label
ON ERROR Return
ON ERROR GOSUB 65535

DEFINITION The ON ERROR allows the user to enable and disable disk error trapping. If ON
ERROR is not used ZBasic will display disk errors as they occur and give the user the
option of continuing or stopping. Options offered with ON ERROR:

ON ERROR GOSUB 65535 Enable user disk error trapping. Errors are returned
using the ERROR function. You must check for
errors---ZBasic will not when this parameter is set.

ON ERROR GOSUB line If a disk error occurs the program does a GOSUB to
the line or label specified.

ON ERROR RETURN Disable user disk error trapping. ZBasic will trap the
disk errors and give error messages at runtime.

EXAMPLE ON ERROR GOSUB 65535: REM Enable disk error trapping
"Start"
OPEN "I" ,1, "TEST"
IF ERROR GOSUB"Disk error"
GOTO "Start"
program continues...
:
:
"Disk error"
LONG IF (ERROR AND 255)=3: REM Check for File not found error
 PRINT"Check that correct diskette is in drive: <ENTER>";
 DO
 UNTIL LEN(INKEY$)
 ERROR=0:RETURN
XELSE
 PRINT"A Disk Error has occured:";ERRMSG$(ERROR)
 PRINT"<C>ontinue or <S>top?";
 DO
 temp$=UCASE$(INKEY$)
 UNTIL (temp$="C") OR (temp$="S")
 IF temp$="C" THEN ERROR=0: RETURN
END IF
PRINT"Program aborted!"
ERROR=0
STOP

REMARK Also see ERROR and ERRMSG$ and the chapter about "Disk Error Trapping" in the
"Files" section of the manual.

See RETURN line for another way of returning from ON ERROR GOSUB line.

Important Note: Always remember to set ERROR=0 after a disk error occurs when
you are doing the disk error trapping. Failure to do this will cause ZBasic to continue
to return a disk error condition.

 283 Standard Reference

statement ON GOSUB

FORMAT ON expression GOSUB line [, line[, line...]]

DEFINITION The ON GOSUB statement is used to call one of several subroutines depending on
the value of expression.

The ON statement will call the first subroutine if the expression evaluates to one, to
the third subroutine if the expression evaluates to three and so on.

The RETURN statement at the end of a subroutine will return the program to the
statement immediately following the ON GOSUB.

EXAMPLE "Inventory Menu"
CLS
PRINT "1. Inventory"
PRINT "2. Print Listing"
PRINT "3. Month End"
PRINT "4. EXIT
PRINT
PRINT "Enter item wanted: ";
:
DO
 Item%=VAL(INKEY$)
UNTIL (Item% >0) AND (Item% <5)
:
ON Item% GOSUB "Inventory","Print","EOM","Exit"
GOTO "Inventory Menu"
END
:
"Inventory"
RETURN
:
"Print"
RETURN
:
"EOM"
RETURN
:
"Exit"
END

REMARK ZBasic will truncate expression to an integer. For example, if expression equaled
1.9, the ON statement would go to the first line (INT(1.9)=1).

If expression <=0 or > (number of line numbers listed), the program will continue
on to the next statement in the program.

Standard Reference 284

ON GOTO statement

FORMAT ON expression GOTO line [,line[, line...]]

DEFINITION The ON GOTO statement is used to branch, or jump, to one of several portions of a
program depending on the value of expression.

The ON statement will jump to the first subroutine if the expression evaluates to one,
to the third subroutine if the expression evaluates to three, and so on.

EXAMPLE A=RND(4)
ON A GOTO "ONE", "TWO", "THREE", "Last"
END
:
"ONE"
PRINT 1
END
:
"TWO"
PRINT 2
END
:
"THREE"
PRINT 3
END
:
"Last"
PRINT 4
END

RUN

4

REMARK ZBasic will truncate expression to an integer. For example, if expression equaled
1.9, the ON statement would go to the first routine (INT(1.9)=1).

If expression <=0 or > (number of line numbers listed), the program will continue
on to the next statement in the program.

See "Structure".

 285 Standard Reference

statement OPEN

FORMAT OPEN "I", [#] filenumber, filename [,record length]
OPEN "O", [#] filenumber, filename [,record length]
OPEN "R", [#] filenumber, filename [,record length]

DEFINITION The OPEN statement is used to access a data file. Once a file is opened, information
may be read from or written to the file depending on the way the file was opened.
The first argument determines access:

"R" Read/write file: Open file if it exists, create the file if it doesn't.

"I" Read only file: Open file for input. If file doesn't exist, a disk error
occurs (file not found error).

"O" Write only file: Open file for output. Overwrites the old file.

filenumber The number you assign to a file which is subsequently used with
file commands like READ#,WRITE#,INPUT#,LINEINPUT#,
PRINT#,REC,LOC and LOF.

filename The filename as it appears in a directory. See your DOS manual
and the appendix in this manual for information about drive
specifiers, pathnames, sub-directories or whatever syntax is
used for that computer.

record length Optional record length to be used with that file (default is 256).

EXAMPLE REM Open a file for READ and WRITE
OPEN "R",1,"INVEN", 180
:
REM Open a file for Input only
OPEN "I", File%, D$+"INVEN", 180
:
REM Open a file for Output only
OPEN "O",2, Filename$

REMARK To configure ZBasic to have more than two files open at a time; see "Configure".
Each file buffer will require between 160 and 1024 bytes of memory depending on
the Disk Operating System and your version of ZBasic. No more than 99 files may be
open at one time.

See your computer appendix for more information about file types, changing
directories and more. Also see INPUT#,PRINT#,READ#,WRITE#,LOC and REC.

TO INSURE DATA INTEGRITY, ALWAYS CLOSE OPEN FILES BEFORE EXITING
YOUR PROGRAM.

continued...

Standard Reference 286

OPEN statement

OPEN continued

 Macintosh: Extra parameters included:

volume% The number you get from FILES$ that sets the folder or root
location of the file. Much easier than pathname specifiers. See
appendix for details. Also see FILE$, EJECT,EOF,LOF,"File
size",APPEND and pathnames. Example of volume number:

OPEN"type", fnum, "filename", 200, volume%

Additional types "R[R]","O[R]","I[R]","A[R]" and "R[D]","O[D]","I[D]","A[D]"
The optional "R" or "D" after the file type specifies opening the
resource fork (R) or data fork (D). The data fork is the default. See
appendix for specifics. The "A" type opens a file for append.
Also see APPEND for positioning the file pointer to the end.

Pathnames Pathnames are supported like: Root:Folder:Fred

 MSDOS : The are may ways to specify, create or remove directories
and sub-directories. See PATH$, CHDIR,MKDIR and RMDIR in the appendix.
__

 Apple ProDOS: See PATH. Filenames may contain pathname
information like: PROFILE/ZBASIC/SOURCE. See appendix for details.

Apple DOS 3.3 uses CP/M type drivespecs like: A: instead of D1, B: instead of
D2, etc. Filetype is specified by a leading exclamation mark and a number:

OPEN"-",filenumber, "[[!type][drivespec] filename", record length

!type= 1= Text file 5= S type file
2= Integer BASIC 6= Relocatable file type
3= Applesoft BASIC 7= A type file
4= Binary file 8= B type file

Example: OPEN"-", fnum, "!4 A:FRED", 200
__

 CP/M-80 : You may use a drive specifier in the filename:
OPEN"-",n,"A:Fred.DAT", 200

TRS-80 : You may use a drive specifier in the filename:
OPEN"-",n,"Fred/DAT.password:1",200

 287 Standard Reference

statement OPEN "C"

FORMAT OPEN "C",-1 or -2[,[baud rate][,[parity][,[stopbit][,word length]]]]

DEFINITION This statement is used to set serial communication port parameters. If any of the
parameters are omitted the default will be used.

-1 Serial port one
-2 Serial port two

baud rate 110, 150, 300(default), 600, 1200, 2400, 4800, 9600

parity 0 = none<-- default
1 = odd
2 = even

stopbit 0 = one <-- default
1 = two

word length 0 = 7 bits
1 = 8 bits <-- default

EXAMPLE REM A Very Cheap Terminal Program
OPEN"C",-1, 300 <---Change parameters as needed
DO
 READ#-1, A$;0 <---(;0) Won't "Hang" if nothing at port
 IF LEN(A$) THEN PRINT A$;
 :
 A$=INKEY$
 IF LEN(A$) THEN PRINT#-1,A$;
UNTIL A$="]" <--- Set a key to stop

REMARK Serial ports may be accessed using the same statements used in disk I/O: PRINT#
INPUT#,LINE INPUT#,READ#, and WRITE#. In all of these statements, the port is
not read or written to until the status indicates that the port is ready.

The one exception to the paragraph above is when READ# is used to read a string
of zero length. In this case, the character will be returned if ready, otherwise a null
string will be returned (similar to the INKEY$ function) (Not supported with CP/M).

A port does not have to be opened in order to be accessed. The OPEN "C"
statement is used only to set the current port parameter values. Without this
statement, the port will simply use the parameters to which it was last set.

All versions have a number of machine specific parameters. See appendix for
important details.

continued...

Standard Reference 288

OPEN "C" statement

OPEN "C" continued

The following are examples of sending or receiving files over a modem or serial line.
Check appendix and hardware manuals for specifications.

Add your own line numbers, and modify programs as needed. Save with SAVE+ to
use later.

SEND FILES TO ANOTHER COMPUTER
"SEND FILES"
LINEINPUT"File to send: ";File$
IF LEN(File$)=0 THEN STOP: REM No file? STOP
:
OPEN"I",1,File$
ON ERROR GOSUB 65535: REM Catch errors
:
OPEN"C",-1,300: REM Change parameters as needed
:
DO
 LINEINPUT#1, Line$
 IF LEN(Line$) THEN PRINT#-1, Line$
 DO <---- This DO loop is an example of "Handshaking" remove
 READ#-1,A$;0 this loop, and the PRINT# below, if not needed.
 UNTIL ASC(A$)=1
UNTIL ERROR
:
IF ERROR=0
CLOSE#1
PRINT#-1,"*END*": REM Tell receiver "All Done!"
RETURN

RECEIVE FILES FROM ANOTHER COMPUTER
"RECEIVE FILES"
LINEINPUT"Filename to Receive: ";File$
IF LEN(File$)=0 THEN STOP: REM No File? STOP
:
OPEN"O",1,File$
:
OPEN"C",-1,300: REM Change parameters as needed
:
DO
 LINEINPUT#-1, Line$
 IF Line$<>"*END*" THEN PRINT #1, Line$
 PRINT#-1, CHR$(1); <--- Goes with "Handshaking" DO Loop above.
UNTIL (Line$="*END*")
:
CLOSE#1
RETURN

 289 Standard Reference

operator OR

FORMAT expression OR expression

DEFINITION Performs a logical OR on the two expressions for IF THEN testing and BINARY
operations. If either or both conditions are true the statement is true. See truth table
below.

In binary/boolean operations if either bit is one than a one is returned.

EXAMPLE A$="HELLO"
IF A$="GOODBYE" OR A$="HELLO" THEN PRINT"YES"

RUN

YES

REMARK Truth table for the OR function.

condition OR condition TRUE(-1) if either or both is TRUE, else FALSE(0)

OR BOOLEAN "16 BIT" LOGIC
1 OR 1 = 1 00000001 10000101
0 OR 1 = 1 OR 00001111 OR 10000111
1 OR 0 = 1 = 00001111 = 10000111
0 OR 0 = 0

Also see AND,XOR and NOT.

Functions with 32 bit LongInteger as well.

Standard Reference 290

OUT statement

FORMAT OUT port,data

DEFINITION The OUT statement sends data to the specified port number.

EXAMPLE OUT 1,12
:
A=6:B=9
OUT A,B
:
OUT A/2,B/3
END

REMARK This statement is microprocessor dependent and works only with Z80 and 8086
type processors.

Also see INP for a way of reading data in from the port.

,
Not supported with these versions.

 291 Standard Reference

statement PAGE

FORMAT PAGE

DEFINITION Returns the current line position of the printer. The first line is line zero.

EXAMPLE PAGE <---Also see PAGE statement
PRINT PAGE
LPRINT
LPRINT
LPRINT
PRINT PAGE

RUN

0
3

REMARK This function is similar to POS except the line position is returned instead of the
character position.

Important Note: If your operating system uses forms control and checks lines per
page, you must disable the operating systems forms control or ZBasic's PAGE.

See CSRLN in the MSDOS appendix for getting the line position of the screen
cursor.

Standard Reference 292

PAGE function

FORMATS PAGE [[expression1][,[expression2][,[expression3]]]]

DEFINITION PAGE is used to format output to the printer and to control the number of actual
lines per page, printed lines per page and top margin. Following is a description of
the parameters:

PAGE Without parameters will send a page feed to the printer. this
forces the print head to move to the defined position of the top
of the next page.

expression1 The number of printed lines per PAGE

expression2 The number of actual lines per PAGE. Also resets the count to
zero (normally 66 lines per page).

expression3 Lines for the top margin. This number is a subset of
expression1. If the line count is zero, this many linefeeds will be
output immediately.

EXAMPLE PAGE 60,66,3 <--- Sets Listings to 60 lines per page
with 3 lines as top margin. Skips perforations nicely.

REMARK WIDTH LPRINT should be set to your printer's character width for proper PAGE
operation when doing LLIST.

See PAGE function.

To disable PAGE use PAGE 0

Important Note: If your operating systems uses forms control and checks lines
per page, you must disable the operating systems forms control or ZBasic's PAGE.

 293 Standard Reference

PATH

FORMATS PATH

DEFINITION PATH or PATH type commands are available on many versions of ZBasic that
support multi-level directories. Rather than give the exact syntax for each machine
this page gives a general overview. See your computer appendix for specifics.

MSDOS See PATH$ function in the appendix. This allows you to get the
current path name so that you can return to that sub-directory.
Syntax is PATH$(drive number). Note: Drive A=1, B=2, ...

Pathname syntax example: C:\ZBasic\TEMP

Apple ProDOS See PATH command in the appendix. Also see the example
function on the master disk called: PREFIX.SAMPLE for ways of
getting ProDOS pathnames during runtime.

Pathname syntax example: /PROFILE/ZBASIC/OBJECT

Pathnames not supported with DOS 3.3 version.

Macintosh The most appropriate way of specifying where a file is located is
using the volume number. This is recommended in "Inside
Macintosh". Volume numbers are obtained easily using the
FILES$ function. See Macintosh appendix.

Nevertheless, pathnames are supported and may be used.

Pathname syntax example: Fred:Tom:Harry

Z80 Pathnames are not supported since the operating systems for
this CPU do not currently implement sub directories.

EXAMPLE See your appendix for examples.

REMARK This command varies significantly by computer type.

See DIR,OPEN and also be sure to see your appendix for specifics.

,
Pathnames are not supported with Apple DOS 3.3 or Z80 versions of ZBasic.

Standard Reference 294

PEEK function

FORMAT PEEK [WORD] (expression)
PEEK LONG (expression)*

DEFINITION Returns the contents of the memory location(s) specified by expression:

PEEK Returns a one byte number (0-255)
PEEK WORD Returns a two byte number (-32768 to 32767)
PEEK LONG* Returns a four byte number (*32 bit versions)

EXAMPLE X=VARPTR(A$) <---Get a safe place in memory to play with
:
POKE X, 10
POKE WORD X+1, 12000
:
PRINT PEEK(X)
PRINT PEEK WORD(X+1)

RUN

10
12000

REMARK See POKE,POKE WORD and POKE LONG,USR,MACHLG,CALL,LINE,HEX$,
OCT$,UNS$ and the section in the front of this manual; "Machine Language".

Important Note: This function is for people experienced with machine language
and the hardware of their computer.

,
*Macintosh: Always use LongIntegers for expressions to pass an address or to
retrieve a four byte LongInteger. See appendix.

MSDOS: An extra parameter is available to determine the segment of the variable:
PEEK[WORD] (address,segment). Also see MEM and DEF SEG in the appendix.

 295 Standard Reference

statement PLOT

FORMAT PLOT expr1,expr2 [TO expr3,expr4...]
PLOT [TO] expr1,expr2 [TO expr3,expr4...]

DEFINITION The PLOT statement is used to draw either one graphic point, or a line between two
or more points, in the current COLOR. Examples:

PLOT 10,12 <-- PLOT one point at position 10,12
PLOT 10,12 TO 100,100 <-- PLOT a line from 10,12 to 100,100
PLOT 10,12 TO 10,90 TO 1,1 <-- PLOT two lines: 10,12 to 10,90, to 1,1
PLOT TO 10,12 <-- PLOT a line from last position to 10,12

EXAMPLE CLS
MODE 5 <---Set graphics mode
PLOT 209, 304 <--- Plots one pixel
:
COLOR -1 <--- Sets COLOR to foreground
REM PLOT and angle
PLOT 209,304 TO 987, 643 TO 322,742
END

RUN

See illustrations on the following page.

REMARK As with all other ZBasic graphic commands, Device Independent Graphic
coordinates of 1024 by 768 are the default. Expressions are truncated to an
integer. Character type graphics will be substituted on computers, or modes,
without graphic capabilities.

Also see CIRCLE,BOX,FILL,POINT,COLOR.

, , ,
Macintosh: Use COORDINATE WINDOW to set the pixel graphics. Use
COORDINATE to set your own relative coordinates or to set back to 1024x768. The
upper left-hand corner of a WINDOW is coordinate 0,0.

MSDOS: Use COORDINATE WINDOW to set pixel coordinates. See
COORDINATE to set relative coordinates or to set back to ZBasic coordinates.

Z80: POKE $xx3F, &C9 for pixel coordinates. POKE $523F, &C3 to set back to
ZBasic coordinates. xx= CP/M=01, TRS-80 model 1,3=52, TRS-80 model 4=30.

Apple // ProDOS: POKEWORD &85, 0 for pixel coordinates. Use MODE to set
back to ZBasic coordinates.

Apple / / DOS 3.3: POKE &F388,&60 for pixel coordinates. POKE &F388, &A9
to set back to ZBasic coordinates.

Standard Reference 296

PLOT statement

PLOT continued

 297 Standard Reference

function POINT

FORMAT POINT (expression1, expression2)

DEFINITION Point is available on many computers to inquire about the COLOR of a specific
screen graphic position. As with other commands, ZBasic Device Independent
Graphic coordinates may overlap pixels.

In the example: 0=Background (white here), 1 =Forground (black here)

As with all other ZBasic graphic commands, the device independent coordinate
system of 1024 X 768 is the default.

EXAMPLE COLOR 1
PLOT 0,0 to 900,767
PRINT POINT(0,0)

RUN

1

REMARK If the coordinate is outside screen coordinates, a -1 will be returned.

See COLOR,BOX,CIRCLE and the section; "Graphics".

See COORDINATE or PLOT for ways of converting some versions of ZBasic to pixel
coordinates that can used with POINT.

POINT is not available for CP/M versions (including Kaypro graphic versions).

Standard Reference 298

POKE statement

FORMAT POKE [WORD] expression%,expression2
POKE LONG expression&,expression2&*

DEFINITION POKE writes the value of expression2 into a memory location. The first expression
is the address to POKE. The expression2 is the data to POKE.

TYPE expression2
POKE One byte
POKE WORD Two bytes
POKE LONG* Four bytes (*32 bit machines only)

EXAMPLE X = 12345: XA = VARPTR(X)
PRINT"Byte at ";UNS$(XA);" =";PEEK(XA)
:
POKE XA,99
PRINT"Byte at ";UNS$(XA);" =";PEEK(XA)
:
POKE WORD XA,44444
PRINT"WORD at ";UNS$(XA);" =";UNS$(PEEK WORD(XA))
END

RUN

Byte at 59009 = 57
Byte at 59009 = 99
Byte at 59009 = 44444

REMARK Also see PEEK,PEEK WORD,PEEK LONG,MACHLG,CALL,LINE and the
chapter "Machine Language" at the beginning of this manual.

Important Note: Indiscriminate use of this command may cause unpredictable
computer operation and loss of data or program. This statement is for experienced
machine language programmers only. Porting of programs with POKE is not
recommended.

,
*Macintosh: Always use LongIntegers for addresses and when using POKE
LONG or PEEK LONG.

MSDOS: There is an optional parameter for segment:
POKE[WORD] address , data, segment. See MEM and DEF SEG in the appendix.

 299 Standard Reference

function POS

FORMAT POS (byte expression)

DEFINITION Returns the current horizontal cursor position, from zero to 255, for a screen
printer or disk file.

The expression specifies a device as follows:

POS(0) Default device (normally the video monitor)
POS(1) Printer
POS(2) Disk file (limited to one file using carriage returns)

EXAMPLE CLS
PRINT "READ and DISPLAY SCREEN POS"
FOR I = 0 TO 30 STEP 10
 PRINT TAB(I); POS(0)
NEXT
:
PRINT "READ and DISPLAY PRINT POS"
DEFTAB 5
FOR I = 0 TO 6
 LPRINT,
 PRINT POS(1)M
NEXT
END

RUN

READ and DISPLAY SCREEN POS
0 10 20 30

READ and DISPLAY PRINTER POS
6 12 18 24 30 36

REMARK A carriage return will set the POS value to zero. PAGE will return the current line
position for the printer.

Also see WIDTH,PAGE and WIDTH LPRINT.

While this command will work the same on all systems, it is dependent on screen
and printer widths.

Standard Reference 300

PRINT# statement

FORMAT PRINT # expression,list of things to prin t......

DEFINITION Used to PRINT information to a disk file or other device in text format. Numbers or
strings will appear in the file or device similar to how they would look on the screen or
printer.

The expression is the file number assigned to a disk file or other device in an OPEN
statement.

INPUT# or LINEINPUT# are normally used to read back data created with PRINT#
(although READ# may also be used).

EXAMPLE A$="TEST":B$="TEST2":C=900
:
OPEN "0" ,1, "TEST.DAT"
PRINT#1,"HELLO"","A$","B$","C <--- Quoted comma delimiters for INPUT#
CLOSE#1
:
OPEN"I",1,"TEST.DAT"
INPUT#1, X$, Y$, Z$, A% <--- INPUT in same order and same type
:
PRINT X$, Y$, Z$, A%
:
CLOSE#1
END

RUN

HELLO TEST TEST2 900

REMARK While this command will work the same on all systems, it is dependent on disk
input/output capabilities. Use INPUT# or LINEINPUT# to read back data written with
PRINT#.

Be sure to see the entry on INPUT# in this reference section for more information
about using PRINT# and INPUT# together and also information about MSBASIC
syntax differences.

See ROUTE, OPEN, OPEN"C", INPUT#, LINEINPUT#, READ#, WRITE#, LPRINT
and the section in the front of this manual called "Files" for more information.

 301 Standard Reference

statement PRINT

FORMAT PRINT [{@|%} (expr1, expr2)] [list of things to print....]

DEFINITION The PRINT statement is used to output information to the current device, normally
the video.

@ (expr1,expr2) Specifies text coordinates.
% (expr1,expr2) Specifies graphic coordinates.

Note: Expr1=Horizontal. Expr2=Vertical.

EXAMPLE

PRINT@(1,1)"Hi";
PRINT@(0,5)"Name:";A$
END

REMARK PRINT followed with a semi-colon will disable the carriage return.

A PRINT item followed by a comma will cause the next element to be printed at the
next tab stop defined by DEF TAB.

While this command will work the same on all systems, it is dependent on hardware.

See ROUTE for ways of sending PRINT data to another device like a printer, disk file
or serial port.

See "Screen and Printer Text Control" in the front section of this manual for other
ways of formatting text.

As with all other ZBasic graphics commands, PRINT %(x,y) defaults to printing at the
position specified by the Device Independent Graphic coordinates of 1024 x 767.
See PLOT or COORDINATE for ways of changing some versions of ZBasic to using
other coordinates.

Standard Reference 302

PRINT USING function

FORMAT PRINT [# filenumber,] USING formatstring ;numeric expression;[USING ...]

DEFINITION This function permits formatting numeric data in PRINT or PRINT# statements.

The last numeric digit displayed will be rounded up by adding 5 to the first digit on
the right that is not displayed.

The formatstring may be a quoted or string variable using the following symbols:

Symbol Definition
Holds place for a digit. More than one may be used. An example of using

this symbol to hold dollars and cents:
PRINT USING "$###.##";A# $123.45

, Insert a comma in that place. An example of using it to format numbers with
dollars and cents would be:
PRINT USING"$##,###.##";A# $12,235.67

. Determines placement of decimal point within the format field:
PRINT USING"$##,###,###.##";A# $12,345,678.90

$ Prints a dollar sign on the left of the format. See examples above.

+ Prints a floating plus or minus sign on the side of the number where the plus
sign holds the place.
PRINT USING"+####.##";A# +1234.56
PRINT USING"+####.##";-1234.56 -1234.56

- Prints a minus sign only if the expression is negative.
PRINT USING"+####.##";A# 1234.56
PRINT USING"+####.##";-1234.56 -1234.56

* Fill the spaces before a number with asterisks. One example would be
formatting output when printing checks.
PRINT USING"$##,###,##.##";12.34 $********78.90

EXAMPLE See examples on next page...

REMARK When error is printed in the format field, this indicates the occurrence of an
overflow condition and replaces the number that would have been printed. An
overflow condition is when the value of the expression used would have exceeded
the boundaries of the format.

USING not available for string formatting. See LEFT$,RIGHT$,STRING$ and MID$.

This version allows USING without PRINT. A$=USING"####.##";232 is acceptable.
See appendix for additions to exponential formatting with this version.

 303 Standard Reference

function PRINT USING

PRINT USING continued

FORMAT EXAMPLES

In all the examples A=12345.678. Note that .678 rounds up to .68.

PRINT USING FORMAT RESULT
"*$###,###,###,###.##";A **********$12,345.68

"%###.#";A/1000 %12.3

"+###,###.##";A +12,345.68
"-###,###.##";-A -12,345.68

"##/##/##";A 1/23/45

"##:##:##";A 1:23:45

".###,###,###,###";1.345E-8 .000,000,013,450

".############";1.345E-8 .000000013450

"###,###,###,###,###";9.123E15 9,123,000,000,000,000

"###.##E16";123E15*1E-16 12.30E16

PROGRAM EXAMPLE

A$="##.##"
:
PRINT USING A$;10.2,USING A$;9.237, USING A$; 4.555
PRINT 10,12,13, USING A$;12.399
:
PRINT@(0,10);USING A$;23.12321
:
PRINT%(0,295);USING "@#####.##";12.33
:
OPEN"O",1,"TESTFILE"
PRINT#1, USING A$;9.999
CLOSE#1

RUN

10.20 9.24 4.56
10 12 13 12.40

23.12 <--- at text position 0.10
@12.33 <--- at graphic position 0,295
10.00 <--- To disk file "TESTFILE"

Standard Reference 304

PSTR$ function/statements

FORMATS function
PSTR$(var%)

statements
READ PSTR$(var%)
PSTR$(var%) = "quoted string constant"

DEFINITION The statements load the address of a string constant into var%.

The function returns the string pointed to by var%.

EXAMPLE DATA Andy, Dave, Scott, Mike
:
DIM D(4)
:
FOR X=1 TO 4 <---Set Pointer String to DATA items above
 READ PSTR$(D(X))
NEXT
:
"Print PSTR$ of D(n)"
FOR X=1TO4
 PRINT PSTR$(D(X))
NEXT
END
:
PSTR$(g%)="Hello" <--- Set Pointer String to a constant
PRINT PSTR$(g%)

RUN

Andy
Dave
Scott
Mike
Hello

REMARK This is a handy way to save string memory. Examples:

A$="Hi There!"
A$ will take at least 10 bytes (256 bytes if not defined). The quoted string takes
another 10 bytes. Total memory used: 20 bytes

PSTR$(A)="Hi There!"
The quoted string "Hi There!" takes 10 bytes. The integer variable "A" takes
two bytes. Total memory used: 12 bytes

Macintosh: Use var& instead of var%.

 305 Standard Reference

statement PUT

FORMAT PUT(x1,y1) variable [(array index[,array index[,...]) [,mode]

DEFINITION This statement places the graphic bit image stored in a array with the GET statement, to
the screen position at coordinates specified by x1,y1.

If an array has been used then you MUST specify the index number of the array (some
versions of BASIC always assume an integer array. ZBasic will allow you to store bit
images in any variable type as long as enough memory is available to do so.

Memory required for pixel images id calculated using this formula (based on GET(x1,y1)-
(x2,y2) where x1 and y1 designate the upper right-hand-corner of the image and x2 and
y2 are the pixel positions designating the lower-left-hand-corner of the image):

6+((y2-y1)+1) * ((x2-x1+1) * bpp+7)/8)

The number of bits per pixel (bpp) depends on system colors or grey levels. See next
page for specifics. Also see GET in this reference section, for detailed information about
storing the pixel image in an array.

mode XOR XORs the pixels over the background pixels. This is the most useful
for animation purposes and is also the default.

OR ORs the pixels over the existing pixels. This one way to cover the
background graphics (overlays the existing graphics).

AND ANDs the picture with background.

PRESET Similar to PSET except the reverse image is shown (negative).

PSET Draws the image over the background exactly as created.

It is recommended that COORDINATE WINDOW be used when using GET.

EXAMPLE DIM A(10000)
MODE 7 <---- Not needed on the Macintosh version
COORDINATE WINDOW <--- Pixel coordinates
:
CIRCLE 100,100,80
GET (0,0)-(100,100), A(1)
:
FOR x= 1 TO 200 STEP 3
 PUT (x, 90), A(1) <---Do it twice to XOR the pixels and move the image across
 PUT (x, 90), A(1) the screen without disturbing the background
NEXT x
:
END

This routine moves a section of a circle across the screen. It is XORed to the screen twice
so the item doesn't repeat and it will appear to move across the screen without disturbing
the background (default PUT mode is XOR).

continued...

Standard Reference 306

PUT statement

REMARKS It is important to see entry under GET for more information.

Macintosh: With this version of ZBasic, PUT has another, optional, parameter:
PUT (x1,y1) [-(x2,y2)], var. The second parameter allows you to scale the
image, making it either larger or smaller by giving the rectangle size in which it is to appear.
The x2, y2 parameter is the lower-right corner of the image.

Bits-per-pixel (bpp) will vary by the type of Macintosh you have. The standard black and
white Macintoshes have one bit-per-pixel.

The Macintosh II may have up to 16 bits-per-pixel (with up to 256 colors or grey-levels per
pixel). Check addendum of Macintosh II for specifics.

MSDOS: Bits-per-pixel (bpp) will vary with the graphics adaptor board being used:

GRAPHIC TYPE MODE(s) COLORS BITS PER PIXEL (bpp)
CGA 5 4 2
CGA 7 2 1
EGA 16-19 3-16 2 (64K or less on EGA card)
EGA 16-19 16 4 (More than 64K on card)
HERCULES 20 1 1

Z80: GET and PUT are not supported with these versions of ZBasic.

Apple // ProDOS and DOS 3.3: GET and PUT are not supported with this version.
See DRAW example on ProDOS disk and the BLOAD and BSAVE functions for possible
alternatives.

 307 Standard Reference

command QUIT

FORMAT QUIT

DEFINITION QUIT is used to exit the ZBasic Standard Line editor and return control to the
operating system.

EXAMPLE QUIT

DOS Ready <----DOS prompt of your System.

REMARK We highly recommend saving your program prior to using QUIT .

,
Macintosh: You may also quit from the menu.

MSDOS: SYSTEM functions the same as QUIT.

Standard Reference 308

RANDOM statement

FORMAT RANDOM [IZE] [expression]

DEFINITION Seeds the random number generator so that ZBasic produces a new sequence of
random numbers.

If expression is used, the RND function will return a repeatable series of numbers.

EXAMPLE DEFTAB 5
RANDOM 12345
FOR I = 1 TO 5
 PRINT RND(10),
NEXT I
:
RANDOM 12345 <--- Let's see if it repeats as above.
FOR I = 1 TO 5
 PRINT RND(10),
NEXT I: PRINT

RUN

8 1 10 4 7
8 1 10 4 7

PRINT"Press any key to set random seed" <--- Paranoid seed routine
DO
 R=R+1
UNTIL LEN(INKEY$)
RANDOM R
:
FOR I = 1 TO 5
 PRINT RND(10),
NEXT I
END

RUN

Press any key to set random seed
1 8 8 5 9

REMARK The results of the first two passes were the same because the seed of 12345 was
the same. When a different number is used, or no number, the result will be
RANDOM.

If expression is the same, the same random pattern will be repeated with all versions
of ZBasic.

,
The [IZE] part of RANDOM is not supported on the Apple // and Z80 versions.

 309 Standard Reference

statement RATIO

FORMAT RATIO byte expression1, byte expression2

DEFINITION This statement will change the aspect ratio of graphics created with CIRCLE.

byte expression1Horizontal ratio. A number between -128 and +127 that gives
the relationship of the width of the circle to normal (zero).

byte expression2Vertical ratio. A number between -128 and +127 that gives the
relationship of the height of the circle to normal (zero).

Value Relationship to normal
+127 = 2.0 times normal
 +64 = 1.5 times normal
 +32 = 1.25 times normal
 0 = 0 Normal proportion
 -32 = 0.75 times normal
 -64 = 0.5 times normal
 -96 = 0.25 times normal
-128 = 0 times normal (no width or height)

EXAMPLE

RATIO -50, 127
CIRCLE h,v,r

REMARK RATIO settings are executed immediately and all CIRCLE commands, including
CIRCLE TO and CIRCLE PLOT will be adjusted to the last RATIO.

Also see ROUNDRECT toolbox routines for other options to creating circles with
various rations.

Standard Reference 310

READ# statement

FORMAT READ # filenumber, {var |var$;stringlength } [, ...]

DEFINITION Reads strings or numbers saved in compressed format with WRITE# and stores
them into corresponding variables. The list may consist of any type string or numeric
variables or array variables.

filenumber The filenumber to work from
var Any numeric type variable
var$ String variable
;stringlength The number of characters to load into the string variable

Important Note: A string variable must be followed by ;stringlength to specify
the number of characters to be read into that string.

EXAMPLE REM The four variables below will require 18 bytes for storage
REM A$=4 bytes, A!= 4 bytes, A#=8 bytes, A%=2 bytes
:
A$="TEST": A!="12345.6":A#="12345.67898":A%=20000
:
OPEN"0",1, "DATAFILE", 18 <--- Write a file with a record length of 18
WRITE #1, A$;4, A!, A#, A%
CLOSE#1
:
OPEN"I" ,1,"DATAFILE", 18
READ#1, Z$;4, Z!, Z#, Z% <--- Read in same order and type (see notes)
CLOSE# 1
:
PRINT Z$, Z!, Z#, Z%
END

RUN

TEST 12345.612345.67898 20000

REMARK Note: Do not mix variable types when using READ# and WRITE#. Reading string
data into numeric variables, and visa-versa, will create variables with incoherent data.

READ# and WRITE# store and retrieve numeric data in a compressed format. This
saves disk space and speeds program execution.

While you may load numeric data into strings and convert using CVB or CVI, it is best
to refrain from this since it requires more time and is less efficient.

See the chapter "Files" for more detailed information using random and sequential
files. Also see RECORD, LOC,REC,LOF and "Disk Error Trapping".

 311 Standard Reference

statement READ

FORMAT READ [variable {-or- PSTR$(var%) }[,...]]

DEFINITION The READ statement reads strings or numbers from a DATA statement into
corresponding variables.

The variable list can consist of any combination of variable types (string or numeric,
including arrays).

If no variable is given the READ statement will skip one DATA item.

EXAMPLE DIM P%(3)
:
DATA Joe, Smith, Harry, "@ Cost"
DATA 1234.5, 567.8, 91011.12, 1314.15
:
READ A$, B$, C$, D$ <--- Regular old fashioned READ
READ A!, B!, C!, D!
PRINT A$, B$, C$, D$
PRINT A!, B!, C!, D!
:
RESTORE <--- Set pointer back to start of DATA to READ again
FOR X=0 TO 3
 READ PSTR$(P%(X)) <---Use pointer string to point at DATA string constants
NEXT:PRINT
PRINT "PSTR$>"
FOR X= 0 TO 3
 PRINT PSTR$(P%(X)),
NEXT
:
RESTORE 6 <--- Set DATA pointer to the sixth item
READ A#
PRINT A#
END

RUN

Joe Smith Harry @ Cost
1234.5 567.8 91011.12 1314.15

PSTR$> Joe Smith Harry @ Cost

567.8

REMARK Leading spaces in string data statements will be ignored unless contained in quotes.

Do not read numeric data into string variables and vice versa (no error is generated).
Don't read past the end of a data list.

See RESTORE,PSTR$ and DATA.

Standard Reference 312

RECORD statement

FORMAT RECORD [#] filenumber, recordnumber [,location in record]

DEFINITION The RECORD statement is used to position the file pointer anywhere in a file. Once
the file pointer has been positioned you may read or write data from that position.

RECORD can position both the RECORD pointer and the location within a record.

filenumber Filenumber from 1 to 99

recordnumber RECORD number to point to. Default is zero.

location in record Optional location in RECORD. Default is zero.

EXAMPLE OPEN"R",1,"TESTFILE",30
:
FOR Position = 0 to 29
 RECORD #1, 6, Position
 READ#1, A$;1 <--- Reads one character at a time from record 6.
 PRINT A$;
NEXT
:
CLOSE#1
END

RUN

Fred Stein

See illustration next page...

REMARK The default RECORD length is 256 bytes. The maximum record length is 65,535.
The maximum number of records in a file is 65,535.

See OPEN,READ#,WRITE#,PRINT#,INPUT#,LINEINPUT#,LOC,LOF, REC,
CLOSE, and the chapter entitled "Files".

The maximum record length and number of records in a file is 2,147,483,647.

 313 Standard Reference

statement RECORD

RECORD continued

In the illustration, the name "Fred Stein" was stored in RECORD six of "TESTFILE".

To point to FILE #1, RECORD 6, LOCATION 3 use the syntax:

RECORD# 1, 6, 3

The location within a record is optional (zero is assumed if no location is given).

If RECORD 1, 6 had been used (without the 3), the pointer would have been
positioned at the "F" in "Fred".

If RECORD is not used, reading or writing starts from the current pointer position. If
a file has just been opened, the pointer is positioned at the beginning.

After each read or write, the file pointer is moved to the next position in the file.

The maximum record length and number of records in a file for this versions is
2,147,483,647.

Standard Reference 314

REC function

FORMAT REC (filenumber)

DEFINITION Returns the current position of the record pointer for the file specified by
expression. The first record in a file is record zero (0).

Also often used with REC is LOC which returns the position within the record.

EXAMPLE OPEN "O",1,"THISPROG",10 <--- Record length of ten
:
A$="012345" <--- String length of six
:
FOR I = 0 TO 3
 PRINT#1, A$;
 PRINT "On pass";I;" file position was ";
 PRINT "Rec="REC(1);" and LOC=";LOC(1)
:
CLOSE#1
END

RUN

On Pass 0 file position was REC=0 and Loc=6
On Pass 1 file position was REC=1 and Loc=2
On Pass 2 file position was REC=1 and Loc=8
On Pass 3 file position was REC=2 and Loc=4

Right after the middle RECORD statement; REC=0 and LOC=4

REMARK The default record length is 256 bytes. LOC returns the position within a RECORD.

See OPEN,CLOSE,LOC,LOF,RECORD,READ#,WRITE# and the chapter
entitled "Files".

 315 Standard Reference

statement REM

FORMAT REM followed by programming remarks

DEFINITION The REM statement is used for inserting comments or remarks into a program.
ZBasic ignores everything following a REM statement.

To save time, you can type an apostrophe (') at the beginning of a line and it will be
converted into a REM statement.

EXAMPLE REM This is a comment or remark
REM ZBasic ignores everything following a REM
REM Including any commands embedded in the remark
:
REM Colons are often used to make blank lines.
:
:
:
REM Thoughtful use of REM makes a program easier to read.

RUN

ZBasic Ready_

REMARK REM statements are not compiled and do not take up any memory in the object
code.

Note: Some versions of ZBasic will not convert the apostrophe to REM.

Standard Reference 316

RENAME statement

FORMAT RENAME string1 {,|TO} string2

DEFINITION This statement is used to rename the file string1 to the new name string2.

EXAMPLE DIR

GOOGOO ZBASIC.COM
FRED.BAS OLDFILE.BAS

INPUT "FILE NAME TO CHANGE: ";File1$
INPUT "NEW NAME FOR FILE: ";File2$
RENAME File1$ TO File2$

RUN

FILE NAME TO CHANGE: GOOGOO
NEW NAME FOR FILE: GOONIE

DIR

GOONIE ZBASIC.COM
FRED.BAS OLDFILE.BAS

REMARK This command is also available in command mode. Remember that filename formats
are different from system to system and may not be available for some machines.

TRS-80 model 1,3: RENAME not supported with these versions.

, ,
Macintosh: Pathnames or volume number may be used.
Macintosh: RENAME file1$ {TO|,} file2$ [, volume number%]. Also see NAME.

MSDOS: See CHDIR, PATH$, RMDIR and MKDIR in the MSDOS appendix for
controlling pathnames and directories. Also see NAME.

Apple // ProDOS: Pathnames supported.

 317 Standard Reference

command RENUM

FORMAT RENUM [new][,[old]][, increment]

DEFINITION Used for renumbering program lines.

new The first new assigned line number desired after renumbering is
complete. default = 10

old The first old line where you want renumbering to begin. default = 0
increment The increment between line numbers. default = 10 (256 maximum)

If an argument is omitted the default will be used.

This command will automatically update line references (GOTO,GOSUB, etc). If a
line reference is to a non-existent line, it will use the next existing line number.

EXAMPLE 7 IF I = 200 THEN 567
74 PRINT I
197 I = I + 1: GOTO 74
567 END

RENUM
LIST

10 IF I = 200 THAN 40
20 PRINT I
30 I = I + L: GOTO 10
40 END

REMARK Line increments are limited to 256. If you issue a RENUM command that exceeds
the number of allowable lines (65,534) , an error will occur and your text will be
unaltered.

If you are unsure of what the results may be, SAVE your program BEFORE
renumbering!

,
Some versions offer options for using, or not using, line numbers with full screen
editors. Check your appendix for specifics.

See RENUM*,UNNUM,INDENT and FIX in the MSDOS appendix for other options.

Standard Reference 318

RESET statement

FORMAT RESET

DEFINITION Closes all open files and devices. Functionally identical to CLOSE without
parameters.

EXAMPLE OPEN"O",1,"FRED"
OPEN"I",2,"HARRY"

IF ERROR THEN RESET

END

REMARK See CLOSE

,
Not supported on Apple // or Z80 versions of ZBasic. Simply use CLOSE without a
filenumber to close all open files.

 319 Standard Reference

statement RESTORE

FORMAT RESTORE [expression]

DEFINITION This statement resets the DATA pointer to the first DATA statement or optionally to
the DATA item specified by expression.

If the expression is omitted, the first DATA item is assumed. ZBasic automatically
sets the pointer to the next item after each variable is READ.

EXAMPLE DATA ZERO, ONE, TWO, THREE, FOUR, FIVE
DATA SIX, SEVEN, EIGHT, NINE, TEN
:
"Start"
DO
 INPUT"What item do you want""Item%
 IF (item%<0) OR (item%>10) THEN "Start"
 RESTORE Item%
 READ A$
 PRINT "Item number:;Item%;" is: ";A$
UNTIL Item%=0
:
RESTORE <--- Set to beginning of DATA
READ A$: PRINT A$
:
END

RUN

What item do you want: 4
Item number 4 is: FOUR

What item do you want: 9
Item number 4 is: NINE

What item do you want: 0
Item number 0 is: ZERO

ZERO

REMARK If an attempt is made to READ or RESTORE past the last DATA item, the result will
be zeros or NULL strings. No error will be returned.

Also see READ, PSTR$ and DATA.

Standard Reference 320

RETURN statement

FORMAT RETURN [line]

DEFINITION The RETURN statement is used to continue execution at the statement immediately
following the last executed GOSUB or ON GOSUB statement.

If optional line is used, the last GOSUB is POPPED off the stack and a GOTO line is
performed.

EXAMPLES GOSUB "First"
:
"Second"
PRINT "RETURN comes here."
END
:
"First"
PRINT "This is a subroutine"
RETURN

RUN

This is a subroutine
Return comes here

GOSUB "Routine"
END
:
"Weird"
PRINT"Ended Here!"
STOP
:
"Routine"
PRINT"At 'Routine'"
RETURN "Weird"

RUN

At 'Routine'
Ended Here!

REMARK When ZBasic encounters a RETURN statement which was not called by a GOSUB, it
will return to the program that executed it (either DOS or the ZBasic editor).

Using RETURN line WITHOUT A GOSUB or from the middle of a LONG FN will cause
unpredictable (probably disastrous) system errors.

Use caution when using RETURN line to exit event trapping routines like DIALOG
ON,MENU ON, TRON,BREAK ON...

 321 Standard Reference

function RIGHT$

FORMAT RIGHT$(string, expression)

DEFINITION Returns the right-most expression characters of string.

EXAMPLE A$="HELLO"
:
FOR I = 0 TO 6
 PRINT I, RIGHT$(A$,I)
NEXT I
:
A$ = "JOHN DOE"
:
SP = INSTR(1,A$," ")
PRINT"LAST NAME:",
PRINT RIGHT$(A$,LEN(A$)-SP)
:
END

RUN

0
1 0
2 LO
3 LLO
4 ELLO
5 HELLO
6 HELLO
LAST NAME: DOE

REMARK If expression is more than the characters available, all the characters will be returned.

See LEFT$,VAL,STR$,STRING$,SPACE$,SPC, MID$ and the chapter entitled "String
Variables" in the front section of this manual.

Standard Reference 322

RND function

FORMAT RND (expression)

DEFINITION The RND function returns a random integer number from 1 to expression.

EXAMPLE RANDOM
A=9
:
FOR I=1 TO 5
 PRINT RND(A),
 PRINT RND(10000)*.0001
NEXT I
:
END

RUN

3 .9201
7 .8211
1 .0912
2 .7821
9 .0108

REMARK Some versions of BASIC return a floating point random number between 0 and 1;
use RND(10000)*.0001 to emulate this (it will slow down execution).

Also see MAYBE and RANDOM.

If the same speed number is used for RANDOM, the random numbers generated by
RND will be predictable on the all versions of ZBasic.

The largest number you may use for a RND expression is 32,767.

 323 Standard Reference

statement ROUTE

FORMAT ROUTE [#] expression

DEFINITION This statement is used to route PRINT statements to a specified device. The
following are the values to be used as expression.

Device number Routes PRINT statements to
negative numbers I/O devices; See your appendix for specifics.
0 Screen (default)
1-99 Disk files specified by number
128 Printer

EXAMPLE ROUTE 128
PRINT "HELLO" <--- This HELLO goes to the printer
:
OPEN"O",1,"Test"
ROUTE 1
PRINT "HELLO" <--- This HELLO goes to file "Test"
CLOSE#1
:
OPEN"C",-1,300
ROUTE -1
PRINT "HELLO" <--- This HELLO goes to a serial device
CLOSE#-1
:
ROUTE 0
PRINT"HELLO" <--- This HELLO goes to the screen
END

RUN

HELLO

REMARK You should eventually route the output back to a screen device (ROUTE 0).

See PRINT,OPEN"C" and the chapter "Files" for more information.

Also see ROUTE 128, CLEAR LPRINT, DEF LPRINT and DEF PAGE for more
information about routing text and graphic output to the Imagewriter and Laserwriter.
Be sure to use CLEAR LPRINT with ROUTE 128 to tell the Macintosh printer driver
to print the page.

Standard Reference 324

RUN statement

FORMAT RUN [filenumber]

DEFINITION The RUN statement does one of two things.

RUN filenumber Loads a compiled chain program specified by filenumber and
executes it:

OPEN"I", 1, "Prog.CHN"
RUN 1

RUN Clears all variables and pointers and restarts the current program
from the first line.

EXAMPLE OPEN"I",2,"MENU"
RUN 2 <---Loads and RUNS CHAIN program "MENU"
__

TRONB
FOR X=1 TO 100
 PRINT X
NEXT
RUN <--- RUNS this program over and over...

REMARK Also see the RUN command and the chapters "Running ZBasic Programs" and
"Chaining" for more information.

Also see RUN filename$, volumenumber% in the appendix.

 325 Standard Reference

command RUN

FORMAT RUN [[{+|*}]["] filename ["]]

DEFINITION This command is used from the Standard Line Editor to compile a program:

RUN Compiles source code in memory and executes.

RUN filename Compiles source code called filename from disk and executes.
Source code must have been saved in tokenized format with
SAVE (not as a text file).

RUN* Compiles source code in memory and saves as a stand-alone
application on disk. Asks for filename after compiling.

RUN* filename Compiles source code called filename from disk and saves as a
stand-alone application on disk. Source code must have been
saved tokenized (not as a text file). Asks for filename after
compiling.

RUN+ Compiles source code in memory and saves as a chain file to disk
(no runtime included). Asks for filename after compiling.

RUN+filename Compiles source code called filename from disk and saves as a
chain file to disk (no runtime included). Asks for filename after
compiling.

EXAMPLE PRINT "THE PROGRAM RUNS!"

RUN

THE PROGRAM RUNS!

REMARK Compiling from disk will destroy any text currently in memory. If an error is
encountered when compiling from disk, ZBasic will load the source code and print
an error message.

After a successful compilation, typing MEM will return memory used for the object
code and variables.

See "Executing Programs" in the front of this manual for more information about
compiling large programs.

,
Also see COMPILE and LCOMPILE for ways of compiling a program and seeing all
the compile time errors at once (instead of one at a time as with RUN).

Standard Reference 326

SAVE command

FORMAT SAVE [[{*|+}] ["] filename ["]]

DEFINITION SAVE is used from the Standard Line Editor to save the source code in memory.
You may save your source code in a number of formats:

SAVE Saves program in tokenized format. This requires less room on
the disk and saving and loading is much faster than with text files.
In order to compile a file from disk a program must be saved in this
format.

SAVE* Saves program in TEXT or ASCII format. This allows you to load
the program into other word processors or editors. Loads more
slowly than SAVE above.

SAVE+ Same as SAVE* but line numbers are removed. Be sure your
program doesn't uses label references with GOTO, GOSUB or
other commands, since when a program is re-loaded, line
numbers are added back in increments of one which will make
line number references incorrect.

Note: Source code is the program you type in. Object code is the machine
language program created when you compile the source code with RUN. See RUN
for more information about compiling and saving compiled programs to disk.

EXAMPLE SAVE* PROGRAM.TXT <---SAVE program in ASCII (text)
SAVE AR.BAS <---SAVE program tokenized (condensed)
SAVE+ FILE.TXT <---SAVE program in ASCII - with no line numbers

REMARK Also see LOAD,APPEND,MERGE and RUN.

 327 Standard Reference

statement SELECT

FORMAT SELECT [expression or simplestring]
 CASE [IS] relational condition [, relational condition][,...]
 statements...
 CASE [IS] condition [, condition][,...]
 statements...
 CASE [IS] boolean expression
 statements...
 CASE ELSE
END SELECT

DEFINITION Provides a structured and efficient way of doing multiple comparisons with a single
expression. While IF-THEN or LONG-IF statements could be used, they are harder
to follow when reading program listings.

EXAMPLE X=CARDTYPE:REM MSDOS Cardtype example.
SELECT X
 CASE 0
 PRINT"CGA CARD":MODE 7
 CASE 1
 PRINT"EGA CARD":MODE 19
 CASE 2
 PRINT"EGA with Mono":MODE 18
 CASE 3
 PRINT"HERCULES CARD":MODE 20
 CASE 255
 PRINT "Monochrome Monitor":MODE 2
 CASW ELSE
 PRINT"No Video card installed"
END SELECT

REMARK See CASE and END SELECT for more examples.

Important Note: Exit a SELECT structure only at the END SELECT.

,
SELECT is not supported with the Apple or Z80 versions of ZBasic. Use IF-THEN or
LONG-IF to accomplish the same thing.

Standard Reference 328

SGN function

FORMAT SGN(expression)

DEFINITION Returns the sign of expression.

If expression is:
Positive +1 is returned.
Zero 0 is returned.
Negative -1 is returned.

EXAMPLE DEFDBL A-Z: DEFTAB 8: WIDTH 40
PRINT" X","ABS(X)", "INT(X)","FRAC(X)",SGN(X) "
:
FOR X = -15.0 TO +15.0 STEP 3.75
 PRINT USING"-##.##";X,
 PRINT USING "##.##";ABS(X),
 PRINT USING"-##.##";INT(X),
 PRINT USING "-#.##";FRAC(X),
 PRINT USING "-#.##";SGN(X)
NEXT X

RUN

 X ABS(X) INT(X) FRAC(X)SGN(X)
-15.00 15.00 -15.00 .00 -1.00
-11.25 11.25 -11.00 -.25 -1.00
- 7.50 7.50 - 7.00 -.50 -1.00
- 3.75 3.75 - 3.00 -.75 -1.00
 .00 .00 .00 .00 .00
 3.75 3.75 3.00 .75 1.00
 7.50 7.50 7.00 .50 1.00
 11.25 11.25 11.00 .25 1.00
 15.00 15.00 15.00 .00 1.00

REMARK Also see UNS$, FRAC, INT, ABS and negation.

 329 Standard Reference

function SIN

FORMAT SIN (expression)

DEFINITION The SIN function returns the sine of the expression in radians.

SIN(A)=Y/H, H*SIN(A)=Y, Y/SIN(A)=H

EXAMPLE X#=SIN(123)
PRINT SIN(X2#)

REMARK SIN is a scientific function. The precision for scientific functions may be configured.
See "Configure" in the front of this manual for more information.

See the "Math" and "Expressions" sections of this manual and ATN, TAN, COS,
EXP,SQR,^.

INTEGER SINE: ZBasic provides a predefined USR function to do hi-speed
integer sines. This speeds up sine speed by up to 30 times:

USR8(angle) returns the integer sine of angle in the range +-255 (corresponding to
+-1). The angle must be in brads: See CIRCLE for examples of brads. Example:

MODE 7 :CLS
FOR I=0 TO 255
 PLOT I<<2,-USR8(I)+384
NEXT I

Standard Reference 330

SOUND statement

FORMAT SOUND frequency, duration

DEFINITION SOUND may be used to create sound effects or music.

frequency Frequency 120 Hz to 10,000 Hz.
duration Duration in 1 millisecond increments.

Note: Hz (Hertz) represents cycles-per-second.

EXAMPLE DO
 INPUT"Tone: ";Tone
 INPUT"Duration: ";Duration
 :
 SOUND Tone, Duration
 :
UNTIL (Tone=0) OR (Duration=0)

Example frequencies you may use in your program to create music or sound effects.
(Choose the duration as required.) Quality of sound may vary by machine.

OCTAVES
NOTES 1 2 3 4 5 6 7
C 33 66 132 264 528 1056 2112

Cb 35 70 140 281 563 1126 2253
D 37 74 148 297 594 1188 2376

Eb 39 79 158 316 633 1267 2534
E 41 82 165 330 660 1320 2640
F 44 88 176 352 704 1408 2816

Gb 46 93 187 375 751 1502 3004
G 49 99 198 396 792 1584 3168

Ab 52 105 211 422 844 1689 3379
A 55 110 220 440 880 1760 3520

Bb 57 115 231 462 924 1848 3696
B 61 123 247 495 990 1980 3960

REMARK Some computers may not have sound. See your computer appendix for more information.

CP/M-80: Sound not supported. CHR$(7) may sound a bell on some systems.
TRS-80 model 1,3: Requires that a speaker be connected to the cassette port.
TRS-80 model 4: Frequency range of internal speaker limitied to 0,0 to 7,31.

See appendix for using four voice sound and utilizing the sound buffer.

 331 Standard Reference

function SPACE$

FORMAT SPACE$ (expression)

DEFINITION Returns a string of spaces expression characters long (range of 0 to 255).

EXAMPLE PRINT "ZEDCORZEDCORZE"
FOR X=7 TO 0 STEP -1
 PRINT SPACES$(X);"ZEDCOR"
NEXT
PRINT"ZEDCORZEDCORZEDCOR"
END

RUN

ZEDCORZEDCORZE
 ZEDCOR
 ZEDCOR
 ZEDCOR
 ZEDCOR
 ZEDCOR
 ZEDCOR
 ZEDCOR
ZEDCOR
ZEDCORZEDCORZEDCOR

REMARK See STRING$,MID$,RIGHT$,LEFT$,INSTR and SPC.

Standard Reference 332

SPC function

FUNCTION SPC (expression)

DEFINITION SPC prints expression spaces from 0 to 255

Prints the number of spaces specified by expression.

EXAMPLE DO
 PRINT"*";SPC(RND(20));"+"
UNTIL LEN(INKEY$)

RUN

 +
 +
 +
 +
 +
+

REMARK Also see SPACE$,LEFT$,STRING$,RIGHT$,MID$ and INSTR.

 333 Standard Reference

function SQR

FORMAT SQR (expression)

DEFINITION The SQR function returns the square root of expression.

H=SQR(X*X+Y*Y)

EXAMPLE A=9
PRINT SQR(A)

RUN

3

REMARK SQR is a scientific function. Scientific functions may be configured to a different
precision. See "Configure" in the front of this manual for more information.

For more information on scientific functions see the "Math" and "Expression"
sections of this manual and ATN, SIN, COS, TAN, EXP and ^.

Standard Reference 334

STEP statement

FORMAT FOR variable = expr1 TO expr2 [STEP expr3]
 "
 "
 "
NEXT [variable][,variable...]

DEFINITION This parameter allows you to set the increments used in a FOR-NEXT loop. If STEP
is omitted than one is assumed.

EXAMPLE FOR X= 0 TO 10 STEP 2
 PRINT X
NEXT
:
FOR X = 10 TO 0 STEP -1
 PRINT X
NEXT
END

RUN

0 2 4 6 8 10
10 9 8 7 6 5 4 3 2 1 0

REMARK Also see FOR, NEXT, DO, UNTIL, WHILE, WEND and the chapter on "Loops".

IF STEP =0 an endless loop will result.

If expr1 or expr3 change while the loop is executed this change will be in effect
when NEXT is encountered.

Avoid long or complex loop expressions for expr1 or expr3 as they are evaluated
every loop and will slow execution.

 335 Standard Reference

statement STOP

FORMAT STOP

DEFINITION STOP halts execution of a ZBasic program and prints the line number where
execution stopped (if line numbers weren't used the lines are numbered in
increments of one).

STOP when used from ZBasic will return to the Standard Line Editor.

STOP when used from a stand-alone program will return to the operating system.

EXAMPLE PRINT"HELLO"
STOP

RUN

Break in 00002
ZBasic Ready

REMARK STOP closes all files.

END may be used when no message is desired.

See TRONB and TRONX for ways of inserting break points in your programs so that
<BREAK> may be used to exit a running a program.

Standard Reference 336

STR$ function

FORMAT STR$(expression)

DEFINITION STR$ returns the string equivalent of the number represented by expression. This
is used to convert numbers or numeric variables to a string.

This function is the compliment of VAL. VAL returns the numeric value contained in
a string.

EXAMPLE Integer% =20000
Single! =232.123
Double# = .12323295342
:
A$=STR$(Integer%) :PRINT A$
A$=STR$(Single!) :PRINT A$
A$=STR$(Double#) :PRINT A$
:
X#=VAL(A$)
PRINT X#

RUN

20000
232.123
.12323295342
.12323295342

REMARK Also see BIN$, OCT$, HEX$, MKI$, CVI,MKB$, CVB and VAL.

 337 Standard Reference

function STRING$

FORMAT STRING$ (expr1, string)

STRING$ (expr1, expr2)

DEFINITION Returns a string of the length expr1 consisting of the characters specified by either
the ASCII equivalent of expr2 or the first character of string.

EXAMPLE PRINT STRING$ (5,"#")
PRINT STRING$ (10,65)
PRINT STRING$ (10,CHR$(65))
:
A$ = STRING$(3,"*") + "TEST"+ STRING$(3,"&")
PRINT A$
END

RUN

#####
AAAAAAAAAA
***TEST&&&

REMARK STRING$ is more efficient than using an equivalent string of characters.

See SPACE$,LEFT$,RIGHT$,MID$,INSTR,VAL,STR$,INDEX$ and SPC.

Standard Reference 338

SYSTEM statement

FORMAT SYSTEM

DEFINITION Same as END. Provided for compatibility with other versions of BASIC.

EXAMPLE PRINT"HELLO"
SYSTEM

RUN

HELLO

REMARK Functionally identical to the ZBasic END statement. See END and STOP.

,
Not Supported with Apple // or Z80 versions of ZBasic. Use END.

 339 Standard Reference

statement SWAP

FORMAT SWAP var1, var2

DEFINITION SWAP exchanges the contents of var1 and var2. The variables can be of any type
except INDEX$ variables.

Var1 and var2 must be of the same type.

EXAMPLE B$="YES"
A$="NO"
PRINT A$, B$
SWAP A$, B$
PRINT A$, B$
PRINT
:
A=1:B=100
PRINT A,B
SWAP A,B
PRINT A,B
END

RUN

YES NO
NO YES

1 100
100 1

REMARK SWAP will execute faster and take less memory than similar methods using "holding
variables".

SWAP does not function with INDEX$.

Standard Reference 340

TAB function

FORMAT TAB (expression)

DEFINITION Tab will move the cursor to the positions; 0 through 255, designated by expression.

Three devices may be used with Tab:

DEVICE FORM WILL POSITION
SCREEN PRINT CURSOR
PRINTER LPRINT PRINT HEAD
DISK PRINT# FILE POINTER

EXAMPLE DATA Fred Smith, 12 E. First, Tucson, AZ, 85712
DATA Dana Andrews, 32 Main, LA, CA, 90231
:
PRINT "Name"TAB(15) "Address"TAB(30) "City"TAB(40) "State ZIP"
PRINT STRING$(50,"-")
:
FOR Item= 0 TO 1
 RESTORE Item*5
 READ N$, A$, C$, S$, Z$
 PRINT N$ TAB(15) A$ TAB(30) C$ TAB(40) S$" "Z$
NEXT
END

RUN

Name Address City State ZIP
--
Fred Smith 12 E. First Tucson AZ 85712
Dana Andrews 32 Main LA CA 90231

REMARK Tab will start numbering from the zero position. Also see DEFTAB,PRINT@,
PRINT%,POS,PAGE,WIDTH and WIDTH LPRINT.

 341 Standard Reference

function TAN

FORMAT TAN (expression)

DEFINITION Returns the value of the tangent of the expression in radians.

EXAMPLE X#=TAN(T+Z)/3

REMARK TAN is a scientific function. Scientific accuracy may be configured differently than
single or double precision. See "Configure" at the beginning of this manual.

Also see ATN,COS,SIN,EXP,SQR and ^.

For more information on scientific functions see "Math" and "Expressions" in the
front section of this manual.

Standard Reference 342

TIME$ function

FORMAT TIME$

DEFINITION Returns an eight character string which represents the systems clock value in the
format HH:MM:SS where HH=1 to 24 hours, MM= 0 to 60 minutes, SS= 0 to 60
seconds.

EXAMPLE PRINT TIME$
DELAY 1000
A$=TIME$
PRINT A$

RUN

10:23:32
10:23:33

REMARK See DATE$ and DELAY.

This function will return a 00:00:00 if the system or version has no clock.

, , ,
Macintosh: Set time from the Control Panel Desk Accessory. Also see TIMER for
other ways of getting seconds.

MSDOS: Set time using TIME$= hh, mm,ss. Also see TIMER.

Apple: See appendix for variations of system clocks.

Z80: See appendix for your particular hardware.

 343 Standard Reference

statement TROFF

FORMAT TROFF

DEFINITION TROFF is used to turn off the trace statements: TRON, TRONX, TRON and TRONS.

EXAMPLE TRON
FOR X=1 TO 3
NEXT
:
TROFF
PRINT "Line tracing now off"
FOR X=1 TO 10
NEXT

RUN

00001 00002 00003 00002 00003 00002 00003 00004 Line tracing
now off

REMARK See also TRON, TRONS, TRONB, TRONX and the chapter on "Debugging Tools".

Standard Reference 344

TRON statement

FORMAT TRON [{B|S|X}]

DEFINITION These statements are used for tracing program execution, single stepping through a
program, and setting break points for monitoring the <BREAK> key so that you can
break out of a program.

TRACING PROGRAM FLOW
TRON Prints the line numbers of the program as each line is executed

so you can trace program flow and check for errors.
TRON S Lets you single step through a program. Program execution will

pause at the beginning of every line in the program following
TRON S (up to the end of the program or when a TROFF is
encountered). Press any key to continue or press the <CTRLZ>
key to enable/disable single-stepping. <BREAK> also works.

SETTING BREAK POINTS
TRON X Sets a break point at that line in a program and checks to see if

the <BREAK> key has been pressed.
TRON B Sets a break point at the beginning of every line in the program

following it (up to the END or until a TROFF is encountered).

Note: The <BREAK> key is checked at the beginning of a line. IF <BREAK> is
encountered in a program compiled with RUN, program exits to the Standard Line
Editor. If <BREAK> is encountered in a stand-alone program, exit is to the system.

<CTRL S> will pause execution when encountered during execution of TRONB,
TRONX or TRON. Any key will restart. <CTRL Z> will activate/deactivate single-
step mode when any TRON is active. Note: INKEY$ may lose keys if TRON is used.

EXAMPLE TRON:TRONS
:
PRINT "HELLO"
:
TROFF

RUN

00001 <KEY> 00002 <KEY> 00003 <KEY> HELLO 00004 <KEY>

REMARK Every line between a TRON and TROFF may use up to eight extra bytes per line.
Use TRON sparingly to save memory and increase execution speed. See chapter
entitled "Debugging Tools" for more information. INKEY$ may lose keys with TRON.

, , ,
Macintosh: <BREAK> is <Command Period>. Also see BREAK ON, and TRON
WINDOW in appendix for other ways of tracing program flow and variable values.
MSDOS: <BREAK> is <CTRL C>.
CP/M: <BREAK> is <CTRL C>.
Apple // ProDOS or DOS 3.3: <BREAK> is <CTRL C> or <CTRL RESET>.
TRS-80: <BREAK> is <BREAK>.

 345 Standard Reference

function UCASE$

FORMAT UCASE$ (string)

DEFINITION Returns a string with all characters converted to uppercase (capital letters).

EXAMPLE PRINT UCASE$("hello")
:
A$="HeLLo"
PRINT UCASE(A$)
END

RUN

HELLO
HELLO
__

DO
 key$=UCASE$(INKEY$)
UNTIL LEN (key$)
PRINT key$
END

RUN

S <---always returns an uppercase character
__

REM This function converts a string to Lowercase
:
LONG FN lcase$(string$)
 FOR X=1 TO LEN(string$)
 A=PEEK(VARPTR(string$)+X)
 IF (A>64) AND (A<91) THEN A=A+32
 POKEVARPTR(string$)+X,A
 NEXT
END FN=string$
:
PRINT FN lcase$("HELLO")

RUN

hello

REMARK This function is very useful when sorting data containing upper and lower case and
for checking user input without regard to case.

Also see LEFT$,RIGHT$,MID$,INSTR,STR$,VAL, and the chapter "String
Variables" in this manual.

Standard Reference 346

UNS$ function

FORMAT UNS$ (expression)

DEFINITION Returns a sting which equals the integer value of expression in an unsigned
decimal format.

EXAMPLE PRINT UNS$(-1)
PRINT UNS$ (4)
:
PRINT
PRINT 65535

RUN

65535
00004

-1

REMARK This function is useful for displaying integers in an unsigned format (0 through
65,535 instead of -32,768 through 32,767).

See STR$, DEC$, OCT$, HEX$, VAL and the chapter on "Numeric Conversions".

See DEFSTR LONG for enabling this function to work with LongIntegers.

 347 Standard Reference

statement UNTIL

FORMAT DO
.
.
UNTIL expression

DEFINITION UNTIL is used to mark the end of a DO loop.

The DO loop repeats until the expression following the UNTIL is true (non-zero).

A DO loop will always execute at least once.

EXAMPLE DO
 X=X+1
UNTIL x=100
PRINT X
:
"Wait for a key"
DO
 I$=INKEY$
UNTIL LEN(I$)
END

RUN

100
<KEY PRESS>

REMARK Notice ZBasic will automatically indent DO loop structures two spaces. See the
chapter on "Formatting Program Listings" for other ways of formatting listings.

Also see FOR, NEXT, STEP, WHILE, WEND and the chapter on "Loops" in the
technical section of the manual.

WHILE,WEND may be used to exit a loop immediately if a condition is false.

Standard Reference 348

USR function

FORMAT USR digit (word expression)

DEFINITION The USR function calls the user created subroutine, defined with DEFUSR,
specified by a digit 0 to 9, and returns the value of integer expression in the 16 bit
accumulator.

EXAMPLE REM EXAMPLE ONLY DO NOT USE!
:
DEFUSR2 = LINE "Routine two"
X=USR2(938)
PRINT X
END
:
"Routine two"
MACHLG &8B,&C4,&C3:RETURN

RUN

23921

REMARK A machine language return is necessary at the end of a USR routine.

ZBasic provides pre-defined USR functions that perform some powerful functions
like integer sine and cosine. See next page.

, ,
Macintosh: Be sure to use LongIntegers whenever referencing memory
addresses. Also see CALL in the Macintosh appendix.

MSDOS: See CALL in your appendix.

Apple ProDOS: See MLI in the ProDOS appendix.

 349 Standard Reference

functions PRE-DEFINED USR

Predefined USR functions.

These pre-defined USR functions are available for all versions of ZBasic. See your
Computer Appendix for possible other USR functions.
__

USR6(expr)
Returns the last line number executed that used any of the TRON functions
(expr is not used).

TRONX
I=USR6(0)
PRINT I

USR7(expr)
Returns ZBasic's random number seed used in the RND function (expr is not used).

FOR I=1 TO 10
 PRINT USR7(0)
NEXT I

USR8(angle)
Returns the integer sine of angle in the range +-255 (corresponding to +-1). The
angle must be in brads.

MODE7 :CLS
FOR I=0 to 255
 PLOT I<<2,-USR8(I)+384
NEXT I

USR9(angle)
Returns the integer cosine of angle in the range +-255 (corresponding to +-1). The
angle must be in brads.

MODE7 :CLS
FOR I=0 to 255
 PLOT I<<2,-USR9*I)+384
NEXT I

Standard Reference 350

USR statement

FORMAT USR digit (expression)

DEFINITION This statement will call the USR routine defined by DEFUSR digit and transfer the
result of expression in the integer accumulator.

EXAMPLE Example only DO NOT USE
:
DEFUSR0=LINE "Machine language"
USR0(0)
END
:
"Machine Language"
MACHLG &39, &C9: RETURN

REMARK The USR routine must be set by the program or be a predefined USR routine. Also
see DEFUSR, USR function,LINE,CALL,MACHLG,the chapter about "Machine
Language" in this manual, and your computer appendix.

, ,
Macintosh: Be sure to use LongIntegers whenever referencing memory
addresses. Also see CALL in the Macintosh appendix.

MSDOS: See CALL in your appendix.

Apple ProDOS: See MLI in the ProDOS appendix.

 351 Standard Reference

function VAL

FORMAT VAL (string)

DEFINITION Returns the numeric value of the first number in a string.

The VAL function will terminate conversion at the first non-numeric character in
string.

This function is the compliment of STR$. STR$ will convert a numeric expression to
a string.

EXAMPLE A$="HELLO"
B$="1234.56"
C$="99999"
:
PRINT "The value of A$=";VAL(A$)
PRINT "The value of B$=";VAL(B$)
PRINT "The value of C$=";VAL(C$)
:
PRINT
PRINT "The value of 9876.543=";VAL("9876.543")
END

RUN

The value of A$= 0
The value of B$= 1234.56
The value of C$= 99999

The value of 9876.543= 9876.543

REMARK The numeric value returned by VAL will be in floating point format.

See STR$, UNS$, HEX$, OCT$ and BIN$,INT,FRAC,ABS,FIX.

Also see the chapter on "Math" and "Expressions" in the front section of this
manual.

Standard Reference 352

VARPTR function

FORMAT VARPTR(variable)

DEFINITION Returns the address of a variable . Any variable type may be used except INDEX$.

EXAMPLE A$="HELLO"
:
PRINT "Address of A$=";VARPTR(A$)
PRINT "Length of A$ =";PEEK(VARPTR(A$))
:
PRINT "Contents of A4= ";
FOR X=1 TO LEN(A$)
 PRINT CHR$(PEEK(VARPTR(A$)+X));
NEXT
END

RUN

Address of A$= 23456
Length of A$ = 5
Content of A$= HELLO

REMARK The following paragraphs describe which address VARPTR will be pointing to with
different variable types.

INTEGER Points to the 1st byte of an integer variable.

SNG/DBL Points to the sign/exponent byte

STRING Points to the length byte

ARRAY Points to the element specified

See the sections in the front of this manual for the variable type you interested in to
see how variables are stored in memory.

,
Macintosh: Be sure to use LongIntegers to store addresses.

MSDOS: var=VARPTR(var) returns two values: The address of var and the
segment of var in a special variable called VARSEG. See appendix for details.

 353 Standard Reference

statement WEND

FORMAT WHILE expression
.
.
WEND

DEFINITION This statement is used to terminate a WHILE loop. When expression becomes false
the loop will exit at the first statement following the WEND.

EXAMPLE "Get a YES Answer and nothing else!"
INPUT"What is your answer <Y/N>:";A$
WHILE A$ <>"Y"
 INPUT"Please reconsider and say <Y>:";A$
WEND
PRINT"Thank you for seeing things my way..."
:
program continues....

RUN

What is your answer <Y/N>: N
Please reconsider and say <Y>: Y
Thank you for seeing things my way...

__

WHILE X*X <23000
 PRINT X*X,
 X=X+1
WEND
END

RUN

0 1 4 9 16...

REMARK ZBasic will automatically indent all lines two spaces between WHILE and WEND
when you use LIST. This makes programs much easier to read.

Also see FOR,NEXT,STEP,DO,UNTIL and the chapters on "Loops" and
"Structure" in the front of this manual.

A structure error will occur if a WHILE exists without a matching WEND. To find a
missing WEND, LIST the program and track back from the last indent.

Standard Reference 354

WHILE statement

FORMAT WHILE expression
.
.
WEND

DEFINITION In a WHILE statement, expression is tested for true before the loop is executed and
will exit to the statement immediately following the matching WEND when
expression becomes false.

EXAMPLE "GET A KEY"
WHILE LEN(Key$)=0
 Key$=INKEY$
WEND
PRINT Key$
END

RUN

<key pressed>

WHILE X<100
 X=X+1
WEND
PRINT X
END

RUN

100

REMARK ZBasic will automatically indent all lines two spaces between the WHILE and WEND
when you use LIST. This makes programs much easier to read.

Also see FOR,NEXT,STEP,DO,UNTIL and the chapters on "Loops" and
"Structure" in the front of this manual.

A structure error will occur if a WHILE exists without a matching WEND. To find a
missing WEND,LIST the program and track back from the last indent.

 355 Standard Reference

statement WIDTH

FORMAT WIDTH [LPRINT] [=] byte expression

DEFINITION Sets the allowable number of characters on a line before generating an automatic
linefeed.

The optional LPRINT designates printer width.

If byte expression is set to 0, ZBasic will not send an automatic CR/LF. The range of
byte expression is 0 to 255.

EXAMPLE 10 X=X+1
20 PRINT X
30 GOTO 10

WIDTH 8
LIST

00010 X=
 X+
 1
00020 PR
 IN
 T
 X
00030 GO
 TO
 1
 0

REMARK The default setting for the screen width is zero which disables the auto CR/LF after
the limit has been reached.

To return WIDTH to normal, type WIDTH 79 (for 80 column screens) or WIDTH 0.
When widths are set, listings are wrapped around nicely for easy reading.

To effect a smaller width, set byte expression to the width desired. To assure valid
results for the POS statement and to keep the line position count used by tabs
correct, be sure WIDTH is set to the actual screen width minus one.

Standard Reference 356

WRITE# statement

FORMAT WRITE#expr1,{var%}|var!|var#|{var$;stringlength}[,...]

DEFINITION Writes the contents of string or numeric variables in compressed format to a disk file
(or other device) specified by expr1. The list may consist of any variable type or
types, string or numeric, including arrays, in any order. Constants may not be used!

A string variable must be followed by ;stringlength which specifies the number of
characters of that string to be written.

If the string is longer than stringlength, only those characters in range will be written.
If the string is shorter than stringlength, the extra characters will be spaces.

READ# is the statement normally used to read back data written with WRITE# and will
automatically read back the data written in compressed format.

EXAMPLE REM The four variables below will require 18 bytes for storage
REM A$=4 bytes, A!= 4 bytes, A#=8 bytes, A%=2 bytes
:
A$="TEST": A!="12345.6":A#="12345.67898":A%=20000
:
OPEN"0",1, "DATAFILE", 18 <--- Write a file with a record length of 18
WRITE #1, A$;4, A!, A#, A%
CLOSE#1
:
OPEN"I" ,1,"DATAFILE", 18
READ#1, Z$;4, Z!, Z#, Z% <---Read in same order and type (see notes)
CLOSE# 1
:
PRINT Z$, Z!, Z#, Z%
END

RUN

TEST 12345.6 12345.67898 20000

REMARK Note: Do not mix variable types when using READ# and WRITE#. READ# and
WRITE# store and retrieve numeric data in a compressed format. This saves disk
space and speeds program execution.

See the chapter "Files" for more detailed information using random and sequential
files. Also see RECORD, LOC,REC,LOF and "Disk Error Trapping".

continued...

 357 Standard Reference

statement WRITE#

WRITE# continued

READ# and WRITE# STRINGS WITH VARIABLE LENGTHS

READ# and WRITE# offer some benefits over PRINT# and INPUT# in that they will read and
write strings with ANY embedded ASCII or BINARY characters.

This includes quotes, commas, carriage returns, control codes or any ASCII characters in
the range of 0-255.

The following programs demonstrate how to save strings in condensed format, using only
the amount of storage required for each string variable.

WRITE# READ#
OPEN"O",1,"NAMES" OPEN"I",1,"NAMES"
REM LB$=LENGTH BYTE REM LB$=LENGTH BYTE
DO :
 INPUT"Name: "; N$ DO
 INPUT"Age:"; AGE READ#1, LB$;1, B$;ASC(LB$), AGE
 LB$=CHR$(LEN(NAME$)) PRINT N$","AGE
 WRITE#1,LB$;1,N$;ASC(LB$),AGE UNTIL N$="END"
UNTIL N$="END" CLOSE#1
CLOSE#1 END
END

The WRITE# program stores a one byte string called LB$ (length byte). The ASCII of this
string (a number from 0 to 255) tells us the length of N$.

Notice in line 4 of READ#, that LB$ is read BEFORE N$, thus allowing us to read the length
of N$ first. All data in file handling statements is processed IN-ORDER.

This illustration shows how the data is saved to the disk when string data is saved using the
variable length method. LB for "Tom" would be 3, LB for "Harry" would be 5, etc.

VARIABLE STRING LENGTH WRITE#

Standard Reference 358

XELSE statement

FORMAT LONGIF expression
.
XELSE
.
ENDIF

DEFINITION This statement is used to separate the FALSE from the TRUE section of a LONG IF
structure.

The statements following the XELSE will only be executed if the statement following
the LONG IF is false.

EXAMPLE LONGIF 10 = 0
 PRINT"TRUE"
XELSE
 PRINT"FALSE"
ENDIF
END

RUN

FALSE

REMARK All program lines between the LONG IF and XELSE are indented two characters
when using LIST. This makes a program easier to read.

A structure error will occur the XELSE does not have a matching LONG IF.

 359 Standard Reference

operator XOR

FORMAT expression1 XOR expression2

DEFINITION Provides a means of doing a logical EXCLUSIVE OR on two expressions for IF-
THEN testing and BINARY operations.

This operator will return true if one condition is true and one condition is false. False
will be returned if both conditions are true or both conditions are false.

EXAMPLE A$="Hello"
IF A$="Hello" XOR A$="Goodbye" PRINT "YES"
IF A$="Hello" XOR A$="Hello" PRINT "YES"

RUN

YES

REMARK
XOR TRUTH TABLES

condition XOR condition TRUE(-1) if only one condition is TRUE, else FALSE(0)

XOR BOOLEAN "16 BIT" LOGIC
1 XOR 1 = 0 00000001 10000101
0 XOR 1 = 1 XOR 00001111 XOR 10000111
1 XOR 0 = 1 = 00001110 = 00000010
0 XOR 0 = 0

FALSE XOR FALSE = FALSE
TRUE XOR FALSE = TRUE
FALSE XOR TRUE = TRUE
TRUE XOR TRUE = FALSE

Standard Reference 360

		ins.pdf

		0000.tif

		001.tif

		002.tif

		003.tif

		004.tif

		005.tif

		006.tif

		007.tif

		008.tif

		009.tif

		010.tif

		011.tif

		012.tif

		013.tif

		014.tif

		015.tif

		016.tif

		017.tif

		018.tif

		019.tif

		020.tif

		021.tif

		022.tif

		023.tif

		024.tif

		025.tif

		026.tif

		027.tif

		028.tif

		029.tif

		ind.pdf

		030.tif

		031.tif

		032.tif

		033.tif

		034.tif

		035.tif

		036.tif

		037.tif

		038.tif

		039.tif

		040.tif

		041.tif

		042.tif

		043.tif

		044.tif

		045.tif

		046.tif

		047.tif

		048.tif

		049.tif

		050.tif

		051.tif

		052.tif

		053.tif

		054.tif

		055.tif

		056.tif

		ind.pdf

		01.tif

		02.tif

		03.tif

		04.tif

		05.tif

		06.tif

		07.tif

		08.tif

		09.tif

		10.tif

		11.tif

		12.tif

		13.tif

		14.tif

		15.tif

		16.tif

		17.tif

		18.tif

		ind.pdf

		01.tif

		02.tif

		03.tif

		04.tif

		05.tif

		06.tif

		07.tif

		08.tif

		09.tif

		10.tif

		11.tif

		12.tif

		13.tif

		14.tif

		15.tif

		16.tif

		17.tif

		18.tif

		19.tif

		20.tif

		21.tif

		22.tif

		23.tif

		24.tif

		25.tif

