
MISOSYS

Enhanced BASIC Compiler
Development System

Copyright 1986 Philip A. Oliver
All rights reserved

Reproduction of this manual in any manner, electronic, mechanical, magnetic,
optical, chemical, or otherwise, without written permission, is prohibited.

The MISOSYS Enhanced BASIC Compiler product is published by:

MISOSYS, Inc.
P. O. Box 239

Sterling, Virginia 22170-0239

[703-450-4181]

LDOS is a trademark of Logical Systems, Inc.
MICROSOFT is a trademark of the Microsoft Corp.
TRSDOS is a trademark of Tandy Corp.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Introduction
1-1

1 Introduction

1.1 Important Note

Certain documentation pertaining to this package may be available after the
user manual has gone to press.  Consult the file entitled README/TXT for
details on additional support material and errata.  If you are new to LDOS,
read the booklet entitled  "Running under LDOS".

1.2 Distribution Disks

The TRSDOS 6.x EnhComp Development System is distributed on a 40-track double
density data diskette.

The Model I/III EnhComp Development system works on both the Model I and
Model III under LDOS 5.x, and TRSDOS 1.3. It is released on a 40 track double
density Model III smalLDOS system diskette. TRSDOS 1.3 users must use the
procedure outlined under TRANSFERRING ENHCOMP TO TRSDOS 1.3 and a two-drive
system to transfer the files from the master disk to a working system disk.
The master disk is readable by LDOS and DOSPLUS. Model I or III use under a
DOS other than LDOS may require patches to one or more of the supplied
programs.

1.3 General Information

To begin with, the EnhComp BASIC Compiler Development System comprises five
files that are on the disk included with this package. These are BC/CMD,
CED/CMD, REF/CMD, S/CMD, and SUPPORT/DAT.

BC/CMD is the actual BASIC compiler. It normally produces a directly exec-
utable Z80 machine language /CMD file on compilation finish, from a user-
supplied source program.  This compiled code uses an efficient internal
pseudo-code for the most part.

CED/CMD is a special line-oriented editor included should you desire to use
it. You can use an editor that you're familiar with if you so choose;
however, EnhComp expects its input to be in either pure ASCII form, with line
numbers required for every line, or in its own specially tokenized format,
which is provided by CED/CMD.  In addition to more efficiently storing your
source code in memory and on disk because of EnhComp keyword tokenization,
CED allows you to merely type 'RUN' to semi-interactively compile and execute
(if 0 errors are detected) your current program, returning control to CED on
program completion or compiler error abort.

S/CMD is a "supervisor" program required for the interactive 'RUN'. It is a
small program that automatically loads and executes CED/CMD when it is itself
executed. Although CED can be used without S/CMD invocation, inter active RUNs
will be disallowed.

REF/CMD is the utility for generating the reference report.

SUPPORT/DAT is a relocatable library module, in a special format, which
contains support subroutines needed for various BASIC instructions and
utilities. They are appended as needed to the compiled program, thus assuring
that no wasted utilities are included.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Introduction
1-2

These files comprise the fundamental EnhComp compiler system. SUPPORT/DAT
must be available on one of your disks during every compile. Compilation will
automatically be aborted if SUPPORT/DAT is not available. It is recommended
that SUPPORT/DAT reside on a different drive (say, drive 1) than the compiled
program destination drive (say, drive 0). This greatly reduces excessive disk
drive repositioning during the compilation process.

For the same reason, it is a good idea to separate the source and object
files on different disks. If using an interactive editor RUN, you can pre-
create TEMP/BAS, which holds your source during compilation, TEMP/CMD, which
holds the compiled program, and TEMP/DAT, which holds the optional reference
data file, on different drives, to assure this.

EnhComp acts as a translator between high level language, which most people
find easiest to program in, to faster Z80 machine language (and pseudo-code),
which most people find hard to program with.  Sometimes this translation is
simple; sometimes it’s complex. An experienced assembly language programmer
can usually produce more efficient code than a compiler, including the so-
called optimizing compilers. Because a  “core” of subroutines is included as
needed, the size of relatively short EnhComp programs will be around 8-9k
larger than the source file. Lacking the time and/or money required to write
an assembly program from scratch to duplicate a high level program, a
compiler is a good compromise, and is quicker in any case.

1.4 Note on Merchantabilty

Neither the author nor the Publisher of EnhComp makes any guarantee as to the
fitness of EnhComp, or programs generated by EnhComp, for any parti cular use,
nor do they assume any liability whatsoever for any damages that may arise
directly or indirectly through the use of EnhComp and associated material
such as this manual, including through programming errors that may be found.
Publisher's sole liability shall consist of replacing magnetic media found
defective by the buyer upon first testing the distribution disk ette. By using
EnhComp, you imply acceptance of these terms.

However, the author has gone to the greatest feasible measures for testing
the reliability of EnhComp and has confidence that it will work as described
herein.  Due to the nature of programming, certain errors will probably occur
periodically, especially in a program with the complexity of EnhComp. The
Publisher would appreciate receiving comments from EnhComp users about bugs
found and will make every effort to correct them in future versions, which
will be made available to registered purchasers of EnhComp for a nominal fee
as they become available.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Program Compilation
2-1

2 Program Compilation

2.1 Compilation from CED Editor

The easiest way to compile a source program is to use CED to create an
EnhComp program and then type RUN. For a "standard", plain vanilla
compilation, it's as easy as an interpretive BASIC RUN, although much slower.

If you have no test program handy, here's one to use. Type 'S' at DOS READY.
CED will automatically be loaded.  Then, using the same procedure as the
TRS80 BASIC editor (i.e., typing all lines verbatim), enter the following.

'
' Draws design on the screen
'
CLS
FOR Y=0 TO 47 STEP 3
'
' Plot lines moving in opposite directions from opposing
' corners
PLOT S,0,0 TO 127,Y:PLOT S,127,47 TO 0,47-Y
NEXT
A$=WINKEY$:END

Once you've entered this simple program, simply type RUN and wait for compil-
ation to finish; this should take around a minute and probably less if you're
using hard disks or RAM disks.

If TEMP/BAS already exists, the message 'Replacing existing file' will
appear; otherwise, 'Creating new file' or something similar will be printed.
After your source has been saved to disk (notice that the EnhComp system is
usually disk I/O bound), BC/CMD will be loaded.

After the initial message has been printed, the sentence 'PASS #1' will
appear. EnhComp is a two-pass compiler, so this is only the first run through
your source program.  Soon the message  'Appending support subs’ will appear,
along with the subroutine currently being linked.

Upon completion of the first pass, 'PASS #2' informs you of the start of the
last pass.  When this is done, and the support routines have been linked in
from SUPPORT/DAT, you'll see various information detailing the loading area
in memory of the compiled program and the number of bytes required by each
data table (this need not concern you at the moment.) If all went well, there
will be 0 errors, and TEMP/CMD, which holds the compiled program, will be
loaded and executed. After the design has been created, the  'A$=WINKEY$'
instruction waits for a key to place in A$; press any key to have CED, and
your source code, re-loaded for another round.

Although the programming cycle is somewhat slow, as with almost all floating
point, non-trivial compilers, this procedure is much less taxing and irrit-
ating than the conventional edit, save, run compiler, ink, execute, etc.
cycle.

If things didn't go quite as smoothly as described; that is, if you got some
error messages while compiling the program, check your program. If it was the
one given, make sure you typed it in correctly.  The error codes (summary



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Program Compilation
2-2

given elsewhere in this manual) should help you locate the source of the
problem.

If the error was DOS related, an appropriate message will be given, followed
by a detailed DOS error message. The supervisor will automatically give an
error message if a fatal DOS error occurred (e.g., missing BC/CMD or
SUPPORT/DAT).

Note that when using an interactive RUN, and barring a fatal disk error like
a missing sector, your current program will be safely in TEMP/BAS should
anything go drastically wrong; which can happen in such instances as bad Z80
assembly code in your source file, and so on. Simply re-boot, type 'S', and
load in TEMP/BAS using 'L:TEMP/BAS'.

Note that due to the external file inclusion facility of *GET or *INCLUDE,
source files of any length can be compiled, up to free memory limits in the
compiler data tables and loadable machine language file size. Due to the
large amount of space available with CED (around 30K), this is unlikely to be
a problem.  *GET is usually useful for including standard library subroutines
or user functions/commands.

To re-iterate, if during an interactive 'RUN', any errors are detected during
compilation, control reverts to the editor at the end of the first pass, with
the original source file automatically intact. Otherwise, TEMP/CMD is loaded
and executed. When the program is exited (via END or STOP or BREAK) control
passes back to the editor, with source text reloaded, unless Z80 code or a
compiler bug has caused a serious problem.

2.2 Runtime Errors

A program will terminate, unless an 'ON ERROR GOTO' is active, when an error
condition is detected. If 'ON ERROR GOTO' is inactive, then:

RUNTIME ERROR CODE ccc IN SOURCE LINE #xxxxx

will appear ('xxxxx' will be invalid  if  the source line was unnumbered or
if the line # information  was suppressed  in  the  compiled  code with  the
'NS' directive).

If compilation was invoked from an interactive RUN, control will be passed
back to CED and the source reloaded. If general compilation was used
(described in the following section), control will pass back to DOS READY.

CAUTION

Do not attempt to invoke from DOS Ready,
a program compiled from the supervisor
mode.  To generate a program that is to
be invoked from DOS Ready, recompile the
source program using BC/CMD.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Program Compilation
2-3

A complete list of runtime errors is given in chapter 8. Note that certain
special DOS error codes, different from standard or unique codes, will be
flagged by being in the range 32-100, with 32 added to the original code to
produce the EnhComp code. The DOS error code must be between 0 and 68 to
avoid confusion with other EnhComp error codes.

2.3 Transferring EnhComp to TRSDOS 1.3

The following procedure is used to transfer your EnhComp system to a TRSDOS
1.3 disk. Note that the procedure requires a two-drive system.

1) Place a blank diskette in drive 1 and a working backup of EnhComp in drive
0. BOOT the EnhComp disk.

2) Type: FORMAT :1 (NAME="ENHCOMP",SDEN,CYL=35,Q=N,ABS)
3) After the disk format successfully completes, type: COPY BC/CMD:0 :1
4) Continue to copy from drive 0 to drive 1 (as you did in step 3) the files:

S/CMD, CED/CMD, REF/CMD, and SUPPORT/DAT.
5) Remove the EhnComp system disk from drive 0 and BOOT your TRSDOS 1.3

system disk. Your TRSDOS 1.3 system disk should have at least 102 granules
of free space.

6) Use TRSDOS 1.3's CONVERT utility to transfer the five EnhComp files from
drive :1 to drive :0.

7) EnhComp should now be accessible to TRSDOS 1.3.

2.4 General Compilation Parameters

The general format of a direct compiler invocation is:

BC filespec,start_address,top_address,-dir-dir...

Filespec is the source program specification.
The extension defaults to '/BAS'.

start_address is the specified program origin.

top_address is the highest address to be used by
the compiled program.

-dir is a compiler directive.

As you can see, a number of variables can be changed in the invocation. The
default loading address for compiled programs is 5200H (Model I/III) or 2600H
(TRSDOS 6). You can change this by simply putting a comma after the filespec,
followed by the desired address (in hexadecimal format).  If it is necessary
to limit the top memory location accessed by the compiled program, this limit
can be specified as well (for example, to limit access in a 32K RAM program,
BFFF would be given, the topmost valid memory location in a machine with 32K
of memory).  The default top_address used would be that recovered from the
system's HIGH$ memory pointer at the time the compiled program was invoked.

You can change compilation parameters through a device known as "direc tives"
-- so called because they are directions to the compiler, not compil able



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Program Compilation
2-4

instructions. Directives produce no code per se, although they may affect the
size of the final compiled program. Directives specified in the compiler
invocation input are "global" directives, so called because they affect the
entire source program. You can also use directives within your source
program, in which case they're called "local" directives. Some direc tives can
be used both globally and locally. The rest are restricted to either domain.
Local directives are explained further on.

As an example, the 'NO' global directive inhibits the generation of an object
file, usually to compile a program to check for errors, without over writing
an existing object file. In the case of the TEST/BAS program, this goes as
such:

BC TEST/BAS,,,-NO

Note the omission of the loading origin and memory limit variables. They
retain their default values. However, the commas are necessary to delimit the
sentence. 'BC TEST/BAS -NO' is invalid, as is 'BC TEST/BAS,-NO' and 'BC
TEST/BAS,,-NO'.

Multiple directives are delimited by dashes, as in:

BC TEST/BAS,8000,F000,-WD-WE

In addition to the global compiler directives, which may be used, in most
cases, both globally and locally, there are purely local directives, which
are prefixed by an asterisk (except for Z80-MODE and HIGH-MODE). This is
indicated in the directive list, which follows. Note: It is important to
realize that compiler directives are activated as they are encountered in the
input stream in a purely linear manner from left to right; runtime program
logic has no effect on their activation.  Directives valid both locally and
globally are prefixed with an "*-"; directives valid only within the program
(locally) are prefixed with only "*".

2.5 Compiler Directives

BC supports the following compiler directives:

GET, INCLUDE, LIST, PRT, NOLIST, NOPRT, WD, NO, Z80, NS, YS, WE,
NX, YX, IF, ENDIF, INJECT, LINK, PRINT.

In the following paragraphs, directives that are considered global in nature
will be denoted with '(G)', while directives that are considered local in
nature will be denoted with '(L)'.  Directives that are considered both local
and global with are denoted with '(B)', while directives that are purely
local with '(P)'.

Remember, when you use a compiler directive within your source stream, each
must be prefixed with an asterisk and dash ('*-') except for PURELY LOCAL
directives which are prefixed with an asterisk only.

LIST (B)

This directive will list the source program on the video screen during the
second pass, with error messages.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Program Compilation
2-5

PRT (B)

This directive will print the informative and diagnostic messages as well as
the source program to your line printer during the second pass, with error
messages.

NOLIST (L)

This local directive will turn off the source program screen listing until a
subsequent LIST directive is detected.

NOPRT (L)

This directive will turn off the printer listing until a subsequent PRT
directive is detected.

WD (B)

This directs EnhComp to write the reference data file upon completion of the
compilation phase. The file specification used for the reference file will be
constructed with the filename of the source program and the file extension of
'/DAT'. No drive extension will be appended. An informative message will be
issued advising you of the generation of the file. This file can be
subsequently processed by the REF/CMD utility to produce a program reference
report.

NO (B)

This tells the compiler to refrain from writing the compiled program to a
disk file.  You will find it useful to speed up the compilation phase when
you only want to scan for detectable source code program errors.

Z80 (G)

This directive causes the compiler to assume that your source program
contains only Z80 assembly language. The compiler will then inhibit writing
of "extraneous" high-level support code.

NS (B)

This directive tells the compiler to inhibit the generation of source line
number information in the object code code file of the compiled program. This
saves 3 bytes per source code line; however, runtime diagnostics will not be
able to then report the line number of a source line which causes a runtime
error. The compiler default is to generate source line number information.

YS (L)

This directive informs the compiler to resume the generation of source line
number information (see directive NS).

WE (B)

This directive will cause the compiler to wait for you to press a key when an
error has been detected during compilation. This allows you to observe the
error diagnostic message without worrying about it scrolling off the video
screen. Any keystroke will cause a continuation of the compilation.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Program Compilation
2-6

NX (B)

The compiler normally generates code which checks for the BREAK key and
handles TRON at the conclusion of each source program statement. If you do
not desire this BREAK key handling, the NX directive will inhibit the writing
of this code. This will shorten the resulting compiled program file. Note
that the local directive 'YX' can resume the generation of this handling code
so that you can restrict certain segments of your program from having the
BREAK handling code.

YX (L)

This directive resumes the generation of the BREAK and TRON handling code.
See the 'NX' directive discussion.

IF exp <lines of source code> ENDIF (P)

The IF...ENDIF directive pair provides for a conditional compilation. If the
expression, 'exp', evaluates to a non-zero value then the next lines of
source up to the 'ENDIF' are compiled. Otherwise, a zero value of 'exp'
results in the compiler ignoring the next lines of source until the 'ENDIF'
statement is reached.

*INJECT filename <(offset<,lower_limit<,high_limit>>) (P)

This directive is used to insert a machine language load file into the
current compilation machine code output file. If 'offset' is given, the file
will be loaded into memory at a new address of 'offset+old address'. To
selectively offset program loading -- say, to avoid offsetting a load to
addresses in lower RAM -- a 'lower_limit' can be given (such as 4400H).
Similarly, an 'upper_limit' for the offset can be given. Thus, to offset the
loading of TEST/CMD between all addresses in the range 6000H-7000H by 8000H,
use:

*INJECT TEST/CMD(8000H,6000H,7000H)

This instruction would then inject TEST/CMD into the output stream of the
compiled program file. The DOS loader will then load TEST/CMD into memory
along with the compiled program; any parts of TEST/CMD that would have loaded
between 6000-7000 will now load into memory at E000-F000.

*LINK filespec(module #, module #, ...) (P)

This directive causes the compiler to link a special link-type file into the
current compiled program output. Such a file would be provided and its use
documented by the publisher of EnhComp. The SUPPORT/DAT library file is an
example of such a link file. In addition to greater disk space efficiency,
link files are "assembled" much faster than the original source.

*GET/*INCLUDE filespec (P)

The two directives 'GET' and 'INCLUDE' are equivalent. They are used to
include a secondary source program file into the input stream. This can be
useful to provide a means of segregating your source program into "modules" -
each module in a separate file. At the conclusion of the 'INCLUDE' file, the
source stream compilation will revert to original source program.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Program Compilation
2-7

*PRINT<#n> <"info"> <,> <;> <$(chrexp)> <exp> (P)

This directive is used to display a compilation message on the screen or
printed on a printer, depending on the current option switch settings. The
'#n' specifies the pass in which to print (if omitted, the second pass only
is implied). If '#n' is entered as '#0', then the message will print during
both passes. A '#1' or a '#2' entry indicate that the message will print only
on the first or second pass respectively. Anything in quotes is printed
verbatim. The '<,>' and <;> are print delimiters as in a normal BASIC PRINT
statement. For an entry of '$(chrexp)', the equivalent ASCII code is printed.
The field denoted as 'exp' indicates a print expression.

2.6 Compilation mode versus Interactive RUN mode

The interactive RUN mode is useful for writing and debugging programs. The
/CMD file produced during this time, TEMP/CMD, is not intended to be used
without the S/CMD supervisor loaded and CED/CMD available on the disk.

To produce a final, compiled program once development is complete, you must
invoke BC/CMD directly from DOS level. The various optional parameters or
directives available have been described in the last section. It might be
desirable to disable the "debugging friendly" features in the compiled
program (source line # printed on error, BREAK detected, TRON available) for
your final copy; in addition to saving space, this will make it impossible
for someone to decode your program without a lot of work.

This program will be in the form of a fully independent '/CMD' file,
executable as easily as an other /CMD file. BC/CMD, S/CMD, CED/CMD, and
SUPPORT/DAT will no longer be needed to run the program.

2.7 Independent use of compiled programs

There are no restrictions (royalty payments) on compiled programs to be
distributed for NON SYSTEMS SOFTWARE or UTILITIES use, such as a business
program. For SYSTEMS SOFTWARE/UTILITIES (such as another compiler, or a
language, and so on -- in general, anything designed to be a programming
tool), public distribution is PROHIBITED without a written release from the
author of EnhComp (Philip Oliver), or some kind of fee-per-copy arrangement.
Without such a release or arrangement, such distribution will be considered
copyright infringement of the SUPPORT/DAT subroutines.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the CED/CMD Editor
3-1

3 CED/CMD Editor

3.1 CED General Information

The EnhComp editor differs somewhat from the TRS80 BASIC editor. However,
internal editing commands (with the 'E' command) are the same. The
significant difference between the TRS-80 BASIC editor and the EnhComp editor
is that the latter recognizes two types of line numbers: editing line
numbers, and BASIC line numbers.

Any individual line may carry a distinctive line number, treated as a BASIC
line number; for this reason, standard ASCII BASIC programs can be loaded
into the EnhComp editor. Every line is numbered from 1 thru "n" in steps of
one; also, where "n" is the total number of program lines. Not every line has
to have a BASIC line number, but with every line is associated an edit
number, representing its position relative to the beginning. The advantage of
this is never having to renumber due to the line numbers beeing too close
together.  The disadvantage lies in the fact that "renumbering" occurs
automatically whenever you insert, delete, copy or move lines.  You must
therefore keep track of where you are in the program.

If multiple (edit) line number expressions are needed by a command, they are
always separated by commas. An edit line number expression can consist of a
decimal number, or the letter "T" to represent "1" (the top), or "B" to
reference the bottom (last) line. Note that 'DET,B' deletes your entire prog-
ram (DElete from Top to Bottom.)

To recover from an unforeseen accident during a compiled program run, recall
that your source text is always saved in "TEMP/BAS" if compilation was
invoked from edit mode. All you have to do is reload it.

NOTE: Unless otherwise mentioned or clearly implied by the context, refer-
ences to line numbers are EDITOR line numbers.

? exp

This command will print the integer result of the expression, 'exp'.

?F

This command will print the filename of the file currently being edited.

/ editor_line_number, BASIC_line_number

This command will add the specified BASIC line number to the line identified
by the given editor line number.

< BASIC line number

This command will remove the specified BASIC line number from whatever editor
line it is on (if it exists).

BLH

The "BASIC Line Hide" command will suppress the display of all BASIC line
numbers.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the CED/CMD Editor
3-2

BLS

The "BASIC Line Show" command will restore the display of BASIC line numbers.

C start_line,end_line,destination_line

This command will copy a block of lines from the 'start_line' to the
'end_line' (inclusive), inserting at the 'destination_line'.

DE line1 <,line2> (DL ... for BASIC line #s)

The 'DE' command will delete a single line identified by 'line1'; or the
multiple lines identified by 'line1' through 'line2', if 'line2' is given.
Using 'DE', the line numbers entered for the deletion refer to EDITOR line
numbering. If you wish to delete a line or lines according to their BASIC
line number(s), specify the delete command as 'DL' instead of 'DE'.

ELH

The "Editor Line Hide" command will suppress the display of EDITOR line
numbers. This is the default mode of CED.

ELS

The "Editor Line Show" command will restore the display of EDITOR line
numbers.

ERROR errcode (or ERR errcode)

This command will display the full error message of the given runtime code
denoted by 'errcode'.

Fstring

Beginning at the current line+1, this command searches through the text for
the specified string. The line which contains the string is listed if a match
is found, otherwise 'STRING NOT FOUND' is issued and the search stops.
IMPORTANT NOTE: Do NOT include ANY SPACES after the 'F' command unless they
are part of the search string.

GO

This command causes an exit from the editor and a return to DOS.

E or EDIT <'string'> <linerange> (use "ED" for editor line #'s)

The 'E' command is the most sophisticated of the edit commands, not
surprisingly. It allows intra-line editting of a particular line or set of
lines on a mostly conceptual basis (as opposed to directly perceptual screen
editing.) Users of Z80 based TRS-80 computers will recognize the format of
the command, since it is essentially the same as the EDIT function of the
BASIC language on those computers.

Note that with the 'E' (or 'EDIT') command, numbers refer to BASIC line
numbers; with the 'ED' command, numbers refer to editor line numbers.
Otherwise, all material in this description is precisely the same for both
commands.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the CED/CMD Editor
3-3

Fundamentally, editing is done by single letters, which switch the editing
mode when appropriate. Initially, only the line number is shown; the cursor
is placed at the beginning of the line. This is the edit command mode.

Summary of internal edit commands|

   <space>         Skip over next character, displaying it
 <backspace>(edit) In edit mode: Move cursor left nondestructively
 <backspace>(ins)  In insert mode: Move cursor left destructively
      A            Leave the edit with the old line untouched
      C<char>      Change characters
      D            Delete character
      H            Hack line
      I            Go into insert mode
      K<char>      Delete up to <char>
      L            List rest of line and restart edit on new line
      S<char>      Move cursor to occurance of <char> after cursor
      X            Move cursor to end of line, start insert mode

To non-destructively move the cursor over the line and to display it one
character at a time, press the space bar. The cursor won't move past the end
of the line once the last character has been displayed. To non-destructively
move the cursor backwards, press the backspace key. Once again, once the
first character has been moved over, the cursor won't move. The space and the
backspace can be seen as single letter commands.

To list the entire line and then restart the edit at the beginning of a new
line, type 'L'. Doing this twice will show you a "clean" version of the line
you're working with.

To insert new characters into the line, position the cursor to the desired
point (directly over the point of insertion) and type 'I'. Then, any
characters typed will be inserted into the line at that point; what you see
from the line number on will be the start of the new line. Any backspaces in
insertion mode are destructive. To stop the insertion and go back to the edit
command mode (the initial mode), press the <ESC> key (or <SHIFT-UP-ARROW>).

To delete characters, position the cursor directly before the character to be
deleted and type 'D' (in the edit command mode.) The character just deleted
will be printed between slash marks.

To totally restart the edit from scratch, and call up the line as it was
initially before your editing, type 'A' in edit command mode. The edit will
be restarted on the next line.

To "hack" the rest of the line at any given point, type 'H'. The cursor will
then be placed at the end of the line and insert mode will be on.

To change a character "under" the current cursor position, type <C><char>;
the character will be changed to <char>.

To delete all characters from the character "under" the cursor up to and
including a particular character, type <K><char>.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the CED/CMD Editor
3-4

To move the cursor to the end of the line and go into insert mode, type <X>.

To move the cursor to a particular character in the line after the cursor
position, type <S><char>. If the specified character is not on the line, the
cursor will be moved to the end of the line. If it is, the cursor will be
placed "over" that character. In either case, edit command mode will still be
active.

Note that pressing the <ESC> key or its equivalent <SHIFT-UP-ARROW> will
almost always abort the current command and cause a return to edit command
mode.

Once all editing has been completed and you're satisfied with the results,
hitting <ENTER> will enter the new line in place of the old one. If you want
to leave the line alone, type <A> in edit command mode followed by <ENTER>;
the line will be unchanged. Hitting <BREAK> will also cause an escape without
changing the old line.

Optionally, you can initially specify two parameters. If you specify a range
of lines, a succession of edits will occur. In this case, after you type
<ENTER> or <A> to enter or escape from the edit, the next line will be
edited. However, typing <BREAK> will cause a return to the editor command
mode.

You can also specify a string which will be entered just as if you had typed
it in at the beginning of the edit. For example, entering:

E'L'10

would edit line 10, displaying it first, because of the <L> edit command.
Note that the apostrophes are actual characters to be typed, not documen-
tation syntax marks.

This is really only useful when a range of lines is specified. Then, you can
automatically edit them without tediously typing the edit commands for each
line. A left bracket, "[", in the string is taken to mean an <ENTER>, so
entering, for example:

E'I;['15,20

would insert a semi-colon at the beginning of lines 15 through 20 inclusive,
editing each line automatically. This particular command would be useful to
temporarily convert a range of Z80 assembler source lines to comments. Later,
the semi-colons could just as easily be deleted by entering:

E'D['15,20

Note that if the parameter "T,B" (without quotation marks) is specified for
the line range, the entire program will be edited.

As alluded to earlier, typing a number before most commands will cause that
command's action to be done that number of times. For example, typing
<1><2><space> essentially causes the space command to be done twelve times.
If the end of the line isn't reached, the cursor will skip over twelve new
characters. To delete 6 characters, say, type <6><D>. To "erase" a number
just typed and essentially set it back to 1, type <ESC> or its equivalent.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the CED/CMD Editor
3-5

With the <S> and <K> commands, the specified number of characters will be
searched before the command's action is done. For example, <2><S><A> will
skip the cursor over the first 'A' encountered in the line and place it over
the second one found (or the end of line, whichever comes first). In add-
ition, <3><K><I> will delete all characters from the one "under" the cursor
to the third 'I' found in the line after the cursor, inclusively -- or until
the end of the line is reached.

With the <C> command, the specified number of characters will be modified. If
the end of the line is reached, edit command mode is enabled.

H line1 <,line2>

This command will print 'line1' (through 'line2' if given) on your printer.
If the printer is unavailable, hit <BREAK> to escape.

I line_number

This command will begin insertion of lines at the specified line number. Hit
<BREAK> to escape insert mode. Note that no BASIC line number is attached to
these lines.

K:filespec

This command will "Kill" (remove) a file from disk. Note the use of the
mandatory colon, ':', in the command syntax.

LIST linerange

This command will list a range of lines to the video screen; numbers given by
'linerange' refer to BASIC line numbers.

LLIST linerange

This command will print a range of lines on your printer; numbers given by
'linerange' refer to BASIC line numbers.

L:<(insert line)> filespec <,line1 <,line2>>

This command will load source text from disk into memory. Note the use of the
mandatory colon, ':', in the command's syntax. Note also that line numbers
are EDITOR line numbers. The simplest form of this load command is, for
example:

"L:TEMP/BAS"

TEMP/BAS will be either loaded into memory if there's nothing in the text
buffer, or appended onto the end of the current text.

If "(insert line)" is specified, the disk file will be inserted into that
point in the current text.

If <line1, <,line2>> is/are given, only 'line1', or 'line1 through line2'
inclusive, is/are loaded from the disk file (relative line numbering is
used). For example:

L:(10)SOURCE1/BAS



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the CED/CMD Editor
3-6

Inserts "SOURCE1/BAS" starting at line 10.

L:CHESS80/BAS,50,177

Loads or appends lines 50 through 177 from the "CHESS80/BAS" file. Loading
stops automatically if less than 177 lines are in the file.

L:(184)NWAR/BAS,15,40

This is a combination of insert/selective loading. Lines 15-40 from
"NWAR/BAS" are inserted at the current line number 184.

M line1,line2,destination_line

This command is similar to "C"opy, except that lines are moved rather than
duplicated.

N <lower_lim<,upper_lim<,start<,inc>>>>

This command renumbers the BASIC lines of a program. Four optional parameters
are allowed. The first two are the current line range to renumber. The third
is the new starting number. The last is the line increment. The default
values are 0,65535,100,10. For example:

N 100,300,10,10

would renumber all lines in the range 100-300 inclusive; the first line then
being 10, the next 20, etc.

N ,,100,5

would renumber the whole program, starting at 100 and advancing in increments
of 5.

O

This command will begin appending lines without BASIC line numbers.

P line1<,line2>

'P' lists 'line1' or 'line1 through line2' to the screen. If no parameters
are given, then 15/23 lines starting with the current line are listed.

Q drivenum

This command will display a directory of files on the disk drive specified as
'drivenum'. If 'drivenum' omitted, drive 0 is assumed.

R line1<,line2>

'R' will replace 'line1' or 'line1 through line2'. The current line is
printed; insert prompt allows new replacement line to be entered. Once
line(s) are replaced, control passes automatically into insert mode.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the CED/CMD Editor
3-7

RUN

This command starts a chain of events if the compiler editor is invoked in
the supervisor mode (i.e. from "S/CMD"). First, source text is saved in the
file named, "TEMP/BAS". Then it's compiled into "TEMP/CMD". If the
compilation is successful, "TEMP/CMD" is invoked; if not, control passes to
the editor, with source reloaded. This also happens when the runtime program
terminates in an acceptable (END/STOP/BREAK) way.

Sstring

This command operates the same as 'Fstring' except the search starts at the
beginning of the text instead of line+1.

U

This command provides memory usage. It displays number of bytes used and
bytes free.

V:filespec <line1<,line2>>

This command allows you to display lines from the specified disk source text
file.

W:filespec <line1<,line2>>

This command writes text from memory to the specified disk file. Note the use
of the mandatory colon, ':', identified in the command's syntax. If line
parameters are omitted, the entire text is saved. If line parameters are
given, only those lines are written to the file.

X/replacement$/search$

This command will search and replace all occurances of the search$ string
with the replacement$ string. The search will begin at the current line
number. A <BREAK> stops the command. Note that only one replacement per line
is done. For example:

X/ent/ant

replace all occurances of "ant" with "ent".

Y=linespages,pagelength

This command will change printer forms control parameters (for LLIST, H) to
do a top_of_form, 'TOF', after 'linespages' lines. If 'pagelength' is given,
this will define the number of lines total for each page of the paper you're
using in your printer (usually 66).



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

EnhComp BASIC Statements and Functions
4-1

4 EnhComp BASIC Statements and Functions

4.1 Compiler Introduction

EnhComp is a compiler, which differentiates it from TRS-80 BASIC interpreters
included with your DOS. The essential difference is not so much the structure
of the languages themselves, but the manner in which your computer executes
any given program in the languages. The resident BASIC in your machine must
analyze program text every time it executes a command. Compilers, however,
translate program text into a format that is better suited to machine
interpretation than a straight BASIC program.

Some compilers compile to "pseudo-code", which is space efficient but slow.
EnhComp is a true compiler; it compiles directly to Z80 machine language.
EnhComp does accomplish some space compression since many lengthy routines
used many times thoughout compiled programs are copied just once in memory,
and called as subroutines.

EnhComp is unique. Not only can the programmer take advantage of a powerful
high level language, but Z80 source code can be intermixed with the language
to any extent desired. In fact, EnhComp is not only a compiler, but a Z80
assembler that allows powerful algebraic expressions in source code
statements.  It takes advantage of the high level language/machine language
intermix ability, with special functions that allow access to variable, line
number, and label addresses.

EnhComp is not guaranteed to translate your TRS-80 Model I or III interpreted
BASIC programs unmodified into machine language. However, any differences are
slight and easily fixed to accomodate compilation. The large repertoire of
new commands and functions make it likely that you will be writing old
programs over using these new features, rather than settling for the limited
capabilities of the resident BASIC/Disk BASIC interpreters.

EnhComp retains many of the "nice" features of interpreted BASIC that are
excluded in other, inferior, compilers. For example, the <BREAK> key is
functional during execution, if desired, and BREAKing a compiled program will
result in a BREAK message along with the source code line number in which the
interrupt occured. Error messages at runtime display the error code and the
source code line number in which the error occured.

Dynamic array allocation with up to fifteen dimensions (A(a1,a2,a3,...,a15)),
is allowed, as is dynamic string space allocation. All standard BASIC
variable types are supported (integer, single precision, double precision,
and string). Strings are no longer limited to 255 characters in length; 32767
is the new string length limit. "FOR-NEXT" constructs may have more than one
NEXT for a single FOR, since error checking (in this case) is done at
runtime, not at compile time. More than one dimension statement for the same
array may occur in a program at once, but an error message will be issued at
runtime if more than one of the dimensions are executed.

4.2 Compiler Directives

Compiler directives are not "true" commands. They simply tell the compiler,
at compile time, to do some task. The directives pertinent to the program
code stream will be discussed here. All of the compiler directives are
discussed in Chapter 2.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

EnhComp BASIC Statements and Functions
4-2

HIGH-MODE

This puts the compiler into High Level Compilation mode. 'HIGH-MODE' is the
default compilation mode. The compiler will be looking for only "high level"
commands and functions in this mode.

Z80-MODE

This puts the compiler into Z80 Assembler mode. High Level commands will
generate expression errors in this mode. Only valid Z80 opcodes and assembler
directives will be recognized. Source code line inclusion and BREAK key
checking will be disabled in this mode.

High Level Statements

Statements are instructions that perform some specific task, and exist as
independent entities; as opposed to functions, which are used inside alge-
braic or string expressions, and are not used independently. Statements and
functions may be used in High Level mode only (the default mode of the
compiler.) They will generate expression errors in Z80 mode.

High Level Functions

Functions are used with expressions. They are also used with statements;
however, a function is never used alone. In general, functions can be divided
into two main categories: String and Numeric. Naturally, these categories are
further divided into fairly reasonable groups of related functions.

String Functions: An overview

Strings, as you're probably aware, are bytes which are sequentially strung
together in a "string" and which can be assigned and manipulated using string
variables, which can hold a string of variable length. With EnhComp, this
length can be from 0 to 32767, a significant improvement over the 255
character limitation of many interpretive BASICs.

EnhComp internally uses a memory-efficient string list technique to
manipulate strings. This process is transparent to the user; it is worth
mentioning because PRINTs or LPRINTs take up no extra string space whatever
when printing a string expression -- except a small amount for generative
string functions such as HEX$ and BIN$. Additionally, string assignments are
fairly memory and time efficient due to the fact that string literals and
STRING$ functions take up no temporary string space during the assignment;
however, A$=A$+B$, say, requires that A$ and B$ take up temporary storage
space due to extensive moving around of A$ and B$ during the assignment.

However, the same expression, A$+B$, would take up NO temporary space if it
was printed (PRINT A$+B$ or LPRINT A$+B$), regardless of the combined length
of A$ and B$. In the same way, LPRINT "--> "+STRING$(128,42)+" <--" would
work with 0 bytes cleared for string space.

4.3 Function Reference

The following pages list all the built in statements and functions



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ABS ABS
4-3

This function returns the absolute value of its argument.
_________________________________________________________

|                                                         |
|  ABS(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

ABS returns the absolute value of an expression. If the expression evaluates
to a non-negative value, that result is returned; otherwise -expression. For
example: ABS(-4) = 4; ABS(0) = 0; ABS(1.414) = 1.414.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ADDRA ADDRA
4-4

This function obtains the absolute memory address of its argument.
_________________________________________________________

|                                                         |
|  ADDRA(addr)                                 FUNCTION   |
|                                                         |
|  addr     - is a line number or a label.                |
|_________________________________________________________|

ADDRA returns the absolute memory address of a specified line number or
label. For example:

10    L=ADDRA(100)
20    A=PEEK(L):L=L+1:IF A=0 THEN END
30    PRINT CHR$(A);:GOTO 20
50    Z80-MODE
100   "STRING":DB 'ASCII TEXT STRING',13,0

This prints a string defined in memory, accessable as the address of line
numbered 100. Alternatively, line 10 could be: L=ADDRA("STRING"),  as the
value of the label '"STRING"' equates to ADDRA(100).



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ALLOCATE ALLOCATE
4-5

This is used to allocate the quantity of disk file control blocks.
_________________________________________________________

|                                                         |
|  ALLOCATE exp                                STATEMENT  |
|                                                         |
|  exp      - is the number of file control blocks to     |
|             allocate in the range <1-15>.               |
|_________________________________________________________|

Before any disk files can be OPENed, file control blocks must be allocated.
'ALLOCATE' creates up to 15 control blocks. Note that the blocks are
allocated sequentially -- blocks allocated equal the highest file buffer
accessable by OPEN.

For example, if a maximum of 3 files will be open at once in a program,
'ALLOCATE 3' is executed before any OPENs are done.

File control blocks can be specified by a variable expression – the number of
blocks to be allocated needs not be a constant defined at compile time. For
instance, ALLOCATE F+1 is valid.

More than one ALLOCATE can exist in a program -- but only one of them may be
executed (or an error will be generated.)



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

&B, &H, &O &B, &H, &O
4-6

These functions indicate their arguments as being other than decimal format
numbers.

_________________________________________________________
|                                                         |
|  &Bd0...d15  - Binary number                 FUNCTION   |
|  &Hd0...d4   - Hexadecimal number            FUNCTION   |
|  &Od0...d5   - Octal number                  FUNCTION   |
|_________________________________________________________|

'&B' signals a binary number in ASCII format. For example, the assignments:
“A = B AND &B11110101” and “A = B AND 245” are functionally equivalent. '&H'
flags a hexadecimal ASCII format number: &H100 = 256 decimal; and '&O' flags
an octal ASCII format number: &O70 = 56 decimal.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ASC ASC
4-7

This function returns the first byte of its string argument as an integer.
_________________________________________________________

|                                                         |
|  ASC(exp$)                                   FUNCTION   |
|                                                         |
|  exp$     - is any string expression.                   |
|_________________________________________________________|

'ASC' takes the first byte of the specified string expression and converts it
into numeric format. For example:

10   A$="ABC"
20   PRINT ASC(A$)

prints 65, the ASCII code of the letter 'A', which is the first character in
the argument, A$.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ATN ATN
4-8

This function obtains the arc tangent of its argument.
_________________________________________________________

|                                                         |
|  ATN(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression in radian measure   |
|_________________________________________________________|

ATN returns the arctangent of an angle assumed to be in radian degree
measure. It can receive, and return, either a single or a double precision
value, of full precision. Thus, if the argument is double precision, the
result will be a double precision value.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

BIN$ BIN$
4-9

This function converts numeric expressions to a string of binary digits.

_________________________________________________________
|                                                         |
|  BIN$(exp16)                                 FUNCTION   |
|                                                         |
|  exp16    - is in the range <-32768 to 32767>           |
|_________________________________________________________|

BIN$ returns a 16 character ASCII binary representation of a selected integer
expression. For example, BIN$(4095) is equal to "0000111111111111".



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

BKON BKOFF BKON BKOFF
4-10

These statements are used to provide  <BREAK> key control of your program.
_________________________________________________________

|                                                         |
|  BKON                                        STATEMENT  |
|                                                         |
|  BKOFF                                       STATEMENT  |
|_________________________________________________________|

'BKON' and 'BKOFF' can be used to effectively turn the BREAK key on or off,
respectively. They affect only the BREAK scan flag. BKON will have no
apparent effect if the "-NX" directive flag has been specified, since the
BREAK scan code calls will be left out of the compiled program.

An 'ON BREAK GOTO addr' causes a jump to the specified line number or label
if the <BREAK> key is hit and the BREAK scan is activated. 'ON BREAK GOTO 0'
disables <BREAK> key branching, parallel to 'ON ERROR GOTO 0'. Causing an 'ON
BREAK GOTO addr' jump also automatically disables <BREAK> key branching.

Example Program

5    ON BREAK GOTO 100
10   PRINT"HO HUM ..."
20   FOR X=0 TO 1E12: NEXT
30   PRINT"OH BOY, LET'S COUNT TO A QUADRILLION NOW!"
40   END
100  PRINT"THANKS! SAVED FROM A FATE WORSE THAN SCARFMAN...."



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CDBL CDBL
4-11

This function is used to convert its argument to double precision.

_________________________________________________________
|                                                         |
|  CDBL(exp)                                   FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

CDBL converts a numeric expression to double precision floating point format.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CHR$ CHR$
4-12

This function converts a byte value to a one-character string.

_________________________________________________________
|                                                         |
|  CHR$(exp8)                                  FUNCTION   |
|                                                         |
|  exp8     - is in the range <0-255>.                    |
|_________________________________________________________|

CHR$ is used to convert a number between 0 and 255 into a string character.
CHR$(65) = "A" for example.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CINT CINT
4-13

This function converts a numeric expression to integer format.
_________________________________________________________

|                                                         |
|  CINT(exp)                                   FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

CINT converts a numeric expression to integer type. Expression must be
in the range (-32768 to 32767).



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CLEAR CLEAR
4-14

The 'CLEAR' statement is used to clear variables and allocate string space.
_________________________________________________________

|                                                         |
|  CLEAR <exp>                                 STATEMENT  |
|                                                         |
|  exp      - is used to designate the amount of string   |
|             space to reserve.                           |
|_________________________________________________________|

'CLEAR' without expression simply zeroes all numeric variables, clears all
strings, and undimensions all arrays. With expression given, 'CLEAR' does all
of the previous and also redefines the amount of memory devoted to string
storage, which is 100 bytes by default.

If, for example, you had a program that stored a maximum of 500 strings each
with a maximum length of 8 bytes, then you would need to at least CLEAR 4000
(bytes). In reality, string related functions and commands temporarily use
some of the currently free string storage area as a "scratchpad", so a buffer
of 600 bytes is not unreasonable -- make it: 'CLEAR 4600'.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CLOSE CLOSE
4-15

This statement is used to close a file or files.

_________________________________________________________
|                                                         |
|  CLOSE <blknum <,blknum ...>>                STATEMENT  |
|                                                         |
|  blknum   - designates a specific file to close. If no  |
|             blknum is given, all open files are closed. |
|_________________________________________________________|

All open files must come to a close. 'CLOSE' assures that all important
information vulnerably sitting in RAM is written safely to disk. (Disk data
is usually unaffected during "I" type file access so ACCIDENTALLY not closing
an "I" type file is usually harmless. CLOSE them anyway.)

With a list of file control blocks given, only those blocks will be affected.
CLOSEd control blocks are unaffected by CLOSE. With no specific File Control
Blocks listed, ALL open files are closed.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CLS CLS
4-16

This statement is used to clear the video display screen.

_________________________________________________________
|                                                         |
|  CLS                                         STATEMENT  |
|_________________________________________________________|

This statement simply clears the screen with blanks (ASCII 32) and homes the
cursor. Only a portion of the screen will be cleared if scroll protection is
enabled.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

COMMAND COMMAND
4-17

The COMMAND-ENDCOM construct permits you to define new BASIC commands.
_________________________________________________________

|                                                         |
|  COMMAND name(input variable list)           STATEMENT  |
|   program statements                                    |
|  ENDCOM                                      STATEMENT  |
|                                                         |
|  name     - is a string of characters in the set        |
|             ("A"-"Z", "0"-"9"), starting with ("A"-"Z") |
|                                                         |
|  input variable list  - is a list of (local) input      |
|                         variables.                      |
|                                                         |
|  Note: user commands are invoked by preceding the name  |
|        with a percent as in, '%name(operand list).      |
|_________________________________________________________|

COMMAND is a powerful statement that allows you to define new commands. A
user-command definition consists of the 'COMMAND' statement header, a
definition body, and an 'ENDCOM' statement. Once defined, the user-command is
easily and clearly referenced by the technique of "%name(operand list)". The
percent sign acts as a user-command invocation symbol.

Any combination of numeric and string expressions can be specified as user-
command operands. For each operand specified in a user-command invocation
there must be a corresponding local variable in the user-command definition -
- "local" because the existing values of the variables listed in the
definition are pushed onto the stack before they are assigned to the operands
given in the user-command invocation. NOTE: input variables are restricted to
simple variables and exclude array elements. So ALPH$ is a valid local input
variable, but NAME$(4) is NOT.

The RETURN command (inside a user-command definition), re-assigns original
values to local variables and exits from the user-command.

COMMAND definitions may not be nested. Also note that definitions are
"defined" at compile-time, so they may exist anywhere in the program; they
need not be executed. In fact, when encountered, a definition is skipped
over.

Example Program #1:

10   PRINT"FACTORIAL PROGRAM":PRINT
20   INPUT"# TO TAKE FACTORIAL OF";X
30   IF X<>INT(X) OR X<0 THEN PRINT"INVALID #.":GOTO 20
40   %FACTORIAL(X):PRINT X;"! = ";F
50   END
60   COMMAND FACTORIAL(Y)
70   IF Y<2 THEN F=1:RETURN
80   %FACTORIAL(Y-1):F=Y*F:RETURN
90   ENDCOM

The preceding program needs a little explaining. The command definition body,
lines 70-80, is the heart of the program. Line 70 sets 'F', the output
variable by choice, to 1 if 'Y', the local input variable is less than 2; as
it should, as 1! = 0! = 1. Line 80 is the clincher. %FACTORIAL(Y-1) is a
recursive invocation, so called because the user-command definition is



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

COMMAND COMMAND
4-18

referencing itself! The opinion of poor math teachers aside, definitions that
refer to themselves can be perfectly valid (with the important proviso that
at some point something specific must happen and the recursion, or self-
referencing, terminates); in this case %FACTORIAL(Y-1) is allowable because
of the fact that 'Y' is a local variable. Intermediate values in the
factorial calculation are preserved. F=Y*F is a perfectly proper way to
calculate the factorial, because Y! = Y * (Y-1)!, and F (before the
assignment F=Y*F) is (Y-1)! because of %FACTORIAL(Y-1). Naturally, a
recursive invocation has to stop sometime for it to be useful, and the
"stopper" is line 70, which returns a "hard" number (1) when Y is finally
decremented to 1. From then on, a sort of backlash occurs until the factorial
is finally calculated. Details are left "... as an exercise for the reader."

The potential power of mixing Z80 assembly language with BASIC should be
evident in the next program.

Example Program #2 for TRS-80 Model I/III:

10   FOR X=0 TO 255
20   %FILL(X)
30   NEXT
40   END
45   '
50   COMMAND FILL(X%)
60   Z80-MODE
70   LD A,(&(X%)):LD HL,3C00H:LD (HL),A
80   LD DE,3C01H:LD BC,03FFH:LDIR
90   HIGH-MODE
100  ENDCOM

Screen memory is filled with all possible characters, making a rapidly
changing display. You Z80 programmers can figure this program out. The rest
of you -- what can I say? ('learn Z80 assembly language ...').



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

COMPL COMPL
4-19

This statement is used to complement a pixel.
_________________________________________________________

|                                                         |
|  COMPL(x,y)                                  STATEMENT  |
|                                                         |
|  x        - is a numeric expression which evaluates to  |
|             the range <0 - 127> for 64-column screens   |
|             and <0 - 159> for 80-column screens.        |
|                                                         |
|  y        - is a numeric expression which evaluates to  |
|             the range <0 - 47> for 16-row screens and   |
|             <0 - 71> for 24-row screens.                |
|_________________________________________________________|

SET, RESET, and COMPL form the set of the single-pixel-affecting graphics
commands. Note that screens that display 16 rows of 64 characters will
display 72 rows by 160 columns of graphics pixels; screens that display 24
rows of 80 characters will display 72 rows by 160 columns of graphics pixels.

The COMPL command complements a selected graphics pixel, turning it ON if it
is OFF and vice versa. The following illustrates a brief example of these
graphics commands:

5    Y=23:RANDOM:CLS
10   FOR X=0 TO 127
20   SET(X,Y)
30   Y=Y+SGN(RND(3)-2)
40   IF Y<0 THEN Y=0 ELSE IF Y>47 THEN Y=47
50   NEXT
60   FOR X=0 TO 127
70   COMPL(X,23):NEXT
80   FOR X=0 TO 127
90   RESET(X,23):NEXT

The program first plots a pseudo-"mountainous" profile on the screen, pro-
ceeds to "complement" all graphics dots down the middle of the screen, and
finally resets all pixels through the middle of the screen.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

COS COS
4-20

This function obtains the trigonometric cosine of its argument.
_________________________________________________________

|                                                         |
|  COS(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression in radian measure.  |
|_________________________________________________________|

COS takes the cosine, in radians, of an expression. It returns, in full
precision, a value of the same type as exp. Thus, if the argument is a double
precision type, the value returned is in double precision with full
significance.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CSNG CSNG
4-21

This function converts its argument to single precision.
_________________________________________________________

|                                                         |
|  CSNG(exp)                                   FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

CSNG converts any numeric expression of any numeric type into a single
precision format number.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CURLOC CURLOC
4-22

This function obtains the position cursor of the video cursor.
_________________________________________________________

|                                                         |
|  CURLOC   - No operands are required!        FUNCTION   |
|_________________________________________________________|

'CURLOC' returns the position of the video screen cursor. The position
obtained is a value from 0 to n where n+1 repreents the total number of
characters displayable on the video screen  (0-1023 for 16x64 and 0-1919 for
24x80). 'PRINT @ CURLOC,...' is normally equivalent to 'PRINT ...'.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

CVI CVS CVD CVI CVS CVD
4-23

The 'CVD' function unpacks the 8-byte string argument to a double
precision floating point number.

_________________________________________________________
|                                                         |
|  CVD(exp$)                                              |
|                                                         |
|  exp$     - is an 8 byte string expression              |
|_________________________________________________________|

CVD's primary purpose is to convert a double precision number stored in a
file on disk as an 8-byte string back into double precision format. It is the
converse of the MKD$(exp) string function. MKD$, described elsewhere,
converts a double precision numeric expression into an eight byte string
containing the double precision data. EXP = CVD(MKD$(EXP)).

The 'CVI' function unpacks the 2-byte string argument to an integer number.

_________________________________________________________
|                                                         |
|  CVI(exp$)                                              |
|                                                         |
|  exp$     - is a 2-byte string expression.              |
|_________________________________________________________|

The main purpose of CVI is to convert an integer stored as a 2-byte string on
disk by the converse string function MKI$(exp) back into an integer. EXP =
CVI(MKI$(EXP)).

The 'CVS' function unpacks the 4-byte string argument to a single precision
floating point number.

_________________________________________________________
|                                                         |
|  CVS(exp$)                                              |
|                                                         |
|  exp$     - is a 4 byte string expression.              |
|_________________________________________________________|

The prime function of CVS is to convert a single precision number, converted
into a 4 byte string by the MKS$ string function and stored in a disk file,
back into a single precision number. EXP = CVS(MKS$(EXP)).



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DATE$ DATE$
4-24

This function returns the system date as a string.
_________________________________________________________

|                                                         |
|  DATE$          There is no operand          FUNCTION   |
|_________________________________________________________|

The system date is returned as an eight-character string of the form,
MM/DD/YY.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DATA DATA
4-25

This statement allows you to declare a list of data items to be input with
the READ statement.

_________________________________________________________
|                                                         |
|  DATA datalist                               STATEMENT  |
|                                                         |
|  datalist - is a list of numbers or alphanumeric        |
|             strings, quoted or unquoted; each item is   |
|             separated by a comma.                       |
|_________________________________________________________|

DATA provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statement does nothing as
program execution jumps over the data list.

READ is the mechanism used to read from DATA lists. READ has the peculiar
attribute that it can read a DATA item as either a string or a number. An
item can always be read into a string (as a string of characters). An item
can SOMETIMES be read as a number -- if it's a number. READ A$ reads the next
DATA item (say 1.618033) literally, character by character, into A$; in this
case an 8 byte string. READ A, using the same item, stores into A the binary
equivalent of the converted string 1.618033.

RESTORE and RDGOTO provide ways to point at the desired data list. RDGOTO,
especially, eliminates the wasteful process of reading and discarding lists
of data to get to the desired list required in interpretive BASIC.

Initially, the first data item read, unless the data pointer is changed by a
RDGOTO/RDGTO statement, will be the first data item in the first DATA
statement in the program.

Example Program:

5    RDGOTO "PRIME"
10   READ TITLE$:PRINT TITLE$:PRINT:READ N
20   FOR X=1 TO N:READ A:?A,:NEXT
30   END
35   '
40   "FIB"
50   DATA The first EIGHT Fibonacci numbers in order
60   DATA 8, 1,1,2,3,5,8,13,21
70   "PRIME"
80   DATA The first NINE prime numbers in sequential order
90   DATA 9, 2,3,5,7,11,13,17,19,23



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DEC DEC
4-26

'DEC' is used to decrement an integer variable.
_________________________________________________________

|                                                         |
|  DEC intvar                                  STATEMENT  |
|                                                         |
|  intvar   - is either an integer variable or an integer |
|             array element.                              |
|_________________________________________________________|

'INC' and 'DEC' provide a very quick way to increment or decrement a
specified integer variable, respectively.

Examples:

INC A%:      'A% = A% + 1
DEC B%(10):  'B%(10) = B%(10) - 1



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DEFxxx DEFxxx
4-27

These 'DEFxxx' commands are used to declare a group of variables to be of a
specific type: integer, single precision, double precision, or string.

_________________________________________________________
|                                                         |
|  DEFDBL letters                              STATEMENT  |
|                                                         |
|  DEFINT letters                              STATEMENT  |
|                                                         |
|  DEFSNG letters                              STATEMENT  |
|                                                         |
|  DEFSTR letters                              STATEMENT  |
|                                                         |
|  letters  - is a list of letters (A-Z) flagging all     |
|             variables beginning with specified letter.  |
|             Multiple letters are separated by a comma   |
|             in the list. Two letters separated by a     |
|             dash indicates both letters and all letters |
|             alphabetically between them (e.g. B-E       |
|             specifies B,C,D, and E).                    |
|_________________________________________________________|

The standard default type for variables, when no type declaration character
suffix follows a variable (% = integer with 2 bytes of storage needed, ! =
single precision with 4 bytes of storage needed, $ = string with 4 bytes of
storage needed, # = double precision with 8 bytes of storage needed), is
single precision. However, the above listed commands alter the default types
for selected variables -- all variables beginning with the specified
letter(s) in the list. For example, 'DEFINT A-K' instructs the compiler to
assume that all following untyped variables starting with one of the letters
A,B,C,D,E,F,G,H or K are integers (integer type).

***********************************************************
*                                                         *
*   IMPORTANT INCOMPATIBILITY NOTE: All above statements  *
*   are, in reality, COMPILER PSEUDO-OPs! They affect     *
*   compiled output as they are LINEARLY encountered      *
*   sequentially in a source line, not as they are        *
*   LOGICALLY encountered. For example:                   *
*                                                         *
*   IF A=3 THEN DEFSTR A-Z ELSE DEFINT A-Z                *
*                                                         *
*   sets all following untyped variables to be strings,   *
*   and then immediately assumes them to be integers.     *
*   In other words, RUNTIME LOGIC has ABSOLUTELY NOTHING  *
*   TO DO with setting untyped variable type defaults,    *
*   unlike interpretive BASIC. In fact, the compiler      *
*   generates no code for DEFINT,DEFSTR,DEFDBL or DEFSNG. *
*                                                         *
***********************************************************



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DEFFN DEFFN
4-28

 This statement is used to define single-line user-defined functions.
_________________________________________________________

|                                                         |
|  DEFFN name(input variable list) = exp       STATEMENT  |
|                                                         |
|  input variable  - is any simple string or numeric      |
|                    variable. Arrays are not allowed.    |
|_________________________________________________________|

DEFFN is used to define a function capable of being evaluated from a single
expression. It operates similarly to Interpretive BASIC. EnhComp uses
FUNCTION as a powerful statement that allows new multi-lined functions to be
defined.

DEFFN is an interpretive Disk BASIC feature. The statement:

DEFFN name(input variable list) = exp

is functionally equivalent to:

FUNCTION name(input variable list): RETURN exp: ENDFUNC



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DIM DIM
4-29

The 'DIM' statement is used to allocate space for one or more arrays while
specifying the array dimensions.

_________________________________________________________
|                                                         |
|  DIM array(explist) <,array2(exp)...>        STATEMENT  |
|                                                         |
|  array    - is an array name.                           |
|                                                         |
|  explist  - is an expression or list of expressions,    |
|             specifying the index limits of the array.   |
|_________________________________________________________|

Until an array is DIMensioned, it cannot be accessed. DIMensioning sets up
the index limits (defining the acceptable range of index values) and allo-
cates memory for array data. For example:

10   DIM A(10)
20   FOR X=0 TO 11:A(X)=X*X:NEXT

will cause an error when X=11, which exceeds the dimensioned limit of 10.

Multiple dimensions can be done with one 'DIM' statement by separating the
arrays by commas -- i.e. DIM X(60),Y(75).

EnhComp allows the actual index limits in the 'DIM' statement to be undefined
at compile time (in other words, specified by variables and resolvable only
at run-time), unlike many other BASIC compilers. For example, the statement:

DIM TAX(A,B)

is allowed by EnhComp, because the dimension will occur dynamically when the
compiled program is run, but disallowed by BASIC compilers that need con-
stants as index limits to precompute the amount of space needed for all array
elements.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DOWN DOWN
4-30

This statement is used to scroll the video screen down one line.
_________________________________________________________

|                                                         |
|  DOWN                                        STATEMENT  |
|_________________________________________________________|

'DOWN' scrolls the entire screen down by one line, clearing the top line.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DRAW DRAW
4-31

This statement is used to draw a "turtle graphics" figure.
_________________________________________________________

|                                                         |
|  DRAW 'flag' @ x,y USING array%(exp)         STATEMENT  |
|                                                         |
|  'flag'   - designates the type of pixel action:        |
|                'S' signifies unconditional SET;         |
|                'R' signifies unconditional RESET;       |
|                'C' signifies pixel COMPLement.          |
|  x,y      - is the coordinate of the starting point.    |
|             x is in the range (0-127|0-179); y is in    |
|             the range (0-47|0-71).                      |
|                                                         |
|  array%(exp)  - is an integer array element.            |
|_________________________________________________________|

Essentially, DRAW takes a list of line segment lengths combined with
rotations, specified in any specified integer array at any point in the array
(such as A%(10) or B%(18)), and plots a figure on the screen based on the
list. The concept is very similar to turtle graphics in the LOGO language.

EnhComp DRAW allows 256 degrees of rotation and is properly scaled to assure
minimal distortion of rotated figures. That is, a box will still look much
like a box when it is rotated say 60/256s of a circle (60 DRAW degrees) and
redrawn. Furthermore, the lengths of its sides will be close to that of the
unrotated figure. In addition to allowing 256 degrees, DRAW allows noninteger
line lengths and scaling: line lengths are specified in 1/256 graphics pixel
width units.

To set up a turtle graphics figure, dimension an integer array to at least
4*L-1, where 'L' is the required number of line segments needed to draw your
figure. Each entry requires 4 bytes, encoded into a specified integer array
(A in this example) in the following manner:

A%(x) = (Byte_1) + 256 * (Byte_2) where Byte_1 is n/256 fraction of line
length and Byte_2 is the integer part of the line length. Bytes 1 and 2
contain the line length information: (BYTE 2) + (BYTE 1)/256 is the line
length.

A%(x+1) = (Byte_3) + 256 * (Byte_4) where Byte_3 specifies the rotation
number in DRAW degrees (0-255) and Byte_4 is the ENTRY code. Byte_3 contains
the number of degrees relative to the current orientation to draw the next
line. The ENTRY code specified by Byte_4 is determined from the following
table:

____________________________________________________
|                                                    |
|  Code Number     Signifying                        |
|  -----------     --------------------------------  |
|      0           List end; terminate DRAW          |
|      1           Draw line according to DRAW flag  |
|      2           Unconditionally SET line          |
|      3           Unconditionally RESET line        |
|      4           Unconditionally COMPL line        |
|    5 - 255       Ignore entry                      |
|____________________________________________________|



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

DRAW DRAW
4-32

Example Program:

10   DEFINT F
15   CLS
20   DIM FIGURE1(110)
25   Y=0
30   FOR X=0 TO 250 STEP 10
40   FIGURE1(Y)=X*6:'        Set line length = 6*X/256 units
50   FIGURE1(Y+1)=X+256:'    Rotation = X, entry code = 1
55   Y=Y+2
60   NEXT:'                  Continue until figure completed
70   FIGURE1(Y+1)=0:'        Set 0 entry code to terminate list
75   '
77   ' Draw it!
79   '
80   DRAW SET@ 64,23 USING FIGURE1(0)

Notice that 'FIGURE1(0)' in line 80 above specifies the DRAW to begin
interpreting entries at the first array entry. DRAW SET@ 64,23 USING
FIGURE1(2) would skip drawing the first line in the figure specified by
FIGURE1(0). Drawing begins at location (64,23) and the object is SET on the
screen as per the DRAW flag 'SET'. DRAW RESET@ 64,23 USING FIGURE1(0)
executed just after line 80 would immediately clear the figure off the
screen.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

END END
4-33

This statement is used to terminate your program and return to DOS.
_________________________________________________________

|                                                         |
|  END                                         STATEMENT  |
|_________________________________________________________|

END causes a transfer back to DOS via the @EXIT address.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ERL ERL
4-34

This function obtains the line number of the line containing an error.
_________________________________________________________

|                                                         |
|  ERL      - No operands are required!        FUNCTION   |
|_________________________________________________________|

'ERL' is usually used inside an error-trapping routine that was invoked by an
error that occured with an active 'ON ERROR GOTO'. If the line number is
available, ERL returns the source line # in which the error happened.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ERR ERR
4-35

This function obtains the error code of the last error generated.
_________________________________________________________

|                                                         |
|  ERR      - No operands are required!        FUNCTION   |
|_________________________________________________________|

'ERR' holds the code of the last error generated. As a consequence, it holds
useful information only after an error occurs, which implies that an 'ON
ERROR GOTO addr' must be active to override the standard error message and
exit.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ERROR ERROR
4-36

This statement is used for runtime program error control.
_________________________________________________________

|                                                         |
|  ERROR exp8                                  STATEMENT  |
|                                                         |
|  exp8     - is a numeric expression which evaluates to  |
|             the range (0-255).                          |
|_________________________________________________________|

The ERROR command forces a runtime error to occur. Normally, an error message
'RUNTIME ERROR CODE ccc IN SOURCE LINE #lllll' is printed and program exec-
ution is stopped. If an 'ON ERROR GOTO addr' is active, program execution
branches to the address specified by the ON ERROR GOTO statement on occurance
of a runtime error. 'ON ERROR GOTO 0' disables this feature and causes the
visual error message previously mentioned.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

EXISTS EXISTS
4-37

'EXISTS' will check for the availability of the designated filespec.
_________________________________________________________

|                                                         |
|  EXISTS(filespec$)                           FUNCTION   |
|                                                         |
|  filespec$  - specifies which file to look for.         |
|_________________________________________________________|

'EXISTS' will check if the specified file is available for use. It returns a
logic TRUE (-1) if the file is accessible.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

EXP EXP
4-38

This function obtains the exponential of its argument.
_________________________________________________________

|                                                         |
|  EXP(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

EXP(exp) is equivalent to 2.7182818 ... raised to the 'exp'th power. If
you're not familiar with this random-looking number, it pops up all over the
place in engineering, scientific, and business problems. It returns, with
full precision, a value of the same type given.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

FIELD FIELD
4-39

The 'FIELD' statement is used to assign the segments of a type "R" file
record buffer to strings.

_________________________________________________________
|                                                         |
|  FIELD blknum,exp as var$<,exp2 as var2$>    STATEMENT  |
|                                                         |
|  blknum   - is file control block number, 1-15.         |
|                                                         |
|  exp      - is the string length.                       |
|                                                         |
|  var$     - is any string variable.                     |
|_________________________________________________________|

FIELD is used with "R" type files. It fields the record buffer into segments
accessable by string variables, providing a means to read and write
information in an orderly manner from or to any record in the file.

For writing to a file, information is placed into the FIELDed variables by
means of the 'LSET' and 'RSET' commands. For obtaining non-string data read
from fielded string variables, the 'CVI(var$)', 'CVS(var$)', and 'CVD(var$)'
functions are used.

Example Program:

5    CLEAR 1000
10   ALLOCATE 1
20   OPEN "R",1,"TEST/DAT"
30   FIELD 1,256 AS A$
40   LSET A$=STRING$(256,".")
50   PUT 1,1
60   CLOSE

Line 5 gives enough room for strings to breathe. Line 10 allocates a single
file block. Line 20 opens the file for use; line 30 fields A$ as entire
record buffer (recall that EnhComp allows 32Kbyte length strings). Line 40
fills the record buffer with dots, and line 50 writes the record buffer to
the first record in the file 'TEST/DAT', followed by the necessary CLOSE
statement to neatly close the file and keep the disk directory running
smoothly.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

FIX FIX
4-40

This function truncates the non-integer portion of its argument.
_________________________________________________________

|                                                         |
|  FIX(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

FIX returns the expression with the non-integer part stripped away. For
example: FIX(-1.6) = -1.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

FOR FOR
4-41

These statements implement the typical FOR-NEXT loop construct.
_________________________________________________________

|                                                         |
|  FOR indexvar = start TO end <STEP step>     STATEMENT  |
|                                                         |
|  NEXT <indexvar_1<,indexvar_2...>>           STATEMENT  |
|                                                         |
|  indexvar - is a loop index variable.                   |
|                                                         |
|  start    - is any numeric expression; the initial      |
|             value of the loop index variable            |
|                                                         |
|  end      - is any numeric expression; the terminating  |
|             top or bottom limit value of the loop.      |
|                                                         |
|  step     - is any numeric expression; added to the     |
|             loop variable in each iteration. May be     |
|             negative, in which case 'end' is bottom and |
|             not top limit.                              |
|_________________________________________________________|

'FOR' and 'NEXT' are the standard, eternal, BASIC looping construct state-
ments. The 'FOR-NEXT' construct works by setting an index variable, specified
in the initial 'FOR...' statement, to an initial value, unconditionally
executing the loop code once (unless programming "tricks" are used) until a
'NEXT' is reached; then, unless the step was specified with 'STEP' in the
'FOR ...' setup, the step size is one, and this is added to the index vari-
able. If the step is positive, 'NEXT' checks for 'indexvar' > 'toplimit'. If
this is so, the statement following 'NEXT' is executed (the loop falls
through). If 'indexvar' =< 'toplimit', 'NEXT' branches to the statement fol-
lowing the initial 'FOR...' setup, establishing a loop to be continued until
'indexvar' > 'toplimit'. Note that this might never happen, say if STEP = 0
and 'toplimit' > 'indexvar'.

If the step is negative, 'NEXT' checks for 'indexvar' < 'toplimit', the con-
verse of the positive step case. Otherwise, the previous explanation holds
true (exchanging '<' for '>' and vice versa.)

The desired loop variable(s) can be specified after a 'NEXT' statement. This
is not necessary, however, except to preserve compatibility with interpretive
BASIC programs. For instance, line 40 in the example program could simply be:
'NEXT:NEXT'.

Enhancement note: Double precision variables are allowed as loop indexes,
something not allowed in interpretive basic.

For one example of the "programming trick" mentioned earlier, see "Prog-
ramming idea #1" in the 'REPEAT-UNTIL' description.

Example Program:

5   CLS:PI = 3.14159
10  FOR R=1 TO 20 STEP 4:'   Radius of circle
20   FOR T = 0 TO 2*PI STEP PI/20:'  Parametric var. in radians
30   X = R * 2 * COS(T)
40   Y = R * SIN(T)
50   SET(63+X,23-Y)



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

FOR FOR
4-42

60   NEXT T:NEXT R: 'Could be:  NEXT T,R
70  FOR X=127 TO 0 STEP -1
80  COMPL(X,23+SIN(X*8*PI/127)*15): 'Draw sine wave right to left
90  NEXT

This example program will draw a series of concentric circles on the screen.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

FRE FRE
4-43

This function obtains the amount of either the free stack space or the free
string space.

_________________________________________________________
|                                                         |
|  FRE(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is either a STRING EXPRESSION, flagging FRE |
|             to return the amount of free string space   |
|             left, or 0, flagging FRE to return MEM, the |
|             amount of free stack memory                 |
|_________________________________________________________|

The syntax box provides a complete explanation. 'FRE' is used, essentially,
to determine the amount of space left for string storage. FRE(0) is
numerically equivalent to MEM, described previously.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

FUNCTION FUNCTION
4-44

These statements are used to define multi-line user-defined functions.
_________________________________________________________

|                                                         |
|  FUNCTION name(input variable list)          STATEMENT  |
|   statments                                             |
|  ENDFUNC                                     STATEMENT  |
|                                                         |
|  input variable  - is any simple string or numeric      |
|                    variable. Arrays are not allowed.    |
|                                                         |
|  Note: FUNCTIONs are invoked via: "!name(args)"         |
|_________________________________________________________|

DEFFN is used to define a function where a single "BASIC statement" can be
entered on a single line to operate the function. It operates similarly to
Interpretive BASIC. FUNCTION is a powerful statement that allows new multi-
lined functions to be defined.

A user-defined multi-line function consists of three parts: A FUNCTION
statement header; a user-function body; and the ENDFUNC statement. A defined
function call is invoked by an exclamation point character followed by the
function name and operand list, composed of any combination of numeric or
string expressions separated by commas and enclosed in parentheses. For each
operand there is a local variable in the function definition's input variable
list. When a user-function call is made, the contents of the input variables
are pushed onto the stack and then set equal to the specified operands.

Once the function computation is completed, the function value is returned
with the statement 'RETURN value'. Any desired number of RETURNs can be
included. A 'RETURN' statement without operands returns a value of 1.

As with user-commands, user-functions can be recursive, recursion depth
limited only by free memory. Definitions may not be nested. Note that unlike
Interpretive BASIC, user-functions are "defined" at compile-time and need not
be executed to become "active"; in fact, definitions, if encountered, are
skipped over.

Example Program #1:

10   INPUT"# TO TAKE FACTORIAL OF";X
20   PRINT X;"! = ";!FACTORIAL(X)
30   PRINT|GOTO 10
35   '
40   FUNCTION FACTORIAL(K)
50   IF K<2 THEN RETURN 1
60   RETURN K*!FACTORIAL(K-1)
70   ENDFUNC

The preceding program computes the factorial of a number using a recursive
function. The recursive call takes place in line 60. The following program is
simpler!

Example Program #2:

10   FOR X=1 TO 10
20   PRINT"X, SQUARE(X)| ";X,!SQUARE(X)
30   NEXT



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

FUNCTION FUNCTION
4-45

40   END
45   '
50   FUNCTION SQUARE(K)
60   RETURN K*K
70   ENDFUNC

Consider the possibilities of directly using Z80 assembly language in a
function definition. Here's one example|

Example Program #3:

10   INPUT"String to ENCODE";A$
20   B$=!ENCODE$(A$)
30   PRINT"Encoded string: ";B$: PRINT: GOTO 10
40   '
50   FUNCTION ENCODE$(T$)
60   '
70   ' Add 20 to each byte in string
80   '
90   Z80-MODE
100  LD IX,&(T$):' IX => String parameter block
110  LD C,(IX+0):LD B,(IX+1): LD L,(IX+2):LD H,(IX+3)
115  ' BC = string length, HL => String
120  "ENLOOP":LD A,B:OR C:JR Z,ENDENC:DEC BC
130  LD A,(HL):ADD A,20:' Number added is mostly arbitrary
140  LD (HL),A:INC HL:JP ENLOOP
150  "ENDENC"
160  HIGH-MODE
165  '
170  RETURN T$
180  ENDFUNC

The main point of the preceding program is the Z80 routine, not the simple
encoding method (even a fairly dumb cryptographer could break this scheme in
about five minutes). The speed of the efficient machine language routine
makes the encoding time imperceptibly small for short strings. More complex,
non-trivial encoding routines would benefit from the speed of a Z80 routine
even more. Keep in mind that EnhComp allows strings of up to 32767 bytes in
length.

If you copy the body of function ENCODE, modify ADD A,20 to SUB 20 and you
have (guess what?) function DECODE (left as "an exercise for the reader").



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

GET GET
4-46

'GET' reads a specified record into a record buffer.
_________________________________________________________

|                                                         |
|  GET blknum,recnum                           STATEMENT  |
|                                                         |
|  blknum   - is file control block number, 1-15.         |
|                                                         |
|  recnum   - is the record number to read or write.      |
|_________________________________________________________|

'GET' and 'PUT' are the two type "R" and type "X" disk file manipulation
commands. PUT writes the contents of the record buffer to the specified
record in the specified currently open file. GET reads a record from the
specified currently open file into the record buffer.

Note that the 'recnum' operand is mandatory.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

GOTO GOTO
4-47

This statement allows your program to invoke unconditional program branching.
_________________________________________________________

|                                                         |
|  GOTO addr  or  GTO addr                     STATEMENT  |
|                                                         |
|  addr     - is a line number or a label.                |
|_________________________________________________________|

GOTO is the standard BASIC way to transfer program execution to just about
any desired point in the program. Either a conventional line number may be
used, as with interpretive BASIC, or a label can be specified.

The following table describes the possible errors which could result from
invalid use of this branch instruction:

_________________________________________________________
|                                                         |
| Possible Errors           Reason                        |
| ----------------------    ----------------------------- |
| "UNDEFINED LINE"          Reference to undefined line # |
| "UNDEFINED LABEL"         Reference to undefined label  |
|_________________________________________________________|

Example Program:

10   PRINT"This is the beginning ..."
20   FOR X=0 TO 10:PRINT X,:NEXT:PRINT
30   PRINT"AGAIN??"
40   GOTO 10

In this program, the 'GOTO 10' in line 40 causes the example program to run
on the computer indefinitely until someone comes along and BREAKs the program
or the computer eventually crashes.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

GOSUB GOSUB
4-48

These commands allow your program to invoke unconditional program subroutine
calls.

_________________________________________________________
|                                                         |
|  GOSUB addr  or  CSUB addr                   STATEMENT  |
|                                                         |
|  RETURN                                      STATEMENT  |
|                                                         |
|  addr     - is a line number or a label.                |
|_________________________________________________________|

GOSUB is the standard BASIC command to call a subroutine. Nested GOSUBs are
limited only by available free stack memory. RETURN returns from a subroutine
to the next instruction following the GOSUB invocation. Note the use of the
POP command documented elsewhere. The following table describes the possible
errors that could result from invalid use of these instructions:

_________________________________________________________
|                                                         |
| Possible Errors           Reason                        |
| ----------------------    ----------------------------- |
| "UNDEFINED LINE"          Reference to undefined line # |
| "UNDEFINED LABEL"         Reference to undefined label  |
|_________________________________________________________|

Line labels are a much better mnemonic device than line numbers, as well as
being descriptive, as in the following example:

10   DIM A(10),B(10):' Note that ALL arrays must be dimensioned
20   FOR X=0 TO 10:A(X)=RND(X):B(X)=RND(0):?A(X),B(X):NEXT
30   GOSUB"SORT A":'   Or: CSUB"SORT A"
40   GOSUB"PRINT A":'  Could be GOSUB 140
50   GOSUB"SORT B"
60   GOSUB"PRINT B"
70   END
80   '
100  "SORT A":'   Alternatively: JNAME"SORT A"
110  SCLEAR:KEY A(0):TAG B(0):SORT 11:RETURN
120  "SORT B"
130  SCLEAR:KEY B(0):TAG A(0):SORT 11:RETURN
140  "PRINT A"
150  FOR X=0 TO 11: PRINT A(X),B(X):NEXT:RETURN
160  "PRINT B"
170  FOR X=0 TO 11: PRINT B(X),A(X):NEXT:RETURN

This program loads arrays A() and B() with random numbers and then proceeds
to sort them individually, first on A() with B() elements "tagging along",
then on B() with A() as a TAG.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

HEX$ HEX$
4-49

This function converts numeric expressions to strings of hexadecimal digits.
_________________________________________________________

|                                                         |
|  HEX$(exp16)                                 FUNCTION   |
|                                                         |
|  exp16    - is in the range <-32768 to 32767>           |
|_________________________________________________________|

HEX$ returns a 4 character ASCII hexadecimal representation of an integer.
For example, HEX$(-2) is equal to "FFFE".



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

IF/THEN/ELSE IF/THEN/ELSE
4-50

These statements implement the typical IF-THEN-ELSE conditional structure.
_________________________________________________________
|                                                         |
|  IF cond THEN action <ELSE default action>   STATEMENT  |
|                                                         |
|  IF cond                                     STATEMENT  |
|   program code                                          |
|  <ELSE                                       STATEMENT  |
|   program code>                                         |
|  ENDIF                                       STATEMENT  |
|_________________________________________________________|

'IF-THEN-ELSE' comprise the critical conditional execution statements.
EnhComp supports two forms of the 'IF-THEN-ELSE' construct: the standard
single-line 'IF-THEN-ELSE' construct; and enhanced, multi-line 'IF-THEN-
ELSE'. Here are two examples that are logically equivalent:

10   IF X<0 THEN A=A-X:K=1:IF A>16 THEN A=0 ELSE ELSE A=A+X

and

10   IF X<0
20      A=A-X:K=1
30      IF A>16
40         A=0
50      ENDIF
60   ELSE
70      A=A+X
80   ENDIF
90   PRINT"END OF CONDITIONAL CONSTRUCT"
100  END

The second example clearly shows the logical flow of the program, as opposed
to the compact but visually linear first example. In the second example: If
X<0, line 20 (A=A-X) is done. Line 40 (A=0) is executed if the further con-
ditional (A>16) at line 30 is met. Lines 60-80 are skipped are part of the
ELSE code. If NOT(X<0), program flow goes to line 70 (A=A+X) in the ELSE code
section.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

INC INC
4-51

'INC' is used to increment an integer variable.
_________________________________________________________
|                                                         |
|  intvar   - is either an integer variable or an integer |
|             array element.                              |
|_________________________________________________________|

'INC' and 'DEC' provide a very quick way to increment or decrement a spec-
ified integer variable, respectively.

Examples:

INC A%:      'A% = A% + 1
DEC B%(10):  'B%(10) = B%(10) - 1



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

INKEY$ INKEY$
4-52

This function will strobe the keyboard and returns the key depressed.
_________________________________________________________

|                                                         |
|  INKEY$                                      FUNCTION   |
|_________________________________________________________|

INKEY$ returns a zero if no key is pressed or the key code if a key is
pressed.

Example Program:

10   PRINT"Press any KEY to continue"
20   A$=WINKEY$:IF A$="" THEN 20
30   PRINT"Exiting program"
40   END



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

INP INP
4-53

This function obtains the value of the specified CPU port.
_________________________________________________________

|                                                         |
|  INP(portnum)                                FUNCTION   |
|                                                         |
|  portnum  - specifies the CPU port in the range <0-255> |
|_________________________________________________________|

INP performs a machine instruction to read the contents of the specified I/O
port. It is the logical corollary to the 'OUT' command, described elsewhere,
which sends a value TO to a specified CPU I/O port.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

INPUT INPUT
4-54

'INPUT' is used to accept keyboard input for variable value(s).
_________________________________________________________

|                                                         |
|  INPUT <@pos><"string";> var1 <,var2 ...>    STATEMENT  |
|                                                         |
|  var      - is any appropriate variable.                |
|_________________________________________________________|

'INPUT' reads data from the keyboard. An optional "prompt" string may be
printed. Leading blanks are skipped while reading. Strings (string variable
specified) are read until a comma or a <CR> [CHR$(13)] is reached. Numbers
(numeric variable specified) are read until a space, a comma, or a <CR> is
encountered.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

INPUT# INPUT#
4-55

'INPUT#' is used to read from a sequential file into variable(s).
_________________________________________________________

|                                                         |
|  INPUT#blknum, var1 <,var2 ...>              STATEMENT  |
|                                                         |
|  blknum   - is a file control block number, <1-15>.     |
|                                                         |
|  var      - is any appropriate variable.                |
|_________________________________________________________|

'INPUT#' reads data from an "I" type file. Leading blanks are skipped while
sequentially reading. Strings (string variable specified) are read until a
comma, a <CR> [CHR$(13)], or the end of the file is reached. Numbers (numeric
variable specified) are read until a space, a comma, a <CR>, or the end of
file is encountered.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

INSTR INSTR
4-56

This function will search a string for a designated substring.
_________________________________________________________

|                                                         |
|  INSTR(<exp,> exp1$,exp2$)                   FUNCTION   |
|                                                         |
|  exp1$    - is the string to search.                    |
|                                                         |
|  exp2$    - is the string to search for.                |
|                                                         |
|  exp      - is an optional search start point           |
|_________________________________________________________|

INSTR returns the position of a substring inside a string, if found;
otherwise returning a 0. The beginning search point in the string can be
optionally specified. If omitted, the search starts at the beginning of the
string.

Example Program:

10   A$="THIS IS A TEST"
20   B$="IS"
30   I=1
40   F=INSTR(I,A$,B$)
50   IF F=0 THEN PRINT"END OF SEARCH.":END
60   PRINT B$;" FOUND IN ";A$;" AT POSITION ";F
70 I=F+1:GOTO 40:' Continue search



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

INT INT
4-57

This is the "greatest integer" function.
_________________________________________________________

|                                                         |
|  INT(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

INT works with any precision expression, returning the same precision. It
returns the greatest integer less than 'exp'. For the confused, some
examples:

INT(3.4)  = 3
INT(.5)   = 0
INT(-.5)  = -1
INT(-1.4) = -2



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

INVERT INVERT
4-58

This statement is used to invert all graphics on the video screen.
_________________________________________________________

|                                                         |
|  INVERT                                      STATEMENT  |
|_________________________________________________________|

This inverts all graphics on the screen. SET points are RESET and vice versa.
Text (characters not within range 128 =< x =< 191) is ignored.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

JNAME JNAME
4-59

This statement is used to establish a line label.
_________________________________________________________

|                                                         |
|  JNAME"label"  or  "label"                   STATEMENT  |
|                                                         |
|  label    - is a (unique) string of characters          |
|             representing a memory location.             |
|_________________________________________________________|

Labels are used to establish branch points for use with GOTOs, GOSUBS, or any
BASIC statement. The following table describes the possible error which could
result from invalid use of these statement:

_________________________________________________________
|                                                         |
| Possible Error            Reason                        |
| ----------------------    ----------------------------- |
| "MULTIPLY DEFINED SYMBOL" Two or more labels defined    |
|                           (via JNAME"label" or "label") |
|                           are equivalent                |
|_________________________________________________________|

Example Program:

10   DIM A(10),B(10):' Note that ALL arrays must be dimensioned
20   FOR X=0 TO 10:A(X)=RND(X):B(X)=RND(0):?A(X),B(X):NEXT
30   GOSUB"SORT A":'   Or: CSUB"SORT A"
40   GOSUB"PRINT A":'  Could be GOSUB 140
50   GOSUB"SORT B"
60   GOSUB"PRINT B"
70   END
80   '
100  "SORT A":'   Alternatively: JNAME"SORT A"
110  SCLEAR:KEY A(0):TAG B(0):SORT 11:RETURN
120  "SORT B"
130  SCLEAR:KEY B(0):TAG A(0):SORT 11:RETURN
140  "PRINT A"
150  FOR X=0 TO 11: PRINT A(X),B(X):NEXT:RETURN
160  "PRINT B"
170  FOR X=0 TO 11: PRINT B(X),A(X):NEXT:RETURN

This program loads arrays A() and B() with random numbers and then proceeds
to sort them individually, first on A() with B() elements "tagging along",
then on B() with A() as a TAG.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

KILL KILL
4-60

'KILL' will delete the designated file from the disk directory.
_________________________________________________________

|                                                         |
|  KILL"filespec$"                             STATEMENT  |
|                                                         |
|  filespec$  - designates the file to remove.            |
|_________________________________________________________|

'KILL' removes the disk directory entry of a file and frees up the space that
the data of the file took on the disk.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LEFT LEFT
4-61

This statement is used to scroll the video screen left one column.
_________________________________________________________

|                                                         |
|  LEFT                                        STATEMENT  |
|_________________________________________________________|

This statement scrolls the entire screen left by one character.  The entire
last screen column is cleared, and the entire 0th column is written over with
the first column.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LEFT$ LEFT$
4-62

This function parses a substring of a string.
_________________________________________________________

|                                                         |
|  LEFT$(exp$,exp1)                            FUNCTION   |
|                                                         |
|  exp$     - is any string expression.                   |
|                                                         |
|  exp1     - is the number of leftmost characters to     |
|             use for the obtained substring.             |
|_________________________________________________________|

LEFT$ chops a substring from the left of a string. For example:

LEFT$("FOUR SCORES",4) = "FOUR"
LEFT$("NO MUSAK",6)    = "NO MUS"

Note that MID$ can easily simulate LEFT$. For example, LEFT$(exp$,exp) is
equivalent to MID$(exp$,1,exp) assuming len(exp$) >= exp.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LEN LEN
4-63

This function obtains the length of its string argument.
_________________________________________________________

|                                                         |
|  LEN(exp$)                                   FUNCTION   |
|                                                         |
|  exp$     - is any string expression.                   |
|_________________________________________________________|

LEN returns the length of the specified string expression. Naturally, the
string expression can be a single string variable. For example,

A$ = "TEST"
A = LEN(A$)

assigns 4 to 'A'. And:

A$ = "TEST"
A = LEN(A$ + "ING")

assigns 7 to 'A'. (A quicker way would be: A=LEN(A$)+3.)



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LET LET
4-64

'LET' is used to assign a value to a variable.
_________________________________________________________

|                                                         |
|  <LET> var = exp                             STATEMENT  |
|                                                         |
|  var      - is any variable.                            |
|                                                         |
|  exp      - is any expression of appropriate type.      |
|_________________________________________________________|

Any variable assignment can be done without the LET command. 'LET' is in-
cluded to preserve compatibility.

Examples:

A = 10:'        Assign 10 to variable A
A$ = "HELLO":'  Set A$ to "HELLO"

Note on "Garbage collection" and string variables: Interpretive BASIC on the
TRS-80 is notorious for the string "garbage collection" lock-up that occurs
when free string space is needed and it is necessary to clean up the garbage
left over from previous string manipulations. EnhComp compiled programs don't
suffer from this malady. There is never "garbage" lying around in the string
storage area; the only time extensive re-arrangement of strings and string
pointers can occur is during a string assignment.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LINEINPUT LINEINPUT
4-65

'LINEINPUT' is used to accept keyboard input into a string.
_________________________________________________________

|                                                         |
|  LINEINPUT <@pos><"string";>var1$<,var2$...> STATEMENT  |
|                                                         |
|  var$     - is any appropriate string variable.         |
|_________________________________________________________|

'LINEINPUT' reads data from the keyboard without the usual "?" prompt. An
optional "prompt" string may be printed. Leading blanks are skipped while
reading. The input line is read verbatim until a <CR> [CHR$(13)] is reached.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LINEINPUT# LINEINPUT#
4-66

'LINEINPUT#' is used to read from a sequential file into a string.
_________________________________________________________

|                                                         |
|  LINEINPUT#blknum, var$ <,var2$ ...>         STATEMENT  |
|                                                         |
|  blknum   - is a file control block number, <1-15>.     |
|                                                         |
|  var$     - is any string variable.                     |
|_________________________________________________________|

LINEINPUT# reads a string from an "I" type file. All characters starting at
the current read point up to a <CR> [CHR$(13)] or the end of file are read
into the string, up to the limit of 255 characters.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LINESPAGE LINESPAGE
4-67

This statement is used to set the number of printed lines per page.
_________________________________________________________

|                                                         |
|  LINESPAGE = exp                             STATEMENT  |
|                                                         |
|  exp      - is a numeric expression which evaluates to  |
|             the range <2-255>.                          |
|_________________________________________________________|

This statement sets the number of lines printed on a page until automatic Top
Of Form (TOF) occurs.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LMARGIN LMARGIN
4-68

This statement is used to set the printer's left hand margin.
_________________________________________________________

|                                                         |
|  LMARGIN = exp                               STATEMENT  |
|                                                         |
|  exp      - is a numeric expression which evaluates to  |
|             the range <2-255>.                          |
|_________________________________________________________|

This statement sets the number of spaces automatically printed when a
carriage return (ASCII 13) is sent to your printer. The default is 0 spaces.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LOAD LOAD
4-69

This statement will load a '/CMD' type program from disk into memory.
_________________________________________________________

|                                                         |
|  LOAD"filespec$"                             STATEMENT  |
|                                                         |
|  filespec$  - designates the file to load.              |
|_________________________________________________________|

'LOAD' loads a machine language program from disk into memory without exe-
cuting it.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LOG LOG
4-70

This function obtains the natural logarithm of its argument.
_________________________________________________________

|                                                         |
|  LOG(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

LOG returns the natural logarithm of an expression. Theoretically (ignoring
inevitable round-off error), LOG(EXP(exp)) = exp. 'LOG' returns, with full
precision, a value of the same type given (ex.: LOG(1.7#*X#) returns the log
of this expression accurate to 16 decimal digits due to the double
precision.)



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LPRINT LPRINT
4-71

This statement is used to print data to the printer.
_________________________________________________________

|                                                         |
|  LPRINT <item> <','>:<';'>:<'TAB(exp)'> ...  STATEMENT  |
|                                                         |
|  item     - is a "stringliteral" or a numeric / string  |
|             expression                                  |
|                                                         |
|  <,;>     - are delimiters                              |
|_________________________________________________________|

All LPRINT statements used in TRS-80 interpretive BASIC programs should
compile and function with equivalence with no modifications necessary.

Note that PRINT output can be sent to either the printer, the screen, or a
disk file using the 'PRINT#' statement depending on the value of the
expression chosen in the statement: 'PRINT#exp,...'. For example, the same
section of code could be used for both screen and printer output simply by
changing the value of a variable and calling the same subroutine:

.

.

.
90 "BPRINT"
100 F=0:GOSUB "PRINT":' Send to screen
110 F=-3:' Send to printer
120 "PRINT"
130 PRINT#F,"TO: ";FRIEND$
140 PRINT#F,"FROM: ";SENDER$
150 RETURN

Default SCREEN or PRINTER TAB positions can be altered with the SZONE and
PZONE commands respectively documented elsewhere in this manual. A comma
delimiter or equivalently TAB(255) tabs the cursor to the next screen or
printer zone, depending on the current output mode.

USING is now a string expression. Compiled and interpreted BASIC 'PRINT
USING' statements usually produce the same output.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

LSET LSET
4-72

'LSET' is used to set information into FIELDed string variables for use with
random access files.

_________________________________________________________
|                                                         |
|  LSET var$ = exp$                            STATEMENT  |
|                                                         |
|  var$     - is FIELDed string to which the information  |
|             is to be added.                             |
|                                                         |
|  exp$     - is the information to add.                  |
|_________________________________________________________|

'LSET' and 'RSET' are really just versions of 'MID$ ='. Their main intended
purpose is to set information into FIELDed string variables. FIELDed strings
must point to a static memory location (in a file's record buffer).

For 'LSET', var$ is overlayed starting at position 0 with exp$, filling any
remaining portion of var$ with blanks (ASCII 32). For 'RSET', var$ is over-
laid with exp$, measuring from the end of var$, filling any remaining portion
of var$ with blanks (i.e. the information is "right justified").

A standard string assignment, such as A$="MONDAY" places A$'s data in the
string storage area, which is constantly changing. LSET and RSET (and MID$)
directly alter existing a string variable's contents without changing the
string's position in memory. The main difference between MID$ and LSET/RSET
is that the latter commands fill the remaining characters in the affected
string with blanks, or CHR$(32)'s.

Note that compiled LSET and RSET, as with interpretive Disk BASIC LSET/RSET
commands, work on any string variable, not just FIELDed string variables.

Examples (in all examples A$ is 10 chars long):

LSET A$="HELLO":'             Now A$="HELLO     "
LSET A$="12345678912":'       Now A$="1234567891"
RSET A$="HELLO":'             A$="     HELLO"
LSET A$=MKD$(1.2345#):'       Now first 8 bytes of A$ contain

the floating point double
precision number 1.2345#



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

MEM MEM
4-73

This function obtains the anount of free stack space.
_________________________________________________________

|                                                         |
|  MEM      - No operand is required!          FUNCTION   |
|_________________________________________________________|

'MEM' simply returns the amount of free memory left for array dimensions,
ALLOCATE, etc. -- or what amounts to the same thing, the free stack space
left.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

MID$ function MID$ function
4-74

The 'MID$' statement is used to overlay a string or portion of a string with
another string.

_________________________________________________________
|                                                         |
|  MID$(var$,exp1 <,exp2>) = exp$              STATEMENT  |
|                                                         |
|  var$     - is string to be modified.                   |
|                                                         |
|  exp1     - is the starting position of var$ to be      |
|             overlaid by exp$.                           |
|                                                         |
|  exp2     - designates how many characters of exp$ will |
|             overlay the string, var$.                   |
|                                                         |
|  exp$     - is the overlaying string.                   |
|_________________________________________________________|

MID$ is the only reserved word used as both a function and a command. Don't
confuse the MID$ function with MID$ statement, although they perform similar
operations. MID$ operates directly on string variables. MID$ never changes
the length of the string variable.

Examples:

A$="ABCDE": MID$(A$,1)="xyz":'      Now A$ = "xyzDE"
A$="ABCDE": MID$(A$,2,2)="xyz":'    Now A$ = "AxyDE"
A$="ABCDE": MID$(A$,1,4)="xyz":'    Now A$ = "xyzDE"
A$="ABCDE": MID$(A$,1)="1234567":'  A$ now = "12345"

Example 1 is straightforward. In example 2, the optional length expression of
two limits the number of characters overlaid from the expression "xyz". In
example 3, although the maximum length was specified as 4, the length of
"xyz" is only 3. In example 4, A$ is too short to contain the entire string
expression.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

MID$ statement MID$ statement
4-75

This function parses substrings of a string.
_________________________________________________________

|                                                         |
|  MID$(exp$,exp1 <,exp2>)                     FUNCTION   |
|                                                         |
|  exp$     - is any string expression.                   |
|                                                         |
|  exp1     - is the starting position.                   |
|                                                         |
|  exp2     - is the optional substring length. If exp2   |
|             is omitted, the rest of exp$ after exp1     |
|             is taken                                    |
|_________________________________________________________|

Virtually all BASIC's have a string function performing equivalently to the
MID$ function. MID$ can pull any desired substring from a given string. For
example:

MID$("ABCDEF",2,3) = "BCD"
MID$("BYEBYE",4,2) = "BY"
MID$("HOUSE",2)    = "OUSE"

Note that MID$ can easily simulate both LEFT$ and RIGHT$. For example:

LEFT$(exp$,exp) is equivalent to MID$(exp$,1,exp)
RIGHT$(exp$,exp) is equivalent to MID$(exp$,len(exp$)-exp+1)

assuming len(exp$) >= exp.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

MKD$ MKI$ MKS$ MKD$ MKI$ MKS$
4-76

These functions convert numeric expressions to their packed string represen-
tation.

_________________________________________________________
|                                                         |
|  MKD$(exp)                                   FUNCTION   |
|                                                         |
|  MKI$(exp)                                   FUNCTION   |
|                                                         |
|  MKS$(exp)                                   FUNCTION   |
|                                                         |
|  exp      - is a numeric expression of the desired type |
|_________________________________________________________|

MKD$ maps a double precision number to an 8-byte string. The primary purpose
of MKD$ is to store double precision numbers in random access disk files,
since FIELD statements accept strings only. Similarly, MKI$ maps an integer
to a 2-byte string for storing integers and MKS$ maps single precision
numbers to 4-byte string for storing single precision expressions.

For example:

10   A#=1.2345678#: B=2.71828
20   ALLOCATE 1:OPEN "R",1,"TEST/DAT"
30   FIELD 1,8 AS PY$,4 AS E$
40   LSET PY$=MKD$(A#): LSET E$=MKS$(B)
.
.

The string-encoded contents of A# are LSET into the first 8 bytes of the
record buffer, effectively storing A#, and 'B' is stored in the next 4 bytes
after that. The program could go on to make other LSETs and RSETs, then write
the buffer to a record and close the file.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ON .. GOTO ON .. GOTO
4-77

This statement allows your program to invoke conditional branching and sub-
routine calls.

_________________________________________________________
|                                                         |
|  ON exp GOTO addrlist                        STATEMENT  |
|                                                         |
|  ON exp GOSUB addrlist                       STATEMENT  |
|                                                         |
|  exp      - designates the branch index of 'addrlist'.  |
|                                                         |
|  addrlist - is a list of line numbers or labels         |
|_________________________________________________________|

'ON ... GOTO' substitutes for a long list of compares and GOTOs. The 'exp'
indexes the line number or label address list. If there are fewer than 'exp'
addresses in the list, the statement following the 'ON ... GOTO/GOSUB' is
executed.

Example Program:

5    REM
10   REM  Simplified counting schema ...
20   REM
30   REM  (Note: unsuitable for check-writing routines)
40   REM
45   FOR X=1 TO 5
50   ON X GOTO 100,200,300
55   PRINT"MANY"
60   NEXT
70   PRINT"...":END
100  PRINT"ONE":GOTO 60
200  PRINT"TWO":GOTO 60
300  PRINT"THREE":GOTO 60



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ON BREAK GOTO ON BREAK GOTO
4-78

This statement is used to provide <BREAK> key control of your program.
_________________________________________________________

|                                                         |
|  ON BREAK GOTO addr                          STATEMENT  |
|                                                         |
|  addr     - is either a LINE # or a LABEL               |
|_________________________________________________________|

'ON BREAK GOTO addr' causes a jump to the specified line number or label if
the <BREAK> key is hit and the BREAK scan is activated. 'ON BREAK GOTO 0'
disables <BREAK> key branching, parallel to 'ON ERROR GOTO 0'. Causing an 'ON
BREAK GOTO addr' jump also automatically disables <BREAK> key branching.

'BKON' and 'BKOFF' can be used to effectively turn the BREAK key on or off,
respectively. They affect only the BREAK scan flag. BKON will have no
apparent effect if the "-NX" directive flag has been specified, since the
BREAK scan code calls will be left out of the compiled program.

Example Program

5    ON BREAK GOTO 100
10   PRINT"HO HUM ..."
20   FOR X=0 TO 1E12: NEXT
30   PRINT"OH BOY, LET'S COUNT TO A QUADRILLION NOW!"
40   END
100  PRINT"THANKS! SAVED FROM A FATE WORSE THAN SCARFMAN...."



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ON ERROR GOTO ON ERROR GOTO
4-79

This statement is used for runtime program error control.

_________________________________________________________
|                                                         |
|  ON ERROR GOTO addr                          STATEMENT  |
|                                                         |
|  addr     - is either a line number or a label which    |
|             specifies the target of the branch.         |
|_________________________________________________________|

Normally, an error message,

RUNTIME ERROR CODE ccc IN SOURCE LINE #lllll

is printed and program execution is stopped when a runtime error is detected.
If an 'ON ERROR GOTO addr' is active, program execution branches to the
address specified by the ON ERROR GOTO statement on occurance of a runtime
error. 'ON ERROR GOTO 0' disables this feature and causes the visual error
message previously mentioned.

The ERROR command can be used to force a runtime error to occur (usually used
to certify the correctness of your error trapping routine).



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

OPEN OPEN
4-80

'OPEN' is used to prepare a disk file for input or output operations.
_________________________________________________________

|                                                         |
|  OPEN "type$",blknum,"filespec$"<,reclen>    STATEMENT  |
|                                                         |
|  type$    - specifies the type of file access desired:  |
|               R,r for RANDOM ACCESS filetype;           |
|               O,o for SEQUENTIAL OUTPUT filetype;       |
|               E,e for SEQUENTIAL OUTPUT EXTENDED;       |
|               I,i for SEQUENTIAL INPUT filetype;        |
|               X,x for EXTENDED RANDOM ACCESS filetype.  |
|                                                         |
|  blknum   - is the file control block to use, in the    |
|             range <1-15> (see ALLOCATE).                |
|                                                         |
|  filespec$ - is the name of the disk file to access.    |
|                                                         |
|  reclen   - is an optional expression in the range      |
|             (1-255) designating the number of bytes in  |
|             each record of the file to be opened. This  |
|             Must match the previous record length if    |
|             the file already exists.                    |
|_________________________________________________________|

Before a disk file can be manipulated it must first be OPENed. Also, before
any file can be opened, space for the total number of simultaneously open
files must be allocated using the 'ALLOCATE' statement. This is similar to
the function of specifying the maximum number of files via the "F=files"
parameter used when invoking a BASIC interpreter.

There are five allowable file types; however, there are really only three
fundamental types of files: Random Record Access, Sequential, and list-
directed Extended. The file type string character may be upper or lower case.

Random access, specified by an "R" type in the OPEN statement, implies that
file manipulation will be done discretely with any selected individual record
in the file via the GET (get/read record) and PUT (put/write record)
commands, which are described in detail elsewhere in this manual.

With sequential access, a file is read ("I") or written ("O" or "E")
sequentially, basically a byte at a time, with INPUT# or PRINT#, respec-
tively. EnhComp prepares a type "E" file by positioning it to its end as soon
as it is opened. This permits you to extend the file by appending new infor-
mation to the existing data. Type "E" can also be specified for a "new" file.

The 'POSFIL' command described elsewhere can set the read or write
(determined automatically by file type) position to any point in a sequential
file (limited by existing file size in "I" mode, free disk space in "O"
mode).

EnhComp supports a fairly powerful new random access file mode, "X". This
extended mode allows the use of lists of simple variables as field specifiers
rather than the cumbersome, difficult to conceptualize conventional FIELD
statement.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

OPEN OPEN
4-81

Extended file mode uses the usual 256 byte LRL disk random record length but
allows logical record lengths of from 1 to 32767 bytes long. This record
length is defined at open time, with the statement:

OPEN "X",blknum,"filename$",reclen

where 'reclen' is the desired record length. Note that this record length is
entirely the responsibility of the programmer to track; it is entirely poss-
ible to close a previously opened and written-to extended file and open it
again with a different record length. No explicit error will occur.

The record structure is defined with the XFIELD statement, rather than the
FIELD statement as is the case for "R" file types. Its format allows either
numeric or string variables in its list. Array variables are not allowed in
the list.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

OUT OUT
4-82

This command is used to send a value to a specified CPU port.
_________________________________________________________

|                                                         |
|  OUT portnum,value                           STATEMENT  |
|                                                         |
|  portnum  - is a numeric expression which evaluates to  |
|             the range <0 to 255>, specifying a CPU port |
|             number.                                     |
|                                                         |
|  value    - is a numeric expression which evaluates to  |
|             the range <0 to 255), specifying a byte to  |
|             be sent out the port.                       |
|_________________________________________________________|

OUT provides a means to send information to any of the CPU I/O ports. The
assembler can also accomplish this as a matter of course by assembling a
native code OUT instruction directly.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

PAGELEN PAGELEN
4-83

This statement is used to set the physical printer page length.
_________________________________________________________

|                                                         |
|  PAGELEN = exp                               STATEMENT  |
|                                                         |
|  exp      - is a numeric expression which evaluates to  |
|             the range <2-255>.                          |
|_________________________________________________________|

This statement sets the printer page length for use with all printing oper-
ations. Note this is the physical length, in lines, of your printed page.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

PAINT PAINT
4-84

This statement is used to fill in a bounded shape.
_________________________________________________________

|                                                         |
|  PAINT(x,y)<,color>                          STATEMENT  |
|                                                         |
|  x,y      - is the coordinate of a point interior to    |
|             the bounded shape.                          |
|                                                         |
|  color    - is the color used to fill the shape <0,1>   |
|             where black = 0 and white = 1. If color is  |
|             omitted, it will default to 1.              |
|_________________________________________________________|

PAINT can be used to fill in any shape defined by a boundary of pixels of the
same color as the "color" operand. The point "x,y", entered in pixel coord-
inate values, must be interior to the bounded shape.

The following example will plot a triangle then fill in the interior of the
triangle.

05 CLS
10 PLOT S,10,10 TO 120,10
20 PLOT S,50,40 TO 120,10
30 PLOT S,10,10 TO 50,40
40 PA=1:PAINT(55,15),PA
50 A$=WINKEY$



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

PEEK PEEK
4-85

This function obtains the byte stored at a memory address.
_________________________________________________________

|                                                         |
|  PEEK(exp16)                                 FUNCTION   |
|                                                         |
|  exp16    - represents a memory address in the range    |
|             <-32768 to 32767>.                          |
|_________________________________________________________|

'PEEK' is a means to "peek" directly into any selected byte in the computer's
memory. For example, on the TRS-80 Model I/III, PRINT PEEK(0) prints a 243
(from ROM), or the Z80 instruction "DI", disable interrupts, the first
instruction executed on power up.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

PLOT PLOT
4-86

This statement is used to plot a line of pixels.
_________________________________________________________

|                                                         |
|  PLOT 'flag',x1,y1 TO x2,y2                  STATEMENT  |
|                                                         |
|  x1,y1    - specifies the coordinate point of one line  |
|             endpoint.                                   |
|                                                         |
|  x2,y2    - specifies the coordinate of the other line  |
|             endpoint.                                   |
|                                                         |
|  'flag'   - designates the type of pixel action:        |
|                'S' signifies unconditional SET;         |
|                'R' signifies unconditional RESET;       |
|                'C' signifies pixel COMPLement.          |
|_________________________________________________________|

PLOT is a statement that allows an entire line to be drawn at once. It can
SET, RESET, or COMPL a line on the screen. For example:

PLOT S,0,0 TO 127,47

would set a line between (0,0) and (127,47).

PLOT R,127,47 TO 0,0

would reset that same line. And,

PLOT C,127,0 TO 0,47

plotted after 'PLOT S,0,0 TO 127,47' was executed would produce a line going
from the upper right hand corner of the screen to the lower left, resetting
the dots where it intersected in middle of the line drawn from the upper left
corner to the lower right. The following program makes an interesting fanline
pattern on the screen.

10   FOR Y=0 TO 47 STEP 3
20   PLOT S,0,0 TO 127,Y:     'Draw line from (0,0) to right edge
30   PLOT S,127,47 TO 0,47-Y: 'Draw line from (127,47) to left edge
40   NEXT



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

POINT POINT
4-87

This function obtains the point value of the specified pixel location.
_________________________________________________________

|                                                         |
|  POINT(x,y)                                  FUNCTION   |
|                                                         |
|  x,y      - is the coordinate of the pixel. 'x' is in   |
|             the range <0-127 or 0-179> and 'y' is in    |
|             the range <0-47 or 0-71>                    |
|_________________________________________________________|

'POINT' checks whether any selected graphics pixel on the screen is set or
not. It returns -1 if the point is SET, 0 otherwise.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

POKE POKE
4-88

This statement is used to poke a value into a memory location.
_________________________________________________________

|                                                         |
|  POKE exp16,exp8                             STATEMENT  |
|                                                         |
|  exp16    - specifies a memory address in the range     |
|             <-32768 to 32767>.                          |
|                                                         |
|  exp8     - is a numeric expression which evaluates to  |
|             the range <0 to 255>.                       |
|_________________________________________________________|

POKE and WPOKE allow direct modification of any RAM location in memory. WPOKE
"pokes" two bytes at a time in conventional low order/high order format into
the specified address, whereas POKE inserts only a single byte.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

POP POP
4-89

This statement is used to escape from a GOSUBed subroutine.
_________________________________________________________

|                                                         |
|  POP                                         STATEMENT  |
|_________________________________________________________|

POP is a quick and dirty way to get out of a messy situation whilst stuck in
the middle of a subroutine. It erases all effects of the last GOSUB from the
stack, allowing clean error recovery, or whatever. This 'POP' operation is
not to be confused with the CPU opcode, POP.

Example Program:

10   GOSUB 20:PRINT"RETURNED AND BACK TO 10":END
20   GOSUB 30:PRINT"LINE 20. RETURNING TO 10.":RETURN
30   PRINT"LINE 30. 'POP' and 'RETURN'."
40   POP:RETURN

The POP at line 40 wipes out the GOSUB at line 20, causing the RETURN
directly following the POP to return to the next-lesser-level of GOSUB, the
one made in line 10.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

POS POS
4-90

This function returnsthe current position of the cursor relative to the start
of the line it appears on.

_________________________________________________________
|                                                         |
|  POS(dummy exp)                              FUNCTION   |
|_________________________________________________________|

'POS' returns the current column position of the cursor. For instance:

PRINT:PRINT"HELLO";:A=POS(0)

assigns 'A' to 5, the cursor position after 'HELLO' is printed.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

POSFIL POSFIL
4-91

'POSFIL' allows you to position a sequential input/output file pointer for
subsequent I/O operations.

_________________________________________________________
|                                                         |
|  POSFIL(#blknum,recnum,offset)               STATEMENT  |
|                                                         |
|  blknum   - is a file control block number, <1-15>.     |
|                                                         |
|  recnum   - is the disk file's 256-byte record number.  |
|                                                         |
|  offset   - is the offset within the record, <0-255>    |
|_________________________________________________________|

'POSFIL' is useful for positioning the sequential input/output pointer for
selective sequential reading and writing. As with 'RDGOTO', which selects any
'DATA' statement in a program for the next 'READ', 'POSFIL' is the equivalent
extension for sequential files.

Example Programs:

10   ALLOCATE 1:OPEN "O",1,"TEST/DAT"
20   POSFIL(#1,2,0):PRINT#1,"HELLO":CLOSE

The string 'HELLO' is written from the beginning of the second record in the
file, as opposed to the default of the start of the first record.

10   ALLOCATE 1:OPEN "I",1,"TEST/DAT"
20   POSFIL(#1,5,67):INPUT#1,A$:CLOSE

A$ is sequentially read, starting from the 67th character of the fifth record
in the file 'TEST/DAT' (assuming that TEST/DAT contains at least 5 records).



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

PRINT PRINT
4-92

This statement is used to print data to the video screen.
_________________________________________________________

|                                                         |
|  PRINT <'#' numexp,>:<'@' screenpos,> <item> STATEMENT  |
|          <','>:<';'>:<'TAB(exp)'> ...                   |
|                                                         |
|  numexp   - is a numeric expression within the range    |
|             <-3 to 15>: -3, send to PRINTER; 0, send to |
|             VIDEO display; 1 thru 15, send to disk file |
|                                                         |
|  screenpos - is a numeric expression between 0 and 1023 |
|             specifying a new cursor relative position   |
|                                                         |
|  item     - is a "stringliteral" or a numeric / string  |
|             expression                                  |
|                                                         |
|  <,;>     - are delimiters                              |
|_________________________________________________________|

All PRINT statements used in TRS-80 interpretive BASIC programs should
compile and function with equivalence with no modifications necessary.

PRINT output can be sent to either the printer, the screen, or a disk file
depending on the value of the expression chosen in the statement:
'PRINT#exp,...'. For example, the same section of code could be used for both
screen and printer output simply by changing the value of a variable and
calling the same subroutine:

.

.

.
90 "BPRINT"
100 F=0:GOSUB "PRINT":' Send to screen
110 F=-3:' Send to printer
120 "PRINT"
130 PRINT#F,"TO: ";FRIEND$
140 PRINT#F,"FROM: ";SENDER$
150 RETURN

Default SCREEN or PRINTER TAB positions can be altered with the SZONE and
PZONE commands respectively documented elsewhere in this manual. A comma
delimiter or equivalently TAB(255) tabs the cursor to the next screen or
printer zone, depending on the current output mode.

USING is now a string expression. Compiled and interpreted BASIC 'PRINT
USING' statements usually produce the same output.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

PRINT# PRINT#
4-93

'PRINT#' is used to write to a sequential file.
_________________________________________________________

|                                                         |
|  PRINT#blknum, ...                           STATEMENT  |
|                                                         |
|  blknum   - is a file control block number, <1-15>.     |
|_________________________________________________________|

'PRINT#' writes data to an "O" or "E" type file. Except for 'PRINT@',
information following the 'PRINT#blknum', and output from it, is in the same
format as a screen 'PRINT' statement, except that output is routed to a file
instead of to the screen.

Note that EnhComp allows you to direct the output of a 'PRINT#blknum' command
to be directed to either the video screen or your printer by specifying
'blknum' as 0 or -3 respectively. Thus, the command:

'PRINT#-3,"This is a test"'

will print the text string on your printer. Expressing the 'blknum' as a
variable permits you to designate the output device at runtime.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

PUT PUT
4-94

'PUT' writes a record buffer to a specified record.
_________________________________________________________

|                                                         |
|  PUT blknum,recnum                           STATEMENT  |
|                                                         |
|  blknum   - is file control block number, 1-15.         |
|                                                         |
|  recnum   - is the record number to write.              |
|_________________________________________________________|

'GET' and 'PUT' are the two type "R" and type "X" disk file manipulation
commands. PUT writes the contents of the record buffer to the specified
record in the specified currently open file. GET reads a record from the
specified currently open file into the record buffer.

Note that the 'recnum' operand is mandatory.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

PZONE PZONE
4-95

This statement is used to set the line printer print zones.
_________________________________________________________

|                                                         |
|  PZONE(pos 1,...,pos n)                      STATEMENT  |
|  PZONE(*)                                               |
|                                                         |
|  pos      - is a numeric expression between 0 and 255   |
|             which designates printer tab positions.     |
|_________________________________________________________|

PZONE sets up default printer TAB positions for LPRINT (or PRINT#-3) ","
modifiers. PZONE(*) clears all printer stops.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RANDOM RANDOM
4-96

This statement seeds the random number generator.
_________________________________________________________

|                                                         |
|  RANDOM <exp>                                STATEMENT  |
|_________________________________________________________|

RANDOM reseeds the "random" number generator to assure a high probability of
a non-repeating "random" sequence of numbers. EnhComp uses the well known and
often used method of linear congruential modulus to generate random numbers.
To assure high randomness and high non-repeatability, double precision
variables are used. This accounts for the relatively slow speed of the RND
function. However, randomness is tremendously improved over TRS-80 BASIC RND
results (as well as many other languages with poor random number generators.)

The seed which is used will be a random number between <0-255> if no operand
is given; else it is seeded with the given operand. Specifying a particular
seed value will start the same sequence every time for any given operand,
which can be between 0 and about 2,400,000.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RDGOTO RDGOTO
4-97

This statement allows you to reset the DATA list pointer.
_________________________________________________________

|                                                         |
|  RDGOTO addr  or  RDGTO addr                 STATEMENT  |
|                                                         |
|  addr     - is either a line number or a label.         |
|_________________________________________________________|

DATA provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statement does nothing as
program execution jumps over the data list. The data list is read into
variables with the READ statement. READ normally reads data starting from the
beginning of the list.

RESTORE and RDGOTO provide ways to point at the desired data list. RDGOTO,
especially, eliminates the wasteful process of reading and discarding lists
of data to get to the desired list required in interpretive BASIC.

Initially, the first data item read, unless the data pointer is changed by a
RDGOTO/RDGTO statement, will be the first data item in the first DATA
statement in the program.

Example Program:

5    RDGOTO "PRIME"
10   READ TITLE$:PRINT TITLE$:PRINT:READ N
20   FOR X=1 TO N:READ A:?A,:NEXT
30   END
35   '
40   "FIB"
50   DATA The first EIGHT Fibonacci numbers in orde r
60   DATA 8, 1,1,2,3,5,8,13,21
70   "PRIME"
80   DATA The first NINE prime numbers in sequential order
90   DATA 9, 2,3,5,7,11,13,17,19,23



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

READ READ
4-98

This statement allows you to declare and read a list of data items.
_________________________________________________________

|                                                         |
|  READ var1 <,var 2,...,var n>                STATEMENT  |
|                                                         |
|  var      - is either a numeric or string variable or   |
|             array element.                              |
|_________________________________________________________|

DATA provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statement does nothing as
program execution jumps over the data list.

READ is the mechanism used to read from DATA lists. READ has the peculiar
attribute that it can read a DATA item as either a string or a number. An
item can always be read into a string (as a string of characters). An item
can SOMETIMES be read as a number -- if it's a number. READ A$ reads the next
DATA item (say 1.618033) literally, character by character, into A$; in this
case an 8 byte string. READ A, using the same item, stores into A the binary
equivalent of the converted string 1.618033.

Initially, the first data item read, unless the data pointer is changed by a
RDGOTO/RDGTO statement, will be the first data item in the first DATA
statement in the program. RESTORE and RDGOTO provide ways to point at the
desired data list. RDGOTO, especially, eliminates the wasteful process of
reading and discarding lists of data to get to the desired list required in
interpretive BASIC.

Example Program:

5    RDGOTO "PRIME"
10   READ TITLE$:PRINT TITLE$:PRINT:READ N
20   FOR X=1 TO N:READ A:?A,:NEXT
30   END
35   '
40   "FIB"
50   DATA The first EIGHT Fibonacci numbers in order
60   DATA 8, 1,1,2,3,5,8,13,21
70   "PRIME"
80   DATA The first NINE prime numbers in sequential order
90   DATA 9, 2,3,5,7,11,13,17,19,23



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

REM REM
4-99

This statement is used to enter a remark into your source program.
_________________________________________________________

|                                                         |
|  REM info    or    ' info                    STATEMENT  |
|_________________________________________________________|

REM, or the apostrophe character, signals the compiler to ignore the rest of
the source line. Nothing included on the line after a REMark statement is
included in the compiled program.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

REPEAT REPEAT
4-100

These statements implement the typical REPEAT-UNTIL loop construct.
_________________________________________________________

|                                                         |
|  REPEAT                                      STATEMENT  |
|                                                         |
|  UNTIL exp                                   STATEMENT  |
|                                                         |
|  exp      - is any numeric expression (usually boolean) |
|_________________________________________________________|

'REPEAT-UNTIL' is a looping contruct found in some "structured" languages
such as PASCAL. As with 'FOR-NEXT', unless unusual programming techniques are
used, the loop is unconditionally executed one time. Consider the fact that
unlike many compilers EnhComp allows more than one 'UNTIL' or 'NEXT' for a
single 'REPEAT' or 'FOR' statement, respectively. Runtime program flow might
(often does) variably choose a particular 'UNTIL' or 'NEXT' to branch to,
rendering compile-time selection impossible.

The 'REPEAT' statement flags a point to loop to when the next 'UNTIL' is
encountered and its expression is non-zero. That is, a loop is made when the
expression following the 'UNTIL' is boolean TRUE (non-zero on the TRS-80).
Program execution resumes at the statement following 'UNTIL exp' if 'exp' = 0
(the loop falls through.)

Example Program:

10   INPUT"LETTER (A-Z) TO STOP FOR";S$
20   REPEAT
30   T$=CHR$(RND(26)+64)
40   PRINT T$,
50   UNTIL S$=T$

This prints a random letter until the user-selected letter is encountered.

Programming Idea #1

There is a trick that may be used to defer execution of a loop even a single
time, with either 'FOR-NEXT' or 'REPEAT-UNTIL'. The trick involves the use of
the user-defined command mechanism, and goes as such:

First a look at FOR-NEXT. The required input variables are: 1) The initial
loop index variable value, 2) the top limit, and 3) the step size. Clearly,
some of these may be deferred if desired by setting some of them to
constants. Then, define a user-command like so:

10   %LOOP0(0,10,.25): 'Will perform FOR TEST=0 TO 10 STEP .25
20   %LOOP0(10,0,1):   'Nothing will happen because 10 > 0
30   END
50   '
100  COMMAND LOOP0(IVALUE,TOPLIM,INCR)
150  '
200  IF INCR<0
300   IF IVALUE>TOPLIM THEN RETURN
400  ELSE
500   IF IVALUE<TOPLIM THEN RETURN
600  ENDIF
650  '



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

REPEAT REPEAT
4-101

700  FOR TEST = IVALUE TO TOPLIM STEP INCR
...  ...
...  NEXT

...  RETURN

...  ENDCOM

(Naturally, the line numbering is arbitrary -- they could be any other
sequential allowable numbers). 200-600 prevents the loop from being started
at all if the initial index variable value falls outside of the specified
limit.

Without a doubt you can see how to apply this idea to 'REPEAT-UNTIL' loops.
One idea: set up the user-command to accept a list of critical variables used
in the 'UNTIL' expression. Then, apply the pre-loop-check to the 'UNTIL'
expression. If zero, then RETURN, otherwise, march onwards. For example:

COMMAND LOOP1(A,B,C)
D = 64
IF (A+B) > (C+D) THEN RETURN
REPEAT
PRINT A
A = A + B
UNTIL A > (C+D)
RETURN
ENDCOM



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RESET RESET
4-102

This statement is used to turn off a pixel.
_________________________________________________________

|                                                         |
|  RESET(x,y)                                  STATEMENT  |
|                                                         |
|  x        - is a numeric expression which evaluates to  |
|             the range <0 - 127> for 64-column screens   |
|             and <0 - 159> for 80-column screens.        |
|                                                         |
|  y        - is a numeric expression which evaluates to  |
|             the range <0 - 47> for 16-row screens and   |
|             <0 - 71> for 24-row screens.                |
|_________________________________________________________|

SET, RESET, and COMPL form the set of the single-pixel-affecting graphics
commands. Note that screens that display 16 rows of 64 characters will
display 72 rows by 160 columns of graphics pixels; screens that display 24
rows of 80 characters will display 72 rows by 160 columns of graphics pixels.

SET is a standard TRS-80 BASIC command that unconditionally turns on any
selected graphics pixel on the TRS-80 screen. The RESET command turns a pixel
OFF. The COMPL command complements a selected graphics pixel, turning it ON
if it is OFF and vice versa. A function, POINT(x,y), which is related to the
pixel graphics commands is discussed in the section on functions.

The following illustrates a brief example of these graphics commands:

5    Y=23:RANDOM:CLS
10   FOR X=0 TO 127
20   SET(X,Y)
30   Y=Y+SGN(RND(3)-2)
40   IF Y<0 THEN Y=0 ELSE IF Y>47 THEN Y=47
50   NEXT
60   FOR X=0 TO 127
70   COMPL(X,23):NEXT
80   FOR X=0 TO 127
90   RESET(X,23):NEXT

The program first plots a pseudo-"mountainous" profile on the screen, pro-
ceeds to "complement" all graphics dots down the middle of the screen, and
finally resets all pixels through the middle of the screen.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RESTORE RESTORE
4-103

This statement allows you to reset the pointer of a data list.
_________________________________________________________

|                                                         |
|  RESTORE                                     STATEMENT  |
|_________________________________________________________|

DATA provides an efficient way to store many static pieces of data in a
program (such as a tax table). Executing a DATA statement does nothing as
program execution jumps over the data list. Initially, the first data item
read will be the first data item in the first DATA statement in the program.

After some data items in the list have been read, the RESTORE statement may
be used to reset the list pointer to the beginning of the table. RDGOTO can
be used to reposition the list pointer to any labeled location of the data
list. This eliminates the wasteful process of reading and discarding lists of
data to get to the desired list required in interpretive BASIC.

Example Program:

5    RDGOTO "PRIME"
10   READ TITLE$:PRINT TITLE$:PRINT:READ N
20   FOR X=1 TO N:READ A:?A,:NEXT
30   END
35   '
40   "FIB"
50   DATA The first EIGHT Fibonacci numbers in order
60   DATA 8, 1,1,2,3,5,8,13,21
70   "PRIME"
80   DATA The first NINE prime numbers in sequential order
90   DATA 9, 2,3,5,7,11,13,17,19,23



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RESUME RESUME
4-104

This statement performs an unconditional program branch.
_________________________________________________________

|                                                         |
|  RESUME addr                                 STATEMENT  |
|                                                         |
|  addr     - is a line number or a label.                |
|_________________________________________________________|

'RESUME addr' is precisely equivalent to 'GOTO addr' (see description
elsewhere in this manual). It is implemented to preserve some compatibility
with interpretive BASIC programs using this command.

INCOMPATIBILITY NOTE

The RESUME NEXT interpretive BASIC feature is not
supported by EnhComp Ver. 2.x.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RETURN RETURN
4-105

This statement is used to return from a GOSUBed subroutine.
_________________________________________________________
|                                                         |
|  RETURN                                      STATEMENT  |
|_________________________________________________________|

GOSUB is the standard BASIC command to call a subroutine. Nested GOSUBs calls
are limited only by available free stack memory.

RETURN returns from a subroutine to the next instruction following the GOSUB
invocation. Note the use of the POP command documented elsewhere.

Example Program:

10   DIM A(10),B(10):' Note that ALL arrays must be dimensioned
20   FOR X=0 TO 10:A(X)=RND(X):B(X)=RND(0):?A(X),B(X):NEXT
30   GOSUB"SORT A":'   Or: CSUB"SORT A"
40   GOSUB"PRINT A":'  Could be GOSUB 140
50   GOSUB"SORT B"
60   GOSUB"PRINT B"
70   END
80   '
100  "SORT A":'   Alternatively: JNAME"SORT A"
110  SCLEAR:KEY A(0):TAG B(0):SORT 11:RETURN
120  "SORT B"
130  SCLEAR:KEY B(0):TAG A(0):SORT 11:RETURN
140  "PRINT A"
150  FOR X=0 TO 11: PRINT A(X),B(X):NEXT:RETURN
160  "PRINT B"
170  FOR X=0 TO 11: PRINT B(X),A(X):NEXT:RETURN

This program loads arrays A() and B() with random numbers and then proceeds
to sort them individually, first on A() with B() elements "tagging along",
then on B() with A() as a TAG.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RIGHT RIGHT
4-106

This statement is used to scroll the video screen right one column.
_________________________________________________________

|                                                         |
|  RIGHT                                       STATEMENT  |
|_________________________________________________________|

'RIGHT' scrolls the entire screen right by one character, clearing the left-
most (0th) screen column.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RIGHT$ RIGHT$
4-107

This function parses the right-hand substring of a string.
_________________________________________________________

|                                                         |
|  RIGHT$(exp$,exp1)                           FUNCTION   |
|                                                         |
|  exp$     - is any string expression.                   |
|                                                         |
|  exp1     - is the number of rightmost characters to    |
|             obtain from the string.                     |
|_________________________________________________________|

RIGHT$ takes a substring away from the right. For example:

RIGHT$("ABCDEF",3) = "DEF"
RIGHT$("NE PLUS ULTRA",10) = "PLUS ULTRA"

Note that MID$ can easily simulate RIGHT$. For example:

RIGHT$(exp$,exp) is equivalent to MID$(exp$,len(exp$)-exp+1)

assuming len(exp$) >= exp.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RMARGIN RMARGIN
4-108

This statement is used to set the printer's right hand margin.
_________________________________________________________

|                                                         |
|  RMARGIN = exp                               STATEMENT  |
|                                                         |
|  exp      - is a numeric expression which evaluates to  |
|             the range <2-255>.                          |
|_________________________________________________________|

This statement sets the right hand margin on your printed page. An automatic
carriage return done when the number of characters printed is equal to the
value specified as 'exp'.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RND RND
4-109

This function obtains a random number.
_________________________________________________________

|                                                         |
|  RND(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

'RND' returns a pseudo-random number between 0 and .999999 if 'exp' = 0;
otherwise it returns an integer between 1 and 'exp'. Note that a sequence of
numbers produced by the above function is not truly random.

The 'RANDOM' statement can be used to reseed the random number generator,
further increasing randomness (or initiating a predetermined sequence for
repeatable conditions).

All calculations are done in double precision to assure high randomness and a
very long repeat cycle (which will occur eventually). The method of linear
congruence is used, as described by Knuth in the second volume of his "The
Art of Computer Programming"; this method fulfills all the usual tests of
randomness while retaining simplicity of calculation.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ROT ROT
4-110

This statement is used to establish a rotation for the 'DRAW' statement.
_________________________________________________________

|                                                         |
|  ROT = exp8                                  STATEMENT  |
|                                                         |
|  exp8     - is a numeric expression which evaluates to  |
|             the range (0-255) signifying DRAW degrees   |
|_________________________________________________________|

This statement will set the rotation offset for DRAW statements. The di-
rection is stepped in units of 256/360 degrees counter clockwise with "up"
being 0.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

ROW ROW
4-111

This function obtains the current row position of the cursor.
_________________________________________________________

|                                                         |
|  ROW(dummy exp)                              FUNCTION   |
|_________________________________________________________|

'ROW' returns the row of the cursor; equal to INT((CURSOR POSITION or
CURLOC)/(number of columns). For example,

10   PRINT@170,"Hi."
20   A = ROW(0)

assigns a 3 to 'A'.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RSET RSET
4-112

'RSET' and 'LSET' are used to set information into FIELDed string variables
for use with random access files.

_________________________________________________________
|                                                         |
|  RSET var$ = exp$                            STATEMENT  |
|                                                         |
|  var$     - is FIELDed string to which the information  |
|             is to be added.                             |
|                                                         |
|  exp$     - is the information to add.                  |
|_________________________________________________________|

'LSET' and 'RSET' are really just versions of 'MID$ ='. Their main intended
purpose is to set information into FIELDed string variables. FIELDed strings
must point to a static memory location (in a file's record buffer).

For 'LSET', var$ is overlayed starting at position 0 with exp$, filling any
remaining portion of var$ with blanks (ASCII 32). For 'RSET', var$ is
overlaid with exp$, measuring from the end of var$, filling any remaining
portion of var$ with blanks (i.e. the information is "right justified").

A standard string assignment, such as A$="MONDAY" places A$'s data in the
string storage area, which is constantly changing. LSET and RSET (and MID$)
directly alter existing a string variable's contents without changing the
string's position in memory. The main difference between MID$ and LSET/RSET
is that the latter commands fill the remaining characters in the affected
string with blanks, or CHR$(32)'s.

Note that compiled LSET and RSET, as with interpretive Disk BASIC LSET/RSET
commands, work on any string variable, not just FIELDed string variables.

Examples (in all examples A$ is 10 chars long):

LSET A$="HELLO":'             Now A$="HELLO     "
LSET A$="12345678912":'       Now A$="1234567891"
RSET A$="HELLO":'             A$="     HELLO"
LSET A$=MKD$(1.2345#):'       Now first 8 bytes of A$ contain

the floating point double
precision number 1.2345#



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

RUN RUN
4-113

'RUN' will load a '/CMD' type program from from disk and then invoke it.
_________________________________________________________

|                                                         |
|  RUN"filespec$"                              STATEMENT  |
|                                                         |
|  filespec$  - designates the file to run.               |
|_________________________________________________________|

'RUN' loads and runs a machine language program from disk. It can be any
executable program including another compiled program.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

SCALE SCALE
4-114

This is used to establish a scaling factor for the 'DRAW' statement.
_________________________________________________________

|                                                         |
|  SCALE = exp16                               STATEMENT  |
|                                                         |
|  exp16    - is a numeric expression which evaluates to  |
|             the range (-32768 to 32767)                 |
|_________________________________________________________|

This command sets the scaling factor for DRAW commands. The scaling factor is
measured in units of 1/256. Thus, a "SCALE = 256" is equal to a 1:1 size
plot. A "SCALE = 128" would be half sized.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

SET SET
4-115

This statement is used to turn on a pixel.
_________________________________________________________

|                                                         |
|  SET(x,y)                                    STATEMENT  |
|                                                         |
|  x        - is a numeric expression which evaluates to  |
|             the range <0 - 127> for 64-column screens   |
|             and <0 - 159> for 80-column screens.        |
|                                                         |
|  y        - is a numeric expression which evaluates to  |
|             the range <0 - 47> for 16-row screens and   |
|             <0 - 71> for 24-row screens.                |
|_________________________________________________________|

SET, RESET, and COMPL form the set of the single-pixel-affecting graphics
commands. Note that screens that display 16 rows of 64 characters will
display 72 rows by 160 columns of graphics pixels; screens that display 24
rows of 80 characters will display 72 rows by 160 columns of graphics pixels.

SET is a standard TRS-80 BASIC command that unconditionally turns on any
selected graphics pixel on the TRS-80 screen. The RESET command turns a pixel
OFF. The COMPL command complements a selected graphics pixel, turning it ON
if it is OFF and vice versa. A function, POINT(x,y), which is related to the
pixel graphics commands is discussed in the section on functions.

The following illustrates a brief example of these graphics commands:

5    Y=23:RANDOM:CLS
10   FOR X=0 TO 127
20   SET(X,Y)
30   Y=Y+SGN(RND(3)-2)
40   IF Y<0 THEN Y=0 ELSE IF Y>47 THEN Y=47
50   NEXT
60   FOR X=0 TO 127
70   COMPL(X,23):NEXT
80   FOR X=0 TO 127
90   RESET(X,23):NEXT

The program first plots a pseudo-"mountainous" profile on the screen, pro-
ceeds to "complement" all graphics dots down the middle of the screen, and
finally resets all pixels through the middle of the screen.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

SGN SGN
4-116

This function obtains the sign of its argument.
_________________________________________________________

|                                                         |
|  SGN(exp)                                               |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

The 'SGN' function will return -1, 0, or +1 depending on the state of its
argument.

SGN(exp) = -1 if exp < 0
SGN(exp) = 0 if exp =0
SGN(exp) = 1 if exp > 0



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

SORT SORT
4-117

These statements are associated with the built-in array sort.
_________________________________________________________

|                                                         |
|  SORT <(flag),> num                          STATEMENT  |
|                                                         |
|  SCLEAR                                      STATEMENT  |
|                                                         |
|  KEY array(exp)                              STATEMENT  |
|                                                         |
|  TAG array(exp)                              STATEMENT  |
|                                                         |
|  array(exp)  - is an array element which designates the |
|                key array for sorting purposes and the   |
|                tag array for sorting purposes.          |
|                                                         |
|  num         - is an integer numeric operand in the     |
|                range (1 to 32767) which designates the  |
|                number of elements to sort.              |
|                                                         |
|  flag        - is a numeric expression, either 0 or 1,  |
|                to specify ascending or descending sort, |
|                respectively. If 'flag' is omitted,      |
|                SORT defaults to ascending.              |
|_________________________________________________________|

The SORT statement provides an easy but relatively fast way to sort single
dimension (such as A(100), not A(40,20)) arrays using up to 32 keys and 32
"tags". 'SCLEAR' is an important SORT initialization command which must
precede your sorting specification commands.

A one-key sort is straightforward. The keyed array is sorted, either in the
default (no flag specified) ascending order, or in (flag=1) descending order.
The sort time is variable, depending on the sort data and its organization,
but a typical sort time for 1000 strings is 15 seconds.

TAGs are arrays which "tag" along with their associated keys and play no part
in SORTing. If A(0)=5, A(1)=2, and B(0)=1 and B(1)=2, then if a single key
sort on A(0)-A(1) were done with B(0)-B(1) as a tag, then the final result
would be: A(0)=2, A(1)=5, B(0)=2, B(1)=1. Array element B(0) was "linked" to
A(0) and B(1) to A(1) in the sort.

Multi-key sorts are also pretty straightforward. If identical entries are
encountered in the current-level key, then the next-level-keyed array is
sorted on, unless there are no more keys. IMPORTANT: The LAST array KEYed is
the MOST SIGNIFICANT ("primary level"). The FIRST array KEYed is the LEAST
SIGNIFICANT. Arrays are KEYed in LEAST to MOST significant order.

If the entries are not identical in the current-level key, then all lower-
level KEYed arrays are TAGged.

Multi-key sorting is demonstrated with the following sample sort data:

A(0) = 2      B(0) = 3
A(1) = 4      B(1) = 6
A(2) = 3      B(2) = 7



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

SORT SORT
4-118

A(3) = 2      B(3) = 7
A(4) = 3      B(4) = 5
A(5) = 1      B(5) = 3

Assuming that these values have been assigned, then the following:

SCLEAR:KEY B(0),A(0):SORT 6

performs the desired sort. The arrays are then:

A(0) = 1      B(0) = 3
A(1) = 2      B(1) = 3
A(2) = 2      B(2) = 7
A(3) = 3      B(3) = 5
A(4) = 3      B(4) = 7
A(5) = 4      B(5) = 6

As you can observe, array B is not in directly sorted order. It is only
within "subfields" of A, where the array elements are the same, such as A(1)
and A(2), and A(3) and A(4), that B's element are internally sorted; B(1) and
B(2), and B(3) and B(4). In all cases, array B "tagged" along with array A.
The only real distinction between TAG and KEY is that a TAGged array will
appear in arbitrary order within primary key "subfields".

The EnhComp SORT facility allows you to specify the first element of the
array for sorting to be at any point in the array. This is done implicitly
when an array is KEYed or TAGged for sorting.

Example Program:

10   CLEAR 1000:DIM A$(20)
20   FOR X=0 TO 20
30   FOR Y=1 TO RND(5)
40   A$(X)=A$(X)+CHR$(RND(26)+64)
50   NEXT Y:PRINT A$(X),:NEXT X
55   PRINT:PRINT
60   SCLEAR:KEY A$(0):SORT 21
70   FOR X=0 TO 20:?A$(X),:NEXT

This simple program generates and prints 21 random (1-5 character) length
strings, sorts them, and prints out the sorted list.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

SQR SQR
4-119

This function obtains the square root of its argument.
_________________________________________________________

|                                                         |
|  SQR(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression.                    |
|_________________________________________________________|

'SQR' returns the square root of a non-negative expression (negative square
roots are undefined in real (e.g. BASIC) numbers.) For example, SQR(4) = 2,
since 2 * 2 = 4, and SQR(81) = 9, since 9 * 9 = 81. Usually the result is NOT
a neat integer, as with SQR(7) (= approx. 2.64575). A double precision exp-
ression will cause a double precision square root to be returned, accurate to
at least 16 decimal digits.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

STOP STOP
4-120

This statement is used to terminate your program with a message and then
return to DOS.

_________________________________________________________
|                                                         |
|  STOP                                        STATEMENT  |
|_________________________________________________________|

STOP causes a transfer back to DOS via the @EXIT address similar to END. The
distinction between END and STOP is that the latter prints '-STOP-' <CR> and
the current source line number (if available) before ENDing the program.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

STR$ STR$
4-121

This function converts a numeric expression to an ASCII decimal string.
_________________________________________________________

|                                                         |
|  STR$(exp)                                   FUNCTION   |
|                                                         |
|  exp      - is any numeric expression                   |
|_________________________________________________________|

STR$ is used to expand a binary number into its ASCII decimal equivalent. For
example:

STR$(1.2+4.5)=" 5.7"

Notice the leading blank appearing in the string. The converted strings of
all non-negative expressions will have such a leading blank. Negative
expressions have a minus sign, "-", instead of a space.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

STRING$ STRING$
4-122

This function generates a repeated character string.
_________________________________________________________

|                                                         |
|  STRING$(exp1,exp2)                          FUNCTION   |
|                                                         |
|  STRING$(exp1,"char")                        FUNCTION   |
|                                                         |
|  exp1     - is equal to the desired string length.      |
|                                                         |
|  exp2     - is equal to a code in the range <0-255>     |
|                                                         |
|  "char"   - is a single character.                      |
|_________________________________________________________|

STRING$ is a convenient way to make long strings of the same selected char-
acter. For example:

STRING$(10,45) = "----------"
STRING$(5,".") = "....."



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

SWAP SWAP
4-123

'SWAP' is used to exchange the contents of two similarly typed variables.
_________________________________________________________

|                                                         |
|  SWAP var1,var2                              STATEMENT  |
|                                                         |
|  var      - is any variable                             |
|_________________________________________________________|

SWAP exchanges the values of two variables of the same type. If A$="FIRST"
and B$="SECOND" then SWAP A$,B$ leaves A$ with "SECOND" and B$ with "FIRST".



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

SZONE SZONE
4-124

This statement is used to set the video screen print zones.
_________________________________________________________

|                                                         |
|  SZONE(pos 1,...,pos n)                      STATEMENT  |
|  SZONE(*)                                               |
|                                                         |
|  pos      - is a numeric expression between <0 and 63>  |
|             which designates screen tab positions.      |
|_________________________________________________________|

SZONE sets up default TAB positions for the "," modifier in PRINT statements
and (equivalently) TAB(255) statements. SZONE(*) clears all print stops. See
program below for sample SZONE usage.

10   SZONE(*): 'Clear all tab stops
12   '
15   'Set up TAB stops in multiples of 8 spaces
17   '
20   FOR X=0 TO 63 STEP 8:SZONE(X):NEXT
30   FOR X=0 TO 30:PRINT X,:NEXT:' Could be PRINT X TAB(255)...

Once line 20 sets up stops, line 30 sample prints 0 through 30 showing the
new tab stop intervals.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

TAN TAN
4-125

This function obtains the trigonometric tangent of its argument.
_________________________________________________________

|                                                         |
|  TAN(exp)                                    FUNCTION   |
|                                                         |
|  exp      - is a numeric expression in radian measure.  |
|_________________________________________________________|

TAN returns the radian degree tangent of an expression, mathematically equi-
valent to SIN(exp)/COS(exp). It will return a double precision value if given
one.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

TIME$ TIME$
4-126

This function returns the system time as a string.
_________________________________________________________

|                                                         |
|  TIME$          There is no operand          FUNCTION   |
|_________________________________________________________|

The system time is returned as an eight-character string of the form,
HH:MM:SS.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

TROFF/TRON TROFF/TRON
4-127

These statements are used to provide for runtime program trace information.
_________________________________________________________

|                                                         |
|  TROFF                                                  |
|                                                         |
|  TRON                                                   |
|_________________________________________________________|

TRON acts similarly to interpretive BASIC TRON. It prints source line numbers
(if available) after each statement is executed, not at just at the beginning
of a source line. TROFF turns program trace off.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

TYPE TYPE
4-128

This function obtains the type code of its argument.
_________________________________________________________

|                                                         |
|  TYPE(exp)                                   FUNCTION   |
|                                                         |
|  exp      - is a numeric or string expression.          |
|_________________________________________________________|

'TYPE' returns the variable type code of the expression. These type codes are
as follows:

Variable Type    Code
----------------  ----
Integer             1
Single precision    2
double precision    4
string              3

Arrays are slightly more complex. The type is equal to:

128 + (16 * dimension #) + vartype

where vartype is one of the standard variable type codes listed above. So,
TYPE(A$(0)) = 128 + 16 * 1 + 3 = 147. Note that the array index ('0') is
arbitrary; it need only be within the dimensioned range.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

UP UP
4-129

This statement is used to scroll the video screen up one line.
_________________________________________________________

|                                                         |
|  UP                                          STATEMENT  |
|_________________________________________________________|

'UP' scrolls the entire screen up by one line, clearing the bottom line. This
is equivalent to the "standard" screen scroll.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

USING USING
4-130

This function is used to define formatted PRINT output.
_________________________________________________________

|                                                         |
|  USING format$;explist                       FUNCTION   |
|                                                         |
|  format$  - is the format control string.               |
|                                                         |
|  explist  - is the expression list.                     |
|_________________________________________________________|

The EnhComp 'USING' string function is derived from BASIC's, 'PRINT USING',
which works equivalently compiled (= PRINT exp$). The ability to store and
manipulate 'USING' formatted data with string handling instructions makes
this implementation much more versatile than the PRINT USING scheme.

USING's input is any mix of numeric and string expressions coupled with a
string that controls the format of the output string. This format string is a
concatanation of individual expression field specifiers. A complete list of
field specifiers is given below.

USING processes the expressions one by one in a left to right manner,
building up its output string as it processes each expression. For each
expression processed, a field specifier in the format string expression is
needed. Should the end of the format string be reached, the field specifier
pointer is reset back to beginning of the format string. So:

USING "###.##";1.5555,2.6666,3.9999

causes the format string "###.##" to be "recycled" three times.

An error will occur if a string field specifier is tried on a numeric
expression, and vice-versa.

Examples:

USING "###.##";3.157                   =  "  3.16"
USING "**####.##";1.45                 =  "***1.45"
USING "####.####";1.23456              =  "   1.2346"
USING "$$###.##";19.95                 =  " $19.95"
USING "$$##.##";19.95                  =  "$19.95"

Assume X=7 in following examples:

USING "###.##";1.23,5.67,X*10          = "  1.23  5.67 70.00"
USING "! ! !";"ALPHA","BETA","CANDY"   = "A B C"
USING "### ###.# ##.##";9.95,9.95,9.95 = " 10  10.0  9.95"
USING "##.## ##.# ";4.556,X*1.5,91.499 = "4.56 10.5 91.50"
USING "###.##-";15.69                  = " 15.69"
USING "###.##-";-15.69                 = " 15.69-"



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

USING USING
4-131

The complete field specifier list is as follows:

_________________________________________________________
|                                                         |
|                   Field Specifier List                  |
|                                                         |
|  ------------------ Numeric Formats ------------------  |
|   Spec.   Purpose / definition       Example            |
|  -------  -------------------------  -----------------  |
|    #      One digit per # in field   ###:  3 digits,    |
|                                      round to nearest   |
|                                      integer            |
|                                                         |
|    .      Decimal point position     ##.##: 2 digits    |
|                                      to left of dec.    |
|                                      point, round to    |
|                                      nearest hundredth  |
|                                                         |
|    +      Print leading/trailing     +###.##            |
|             sign (either + or -)     ###.##+            |
|                                                         |
|    -      Print trailing sign only   ####.##-           |
|           if negative                                   |
|                                                         |
|    **     Fill unused digits with    **###.##           |
|           asterisks instead of                          |
|           blanks                                        |
|                                                         |
|    $$     Put dollar sign at         $$#####.##         |
|           immediate left of                             |
|           number                                        |
|                                                         |
|    **$    Dollars sign at left of    **$###.##          |
|           number and unused digits                      |
|           filled with asterisks                         |
|                                                         |
|    ^^^^   Format output in                              |
|           scientific notation        ###.####           |
|                                                         |
|  ------------------ String Formats -------------------- |
|   Spec.   Description                Example            |
|  -------  -------------------------  ------------------ |
|     !     First character of string  "!";"ABC" = "A"    |
|           expression                                    |
|                                                         |
|  %blanks% Include 2+# of blanks      "% %";"ABCDE" =    |
|           length substring of                    "ABC"  |
|           string expression                             |
|_________________________________________________________|



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

VAL VAL
4-132

This function obtains the numeric value of the decimal number encoded in its
string argument.

_________________________________________________________
|                                                         |
|  VAL(exp$)                                   FUNCTION   |
|                                                         |
|  exp$     - is a string expression.                     |
|_________________________________________________________|

VAL converts an ASCII encoded decimal number to binary floating point or int-
eger numeric format. For example:

A$ = "1.234": B$ = "4.5555555#": C$ = "156"
A = VAL(A$): B = VAL(B$): C = VAL(C$)

sets 'A' equal to 1.234, 'B' equal to 4.55555 (truncated down to single pre-
cision from double precision), and 'C' equal to 156.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

VARPTR VARPTR
4-133

This function obtains the absolute memory address of its argument.
_________________________________________________________

|                                                         |
|  VARPTR(var)                                 FUNCTION   |
|                                                         |
|  var      - is any numeric or string variable or array  |
|             element.                                    |
|_________________________________________________________|

'VARPTR' is used to directly access variable data stored in memory. It
returns the address of the first byte of a variable's contents. For example,
supposing that the "LEN" function didn't exist. Then:

10    A$ = "ENHCOMP"
20    PRINT "LEN(A$) = ";!SLEN(A$)
30    END
100   FUNCTION SLEN(T$)
110   RETURN WPEEK(VARPTR(T$))
120   ENDFUNC

is a good example of creating a new function to fit a need (if LEN wasn't
already supported). Note the use of the exclamation point which precedes the
function's invocation. This is required by EnhComp for user defined functions
and is explained in the section on FUNCTION-ENDFUNC.

VARPTR(T$) returns the address to the start of T$'s control block; which is
in the form: LB LEN  HB LEN  LB PNTR HB PNTR. WPEEK(VARPTR(T$)) returns the
entire 16 bit length -- without WPEEK, it would be: PEEK(VARPTR(T$)) + 256 *
PEEK(VARPTR(T$)+1), considerably nastier.

A variation on the use of VARPTR is the use of an array's name without a sub-
script to return the address of the array's Data Control Block (DCB). This is
denoted as:

_________________________________________________________
|                                                         |
|  arrayname()                                            |
|_________________________________________________________|

Arrayname() returns the address of the array's DCB.

For example:
TRIALS(), A(), ....

See the "Technical Section" for details on Data Control Block formats.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

WINKEY$ WINKEY$
4-134

This function will wait for a keyboard entry and return the value of the key
which is pressed.

_________________________________________________________
|                                                         |
|  WINKEY$                                     FUNCTION   |
|_________________________________________________________|

INKEY$ returns the last key pressed. WINKEY$ waits for a key to be pressed
and then returns it as INKEY$, a one character string.

Example Program:

10   PRINT"Press any KEY to continue, <ENTER> to loop"
20   A$=WINKEY$:IF A$=CHR$(13) THEN 10
30   PRINT"Exiting program"
40   END



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

WPEEK WPEEK
4-135

This function obtains the two-byte "word" stored at the specified memory
address.

_________________________________________________________
|                                                         |
|  WPEEK(exp16)                                FUNCTION   |
|                                                         |
|  exp16    - represents a memory address in the range    |
|             <-32768 to 32767>.                          |
|_________________________________________________________|

'WPEEK' effectively "peeks" two bytes at a time, forming a word in standard
CPU format. The precise formula is:

WPEEK(exp) = PEEK(exp) + 256 * PEEK(exp+1)

WPEEK is useful for getting 16-bit memory addresses. For example, on the TRS-
80 Model I/III:

V = WPEEK(&H401E)

assigns V to the memory address of the screen character print driver routine.

The corresponding poking statement, 'WPOKE', is described elsewhere in this
manual.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

WPOKE WPOKE
4-136

This statement is used to poke a word into a memory location.
_________________________________________________________

|                                                         |
|  WPOKE exp16,exp16                           STATEMENT  |
|                                                         |
|  exp16    - specifies a memory address in the range     |
|             <-32768 to 32767>.                          |
|_________________________________________________________|

WPOKE allows direct modification of any RAM location in memory. WPOKE "pokes"
two bytes at a time in conventional low order/high order format into the
specified address.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

XFIELD XFIELD
4-137

The 'XFIELD' statement is used to assign the segments of a type "X" file
record buffer to strings.

_________________________________________________________
|                                                         |
|  XFIELD blknum,var,(exp)var$,...             STATEMENT  |
|                                                         |
|  blknum   - is file control block number, 1-15.         |
|                                                         |
|  var      - is any non-string variable.                 |
|                                                         |
|  exp      - is the maximum length of the following      |
|             string variable, var$.                      |
|                                                         |
|  var$     - is any string variable.                     |
|_________________________________________________________|

XFIELD is used to define the record structure of "X" type files. It fields
the record buffer into segments accessable by string variables, providing a
means to read and write information in an orderly manner from or to any
record in the file.

For the variables specified in the variable list, integers take 2 bytes to
store, single precision 4 bytes, double precision 8 bytes, and strings take
the specified maximum length (given in the expression in parentheses
preceding the string variable name) plus 2 bytes for the string length.

One advantage of using the extended file format is that the string length is
saved at the time of the write and a subsequent 'GET' of that record will
restore the string of the same length. This is unlike conventional FIELDs
which pad unused characters with blanks. Note that if the string length
exceeds the maximum given by 'exp', only the maximum number of characters in
the string will be saved; all characters past that point will not be saved to
the file.

The maximum record permissable in XFIELDed type files is 32767. Here is a
sample XFIELD statement:

XFIELD 2,A%,B#,(16)INV$

Any subsequent 'PUT' statements (PUT bufnum,recnum) will write the current
value of the variables A%, B#, and INV$ into the specified record.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Technical Information
5-1

5 Technical Information

5.1 Variable names

Variable names are limited to the character set <A-Z>, <0-9>, and <@>. The
first letter of the name must be an alphabetic character, <A-Z>. Variable
names can be any length and are unique for their entire length. Thus, the
following are all distinct variables: ABC, ABCDEF, AB123.

The only restrictions on variable names are that you cannot use the name of a
BASIC STATEMENT or FUNCTION as the name of a variable. The BASIC STATEMENT
names and FUNCTION names may appear as substrings of a variable name. This is
permitted since all variable names must be separated from the "text" adjacent
to the name by either a <SPACE> or a character not permitted as a variable
name (i.e., ";", ":", etc).

5.2 Variable TYPE designations

As is standard with versions of Microsoft BASIC, the following characters can
be used as a variable name suffix to designate the variable as being of the
specific type identified.

Type Char   Variable Type Identified
%           Integer variable
!           single precision floating point variable
#           double precision floating point variable
$           string variable

Variables may also be declared as being of a designated type by belonging to
the operand class of a DEFINT, DEFSNG, DEFDBL, or DEFSTR statement.

5.3 Variable storage format

The following information describes the control block of arrays and the data
storage format of the four supported variable types. A pointer to the control
block (for arrays) or the data area (for scalers) is returned by the VARPTR
function or its array counterpoint, "arrayname()".

Array Data Control Block   Description of contents
DCB+0                      number of dimensions
DCB+1                      array type: 1=integer,
                           2=single prec, 3=string,
                           4=double precision.
DCB+2&3                    Pointer to data area
DCB+4&5                    Number of data entries
DCB+6&7 on up              size of each dimension

Integer Storage Format     Description of contents
LSB HSB                    Value of the integer, 2-bytes

Single Precision Format    Description of contents
LSB MSB HSB EXP            Value of the single, 4-bytes

Double Precision Format    Description of contents
LSB MSB ... MSB HSB EXP    Value of the double, 8-bytes



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Technical Information
5-2

String Control Block       Description of contents
DCB+0&1 (LSB MSB)          Length of string
DCB+2&3 (LSB MSB)          Pointer to the stored strin g

5.4 Precision of math library

The math library supports operations using integers, single precision
floating point variables and numbers, and double precision floating point
variables and numbers. All supplied functions support both single and double
precision arguments. This means that the result of functions such as LOG,
EXP, COS, etc., is the precision of the argument used (single or double).

The range and precision of the three numeric types is as follows:

number type   range                 precision
-----------   -------------------   ------------
integer       -32768 to 32767       5 digits
single prec   -1.7e+38 to 1.7e+38   6-7 digits
double prec   -1.7d+38 to 1.7d+38   15-16 digits

5.5 File buffer allocation

For each file buffer designated via the ALLOCATE statement, 592 bytes of
memory will be provided. This memory is utilized as follows:

Buffer offset   Intended use
-------------   ----------------------------------------
0               File type: "X", "I", "O", or "R"
                 ("E" is converted to "O")
1               Record length of non-"X" file modes
2-  3           Record number of last PUT or GET
4               Unused
5               Internal buffer offset
6-  7           Unused
8-  9           Record length of "X" f ile mode
10- 11          Pointer to XFIELD data if "X" file mode
12- 13          Last file record number accessed
14              CLOSE flush flag ( <>0 = flush )
15              Unused
16- 79          System's File Control Block
80-335          File's 256-byte I/O buffer
336-592         File's user record buffer



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Technical Information
5-3

5.6 Support Subroutine Descriptions

The most commonly used routines in a compiled program are in the library
SUPPORT/DAT file; when required, individual support subroutines are appended
onto a compiled program as needed. The routines extracted from the library
and compiled into your program are identified during compilation by the
numbers following the message:

APPENDING SUPPORT SUBS

The following list notes the general function of each support subroutine.
This list is provided only to help you in understanding the subroutine
numbers which follow the above stated message. It is beyond the scope of this
manual to provide detailed instructions on interfacing to these routines at
the assembly language level.

000 - I/O, Interpret code stream, error trapping.
001 - POP stacked operands and set up for math routines.
002 - Floating point addition.
003 - Print evaluated expression.
004 - POP operand and place in the math memory accumulator.
005 - Floating point multiplication.
006 - Floating point division.
007 - Floating point subtraction.
008 - Arithmetic OR (integers).
009 - Arithmetic AND (integers).
010 - Compare the last two stacked operands for less than.
011 - Compare the last two stacked operands for greater than.
012 - Compare the last two stacked operands for equality.
013 - Arithmetic XOR (integers).
014 - Convert the word on the stack to an integer number.
015 - Interface to the @DATE and @TIME DOS functions.
016 - Load the following string literal onto the string stack.
017 - This performs the NEXT command of BASIC.
018 - Specified variable read from current DATA statement.
019 - The two topmost strings on the string stack are concatanated.
020 - "MID$( exp$, A, B)".
021 - Load the following string variable onto the string stack.
022 - Transfers stacked string to string variable.
023 - Handles "ON exp GOTO/GOSUB".
024 - Allocate temporary string space.
025 - Check the stack pointer for SP < (PRGTOP)+256.
026 - Test exp1$ <> exp2$.
027 - "RIGHT$(exp$,exp)".
028 - "LEFT$(exp$,exp)".
029 - "STRING$(exp1,exp2)".
030 - "STRING$(exp,exp$)".
031 - "CHR$".
032 - "INKEY$"
033 - ">=", numeric
034 - "<=", numeric
035 - "=", string
036 - ">", string
037 - "<", string
038 - ">=", string
039 - "<=", string
040 - "LEN", numeric



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Technical Information
5-4

041 - Resolve array varptr.
042 - DIMension an array.
043 - "INPUT" accessory subroutine.
044 - "LINEINPUT" accessory subroutine.
045 - Performs "TAB(n)".
046 - Transfer resident math RAM accumulator to stack.
047 - Prints the integer number contained in HL.
048 - CVD executor.
049 - CVS executor.
050 - CVI executor.
051 - MKD$ executor.
052 - MKS$ executor.
053 - MKI$ executor.
054 - Handles "BIN$(exp)".
055 - Handles "HEX$(exp)".
056 - "<>" routine, numeric.
057 - LSET executor.
058 - RSET executor.
059 - Handles "OPEN type$,bufnum,filespec$<,reclen>".
060 - GET executor.
061 - PUT executor.
062 - unused.
063 - unused.
064 - unused.
065 - Performs all graphics commands.
066 - Handles "VAL(var$)".
067 - Handles "STR$(exp)".
068 - "USING" string function.
069 - "WINKEY$" function.
070 - "INSTR" function.
071 - "END" routine.
072 - Miscellaneous I/O subroutines.
073 - "PRINT#" setup.
074 - "CLOSE" routine.
075 - Reinitializes video output.
076 - "LINEINPUT#" routine.
077 - "LOF" routine.
078 - "EOF" routine.
079 - File manipulation: LOAD, RUN, KILL, EXISTS, SYSTEM
080 - STOP executor.
081 - "INPUT#" routine.
082 - Sets up current buffer and associated variables.
083 - "LOC" executor.
084 - Resolves DCB pointer given a filespec$ or beffer expression.
085 - Handles "MID$(var$,startpos<,maxfill>) = exp$".
086 - "POSFIL" assertor subroutines.
087 - SORT routine.
088 - Performs "PRINT,"; effectively TAB(255).
089 - Single/double precision math routines.
090 - Handles "ERROR exp".
091 - Pushes defined function/command local variables onto the stack.
092 - Supports command/function.
093 - Restores local variable values.
094 - Handles "PRINT <CR>".
095 - internal support code.
096 - Handles "PRINT@".
097 - Creates a clean string list entry.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Technical Information
5-5

098 - "USING" initialization.
099 - "USING" post processing.
100 - "FRE(var$)" executor.
101 - "RANDOM" executor.
102 - "RANDOM exp" executor.
103 - "ROW" function executor.
104 - "ASC" function executor.
105 - "LPRINT" initialization.
106 - "SWAP" executor.
107 - "KEY" executor.
108 - "TAG" executor.
109 - "SCLEAR" executor.
110 - "INP" executor.
111 - "PEEK" executor.
112 - "WPEEK" executor.
113 - "CURLOC" executor.
114 - "POS" executor.
115 - "ABS" executor.
116 - "ATN" executor.
117 - "CDBL" executor.
118 - "CINT" executor.
119 - "COS" executor.
120 - "CSNG" executor.
121 - "ERL" executor.
122 - "ERR" executor.
123 - "EXP" executor.
124 - "FIX" executor.
125 - "INT" executor.
126 - "SZONE/PZONE" executor.
127 - "LOG" executor.
128 - "MEM" executor.
129 - "RND" executor.
130 - "SGN" executor.
131 - "SIN" executor.
132 - "SQR" executor.
133 - "TAN" executor.
134 - "UNTIL" executor.
135 - a Z-80 "RET" instruction.
136 - integer "LET".
137 - Handles "var1^var2".
138 - "NOT" executor.
139 - "BRL" executor.
140 - Negate the value contained in the math memory accumulator.
141 - "CLS" executor.
142-166 - Various routines which deal with floating point stack operations.
167 - unused.
168 - "ALLOCATE" executor.
169 - "FIELD" executor.
170 - "IF" executor.
171 - "XFIELD" executor.
172 - unused.
173 - "GOTO" executor.
174 - "GOSUB" executor.
175 - Load the "READ" pointer.
176 - "RETURN" executor.
177 - "POP" executor.
178 - Load BASIC line number with the following word.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Technical Information
5-6

179 - internal use.
180 - "OUT" executor.
181 - "DEC" an integer variable.
182 - "DEC" an integer array element.
183 - "INC" an integer variable.
184 - "INC" an integer array element.
185 - Handler for INVERT, LEFT, RIGHT, UP, and DOWN.
186 - Handles setting of ROTation and SCALE.
187 - unused.
188 - used internally.
189 - Handles TRON, TROFF, BRKON, and BRKOFF.
190 - internal CINT.
191 - strobes keyboard for <BREAK>; performs TRON display.
192 - load integer variable to math memory accumulator.
193 - load single precision variable to math memory accumulator.
194 - load double precision variable to math memory accumulator.
195 - zero the math memory accumulator.
196 - load integer number to math memory accumulator.
197 - load single precision number to math memory accumulator.
198 - load double precision number to math memory accumulator.
199 - load integer array element to math memory accumulator.
200 - load single precision array element to math memory accumulator.
201 - load double precision array element to math memory accumulator.
202 - equate integer variables.
203 - equate single precision variables.
204 - equate double precision variables.
205 - equate integer variable with integer array element.
206 - equate single precision variable with integer array element.
207 - equate double precision variable with integer array element.
208 - equate integer array elements.
209 - equate single precision array elements.
210 - equate double precision array elements.
211 - equate integer array element with integer variable.
212 - equate single precision array element with integer variable.
213 - equate double precision array element with integer variable.
214 - load integer variable to stack.
215 - load single precision variable to stack.
216 - load double precision variable to stack.
217 - numeric integer "LET".
218 - numeric single precision "LET".
219 - numeric double precision "LET".
220 - load integer array element to stack.
221 - load single precision array element to stack.
222 - load double precision array element to stack.
223 - integer array element "LET".
224 - single precision array element "LET".
225 - double precision array element "LET".
226 - integer "FOR" initialization.
227 - single precision "FOR" initialization.
228 - double precision "FOR" initialization.
229 - push current code pointer for "REPEAT".
230 - Handles "POKE exp1,exp2".
231 - Handles "WPOKE exp1,exp2".
232 - Begin execution of Z-80 code.
233-255 - unused.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

EnhComp Z80 Assembler
6-1

6 EnhComp Z80 Assembler Introduction

EnhComp, on top of being of a full BASIC compiler, is also a full Z80
assembler, with special numeric functions to return the VARPTR of a BASIC
variable and the absolute memory pointer to the beginning of any line. No
list of Z80 instructions is given here. It is assumed that as an experienced
Z80 programmer, you already have at least one such list.

6.1 Z80 Source Code Inclusion in Programs

Z80 assembly language can be inserted at any point in the source program. The
Compiler Directive 'Z80-MODE' switches the language context to Z80 mode.

Essentially, in Z80 mode, standard Z80 mnemonics take the place of BASIC in-
structions. Most standard Z80 assembler pseudo-ops, such as DEFB, are sup-
ported. As with BASIC instructions, multiple statements can be placed on a
single line, separated by ':'s. This is a typical example of a combination
BASIC / Z80 program:

10 DEFINT X
20 FOR X=0 TO 255
30 GOSUB "SCREEN"
40 NEXT
50 END
55 '
60 Z80-MODE
70 "SCREEN"
80 LD HL,3C00H:LD DE,3C01H:LD BC,03FFH
90 LD A,(&(X)):LD (HL),A:LDIR
100 HIGH-MODE
105 '
110 PRINT@0,X:RETURN

This sample program fills the Model I or III screen memory with every ASCII
code, with each ASCII code number printed in the upper left hand corner. Its
speed is rather impressive for a "BASIC" program.

Line 60 switches the compilation context to Z80 AL
Line 70 defines a label, 'SCREEN'.
Lines 80-90 define the Z80 subroutine itself.
Line 100 switches the compilation context back to BASIC.



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

EnhComp Z80 Assembler
6-2

6.2 Assembler Expression Evaluation

Expressions are evaluated algebraically. '4+START*10H' is evaluated as
'START*10H plus 4', not in the linear fashion of '(4+START)*10H'.

The following table describes the available assembler binary operators in
algebraic priority order (top to bottom = highest to lowest):

____________________________________________________________
|                                                            |
|   "<"      exp1 < exp2    Exp1 shifted left 'exp2' times   |
|   ">"      exp1 > exp2    Exp2 shifted right 'exp2' times  |
|   ".MOD."  exp1.MOD.exp2  Integer remainder of exp1/exp2   |
|                                                            |
|   "*"      exp1 * exp2    Product of exp1, exp2            |
|   "/"      exp1 / exp2    Qoutient of exp1, exp2           |
|                                                            |
|   "+"      exp1 + exp2    Sum of exp1, exp2                |
|   "-"      exp1 - exp2    Exp1 minus exp2                  |
|                                                            |
|   ".OR."   exp1.OR.exp2   Bit logical "OR" of exp1, exp2   |
|   ".AND."  exp1.AND.exp2  Bit logical "AND" of exp1, exp2  |
|   ".XOR."  exp1.XOR.exp2  Bit logical "XOR" of exp1, exp2  |
|                                                            |
|   Boolean Operators -- return -1 if true, else 0           |
|     ('if' = 'if and only if'. All have equivalent          |
|      weights and less priority than any of the above       |
|       operators)                                           |
|                                                            |
|   ".EQ."   exp1.EQ.exp2   TRUE if exp1 equals exp2         |
| or ".=."                                                   |
|                                                            |
|   ".NEQ."  exp1.NEQ.exp2  TRUE if exp1 DOES NOT equal exp2 |
| or ".<>."                                                  |
|                                                            |
|   ".LT."   exp1.LT.exp2   TRUE if exp1 less than exp2      |
| or ".<."                                                   |
|                                                            |
|   ".GT."   exp1.GT.exp2   TRUE if exp1 greater than exp2   |
| or ".>."                                                   |
|                                                            |
| ".LTEQ."  exp1.LTEQ.exp2  TRUE if exp1 is less than or     |
| or ".<=."                   equal to exp2                  |
|                                                            |
| ".GTEQ."  exp1.GTEQ.exp2  TRUE if exp1 is greater than or  |
| or ".>=."                   equal to exp2                  |
|____________________________________________________________|



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

EnhComp Z80 Assembler
6-3

The following table describes the allowable numeric operand bases:
____________________________________________________________

|                                                            |
|   No suffix:     Base 10 = Decimal = Regular number        |
|                                                            |
|   "V" suffix:    Base 2  = Binary                          |
|                  ex: 1011V = 11 decimal                    |
|                                                            |
|   "H" suffix:    Base 16 = Hexadecimal                     |
|                  ex: 4000H = 16384 decimal                 |
|                                                            |
|   "O" suffix:    Base 8  = Octal                           |
|                  ex: 50O = 40 decimal                      |
|____________________________________________________________|

The following table describes the assembler Pseudo-Ops supported:
____________________________________________________________

|                                                            |
|   DEFB / DEFM / DB / DM exp8 or 'textstring'               |
|                           (multiple operands allowed:      |
|       Define byte(s)       separate with commas.           |
|                            Example: DB 'PLAYER 1',13)      |
|                                                            |
|   DEFW / DW  exp16 <,exp16,...>                            |
|       Define word(s)                                       |
|                                                            |
|   DEFS exp16                                               |
|       Leave 'exp16' bytes untouched                        |
|                                                            |
|   DEFF exp16 <,exp8>                                       |
|       Fill 'exp16' bytes with 00H. Optionally fill with    |
|       'exp8' if given                                      |
|                                                            |
|   ORG exp16   and    DISORG                                |
|       Start a separate machine language load block         |
|       with starting load address given by exp16.           |
|       The "current" load address is saved. DISORG          |
|       terminates the separate load block and               |
|       re-establishes the old program counter so that       |
|       normal compilation can continue. NOTE: Only the      |
|       last PC is saved; nested ORGs are NOT advised.       |
|                                                            |
|       Ex.:  ORG 401EH:DW ALTVID:DISORG                     |
|             ' Re-vector video char. display routine        |
|____________________________________________________________|

The following table defines the EnhComp support of non-standard Z80 assembler
instructions.

____________________________________________________________
|                                                            |
|   DUPI operand       ("operand = operand*2 + 1")           |
|                                                            |
|       where operand is any of:  -- r8 (A,B,C,D,E,H,L)      |
|                                    (HL), (IX+d), (IY+d)    |
|____________________________________________________________|



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the REF/CMD Utility
7-1

7 Invoking the REF/CMD utility

The REF utility provides a printed reference of memory use for five aspects
of your program: variables, user defined functions, user defined commands,
symbols and labels, and source line numbers. The listings are generated from
the reference data file created by the compiler when the "WD" compiler
directive is invoked.

The general format of a REF/CMD invocation is:

_______________________________________________________
|                                                       |
|  REF filespec<,-V-L>                                  |
|                                                       |
|  filespec      - is the reference data filespec.      |
|                  The extension defaults to '/DAT'.    |
|                                                       |
|  -V            - optional switch to direct the REF    |
|                  output to the video screen.          |
|                                                       |
|  -L            - optional switch to generate the      |
|                  symbol/label table. The default is   |
|                  to suppress the symbol/label tabel.  |
|_______________________________________________________|

The two command switches, "-V" and "-L", are optional. If either or both is
entered, a comma must immediately follow the reference filespec. The "-V"
switch is used to have the reference output appear on the video screen
instead of the printer. The "-L" switch is used to have the "symbol/label"
table included in the reference output.

The following represents excerpts from a given reference report. Note that
all tables are alphabetized for easy reference. The five possible reports
will each start on a new page. The first report will list all BASIC
variables, identify each variable as to its type, and then list the starting
memory address used to store the variable's value. A sample report is:

CROSS REFERENCE REPORT using CHEBYCO:4, --- VARIABLE LIST page 1.1

! = SINGLE, % = INTEGER, # = DOUBLE, $ = STRING

A! : 5FD1H      A$ : 5F99H      A1# : 6055H     A2# : 604DH
A3# : 6045H     AP# : 5FD5H     B#(1#) : 5FA9H  BP# : 5FDDH
C#(1#) : 5FA1H  CN# : 60B9H     CP# : 5FE5H     CS# : 60C1H
H$ : 5F9DH      I! : 60A1H      J! : 6029H      K! : 600DH
L! : 60A5H      N! : 6005H      N1! : 6039H     N2! : 6009H
NC! : 6065H     NT! : 6035H     P# : 6099H      PA#(1#) : 5FC9H
PA# : 60E1H     RHO# : 6091H    RT# : 60D9H     S# : 602DH
S1# : 60A9H     S2# : 60B1H     SF# : 5FF5H     SP# : 5FEDH
ST# : 603DH     SUM# : 6011H    T#(1#) : 5FC1H  T1#(1#) : 5FB1H
T1# : 60C9H     T2# : 60D1H     TN#(1#) : 5FB9H W# : 5FFDH
X# : 6019H      X1# : 6069H     X2# : 6021H     X3# : 6071H
XA# : 6089H     XF# : 6079H     XG# : 6081H     Z1# : 605DH



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the REF/CMD Utility
7-2

The second report lists any functions which have been defined in your
program. The type of the function is listed as well as the memory address of
the function. This will look like the following:

USER DEFINED FUNCTION LIST ------------------------- page 2.1

! = SINGLE, % = INTEGER, # = DOUBLE, $ = STRING

N$ : 5230H

The third report identifies any user-defined commands. It will list the
command name followed by the memory address of the command. If your program
has no user-defined commands, the report will look like the following:

USER DEFINED COMMAND LIST -------------------------- page 3.1

NO USER DEFINED COMMANDS

If you specify the "-L" switch, then the fourth report will generate a table
of all symbols and labels used in the program being referenced. This will
include all global symbols of SUPPORT/DAT library routines as well. Thus, the
normal mode of REF/CMD is to suppress this report. If you do request it, it's
listing will be like the following (truncated for brevity):

SYMBOL/LABEL LIST ---------------------------------- page 4.1

@@ALLOC = 65ECH @@BRKVEC = 65EAH                @@BRL = 658AH
@@BUFADR = 65BDH                @@C8 = 7DFAH    @@CF = 87DFH
@@CLRNUM = 65E4H                @@CP = 87CDH    @@CT = 87CCH
@@CURBUF = 65DEH                @@DG = 87E1H
@@DIGBUF = 7E06H                @@DIGPNT = 7E02H
@@DPPNT = 7E04H @@DRWRTE = 65D5H
@@DTSINE = 87B9H                @@DX2SINE = 87B1H
@@EDIT = 87C5H  @@EF = 87E2H    @@ENDJUMP = 65DBH
@@ERL = 65E1H   @@ERR = 65E3H   @@ERRVEC = 65DFH

SYMBOL/LABEL LIST  con't --------------------------- page 4.2

@SR34 = 7096H   @SR4 = 6903H    @SR45 = 736FH   @SR45A = 7374H
@SR46 = 73DAH   @SR47 = 740BH   @SR71 = 7467H   @SSPSV = 65F1H
@SSRVECTBL = 6127H              @SSUB = 76AAH   @START = 65EFH
@STEMPNT = 6597H                @STRCMP = 6E16H
@STRCMPS = 6E38H                @STRPNT = 6889H @TCHK = 8517H
@TMERR = 6467H  @TRSTR = 6CA2H  @TRSTRL = 6CAAH
@TSTLNE = 8AEDH @WRCUR = 60EEH  @X2SINE = 8225H @ZTOP = 7478H
SLPNT1 = 6F19H  SLPNT2 = 6F1BH

The last table generated lists each BASIC source line number followed by the
memory address of the compiled line. This looks like the following (again
abbreviated for brevity):

SOURCE LINE ADDRESS LIST --------------------------- page 5.1

00100 : 521DH   00110 : 5229H   00120 : 5240H   00130 : 5245H
00140 : 527EH   00150 : 52B3H   00160 : 52CEH   00170 : 52D3H
00180 : 5302H   00190 : 5338H   00200 : 536BH   00210 : 53A2H
00220 : 53A7H   00230 : 53ABH   00240 : 53DFH   00250 : 53F7H



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Using the REF/CMD Utility
7-3

00260 : 5430H   00270 : 5467H   00280 : 549AH   00290 : 54DEH
00300 : 54EEH   00310 : 5511H   00320 : 5518H   00330 : 5557H
00340 : 5566H   00350 : 557AH   00360 : 559EH   00370 : 55ABH

01340 : 5E0EH   01350 : 5E16H   01360 : 5E1AH   01370 : 5E1EH
01380 : 5E22H   01390 : 5E35H   01400 : 5E5CH   01410 : 5E64H
01420 : 5E68H   01430 : 5E70H   01440 : 5E74H   01450 : 5EA0H
01460 : 5EB3H   01470 : 5ED7H   01480 : 5EF1H   01490 : 5F04H
01500 : 5F11H   01510 : 5F37H   01520 : 5F61H   01530 : 5F7AH
01540 : 5F89H   01550 : 5F91H



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Alphabetic Statement Summary
8-1

8 Alphabetic Function and Statement Summaries

8.1 Alphabetic Statement Summary

ALLOCATE <exp> Allocates <exp> file buffers
BKOFF Disable BREAK key
BKON Enable BREAK key
COMPL(x,y) Complement graphics pixel at (x,y); if pixel SET then

RESET it, otherwise SET it
CLEAR <exp> Set aside <exp> bytes for string storage; Zer o / clear

variables
CLS Clear screen, home cursor
CLOSE n Closes file buffer n; if no parameter, closes all open

files
COMMAND name… Mechanism to define start of user command
CSUB "label" Makes a call to the specified label (must be a string

literal)
DATA list Define a list of data
DEC intvar Decrement integer variable by one
DEFFN name Single line user defined function
DEFDBL varnames Variables included in the list will default to double

precision if their types are otherwise unspecified
DEFINT varnames Same as DEFDBL, except causes a default to integer
DEFSNG varnames Same as DEFDBL, except causes a default to single

precision
DEFSTR varnames Same as DEFDBL, except causes a default to string type
DIM a1,a2,… Dimension specified arrays
DOWN Scroll entire screen down by one line
DRAW param Using integer array as controller, SET, RESET, or "COMPL"

(complement) turtle graphics on screen
ELSE Defines default branch location if IF expression false
END Stop program execution
ENDCOM Specify end of user defined command definition
ENDFUNC Specify end of multi-line user defined function definition
ENDIF Terminate IF block
ERROR exp8 Force an "artificial" runtime error of error code "exp8"
FIELD param Fields file buffer into blocks of strings
FOR (parameters) Start a FOR-NEXT loop construct
FUNCTION name Start multi-line user function definition
GET param Reads one record from a file into its buffer
GOTO integerlit Branch to program line
GOTO "label" Branch to specified label
GOSUB integerlit Call subroutine at program line
GOSUB "label" Call subroutine starting at label
GTO "label" Branch to specified label
INC intvar Increments integer variable by one
INPUT var1,var2,… Accept user keyboard input for variable values
INPUT#exp,var1,… Assign variable(s) information read se quentially from

specified ("exp") disk file
INVERT Inverts all graphics on the screen
IF <exp> … Define beginning of conditional execution program block
JNAME "label" Define label
KEY array(exp) KEY array for SORTing purposes. KEYs specified in least to

most significant sorting order. In other words, last array



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Alphabetic Statement Summary
8-2

KEYed is primary sorting key. Multiple keys separated by
commas allowed

KILL"filespec$" Delete specified filespec from disk
LEFT Scroll entire screen left one character
LET var=exp Set variable equal to algebraic or string expression
LINEINPUT … Assign string variable from verbatim keyboard input

without default "? " prompt
LOAD"filespec$" Loads the machine language file specified by filespec$
LPRINT list Send list of information to printer
LSET var$=exp$ Sets var$ = exp$, with left justification
MID$(var$,exp1)=a$ Overlay var$ starting at position exp1 with the string

expression 'exp$'
MID$(v$,e1,e2)=exp$ Overlay var$ starting at position exp1 with 'exp$' for a

maximum of exp2 characters
NEXT v1,v2,… Define end of FOR-NEXT loop
OPEN"parameters Opens a file using the specified buffer #
ON BREAK GOTO addr Causes branch to specified line or label if BREAK key hit

and break scan active (BKON mode)
ON ERROR GOTO addr Causes a branch to the specified line or  label if

(runtime) error occurs
ON exp GOTO list Using expression, jumps to specified # in list
ON exp GOSUB list Using expression, jumps to specified # in list
OUT exp1, exp2 Send exp2 out to port exp1
PAINT(x,y),paint Color a bounded shape
PLOT param Plots a line or a box on the screen
POKE exp1, exp2 Load memlocation exp1 with exp2
POP Delete last GOSUB
POSFIL(#b,rec,ofs) Position to specified point in sequential file. Functional

with both "O" and "I" type files
PRINT list Output list of information to specified device
PZONE(pos,pos,…) Define printer TAB stops
PZONE(*) Clear all printer TAB stops
PUT param Writes the buffer contents to a file
RANDOM Initializes the random # generator
RDGOTO addr Positions DATA pointer to specified line # or label
RDGTO "label" Positions DATA pointer to specified label
READ list Reads a list of variables from DATA statements
REM or ' Define a remark
REPEAT Define beginning of REPEAT/UNTIL construct
RESTORE Restores DATA pointer to first data statement
RESUME line # Used at the conclusion of an error trapping routine to

jump to the specified line #
RETURN Return from subroutine
RESET(x,y) Reset graphics point at x,y
RIGHT Scroll entire screen right one character
RSET var$=exp$ Sets var$ = exp$, with right justification
ROT=exp8 Set rotation offset (in 256 degree units) for subsequent

DRAW statement executions
RUN"filespec$" Loads and executes the machine language program specified

by filespec$
SCALE=exp16 Set scalar line multiplier (in 1/256 units) for subsequent

DRAWs. For example, SCALE=128 makes DRAW figures half
their unscaled size

SCLEAR Important initialization command for SORT. Use before any
KEYing/TAGing done

SET(x,y) Set graphics point at x,y



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Alphabetic Statement Summary
8-3

SORT exp Ascending SORT of KEYed and TAGed arrays. Sort 'exp'
number of elements

SORT(exp1),exp2 Ascending SORT if exp1=0, descending if exp1=1. Exp2 is
number of elements to sort

STOP Stops execution of the program and prints source line # if
available

SYSTEM"command" Invoke a DOS command string
SZONE(pos,pos,…) Define screen TAB stops
SZONE(*) Clear all screen TAB stops
SWAP var1,var2 Exchanges var1 and var2's values
TAG array(exp) TAG array for SORTing purposes
THEN … Defines branch location for true IF expression
TROFF Turn program trace OFF
TRON Turn program trace ON
UNTIL exp Defines end of REPEAT/UNTIL construct. Program execution

branches back to last executed REPEAT if exp <> 0
UP Scroll entire screen up by one line ("conventional"

scroll)
WPOKE addr,exp Does two byte poke of exp at addr

8.2 Alphabetic String Function Summary

BIN$(exp16) Convert 'exp' to 16 digit base 2 representation
CHR$(exp8) Convert 'exp8' to one byte string
HEX$(exp16) Convert 'exp16' to 4 digit hexadecimal representation
INKEY$ Last key pressed on keyboard
LEFT$(exp$,exp) Return 'exp' left most characters in exp$
MID$(exp$,exp1) Return all of string at point 'exp1' on
MKD$(exp) Convert 'exp' to 8 byte string representing a double

precision Floating Point number
MKI$(exp) Convert 'exp' to 2 byte string representing an integer #
MKS$(exp) Convert 'exp' to 4 byte string representing a single

precision Floating Point number
RIGHT$(exp$,exp) Return 'exp' right most characters in exp$
STR$(exp) Return ASCII DECIMAL equivalent of 'exp'
STRING$(exp1,exp2) Return 'exp1' long string of 'exp2' characters
STRING$(exp1,exp$) Return 'exp1' long string of ASC(exp$) characters
USING fmt$;vlist Return string using varlist, formatting determined by

'format$'. Takes the place of the PRINT USING … feature in
interpretive BASIC. Performs equivalently

WINKEY$ Wait for key and then return as one char string

8.3 Alphabetic Function Summary

&Bd0...d15 Accept digits in base 2 representation
&Hdddd Accept digits in base 16 representation
&Oddddd Accept digits in base 8 representation
ABS(exp) Returns the absolute value of the expressio n
ADDRESS("label") Absolute memory address of 'label'
ADDRESS(line #) Absolute memory address of line #
ASC(exp$) Returns the ASCII numeric code of the first byte of the

string expression
ATN(exp) Returns the arctangent (in radians) of the expression
CDBL(exp) Converts expression to a double precision value
CINT(exp) Converts expression to an integer value
COS(exp) Returns the radian cosine of expression
CSNG(exp) Converts expression to a single precision value



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Alphabetic Statement Summary
8-4

CURLOC Current cursor position (0-1023)
CVD(exp$) Directly copies 8 byte string to a double precision

numeric expression
CVI(exp$) Directly copies 2 byte string to an integer expression
CVS(exp$) Directly copies 4 byte string to a single precision

expression
EOF(bufnum) Returns '-1' if at end of specified sequential input file,

'0' otherwise
ERL Line # of the latest error
ERR Code of the latest error
EXISTS(filespec$) Returns -1 if filespec$ exists.
EXP(exp) Returns the natural antilog of expression
FIX(exp) Returns the integer value of the expression
FRE(exp) Returns amount of free string space (or MEM if exp = 0)
INP(exp) Returns eight bit value read from port 'exp'
INT(exp) Return greatest integer less than 'exp'
INSTR(exp1$,exp2$) Returns '0' if exp1$ does not contain exp2$, else returns

the position of 'exp2$'s first occurance in exp1$.
INSTR(e1,e1$,e2$) Start search for exp2$ at 'exp1'th character in exp1$.

INSTR(1,exp1$,exp2) = INSTR(exp1$,exp2$)
LEN(exp$) Length of 'exp$'
LOC(bufnum) Returns last record accessed in specified random file
LOF(bufnum) Returns number of records in specified file
LOG(exp) Natural log of 'exp'
MEM Amount of free memory
PEEK(exp16) Eight bit contents of memory address 'exp16'
POINT(x,y) Returns -1 if specified point is SET
POS(dummy) Intra-line cursor position
RND(exp) Returns a random # between 1 and exp
ROW(dummy) Cursor row #
SGN(exp) Signum function (1 if exp>0, 0 if exp=0, -1 if exp<0)
SIN(exp) Returns radian sine of 'exp'
SQR(exp) Returns square root of 'exp'
TAN(exp) Returns radian tangent of 'exp'
TYPE(var) Returns variable type of 'exp'
VAL(exp$) Changes ASCII DECIMAL string to internal numeric binary

storage format
VARPTR(varname) Absolute memory location of the specified variable or

array element
WPEEK(addr) Returns two byte contents (addr) + 256(addr+1)
array() Address of the DCB of the specified array. Example: PRINT

HITS() prints the address of the DCB of array HITS. See
Technical Section for DCB breakdown



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Alphabetic Statement Summary
8-5

8.4 Table of Numeric Operators
_____________________________________________________

|                                                     |
|    "↑"     A↑B     A to the Bth power               |
|    "*"     A*B     A multiplied by B                |
|                                                     |
|    "/"     A/B     A divided by B                   |
|    "+"     A+B     A plus B                         |
|    "-"     A-B     A minus B                        |
|                                                     |
|    Boolean operators (-1 if true, else 0)           |
|                                                     |
|    "="     A=B     If  A EQUALS B                   |
|    "<"     A<B     If  A is LESS THAN B             |
|    ">"     A>B     If  A is GREATER THAN B          |
|    "<>"    A<>B    If  A DOES NOT EQUAL B           |
| "<=" or "=<" A<=B  If  A LESS THAN OR EQUAL TO B    |
| ">=" or "=>" A>=B  If  A GREATER THAN OR EQUAL TO B |
|                                                     |
|    Logical BIT-WISE operators                       |
|                                                     |
|  "AND"  A AND B    A logically 'AND'ed with B       |
|                                                     |
|  "OR"   A OR B     A Logically 'OR'ed with B        |
|                                                     |
|  XOR"   A XOR B    A logically 'XOR'ed with B       |
|_____________________________________________________|

8.5 Table of String Operators

Comparisons are done on a character by character basis.  They return numeric
boolean values: -1 if true, 0 otherwise.

_______________________________________________
|                                               |
|  "="       A$=B$  A$,B$ precise equivalence   |
|                    check                      |
|  "<"       A$<B$  A$ alphabetically/ascii-ly  |
|                    less than B$               |
|  ">"       A$>B$  A$ alphabetically greater   |
|                    than B$                    |
|  "<="      A$<=B$ A$ alphabetically less than |
|                    or equal to B$             |
|  ">="      A$>=B$ A$ alphabetically greater   |
|                    than or equal to B$        |
|  "<>"      A$<>B$ A$ is not equal to B$       |
|_______________________________________________|



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Alphabetic Statement Summary
8-6

8.6 Table of Compiler Errors
________________________________________________________

|       |                                                |
| Error |  Meaning                                       |
|  Code |                                                |
|-------|------------------------------------------------|
|  127  |  Dynamic data table overflow                   |
|  128  |  "ENDIF" terminators missing                   |
|  129  |  "ENDIF" without "IF"                          |
|  130  |  Multiply defined User Function                |
|  131  |  Multiply defined Command Definition           |
|  132  |  Illegal label or symbol                       |
|  133  |  Undefined label or symbol                     |
|  134  |  Undefined User Command                        |
|  135  |  Undefined User Function                       |
|  136  |  Undefined line number                         |
|  137  |  Expression type mismatch                      |
|  138  |  Missing Operand                               |
|  139  |  Syntax Error                                  |
|  140  |  Multiply defined symbol or label              |
|  141  |  Nested *GET/*INCLUDE file disallowed          |
|-------|------------------------------------------------|
|  192  |  (Z80) Expression error                        |
|  193  |  (Z80) Relative branch out of range            |
|  194  |  (Z80) Operand field OVERFLOW                  |
|_______|________________________________________________|



MISOSYS Enhanced BASIC Compiler Development System
Copyright 1986 Philip A. Oliver, All rights reserved

Alphabetic Statement Summary
8-7

8.7 Table of run time Errors

____________________________________________________________
|        |                                                   |
| Error  |  Meaning                                          |
|  Code  |                                                   |
|--------|---------------------------------------------------|
|    0   |  Next without For                                 |
|    2   |  Syntax error                                     |
|    6   |  Out of Data                                      |
|    8   |  Illegal Function Call                            |
|   10   |  Numeric Overflow/Underflow                       |
|   12   |  Out of free memory                               |
|   16   |  Array subscript out of dimensioned range         |
|   18   |  Attempt to re-dimension an array                 |
|   20   |  Division by 0                                    |
|   24   |  Type mismatch                                    |
|   26   |  Out of string space                              |
| 32-100 |  Special disk error; equal to DOS error code + 32 |
|  104   |  Illegal buffer #                                 |
|  106   |  File not in directory                            |
|  108   |  Serial disk I/O attempted with "R" file mode     |
|  110   |  File already opened                              |
|  122   |  Disk space full                                  |
|  128   |  Bad file name                                    |
|  130   |  GET or PUT attempted with non "R" file mode      |
|  134   |  Directory space full                             |
|  136   |  Write protected diskette                         |
|  138   |  File access denied due to password protection    |
|  162   |  Serial disk I/O attempted with non-256 LRL file  |
|  178   |  Attempt to open file with different LRL          |
|  241   |  SORT attempted without sort keys given           |
|  242   |  Too many sort keys or tags                       |
|  254   |  Bad file mode (not "I", "O" or "R")              |
|________|___________________________________________________|


	Top of document
	1 Introduction
	1.1 Important Note
	1.2 Distribution Disks
	1.3 General Information
	1.4 Note on Merchantabilty

	2 Program Compilation
	2.1 Compilation from CED Editor
	2.2 Runtime Errors
	2.3 Transferring EnhComp to TRSDOS 1.3
	2.4 General Compilation Parameters
	2.5 Compiler Directives
	2.6 Compilation mode versus Interactive RUN mode
	2.7 Independent use of compiled programs

	3 CED/CMD Editor
	3.1 CED General Information

	4 EnhComp BASIC Statements and Functions
	4.1 Compiler Introduction
	4.2 Compiler Directives
	4.3 Function Reference
	Alphabetically
	A
	ABS
	ADDRA
	ALLOCATE
	ASC
	ATN

	B
	&B, &H, &O
	BIN$
	BKON BKOFF

	C
	CDBL
	CHR$
	CINT
	CLEAR
	CLOSE
	CLS
	COMMAND
	COMPL
	COS
	CSNG
	CURLOC
	CVI CVS CVD

	D
	DATE$
	DATA
	DEC
	DEFxxx
	DEFFN
	DIM
	DOWN
	DRAW

	E
	END
	ERL
	ERR
	ERROR
	EXISTS
	EXP

	F
	FIELD
	FIX
	FOR
	FRE
	FUNCTION

	G
	GET
	GOTO
	GOSUB

	H
	HEX$

	I
	IF/THEN/ELSE
	INC
	INKEY$
	INP
	INPUT
	INPUT#
	INSTR
	INT
	INVERT

	J
	JNAME

	K
	KILL

	L
	LEFT
	LEFT$
	LEN
	LET
	LINEINPUT
	LINEINPUT#
	LINESPAGE
	LMARGIN
	LOAD
	LOG
	LPRINT
	LSET

	M
	MEM
	MID$ function
	MID$ statement
	MKD$ MKI$ MKS$

	O
	ON .. GOTO
	ON BREAK GOTO
	ON ERROR GOTO
	OPEN
	OUT

	P
	PAGELEN
	PAINT
	PEEK
	PLOT
	POINT
	POKE
	POP
	POS
	POSFIL
	PRINT
	PRINT#
	PUT
	PZONE

	R
	RANDOM
	RDGOTO
	READ
	REM
	REPEAT
	RESET
	RESTORE
	RESUME
	RETURN
	RIGHT
	RIGHT$
	RMARGIN
	RND
	ROT
	ROW
	RSET
	RUN

	S
	SCALE
	SET
	SGN
	SORT
	SQR
	STOP
	STR$
	STRING$
	SWAP
	SZONE

	T
	TAN
	TIME$
	TROFF/TRON
	TYPE

	U
	UP
	USING

	V
	VAL
	VARPTR

	W
	WINKEY$
	WPEEK
	WPOKE

	X
	XFIELD


	Complete listing
	ABS
	ADDRA
	ALLOCATE
	ASC
	ATN
	&B, &H, &O
	BIN$
	BKON BKOFF
	CDBL
	CHR$
	CINT
	CLEAR
	CLOSE
	CLS
	COMMAND
	COMPL
	COS
	CSNG
	CURLOC
	CVI CVS CVD
	DATE$
	DATA
	DEC
	DEFxxx
	DEFFN
	DIM
	DOWN
	DRAW
	END
	ERL
	ERR
	ERROR
	EXISTS
	EXP
	FIELD
	FIX
	FOR
	FRE
	FUNCTION
	GET
	GOTO
	GOSUB
	HEX$
	IF/THEN/ELSE
	INC
	INKEY$
	INP
	INPUT
	INPUT#
	INSTR
	INT
	INVERT
	JNAME
	KILL
	LEFT
	LEFT$
	LEN
	LET
	LINEINPUT
	LINEINPUT#
	LINESPAGE
	LMARGIN
	LOAD
	LOG
	LPRINT
	LSET
	MEM
	MID$ function
	MID$ statement
	MKD$ MKI$ MKS$
	ON .. GOTO
	ON BREAK GOTO
	ON ERROR GOTO
	OPEN
	OUT
	PAGELEN
	PAINT
	PEEK
	PLOT
	POINT
	POKE
	POP
	POS
	POSFIL
	PRINT
	PRINT#
	PUT
	PZONE
	RANDOM
	RDGOTO
	READ
	REM
	REPEAT
	RESET
	RESTORE
	RESUME
	RETURN
	RIGHT
	RIGHT$
	RMARGIN
	RND
	ROT
	ROW
	RSET
	RUN
	SCALE
	SET
	SGN
	SORT
	SQR
	STOP
	STR$
	STRING$
	SWAP
	SZONE
	TAN
	TIME$
	TROFF/TRON
	TYPE
	UP
	USING
	VAL
	VARPTR
	WINKEY$
	WPEEK
	WPOKE
	XFIELD



	5 Technical Information
	5.1 Variable names
	5.2 Variable TYPE designations
	5.3 Variable storage format
	5.4 Precision of math library
	5.5 File buffer allocation
	5.6 Support Subroutine Descriptions

	6 EnhComp Z80 Assembler Introduction
	6.1 Z80 Source Code Inclusion in Programs
	6.2 Assembler Expression Evaluation

	7 Invoking the REF/CMD utility
	8 Alphabetic Function and Statement Summaries
	8.1 Alphabetic Statement Summary
	8.2 Alphabetic String Function Summary
	8.3 Alphabetic Function Summary
	8.4 Table of Numeric Operators
	8.5 Table of String Operators
	8.6 Table of Compiler Errors
	8.7 Table of run time Errors


