M SOSYS

Enhanced BASI C Conpi | er
Devel opnent System

Copyright 1986 Philip A diver
Al rights reserved

Reproduction of this manual in any manner, el ectronic, mechanical, magnetic,
optical, chemcal, or otherwise, without witten perm ssion, is prohibited.

The M SOSYS Enhanced BASI C Conpil er product is published by:

M SCOSYS, I nc.
P. O Box 239
Sterling, Virginia 22170-0239

[703- 450- 4181]

LDCS is a trademark of Logical Systens, Inc.
M CROSCOFT is a trademark of the M crosoft Corp.
TRSDCS is a trademark of Tandy Corp.

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

1 Introduction

1.1 Inportant Note

Certain documentation pertaining to this package may be available after the
user manual has gone to press. Consult the file entitled READVE/ TXT for
details on additional support material and errata. If you are new to LDCS,
read the booklet entitled "Running under LDOS".

1.2 Distribution D sks

The TRSDOS 6. x EnhConp Devel opnent Systemis distributed on a 40-track double
density data diskette.

The Model 1/111 EnhConp Devel opnent system works on both the Mdel | and
Model [11 under LDOS 5.x, and TRSDOS 1.3. It is released on a 40 track doubl e
density Mddel [11 smal LDOS system diskette. TRSDOS 1.3 users nust use the

procedure outlined under TRANSFERRI NG ENHCOWP TO TRSDOS 1.3 and a two-drive
system to transfer the files fromthe master disk to a working system disk.
The master disk is readable by LDOS and DOSPLUS. Model | or I11 use under a
DOS other than LDOS may require patches to one or nore of the supplied
prograns.

1.3 General Information

To begin with, the EnhConp BASIC Conpiler Devel opnent System conprises five
files that are on the disk included with this package. These are BC CVD,
CED/ CMD, REF/ CMD, S/ CMD, and SUPPORT/ DAT.

BC/CMD is the actual BASIC conpiler. It normally produces a directly exec-
utable 780 nmachine language /CVD file on conpilation finish, from a user-
supplied source program This conpiled code uses an efficient internal
pseudo- code for the nost part.

CEDYCOWD is a special line-oriented editor included should you desire to use
it. You can use an editor that you're famliar with if you so choose;
however, EnhConp expects its input to be in either pure ASCII form wth line
nunbers required for every line, or in its own specially tokenized format,
which is provided by CED CWVD. In addition to nore efficiently storing your
source code in nmenmory and on di sk because of EnhConp keyword tokenization,
CED allows you to nerely type "RUN to sem-interactively conpile and execute
(if O errors are detected) your current program returning control to CED on
program conpl etion or conpiler error abort.

S/ICMD is a "supervisor" program required for the interactive "RUN. It is a
smal | program that automatically |oads and executes CEDCVMD when it is itself
executed. Al though CED can be used without S/ CMD invocation, inter active RUNs
will be disall owed.

REF/CVD is the utility for generating the reference report.

SUPPORT/DAT is a relocatable library nodule, in a special format, which
contains support subroutines needed for various BASIC instructions and
utilities. They are appended as needed to the conpiled program thus assuring
that no wasted utilities are included.

1-1
I ntroducti on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These files conprise the fundanental EnhConp conpiler system SUPPORT/ DAT
must be avail able on one of your disks during every conpile. Conpilation wll
automatically be aborted if SUPPORT/DAT is not available. It is reconrended
t hat SUPPORT/ DAT reside on a different drive (say, drive 1) than the conpiled
program destination drive (say, drive 0). This greatly reduces excessive disk
drive repositioning during the conpil ati on process.

For the sane reason, it is a good idea to separate the source and object
files on different disks. If using an interactive editor RUN, you can pre-
create TEMP/ BAS, which holds your source during conpilation, TEMP/ CVD, which
hol ds the conpiled program and TEMP/ DAT, which holds the optional reference
data file, on different drives, to assure this.

EnhConp acts as a translator between high |evel |anguage, which nost people
find easiest to programin, to faster Z80 machi ne | anguage (and pseudo-code),
whi ch nost people find hard to program with. Sonetimes this translation is
simple; sometimes it’s conplex. An experienced assenbly |anguage progranmer

can usually produce nore efficient code than a conpiler, including the so-
called optimzing conpilers. Because a “core” of subroutines is included as
needed, the size of relatively short EnhConp programs wll be around 8-9k

larger than the source file. Lacking the tine and/or noney required to wite
an assenbly program from scratch to duplicate a high level program a
conpiler is a good conmprom se, and is quicker in any case.

1.4 Note on Merchantabilty

Nei t her the author nor the Publisher of EnhConp nakes any guarantee as to the
fitness of EnhConp, or programs generated by EnhConp, for any parti cul ar use,
nor do they assune any liability whatsoever for any damages that nmay arise
directly or indirectly through the use of EnhConp and associated materi al
such as this manual, including through programm ng errors that nmay be found.
Publisher's sole liability shall consist of replacing magnetic media found
defective by the buyer upon first testing the distribution diskette. By using
EnhConp, you inply acceptance of these terns.

However, the author has gone to the greatest feasible neasures for testing
the reliability of EnhConp and has confidence that it will work as described
herein. Due to the nature of programmng, certain errors will probably occur
periodically, especially in a program with the conplexity of EnhConp. The
Publ i sher woul d appreciate receiving comments from EnhConp users about bugs
found and will nake every effort to correct them in future versions, which
will be made available to registered purchasers of EnhConp for a nominal fee
as they become avail abl e.

1-2
I ntroducti on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

2 Program Conpil ati on
2.1 Conpilation from CED Editor

The easiest way to conpile a source program is to use CED to create an
EnhConp program and then type RUN. For a "standard", plain vanilla
conpilation, it's as easy as an interpretive BASI C RUN, although nuch sl ower.

If you have no test program handy, here's one to use. Type 'S at DOS READY.
CED will automatically be | oaded. Then, using the sanme procedure as the
TRS80 BASIC editor (i.e., typing all lines verbatin), enter the foll ow ng.

' Draws design on the screen

CLS
FCR Y=0 TO 47 STEP 3

' Plot lines noving in opposite directions from opposing
' corners

PLOT S,0,0 TO 127, Y: PLOT S, 127,47 TO 0, 47-Y

NEXT

A$=W NKEY$: END

Once you' ve entered this sinple program sinply type RUN and wait for conpil -
ation to finish; this should take around a mnute and probably less if you're
usi ng hard di sks or RAM di sks.

If TEMP/BAS already exists, the nessage 'Replacing existing file" wll
appear; otherwi se, 'Creating new file' or something simlar will be printed.
After your source has been saved to disk (notice that the EnhConp systemis
usual ly disk 1/0O bound), BCCVD will be | oaded.

After the initial nessage has been printed, the sentence 'PASS #1' wll
appear. EnhConp is a two-pass conpiler, so this is only the first run through
your source program Soon the message ' Appending support subs’ wll appear,
along with the subroutine currently being Iinked.

Upon conpletion of the first pass, 'PASS #2' inforns you of the start of the
| ast pass. Wen this is done, and the support routines have been linked in

from SUPPORT/ DAT, you'll see various information detailing the |oading area
in menory of the conpiled program and the nunber of bytes required by each
data table (this need not concern you at the nmonent.) If all went well, there

will be O errors, and TEMP/CMD, which holds the compiled program wll be
| oaded and executed. After the design has been created, the 'A$=W NKEYS$'
instruction waits for a key to place in A$;, press any key to have CED, and
your source code, re-|loaded for another round.

Al though the programming cycle is sonmewhat slow, as with alnost all floating
point, non-trivial conpilers, this procedure is nmuch less taxing and irrit-
ating than the conventional edit, save, run conpiler, ink, execute, etc.
cycl e.

If things didn't go quite as smoothly as described; that is, if you got sone
error nessages while conpiling the program check your program If it was the
one given, nmake sure you typed it in correctly. The error codes (sunmary

2-1
Pr ogram Conpi | ati on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

given elsewhere in this manual) should help you locate the source of the
probl em

If the error was DCS rel ated, an appropriate nessage will be given, followed
by a detailed DOS error nmessage. The supervisor wll automatically give an
error message if a fatal DOS error occurred (e.g., mssing BC CVD or
SUPPORT/ DAT) .

Note that when using an interactive RUN, and barring a fatal disk error like
a mssing sector, your current program will be safely in TEWMP/BAS shoul d
anything go drastically wong; which can happen in such instances as bad Z80
assenbly code in your source file, and so on. Sinply re-boot, type 'S, and
| oad in TEMP/ BAS using 'L: TEMP/ BAS' .

Note that due to the external file inclusion facility of *GET or *I|NCLUDE,
source files of any length can be conpiled, up to free nmenmory limts in the
conpi ler data tables and |oadable nachine |anguage file size. Due to the
| arge anount of space available with CED (around 30K), this is unlikely to be
a problem *CGET is usually useful for including standard |ibrary subroutines
or user functions/comrands.

To re-iterate, if during an interactive 'RUN, any errors are detected during
conpi l ation, control reverts to the editor at the end of the first pass, wth
the original source file automatically intact. Qherwise, TEM? CMVMD is | oaded
and executed. Wen the programis exited (via END or STOP or BREAK) control
passes back to the editor, with source text reloaded, unless Z80 code or a
conpi | er bug has caused a serious problem

CAUTI ON

Do not attenpt to invoke from DOS Ready,
a program conpiled from the supervisor
node. To generate a program that is to
be invoked from DOS Ready, recompile the
source program usi ng BC/ CVD.

2.2 Runtime Errors

A program will termnate, unless an 'ON ERROR GOTO is active, when an error
condition is detected. If 'ON ERROR GOTO is inactive, then:

RUNTI ME ERROR CODE ccc | N SOURCE LI NE #XXXXX

will appear ('xxxxx' will be invalid if the source |line was unnumbered or
if the line # information was suppressed in the conpiled code with the
'"NS' directive).

If conpilation was invoked from an interactive RUN, control wll be passed
back to CED and the source reloaded. |If general conpilation was used
(described in the following section), control will pass back to DOS READY.

2-2
Pr ogram Conpi | ati on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

A complete list of runtime errors is given in chapter 8. Note that certain
special DOS error codes, different from standard or unique codes, wll be
flagged by being in the range 32-100, with 32 added to the original code to
produce the EnhConp code. The DOS error code nust be between 0 and 68 to
avoi d confusion with other EnhConp error codes.

2.3 Transferring EnhConp to TRSDOS 1.3

The following procedure is used to transfer your EnhConp system to a TRSDOS
1.3 disk. Note that the procedure requires a two-drive system

1) Place a blank diskette in drive 1 and a working backup of EnhConp in drive
0. BOOT the EnhConp di sk.

2) Type: FORMAT :1 (NAME="ENHCOW", SDEN, CYL=35, Q=N, ABS)

3) After the disk format successfully conpletes, type: COPY BCJCMD: 0 :1

4) Continue to copy fromdrive O to drive 1 (as you did in step 3) the files:
S/ CVD, CED/ CMD, REF/ CMD, and SUPPORT/ DAT.

5) Renmove the EhnConp system disk from drive 0 and BOOT your TRSDOS 1.3
system di sk. Your TRSDOS 1.3 system di sk should have at |east 102 granul es
of free space.

6) Use TRSDOS 1.3's CONVERT utility to transfer the five EnhConp files from
drive :1 to drive :0.

7) EnhConp shoul d now be accessible to TRSDOS 1. 3.

2.4 Ceneral Conpilation Paraneters

The general format of a direct conpiler invocation is:

BC fil espec, start_address,top_address,-dir-dir. ..

Fi | espec is the source program specification.
The extension defaults to '/BAS .

start _address is the specified programorigin.

t op_addr ess is the highest address to be used by
the conpil ed program

-dir is a conpiler directive.

As you can see, a nunber of variables can be changed in the invocation. The
default | oading address for conpiled progranms is 5200H (Model [/111) or 2600H
(TRSDOS 6). You can change this by sinply putting a comma after the fil espec,
followed by the desired address (in hexadecimal format). If it is necessary
tolimt the top menory | ocation accessed by the conmpiled program this limt
can be specified as well (for exanple, to limt access in a 32K RAM program
BFFF woul d be given, the topnost valid nenory location in a machine with 32K
of menory). The default top_address used would be that recovered from the
systemis H GH$ nenmory pointer at the time the conpiled programwas invoked.

You can change conpilation paraneters through a device known as "directives”
-- so called because they are directions to the conpiler, not conpil able

2-3
Pr ogram Conpi | ati on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

instructions. Directives produce no code per se, although they may affect the
size of the final conpiled program Directives specified in the conpiler
i nvocation input are "global" directives, so called because they affect the
entire source program You can also use directives within your source
program in which case they're called "local" directives. Sone directives can
be used both globally and locally. The rest are restricted to either domain.
Local directives are explained further on.

As an exanple, the 'NO global directive inhibits the generation of an object
file, usually to conpile a program to check for errors, wthout over witing
an existing object file. In the case of the TEST/BAS program this goes as
such:

BC TEST/ BAS, , , - NO

Note the omission of the loading origin and nmenmory limt variables. They
retain their default values. However, the commas are necessary to delimt the
sentence. 'BC TEST/BAS -NO is invalid, as is 'BC TEST/BAS,-NO and 'BC
TEST/ BAS, , - NO .

Multiple directives are delimted by dashes, as in:
BC TEST/ BAS, 8000, FO00, - Wb>- W\E

In addition to the global conpiler directives, which rmay be used, in nost
cases, both globally and locally, there are purely local directives, which
are prefixed by an asterisk (except for Z80-MODE and H GHMXDE). This is
indicated in the directive list, which follows. Note: It is inportant to
realize that compiler directives are activated as they are encountered in the
input stream in a purely linear manner from left to right; runtinme program
logic has no effect on their activation. Directives valid both locally and
globally are prefixed with an "*-"; directives valid only within the program
(locally) are prefixed with only "*".

2.5 Conpiler Directives
BC supports the follow ng conpiler directives:

GET, INCLUDE, LIST, PRT, NOLIST, NOPRT, WD, NO Z80, NS, YS, WE,
NX, YX, IF, ENDF, I NJECT, LINK PRI NT.

In the follow ng paragraphs, directives that are considered global in nature

will be denoted with '(Q', while directives that are considered local in
nature will be denoted with '(L)'. Directives that are considered both | ocal
and global with are denoted with '(B)', while directives that are purely

local with '(P)".

Renenber, when you use a conpiler directive within your source stream each
must be prefixed with an asterisk and dash ('*-') except for PURELY LOCAL
directives which are prefixed with an asterisk only.

LI ST (B)

This directive will list the source program on the video screen during the
second pass, with error messages.

2-4
Pr ogram Conpi | ati on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

PRT (B)

This directive will print the informative and diagnostic nessages as well as
the source program to your line printer during the second pass, with error
nessages.

NOLI ST (L)

This local directive will turn off the source program screen listing until a

subsequent LIST directive is detected.
NOPRT (L)

This directive will turn off the printer listing until a subsequent PRT
directive is detected.

W (B)

This directs EnhConp to wite the reference data file upon conpletion of the
conpi l ation phase. The file specification used for the reference file will be
constructed with the filenane of the source program and the file extension of
"/DAT". No drive extension will be appended. An informative nessage wll be

issued advising you of the generation of the file. This file can be
subsequently processed by the REF/CVD utility to produce a program reference
report.

NO (B)

This tells the compiler to refrain from witing the conpiled program to a
disk file. You will find it useful to speed up the conpilation phase when
you only want to scan for detectable source code programerrors.

Z80 (O

This directive causes the conpiler to assune that your source program
contains only Z80 assenbly |anguage. The conpiler will then inhibit witing
of "extraneous" high-Ievel support code.

NS (B)

This directive tells the conpiler to inhibit the generation of source I|ine
nunber information in the object code code file of the conpiled program This
saves 3 bytes per source code l|line; however, runtinme diagnhostics will not be
able to then report the line nunber of a source line which causes a runtine
error. The conpiler default is to generate source |ine nunber information

YS (L)

This directive informs the conpiler to resunme the generation of source Iline
nunber information (see directive NS)

VEE (B)

This directive will cause the conpiler to wait for you to press a key when an
error has been detected during conpilation. This allows you to observe the
error diagnostic nmessage w thout worrying about it scrolling off the video
screen. Any keystroke will cause a continuation of the conpilation

2-5
Pr ogram Conpi | ati on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

NX (B)

The conpiler normally generates code which checks for the BREAK key and
handl es TRON at the conclusion of each source program statenent. If you do
not desire this BREAK key handling, the NX directive will inhibit the witing
of this code. This will shorten the resulting conpiled program file. Note
that the local directive 'YX can resunme the generation of this handling code
so that you can restrict certain segments of your program from having the
BREAK handl i ng code.

YX (L)

This directive resunes the generation of the BREAK and TRON handling code.
See the 'NX directive discussion.

I F exp <lines of source code> ENDI F (P)

The IF...ENDIF directive pair provides for a conditional conpilation. If the

expression, 'exp', evaluates to a non-zero value then the next |lines of
source up to the "ENDIF are conpiled. Oherwise, a zero value of 'exp'
results in the conpiler ignoring the next lines of source until the 'END F

statenent is reached.
*I NJECT filenane <(offset<,lower_limt<, high limt>>) (P)

This directive is used to insert a nachine |anguage load file into the
current conpilation machine code output file. If 'offset' is given, the file

will be loaded into nmenory at a new address of 'offset+old address'. To
selectively offset program loading -- say, to avoid offsetting a load to
addresses in lower RAM -- a ‘'lower_limt' can be given (such as 4400H).

Simlarly, an "upper_limt" for the offset can be given. Thus, to offset the
| oadi ng of TEST/CVD between all addresses in the range 6000H 7000H by 8000H,
use:

*| NJECT TEST/ CVD(8000H, 6000H, 7000H)

This instruction would then inject TEST/CMD into the output stream of the
conpiled program file. The DOS |oader will then load TEST/CVD into nmenory
along with the conpiled program any parts of TEST/CMD that woul d have | oaded
bet ween 6000- 7000 will now | oad into nmenory at EO00- FOOO.

*LINK fil espec(nodul e #, nodule #, ...) (P)

This directive causes the conpiler to link a special link-type file into the
current conpiled program output. Such a file would be provided and its use
docunented by the publisher of EnhConp. The SUPPORT/DAT library file is an
exanple of such a link file. In addition to greater disk space efficiency,
link files are "assenbl ed" nuch faster than the original source.

*GET/ *I NCLUDE fil espec (P)

The two directives 'GET" and 'INCLUDE are equivalent. They are used to
include a secondary source program file into the input stream This can be
useful to provide a neans of segregating your source programinto "nodul es”
each nodule in a separate file. At the conclusion of the 'INCLUDE file, the
source streamconpilation will revert to original source program

2-6
Pr ogram Conpi | ati on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

*PRI NT<#n> <"info"> <, > <;> <$(chrexp)> <exp> (P)

This directive is used to display a conpilation nessage on the screen or
printed on a printer, depending on the current option switch settings. The
"#n' specifies the pass in which to print (if omtted, the second pass only
is inplied). If "#n' is entered as '#0', then the message will print during
both passes. A '#1' or a '#2' entry indicate that the nessage will print only
on the first or second pass respectively. Anything in quotes is printed
verbatim The '<,> and <;> are print delimters as in a normal BASIC PRI NT
statenent. For an entry of '$(chrexp)', the equivalent ASCI| code is printed.
The field denoted as 'exp' indicates a print expression.

2.6 Conpilation nmode versus Interactive RUN node

The interactive RUN node is useful for witing and debugging prograns. The
/CVMD file produced during this time, TEMP/CMD, is not intended to be used
wi t hout the S/ CVD supervisor | oaded and CED/ CVD avail abl e on the disk.

To produce a final, conpiled program once developnent is conplete, you nust
i nvoke BC/CVD directly from DOS level. The various optional paraneters or
directives available have been described in the last section. It mght be
desirable to disable the "debugging friendly" features in the conpiled
program (source line # printed on error, BREAK detected, TRON available) for
your final copy; in addition to saving space, this will make it inpossible
for someone to decode your programw thout a | ot of work.

This program will be in the form of a fully independent '/CVMD file,
executable as easily as an other /CMD file. BCOCMD, S/ CVD, CEDCMD, and
SUPPORT/ DAT wi Il no | onger be needed to run the program

2.7 Independent use of conpiled prograns

There are no restrictions (royalty paynents) on conpiled prograns to be
distributed for NON SYSTEMS SOFTWARE or UTILITIES use, such as a business
program For SYSTEM5S SOFTWARE/ UTILITIES (such as another compiler, or a
| anguage, and so on -- in general, anything designed to be a progranmm ng
tool), public distribution is PROHBITED without a witten release from the
aut hor of EnhConp (Philip diver), or some kind of fee-per-copy arrangenent.
Wthout such a release or arrangement, such distribution will be considered
copyright infringement of the SUPPORT/ DAT subrouti nes.

2-7
Pr ogram Conpi | ati on

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

3 CED/ CVMD Edi tor
3.1 CED General Infornation

The EnhConp editor differs sonewhat from the TRS80 BASIC editor. However,
internal editing commands (with the 'E command) are the same. The
significant difference between the TRS-80 BASIC editor and the EnhConp editor
is that the latter recognizes tw types of Iine nunbers: editing Iline
nunbers, and BASI C | i ne nunbers.

Any individual line may carry a distinctive line nunber, treated as a BASIC
line nunmber; for this reason, standard ASCII BASIC prograns can be | oaded
into the EnhConp editor. Every line is nunbered from 1 thru "n" in steps of
one; also, where "n" is the total nunber of programlines. Not every line has
to have a BASIC line nunber, but with every line is associated an edit
nunber, representing its position relative to the beginning. The advantage of
this is never having to renunber due to the line nunbers beeing too close
t oget her. The disadvantage lies in the fact that "renunbering" occurs
automatically whenever you insert, delete, copy or nove lines. You nust
therefore keep track of where you are in the program

If multiple (edit) line nunber expressions are needed by a command, they are
al ways separated by commas. An edit |ine nunber expression can consist of a
deci mal nunber, or the letter "T" to represent "1" (the top), or "B' to
reference the bottom (last) line. Note that 'DET,B deletes your entire prog-
ram (DEl ete from Top to Bottom)

To recover from an unforeseen accident during a conpiled program run, recal
that your source text is always saved in "TEMP/BAS' if conpilation was
i nvoked fromedit node. Al you have to do is reload it.

NOTE: Unl ess otherwise nmentioned or clearly inmplied by the context, refer-
ences to |line nunbers are EDI TOR |ine nunbers.

? exp

This conmand will print the integer result of the expression, 'exp'.

?F

This conmand will print the filenane of the file currently being edited.

/ editor _line_nunber, BASIC |ine_nunber

This conmand will add the specified BASIC |ine nunber to the line identified
by the given editor |ine nunber

< BASI C | i ne nunber

This command will renove the specified BASIC |line nunber from whatever editor
line it is on (if it exists).

BLH
The "BASIC Line H de" comrand will suppress the display of all BASIC Iline

nunber s.

3-1
Usi ng the CEDY CVD Editor

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

BLS
The "BASI C Li ne Show' command will restore the display of BASIC |ine nunbers.
Cstart _line,end _line,destination_Iline

This command wll copy a block of Ilines from the 'start_line' to the
"end_line'" (inclusive), inserting at the 'destination_line'.

DE linel <, line2> (DL ... for BASIC |ine #s)

The 'DE' command will delete a single line identified by 'linel'; or the
multiple lines identified by 'linel' through 'line2', if 'line2' is given.
Using "DE', the line nunbers entered for the deletion refer to EDITOR line
nunbering. If you wish to delete a line or lines according to their BASIC

i ne nunber(s), specify the delete command as 'DL' instead of 'DE .
ELH

The "Editor Line H de" comand wll suppress the display of ED TOR Iline
nunbers. This is the default node of CED.

ELS
The "Editor Line Show' command wll restore the display of ED TOR I|ine
nunbers.

ERROR errcode (or ERR errcode)

This conmand will display the full error nessage of the given runtine code
denoted by 'errcode'.

Fstring

Begi nning at the current line+l, this command searches through the text for
the specified string. The line which contains the string is listed if a match
is found, otherwise 'STRING NOI FOUND is issued and the search stops.
| MPORTANT NOTE: Do NOT include ANY SPACES after the 'F conmmand unl ess they
are part of the search string.

GO
This command causes an exit fromthe editor and a return to DCS.
E or EDIT < string' > <linerange> (use "ED' for editor line #'s)

The 'E command is the nost sophisticated of the edit conmmands, not
surprisingly. It allows intra-line editting of a particular line or set of
lines on a nostly conceptual basis (as opposed to directly perceptual screen
editing.) Users of Z80 based TRS-80 conputers will recognize the format of
the command, since it is essentially the sane as the ED T function of the
BASI C | anguage on those conputers.

Note that with the 'E (or '"EDIT') command, nunbers refer to BASIC Iline
nunbers; with the 'ED command, nunbers refer to editor I|ine nunbers.
O herwise, all material in this description is precisely the sane for both
conmands.

3-2
Usi ng the CEDY CVD Editor

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Fundanental ly, editing is done by single letters, which switch the editing
node when appropriate. Initially, only the line nunber is shown;, the cursor
is placed at the beginning of the line. This is the edit comuand node.

Summary of internal edit commands|

<space> Ski p over next character, displaying it
<backspace>(edit) In edit node: Myve cursor |eft nondestructively
<backspace>(ins) In insert node: Mwve cursor |left destructively

A Leave the edit with the old |ine untouched
C<char > Change characters

D Del et e character

H Hack |ine

| Go into insert node

K<char > Del ete up to <char>

L List rest of line and restart edit on new line
S<char > Move cursor to occurance of <char> after cursor
X Move cursor to end of |ine, start insert node

To non-destructively nove the cursor over the line and to display it one
character at a tine, press the space bar. The cursor won't nove past the end
of the line once the last character has been displayed. To non-destructively
nmove the cursor backwards, press the backspace key. Once again, once the
first character has been noved over, the cursor won't nove. The space and the
backspace can be seen as single letter comands.

To list the entire line and then restart the edit at the beginning of a new
line, type 'L'. Doing this twice will show you a "clean"” version of the line
you're working with.

To insert new characters into the line, position the cursor to the desired

point (directly over the point of insertion) and type 'I'. Then, any
characters typed will be inserted into the line at that point; what you see
fromthe line nunber on will be the start of the new line. Any backspaces in

i nsertion node are destructive. To stop the insertion and go back to the edit
conmand node (the initial node), press the <ESC> key (or <SH FT- UP- ARROMN) .

To del ete characters, position the cursor directly before the character to be
deleted and type 'D (in the edit command node.) The character just deleted
will be printed between slash marks.

To totally restart the edit from scratch, and call up the line as it was
initially before your editing, type 'A in edit command node. The edit wll
be restarted on the next Iline.

To "hack" the rest of the line at any given point, type "H. The cursor wll
then be placed at the end of the line and insert node will be on.

To change a character "under" the current cursor position, type <C><char>;
the character will be changed to <char>.

To delete all characters from the character "under" the cursor up to and
i ncluding a particular character, type <K><char>.

3-3
Usi ng the CEDY CVD Editor

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

To nove the cursor to the end of the line and go into insert node, type <X>.

To nove the cursor to a particular character in the line after the cursor
position, type <S><char>. If the specified character is not on the line, the

cursor will be noved to the end of the line. If it is, the cursor will be
pl aced "over" that character. In either case, edit command node will still be
active.

Note that pressing the <ESC> key or its equivalent <SH FT-UP-ARRON> will
al nost always abort the current command and cause a return to edit command
node.

Once all editing has been completed and you're satisfied with the results,

hitting <ENTER> will enter the new line in place of the old one. If you want
to leave the line alone, type <A> in edit command node followed by <ENTER>;
the line will be unchanged. Hitting <BREAK> will al so cause an escape w thout

changing the old line.

Optionally, you can initially specify tw paraneters. |If you specify a range

of lines, a succession of edits will occur. In this case, after you type
<ENTER> or <A> to enter or escape from the edit, the next line wll be
edited. However, typing <BREAK> will cause a return to the editor conmand
node.

You can al so specify a string which will be entered just as if you had typed

it in at the beginning of the edit. For exanple, entering:
E L' 10

would edit line 10, displaying it first, because of the <L> edit conmmand.
Note that the apostrophes are actual characters to be typed, not docunen-
tation syntax marks.

This is really only useful when a range of lines is specified. Then, you can
automatically edit them without tediously typing the edit commands for each
line. A left bracket, "[", in the string is taken to nean an <ENTER>, so
entering, for exanple:

El;["15,20

woul d insert a semi-colon at the beginning of lines 15 through 20 i ncl usive,
editing each line automatically. This particular command would be useful to
temporarily convert a range of Z80 assenbler source lines to coments. Later,
the sem -colons could just as easily be deleted by entering:

E O’ 15, 20

Note that if the paraneter "T,B" (without quotation marks) is specified for
the line range, the entire programw || be edited.

As alluded to earlier, typing a nunber before nobst commands will cause that
conmand's action to be done that nunmber of tinmes. For exanple, typing
<1><2><space> essentially causes the space command to be done twelve tines.
If the end of the line isn't reached, the cursor will skip over twelve new
characters. To delete 6 characters, say, type <6><D>. To "erase" a nunber
just typed and essentially set it back to 1, type <ESC> or its equival ent.

3-4
Usi ng the CEDY CVD Editor

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Wth the <S> and <K> commands, the specified nunber of characters will be
searched before the command's action is done. For exanple, <2><S><A> will
skip the cursor over the first "A encountered in the line and place it over

the second one found (or the end of I|ine, whichever cones first). In add-
ition, <3><K><|I> will delete all characters from the one "under" the cursor
to the third 'I' found in the line after the cursor, inclusively -- or unti

the end of the line is reached.

Wth the <C command, the specified nunber of characters will be nodified. If
the end of the |line is reached, edit command node i s enabl ed.

Hlinel <, |ine2>

This command will print '"linel" (through 'line2" if given) on your printer.
If the printer is unavailable, hit <BREAK> to escape.

I |ine_nunber

This command will begin insertion of lines at the specified line nunber. Hit
<BREAK> to escape insert node. Note that no BASIC line nunber is attached to
t hese |ines.

K fil espec

This command will "Kill" (renmove) a file from disk. Note the use of the

mandatory colon, ':', in the comrand syntax.
LI ST I'i nerange

This command will list a range of lines to the video screen; nunbers given by
"linerange' refer to BASIC |Iine nunbers.

LLI ST i nerange

This conmmand will print a range of lines on your printer; nunbers given by
"linerange' refer to BASIC |Iine nunbers.

L:<(insert line)> filespec <, linel < |ine2>>

This command will |oad source text fromdisk into nmenory. Note the use of the
mandatory colon, ':', in the conmand's syntax. Note also that |ine numnbers
are EDITOR line nunbers. The sinplest form of this load comand is, for

exanpl e:
"L: TEMP/ BAS"

TEMP/BAS will be either loaded into nmenmory if there's nothing in the text
buf fer, or appended onto the end of the current text.

If "(insert line)" is specified, the disk file will be inserted into that
point in the current text.

If <linel, </ line2>> is/are given, only 'linel', or 'linel through I|ine2
inclusive, is/fare loaded from the disk file (relative line nunbering is
used). For exanple:

L: (10) SOURCEL/ BAS

3-5
Usi ng the CEDY CVD Editor

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Inserts "SOURCEl/ BAS' starting at |ine 10.
L: CHESS80/ BAS, 50, 177

Loads or appends lines 50 through 177 fromthe "CHESS80/BAS' file. Loadi ng
stops automatically if less than 177 lines are in the file.

L: (184) NWAR/ BAS, 15, 40

This is a conbination of insert/selective Iloading. Lines 15-40 from
"NWAR/ BAS" are inserted at the current |ine nunber 184.

MIlinel,line2,destination_|ine

This command is simlar to "C'opy, except that lines are noved rather than
dupl i cat ed.

N <l ower _|i m<, upper _linxk,start<,inc>>>>
Thi s command renunbers the BASIC lines of a program Four optional paraneters
are allowed. The first two are the current line range to renunber. The third
is the new starting number. The last is the line increment. The default
val ues are 0, 65535, 100, 10. For exanpl e:

N 100, 300, 10, 10

woul d renunber all lines in the range 100-300 inclusive; the first line then
bei ng 10, the next 20, etc.

N,,100,5

woul d renunber the whole program starting at 100 and advancing in increnents
of 5.

O
This command wi ||l begin appending |ines wi thout BASIC |ine nunbers.
P linel<, |ine2>

'"P lists 'linel" or 'linel through line2' to the screen. If no parameters
are given, then 15/23 lines starting with the current line are |isted.

Q drivenum

This command will display a directory of files on the disk drive specified as
"drivenumi. If "drivenuml omitted, drive O is assuned.

R linel<, |ine2>
"R wll replace 'linel" or 'linel through line2'. The current line is

printed; insert pronpt allows new replacement |ine to be entered. Once
line(s) are replaced, control passes automatically into insert node.

3-6
Usi ng the CEDY CVD Editor

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

RUN

This conmmand starts a chain of events if the conpiler editor is invoked in
the supervisor node (i.e. from "S/CVMD'). First, source text is saved in the
file named, "TEMP/BAS'. Then it's conpiled into "TEWMP/ CMD'. If the
conpilation is successful, "TEMP/CMD' is invoked; if not, control passes to
the editor, with source reloaded. This al so happens when the runtine program
term nates in an acceptabl e (END STOP/ BREAK) way.

Sstring

This command operates the same as 'Fstring' except the search starts at the
begi nning of the text instead of |ine+l.

U

This command provides menory usage. It displays nunber of bytes used and
bytes free.

V:filespec <linel<, |ine2>>

This conmand allows you to display lines from the specified disk source text
file.

Wfilespec <linel<, |ine2>>

This command wites text fromnenory to the specified disk file. Note the use
of the mandatory colon, ':', identified in the command's syntax. If |line
paraneters are omtted, the entire text is saved. If line paraneters are
given, only those lines are witten to the file.

X/ repl acenent $/ sear ch$

This comand will search and replace all occurances of the search$ string
with the replacement$ string. The search will begin at the current Iine
nunber. A <BREAK> stops the command. Note that only one replacenent per line
i s done. For exanple:

X/ ent/ ant

replace all occurances of "ant" with "ent

Y=l i nespages, pagel ength

This command will change printer fornms control paraneters (for LLIST, H) to
do a top_of form 'TOF, after 'linespages’ lines. If 'pagelength' is given,
this will define the nunber of lines total for each page of the paper you're

using in your printer (usually 66).

3-7
Usi ng the CEDY CVD Editor

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

4 EnhConp BASI C Statenents and Functions

4.1 Conpiler Introduction

EnhConp is a conpiler, which differentiates it from TRS-80 BASIC interpreters
i ncluded with your DOS. The essential difference is not so nuch the structure
of the languages thenselves, but the manner in which your conputer executes
any given program in the |anguages. The resident BASIC in your machine nust
anal yze program text every time it executes a command. Conpilers, however,
translate program text into a format that is better suited to nmachine
interpretation than a strai ght BASI C program

Sone conpilers conpile to "pseudo-code", which is space efficient but slow
EnhConp is a true conpiler; it conpiles directly to Z80 machine |anguage.
EnhConp does acconplish some space conpression since many |engthy routines
used many tinmes thoughout conpiled progranms are copied just once in menory,
and cal |l ed as subrouti nes.

EnhConp is unique. Not only can the progranmer take advantage of a powerful
hi gh | evel |anguage, but Z80 source code can be interm xed with the |anguage
to any extent desired. In fact, EnhConp is not only a conpiler, but a Z80
assenbler that allows powerful al gebraic expressions in source code
statenments. It takes advantage of the high |evel |anguage/ machi ne |anguage
intermx ability, with special functions that allow access to variable, line
nunber, and | abel addresses.

EnhConp is not guaranteed to translate your TRS-80 Model | or IIl interpreted
BASI C prograns unnodified into machi ne | anguage. However, any differences are
slight and easily fixed to acconodate conpilation. The large repertoire of
new commands and functions make it likely that you wll be witing old
progranms over using these new features, rather than settling for the limted
capabilities of the resident BASIC/ D sk BASIC interpreters.

EnhConp retains many of the "nice" features of interpreted BASIC that are
excluded in other, inferior, conpilers. For exanple, the <BREAK> key is
functional during execution, if desired, and BREAKing a conpiled program wl |
result in a BREAK nessage along with the source code |ine nunber in which the
interrupt occured. Error messages at runtinme display the error code and the
source code line nunber in which the error occured.

Dynam c array allocation with up to fifteen dinensions (A(al, a2, a3, ..., als)),
is allowed, as is dynamic string space allocation. Al standard BASIC
variable types are supported (integer, single precision, double precision,
and string). Strings are no longer limted to 255 characters in |length; 32767
is the new string length limt. "FOR NEXT" constructs may have nore than one
NEXT for a single FOR, since error checking (in this case) is done at
runtine, not at compile tine. Mdrre than one dinension statenment for the same
array may occur in a program at once, but an error nmessage will be issued at
runtine if nmore than one of the dinensions are executed.

4.2 Conpiler Directives

Conpiler directives are not "true" comrands. They sinply tell the conpiler,
at conpile tine, to do sone task. The directives pertinent to the program
code stream wll be discussed here. Al of the conpiler directives are
di scussed in Chapter 2.

4-1
EnhConp BASIC Statenents and Functi ons

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

H GH MCDE

This puts the conpiler into H gh Level Conpilation nmode. 'HGHMXDE is the
default conpilation node. The conpiler will be looking for only "high |evel”
commands and functions in this node.

Z80- MCDE

This puts the conpiler into Z80 Assenbler node. H gh Level comuands wll
generate expression errors in this node. Only valid Z80 opcodes and assenbl er
directives will be recognized. Source code line inclusion and BREAK key
checking will be disabled in this node.

H gh Level Statenents

Statenents are instructions that perform sonme specific task, and exist as
i ndependent entities; as opposed to functions, which are used inside alge-
braic or string expressions, and are not used independently. Statenents and
functions may be used in H gh Level node only (the default mnode of the
conpiler.) They will generate expression errors in Z80 node.

H gh Level Functions

Functions are used with expressions. They are also used with statenments;
however, a function is never used alone. In general, functions can be divided
into two main categories: String and Nuneric. Naturally, these categories are
further divided into fairly reasonabl e groups of related functions.

String Functions: An overview

Strings, as you're probably aware, are bytes which are sequentially strung
together in a "string" and which can be assigned and mani pul ated using string
vari ables, which can hold a string of variable length. Wth EnhConp, this
length can be from 0 to 32767, a significant inprovement over the 255
character limtation of many interpretive BASICs.

EnhConp internally wuses a nenory-efficient string |list technique to
mani pul ate strings. This process is transparent to the wuser; it is worth
menti oni ng because PRINTs or LPRINTs take up no extra string space whatever
when printing a string expression -- except a snmall anount for generative
string functions such as HEX$ and BIN$. Additionally, string assignments are
fairly menmory and time efficient due to the fact that string literals and
STRINGS functions take up no tenporary string space during the assignnent;
however, A$=A$+B$, say, requires that A$ and B$ take up tenmporary storage
space due to extensive noving around of A$ and B$ during the assignment.

However, the same expression, A$+B$, would take up NO tenporary space if it
was printed (PRINT A$+B$ or LPRINT A$+B$), regardless of the conbined |ength
of A$ and B$. In the sanme way, LPRINT "--> "+STRI NGH(128,42)+" <--" would
work with O bytes cleared for string space.

4.3 Function Reference

The following pages list all the built in statements and functions

4-2
EnhConp BASIC Statenents and Functi ons

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function returns the absolute value of its argunent.

ABS(exp) FUNCTI ON

exp - IS a numeric expression

ABS returns the absolute value of an expression. If the expression eval uates
to a non-negative value, that result is returned; otherw se -expression. For
exanpl e: ABS(-4) = 4; ABS(0) = 0; ABS(1.414) = 1.414.

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the absolute nenory address of its argunent.

| |
| ADDRA(addr) FUNCTION |
| |
| addr - is aline nunber or a | abel. |
| |
ADDRA returns the absolute nenory address of a specified |ine nunmber or

| abel . For exanpl e:

10 L=ADDRA(100)

20 A=PEEK(L):L=L+1:1F A=0 THEN END

30 PRINT CHR$(A);:GOTO 20

50 Z80- MODE

100 "STRING':DB 'ASCI| TEXT STRING , 13,0

This prints a string defined in nenory, accessable as the address of Iline
nunbered 100. Alternatively, line 10 could be: L=ADDRA("STRI NG'), as the
val ue of the label '"STRING'' equates to ADDRA(100).

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This is used to allocate the quantity of disk file control bl ocks.

ALLOCATE exp STATEMENT

| |
| |
| |
| exp - is the nunber of file control blocks to |
| allocate in the range <1-15>. |
| |

Before any disk files can be OPENed, file control blocks nust be all ocated.
"ALLOCATE creates up to 15 control blocks. Note that the blocks are
allocated sequentially -- blocks allocated equal the highest file buffer
accessabl e by OPEN.

For exanple, if a maximum of 3 files will be open at once in a program
" ALLOCATE 3' is executed before any OPENs are done.

File control blocks can be specified by a variable expression — the nunber of
bl ocks to be allocated needs not be a constant defined at conpile time. For
i nstance, ALLCCATE F+1 is valid.

More than one ALLOCATE can exist in a program-- but only one of them may be
executed (or an error will be generated.)

ALLOCATE ALLOCATE

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These functions indicate their argunments as being other than deci nmal format
nunbers.

&BdO0. ..d15 - Binary nunber FUNCTI ON
&dO. .. d5 - Cctal numnber FUNCTI ON

: :
| &HdO...d4 - Hexadeci mal nunber FUNCTI ON

| |
| |

'"&' signals a binary number in ASCII format. For exanple, the assignments:
“A = B AND &B11110101” and “A = B AND 245" are functionally equivalent. '&H
flags a hexadecimal ASCI | format nunber: &HIO0 = 256 decimal; and '&0 flags
an octal ASCII format nunber: &070 = 56 deci nal

&B, &H, &O &B, &H &O

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function returns the first byte of its string argunent as an integer.

ASC(exp$) FUNCTI ON

exp$ - is any string expression.

"ASC takes the first byte of the specified string expression and converts it
into nunmeric format. For exanpl e:

10 A$="ABC'
20 PRI NT ASC(AS$)

prints 65, the ASCI|I code of the letter "A, which is the first character in
t he argunent, AS.

ASC ASC

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the arc tangent of its argunent.

| |
| ATN(exp) FUNCTION |
| |
| exp - is a numeric expression in radian nmeasure |
| |

ATN returns the arctangent of an angle assumed to be in radian degree
measure. It can receive, and return, either a single or a double precision
value, of full precision. Thus, if the argument is double precision, the
result will be a double precision val ue.

ATN ATN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function converts nuneric expressions to a string of binary digits.

Bl N$(exp16) FUNCTI ON

| |
| |
| expl6 - is in the range <-32768 to 32767>

| |

BIN$ returns a 16 character ASCI| binary representation of a selected integer
expression. For exanple, BIN$(4095) is equal to "00001111111111211"

Bl N$ Bl N$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These statements are used to provide <BREAK> key control of your program

| |
| BKON STATEMENT |
| |
| BKOFF STATEMENT |
| |

'BKON' and 'BKOFF can be used to effectively turn the BREAK key on or off,
respectively. They affect only the BREAK scan flag. BKON wll have no
apparent effect if the "-NX' directive flag has been specified, since the
BREAK scan code calls will be left out of the conpil ed program

An ' ON BREAK @GOTO addr' causes a junp to the specified |ine nunber or I abel
if the <BREAK> key is hit and the BREAK scan is activated. 'ON BREAK GOTO 0
di sabl es <BREAK> key branching, parallel to 'ON ERROR GOTO 0'. Causing an 'ON
BREAK GOTO addr' junp al so automatically di sabl es <BREAK> key branchi ng.

Exanpl e Program

5 ON BREAK @GOTO 100

10 PRINT"HO HUM . . . "

20 FOR X=0 TO 1E12: NEXT

30 PRI NT"OH BOY, LET'S COUNT TO A QUADRI LLI ON NOW "

40 END

100 PRI NT"THANKS! SAVED FROM A FATE WORSE THAN SCARFMAN. .. ."

4-10
BKON BKOFF BKON BKOFF

This function is used to convert

M SOSYS Enhanced BASI C Conpi | er

Copyright 1986 Philip A. Qiver, Al

Devel opment System

rights reserved

its argunent to doubl e precision.

CDBL(exp)

exp

iS a numeric expression.

FUNCTI ON

CDBL converts a numeric expression to double precision floating point fornat.

CDBL

4-11

CDBL

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function converts a byte value to a one-character string.

CHRS$(exp8) FUNCTI ON

exp8 - is in the range <0-255>.

CHR$ is used to convert a nunber between 0 and 255 into a string character.

CHR$(65) = "A" for exanple.

4-12
CHR$

CHR$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function converts a numeric expression to integer fornat.

Cl NT(exp) FUNCTI ON

exp - IS a numeric expression

CINT converts a numeric expression to integer type. Expression nust be

in the range (-32768 to 32767).

4-13

CI NT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The ' CLEAR statement is used to clear variables and allocate string space.

CLEAR <exp> STATEMENT

| |
| |
| |
| exp - is used to designate the anmpbunt of string
| space to reserve.

| |

'"CLEAR without expression sinply zeroes all nuneric variables, clears all
strings, and undinensions all arrays. Wth expression given, 'CLEAR does al
of the previous and also redefines the amount of nenory devoted to string
storage, which is 100 bytes by default.

If, for example, you had a program that stored a maxi mum of 500 strings each
with a maxi mum length of 8 bytes, then you would need to at |east CLEAR 4000
(bytes). In reality, string related functions and commrands tenporarily use
some of the currently free string storage area as a "scratchpad”, so a buffer
of 600 bytes is not unreasonable -- make it: 'CLEAR 4600

4-14
CLEAR CLEAR

This statenent is used to close a file or files.
|
CLCSE <bl knum <, bl knum . .. >> STATEMENT |
|
bl knum - designates a specific file to close. If no |
|
|

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

bl knumis given, all open files are close

d.

Al open files nust cone to a close.
information vulnerably sitting in RAMis witten safely to disk. (D sk data
is usually unaffected during "I" type file access so ACCI DENTALLY not cl osing

an "I" type file is usually harm ess.

Wth a list of file control blocks given,

CLCSEd contr ol

Bl ocks listed, ALL open files are closed.

4-15

'CLOSE' assures that

CLCSE t hem anyway.)

only those bl ocks will

all inportant

be aff ect ed.

bl ocks are unaffected by CLOSE. Wth no specific File Control

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to clear the video display screen

| |
| as STATEMENT |

This statenent sinmply clears the screen with blanks (ASCI1 32) and homes the
cursor. Only a portion of the screen will be cleared if scroll protection is
enabl ed.

4-16

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The COVIVAND- ENDCOM construct permts you to define new BASI C comrands.

COWAND nane(i nput variable list) STATEMENT
program st at enent s

ENDCOM STATEMENT
nane - is astring of characters in the set

("A'-"Z", "0"-"9"), starting with ("A"-"Z")

input variable list - is a list of (local) input
vari abl es.

Not e: user comrands are invoked by precedi ng the nane
with a percent as in, '%anme(operand list).

COWAND is a powerful statenent that allows you to define new commands. A
user-conmmand definition consists of the 'COMWAND statenent header, a
definition body, and an 'ENDCOM statenent. Once defined, the user-conmand is
easily and clearly referenced by the technique of "%ane(operand list)". The
percent sign acts as a user-conmand i nvocation synbol.

Any conbination of nuneric and string expressions can be specified as user-
conmand operands. For each operand specified in a user-command invocation
there must be a corresponding |ocal variable in the user-comrand definition -
- "local" because the existing values of the variables listed in the
definition are pushed onto the stack before they are assigned to the operands
given in the user-conmand invocation. NOTE: input variables are restricted to
sinple variables and exclude array elenments. So ALPH$ is a valid local input
variabl e, but NAME$(4) is NOT.

The RETURN command (inside a user-command definition), re-assigns original
values to local variables and exits fromthe user-conmand.

COWAND definitions may not be nested. Aso note that definitions are
"defined" at conpile-time, so they may exist anywhere in the program they
need not be executed. In fact, when encountered, a definition is skipped
over.

Exanpl e Program #1:

10 PRI NT" FACTCRI AL PROGRAM' : PRI NT

20 I NPUT"# TO TAKE FACTORI AL OF"; X

30 IF X<>I NT(X) OR X<O0 THEN PRI NT"I NVALI D #.": GOTO 20
40 9ACTORIAL(X):PRINT X;"! =", F

50 END

60 COMVAND FACTCORI AL(Y)

70 | F Y<2 THEN F=1: RETURN

80 YFACTORI AL(Y-1): F=Y*F: RETURN

90 ENDCOM

The preceding program needs a little explaining. The conmand definition body,
lines 70-80, is the heart of the program Line 70 sets 'F, the output
variable by choice, to 1 if "Y', the local input variable is less than 2; as
it should, as 1! = 0! = 1. Line 80 is the clincher. %ACTORIAL(Y-1) is a
recursive invocation, so called because the wuser-command definition is

4-17
COMVAND COVVAND

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

referencing itself! The opinion of poor math teachers aside, definitions that
refer to thenselves can be perfectly valid (with the inportant proviso that
at some point something specific nust happen and the recursion, or self-

referencing, termnates); in this case %ACTORIAL(Y-1) is allowable because
of the fact that 'Y is a local variable. Internmediate values in the
factorial calculation are preserved. F=Y*F is a perfectly proper way to
calculate the factorial, because Y! = Y * (Y-1)!, and F (before the
assignment F=Y*F) is (Y-1)! because of 9% ACTORIAL(Y-1). Naturally, a
recursive invocation has to stop sonetime for it to be useful, and the

"stopper" is line 70, which returns a "hard" nunmber (1) when Y is finally
decrenented to 1. Fromthen on, a sort of backlash occurs until the factorial
is finally calculated. Details are left "... as an exercise for the reader."

The potential power of nixing Z80 assenbly |anguage with BASIC should be
evident in the next program

Exanpl e Program #2 for TRS-80 Model 1/111:

10 FOR X=0 TO 255
20 %I LL(X)

30 NEXT
40 END
45 '

50 COVMAND FI LL(X%

60 Z80- MODE

70 LD A (& X%):LD HL, 3C00H LD (HL), A
80 LD DE 3C01H: LD BC, 03FFH LDI R

90 H GH MODE

100 ENDCOM
Screen nenory is filled with all possible characters, making a rapidly
changi ng display. You Z80 progranmmers can figure this program out. The rest
of you -- what can | say? ('learn Z80 assenbly | anguage ...").

4-18
COVIVAND COVVAND

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to conpl enent a pixel.

COVPL(X,) STATEMENT

| |
| |
| |
| x - is a nuneric expression which evaluates to |
| the range <0 - 127> for 64-col um screens |
| and <0 - 159> for 80-columm screens. |
| |
| |
| |
| |
| |

y - is a numeric expression which evaluates to
the range <0 - 47> for 16-row screens and
<0 - 71> for 24-row screens.

SET, RESET, and COWPL form the set of the single-pixel-affecting graphics
conmands. Note that screens that display 16 rows of 64 characters wll
display 72 rows by 160 columms of graphics pixels; screens that display 24
rows of 80 characters will display 72 rows by 160 col ums of graphics pixels.

The COWPL command conpl enents a selected graphics pixel, turning it ONif it
is OFF and vice versa. The following illustrates a brief exanple of these
gr aphi cs conmands:

5 Y=23: RANDOM CLS

10 FOR X=0 TO 127

20 SET(X Y)

30 Y=Y+SG\(RND(3) - 2)

40 |F Y<O THEN Y=0 ELSE |F Y>47 THEN Y=47
50 NEXT

60 FOR X=0 TO 127

70 COVPL(X, 23): NEXT

80 FOR X=0 TO 127

90 RESET(X, 23): NEXT

The program first plots a pseudo-"nmountai nous” profile on the screen, pro-
ceeds to "conplenent” all graphics dots down the mddle of the screen, and
finally resets all pixels through the mddle of the screen.

4-19
COVPL COVPL

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the trigononetric cosine of its argunent.

| |
| COS(exp) FUNCTI ON
| |
| exp - is a numeric expression in radian nmeasure.
| |
COS takes the cosine, in radians, of an expression. It returns, in full

preci sion, a value of the sanme type as exp. Thus, if the argunment is a double
precision type, the value returned is in double precision wth ful
si gni ficance.

4-20

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function converts its argunent to single precision.

CSNG(exp) FUNCTI ON

exp - IS a numeric expression

CSNG converts any nuneric expression of any nuneric type into a single

preci sion format nunber.

4-21

CSNG

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the position cursor of the video cursor.

| |
| CURLOC - No operands are required! FUNCTI ON |

"CURLOC returns the position of the video screen cursor. The position
obtained is a value from O to n where n+l repreents the total nunber of
characters displayable on the video screen (0-1023 for 16x64 and 0-1919 for
24x80). '"PRINT @CURLCC,..." is nornmally equivalent to "PRINT ...".

4-22
CURLCC CURLCC

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The ' CVD function unpacks the 8-byte string argunent to a double
precision floating point nunber.

| |
I CVD(exp$) I
| exp$ - is an 8 byte string expression |
| |

CVD's primary purpose is to convert a double precision nunber stored in a
file on disk as an 8-byte string back into double precision format. It is the
converse of the MD$(exp) string function. MD$, described elsewhere,
converts a double precision numeric expression into an eight byte string
contai ning the double precision data. EXP = CVD(MKD$(EXP)).

The 'CVI' function unpacks the 2-byte string argunent to an integer numnber.

| |
| CVI (exp$) |
| |
| exp$ - is a 2-byte string expression. |
| |

The main purpose of CVI is to convert an integer stored as a 2-byte string on
di sk by the converse string function MI $(exp) back into an integer. EXP =
CVI (MKI $(EXP)) .

The 'CVS function unpacks the 4-byte string argunent to a single precision
fl oati ng poi nt number.

CVS(exp$)

exp$ - is a 4 byte string expression.

The prinme function of CYS is to convert a single precision nunber, converted
into a 4 byte string by the MKS$ string function and stored in a disk file,
back into a single precision nunber. EXP = CVS(MKS$(EXP)) .

4-23
Ccvl CVS CVD Cvl CVS CVD

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function returns the systemdate as a string.

|
| DATE$ There is no operand FUNCTION |
| |

The system date is returned as an eight-character string of the form
MM DY YY.

4-24
DATE$ DATE$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent allows you to declare a list of data itens to be input wth
t he READ st atenent.

DATA dat al i st STATEMENT

strings, quoted or unquoted; each itemis

|
|
| _ _ | |
| datalist - is a list of nunmbers or al phanuneric
|
| separated by a comma.

|

DATA provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statenment does nothing as
program execution junps over the data list.

READ is the mechanism used to read from DATA lists. READ has the peculiar
attribute that it can read a DATA item as either a string or a nunber. An
item can always be read into a string (as a string of characters). An item
can SOMVETI MES be read as a nunber -- if it's a nunber. READ A$ reads the next
DATA item (say 1.618033) literally, character by character, into A%, in this
case an 8 byte string. READ A, using the same item stores into A the binary
equi val ent of the converted string 1.618033.

RESTORE and RDGOTO provide ways to point at the desired data list. RDGOTO
especially, elimnates the wasteful process of reading and discarding lists
of data to get to the desired list required in interpretive BASIC.

Initially, the first data itemread, unless the data pointer is changed by a
RDGOTQ RDGTO statenment, will be the first data item in the first DATA
statement in the program

Exanpl e Program
5 RDGOTO " PRI ME"

10 READ Tl TLES$: PRI NT Tl TLE$: PRI NT: READ N
20 FOR X=1 TO N: READ A: ?A, : NEXT

30 END
35 '
40 "FI B"

50 DATA The first El GHT Fi bonacci nunbers in order

60 DATA 8, 1,1,2,3,5,8,13,21

70 "PR M

80 DATA The first NINE prinme nunbers in sequential order
90 DATA 9, 2,3,5,7,11,13,17,19, 23

4-25
DATA DATA

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"DEC is used to decrenment an integer variable.

DEC i nt var STATEMENT

| |
| |
| |
| intvar - is either an integer variable or an integer |
| array el ement. |
| |

"INC and 'DEC provide a very quick way to increnment or decrement a
specified integer variable, respectively.

Exanpl es:

I NC A% "A%= A%+ 1
DEC BY%10): 'B%10) = B%10) - 1

4-26
DEC DEC

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These ' DEFxxx' conmands are used to declare a group of variables to be of a
specific type: integer, single precision, double precision, or string.

DEFDBL letters STATEMENT
DEFINT letters STATEMENT
DEFSNG |l etters STATEMENT
DEFSTR letters STATEMENT
letters - is alist of letters (A-Z) flagging all

vari abl es beginning with specified letter.
Multiple letters are separated by a coma
inthe list. Two letters separated by a
dash indicates both letters and all letters
al phabetically between them (e.g. B-E

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| abe
| specifies B,C, D, and E).
|

The standard default type for variables, when no type declaration character
suffix follows a variable (% = integer with 2 bytes of storage needed, ! =
single precision with 4 bytes of storage needed, $ = string with 4 bytes of
storage needed, # = double precision with 8 bytes of storage needed), is
single precision. However, the above listed commands alter the default types
for selected variables -- all variables beginning wth the specified
letter(s) in the list. For exanple, 'DEFINT A-K instructs the conpiler to
assune that all followi ng untyped variables starting with one of the letters
A B CDEFGHOr Kare integers (integer type).

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhhdhhdhdhdhhhhdhhhdhhhdhhhddhddhrrdrxdx*x

| MPORTANT | NCOVPATI BI LI TY NOTE: Al above statenents
are, in reality, COWILER PSEUDO OPs! They affect
conpi |l ed output as they are LI NEARLY encount ered
sequentially in a source line, not as they are

LOA CALLY encount ered. For exanple:

| F A=3 THEN DEFSTR A-Z ELSE DEFINT A-Z

sets all follow ng untyped variables to be strings,
and then imedi ately assunes themto be integers.

In other words, RUNTIME LOG C has ABSOLUTELY NOTHI NG
TO DO wi th setting untyped variable type defaults,
unlike interpretive BASIC. In fact, the compiler
generates no code for DEFI NT, DEFSTR, DEFDBL or DEFSNG

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

hkhkhkkhkhkhkhkhhhkhhhhhhkhhhhhhhhhhhdhhhdhhhdhhhddhdddhdddhddrdrddrxd*x

4-27
DEFx X X DEFx XX

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to define single-line user-defined functions.

DEFFN narme(input variable list) = exp STATENMENT

| |
| |
| |
| input variable - is any sinple string or nuneric |
| vari able. Arrays are not all owed. |
| |

DEFFN is used to define a function capable of being evaluated from a single

expression. It operates simlarly to Interpretive BASIC EnhConp uses
FUNCTION as a powerful statenent that allows new multi-lined functions to be
defi ned.

DEFFN is an interpretive Di sk BASIC feature. The statenent:
DEFFN nane(i nput variable list) = exp
is functionally equivalent to:

FUNCTI ON nane(i nput variable list): RETURN exp: ENDFUNC

4-28
DEFFN DEFFN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The 'DIM statenent is used to allocate space for one or nore arrays while
speci fying the array dinmensions.

specifying the index limts of the array.

| |
| DIMarray(explist) <,array2(exp)...> STATEMENT |
| |
| array - is an array nane. |
| |
| explist - is an expression or list of expressions, |
| |
| |

Until an array is DI Mensioned, it cannot be accessed. DI Mensioning sets up
the index limts (defining the acceptable range of index values) and allo-
cates menory for array data. For exanple:

10 DI M A(10)
20 FOR X=0 TO 11: A(X) =X*X: NEXT

w |l cause an error when X=11, which exceeds the dinensioned |limt of 10.

Multiple dinensions can be done with one 'DIM statenent by separating the
arrays by commas -- i.e. DM X(60), Y(75).

EnhConp allows the actual index limts in the "DIM statenment to be undefined
at conpile time (in other words, specified by variables and resol vable only
at run-tinme), unlike many other BASIC conpilers. For exanple, the statenent:

DI M TAX(A, B)

is allowed by EnhConp, because the dimension will occur dynam cally when the
conpiled program is run, but disallowed by BASIC conpilers that need con-
stants as index limts to preconpute the anobunt of space needed for all array
el enents.

4-29
D M D M

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statement is used to scroll the video screen down one |ine.

| |
| DO STATEMENT |

"DOMN scrolls the entire screen down by one line, clearing the top |line.

4-30

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to draw a "turtle graphics” figure.

DRAW' flag" @x,y USING array% exp) STATENMENT

| |
| |
| |
| 'flag - designates the type of pixel action: |
| 'S signifies unconditional SET; |
| "R signifies unconditional RESET, |
| "C signifies pixel COWLenent. |
| X,y - is the coordinate of the starting point. |
| X is in the range (0-127|0-179); y is in |
| the range (0-47|0-71). |
| |
| |
| |

array%exp) - is an integer array el enent.

Essentially, DRAW takes a list of 1line segnent |engths conbined wth
rotations, specified in any specified integer array at any point in the array
(such as AY%10) or B¥%18)), and plots a figure on the screen based on the
list. The concept is very simlar to turtle graphics in the LOXO | anguage.

EnhConp DRAW al |l ows 256 degrees of rotation and is properly scaled to assure
mninmal distortion of rotated figures. That is, a box will still |ook much
like a box when it is rotated say 60/256s of a circle (60 DRAW degrees) and
redrawn. Furthernore, the lengths of its sides will be close to that of the
unrotated figure. In addition to allow ng 256 degrees, DRAW all ows noni nt eger
line lengths and scaling: line lengths are specified in 1/256 graphics pixel
width units.

To set up a turtle graphics figure, dinension an integer array to at |east
4*1-1, where 'L' is the required nunber of |line segnments needed to draw your
figure. Each entry requires 4 bytes, encoded into a specified integer array
(Ain this exanple) in the foll ow ng manner:

A¥x) = (Byte_ 1) + 256 * (Byte_ 2) where Byte_ 1 is n/256 fraction of line
length and Byte 2 is the integer part of the line length. Bytes 1 and 2
contain the line length information: (BYTE 2) + (BYTE 1)/256 is the line
| engt h.

A% x+1) = (Byte_3) + 256 * (Byte_4) where Byte 3 specifies the rotation
nunber in DRAW degrees (0-255) and Byte_4 is the ENTRY code. Byte_3 contains
the nunber of degrees relative to the current orientation to draw the next
line. The ENTRY code specified by Byte 4 is determined from the follow ng
t abl e:

| Code Nunber Si gni fying |

0 Li st end; term nate DRAW |
1 Draw | i ne according to DRAWTfl ag |
2 Unconditionally SET line |
3 Unconditionally RESET |ine |
4 Unconditionally COWPL |ine |
- 255 I gnore entry |

|

4-31
DRAW DRAW

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Exanpl e Program

10 DEFI NT F

15 CS

20 DIM FI GUREL(110)

25 Y=0

30 FOR X=0 TO 250 STEP 10

40 FI GUREL(Y) =X*6:" Set line length = 6*X/ 256 units
50 FI GUREL(Y+1) =X+256:" Rotation = X, entry code =1
55 Y=Y+2

60 NEXT: ' Continue until figure conpleted
70 FI GUREL(Y+1) =0:" Set O entry code to termnate |ist
75

77 ' Drawit!

79

80 DRAW SET@ 64, 23 USI NG FI GUREL(0)

Notice that 'FIGQUREL(O)'" in line 80 above specifies the DRAW to begin
interpreting entries at the first array entry. DRAW SET@ 64,23 USING
FIGUREL(2) would skip drawing the first line in the figure specified by
FI GURE1(0). Drawi ng begins at |ocation (64,23) and the object is SET on the
screen as per the DRAW flag 'SET'. DRAW RESET@ 64,23 USING FI GUREL(O)
executed just after line 80 would immediately clear the figure off the
screen.

4-32
DRAW DRAW

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to term nate your programand return to DCS.

| |
| END STATEMENT |

END causes a transfer back to DOS via the @X T address.

4-33
END END

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the Iine nunber of the line containing an error

| |
| ERL - No operands are required! FUNCTI ON

"ERL' is usually used inside an error-trapping routine that was invoked by an
error that occured with an active 'ON ERROR GOTO. If the line nunber is
avail able, ERL returns the source line # in which the error happened.

4-34
ERL ERL

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the error code of the last error generated

| |
| ERR - No operands are required! FUNCTI ON
| |

"ERR holds the code of the last error generated. As a consequence, it holds
useful information only after an error occurs, which inplies that an 'ON

ERROR GOTO addr' mnust be active to override the standard error message and
exit.

4-35
ERR ERR

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used for runtime programerror control.

ERROR exp8 STATEMENT

| |
| |
| |
| exp8 - is a nuneric expression which evaluates to |
| t he range (0-255). |
| |

The ERROR command forces a runtine error to occur. Normally, an error nessage
"RUNTI ME ERROR CODE ccc IN SOURCE LINE #lI111" is printed and program exec-
ution is stopped. If an 'ON ERROR GOTO addr' is active, program execution
branches to the address specified by the ON ERROR GOTO statenment on occurance
of a runtime error. 'ON ERROR GOTO 0' disables this feature and causes the
vi sual error message previously mentioned.

4- 36
ERROR ERROR

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"EXISTS wll check for the availability of the designated fil espec.

| |
| EXISTS(fil espec$) FUNCTI ON
| |
| filespec$ - specifies which file to |ook for. |
| |
"EXISTS wll check if the specified file is available for use. It returns a

logic TRUE (-1) if the file is accessible.

4-37
EXI STS EXI STS

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the exponential of its argunent.

| |

| EXP(exp) FUNCTION |

| |

| exp - IS a numeric expression. |

| |
EXP(exp) is equivalent to 2.7182818 ... raised to the 'exp'th power.

you're not famliar with this random| ooki ng nunber, it pops up all
place in engineering, scientific, and business problens. It returns,

full precision, a value of the same type given.

4-38
EXP

| f
t he

Wi th

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The 'FIELD statement is used to assign the segnments of a type "R' file
record buffer to strings.

FI ELD bl knum exp as var $<, exp2 as var 2$> STATENMENT

blknum - is file control block nunber, 1-15.
exp - is the string | ength.
var $ - is any string variable.

FIELD is used with "R' type files. It fields the record buffer into segnents
accessable by string variables, providing a neans to read and wite
information in an orderly manner fromor to any record in the file.

For witing to a file, information is placed into the FlIELDed variables by
means of the 'LSET" and 'RSET' commands. For obtaining non-string data read
from fielded string variables, the 'CvI(var$)', 'CVS(var$)', and 'CVvD(var$)'
functions are used.

Exanpl e Program

5 CLEAR 1000
10 ALLOCATE 1

20 OPEN "R', 1, " TEST/ DAT"

30 FIELD 1,256 AS A$

40 LSET A$=STRI NGB(256,".")
50 PUT 1,1

60 CLOSE

Line 5 gives enough room for strings to breathe. Line 10 allocates a single
file block. Line 20 opens the file for use; line 30 fields A$ as entire
record buffer (recall that EnhConp allows 32Kbyte length strings). Line 40
fills the record buffer with dots, and line 50 wites the record buffer to
the first record in the file 'TEST/DAT', followed by the necessary CLOSE
statement to neatly close the file and keep the disk directory running
snoot hl y.

4-39
FI ELD FI ELD

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function truncates the non-integer portion of its argunent.

FI X(exp) FUNCTI ON

exp - IS a numeric expression.

FIX returns the expression with the non-integer part stripped away.

exanmple: FIX(-1.6) = -1.

4-40
FI X

For

Fl X

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These statements inplenent the typical FOR NEXT | oop construct.

FOR i ndexvar = start TO end <STEP st ep> STATEMENT
NEXT <i ndexvar 1<, indexvar_2...>> STATEMENT
i ndexvar - is a loop index variable.

start - is any nuneric expression; the initia
val ue of the I oop index variable

end - is any nuneric expression; the term nating
top or bottomlimt value of the |oop.

step - is any nuneric expression; added to the
| oop variable in each iteration. May be
negati ve, in which case 'end is bottom and
not top limt.

"FOR and 'NEXT' are the standard, eternal, BASIC |ooping construct state-
ments. The ' FOR-NEXT' construct works by setting an index variable, specified
in the initial '"FOR..' statement, to an initial value, wunconditionally
executing the |loop code once (unless progranmng "tricks" are used) until a
"NEXT" is reached; then, unless the step was specified with 'STEP in the
"FOR ...' setup, the step size is one, and this is added to the index vari-
able. If the step is positive, 'NEXT' checks for 'indexvar' > "toplimt"'. If
this is so, the statement following 'NEXT' is executed (the loop falls
through). If "indexvar' =< 'toplimt', 'NEXT branches to the statement fol-
lowing the initial '"FOR .." setup, establishing a loop to be continued until
"indexvar' > 'toplimt'. Note that this mght never happen, say if STEP = 0
and 'toplimt' > 'indexvar'.

If the step is negative, 'NEXT' checks for 'indexvar' < 'toplimt', the con-
verse of the positive step case. Qtherw se, the previous explanation holds
true (exchanging '< for '> and vice versa.)

The desired |oop variable(s) can be specified after a ' NEXT' statenent. This
is not necessary, however, except to preserve conpatibility with interpretive
BASI C prograns. For instance, line 40 in the exanple program could sinply be:
" NEXT: NEXT" .

Enhancenment note: Double precision variables are allowed as |oop indexes,
something not allowed in interpretive basic.

For one exanple of the "programming trick" nentioned earlier, see "Prog-
ranm ng i dea #1" in the ' REPEAT-UNTIL' description

Exanpl e Program

5 CLS: Pl = 3.14159
10 FOR R=1 TO 20 STEP 4:' Radi us of circle

20 FOR T =0 TO 2*Pl STEP PI/20:' Paranmetric var. in radi ans
30 X=R* 2* COS(T)

40 Y=R* SINT)

50 SET(63+X, 23-Y)

4-41
FOR FOR

60
70
80
90

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System

Copyright 1986 Philip A. diver, Al rights reserved

NEXT T: NEXT R 'Could be: NEXT T,R
FOR X=127 TO 0 STEP -1

COWP
NEXT

L(X, 23+SI N(X*8*PI1/127)*15): 'Draw sine wave right to left

This example programw || draw a series of concentric circles on the screen.

FOR

4-42

FOR

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the amount of either the free stack space or the free
string space.

FRE(exp) FUNCTI ON

| |
| |
| exp - is either a STRING EXPRESSI ON, flaggi ng FRE

| to return the amount of free string space

| left, or 0, flagging FRE to return MEM the

| amount of free stack menory |
| |

The syntax box provides a conplete explanation. 'FRE is used, essentially,
to determine the amount of space left for string storage. FRE(O) is
nunerically equivalent to MEM described previously.

4-43
FRE FRE

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These statenents are used to define nmulti-line user-defined functions.
FUNCTI ON nanme(i nput variable list) STATENMENT
statnents
ENDFUNC STATEMENT

vari able. Arrays are not all owed.

| |
| |
| |
| |
| |
| input variable - is any sinple string or nuneric |
: :
| Not e: FUNCTI ONs are invoked via: "!name(args)"” |
| |

DEFFN is used to define a function where a single "BASIC statenment” can be
entered on a single line to operate the function. It operates simlarly to
Interpretive BASIC. FUNCTION is a powerful statement that allows new multi-
lined functions to be defined.

A user-defined multi-line function consists of three parts: A FUNCTION
statement header; a user-function body; and the ENDFUNC statenent. A defined
function call is invoked by an exclamation point character followed by the

function name and operand list, composed of any conbination of nuneric or
string expressions separated by conmas and encl osed in parentheses. For each
operand there is a local variable in the function definition's input variable
list. When a user-function call is nade, the contents of the input variables
are pushed onto the stack and then set equal to the specified operands.

Once the function conputation is conpleted, the function value is returned
with the statement 'RETURN value'. Any desired nunber of RETURNs can be
i ncluded. A 'RETURN statenent w thout operands returns a value of 1.

As wth wuser-conmands, user-functions can be recursive, recursion depth
limted only by free menory. Definitions may not be nested. Note that unlike
Interpretive BASIC, user-functions are "defined" at conpile-time and need not
be executed to become "active"; in fact, definitions, if encountered, are
ski pped over.

Exanpl e Program #1:

10 I NPUT"# TO TAKE FACTORI AL OF"; X

20 PRINT X;"! = "; 1 FACTORI AL(X)
30 PRI NT| GOTO 10
35 '

40 FUNCTI ON FACTCRI AL(K)

50 | F K<2 THEN RETURN 1

60 RETURN K*! FACTCORI AL(K- 1)
70 ENDFUNC

The preceding program conputes the factorial of a nunmber using a recursive
function. The recursive call takes place in line 60. The follow ng programis

simpl er!
Exanpl e Program #2:
10 FOR X=1 TO 10

20 PRINT"X, SQUARE(X)| ":X, ! SQUARE(X)
30 NEXT

4-44
FUNCTI ON FUNCTI ON

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

40 END

45

50 FUNCTI ON SQUARE(K)
60 RETURN K*K

70 ENDFUNC

Consider the possibilities of directly using Z80 assenbly |anguage in a
function definition. Here's one exanpl e|

Exanpl e Program #3:
10 INPUT"String to ENCCDE'; A

20 B$=! ENCODES$(A%)
30 PRI NT" Encoded string: ";B$: PRI NT: GOTO 10

40

50 FUNCTI ON ENCCDES$(T$)

60 '

70 ' Add 20 to each byte in string
80 '

90 Z80- MODE

100 LD IX & T$):" I X => String paraneter bl ock

110 LD C (1 X+0):LD B, (I X+1): LD L, (1 X+2):LD H, (I X+3)
115 ' BC = string length, HL => String

120 "ENLOOP": LD A B: OR C: JR Z, ENDENC: DEC BC

130 LD A (HL): ADD A 20:" Nunmber added is nmostly arbitrary
140 LD (HL), AL INC HL: JP ENLOCP

150 " ENDENC'

160 H GH MODE

165 '

170 RETURN T$

180 ENDFUNC

The main point of the preceding program is the Z80 routine, not the sinple
encodi ng nmethod (even a fairly dunb cryptographer could break this schenme in
about five mnutes). The speed of the efficient machine |anguage routine
makes the encoding tine inperceptibly small for short strings. Mre conpl ex,
non-trivial encoding routines would benefit from the speed of a Z80 routine
even nore. Keep in mnd that EnhConp allows strings of up to 32767 bytes in
| engt h.

If you copy the body of function ENCODE, nodify ADD A 20 to SUB 20 and you
have (guess what?) function DECODE (left as "an exercise for the reader").

4-45
FUNCTI ON FUNCTI ON

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"CET' reads a specified record into a record buffer.

| |
| GET bl knum recnum STATEMENT |
| |
| blknum - is file control block nunber, 1-15. |
| |
| recnum - is the record nunber to read or wite. |
| |

"CGET" and 'PUT" are the two type "R' and type "X' disk file rmanipulation
conmands. PUT wites the contents of the record buffer to the specified
record in the specified currently open file. GET reads a record from the
specified currently open file into the record buffer.

Note that the 'recnum operand i s mandatory.

4- 46

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent all ows your programto invoke unconditional program branching.

GOTO addr or GIO addr STATEMENT

| |
| |
| addr - is aline nunber or a | abel. |
| |

@GOTO is the standard BASIC way to transfer program execution to just about
any desired point in the program Either a conventional |ine nunber may be
used, as with interpretive BASIC, or a |abel can be specified.

The following table describes the possible errors which could result from
invalid use of this branch instruction:

| Possible Errors Reason |

... |
| " UNDEFI NED LI NE" Ref erence to undefined line # |
| " UNDEFI NED LABEL" Ref erence to undefined | abel |

Exanpl e Program

10 PRINT"This is the beginning ..."
20 FOR X=0 TO 10: PRI NT X, : NEXT: PRI NT
30 PRI NT"AGAI N??"

40 QOTO 10

In this program the 'GOTO 10" in line 40 causes the exanple program to run
on the conputer indefinitely until someone conmes al ong and BREAKs the program
or the computer eventually crashes.

4- 47
&aro &aro

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These commands al |l ow your program to invoke unconditional program subroutine
cal I s.

| |
| GOSUB addr or CSUB addr STATEMENT |
| |
| RETURN STATEMENT |
| |
| addr - is aline nunber or a | abel. |
| |

@CSUB is the standard BASIC conmand to call a subroutine. Nested GOSUBs are
limted only by available free stack nenory. RETURN returns from a subroutine
to the next instruction followng the GOSUB invocation. Note the use of the
POP command documented el sewhere. The follow ng table describes the possible
errors that could result frominvalid use of these instructions:

| Possible Errors Reason |
... |
| " UNDEFI NED LI NE" Ref erence to undefined line #

|
| " UNDEFI NED LABEL" Ref erence to undefined | abel |
| |

Line |l abels are a nuch better mmenonic device than |ine nunbers, as well as
bei ng descriptive, as in the foll ow ng exanpl e:

10 DIM A(10),B(10):" Note that ALL arrays nust be di mensi oned
20 FOR X=0 TO 10: A(X) =RND(X) : B(X) =RND(0) : ?A(X) , B(X) : NEXT

30 GOSUB"SORT A':' O : CSUB"SORT A"

40 QGOSUB"PRINT A":' Could be GOSUB 140

50 GOSUB'SORT B

60 GOSUB" PRI NT B"

70 END
80 '
100 "SORT A":' Al ternatively: JNAVE'SORT A"

110 SCLEAR KEY A(0): TAG B(0): SORT 11: RETURN
120 "SORT B"

130 SCLEAR KEY B(0): TAG A(0): SORT 11: RETURN
140 "PRINT A"

150 FOR X=0 TO 11: PRINT A(X), B(X): NEXT: RETURN
160 "PRINT B"

170 FOR X=0 TO 11: PRINT B(X), A(X): NEXT: RETURN

This program | oads arrays A() and B() with random nunbers and then proceeds
to sort them individually, first on A() with B() elenments "tagging along",
then on B() with A() as a TAG

4-48
GosuB @osuB

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function converts nuneric expressions to strings of hexadecinmal digits.

HEX$(exp16) FUNCTI ON

| |
| |
| expl6 - is in the range <-32768 to 32767>

| |

HEX$ returns a 4 character ASCI| hexadecimal representation of an integer
For exanple, HEX$(-2) is equal to "FFFE".

4- 49
HEX$ HEX$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These statements inplenent the typical |F-THEN-ELSE conditional structure.

I F cond THEN action <ELSE default action> STATEMENT

I F cond STATEMENT

<ELSE STATEMENT
pr ogram code>

ENDI F STATEMENT

| |
| |
| |
| pr ogram code |
| |
| |
| |
| |

"I F- THEN- ELSE conprise the critical conditional execution statenents.
EnhConp supports two forns of the 'IFTHEN-ELSE construct: the standard
single-line 'IF-THEN-ELSE construct; and enhanced, nulti-line 'IF- THEN
ELSE . Here are two exanples that are |ogically equival ent:

10 | F X<0 THEN A=A- X K=1:1F A>16 THEN A=0 ELSE ELSE A=A+X

and
10 | F X<0
20 A=A- X: K=1
30 I F A>16
40 A=0
50 ENDI F
60 ELSE
70 A=A+X
80 ENDI F
90 PRI NT"END OF CONDI TI ONAL CONSTRUCT"
100 END

The second exanple clearly shows the logical flow of the program as opposed
to the conpact but visually linear first exanple. In the second example: If
X<0, line 20 (A=A-X) is done. Line 40 (A=0) is executed if the further con-
ditional (A>16) at line 30 is met. Lines 60-80 are skipped are part of the
ELSE code. If NOT(X<0), programflow goes to line 70 (A=A+X) in the ELSE code
section.

4-50
| F/ THEN ELSE | F/ THEN ELSE

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"INC is used to increnment an integer variable.

| |
| intvar - is either an integer variable or an integer

| array el ement.
| |

"INC and 'DEC provide a very quick way to increment or decrement
ified integer variable, respectively.

Exanpl es:

I NC A% "A%= A%+ 1
DEC BY%10): 'B%10) = B%10) - 1

4-51

a spec-

This function wll

| NKEYS$
presse

M SOSYS Enhanced BASI C Conpi | er

Copyright 1986 Philip A. Qiver, Al

Devel opment System

rights reserved

| NKEY$

FUNCTI ON

returns a zero if no key

d.

Exanpl e Program

| NKEY$

10
20
30
40

is pressed or

PRI NT"Press any KEY to conti nue"
AS=W NKEY$: | F A$="" THEN 20

PRI NT"Exi ti ng progrant
END

4-52

the key code

i f

strobe the keyboard and returns the key depressed.

a key is

| NKEY$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the value of the specified CPU port.

I NP(port num FUNCTI ON

| |
| |
| |
| portnum - specifies the CPU port in the range <0-255>

| |

INP performs a machine instruction to read the contents of the specified I/0O
port. It is the logical corollary to the 'QUT" command, described el sewhere
whi ch sends a value TOto a specified CPUI/O port.

4-53
I NP I NP

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"INPUT" is used to accept keyboard input for variable val ue(s).

I NPUT <@os><"string";> varl <, var2 ...> STATENMENT

| |
| |
| |
| var - is any appropriate variabl e.

| |

"INPUT" reads data from the keyboard. An optional "pronpt" string nmay be
printed. Leading blanks are skipped while reading. Strings (string variable
specified) are read until a coma or a <CR> [CHR$(13)] is reached. Nunbers
(numeric variable specified) are read until a space, a comm, or a <CR> is
encount er ed.

4-54
I NPUT I NPUT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"INPUT# is used to read froma sequential file into variable(s).

| |

| I NPUT#bl knum varl <,var2 ...> STATEMENT

| |

| blknum - is a file control block nunber, <1-15>.

| |

| var - is any appropriate variabl e.

| |
"INPUT#' reads data froman "I" type file. Leading blanks are skipped while
sequentially reading. Strings (string variable specified) are read until a
comma, a <CR> [CHR$(13)], or the end of the file is reached. Nunbers (nureric
variable specified) are read until a space, a comm, a <CR> or the end of

file is encountered.

4-55
| NPUT# | NPUT#

This function wll

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

search a string for a designated substring.

| |

| I NSTR(<exp, > expl$, exp23%) FUNCTION |

| |

| expl$ - is the string to search. |

| |

| exp2$ - is the string to search for. |

| |

| exp - is an optional search start point |

| |
INSTR returns the position of a substring inside a string, if found;
otherwise returning a 0. The beginning search point in the string can be

optionally specified. If omtted, the search starts at
string.

Exanpl e Program

I NSTR

10
20
30
40
50
60
70

A$="TH S IS A TEST"

B$="1S"

=1

F=I NSTR(| , A$, B$)

| F F=0 THEN PRI NT"END OF SEARCH. ": END
PRINT B$;" FOUND IN "; A$;" AT PCSITION "; F
| =F+1: GOTO 40:' Conti nue search

4- 56

the beginning of the

I NSTR

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This is the "greatest integer" function

| |
| I NT(exp) FUNCTI ON

| |
| exp - IS a numeric expression. |
| |

INT works with any precision expression, returning the sanme precision. It

returns the greatest integer less than 'exp'. For the confused, sone
exanpl es:
INT(3.4) =3
I NT(. 5) =0
INT(-.5) =-1
INT(-1.4) = -2
4-57

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to invert all graphics on the video screen

|
| I NVERT STATEMENT |
| |

This inverts all graphics on the screen. SET points are RESET and vice versa.
Text (characters not within range 128 =< x =< 191) is ignored.

4-58

I NVERT | NVERT

Thi s st at ement

Label s are used to establish branch points for
BASI C st at enment .

M SOSYS Enhanced BASI C Conpi | er

Devel opment System

Copyright 1986 Philip A. diver, Al rights reserved

is used to establish a |ine | abel.

JNAME" | abel " or "l abel™

| abel - is a (unique) string of characters
representing a nenory | ocation.

STATEMENT

result frominvalid use of these statenent:

Possi bl e Error

"MJLTI PLY DEFI NED SYMBOL" Two or nore | abel s defined
(via JNAME'|l abel " or "l abel™)

are equi val ent

Exanpl e Program

10
20
30
40
50
60
70
80
100
110
120
130
140
150
160
170

DIM A(10),B(10):" Note that ALL arrays nust be di mensi oned

FOR X=0 TO 10: A(X) =RND(X) : B(X) =RND(0) : ?A(X) , B(X) : NEXT

GOSUB" SORT A": O CSUB' SORT A"
GOSUB"PRINT A':' Coul d be GOSUB 140
GOsuUB* SORT B!

GOSUB" PRI NT B"

END

"SORT A':' Al ternatively: JNAVE'SORT A"

SCLEAR KEY A(0): TAG B(0): SORT 11: RETURN

"SORT B"

SCLEAR: KEY B(0): TAG A(0): SORT 11: RETURN

"PRINT A"

FOR X=0 TO 11: PRINT A(X), B(X): NEXT: RETURN

"PRI NT B"

FOR X=0 TO 11: PRINT B(X), A(X): NEXT: RETURN

use with GOIGCs, GOSUBS, or any
The follow ng table describes the possible error which could

This program | oads arrays A() and B() with random nunbers and then proceeds
"taggi ng al ong”,

to sort

them individually, first

then on B() with A() as a TAG

JNAME

on A() with B() elenents

4-59

JNAME

M SOSYS Enhanced BASI C Conpi | er
Copyright 1986 Philip A diver

Devel opment System

All

rights reserved

"KILL'" will delete the designated file fromthe disk directory.

|
| KILL"fil espec$”
|
|

STATEMENT

filespec$ - designates the file to renove.

"KILL'" renoves the disk directory entry of a file and frees up the space that

the data of the file took on the disk

Kl LL

4-60

Kl LL

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statement is used to scroll the video screen | eft one col um.

| |
| LEFT STATEMENT |

This statenment scrolls the entire screen left by one character. The entire
| ast screen colum is cleared, and the entire Oth colum is witten over with
the first col um.

4-61
LEFT LEFT

M SOSYS Enhanced BASI C Conpi | er

Devel opment System

use for the obtained substring.

Copyright 1986 Philip A. diver, Al rights reserved
This function parses a substring of a string.
|
LEFT$(exp$, expl) FUNCTION |
exp$ - is any string expression. I
expl - is the nunber of |eftnost characters to i
|

LEFT$ chops a substring fromthe left of a string. For exanple:

LEFT$(" FOUR SCORES', 4)
LEFT$(" NO MUSAK" , 6)

Not e that

" FOUR'

MD$ can easily sinulate LEFTS.

For

exanpl e,

equi val ent to M D$(exp$, 1, exp) assuming | en(exp$) >= exp.

LEFT$

4-62

LEFT$(exp$, exp) is

LEFT$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the Iength of its string argument.

| |
| LEN(exp$) FUNCTION |
| |
| exp$ - is any string expression. |
| |

LEN returns the length of the specified string expression. Naturally, the
string expression can be a single string variable. For exanple,

A$ = "TEST"
A = LEN(A3)

assigns 4 to 'A'. And:

A$ = "TEST"
A = LEN(A$ + "ING')

assigns 7 to "A. (A quicker way woul d be: A=LEN(AS$)+3.)

4-63
LEN LEN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"LET" is used to assign a value to a variable.

| |
| <LET> var = exp STATEMENT

| |
| var - is any variable. |
| |
| exp - is any expression of appropriate type. |
| |

Any variable assignment can be done wi thout the LET command. 'LET" is in-
cluded to preserve compatibility.

Exanpl es:

A = 10:" Assign 10 to variable A
A$ = "HELLO':' Set A$ to "HELLO

Note on "Garbage collection” and string variables: Interpretive BASIC on the
TRS-80 is notorious for the string "garbage collection” |ock-up that occurs
when free string space is needed and it is necessary to clean up the garbage
left over from previous string nmanipul ati ons. EnhConp conpil ed progranms don't
suffer fromthis malady. There is never "garbage" lying around in the string
storage area; the only time extensive re-arrangenent of strings and string
poi nters can occur is during a string assignnent.

4-64
LET LET

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"LI NEI NPUT" is used to accept keyboard input into a string.

LI NEI NPUT <@os><"string";>var 1$<, var 2%. .. > STATEMENT

var $ - is any appropriate string variable.

"LI NEI NPUT" reads data from the keyboard w thout the wusual "?" pronmpt. An
optional "pronpt" string may be printed. Leading blanks are skipped while
reading. The input line is read verbatimuntil a <CR> [CHR$(13)] is reached.

4-65
LI NEI NPUT LI NEI NPUT

" LI NEI NPUT#'

M SOSYS Enhanced BASI C Conpi |l er Devel
Copyright 1986 Philip A. diver, Al r

is used to read froma sequential file

opment System
i ghts reserved

into a string.

I LI NEI NPUT#bl knum var$ <,var2$...> STATEMENT
I blknum - is a file control block nunber, <1-15>.
I var $ - is any string variable.
| |
LI NEI NPUT# reads a string froman "I" type file. Al characters starting at

the current

read point up to a <CR> [CHR$(13)] or

into the string, up to the Ilimt of 255 characters.

LI NEI NPUT#

4- 66

the end of file are read

LI NEI NPUT#

Thi s st at ement

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

is used to set the nunber of printed |ines per page.

LI NESPAGE = exp

exp

STATEMENT

t he range <2-255>.

|
|
|
is a numeric expression which evaluates to |
|
|

This statenent sets the nunber of

O Form (TOF) occurs.

LI NESPAGE

lines printed on a page until

4-67

automatic Top

LI NESPAGE

Thi s st at ement

M SOSYS Enhanced BASI C Conpi | er

Devel opment System

Copyright 1986 Philip A. diver, Al rights reserved

is used to set the printer's left hand nmargin.

LMARG N = exp

exp

t he range <2-255>.

STATEMENT

|
|
|
is a numeric expression which evaluates to |
|
|

This statenent

carriage return (ASC I

LVARG N

sets

t he
13)

nunber of spaces automatically printed when a
is 0 spaces.

is sent to your printer.

4-68

The defaul t

LVARG N

M SOSYS Enhanced BASI C Conpi | er

Copyright 1986 Philip A. diver, Al rig

This statenent will load a '/CVD type programfromd

Devel opment System

hts reserved

isk into nenory.

filespec$

LOAD'fi | espec$”

- designates the file to | oad.

|
STATEMENT |
|
|
|

'"LOAD | oads a nmchine
cuting it.

LCGAD

| anguage program from di sk

4-69

into menory without

exe-

LCAD

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the natural |ogarithmof its argunent.

LOG(exp) FUNCTI ON

| |
| |
| |
| exp - IS a numeric expression. |
| |

LOG returns the natural |ogarithm of an expression. Theoretically (ignoring
inevitable round-off error), LOZEXP(exp)) = exp. 'LOG returns, with full
precision, a value of the same type given (ex.: LOF1l.7#*X#) returns the |og
of this expression accurate to 16 decimal digits due to the double
preci sion.)

4-70
LCG LCG

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to print data to the printer

| |
| LPRINT <itenmp <','>:<;'> < TAB(exp)'> ... STATEMENT

| |
| item - is a"stringliteral” or a numeric / string

| expr essi on |
| |
| |
| |

<, > - are delimters

Al LPRINT statenments wused in TRS-80 interpretive BASIC prograns should
conpi l e and function with equival ence with no nodifications necessary.

Note that PRINT output can be sent to either the printer, the screen, or a
disk file wusing the 'PRINT# statenment depending on the value of the
expression chosen in the statement: 'PRI NT#exp,...'. For exanple, the sane
section of code could be used for both screen and printer output sinply by
changing the value of a variable and calling the same subroutine

90 "BPRI NT"

100 F=0: GOSUB "PRINT":' Send to screen
110 F=-3:" Send to printer

120 " PRI NT"

130 PRI NT#F,"TO "; FRI END$

140 PRI NT#F, "FROM "; SENDER$

150 RETURN

Default SCREEN or PRINTER TAB positions can be altered with the SZONE and
PZONE conmands respectively docunented elsewhere in this manual. A conma
delimter or equivalently TAB(255) tabs the cursor to the next screen or
printer zone, depending on the current output node.

USING is now a string expression. Conpiled and interpreted BASIC 'PRINT
USING statenments usually produce the same out put.

4-71
LPRI NT LPRI NT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"LSET" is used to set information into FIELDed string variables for use with
random access fil es.

| |
| LSET var$ = exp$ STATEMENT

| |
| var$ - is FIELDed string to which the information

| is to be added. |
| |
| exp$ - is the information to add.

| |

"LSET" and 'RSET' are really just versions of 'MD$ = . Their main intended

purpose is to set information into FlIELDed string variables. FlIELDed strings
must point to a static nmenory location (in a file's record buffer).

For 'LSET', var$ is overlayed starting at position O with exp$, filling any
remai ning portion of var$ with blanks (ASCIlI 32). For 'RSET', var$ is over-
laid with exp$, measuring fromthe end of var$, filling any remaining portion

of var$ with blanks (i.e. the information is "right justified").

A standard string assignment, such as A$="MONDAY" places A$'s data in the
string storage area, which is constantly changing. LSET and RSET (and M D$)
directly alter existing a string variable's contents wi thout changing the
string's position in nmenory. The nmain difference between MD$ and LSET/ RSET
is that the latter commands fill the remaining characters in the affected
string with blanks, or CHR$(32)'s.

Note that conpiled LSET and RSET, as with interpretive D sk BASIC LSET/RSET
conmands, work on any string variable, not just FlIELDed string vari abl es.

Examples (in all exanples A$ is 10 chars |ong):

LSET A$="HELLO':' Now A$="HELLO "

LSET A$="12345678912":" Now A$="1234567891"

RSET A$="HELLO':' AS=" HELLO'

LSET A$=MKD$(1. 2345#):" Now first 8 bytes of A$ contain

the floating point double
preci sion nunber 1.2345#

4-72
LSET LSET

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the anount of free stack space.

| |
| MEM - No operand is required! FUNCTI ON |

"MEM sinply returns the amount of free nenory left for array dinensions,
ALLOCATE, etc. -- or what anobunts to the same thing, the free stack space
left.

4-73
MEM MEM

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The 'M D$' statement is used to overlay a string or portion of a string with
anot her string.

M D$(var $, expl <, exp2>) = exp$ STATEMENT

var $

is string to be nodified.

| |
| |
| |
| |
| |
| expl - is the starting position of var$ to be |
| overlaid by exp$. |
| |
| |
| |
| |
| |
| |

exp2 - desi gnates how many characters of exp$ wll
overlay the string, var$.
exp$ - is the overlaying string.

MD$ is the only reserved word used as both a function and a command. Don't
confuse the MD$ function with MD$ statenent, although they perform simlar
operations. MD$ operates directly on string variables. MD$ never changes
the length of the string variable.

Exanpl es:
A$="ABCDE": M D$(AS$, 1) ="xyz":"' Now A$ = "xyzDE"
A$="ABCDE": M D$(AS$, 2, 2)="xyz":"' Now A$ = " AxyDE"
A$="ABCDE"': M D$(AS$, 1,4)="xyz":"' Now A$ = "xyzDE"
A$="ABCDE": M D$(AS$, 1)="1234567":" A$ now = "12345"

Example 1 is straightforward. In exanple 2, the optional |ength expression of
two limts the nunmber of characters overlaid from the expression "xyz". In
exanple 3, although the maxinmum length was specified as 4, the length of
"xyz" is only 3. In exanple 4, A$ is too short to contain the entire string
expr essi on.

4-74
M D$ function M D$ function

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function parses substrings of a string.

| |
| M D$(exp$, expl <, exp2>) FUNCTION |
| |
| exp$ - is any string expression. |
| |
| expl - is the starting position. |
| |
| exp2 - is the optional substring length. If exp2 |
| is omtted, the rest of exp$ after expl |
| i s taken |
| |

Virtually all BASIC s have a string function performng equivalently to the
M D$ function. MD$ can pull any desired substring from a given string. For
exanpl e:

M D$(" ABCDEF", 2, 3) = "BCD'
M D$(" BYEBYE", 4,2) = "BY"
M D$(" HOUSE", 2) = " QUSE"

Note that M D$ can easily sinulate both LEFT$ and Rl GHT$. For exanpl e:

LEFT$S(exp$, exp) is equivalent to M D$(exp$, 1, exp)
Rl GHT$(exp$, exp) is equival ent to M D$(exp$, | en(exp3) - exp+1)

assum ng | en(exp$) >= exp.

4-75
M D$ st at enent M D$ st at enent

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These functions convert nuneric expressions to their packed string represen-
tation.

I MKD$(exp) FUNCTI ON I
I MKI $(exp) FUNCTI ON I
I MKS$(exp) FUNCTI ON I
i exp - is a nuneric expression of the desired type

MKD$ maps a doubl e precision number to an 8-byte string. The primary purpose
of MKD$ is to store double precision nunbers in random access disk files

since FIELD statenents accept strings only. Simlarly, MI$ maps an integer
to a 2-byte string for storing integers and MKS$ maps single precision
nunbers to 4-byte string for storing single precision expressions.

For exanpl e:

10 A#=1.2345678#: B=2.71828
20 ALLOCATE 1: CPEN "R', 1, " TEST/ DAT"
30 FIELD 1,8 AS PY$, 4 AS E$

40 LSET PY$=MKDS(A#): LSET E$=MKS$(B)

The string-encoded contents of A# are LSET into the first 8 bytes of the
record buffer, effectively storing A#, and 'B is stored in the next 4 bytes
after that. The program could go on to nake other LSETs and RSETs, then wite
the buffer to a record and close the file.

4-76
MKD$ MKl $ MKS$ MKD$ MKI $ MKS$

This statenent allows your program to

M SOSYS Enhanced BASI C Conpi | er

Devel opment System

Copyright 1986 Philip A. diver, Al rights reserved

routine calls.

i nvoke conditional

branchi ng and sub-

ON exp GOTO addrli st STATENMENT I
ON exp GOSUB addrli st STATENMENT I
exp - designates the branch index of 'addrlist'. I
addrlist - is alist of Iine nunbers or |abels i

"ON ... GOIO substitutes for a long list of conpares and GOIGCs. The 'exp'
i ndexes the line nunmber or |abel address list. If there are fewer than 'exp'
addresses in the list, the statement following the 'ON OrQg GCsUB' i s
execut ed.
Exanpl e Program

5 REM

10 REM Sinplified counting schema ...

20 REM

30 REM (Note: unsuitable for check-witing routines)

40 REM

45 FOR X=1 TO 5

50 ON X GOTO 100, 200, 300

55 PRI NT" MANY"

60 NEXT

70 PRINT"...":END

100 PRI NT"ONE": GOTO 60

200 PRI NT"TWD': GOTO 60

300 PRI NT"THREE': GOTO 60

4-77

ON .. @QOTO ON .. @QOTO

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statement is used to provi de <BREAK> key control of your program

| |
| ON BREAK GOTO addr STATEMENT |
| |
| addr - is either a LINE # or a LABEL |
| |

'ON BREAK GOTO addr' causes a junp to the specified |ine nunber or |abel if
the <BREAK> key is hit and the BREAK scan is activated. 'ON BREAK GOTO 0'
di sabl es <BREAK> key branching, parallel to 'ON ERROR GOTO 0'. Causing an 'ON
BREAK GOTO addr' junp al so automatically di sabl es <BREAK> key branchi ng.

'BKON' and 'BKOFF can be used to effectively turn the BREAK key on or off,
respectively. They affect only the BREAK scan flag. BKON wll have no
apparent effect if the "-NX' directive flag has been specified, since the
BREAK scan code calls will be left out of the conpil ed program

Exanpl e Program

5 ON BREAK @GOTO 100

10 PRINT"HO HUM . . . "

20 FOR X=0 TO 1E12: NEXT

30 PRI NT"OH BOY, LET' S COUNT TO A QUADRI LLI ON NOW "

40 END

100 PRI NT"THANKS! SAVED FROM A FATE WORSE THAN SCARFMAN. .. ."

4-78
ON BREAK @GOTO ON BREAK @GOTO

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used for runtime programerror control.

ON ERRCR GOTO addr STATEMENT

addr - is either a line nunber or a | abel which
specifies the target of the branch.

Normal |y, an error message,
RUNTI ME ERROR CODE ccc | N SOURCE LINE #1111

is printed and program execution is stopped when a runtime error is detected.
If an '"ON ERROR GOTO addr' is active, program execution branches to the
address specified by the ON ERROR GOTO statenent on occurance of a runtine
error. 'ON ERROR GOTO 0' disables this feature and causes the visual error
nmessage previously nentioned.

The ERROR command can be used to force a runtine error to occur (usually used
to certify the correctness of your error trapping routine).

4-79
ON ERRCR &OTO ON ERRCR &OTO

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"OPEN is used to prepare a disk file for input or output operations.

OPEN "type$", bl knum "fil espec$"<, recl en> STATENMENT

type$ - specifies the type of file access desired:
R r for RANDOM ACCESS fil etype;
O o for SEQUENTI AL QUTPUT fil etype;
E, e for SEQUENTI AL QUTPUT EXTENDED,
I,i for SEQUENTI AL | NPUT fil etype;
X, x for EXTENDED RANDOM ACCESS fi | et ype.

range <1-15> (see ALLQOCATE).
filespec$ - is the nane of the disk file to access.

reclen - is an optional expression in the range
(1-255) designating the nunber of bytes in
each record of the file to be opened. This
Must match the previous record length if

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| blknum - is the file control block to use, in the |
| |
| |
| |
| |
| |
| |
| |
| |
| the file already exists. |
| |

Before a disk file can be manipulated it nust first be OPENed. Al so, before
any file can be opened, space for the total nunber of simnultaneously open
files nust be allocated using the 'ALLOCATE statement. This is simlar to
the function of specifying the maxi mum nunber of files via the "F=files"
par anet er used when invoking a BASIC interpreter.

There are five allowable file types; however, there are really only three
fundamental types of files: Random Record Access, Sequential, and Ilist-
directed Extended. The file type string character nay be upper or |ower case.

Random access, specified by an "R' type in the OPEN statenent, inplies that
file manipulation will be done discretely with any sel ected individual record
in the file via the GET (get/read record) and PUT (put/wite record)
commands, which are described in detail elsewhere in this nmanual.

Wth sequential access, a file is read ("I") or witten ("O" or "E")
sequentially, basically a byte at a time, wth INPUT# or PR NI#, respec-
tively. EnhConp prepares a type "E' file by positioning it to its end as soon
as it is opened. This pernmits you to extend the file by appendi ng new infor-
mation to the existing data. Type "E' can al so be specified for a "new' file.

The 'POSFIL" command described elsewhere can set the read or wite
(determined automatically by file type) position to any point in a sequential
file (limted by existing file size in "I" mode, free disk space in "O
node) .

EnhConp supports a fairly powerful new random access file mpde, "X'. This
ext ended node allows the use of lists of sinple variables as field specifiers
rather than the cunbersone, difficult to conceptualize conventional FlIELD
st at enent .

4-80
CPEN CPEN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Extended file node uses the usual 256 byte LRL disk random record |ength but
allows logical record lengths of from 1 to 32767 bytes long. This record
length is defined at open tinme, with the statenent:

OPEN " X", bl knum "fi |l enane$"”, recl en

where 'reclen' is the desired record length. Note that this record length is
entirely the responsibility of the programer to track; it is entirely poss-
ible to close a previously opened and witten-to extended file and open it
again with a different record length. No explicit error will occur.

The record structure is defined with the XFIELD statenment, rather than the
FI ELD statement as is the case for "R' file types. Its format allows either
nuneric or string variables in its list. Array variables are not allowed in
the list.

4-81
CPEN CPEN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This command is used to send a value to a specified CPU port.

the range <0 to 255), specifying a byte to
be sent out the port.

| |
| QUT portnum val ue STATEMENT

| |
| portnum - is a nuneric expression which evaluates to

| the range <0 to 255>, specifying a CPU port

| nunber . |
| |
| value - is a numeric expression which evaluates to

| |
| |
| |

QUT provides a means to send information to any of the CPU 1I/O ports. The
assenbl er can also acconplish this as a matter of course by assenbling a
native code QUT instruction directly.

4-82

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to set the physical printer page |ength.

PACELEN = exp STATEMENT

| |
| |
| |
| exp - is a nuneric expression which evaluates to
| t he range <2-255>. |
| |

This statenment sets the printer page length for use with all printing oper-
ations. Note this is the physical length, in lines, of your printed page.

4-83
PAGELEN PAGELEN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to fill in a bounded shape.
PAI NT(x, y) <, col or > STATEMENT
X,y - is the coordinate of a point interior to

t he bounded shape.

col or - is the color used to fill the shape <0, 1>
where black = 0 and white = 1. |If color is
omtted, it will default to 1.

PAINT can be used to fill in any shape defined by a boundary of pixels of the
same color as the "color" operand. The point "x,y", entered in pixel coord-
i nate val ues, nust be interior to the bounded shape.

The following exanple will plot a triangle then fill in the interior of the
triangle.

05 CLS

10 PLOT S, 10,10 TO 120, 10
20 PLOT S, 50,40 TO 120, 10
30 PLOT S, 10,10 TO 50, 40
40 PA=1: PAI NT(55, 15), PA
50 A$=W NKEY$

4-84
PAI NT PAI NT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the byte stored at a nenory address.

PEEK(exp16) FUNCTI ON

expl6 - represents a nenory address in the range

|
|
|
| <- 32768 to 32767>.
|

"PEEK' is a neans to "peek"” directly into any selected byte in the conputer's
menory. For exanmple, on the TRS-80 Mddel 1/111, PRINT PEEK(O) prints a 243

(from ROM), or the Z80 instruction "DI", disable interrupts,
i nstruction executed on power up.

4-85
PEEK

first

PEEK

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System

Co

Thi s st at ement

pyright 1986 Philip A diver, Al rights reserved

is used to plot a line of pixels.

PLOT 'flag',x1,yl TO x2,y2 STATEMENT

x1,yl - specifies the coordi nate point of one line
endpoi nt .

X2,y2 - specifies the coordinate of the other line
endpoi nt .

"flag' - designates the type of pixel action

'S signifies unconditional SET;
"R signifies unconditional RESET,
"C signifies pixel COvWLenent.

PLOT is a statenent that allows an entire line to be drawn at once. |t can
SET, RESET, or COWPL a line on the screen. For exanple:

PLOT S, 0,0 TO 127, 47

woul d set a line between (0,0) and (127, 47).

PLOT R 127,47 TO 0,0

woul d reset that sanme |ine. And,

plotted after

PLOT C, 127,0 TO 0, 47

from the upper

the dots where it

cor ner

PLOT

PLOT S, 0,0 TO 127,47 was executed would produce a |line going

right hand corner of the screen to the |lower left,

resetting

intersected in mddle of the line drawn fromthe upper |eft

to the lower right. The follow ng program makes an interesting fanline
pattern on the screen

10
20
30
40

FOR Y=0 TO 47 STEP 3

PLOT
PLOT
NEXT

S,0,0 TO 127,Y:

"Draw line from(0,0) to right edge

S, 127,47 TO 0,47-Y: 'Draw line from (127,47) to left edge

4-86

PLOT

M SOSYS Enhanced BASI C Conpi | er

Devel opment System

Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the point value of the specified pixel |ocation.
PO NT(x,Y) FUNCTI ON
"X isin

" PO NT'

not .

PO NT

It

the range <0-127 or 0-179> and 'y' is in
t he range <0-47 or 0-71>

|

|

| _ _ _

| X,y - is the coordinate of the pixel.
|

|

|

checks whether any sel ected graphics pixel

returns -1 if the point

is SET, O otherw se.

4-87

on the screen

is set or

PO NT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to poke a value into a nmenory | ocation

| |
| POKE expl6, exp8 STATEMENT

| |
| expl6 - specifies a nenory address in the range |
| <-32768 to 32767>.

| |
| exp8 - is a nuneric expression which evaluates to

| the range <0 to 255>. |
| |

POKE and WPCKE al | ow direct nodification of any RAM |l ocation in nenory. WPCKE
"pokes"” two bytes at a tine in conventional |ow order/high order format into
the specified address, whereas POKE inserts only a single byte.

4-88
PCKE PCKE

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to escape froma GOSUBed subrouti ne.

| |
| POP STATEMENT |

POP is a quick and dirty way to get out of a messy situation whilst stuck in
the mddle of a subroutine. It erases all effects of the |last GOSUB from the
stack, allowing clean error recovery, or whatever. This 'POP operation is
not to be confused with the CPU opcode, POCP.

Exanpl e Program

10 GOSUB 20: PRI NT" RETURNED AND BACK TO 10": END

20 GOSUB 30: PRI NT"LINE 20. RETURNING TO 10.": RETURN
30 PRI NT"LI NE 30. 'POP" and ' RETURN ."

40 PCP: RETURN

The POP at line 40 wipes out the GOSUB at line 20, causing the RETURN
directly following the POP to return to the next-lesser-level of GOSUB, the
one made in |ine 10.

4-389
PCP PCP

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function returnsthe current position of the cursor
of the line it appears on.

relative to the start

|
| POS(dunmy exp)
|

|
FUNCTION |
|

'"POS' returns the current columm position of the cursor.

PRI NT: PRI NT" HELLO'; : A=POS5(0)

For i nstance:

assigns 'A to 5, the cursor position after 'HELLO is printed.

4-90
PCS

PCS

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"POSFIL' allows you to position a sequential input/output file pointer for
subsequent 1/0O operations.

I POSFI L(#bl knum recnhum of f set) STATENMENT I
I blknum - is a file control block nunber, <1-15>. I
I recnum - is the disk file's 256-byte record nunber. I
i of f set - is the offset within the record, <0-255> i

"POSFIL' is useful for positioning the sequential input/output pointer for
sel ective sequential reading and witing. As with 'RDGOTO, which selects any
' DATA' statenent in a programfor the next 'READ , 'POSFIL" is the equival ent
extensi on for sequential files.

Exanpl e Prograns:

10 ALLCCATE 1: OPEN "O', 1, " TEST/ DAT"
20 POSFI L(#1, 2, 0) : PRI NT#1, "HELLO': CLCSE

The string "HELLO is witten from the beginning of the second record in the
file, as opposed to the default of the start of the first record.

10 ALLCCATE 1:OPEN "1", 1, " TEST/ DAT"
20 POSFI L(#1, 5, 67) : | NPUT#1, A$: CLCSE

A$ is sequentially read, starting fromthe 67th character of the fifth record
inthe file ' TEST/DAT' (assum ng that TEST/ DAT contains at |east 5 records).

4-91
PCSFI L PCSFI L

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to print data to the video screen

PRINT <'#' numexp,>:<' @ screenpos, > <itenmr STATEMENT
< L'si< "> < TAB(exp) ' > ..

nunexp - is a numeric expression within the range
<-3 to 15> -3, send to PRINTER, 0, send to
VI DEO display; 1 thru 15, send to disk file

speci fying a new cursor relative position

item - is a"stringliteral”™ or a numeric / string
expr essi on

| |
| |
| |
| |
| |
| |
| |
| |
| screenpos - is a nuneric expression between 0 and 1023
| |
| |
| |
| |
| |
| <> - are delimters |
| |

Al PRINT statements used in TRS-80 interpretive BASIC prograns should
conpi l e and function with equival ence with no nodifications necessary.

PRI NT output can be sent to either the printer, the screen, or a disk file
depending on the value of the expression chosen in the statenent:
" PRI NT#exp, ..."'. For exanple, the same section of code could be used for both
screen and printer output sinply by changing the value of a variable and
calling the sane subroutine:

90 "BPRI NT"

100 F=0: GOSUB "PRINT":' Send to screen
110 F=-3:" Send to printer

120 " PRI NT"

130 PRI NT#F,"TO "; FRI END$

140 PRI NT#F, "FROM "; SENDER$

150 RETURN

Default SCREEN or PRINTER TAB positions can be altered with the SZONE and
PZONE conmands respectively docunented elsewhere in this manual. A conma
delimter or equivalently TAB(255) tabs the cursor to the next screen or
printer zone, depending on the current output node.

USING is now a string expression. Conpiled and interpreted BASIC 'PRINT
USI NG statenments usually produce the same out put.

4-92
PRI NT PRI NT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"PRINT# is used to wite to a sequential file.

PRI NT#bl knum ... STATEMENT

blknum - is a file control block nunber, <1-15>.

"PRINT# wites data to an "O or "E' type file. Except for 'PRNI@,
information followi ng the 'PRI NT#bl knum, and output fromit, is in the same
format as a screen 'PRINT' statenent, except that output is routed to a file
instead of to the screen.

Note that EnhConp allows you to direct the output of a 'PR NT#bl knum comrand
to be directed to either the video screen or your printer by specifying
"bl knum as 0 or -3 respectively. Thus, the command:

"PRINT#-3,"This is a test™’

will print the text string on your printer. Expressing the 'blknum as a
variable permts you to designate the output device at runtine.

4-93
PRI NT# PRI NT#

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"PUT" wites a record buffer to a specified record.

| |
| PUT bl knum recnum STATEMENT |
| |
| blknum - is file control block nunber, 1-15. |
| |
| recnum - is the record nunber to wite. |
| |

"CGET" and 'PUT" are the two type "R' and type "X' disk file rmanipulation
conmands. PUT wites the contents of the record buffer to the specified
record in the specified currently open file. GET reads a record from the
specified currently open file into the record buffer.

Note that the 'recnum operand i s mandatory.

4-94
PUT PUT

Thi s st at ement

M SCSYS Enhanced
Copyright 1986 Phi

BASI C Comnpi | er Devel opment System

lip A Adiver, Al rights reserved

is used to set the line printer print zones.

PZONE(pos 1,...,pos n) STATENMENT
PZONE(*)
pos - is a numeric expression between 0 and 255

whi ch designates printer tab positions.

PZONE sets up default printer

nodi fi ers.

PZONE

PZONE(*) clears all

TAB positions for
printer stops.

4-95

LPRI NT (or

PRI NT#-3) ","

PZONE

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Thi s statenent seeds the random nunber generator.

I I
| RANDOM <exp> STATEMENT |

RANDOM r eseeds the "randont nunber generator to assure a high probability of
a non-repeating "randont sequence of nunbers. EnhConp uses the well known and
often used method of |inear congruential nodulus to generate random nunbers.
To assure high randommess and high non-repeatability, double precision
variables are used. This accounts for the relatively slow speed of the RND
functi on. However, randomess is tremendously inproved over TRS-80 BASIC RND
results (as well as many ot her | anguages with poor random nunber generators.)

The seed which is used will be a random nunber between <0-255> if no operand
is given; else it is seeded with the given operand. Specifying a particular
seed value will start the same sequence every time for any given operand,

whi ch can be between 0 and about 2, 400, 000.

4-96
RANDOM RANDOM

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent allows you to reset the DATA |ist pointer.

RDGOTO addr or RDGIO addr STATEMENT

addr - is either a line nunber or a | abel.

DATA provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statenment does nothing as
program execution junps over the data list. The data list is read into
variables with the READ statenent. READ nornally reads data starting fromthe
begi nning of the list.

RESTORE and RDGOTO provide ways to point at the desired data list. RDGOTO
especially, elimnates the wasteful process of reading and discarding lists
of data to get to the desired list required in interpretive BASIC.

Initially, the first data itemread, unless the data pointer is changed by a
RDGOTQ RDGTO statenment, will be the first data item in the first DATA
statement in the program

Exanpl e Program
5 RDGOTO " PRI ME"

10 READ Tl TLES$: PRI NT Tl TLES$: PRI NT: READ N
20 FOR X=1 TO N: READ A: ?A, : NEXT

30 END
35 '
40 "FI B"

50 DATA The first ElI GHT Fi bonacci nunbers in order

60 DATA 8, 1,1,2,3,5,8,13,21

70 "PR M

80 DATA The first NINE prinme nunbers in sequential order
90 DATA 9, 2,3,5,7,11,13,17,19, 23

4-97
RDGOTO RDGOTO

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent allows you to declare and read a list of data itens.

READ varl <,var 2,...,var n> STATEMENT

array el ement.

|
|
|
| var - is either a nuneric or string variable or
|
|

DATA provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statenment does nothing as
program execution junps over the data list.

READ is the mechanism used to read from DATA lists. READ has the peculiar
attribute that it can read a DATA item as either a string or a nunber. An
item can always be read into a string (as a string of characters). An item
can SOMVETI MES be read as a nunber -- if it's a nunber. READ A$ reads the next
DATA item (say 1.618033) literally, character by character, into A%, in this
case an 8 byte string. READ A, using the same item stores into A the binary
equi val ent of the converted string 1.618033.

Initially, the first data itemread, unless the data pointer is changed by a
RDGOTQ RDGTO statenment, will be the first data item in the first DATA
statement in the program RESTORE and RDGOTO provide ways to point at the
desired data list. RDGOTQ especially, elimnates the wasteful process of
reading and discarding lists of data to get to the desired list required in
i nterpretive BASIC

Exanpl e Program
5 RDGOTO " PRI ME"

10 READ Tl TLES$: PRI NT Tl TLE$: PRI NT: READ N
20 FOR X=1 TO N: READ A: ?A, : NEXT

30 END
35 '
40 "FI B"

50 DATA The first El GHT Fi bonacci nunbers in order

60 DATA 8, 1,1,2,3,5,8,13,21

70 "PR M

80 DATA The first NINE prinme nunbers in sequential order
90 DATA 9, 2,3,5,7,11,13,17,19, 23

4-98
READ READ

M SOSYS Enhanced BASI C Conpi | er

Devel opment System

Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to enter a remark into your source program

| REMinfo or "info

|
STATEMENT |
|

REM or the apostrophe character,

signals the conpiler

the source line. Nothing included on the line after

i ncluded in the conpil ed program

REM

4-99

to ignore the rest
a REMark statement

of
is

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These statements inplenent the typical REPEAT-UNTIL | oop construct.

| |
| REPEAT STATEMENT |
| |
| UNTIL exp STATEMENT |
| |
| exp - is any nuneric expression (usually bool ean) |
| |

"REPEAT-UNTIL'" is a looping contruct found in sone "structured" |anguages
such as PASCAL. As with 'FOR-NEXT', unless unusual progranmm ng techniques are
used, the loop is unconditionally executed one tinme. Consider the fact that
unli ke many conpilers EnhConp allows nore than one 'UNTIL' or 'NEXT' for a
single 'REPEAT' or 'FOR statement, respectively. Runtime program flow m ght
(often does) variably choose a particular "UNTIL'" or 'NEXT' to branch to,
rendering conpile-time selection inpossible.

The ' REPEAT' statenent flags a point to loop to when the next "UNTIL' is
encountered and its expression is non-zero. That is, a loop is nade when the
expression following the "UNTIL' is boolean TRUE (non-zero on the TRS-80).
Program execution resunmes at the statement following 'UNTIL exp' if "exp’ =0
(the loop falls through.)

Exanpl e Program

10 I NPUT"LETTER (A-Z) TO STCP FOR'; S$
20 REPEAT

30 T$=CHRS$(RND(26) +64)

40 PRINT TS,

50 UNTIL S$=T$

This prints a randomletter until the user-selected letter is encountered.
Progranm ng | dea #1

There is a trick that may be used to defer execution of a |oop even a single
time, with either 'FOR-NEXT' or 'REPEAT-UNTIL'. The trick involves the use of
t he user-defined conmand nechani sm and goes as such:

First a look at FOR-NEXT. The required input variables are: 1) The initial
| oop index variable value, 2) the top limt, and 3) the step size. Cearly,
some of these may be deferred if desired by setting sonme of them to
constants. Then, define a user-conmand |ike so:

10 9%.00P0(0,10,.25): "WII perform FOR TEST=0 TO 10 STEP .25

20 9%.00PO(10,0, 1): "Not hing will happen because 10 > 0
30 END

50

100 COMVAND LOOPO(| VALUE, TOPLI M | NCR)

150 '

200 1 F I NCR<O
300 | F I VALUE>TOPLI M THEN RETURN

400 ELSE

500 | F I VALUE<TOPLI M THEN RETURN
600 ENDI F

650

4-100
REPEAT REPEAT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

700 FOR TEST = | VALUE TO TOPLI M STEP | NCR

NEXT

RETURN

ENDCOM
(Naturally, the line nunbering is arbitrary -- they could be any other
sequential allowable nunbers). 200-600 prevents the loop from being started
at all if the initial index variable value falls outside of the specified

limt.

Wthout a doubt you can see how to apply this idea to 'REPEAT-UNTIL" | oops.
One idea: set up the user-conmand to accept a list of critical variables used
in the "UNTIL'" expression. Then, apply the pre-loop-check to the 'UNTIL
expression. If zero, then RETURN, otherw se, march onwards. For exanpl e:

COVMAND LOCP1(A, B, ©)

D = 64

|F (A+B) > (C+D) THEN RETURN
REPEAT

PRINT A

A=A+B

UNTIL A > (C+D)

RETURN

ENDCOM

4-101
REPEAT REPEAT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to turn off a pixel.

RESET(X, y) STATEMENT

| |
| |
| |
| x - is a nuneric expression which evaluates to |
| the range <0 - 127> for 64-col um screens |
| and <0 - 159> for 80-columm screens. |
| |
| |
| |
| |
| |

y - is a numeric expression which evaluates to
the range <0 - 47> for 16-row screens and
<0 - 71> for 24-row screens.

SET, RESET, and COWPL form the set of the single-pixel-affecting graphics
conmands. Note that screens that display 16 rows of 64 characters wll
display 72 rows by 160 columms of graphics pixels; screens that display 24
rows of 80 characters will display 72 rows by 160 col ums of graphics pixels.

SET is a standard TRS-80 BASIC commrand that unconditionally turns on any
sel ected graphics pixel on the TRS-80 screen. The RESET command turns a pixel
OFF. The COWL command conpl enents a selected graphics pixel, turning it ON
if it is OFF and vice versa. A function, PONT(x,y), which is related to the
pi xel graphics commands is discussed in the section on functions.

The following illustrates a brief exanple of these graphics conmands:

5 Y=23: RANDOM CLS

10 FOR X=0 TO 127

20 SET(X Y)

30 Y=Y+SG\(RND(3) - 2)

40 IF Y<O THEN Y=0 ELSE IF Y>47 THEN Y=47
50 NEXT

60 FOR X=0 TO 127

70 COVPL(X, 23): NEXT

80 FOR X=0 TO 127

90 RESET(X, 23): NEXT

The program first plots a pseudo-"nmountai nous” profile on the screen, pro-
ceeds to "conplenent” all graphics dots down the mddle of the screen, and
finally resets all pixels through the mddle of the screen.

4-102
RESET RESET

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent allows you to reset the pointer of a data list.

| |
| RESTORE STATEMENT |

DATA provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statenment does nothing as
program execution junps over the data list. Initially, the first data item
read will be the first data itemin the first DATA statenment in the program

After sone data itens in the list have been read, the RESTORE statenent may
be used to reset the list pointer to the beginning of the table. RDGOIO can
be used to reposition the list pointer to any |abeled location of the data
list. This elimnates the wasteful process of reading and discarding lists of
data to get to the desired list required in interpretive BASIC.

Exanpl e Program
5 RDGOTO " PRI ME"

10 READ Tl TLES$: PRI NT Tl TLES$: PRI NT: READ N
20 FOR X=1 TO N: READ A: ?A, : NEXT

30 END
35 '
40 "FI B"

50 DATA The first El GHT Fi bonacci nunbers in order

60 DATA 8, 1,1,2,3,5,8,13,21

70 "PR M

80 DATA The first NINE prinme nunbers in sequential order
90 DATA 9, 2,3,5,7,11,13,17,19, 23

4-103
RESTCRE RESTCRE

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent perfornms an unconditional program branch.

RESUME addr STATEMENT

| |
| |
| addr - is aline nunber or a | abel. |
| |

"RESUME addr' is precisely equivalent to 'GOTO addr' (see description
el sewhere in this manual). It is inplemented to preserve sone conpatibility
with interpretive BASIC progranms using this conmand.

I NCOWPATI BI LI TY NOTE

The RESUME NEXT interpretive BASIC feature i s not
supported by EnhConmp Ver. 2.Xx.

4-104
RESUME RESUME

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statement is used to return froma GOSUBed subrouti ne.

| |
| RETURN STATEMENT |

GOSUB is the standard BASIC command to call a subroutine. Nested GOSUBs calls
are limted only by avail able free stack nenory.

RETURN returns from a subroutine to the next instruction follow ng the GOSUB
i nvocation. Note the use of the POP command docunented el sewhere.

Exanpl e Program

10 DIM A(10),B(10):" Note that ALL arrays nust be di mensi oned
20 FOR X=0 TO 10: A(X) =RND(X) : B(X) =RND(0) : ?A(X) , B(X) : NEXT

30 GOSUB"SORT A':' O: CSUB" SORT A"

40 QGOSUB"PRINT A":' Could be GOSUB 140

50 GOSUB"SORT B

60 GOSUB" PRI NT B"

70 END
8o

100 "SORT A":' Alternatively: JNAVE'SORT A"
110 SCLEAR KEY A(0): TAG B(0): SORT 11: RETURN
120 "SORT B"

130 SCLEAR KEY B(0): TAG A(0): SORT 11: RETURN
140 "PRINT A"

150 FOR X=0 TO 11: PRINT A(X), B(X): NEXT: RETURN
160 "PRINT B"

170 FOR X=0 TO 11: PRINT B(X), A(X): NEXT: RETURN

This program | oads arrays A() and B() with random nunbers and then proceeds
to sort them individually, first on A() with B() elenments "tagging along",
then on B() with A() as a TAG

4-105
RETURN RETURN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to scroll the video screen right one col um.

|
| RIGHT STATEMENT

"RIGHT" scrolls the entire screen right by one character, clearing the left-

nmost (Oth) screen col um.

4-106
Rl GHT

Rl GHT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function parses the right-hand substring of a string.

obtain fromthe string

I Rl GHT$(exp$, expl) FUNCTI ON

I exp$ - is any string expression. I
I expl - is the nunber of rightnost characters to I
| |

Rl GHT$ takes a substring away fromthe right. For exanple:

Rl GHT$(" ABCDEF", 3) = " DEF"
R GHT$("NE PLUS ULTRA", 10) = "PLUS ULTRA"

Note that M D$ can easily sinmulate R GHT$. For exanpl e:
R GHT$(exp$, exp) is equivalent to M D$S(exp$, | en(exp$)-exp+1)

assum ng | en(exp$) >= exp.

4-107
Rl GHT$ Rl GHT$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to set the printer's right hand nmargin.

RVARG N = exp STATEMENT

|
|
|
| exp - is a nuneric expression which evaluates to
| t he range <2-255>

|

This statenent sets the right hand margin on your printed page.

carriage return done when the nunmber of characters printed is equal

val ue specified as 'exp'.

4-108
RVARG N

An automatic

to the

RVARG N

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Thi s function obtains a random nunber.

| |
| RND(exp) FUNCTION |
| |
| exp - IS a numeric expression. |
| |
"RND returns a pseudo-random nunber between 0 and .999999 if 'exp' = O0;

otherwise it returns an integer between 1 and 'exp'. Note that a sequence of
nunbers produced by the above function is not truly random

The 'RANDOM statement can be used to reseed the random nunber generator,
further increasing randommess (or initiating a predeterm ned sequence for
repeat abl e conditions).

Al'l calculations are done in double precision to assure high randommess and a
very long repeat cycle (which will occur eventually). The nethod of |inear
congruence is used, as described by Knuth in the second volune of his "The
Art of Computer Progranmming”; this nethod fulfills all the usual tests of
randomess while retaining sinplicity of cal cul ation.

4-109
RND RND

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statement is used to establish a rotation for the ' DRAW statenent.

ROT = exp8 STATEMENT

| |
| |
| |
| exp8 - is a nuneric expression which evaluates to |
| t he range (0-255) signifying DRAW degrees |
| |

This statenment will set the rotation offset for DRAW statements. The di-
rection is stepped in units of 256/360 degrees counter clockwi se with "up"
bei ng 0.

4-110

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the current row position of the cursor.

| |
| ROWdunmy exp) FUNCTI ON |
|

"RON returns the row of the cursor; equal to INT((CURSOR PGCSITION or
CURLOC) / (nunber of columms). For exanple,

10 PRINT@Y70,"H ."
20 A = RONO)

assigns a 3 to "A.

4-111

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"RSET" and 'LSET" are used to set information into FIELDed string variables
for use with random access fil es.

| |
| RSET var$ = exp$ STATEMENT

| |
| var$ - is FIELDed string to which the information

| is to be added. |
| |
| exp$ - is the information to add.

| |

"LSET" and 'RSET' are really just versions of 'MD$ = . Their main intended

purpose is to set information into FlIELDed string variables. FIELDed strings
must point to a static nmenory location (in a file's record buffer).

For 'LSET', var$ is overlayed starting at position O with exp$, filling any
remaining portion of var$ with blanks (ASCIl 32). For 'RSET', var$ is
overlaid with exp$, neasuring from the end of var$, filling any renaining

portion of var$ with blanks (i.e. the information is "right justified").

A standard string assignment, such as A$="MONDAY" places A$'s data in the
string storage area, which is constantly changing. LSET and RSET (and M D$)
directly alter existing a string variable's contents wi thout changing the
string's position in nmenory. The main difference between MD$ and LSET/ RSET
is that the latter commands fill the remaining characters in the affected
string with blanks, or CHR$(32)'s.

Note that conpiled LSET and RSET, as with interpretive D sk BASIC LSET/RSET
conmands, work on any string variable, not just FlIELDed string vari abl es.

Examples (in all exanples A$ is 10 chars |ong):

LSET A$="HELLO':' Now A$="HELLO "

LSET A$="12345678912":"' Now A$="1234567891"

RSET A$="HELLO':' AS=" HELLO'

LSET A$=MKD$(1. 2345#):" Now first 8 bytes of A$ contain

the floating point double
preci sion nunber 1.2345#

4-112
RSET RSET

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

"RUN will load a '/CMD type programfromfrom di sk and then invoke it.
| _ |
| RUN'filespec$” STATEMENT |
| |
| filespec$ - designates the file to run. |
| |

"RUN loads and runs a machine |anguage program from disk. It can be any
execut abl e program i ncl udi ng anot her conpil ed program

4-113
RUN RUN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This is used to establish a scaling factor for the ' DRAW statenent.

SCALE = expl6 STATEMENT

| |
| |
| |
| expl6 - is a nuneric expression which evaluates to |
| the range (-32768 to 32767) |
| |

This command sets the scaling factor for DRAW commands. The scaling factor is
measured in units of 1/256. Thus, a "SCALE = 256" is equal to a 1:1 size
plot. A "SCALE = 128" woul d be hal f sized.

4-114
SCALE SCALE

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to turn on a pixel.

SET(X, y) STATEMENT

| |
| |
| |
| x - is a nuneric expression which evaluates to |
| the range <0 - 127> for 64-col um screens |
| and <0 - 159> for 80-columm screens. |
| |
| |
| |
| |
| |

y - is a numeric expression which evaluates to
the range <0 - 47> for 16-row screens and
<0 - 71> for 24-row screens.

SET, RESET, and COWPL form the set of the single-pixel-affecting graphics
conmands. Note that screens that display 16 rows of 64 characters wll
display 72 rows by 160 columms of graphics pixels; screens that display 24
rows of 80 characters will display 72 rows by 160 col ums of graphics pixels.

SET is a standard TRS-80 BASIC commrand that unconditionally turns on any
sel ected graphics pixel on the TRS-80 screen. The RESET command turns a pixel
OFF. The COWL command conpl enents a selected graphics pixel, turning it ON
if it is OFF and vice versa. A function, PONT(x,y), which is related to the
pi xel graphics commands is discussed in the section on functions.

The following illustrates a brief exanple of these graphics conmands:

5 Y=23: RANDOM CLS

10 FOR X=0 TO 127

20 SET(X Y)

30 Y=Y+SG\(RND(3) - 2)

40 IF Y<O THEN Y=0 ELSE IF Y>47 THEN Y=47
50 NEXT

60 FOR X=0 TO 127

70 COVPL(X, 23): NEXT

80 FOR X=0 TO 127

90 RESET(X, 23): NEXT

The program first plots a pseudo-"nmountai nous” profile on the screen, pro-
ceeds to "conplenent” all graphics dots down the mddle of the screen, and
finally resets all pixels through the mddle of the screen.

4-115
SET SET

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the sign of its argunent.

| |
I SG\(exp) I
| exp - is a numeric expression. |
| |
The 'SGN function will return -1, 0, or +1 depending on the state of its
argument .
SCN(exp) =-1if exp <O
SCGN(exp) =0 if exp =0
SCN(exp) =1 if exp >0

4-116
SGN SGN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These statements are associated with the built-in array sort.

SORT <(flag),> num STATEMENT
SCLEAR STATEMENT
KEY array(exp) STATENMENT
TAG array(exp) STATENMENT
array(exp) - is an array el enent which designates the

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| key array for sorting purposes and the

| tag array for sorting purposes. |
| |
| num - is an integer numeric operand in the |
| |
| |
| |
| |
| |
| |
| |
| |

range (1 to 32767) which designates the
nunber of elenments to sort.

flag - is a numeric expression, either 0 or 1,
to specify ascendi ng or descending sort,
respectively. If 'flag' is omtted,
SORT defaults to ascending

The SORT statenment provides an easy but relatively fast way to sort single
di mensi on (such as A(100), not A(40,20)) arrays using up to 32 keys and 32
"tags". 'SCLEAR is an inportant SORT initialization command which nust
precede your sorting specification comrands.

A one-key sort is straightforward. The keyed array is sorted, either in the
default (no flag specified) ascending order, or in (flag=1) descending order
The sort tinme is variable, depending on the sort data and its organization,
but a typical sort time for 1000 strings is 15 seconds.

TAGs are arrays which "tag" along with their associated keys and play no part
in SORTing. If A(0)=5, A(1)=2, and B(0)=1 and B(1)=2, then if a single key
sort on A(0)-A(1) were done with B(0)-B(1) as a tag, then the final result
woul d be: A(0)=2, A(1)=5, B(0)=2, B(1)=1. Array elenent B(0) was "linked" to
A(0) and B(1) to A(1l) in the sort.

Multi-key sorts are also pretty straightforward. If identical entries are
encountered in the current-level key, then the next-level-keyed array is
sorted on, unless there are no nore keys. | MPORTANT: The LAST array KEYed is
the MOST SIGNIFICANT ("primary level"). The FIRST array KEYed is the LEAST
SIGNI FI CANT. Arrays are KEYed in LEAST to MOST significant order.

If the entries are not identical in the current-level key, then all |ower-
| evel KEYed arrays are TACged.

Mul ti-key sorting is denonstrated with the foll owi ng sanple sort data:

A(0) =2 B(0) = 3
A(l) = 4 B(1) = 6
A(2) =3 B(2) =7

4-117
SCRT SCRT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

A(3) =2 B(3) = 7
A(4) =3 B(4) =5
A(5) =1 B(5) = 3

Assum ng that these val ues have been assigned, then the foll ow ng:
SCLEAR: KEY B(0), A(0): SORT 6

perfornms the desired sort. The arrays are then:

A(0) =1 B(0) =3
A(l) =2 B(1) =3
A(2) =2 B(2) =7
A(3) =3 B(3) =5
A(4) =3 B(4) =7
A(5) =4 B(5) =6
As you can observe, array B is not in directly sorted order. It is only

within "subfields" of A where the array elements are the same, such as A(1l)
and A(2), and A(3) and A(4), that B's elenent are internally sorted; B(1l) and
B(2), and B(3) and B(4). In all cases, array B "tagged" along with array A
The only real distinction between TAG and KEY is that a TAGled array wll
appear in arbitrary order within primary key "subfiel ds".

The EnhConp SORT facility allows you to specify the first element of the
array for sorting to be at any point in the array. This is done inmplicitly
when an array is KEYed or TAGged for sorting.

Exanpl e Program

10 CLEAR 1000: Di M A$(20)

20 FOR X=0 TO 20

30 FOR Y=1 TO RND(5)

40 A$(X) =A$(X) +CHR$(RND(26) +64)
50 NEXT Y: PRI NT A$(X),: NEXT X
55 PRI NT: PRI NT

60 SCLEAR KEY A$(0): SORT 21

70 FOR X=0 TO 20: ?2A$(X), : NEXT

This sinple program generates and prints 21 random (1-5 character) length
strings, sorts them and prints out the sorted list.

4-118
SCRT SCRT

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the square root of its argunent.

SQR(exp) FUNCTI ON

| |
| |
| |
| exp - IS a numeric expression. |
| |

'"SQR returns the square root of a non-negative expression (negative square
roots are undefined in real (e.g. BASIC) nunbers.) For exanple, SQR(4) = 2,
since 2 * 2 =4, and SQR(81) =9, since 9 * 9 = 81. Usually the result is NOT
a neat integer, as with SQR(7) (= approx. 2.64575). A double precision exp-
ression will cause a double precision square root to be returned, accurate to
at least 16 decimal digits.

4-119
SR SR

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statement is used to terminate your program with a nessage and then
return to DOCS.

| |
| STOP STATEMENT |

STOP causes a transfer back to DOS via the @ X T address simlar to END. The
di stinction between END and STOP is that the latter prints '-STOP-' <CR> and
the current source |line nunber (if available) before END ng the program

4-120
STOP STOP

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function converts a nuneric expression to an ASCI| decimal string.

| |
| STR$(exp) FUNCTI ON

| |
| exp - IS any nuneric expression |
| |

STR$ is used to expand a binary nunber into its ASCI| decimal equival ent. For
exanpl e:

STR$(1.2+4.5)=" 5.7"

Notice the |eading blank appearing in the string. The converted strings of

all non-negative expressions wll have such a Ileading blank. Negative
expressions have a mnus sign, "-", instead of a space.
4-121

STR$ STR$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function generates a repeated character string.

STRI NG$(exp1l, exp2) FUNCTI ON
STRI NGB(expl, "char") FUNCTI ON
expl - is equal to the desired string | ength.
exp2 - is equal to a code in the range <0-255>
"char" - is a single character

STRINGS is a convenient way to neke long strings of the sane selected char-
For exanpl e:

acter.

STRING$(10,45) = "---------- "
STRING$H(5,".") ="..... "

STRI NG$

4-122

STRI NG$

M SOSYS Enhanced BASI C Conpi | er

Devel opment System
Copyright 1986 Philip A. Qi ver,

Al rights reserved
'SWAP' is used to exchange the contents of two simlarly typed vari abl es.

|

| SWAP varl,var?2 STATEMENT
|

|

|

|

|

|

var - is any variable |
|

SWAP exchanges the values of two variables of

the sane type. If A$="Fl RST"
and B$="SECOND' then SWAP A%, B$ | eaves A3 with "SECOND' and B$ with "FI RST".

4-123
SWAP SWAP

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This statenent is used to set the video screen print zones.

SZONE(pos 1,...,pos n) STATENMENT
SZONE(*)
pos - is a numeric expression between <0 and 63>

whi ch desi gnates screen tab positions.

SZONE sets up default TAB positions for the "," nodifier in PRINT statenents
and (equivalently) TAB(255) statements. SZONE(*) clears all print
program bel ow for sanpl e SZONE usage.

Once line 20 sets up stops,

10
12
15
17
20
30

SZONE(*): 'Clear all tab stops
"Set up TAB stops in multiples of 8 spaces

FOR X=0 TO 63 STEP 8: SZONE(X) : NEXT

FOR X=0 TO 30: PRINT X, : NEXT:' Could be PRI NT X TAB(255)...

new tab stop intervals.

SZONE

4-124

stops. See

line 30 sanple prints 0O through 30 show ng the

SZONE

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the trigononetric tangent of its argunent.

TAN(exp) FUNCTI ON

exp - is a numeric expression in radian nmeasure.

TAN returns the radi an degree tangent of an expression, mathematically equi-

valent to SIN(exp)/COS(exp). It will return a double precision value if given
one.

4-125
TAN TAN

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function returns the systemtinme as a string.

|
| TINMES There is no operand FUNCTION |
| |

The system time is returned as an eight-character string of the form
HH: MVt SS.

4-126
T1 VES TI MES

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

These statements are used to provide for runtine programtrace information

TROFF

| |
: :
| TRON |
| |

TRON acts simlarly to interpretive BASIC TRON. It prints source |ine nunbers
(if available) after each statenment is executed, not at just at the beginning
of a source line. TROFF turns programtrace off.

4-127
TROFF/ TRON TROFF/ TRON

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the type code of its argunent.

TYPE(exp) FUNCTI ON

| |
| |
| |
| exp - is a numeric or string expression.

| |

"TYPE returns the variable type code of the expression. These type codes are
as follows:

Vari abl e Type Code

I nt eger 1
Si ngl e precision 2
doubl e preci sion 4
string 3

Arrays are slightly nore conplex. The type is equal to:
128 + (16 * dinension #) + vartype
where vartype is one of the standard variable type codes l|listed above. So

TYPE(A$(0)) = 128 + 16 * 1 + 3 = 147. Note that the array index ('0') is
arbitrary; it need only be within the di mensi oned range.

4-128
TYPE TYPE

M SOSYS Enhanced BASI C Conpi | er
Copyright 1986 Philip A diver

This statement is used to scroll the video scr

Devel opment System
Al rights reserved

een up one line.

I
| uP

|
STATEMENT |
|

"UP' scrolls the entire screen up by one line,
is equivalent to the "standard" screen scroll

4-129
uP

clearing the bottomline.

Thi s

uP

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function is used to define formatted PRI NT out put.

| |
| USING format$; expli st FUNCTION |
| |
| format$ - is the format control string.

| |
| explist - is the expression list. |
| |

The EnhConp 'USING string function is derived from BASIC s, 'PRI NI USING,
whi ch works equivalently compiled (= PRINT exp$). The ability to store and
mani pulate 'USING formatted data with string handling instructions makes
this inplenentation much nore versatile than the PRI NT USI NG schene.

USINGs input is any mix of nuneric and string expressions coupled with a
string that controls the format of the output string. This format string is a
concat anation of individual expression field specifiers. A conplete list of
field specifiers is given bel ow.

USI NG processes the expressions one by one in a left to right manner,
building up its output string as it processes each expression. For each
expression processed, a field specifier in the format string expression is
needed. Should the end of the format string be reached, the field specifier
pointer is reset back to beginning of the format string. So:

USI NG " ###. ##"; 1. 5555, 2. 6666, 3. 9999
causes the format string "###. ##" to be "recycled" three tines.

An error wll occur if a string field specifier is tried on a numeric
expression, and vice-versa

Exanpl es:
USI NG " ###. ##"; 3. 157 = " 3.1l6"
USI NG " ** ####. ##"; 1. 45 = Mkkx] 45"
USI NG " ####. ####" ; 1. 23456 = " 1. 2346"
USI NG " $$###. ##"; 19. 95 = " $19.95"
USI NG " $$##. ##"; 19. 95 = "$19.95"
Assume X=7 in follow ng exanpl es:
USI NG " ###. ##"; 1. 23, 5. 67, X*10 =" 1.23 5.67 70.00"
USING "! I I";"ALPHA", "BETA", " CANDY" ="ABC
USI NG "### ###. # ##. ##";9.95,9.95,9.95 =" 10 10.0 9.95"
USI NG "##. ## ##.# ", 4.556, X*1.5,91.499 = "4.56 10.5 91.50"
USI NG " ###. ##-"; 15. 69 =" 15.69"
USI NG " ###. ##-"; - 15. 69 =" 15.69-"

4-130
USI NG USI NG

The conplete field specifier list

USI NG

M SOSYS Enhanced BASI C Conpi | er
Copyright 1986 Philip A diver

is as foll ows:

Devel opment System

rights reserved

$$

**$

NNNN

ol anks%

Field Specifier

--------- Nureri c Formats
Purpose / definition

One digit per #in field

Deci mal point position

Print |eading/traili
sign (either + or

Print trailing sign

i f negative

Fill unused digits with
asterisks instead of

bl anks

Put dollar sign at
imedi ate | eft of
nunber

Dol l ars sign at left of
nunber and unused digits
filled with asterisks

Format output in

scientific notation

......... String Formats

Descri ption

First character of string

expressi on

I ncl ude 2+# of bl anks
| ength substring of

string expression

Li st

#H##: 3 digits,
round to nearest

i nt eger

#H#. ##:. 2 digits
to left of dec.
point, round to
near est hundredth

+H#EH. #H#
HHH. #HH+

HHHH . #i-

AR W

SSHHHHH. HHt

** S, #Hit

B, HHHH

"% % ; " ABCDE" =
" ABC"

4-131

USI NG

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the nuneric value of the decimal nunmber encoded in its
string argunent.

| |
| VAL(exp$) FUNCTI ON

| |
| exp$ - is a string expression. |
| |

VAL converts an ASCI| encoded deci mal nunber to binary floating point or int-
eger nuneric format. For exanple:

A$ = "1.234": B$ = "4.5555555#": C$ = "156"
A = VAL(A$): B = VAL(BS$): C = VAL(CS$)

sets "A equal to 1.234, 'B equal to 4.55555 (truncated down to single pre-
cision fromdouble precision), and 'C equal to 156

4-132
VAL VAL

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the absolute nenory address of its argunent.

| |
| VARPTR(var) FUNCTION |
| |
| var - is any nuneric or string variable or array |
| el ement . |
| |
"VARPTR is used to directly access variable data stored in nenory. It

returns the address of the first byte of a variable's contents. For exanple,
supposing that the "LEN' function didn't exist. Then:

10 A$ = "ENHCOVP"

20 PRINT "LEN(A$) = ";!SLEN(A$)
30 END

100 FUNCTI ON SLEN(T$)

110 RETURN WPEEK(VARPTR(T$))

120 ENDFUNC

is a good exanple of creating a new function to fit a need (if LEN wasn't
al ready supported). Note the use of the exclamation point which precedes the
function's invocation. This is required by EnhConmp for user defined functions
and is explained in the section on FUNCTI ON- ENDFUNC.

VARPTR(T$) returns the address to the start of T$'s control block; which is
in the form LB LEN HB LEN LB PNTR HB PNTR WPEEK(VARPTR(T$)) returns the
entire 16 bit length -- without WPEEK, it would be: PEEK(VARPTR(T$)) + 256 *
PEEK(VARPTR(T$) +1), consi derably nasti er.

A variation on the use of VARPTR is the use of an array's nane wthout a sub-
script to return the address of the array's Data Control Block (DCB). This is
denot ed as:

| arrayname() |

Arrayname() returns the address of the array's DCB.

For exanpl e:
TRIALS(), A(),

See the "Technical Section" for details on Data Control Bl ock formats.

4-133
VARPTR VARPTR

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function will wait for a keyboard entry and return the value of the key
whi ch is pressed.

| |
| W NKEYS$ FUNCTI ON |
| |

| NKEY$ returns the last key pressed. WNKEY$ waits for a key to be pressed
and then returns it as | NKEY$, a one character string.

Exanpl e Program

10 PRI NT"Press any KEY to continue, <ENTER> to | oop"
20 A$=W NKEY$: | F A$=CHR$(13) THEN 10

30 PRI NT"Exi ti ng progrant

40 END

4-134
W NKEY$ W NKEY$

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

This function obtains the two-byte "word" stored at the specified nenory
addr ess.

WPEEK(exp16) FUNCTI ON

| |
| |
| |
| expl6 - represents a nenory address in the range |
| <-32768 to 32767>.

| |

"WPEEK' effectively "peeks" two bytes at a tinme, formng a word in standard
CPU format. The precise formula is:

WPEEK(exp) = PEEK(exp) + 256 * PEEK(exp+1)

WPEEK is useful for getting 16-bit nmenory addresses. For exanple, on the TRS-
80 Model I/111:

V = WPEEK(&H401E)
assigns V to the nenory address of the screen character print driver routine.

The correspondi ng poking statenent, 'WPOKE , is described elsewhere in this
manual .

4-135
WPEEK WPEEK

Thi s st at ement

M SOSYS Enhanced BASI C Conpi | er

Devel opment System

Copyright 1986 Philip A. diver, Al rights reserved

is used to poke a word into a nenory | ocation.

WPCKE expl6, expl6

expl6

STATEMENT

- specifies a nenory address in the range

<-32768 to 32767>.

WPCKE al | ows direct nodification of any RAM | ocation in nmenory. WOKE " pokes™”

two bytes at

a tine

speci fi ed address.

in conventional |ow order/high order

4-136

f or mat

into the

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The 'XFIELD statenent is used to assign the segnents of a type "X' file
record buffer to strings.

XFI ELD bl knum var, (exp)var$, . .. STATENMENT
bl knum - is file control block nunber, 1-15.

var - is any non-string variabl e.

exp - is the maxi mum |l ength of the follow ng

string variable, var$.

var $

is any string variable.

XFIELD is used to define the record structure of "X' type files. It fields
the record buffer into segnents accessable by string variables, providing a
means to read and wite information in an orderly manner from or to any
record in the file.

For the variables specified in the variable list, integers take 2 bytes to
store, single precision 4 bytes, double precision 8 bytes, and strings take
the specified maximum length (given in the expression in parentheses
preceding the string variable nane) plus 2 bytes for the string | ength.

One advantage of using the extended file format is that the string length is
saved at the time of the wite and a subsequent 'GET' of that record wll
restore the string of the sane length. This is unlike conventional FIELDs
whi ch pad unused characters with blanks. Note that if the string length
exceeds the maxi num given by 'exp', only the maxi num nunber of characters in
the string will be saved; all characters past that point will not be saved to
the file.

The maxi num record perm ssable in XFIELDed type files is 32767. Here is a
sampl e XFl ELD st at enent :

XFI ELD 2, A% B#, (16) | NV$

Any subsequent 'PUT" statenents (PUT bufnumrecnum) will wite the current
val ue of the variables A% B#, and INV$ into the specified record.

4-137
XFI ELD XFI ELD

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

5 Technical Information

5.1 Vari abl e names

Variable nanes are limted to the character set <A-Z> <0-9> and <@. The
first letter of the name must be an al phabetic character, <A-Z>. Variable
nanes can be any length and are unique for their entire length. Thus, the
followng are all distinct variables: ABC, ABCDEF, AB123.

The only restrictions on variable nanes are that you cannot use the nane of a
BASI C STATEMENT or FUNCTION as the nane of a variable. The BASIC STATEMENT
nanes and FUNCTI ON nanmes may appear as substrings of a variable name. This is
permtted since all variable names nust be separated fromthe "text" adjacent
to the name by either a <SPACE> or a character not permtted as a variable

nane (i.e., ";", ":", etc).

5.2 Variabl e TYPE designations

As is standard with versions of Mcrosoft BASIC, the follow ng characters can
be used as a variable nane suffix to designate the variable as being of the
specific type identified.

Type Char Variabl e Type ldentified

% I nteger variable
! single precision floating point variable
doubl e precision floating point variable
$ string variable

Vari abl es may al so be declared as being of a designated type by belonging to
t he operand cl ass of a DEFINT, DEFSNG DEFDBL, or DEFSTR st atenent.

5.3 Variabl e storage format

The following informati on describes the control block of arrays and the data
storage format of the four supported variable types. A pointer to the contro
bl ock (for arrays) or the data area (for scalers) is returned by the VARPTR
function or its array counterpoint, "arraynanme()".

Array Data Control Bl ock Description of contents

DCB+0 nunber of di nensi ons

DCB+1 array type: 1=integer
2=single prec, 3=string,
4=doubl e preci sion

DCB+2&3 Pointer to data area

DCB+4&5 Nunmber of data entries

DCB+6&7 on up size of each di nension

I nt eger St orage Format Description of contents

LSB HSB Val ue of the integer, 2-bytes

Si ngl e Precision Fornat Description of contents

LSB M5B HSB EXP Val ue of the single, 4-bytes

Doubl e Preci si on For nat Description of contents

LSB MSB ... MsSB HSB EXP Val ue of the double, 8-bytes
5-1

Techni cal | nformation

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

String Control Bl ock Description of contents
DCB+0&1 (LSB NMSB) Length of string
DCB+2&3 (LSB NMSB) Pointer to the stored string

5.4 Precision of math library

The math |library supports operations wusing integers, single precision
floating point variables and nunbers, and double precision floating point
vari abl es and nunbers. All supplied functions support both single and double
precision argunments. This means that the result of functions such as LOG
EXP, COS, etc., is the precision of the argument used (single or double).

The range and precision of the three nunmeric types is as foll ows:

nunber type range preci si on

i nt eger - 32768 to 32767 5 digits
single prec -1.7e+38 to 1. 7e+38 6-7 digits
doubl e prec -1.7d+38 to 1. 7d+38 15-16 digits

5.5 File buffer allocation

For each file buffer designated via the ALLOCATE statenent, 592 bytes of
menory will be provided. This nenory is utilized as foll ows:

Buf f er of f set | nt ended use

0 File type: "X', "I", "O', or "R
("E" is converted to "Q')

1 Record Il ength of non-"X' file nodes

2- 3 Record nunber of |ast PUT or GET

4 Unused

5 Internal buffer offset

6- 7 Unused

8- 9 Record length of "X' file node

10- 11 Pointer to XFIELD data if "X' file node

12- 13 Last file record nunber accessed

14 CLOSE flush flag (<>0 = flush)

15 Unused

16- 79 Systemis File Control Bl ock

80- 335 File's 256-byte 1/0O buffer

336-592 File's user record buffer

5-2
Techni cal | nformation

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

5.6 Support Subroutine Descriptions

The npbst comonly used routines in a conpiled program are in the library
SUPPCORT/ DAT file; when required, individual support subroutines are appended
onto a conpiled program as needed. The routines extracted from the library
and conpiled into your program are identified during conpilation by the
nunbers foll ow ng the nessage:

APPENDI NG SUPPCRT SUBS

The following list notes the general function of each support subroutine.
This list is provided only to help you in understanding the subroutine
nunbers which follow the above stated nmessage. It is beyond the scope of this
manual to provide detailed instructions on interfacing to these routines at
t he assenbly | anguage | evel.

000 - 1/Q Interpret code stream error trapping.

001 - POP stacked operands and set up for math routines.

002 - Floating point addition.

003 - Print eval uated expression.

004 - POP operand and place in the math nmenory accunul at or.
005 - Floating point multiplication.

006 - Floating point division.

007 - Floating point subtraction.

008 - Arithnetic OR (integers).

009 - Arithnetic AND (integers).

010 - Conpare the last two stacked operands for |ess than.
011 - Conpare the last two stacked operands for greater than.
012 - Conpare the last two stacked operands for equality.
013 - Arithnetic XOR (integers).

014 - Convert the word on the stack to an integer nunber.
015 - Interface to the @ATE and @1 ME DCS functi ons.

016 - Load the following string literal onto the string stack.
017 - This perforns the NEXT command of BASIC.

018 - Specified variable read from current DATA statenent.
019 - The two topnobst strings on the string stack are concat anat ed.
020 - "M D$(exp$, A B)".

021 - Load the followi ng string variable onto the string stack.
022 - Transfers stacked string to string variabl e.

023 - Handl es "ON exp GOTQ GOSUB'.

024 - Allocate tenporary string space.

025 - Check the stack pointer for SP < (PRGIOP) +256.

026 - Test expl$ <> exp2$.

027 - "R GHT$(exp$, exp)".

028 - "LEFT$(exp$, exp)".

029 - "STR NGH(expl, exp2)".

030 - "STRI NGH(exp, exp$)".

031 - "CHR$".

032 - "I NKEY$"

033 - ">=", nuneric
034 - "<=", nuneric
035 - "=", string

036 - ">", string
037 - "<", string
038 - ">=", string
039 - "<=", string
040 - "LEN', nuneric

5-3
Techni cal | nformation

041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Resol ve array varptr.

Dl Mensi on an array.

"I NPUT" accessory subroutine.

"LI NEI NPUT" accessory subrouti ne.

Perforns "TAB(n)".

Transfer resident math RAM accunul ator to stack
Prints the integer nunber contained in HL.

CVD executor.

CVS executor.

CVl executor.

MKD$ execut or .

MKS$ execut or.

MKI $ executor.

Handl es "Bl N$(exp)".

Handl es "HEX$(exp)".

"<>" routine, numeric.

LSET executor.

RSET executor.

Handl es " OPEN type$, buf num fi |l espec$<, recl en>"
CET executor.

PUT executor.

unused.

unused.

unused.

Perforns all graphics conmmands.

Handl es "VAL(var$)".

Handl es "STR$(exp)".

"USING' string function

"W NKEY$" function

"I NSTR' function

"END' routine.

M scel | aneous |/ O subrouti nes.

"PRI NT#" setup

"CLOSE" routine

Reinitializes video output.

"Ll NEI NPUT#" routine

"LOF" routine.

"ECF" routine.

File mani pul ation: LOAD, RUN, KILL, EXISTS, SYSTEM
STOP execut or.

"1 NPUT#" routi ne.

Sets up current buffer and associ ated vari abl es.
"LOC' executor.

Resol ves DCB pointer given a filespec$ or beffer expression
Handl es "M D$(var$, startpos<, maxfill>) = exp$".
"PCSFI L" assertor subroutines.

SORT routi ne.

Performs "PRINT,"; effectively TAB(255).

Si ngl e/ doubl e preci sion math routines.

Handl es "ERROR exp".

Pushes defined function/comuand | ocal variables onto the stack
Supports conmand/ f uncti on.

Restores | ocal variable val ues.

Handl es "PRI NT <CR>".

i nternal support code.

Handl es "PRI NT@ .

Creates a clean string list entry.

5-4
Techni cal | nformation

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

098 - "USING' initialization.
099 - "USING' post processing.
100 - "FRE(var$)" executor.
101 - "RANDOM' executor.

102 - " RANDOM exp" executor.
103 - "ROW function executor.
104 - "ASC' function executor.
105 - "LPRINT" initialization.
106 - "SWAP' executor.

107 - "KEY" executor.

108 - "TAG' executor.

109 - "SCLEAR' executor.

110 - "I NP" executor.

111 - "PEEK" executor.

112 - "WPEEK" execut or.

113 - "CURLOC' executor.

114 - "PQOS" executor.

115 - "ABS" executor.

116 - "ATN' executor.

117 - "CDBL" executor.

118 - "CI NT" executor.

119 - "COS" executor.

120 - "CSNG' executor.

121 - "ERL" executor.

122 - "ERR' executor.

123 - "EXP" executor.

124 - "FI X" executor.

125 - "I NT" executor.

126 - "SZONE/ PZONE" executor.
127 - "LOG' executor.

128 - "MEM' executor.

129 - "RND' executor.

130 - "SGN' executor.

131 - "SI N' executor.

132 - "SR' executor.

133 - "TAN' executor.

134 - "UNTI L" executor.

135 - a Z-80 "RET" instruction.
136 - integer "LET".

137 - Handl es "var 17var2".

138 - "NOTI" executor.

139 - "BRL" executor.

140 - Negate the value contained in the math nenory accumnul at or.
141 - "CLS" executor.

142-166 - Various routines which deal with floating point stack operations.
167 - unused.

168 - "ALLOCATE" executor.
169 - "FlI ELD' executor.

170 - "I F" executor.

171 - "XFlI ELD' executor.

172 - unused.

173 - "QOTO' executor.

174 - "@0OSUB" executor.

175 - Load the "READ' pointer.
176 - "RETURN' executor.

177 - "POP" executor.

178 - Load BASIC line nunber with the foll ow ng word.

5-5
Techni cal | nformation

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233-

25

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

i nternal use

"QUT" executor.

"DEC' an integer variable.

"DEC' an integer array el enent.

"INC' an integer variable.

"INC' an integer array el enent.

Handl er for | NVERT, LEFT, RI GHT, UP, and DOM.

Handl es setting of ROTati on and SCALE.

unused.

used internally.

Handl es TRON, TROFF, BRKQON, and BRKOFF.

internal CINT.

strobes keyboard for <BREAK>; perforns TRON di spl ay.

| oad integer variable to math nenory accumnul at or

| oad single precision variable to math nenory accumnul at or.

| oad doubl e precision variable to math nenory accumnul at or
zero the math nmenory accunul at or

| oad i nteger nunber to math menory accunul at or

| oad single precision nunber to math menory accunul at or.

| oad doubl e precision nunber to math menory accunul at or

| oad integer array elenment to math nmenory accumnul at or.

| oad single precision array elenment to math nmenory accunul at or.
| oad doubl e precision array elenment to math nmenory accunul at or
equat e i nteger variables.

equat e single precision variabl es.

equat e doubl e precision vari abl es.

equate integer variable with integer array el enent.

equate single precision variable with integer array el ement.
equat e doubl e precision variable with integer array el ement.
equate integer array el ements.

equate single precision array el ements.

equat e doubl e precision array el enents.

equate integer array element with integer variable.

equate single precision array element with integer variable.
equat e doubl e precision array element with integer variable.
| oad integer variable to stack

| oad single precision variable to stack.

| oad doubl e precision variable to stack.

nuneric integer "LET".

nuneric single precision "LET".

nuneri c doubl e precision "LET".

| oad integer array element to stack

| oad single precision array el ement to stack.

| oad doubl e precision array el ement to stack

integer array el ement "LET".

singl e precision array el enent "LET"

doubl e precision array el ement "LET".

integer "FOR' initialization

single precision "FOR' initialization.

doubl e precision "FOR' initialization.

push current code pointer for "REPEAT".

Handl es "POKE expl, exp2".

Handl es "WPCKE expl, exp2".

Begi n execution of Z-80 code.

5 - unused.

5-6
Techni cal | nformation

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

6 EnhConp Z80 Assenbl er |ntroduction

EnhConp, on top of being of a full BASIC compiler, is also a full Z80
assenbler, with special numeric functions to return the VARPTR of a BASIC
variable and the absolute nenory pointer to the beginning of any line. No
list of Z80 instructions is given here. It is assunmed that as an experienced
Z80 progranmer, you already have at |east one such list.

6.1 Z80 Source Code Inclusion in Prograns

Z80 assenbly | anguage can be inserted at any point in the source program The
Conpiler Directive 'Z80-MDE sw tches the | anguage context to Z80 node.

Essentially, in Z80 node, standard Z80 mmenoni cs take the place of BASIC in-
structions. Mst standard Z80 assenbl er pseudo-ops, such as DEFB, are sup-
ported. As with BASIC instructions, multiple statenments can be placed on a
single line, separated by ':'s. This is a typical exanple of a conbination
BASI C / Z80 program

10 DEFINT X
20 FOR X=0 TO 255

30 GOSUB " SCREEN'

40 NEXT

50 END

55

60 Z80- MODE

70 " SCREEN'

80 LD HL, 3C00H: LD DE, 3C01H: LD BC, 03FFH
90 LD A (& X)):LD (HL), A LDIR

100 HI GH MODE

105

110 PRI NT@, X: RETURN

This sanple program fills the Mbdel | or 11l screen nmenmory with every ASC I
code, with each ASCII code nunber printed in the upper left hand corner. Its
speed is rather inpressive for a "BASIC' program

Line 60 switches the conpilation context to Z80 AL

Line 70 defines a | abel, 'SCREEN .

Li nes 80-90 define the Z80 subroutine itself.

Li ne 100 switches the conpilation context back to BASIC

6-1
EnhConp Z80 Assenbl er

6.2 Assenbler

Expr essi ons

' START*10H pl us 4',

The following table describes

M SOSYS Enhanced BASI C Conpi | er

Devel opment System

Copyright 1986 Philip A. diver, Al rights reserved
Expr essi on Eval uation
are evaluated algebraically. '4+START*10H is evaluated
not in the linear fashion of '(4+START)*10H .

the avail able assenbl er

bi nary operators

al gebraic priority order (top to bottom = highest to | owest):

|

"<t expl < exp2 Expl shifted left 'exp2' tines |
"> expl > exp2 Exp2 shifted right 'exp2' times |
".MXD." expl. MOD.exp2 Integer remainder of expl/exp2 |

|

e expl * exp2 Product of expl, exp2 |
" expl / exp2 Qoutient of expl, exp2 |

|

" expl + exp2 Sum of expl, exp2 |
expl - exp2 Expl m nus exp2 |

|

"LOR" expl. OR exp2 Bit |ogical "OR' of expl, exp2 |
".AND." expl. AND.exp2 Bit logical "AND' of expl, exp2 |
".XOR " expl.XOR exp2 Bit logical "XOR' of expl, exp2 |

|

Bool ean Operators -- return -1 if true, else O |
('if' ="if and only if'. Al have equival ent |

wei ghts and less priority than any of the above |

oper at ors) |

|

".EQ" expl. EQ exp2 TRUE i f expl equal s exp2 |
or ".=." |
|

".NEQ " expl.NEQ exp2 TRUE if expl DOES NOT equal exp2 |
or ".<> " |
|

" LT." expl. LT. exp2 TRUE if expl | ess than exp2 |
or ".<." |
|

N C] expl. GI. exp2 TRUE if expl greater than exp2 |
or ".>" |
|

".LTEQ" expl.LTEQ exp2 TRUE if expl is less than or |
or ".<=" equal to exp2 |
|

".GTEQ" expl.GIEQ exp2 TRUE if expl is greater than or |
or ".>=" equal to exp2 |
|

6-2

EnhConp Z80 Assenbl er

as

in

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The followi ng tabl e describes the all owabl e nuneric operand bases:

No suffi x: Base 10 = Deci mal = Regul ar nunber
"V osuffix: Base 2 = Binary

ex: 1011V = 11 deci mal

ex: 4000H = 16384 deci nal

"0 suffix: Base 8 = Cctal
ex: 500 = 40 decim

|
|
|
|
I
| "H' suffix: Base 16 = Hexadeci nal
|
|
|
|
|

The followi ng tabl e describes the assenbl er Pseudo- Ops supported

DEFB / DEFM/ DB / DM exp8 or 'textstring
(rmultiple operands al |l owed:
Define byte(s) separate with commas.
Exanpl e: DB ' PLAYER 1', 13)

DEFW/ DW expl6 <, expl6,...>
Define word(s)

DEFS expl6
Leave 'expl6' bytes untouched

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| DEFF expl6 <, exp8> |
| Fill 'expl6é' bytes with OOH Optionally fill with

| "exp8 if given |
| |
| ORG expl6 and DI SORG |
Start a separate machi ne	anguage	oad bl ock
with starting	oad address given by expl6.	
The "current"	oad address is saved. DI SORG	
term nates the separate	oad bl ock and	

| re-establishes the old programcounter so that
| |
| |
| |
| |
| |
| |

normal conpilation can continue. NOTE: Only the
last PC is saved; nested ORGs are NOT advi sed.

Ex.: ORG 401EH DW ALTVI D: DI SCRG

Re-vector video char. display routine

The follow ng table defines the EnhConp support of non-standard Z80 assenbl er
i nstructions.

DUPI oper and ("operand = operand*2 + 1")

where operand is any of: -- r8 (A B,CDE HL)
(HL), (IX+d), (1Y+d)

6-3
EnhConp Z80 Assenbl er

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

7 Invoking the REF/CMVD utility

The REF utility provides a printed reference of menory use for five aspects
of your program variables, user defined functions, user defined conmands,
synbol s and | abels, and source line nunbers. The listings are generated from
the reference data file created by the conpiler when the "WD' conpiler
directive is invoked.

The general format of a REF/ CMD invocation is:

REF fil espec<, - V-L>

fil espec - is the reference data fil espec.
The extension defaults to '/DAT .

output to the video screen.

-L - optional switch to generate the
synbol /| abel table. The default is

|

|

|

|

I -V - optional switch to direct the REF
|

|

i to suppress the synbol /Il abel tabel.

The two conmmand switches, "-V' and "-L", are optional. If either or both is
entered, a comma nust imediately follow the reference filespec. The "-V
switch is used to have the reference output appear on the video screen
instead of the printer. The "-L" switch is used to have the "synbol /Il abel"
table included in the reference output.

The following represents excerpts from a given reference report. Note that
all tables are alphabetized for easy reference. The five possible reports
will each start on a new page. The first report wll 1list all BASIC
variables, identify each variable as to its type, and then list the starting
menory address used to store the variable's value. A sanmple report is:

CROSS REFERENCE REPORT using CHEBYCO 4, --- VAR ABLE LI ST page 1.1

I = SINGLE, % = INTEGER, # = DOUBLE, $ = STRI NG

Al : 5FD1H A$: 5F99H Al# : 6055H A2# . 604DH
A3# . 6045H AP# . S5FD5H B#(1#) : S5FA9H BP# : 5FDDH
CH(1#) : 5FA1IH CN# : 60B9H CP# : 5FE5H CS# : 60CI1H
H$: S5F9DH It 60A1H J! : 6029H Kl : 600DH
L! : 60A5H N : 6005H N1! : 6039H N2! : 6009H
NC! : 6065H NT! : 6035H P# : 6099H PA#(1#) : 5FC9H
PA# : 60E1H RHO# @ 6091H RT# : 60DOH S# : 602DH
S1# : 60A9H S2# : 60B1H SF# : 5FF5H SP# : SFEDH
ST# : 603DH SUM¢ @ 6011H T#(1#) : S5FCLH TI1#(1#) : 5FB1H
T1# : 60C9H T2# : 60D1H TN#(1#) : S5FB9H Wt : 5FFDH
X# : 6019H X1# : 6069H X2# : 6021H X3# : 6071H
XA# : 6089H XF# : 6079H XG# : 6081H Z1# : 605DH
7-1

Using the REF/CVD Uility

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

The second report Ilists any functions which have been defined in your
program The type of the function is listed as well as the nmenory address of
the function. This will look Iike the follow ng:

USER DEFI NED FUNCTION LI ST ---------mmmmmmmaaa o - - page 2.1

I = SINGLE, % = INTEGER, # = DOUBLE, $ = STRI NG

N$: 5230H

The third report identifies any user-defined conmmands. It wll 1list the
conmand name followed by the nenory address of the command. |f your program
has no user-defined commands, the report will look |like the follow ng:

USER DEFI NED COVWWAND LI ST --------cmmmmmmm o - - page 3.1

NO USER DEFI NED COVVANDS

If you specify the "-L" switch, then the fourth report will generate a table
of all synmbols and | abels used in the program being referenced. This wll
i nclude all gl obal synbols of SUPPORT/DAT library routines as well. Thus, the
normal node of REF/CVD is to suppress this report. If you do request it, it's
listing will be like the followi ng (truncated for brevity):

SYMBOL/LABEL LIST -------cmmmmmm e oo oo - - page 4.1
@ON\LLOC = 65ECH @IBRKVEC = 65EAH @®BRL = 658AH
@@BUFADR = 65BDH @8 = 7DFAH @acF = 87DFH
@ACLRNUM = 65E4H @aCP = 87CDH @aCT = 87CCH
@ACURBUF = 65DEH @G = 87E1H

@@l GBUF = 7EO6H @@ GPNT = 7EO2H

@ADPPNT = 7E04H @RWRTE = 65D5H

@ApTSI NE = 87B9H @ADX2SI NE = 87B1H

@¥DI T = 87C5H @dF = 87E2H @AENDIJUMP = 65DBH

@FRL = 65E1H @aFRR = 65E3H @@RRVEC = 65DFH

SYMBOL/LABEL LIST con't ------------m-mmmmmmmmma - page 4.2
@R34 = 7096H (@R4 = 6903H @R45 = 736FH @R45A = 7374H
@bR46 = 73DAH @BR47 = 740BH @R71 = 7467H @SPSV = 65F1H
@SRVECTBL = 6127H @SUB = 76AAH @TART = 65EFH
@TEMPNT = 6597H @TRCVWP = 6E16H

@TRCVPS = 6E38H @TRPNT = 6889H @CHK = 8517H
@MERR = 6467H @RSTR = 6CA2H @RSTRL = 6CAAH

@STLNE = 8AEDH @WRCUR = 60EEH @X2SI NE = 8225H @TOP = 7478H

SLPNT1 = 6F19H SLPNT2 = 6F1BH

The last table generated |lists each BASIC source |line nunber followed by the
menory address of the conpiled line. This looks like the follow ng (again
abbrevi ated for brevity):

SOURCE LI NE ADDRESS LI ST - --cmmmmmmmmacmeaaaaaos page 5.1

00100 : 521DH 00110 : 5229H 00120 : 5240H 00130 : 5245H
00140 : 527EH 00150 : 52B3H 00160 : 52CEH 00170 : 52D3H
00180 : 5302H 00190 : 5338H 00200 : 536BH 00210 : 53A2H
00220 : 53A7H 00230 : 53ABH 00240 : 53DFH 00250 : 53F7H

7-2
Using the REF/CVD Uility

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

00260 : 5430H 00270 : 5467H 00280 : 549AH 00290 : 54DEH
00300 : 54EEH 00310 : 5511H 00320 : 5518H 00330 : 5557H
00340 : 5566H 00350 : 557AH 00360 : 559EH 00370 : 55ABH

01340 : 5EOEH 01350 : 5E16H 01360 : 5E1AH 01370 : 5E1EH
01380 : 5E22H 01390 : 5E35H 01400 : 5E5CH 01410 : 5E64H
01420 : 5E68H 01430 : 5E70H 01440 : 5E74H 01450 : 5EAOH
01460 : 5EB3H 01470 : 5ED/H 01480 : 5EF1IH 01490 : 5F04H
01500 : 5F11H 01510 : 5F37H 01520 : 5F61H 01530 : 5F7AH
01540 : 5F89H 01550 : 5F91H

7-3
Using the REF/CVD Uility

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

8 Al phabetic Function and Statenent Sunmari es

8.1 Al phabetic Statenment Sunmary

ALLOCATE <exp>
BKOFF

BKON
COVPL(X, y)

CLEAR <exp>

CLS
CLGSE n

COVWAND nane...
CSUB "I abel "

DATA |i st

DEC i nt var
DEFFN nane
DEFDBL var names

DEFI NT var names
DEFSNG var names

DEFSTR var names
DIMal, az, ...
DO/

DRAW par am

ELSE

END

ENDCOM

ENDFUNC

ENDI F

ERROR exp8

FI ELD par am

FOR (par aneters)
FUNCTI ON nane
CET param

QOTO integerlit
QOT0 "1 abel "
GOSUB integerlit
&osuB | abel
GIO "l abel "

I NC i ntvar

I NPUT varl, var?2, ...
I NPUT#exp, var 1, ...

| NVERT

| F <exp> ...
JNAME " [abel "
KEY array(exp)

Al l ocates <exp> file buffers

Di sabl e BREAK key

Enabl e BREAK key

Conpl ement graphics pixel at (x,y); if pixel SET then
RESET it, otherw se SET it

Set aside <exp> bytes for string storage; Zer o/ clear
vari abl es

Cl ear screen, hone cursor

Closes file buffer n; if no paraneter, closes all open
files

Mechani smto define start of user command

Makes a call to the specified | abel (must be a string
literal)

Define a list of data

Decrenent integer variable by one

Single line user defined function

Variables included in the list will default to double
precision if their types are otherw se unspecified

Sanme as DEFDBL, except causes a default to integer

Sane as DEFDBL, except causes a default to single
preci si on

Sane as DEFDBL, except causes a default to string type
Di mensi on specified arrays

Scroll entire screen down by one |ine

Using integer array as controller, SET, RESET, or "COWPL"
(conpl enment) turtle graphics on screen

Defines default branch location if IF expression fal se
St op program executi on

Speci fy end of user defined command definition

Specify end of multi-line user defined function definition
Term nate | F bl ock

Force an "artificial” runtime error of error code "exp8"
Fields file buffer into bl ocks of strings

Start a FOR NEXT | oop construct

Start nulti-line user function definition

Reads one record froma file into its buffer

Branch to programline

Branch to specified | abel

Call subroutine at programl ine

Call subroutine starting at |abel

Branch to specified | abel

I ncrements integer variable by one

Accept user keyboard input for variable val ues

Assign variable(s) information read sequentially from
specified ("exp") disk file

Inverts all graphics on the screen

Def i ne begi nning of conditional execution program bl ock
Defi ne | abe

KEY array for SORTi ng purposes. KEYs specified in least to
nost significant sorting order. In other words, |ast array

8-1
Al phabetic Statement Summary

M SOSYS Enhanced BASI C Conpi | er
Copyright 1986 Philip A. Qi ver,

KILL"fil espec$”
LEFT

LET var =exp

LI NEI NPUT ...

LOAD'fi | espec$”
LPRI NT 1i st

LSET var $=exp$

M D$(var $, expl) =a$

M D$(v$, el, e2) =exp$ Overlay var$ starting at position expl with 'exp$

NEXT v1,v2, ...
OPEN' par anet ers
ON BREAK GOTO addr

ON ERRCR GOTO addr

ON exp GOTO i st
ON exp GOSUB i st
QUT expl, exp2
PAI NT(x, y), pai nt
PLOT param
PCOKE expl,
POP

PCSFI L(#b, rec, of s)

exp2

PRI NT |i st
PZONE(pos, pos, ..)
PZONE(*)

PUT param
RANDOM
RDGOTO addr
RDGTO " | abel "
READ | i st

REM or '
REPEAT
RESTORE
RESUME | i ne #

RETURN

RESET(x, y)

Rl GHT

RSET var $=exp$
ROT=exp8

RUN'fi | espec$”

SCALE=exp16

SCLEAR

SET(x, y)

Devel opment System
Al rights reserved

KEYed is primary sorting key. Miltiple keys separated by
commas al | owed

Del ete specified fil espec fromdi sk

Scroll entire screen |left one character

Set variable equal to algebraic or string expression
Assign string variable fromverbati mkeyboard i nput

wi t hout default "? " pronpt

Loads the nachine | anguage file specified by fil espec$
Send list of information to printer

Sets var$ = exp$, with left justification

Overlay var$ starting at position expl with the string
expressi on ' exp$'

for a
maxi mum of exp2 characters

Defi ne end of FOR- NEXT | oop

pens a file using the specified buffer #
Causes branch to specified line or |abe
and break scan active (BKON node)

Causes a branch to the specified line or
(runtine) error occurs

Usi ng expression, junps to specified # in |ist
Usi ng expression, junps to specified # in |ist
Send exp2 out to port expl

Col or a bounded shape

Plots a line or a box on the screen

Load nem ocation expl with exp2

Del ete | ast GOSUB

i f BREAK key hit

| abel if

Position to specified point in sequential file. Functional
with both "O' and "1" type files
Qutput list of information to specified device

Define printer TAB stops

Clear all printer TAB stops

Wites the buffer contents to a file

Initializes the random # generat or

Posi ti ons DATA pointer to specified line # or |abel

Posi ti ons DATA pointer to specified | abel

Reads a list of variables from DATA statenents

Define a remark

Def i ne begi nni ng of REPEAT/ UNTI L construct

Rest ores DATA pointer to first data statenent

Used at the conclusion of an error trapping routine to
junp to the specified line #

Return from subroutine

Reset graphics point at X,y

Scroll entire screen right one character

Sets var$ = exp$, with right justification

Set rotation offset (in 256 degree units) for subsequent
DRAW st at enent executi ons

Loads and executes the machi ne | anguage program specified
by fil espec$

Set scalar line multiplier (in 1/256 units) for subsequent
DRAVW. For exanpl e, SCALE=128 nakes DRAWfi gures hal f
their unscal ed size

Important initialization command for SORT. Use before any
KEYi ng/ TAG ng done

Set graphics point at x,y

8-2
Al phabetic Statement Summary

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

SORT exp Ascendi ng SORT of KEYed and TAGed arrays. Sort 'exp'
nunber of elenents

SORT(expl), exp2 Ascendi ng SORT if expl=0, descending if expl=1l. Exp2 is
nunber of elenments to sort

STOP St ops execution of the programand prints source line # if
avail abl e

SYSTEM' command” I nvoke a DOS command string

SZONE(pos, pos, ..) Defi ne screen TAB stops

SZONE(*) Clear all screen TAB stops

SWAP var 1, var 2 Exchanges var1l and var2's val ues

TAG array(exp) TAG array for SORTi ng purposes

THEN ... Defines branch location for true |IF expression

TROFF Turn programtrace OFF

TRON Turn programtrace ON

UNTI L exp Defi nes end of REPEAT/UNTIL construct. Program execution
branches back to | ast executed REPEAT if exp <> 0

uP Scroll entire screen up by one line ("conventional"”
scrol 1)

WPCKE addr , exp Does two byte poke of exp at addr

8.2 Al phabetic String Function Summary

Bl N$(expl6) Convert 'exp' to 16 digit base 2 representation

CHR$(exp8) Convert 'exp8 to one byte string

HEX$(expl6) Convert 'expl6' to 4 digit hexadeci mal representation

| NKEY$ Last key pressed on keyboard

LEFTS(exp$, exp) Return 'exp' left nobst characters in exp$

M D$(exp$, expl) Return all of string at point 'expl' on

MKD$(exp) Convert 'exp' to 8 byte string representing a double
preci sion Fl oating Point nunber

MKI $(exp) Convert 'exp' to 2 byte string representing an integer #

MKS$(exp) Convert 'exp' to 4 byte string representing a single

preci sion Fl oating Point nunber

Rl GHT$(exp$, exp) Return 'exp' right nost characters in exp$

STR$(exp) Return ASCI| DECI MAL equival ent of 'exp

STRI NGB(expl, exp2) Return 'expl' long string of 'exp2' characters

STRI NG5(expl, exp$) Return 'expl' long string of ASC(exp$) characters

USI NG fnt $; vlist Return string using varlist, formatting determ ned by
"format$' . Takes the place of the PRINT USING ...feature in
interpretive BASIC. Perfornms equivalently

W NKEY$ Wait for key and then return as one char string

8.3 Al phabetic Function Summary

&BdO. . . d15 Accept digits in base 2 representation
&Hdddd Accept digits in base 16 representation
&0ddddd Accept digits in base 8 representation
ABS(exp) Returns the absol ute val ue of the expression
ADDRESS(" | abel ") Absol ute nenory address of 'l abel
ADDRESS(|i ne #) Absol ute nenory address of line #
ASC(exp$) Returns the ASCI1 nuneric code of the first byte of the
string expression
ATN(exp) Returns the arctangent (in radians) of the expression
CDBL(exp) Converts expression to a double precision val ue
Cl NT(exp) Converts expression to an integer val ue
COS(exp) Returns the radian cosi ne of expression
CSNE exp) Converts expression to a single precision val ue
8-3

Al phabetic Statement Summary

CURLQOC
CVD(exp$)

CVI (exp$)
CVS(exp$)

ECF(buf num

ERL
ERR

EXI STS(fil espec$)

EXP(exp)
Fl X(exp)
FRE(exp)
I NP(exp)
I NT(exp)

I NSTR(expl$, exp2$)

| NSTR(el, e1$, e2$)

LEN(exp$)
LOC(buf num
LOF(buf num
LOG exp)
MEM

PEEK(expl16)
PA NT(x, y)
POS(dunmy)
RND(exp)
ROW dunmy)
SCGN(exp)

SI N(exp)
SQR(exp)
TAN(exp)
TYPE(var)
VAL (exp$)

VARPTR(var nane)

WPEEK(addr)
array()

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

Current cursor position (0-1023)

Directly copies 8 byte string to a doubl e precision
nuneri c expression

Directly copies 2 byte string to an integer expression
Directly copies 4 byte string to a single precision
expr essi on

Returns '-1'" if at end of speci fied sequential input file,
"0'" otherw se

Line # of the latest error

Code of the |latest error

Returns -1 if filespec$ exists.

Returns the natural antilog of expression

Returns the integer value of the expression

Returns anount of free string space (or MEMif exp = 0)
Returns eight bit value read fromport 'exp'

Return greatest integer |less than 'exp'

Returns '0' if expl$ does not contain exp2$, else returns
the position of 'exp2%' s first occurance in expl$.

Start search for exp2$ at 'expl'th character in expl$.

I NSTR(1, expl$, exp2) = | NSTR(expl$, exp2$)

Length of 'exp$'

Returns | ast record accessed in specified randomfile
Ret urns nunber of records in specified file

Natural |og of 'exp'

Amount of free nenory

Ei ght bit contents of nmenory address 'expl6'

Returns -1 if specified point is SET

Intra-line cursor position

Returns a random # between 1 and exp

Cursor row #

Signumfunction (1 if exp>0, O if exp=0, -1 if exp<0)
Returns radi an sine of 'exp'

Returns square root of 'exp'

Returns radi an tangent of 'exp'

Returns variable type of 'exp'

Changes ASCI1I DECIMAL string to internal numeric binary
storage format

Absol ute nenory | ocation of the specified variable or
array el ement

Returns two byte contents (addr) + 256(addr+1)

Address of the DCB of the specified array. Exanple: PRI NT
H TS() prints the address of the DCB of array HI TS. See
Techni cal Section for DCB breakdown

8-4
Al phabetic Statement Summary

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

8.4 Table of Numeric Operators

| A-B A to the Bth power
o A*B Amltiplied by B
" A B A divided by B
"4 A+B A plus B
A-B A mnus B

Bool ean operators (-1 if true, else 0)

"= A=B If A EQALS B
"t A<B If Ais LESS THAN B
"> A>B If A is CGREATER THAN B
If A DOES NOT EQUAL B
"<=" or "=<" A<=B If A LESS THAN OR EQUAL TO B
">=" or "=>" A>=B |If A GREATER THAN OR EQUAL TO B

Logi cal BIT-W SE operators
"AND' A AND B Alogically "AND ed with B
"OR' ACORB A Logically "ORed with B

XOR' A XOR B Alogically '"XOR ed with B

I
|
|
|
|
|
|
|
|
|
| "> A<>B
|
|
|
|
|
|
|
|
|
|
|

8.5 Table of String Qperators

Conpari sons are done on a character by character basis. They return nuneric
bool ean values: -1 if true, 0O otherwi se.

= A$=B$ AS$, B$ precise equival ence

I I

I I

| check

| "< A$<B$ A3 al phabetically/ascii-ly

| | ess than B$

| ">t A$>B$ A3 al phabetically greater |

| t han B$

| "<=" A$<=B$ A$ al phabetically less than

| or equal to B$

| ">=" A$>=B$ A$ al phabetically greater |

| than or equal to B$

| <>t A$<>B$ A$ is not equal to B$ |

I I
8-5

Al phabetic Statement Summary

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

8.6 Table of Conpiler Errors

Error
Code

Dynam c data table overfl ow

"ENDI F* term nators m ssing

"ENDI F' without "IF"

Mul tiply defined User Function

Mul tiply defined Command Definition
II'legal |abel or synbol

Undefi ned | abel or synbol

Undef i ned User Command

Undef i ned User Function

Undefined Iine nunber

Expressi on type m smatch

M ssi ng Oper and

Syntax Error

Mul tiply defined synbol or | abel
Nested *CET/*I NCLUDE file disall owed

(Z80) Expression error
(Z80) Rel ative branch out of range
(Z80) Qperand field OVERFLOWN

8-6
Al phabetic Statement Summary

8.7 Table of

M SOSYS Enhanced BASI C Conpi |l er Devel opnent System
Copyright 1986 Philip A. diver, Al rights reserved

run tinme Errors

|
Error | Meaning
Code |
........ |_-____-___--___--___-____-___--___--___-____-____-_
0 | Next wthout For
2 | Syntax error
6 | Qut of Data
8 | Illegal Function Call
10 | MNuneric Overfl ow Underfl ow
12 | Qut of free nenory
16 | Array subscript out of dinensioned range
18 | Attenmpt to re-dinmension an array
20 | Division by 0
24 | Type msmatch
26 | Qut of string space
32-100 | Special disk error; equal to DOS error code + 32
104 | Illegal buffer #
106 | File not in directory
108 | Serial disk /O attenpted with "R' file node
110 | File already opened
122 | Disk space full
128 | Bad file nane
130 | GET or PUT attenpted with non "R' file node
134 | Directory space full
136 | Wite protected diskette
138 | File access denied due to password protection
162 | Serial disk /O attenpted with non-256 LRL file
178 | Attenpt to open file with different LRL
241 | SORT attenpted without sort keys given
242 | Too many sort keys or tags
254 | Bad file node (not "I", "O' or "R')
|
8-7

Al phabetic Statement Summary

	Top of document
	1 Introduction
	1.1 Important Note
	1.2 Distribution Disks
	1.3 General Information
	1.4 Note on Merchantabilty

	2 Program Compilation
	2.1 Compilation from CED Editor
	2.2 Runtime Errors
	2.3 Transferring EnhComp to TRSDOS 1.3
	2.4 General Compilation Parameters
	2.5 Compiler Directives
	2.6 Compilation mode versus Interactive RUN mode
	2.7 Independent use of compiled programs

	3 CED/CMD Editor
	3.1 CED General Information

	4 EnhComp BASIC Statements and Functions
	4.1 Compiler Introduction
	4.2 Compiler Directives
	4.3 Function Reference
	Alphabetically
	A
	ABS
	ADDRA
	ALLOCATE
	ASC
	ATN

	B
	&B, &H, &O
	BIN$
	BKON BKOFF

	C
	CDBL
	CHR$
	CINT
	CLEAR
	CLOSE
	CLS
	COMMAND
	COMPL
	COS
	CSNG
	CURLOC
	CVI CVS CVD

	D
	DATE$
	DATA
	DEC
	DEFxxx
	DEFFN
	DIM
	DOWN
	DRAW

	E
	END
	ERL
	ERR
	ERROR
	EXISTS
	EXP

	F
	FIELD
	FIX
	FOR
	FRE
	FUNCTION

	G
	GET
	GOTO
	GOSUB

	H
	HEX$

	I
	IF/THEN/ELSE
	INC
	INKEY$
	INP
	INPUT
	INPUT#
	INSTR
	INT
	INVERT

	J
	JNAME

	K
	KILL

	L
	LEFT
	LEFT$
	LEN
	LET
	LINEINPUT
	LINEINPUT#
	LINESPAGE
	LMARGIN
	LOAD
	LOG
	LPRINT
	LSET

	M
	MEM
	MID$ function
	MID$ statement
	MKD$ MKI$ MKS$

	O
	ON .. GOTO
	ON BREAK GOTO
	ON ERROR GOTO
	OPEN
	OUT

	P
	PAGELEN
	PAINT
	PEEK
	PLOT
	POINT
	POKE
	POP
	POS
	POSFIL
	PRINT
	PRINT#
	PUT
	PZONE

	R
	RANDOM
	RDGOTO
	READ
	REM
	REPEAT
	RESET
	RESTORE
	RESUME
	RETURN
	RIGHT
	RIGHT$
	RMARGIN
	RND
	ROT
	ROW
	RSET
	RUN

	S
	SCALE
	SET
	SGN
	SORT
	SQR
	STOP
	STR$
	STRING$
	SWAP
	SZONE

	T
	TAN
	TIME$
	TROFF/TRON
	TYPE

	U
	UP
	USING

	V
	VAL
	VARPTR

	W
	WINKEY$
	WPEEK
	WPOKE

	X
	XFIELD

	Complete listing
	ABS
	ADDRA
	ALLOCATE
	ASC
	ATN
	&B, &H, &O
	BIN$
	BKON BKOFF
	CDBL
	CHR$
	CINT
	CLEAR
	CLOSE
	CLS
	COMMAND
	COMPL
	COS
	CSNG
	CURLOC
	CVI CVS CVD
	DATE$
	DATA
	DEC
	DEFxxx
	DEFFN
	DIM
	DOWN
	DRAW
	END
	ERL
	ERR
	ERROR
	EXISTS
	EXP
	FIELD
	FIX
	FOR
	FRE
	FUNCTION
	GET
	GOTO
	GOSUB
	HEX$
	IF/THEN/ELSE
	INC
	INKEY$
	INP
	INPUT
	INPUT#
	INSTR
	INT
	INVERT
	JNAME
	KILL
	LEFT
	LEFT$
	LEN
	LET
	LINEINPUT
	LINEINPUT#
	LINESPAGE
	LMARGIN
	LOAD
	LOG
	LPRINT
	LSET
	MEM
	MID$ function
	MID$ statement
	MKD$ MKI$ MKS$
	ON .. GOTO
	ON BREAK GOTO
	ON ERROR GOTO
	OPEN
	OUT
	PAGELEN
	PAINT
	PEEK
	PLOT
	POINT
	POKE
	POP
	POS
	POSFIL
	PRINT
	PRINT#
	PUT
	PZONE
	RANDOM
	RDGOTO
	READ
	REM
	REPEAT
	RESET
	RESTORE
	RESUME
	RETURN
	RIGHT
	RIGHT$
	RMARGIN
	RND
	ROT
	ROW
	RSET
	RUN
	SCALE
	SET
	SGN
	SORT
	SQR
	STOP
	STR$
	STRING$
	SWAP
	SZONE
	TAN
	TIME$
	TROFF/TRON
	TYPE
	UP
	USING
	VAL
	VARPTR
	WINKEY$
	WPEEK
	WPOKE
	XFIELD

	5 Technical Information
	5.1 Variable names
	5.2 Variable TYPE designations
	5.3 Variable storage format
	5.4 Precision of math library
	5.5 File buffer allocation
	5.6 Support Subroutine Descriptions

	6 EnhComp Z80 Assembler Introduction
	6.1 Z80 Source Code Inclusion in Programs
	6.2 Assembler Expression Evaluation

	7 Invoking the REF/CMD utility
	8 Alphabetic Function and Statement Summaries
	8.1 Alphabetic Statement Summary
	8.2 Alphabetic String Function Summary
	8.3 Alphabetic Function Summary
	8.4 Table of Numeric Operators
	8.5 Table of String Operators
	8.6 Table of Compiler Errors
	8.7 Table of run time Errors

