
THE LDOS QUARTERLY April 1, 1982 Volume 1, Number 4

THE LDOS QUARTERLY April 1,1982 Volume 1, Number 4

Table of Contents

 VIEW FROM THE BOTTOM FLOOR .. Page 2

 LED - The LDOS Text Editor .. Page 5

 UPDATE NEWS - 5.1.2 ... Page 6

 WHAT'S NEW ? - LDOS compatible software Page 9

 ITEMS OF GENERAL INTEREST ... Page 10

 TCHRON AND TTIMER CLOCK/CALENDAR PATCHES Page 12

 FILTER PACKAGE UPDATE ... Page 13

 HIGH MEMORY AND LDOS .. Page 13

 CMD"O" - Implementation and possible uses Page 15

 PARITY = ODD - By Tim Daneliuk Page 17
 Includes review of Johnson Associates software

 REVIEW - Structured BASIC Translator by Sue Ratkowski Page 21

 THE LIBRARY - By Earle Robinson Page 28

 INSIDE THE EXPANSION INTERFACE - By Earle Robinson Page 39

 CHANGING OPERATING SYSTEMS - By Charlie Butler of TAS Page 40

 ROY'S TECHNICAL CORNER .. Page 42

 THE JCL CORNER .. Page 46

 USER CONTRIBUTED PROGRAMS
 DIRECTORY MAPPING PROGRAM - By Bill Fields Page 50
 BINHEX/BAS - By Tim Mann Page 55
 DELETE/CMD - By Renato Reyes Page 56
 NODAM/CMD - By Chuck Jensen Page 58
 MX80/FLT - LSI staff Page 59

 PROFILE PATCHES, MODELS I AND III - By Dick Yevich Page 59

 SALVAGE/BAS AND RSCOBOL PATCHES Page 62

 5.1.2 PATCHES ... Page 64

 Copyright (C) 1982 By Logical Systems, Incorporated
 11520 N. Port Washington Rd. Mequon WI 53092
 (414) 241-3066

Page - 1

V I E W F R O M T H E B O T T O M F L O O R

This has been a very busy quarter for our staff, as LDOS has become one of
the leading operating systems for the TRS-80 and demand for our products has
risen dramatically. To our many thousands of users, THANK YOU. We will make
every effort to make the LDOS product line the best designed, written,
documented and supported line of software for the TRS-80.

In the last newsletter I stated that the Extended Support Agreement (ESA)
would be $50 per year. After that newsletter went to press it was decided not
to include 800 line support in the ESA and to drop the price of this support
to just $25. The ESA allows the subscriber to receive updates within the same
version for just $5, as often as he wishes, receive four issues of this
publication and to be a member of the LDOS bulletin board on MicroNET (if you
are a COMPUSERVE subscriber).

Due to large increases in sales volume and some changes in warranty and
support services, we have been able to reduce the suggested retail price of
LDOS to $129.

The current version of LDOS is 5.1.2 for both the MODEL I & III. The features
are now the same for both machines, other than some slight differences due to
hardware. This new version is available now. You must send in your MASTER
disks with a check for the correct amount (see the customer service section
of your manual) to receive this update. Model I users should note that we
require BOTH of their master disks to perform this update.

In the past we have issued patches to LDOS to correct minor problems or to
add minor features. In the future we will be offering very few corrections or
enhancements in printed form. We feel that it is better to maintain our
system through the use of our update policy. We feel our update policy is a
fair and equitable way of dealing with the ongoing cost of support. In this
way we are able to deal with support in a straight forward manner, because we
are sure of the state of the version in use by the user. This does NOT mean
that we will not be publishing patches from time to time. We will publish
patches for such things as optional enhancements or very minor corrections
that are not considered critical in nature.

We now have two new LDOS packages. They are both designed around a new
product we call "smal-LDOS" (pronounced 'small-dos'). This product is a
minimal runtime DOS based on LDOS. It will be marketed to OEMs and software
publishers and is available for the Model I and III. The OEM version comes
with a manual in a 5-1/2 by 8-1/2 format, while the software distribution
version contains only a master smal-LDOS disk and NO documentation. Both of
these new products will be available only when they are a part of a software
or hardware package. However, any registered LDOS owner can order (direct
from LSI) one copy of the smal-LDOS (disk only) product for $25. This may be
of value for those who wish to have more storage on a "system" disk, as the
libraries (SYS 6 & 7) are much smaller on this product, or to those who just
want a optimised minimal LDOS to use when running applications. This product
is available in Model I 35 track single or double density and in Model III 40
track double density (specify when ordering).

Page - 2

LSI will provide LDOS on several types of media to meet certain needs. The
charge is $10 if we provide the diskette and $5 if the user provides the
disk. These will of course be provided to REGISTERED LDOS owners only. The
system files on these disks are located in such a fashion that the overall
performance of the system is optimised. The following disk types are
available:

FOR THE MODEL I TRS-80:
 35 Track, Single sided, Single density (two disk set)
 35 Track, Single sided, Double density
 80 Track, Single sided, Single density
 80 Track, Single sided, Double density
 77 Track, Single sided, Double density, 8-inch

FOR THE MODEL III TRS-80:
 40 Track, Single sided, Double density
 80 Track, Single sided, Double density

NOTE: These disks are available in addition to the standard media supplied
and not in lieu of the standard media. You must specify exactly what type of
disk you want (from the above list) when ordering, and include your LDOS
serial number. We do not offer double sided system disks at this time. We are
evaluating the reliability of double sided drives and when they prove to work
reliably we will offer system disks in the two sided format.

The MicroNET bulletin board is a very good place to receive timely
information and assistance when using LDOS. Users of this board are hereby
warned that we will NOT tolerate the misuse of this service. The use of
profanity or the leaving of slanderous, libelous or unsubstantiated critical
remarks on the board will be cause for canceling the membership of the user.
So please be honest, fair and serious when using this service. Also if you
have messages to you that are not of general interest to LDOS users, please
delete them after you have read them. Also do NOT ask questions about
clerical matters, such as "has my update been shipped ?", "I didn't receive
my last quarterly" or change of address notices and the like. The bulletin
board is handled by our TECHNICAL staff not our clerical staff. Any clerical
services request must be in writing to our customer service department.

Our telephone support group no longer has any portion of the LDOS source code
available to them in their area of our building. So requests for any
information that will require checking the source code MUST be in writing to
customer service, ATTENTION: SYSTEMS GROUP.

Please be careful when ordering products that are supposed to be LDOS
compatible. If we don't definitely state that we support a product (software
or hardware) then do not look to us for support. When a vendor states that
his product is LDOS compatible, we take that at face value and assume he is
telling the truth, but we will not be responsible for false information given
to us by vendors. Check with us before you buy. We will be happy to tell you
our position on the product that you are considering. Don't complain to us
after you have purchased a product and find you have problems.

With regard to the Model III, we are aware of "Model III type" computers from
several sources. LSI officially supports ONE type of Model III, and that of
course is the official standard machine produced exclusively by Radio Shack.

Page - 3

LDOS seems to work with most of the other machines..... BUT We do NOT
have these machines in house and therefore do not support them. Many
thousands of users (with standard Radio Shack hardware) use LDOS with little
or no problems. To call and say LDOS won't format disks in your Brand "X"
Model III will probably meet with a "I'm sorry we can't help
you.........", response. We are willing to support most quality products that
wish to be supported by LDOS, but only with the full cooperation of the
manufacturer and with hardware provided by that manufacturer.

Now for some bad news.... Our "C" compiler, known as "LC", has been put on
HOLD for the moment. It was very close to release when unexpected "personal
demands" on the author made it impossible to proceed. We hope to be able to
revive the "LC" project in the near future.... but no promises. So, for the
time being the LDOS "C" compiler has been withdrawn as an offering of the
LDOS product line. Our apologies to those who have been awaiting the release
of this product.

Any registered LDOS user may order an additional copy of the LDOS manual for
$59 or may order a replacement for a damaged or older version of our manual
for $29. If ordering a replacement, the old manual must be sent in with the
order! Any manual order includes a new binder and tab set. Please add $5 for
shipping and handling. Phone orders will not be accepted for "replacement"
manuals. All manual orders must be placed directly with LSI. Manuals are NOT
available from dealers or distributors.

The LX80 interface for the Model I is still available direct from LOBO DRIVES
for a $449.00 This price includes 32K of RAM, and support for both 5" and 8"
drives in single and double density. The dual channel RS232 option is an
additional $50.00. We have found the LX80 to be a very reliable piece of
hardware, and use them daily at LSI.

If you are not on the ESA or covered by the LDOS warranty, you may still
update your Master disk to the latest release within the version you
purchased for $10. This is a lifetime right for all registered LDOS owners,
subject only to eventual cost increases to cover our costs of providing this
service.

This newsletter is no longer included as part of the standard support for
LDOS but is available to those on the Extended Service Agreement, or to those
covered on our "OLD" one year warranty. For those who will not have access to
the newsletter, we are installing a LDOS HOTLINE. This will be a three minute
tape recording stating the latest LDOS news, patches, new products, etc. It
will be available 24 hours a day, so that it may be called at low rate times,
at a very low cost to the user. This service will be available in early July
of this year. The number will be in the next newsletter and will be available
through directory assistance for area code 414.

Radio Shack has announced a double density controller for the Model I. As
this product becomes available, we have every intention of providing official
support for it. Please give us a little time after it comes out so we may
check it out completely. We will also support the new Visicalc and the new
Super Scriptsit, when time permits.

Page - 4

LED - THE LDOS EDITOR

LED is a screen oriented text editor that is designed to work with the LDOS
operating system. Although very versatile, the LED commands are easy to
learn. Those familiar with the LDOS LSCRIPT version of Scripsit will notice a
similarity in the command key layout. This is the LED command menu, and can
be displayed at the bottom of the video screen while using LED.

 INDNT FIND CHANGE HEX UNMRK DNP UPP ALL AGN NAME EXIT
 =1= =2= =3= =4= =5= =6= =7= =8= =9= =:= =-=
 INSRT LIN DEL WRD BLK END TOP SPA TAB MENU SAVE
 {TEST/TXT:0-R} (0):X'00'|35751

The display contains the name of the file currently being edited, the current
cursor column, the hex value of the character under the cursor, and the
available memory in the text buffer.

Since LED uses the LDOS keyboard driver, type-ahead and all keyboard filters
are available for use with LED. Also, all 128 ASCII characters are available
directly from the keyboard.

Cursor positioning is done in the normal manner, with the 4 arrow keys
controlling the cursor motion. The <CLEAR><ARROW> keys will move to the top
or bottom of the text, or to the left or right end of a line. The
<SHIFT><LEFT> and <SHIFT><RIGHT> arrows also perform movement to the ends of
a line unless tabs are set. Then, they position either to the next tab
location or back to the previous one. There are 4 different cursor
characters, depending on the mode you are in (typeover, insert, insert line,
or delete).The UPP and DNP commands are used to move the display buffer up or
down a full page at a time. If the file to be edited has a /KSM extension,
LED will automatically display the alphabetic letter before each line
assigned to that letter.

LED can be used on many different types of files. The FIND and CHANGE
commands make it handy for doing global changes in BASIC programs. The AGN
and ALL commands let you find or change things one at a time or all at once.

A very useful feature is the HEX mode. This mode is available either when
overtyping or when inserting. It allows you to input characters as two
hexadecimal digits over the entire X'00' to X'FF' range, making possible
direct editing or inputting of graphics characters.

Certain parameters may be specified when first entering LED. TABS will cause
any X'09' tab character to be expanded. Tabs normally appear as a small
graphics block. SAVE="filespec" will save a file under a different name than
was used to load the file. XLATE=X'fftt' will perform a character translation
when loading and saving a file. Two other parameters, END=X'00' and WP deal
with word processor files that use an X'00' to mark the end of a file.

One very nice feature is an automatic SAVE prompt. If you request an exit
back to LDOS Ready, and have modified the text buffer, LED will automatically
ask you if you want to save the file. If no modifications have been made, an
immediate exit to LDOS is done without the prompt.

LED is available for $40.00 from any of the LDOS distributors.

Page - 5

M O D E L I 5 . 1 . 2 U P D A T E

The following new files will be on your LDOSXTRA disk:

 MOD1/EQU has been renamed to EQUATE1/EQU.

 MOD1/DCT - A file used to set default values for floppy drives, normally
 used along with hard drives.

UTILITY PROGRAM CHANGES

BACKUP now allows you to cancel the QUERY parameter during a backup. Pressing
<C> in response to the prompt will cause the backup to continue non-stop from
the current file.

FORMAT has a new parameter, WAIT=. This parameter was added to make up for
deficiencies in certain 80 track drives, and is NOT normally needed. Its
purpose is to provide a delay between each stepin to another track. It should
only be used when ALL tracks above a certain point get locked out. The value
for WAIT will probably be a number between 5000 and 50000, and may vary
greatly from drive to drive. It is suggested that a value of 25000 be used
initially, and then adjusted up or down as needed.

DRIVER/FILTER PROGRAM CHANGES

KI/DVR has been significantly changed. Two new parameters, DELAY= and RATE=,
have been added. DELAY is the initial delay between pressing a key and the
first repeat, and can be any value greater than 10. The default is 30, and
provides about 3/4 of a second delay. RATE is the key repeat rate, and can be
any value larger than 1. The default is 3, and provides a repeat rate of
about 10 per second. All of the KI parameters (TYPE, JKL, DELAY, and RATE)
can now be abbreviated to their first character. Also, two new bits have been
assigned in the KFLAG$ memory storage location. Bit 6, if set to "1", sets
the Extended Cursor Mode. Bit 5, if set to "1", sets the CAPS LOCK mode.

KSM/FLT has a new parameter, ENTER=. This will allow you to set any character
to be used as an embedded <ENTER>. The default remains the semicolon. ENTER=
may be followed by the ASCII value of the character, or may be entered as a
character between quotes. For example, to set a colon as the new character,
either ENTER=58 or ENTER=":" will work. This parameter may be abbreviated
"E".

LBASIC PROGRAM CHANGES

LBASIC has a new parameter, EXT=ON/OFF. The default is ON. EXT=ON means that
LBASIC will use a default extension of /BAS during LOAD, RUN, MERGE, and SAVE
operations. File OPEN and KILL operations will never use the default
extension.

The RUN"filespec",V command will now save any fielded variables used with
random files.

Page - 6

M O D E L I I I 5 . 1 . 2 U P D A T E N E W S

LSI is proud to announce the release of LDOS-512 for the Model III. There
have been many enhancements made in 5.1.2 over 5.1.0B. This section of the
newsletter will detail some of these enhancements.

NEW FILES

The following new files will be on your LDOS master disk:

 EQUATES3/EQU - For assembly language programmers. This is an equate file
 for use with an editor/assembler program, in the format used by the EDAS
 editor/assembler. It contains the labels from the memory map in the
 technical section.

 LSCRIPT/FIX - An enhanced Scripsit patch which makes use of LDOS's KI/DVR
 program and other keyboard features.

 VC/FIX - A patch file for Visicalc

 MOD3/DCT - A file used to set default values for floppy drives, normally
 used along with hard drives.

LIBRARY COMMAND CHANGES

The DEVICE command will now show if VERIFY is on.

The DIR command has two new parameters, SORT and MOD. The normal directory
display will be sorted in alphabetical order. SORT=NO will disable the sort.
The MOD parameter will now show just those files with MOD flags.

The SYSTEM library command has 4 new parameters. They are:

 SYSTEM (DATE=ON/OFF) Enables or disables the DATE prompt when booting.
 SYSTEM (TIME=ON/OFF) Enables or disables the TIME prompt when booting.

 SYSTEM (BSTEP=n) Sets the default bootstrap step rate used by the FORMAT
 utility.

 SYSTEM (DRIVE=,CYL=n) Sets the default cylinder count used by the FORMAT
 utility for the specified drive.

UTILITY PROGRAM CHANGES

BACKUP now allows you to cancel the QUERY parameter during a backup. Pressing
<C> in response to the prompt will cause the backup to continue non-stop from
the current file.

FORMAT uses different defaults if the QUERY=N parameter is specified, or if
the <ENTER> key is pressed in response to a prompt. All prompts, including
NAME and PASSWORD, may be defaulted. There is also a new parameter, WAIT=.
This parameter was added to make up for deficiencies in certain 80 track
drives, and is NOT normally needed.

Page - 7

The LCOMM utility has had several changes and additions. The XLATE parameter
has been changed to allow a send character to be translated to some other
character. Likewise, a receive character may be translated to any other
character. Also, the <7> key has now been assigned the following function:

DTD ... <CLR><7>

 The (DTD) Dump To Disk is used to write the memory buffer used with FR to
 the disk. DTD may be turned on before or after a file has been received.
 If turned on before, the file will be written to disk as it is being
 received.

 The menu display will be different, and will show which devices and
 functions are active, as well as the amount of available memory, and the
 functions currently active.

The DCC (Display Control Characters) function has been added, and will force
a display of any character received that has a value less than an X'20' as a
two digit hexadecimal number surrounded by braces. Also, a CLS (Clear Local
Screen) function has been added, and will erase the contents of the screen
without transmitting any character to the communications line.

DRIVER/FILTER PROGRAM CHANGES

KI/DVR has been significantly changed. All 128 ASCII characters are now
available from the keyboard, and an "Extended Cursor Mode" has been added.
Two new parameters, DELAY= and RATE=, have been added. DELAY is used to set
the initial delay between pressing a key and the first repeat. RATE is used
to set the key repeat rate. All of the KI parameters (TYPE, JKL, DELAY, and
RATE) can now be abbreviated to their first character.

KSM/FLT has a new parameter, ENTER=. This will allow you to set any character
to be used as an embedded <ENTER>.

MiniDOS/FLT has a new key available. The <P> key will allow you to send a hex
character directly to the lineprinter.

PR/FLT has the new parameter SLINE. This may be used to establish either the
Model I or Model III default for the initial line count.

LBASIC PROGRAM CHANGES

LBASIC has a new parameter, EXT=ON/OFF. If this parameter is specified as on,
LBASIC will use a default extension of /BAS during LOAD, RUN, MERGE, and SAVE
operations.

The RUN"filespec",V command will now save any fielded variables used with
random files.

The CMD"N" will now renumber ERL= lines.

Page - 8

WHAT'S NEW ?

New from MIDWEST DATA SYSTEMS is a package called AUTO-WRITER. It is a data
management package that allows you to use your word processor to create and
maintain your data base. AUTO-WRITER consists of 5 programs. STATS gives the
status of a data file, telling things such as the location and length of the
fields, the format of the data base, and will even show errors or
inconsistencLes. SELECT lets you construct new files from your data base,
based on "Plain-English" truth statements. SORT sorts in ascending or
descending order, and by user specified key. LETTERS and REPORT generate form
letters and reports based on user design. AUTO-WRITER is available for
$72.83.

As this newsletter goes to press, the finishing touches are being put on
AUTO-WRITER +. Enhancements to the basic package will include a two level
sort, a math pack, a new input editor, and more. AUTO WRITER + is available
for $120.00, with a special update price available for current AUTO-WRITER
owners. For more information, contact MIDWEST DATA SYSTEMS, 5624 Girard Ave.
South, Minneapolis, MN 55419 (612) 866-9022

From LYNN COMPUTER SERVICE is a product called LYNN'S A/R, an accounts
receivable package. This package consists of 12 integrated programs. It is
available for $49.95 + $2.00 S&H, from LYNN COMPUTER SERVICE, 6831 W. 157th,
Tinley Park, IL 60477 (312) 429-1915. Documentation and sample printouts are
available separately for $10.00.

SPEAK! is a program which "adds lips" to your TRS-80 Model III. It requires a
cassette recorder and mic, and a small amplifier. Words or phrases are spoken
and learned by the program for later access by other programs. For more
information contact Bill Neville, PO Box 2581, Houston, TX 77001, or Lee
Perryman, P0 Box 2972, Tampa, FL 33601.

From MISOSYS is a new product called SOLE. This utility will allow double
density booting on the Model I, Radio Shack E.I. It is available for $25.00
from MISOSYS, PO Box 4848, Alexandria, VA 22303-0848 (703) 960-2998.

Also from MISOSYS is a program called CON80Z. This program converts assembler
source files in Intel 8080 mnemonic code to Zilog Z80 mnemonic code. The
output is EDAS/EDTASM compatible. The price is $50.00 + $3.00 S&H.

There is a HELP utility and a quick reference card available from MISOSYS.
The package sells for $25.00, and the reference card is available separately
for $3.00.

See Tim Daneliuk's review of the JOHNSON ASSOCIATES software package in his
column.

From SOFT SECTOR MARKETING comes THE COMPLETE IDIOT'S BOOKKEEPER. This is a
bookkeeping package for personal or small business use. The package comes
with programs to provide indexes, edit the data files, build separate monthly
files, remove deleted entries, etc. This program was tested with both 5.0 and
5.1 LDOS, and is available for Model I and III. For more information, contact
Soft Sector Marketing, 6250 Middlebelt, Garden City, MI 48135 (313)
425-4020.

Page - 9

The SNAPP EXTENDED BASIC packages should be available for the Model III at
this time. These packages provide enhanced cross reference and renumbering,
keyword and string cross reference, variable dump, program compress and
uncompress, "college educated" garbage collector, and more. For information,
contact SNAPP Inc., 3719 Mantell, Cincinatti, Ohio 45236 (800) 543-4628.

Available from GALACTIC SOFTWARE is a manual on LBASIC. This is a 50 page
manual, and explains all of the disk Basic statements that are available with
LBASIC. Although not a tutorial on Basic programming, examples of most
statements are included. Also, all LBASIC extensions to normal disk Basic are
explained. The manual sells for $9.95 plus $2.05 S&H, and is available from
Galactic Software, Ltd, 11520 N. Port Washington Rd, Mequon, WI 53092 (414)
241-8030.

Also available from GALACTIC SOFTWARE is the MemDISK program. This program
creates a simulated disk drive in memory. All disk I/O functions work,
including backup and copy. The memory disk can even be switched to drive 0
with the SYSTEM command. It is available for $39.00.

Available from ALCOR SYSTEMS is a version of the PASCAL language. The manual
includes a reference and a tutorial section. For further information, contact
ALCOR SYSTEMS, 13534 Preston Rd., Suite 365, Dallas, TX 75240 (214)
226-4476.

As we went to press, we had many more software companies who had received
copies of LDOS and were checking on full compatibility with LDOS. The next
Quarterly should list all of these packages.

ITEMS OF GENERAL INTEREST

On the Model III, our USTOR$ pointer is at X'4DFE'. This points to an 8 byte
storage area available to the user. TRSDOS has its user pointer at X'4CFE'.
If you are using Radio Shack programs that use this area, you should change
the address accordingly.

When using the 5.1.1 or later LCOMM Utility to download files, the DTD (Dump
To Disk) function is turned OFF when the receive file is reset. If you are
downloading more than one file and want the DTD to remain on all the time, be
sure to do a DTD ON <CLR><7><CLR><:> before turning on each successive
receive file.

New Compuserve users have requested instructions on getting to the LDOS board
on MicroNET. Simply type in:

 R LDOS

from the OK prompt of Compuserve.

There has been a new RAM STORAGE ASSIGNMENT designated for both the Model I
and III. It is DAY$, and is used in conjunction with DATE$ to store
information about the current system date. The new assignments are as
follows. The Model III descriptions will match those of the Model I.

Page 10

Model I
DATE$=X'4044'-X'4046'
+0...Contains the two digit year
+1...Contains the day of the month
+2...Contains the month

DAY$=X'4047'-X'4048'
+0...Contains bits 0-7 of the day of the year
+1...
 bit 0........Contains bit 8 of the day of the year
 bits 1-3.....Contains the day of the week (Sunday=0)
 bits 4-6.....Reserved
 bit 7........Set to "1" if leap year

Model III
DATE$=X'421A'-X'421C'
DAY$=X'4417'-X'4418'

The SPOOL command for the 5.1.2 version has had two visible changes made.
First, if KI/DVR is not established, the SPOOL command will abort with an
appropriate error message. Secondly, the system will no longer allow a
SYSGEN if the spooler is active.

"How can you switch between upper or lower case without making the
operator press the <SHIFT><0>?" "How can you force keyboard input to be in
either upper or lower case?" These questions from our users resulted in a
change to the KI/DVR program for the 5.1.2 update. The location known as
KFLAG$ (X'4423' or 17443 on the Mod I, X'429F' or 17055 on the Mod III)
now has bit 5 designated as the CAPS LOCK bit. If the bit is set, you will
be in the CAPS LOCK mode. Therefore, a BASIC program on the Model I can
switch into upper case only by POKEing the KFLAG$ location with
PEEK(&H4423) OR 32, and switch to upper/lower by POKEing the location with
PEEK(&H4423) AND 223. Model III would use the same method with
PEEK(&H429F). Using the PEEK command and the logical OR or AND assures
that any other bits in the KFLAG$ location will remain untouched.

When your disk drive takes a nap and then resumes 15 to 30 seconds
later, chances are it was bitten by the 300 RPM bug. During normal disk
I/O, the only time the interrupts are disabled is when the system is
actually going to transfer a 256 byte sector to or from the disk. This
makes possible interrupt driven features such as type ahead, the spooler,
and LCOMM. However, since the interrupt clock rate is evenly divisible
into a disk rotation speed of 300 RPM, it also can provide those
mysterious naps from time to time when an interrupt occurs just as the
physical I/O is going to happen. The solution is simple; change the disk
speed to 302 RPM. This will assure that the interrupt and disk rotation
will be out of sync without degrading disk I/O performance.

When using the LSCRIPT patch to Scripsit, you can still duplicate most of
the original Scripsit key controls by using the <CTRL><key> sequence
(<CTRL> being <SHIFT><DOWN ARROW>). For instance, <CTRL><S> puts you in
the insert mode, <CTRL><V> forces a page marker, etc.

Page - 11

The following procedure can be used to simulate turning on and off a link
between the video and the printer from within an LBASIC program. At the
LDOS Ready prompt, type in the commands ROUTE *DU (NIL) and then LINK *DO
*DU. In the LBASIC program, use a CMD"ROUTE *DU *PR" to link the video to
the printer, and a CMD"RESET *DU" to turn off the link. This procedure may
be repeated as often as desired.

Once again, it's time to mention the data address mark. For those of you
who need them, use the following patches to force LDOS to write the old
DAM. These are for the Model I, Radio Shack E.I., VERSION 5.1.2 ONLY!

.SYS0 patch
X'467C'=A9
.EOP

.PDUBL patch
X'5472'=A9
.EOP

TCHRON - Time and Date board Patch

. TCHRON/FIX 03/09/82, ROBERT J. NEWTON

. PATCH SYS0/SYS.SYSTEM USING TCHRON

. This patch is for the Model I TCHRON time & date board

. and is for LDOS Version 5.1.x ONLY! It has been supplied

. by an LDOS user and is unsupported by LSI.

. Note: Parts of this patch have been derived from the

. TTIMER fix listed in the last issue of the QUARTERLY

. and copyrighted by Roy Soltoff

.

. It is recommended that you convert this to a DIRECT

. patch using FED before applying it to SYS0. This is

. to ensure that no additional space is taken up by the fix.
X'45C1'=D1 45 ED 78 0D A4 CD A5 47 ED 78 0D 85 12 1B C9
X'45D1'=11 43 40 01 75 03 60 CD C3 45 10 FB
X'4E97'=21 44 40 E5 01 7C 0F CD B9 4E 23 23 CD B9 4E 2B
X'4EA7'=06 03 CD B9 4E 21 B9 50 DB 78 CB 57 28 01 34 D1
X'4EB7'=18 21 ED 78 0D A0 07 57 07 07 82 57 ED 78 0D 82
X'4EC7'=77 C9 00 00 00 00 00 00 00 00 00 00 00 00 00 00
X'4ED7'=00 00 00
. End of patch

Updated TTIMER Patches

There were a couple of bugs that inadvertently slipped into two of the
TTIMER patches in the last issue. The underlined bytes in the following
patches indicate the areas of change. The "xx" in the 5.1.1 patch
indicates that the original "13" byte should be removed from the patch.

. TTIMER Model I Version 5.0.2 & 5.0.3 patch

. Copyright (C) 1981 by Roy Soltoff, All rights reserved

. PATCH SYS0/SYS.WOLVES

Page - 12

 D04,65=D8 45 ED 78 0D CD A1 47 ED 78 0D E6 0F 85 12 1B
 D04,75=C9 11 43 40 01 C5 03 CD C9 45 10 FB
 D0D,C0=21 46 40 01 CA 01 CD AA 4E 06 03 CD AA 4E 01 CC
 D0D,D0=0F CD AA 4E EB 13 DB CB E6 03 21 92 50 20 01 34
 D0D,E0=18 34 ED 78 0D A0 07 57 07 07 82 57 ED 78 0D E6
 D0D,F0=0F 82 77 2B C9
 . end of patch

 . TTIMER Model I Version 5.1.1 patch
 . Copyright (C) 1981 by Roy Soltoff, All rights reserved
 . PATCH SYS0/SYS.SYSTEM
 D04,05=D2 45 ED 78 0D CD A6 47 ED 78 0D E6 0F 85 12 1B
 D04,15=C9 11 43 40 01 C5 03 CD C3 45 10 FB
 D0D,4E=21 46 40 01 CA 01 CD B8 4E 06 03 CD B8 4E 01 CC
 D0D,5E=0F CD B8 4E EB xx DB CB E6 03 21 B9 50 20 01 34
 D0D,6D=18 21 ED 78 0D A0 07 57 07 07 82 57 ED 78 0D E6
 D0D,7D=0F 82 77 2B C9
 . end of patch

 FILTER PACKAGE NEWS

 The LDOS Filter Package was released in January. Since then, some changes
 have been made to the disk. The source code for all of the programs now
 comes on the disk, and is also available for those of you who purchased
 the original package. This will be a free update. Also, for those of you
 who have the filter package with dates earlier than 2/20/82, apply the
 following patch to CALC/FLT.

 .CALCA/FIX
 . fixes problem with bad entry message display
 D00,ED=0B 54 00 00 1F 0A 43 41 4C 43 2D
 .EOP

 This should stop problems when an incorrect entry is made.

HIGH MEMORY AND LDOS

 The question of high memory usage comes up time and time again when
talking about LDOS and application program compatibility. There also seems to
be some confusion regarding when LDOS uses high memory. To make things
perfectly clear, remember the following two points, and then read the
explanation.

 1) LDOS high memory usage is done in a totally relocatable manner. There
 should always be a way to avoid conflict with applications programs.

 2) LDOS never uses high memory when booted without special configuration.

Avoiding memory conflicts

 A memory conflict occurs when two programs or modules want to occupy the
same memory locations. Since LDOS provides many advanced features, it needs
to store the code for these features somewhere in memory.

Page - 13

It does this in the following manner:

 1) Find the first available high memory address by looking at the value
 stored in the HIGH$ location.

 2) Install the necessary code in memory below the current HIGH$ value.

 3) Lower the HIGH$ value to protect the new code.

 Any code that LDOS stores in high memory is written to be relocatable.
This means that it can load anywhere in memory, and is not restricted to a
specific area. Since LDOS always respects the HIGH$ value, it will never
attempt to overlay any programs loaded and protected by changing the HIGH$
value in this manner. Now, if all other applications programs did the same
thing when installing code in high memory, there would obviously never be any
memory conflict.

 Unfortunately, TRSDOS and some of the other operating systems do not
respect the HIGH$ value. As a result, programs or BASIC USR routines that
load in high memory are not generally written in a relocatable manner. They
have a fixed load address, and MUST be loaded there to execute properly. This
means that they will overlay any existing LDOS code that happens to be in
those memory locations. When the LDOS code is something like the KI/DVR
program, this usually results in an immediate system crash.

 To resolve a memory conflict, you need only to know the load address and
length of the unrelocatable code. We will consider two cases - when the code
loads at the very top of memory, and when it loads at some other point.

 When the conflicting code loads at the very top of memory, it is very
easy to resolve the problem. Since you know the load address of the code, use
the MEMORY library command to change the HIGH$ value to one byte below that
address. For example, if a piece of code loads from address X'F900' and goes
to the top of memory, you would issue a MEMORY (HIGH=X'F8FF') command. LDOS
will now put any of its own high memory code below X'F900', protecting the
module that will load there. You may want to use the SYSTEM (SYSGEN) command
to keep this area permanently protected.

 When the conflicting code does not load at the top of memory, you can
use the same method just described to protect it. However, this will waste
any memory between the end of the program and the top of memory. Let's
consider the case where a module loads at X'F200' and extends to X'F3FF'.
There is 3K of space between the end of the module and the top of memory. To
avoid wasting this space, use the following procedure.

 1) Load an LDOS module into high memory (i.e., SET KI/DVR, install a
 filter, etc).

 2) Type in the command MEMORY with no parameters to see the current HIGH$
 value.

 3) If the HIGH$ value is above X'F3FF', repeat steps 1 and 2. If the value
 has gone below X'F3FF', you will need to start over, stopping before you
 load the module that caused the HIGH$ value to go below X'F3FF'.

Page - 14

 4) Now, issue a MEMORY (HIGH=X'F1FF') command. This will protect the block
 of memory that will be needed by the unrelocatable module.

 5) Continue to load any other LDOS modules as desired.

 You may now use the SYSTEM (SYSGEN) command to permanently save this
configuration with its protected block of memory.

CMD"O" - Implementation and Possible uses

In many Basic application programs, there exists a need to sort the data used
by the program. There have been many different methods used and explained in
the past to reach such a goal. This article will explain another possible
sorting process inherent in LBASIC, namely the CMD"O" command.

The CMD"O" sorting routine allows you to sort information which is contained
in a single dimension array, and can only be used with strings. The only
constraint on the amount of information that can be sorted is determined by
the amount of memory available. Realize that sufficient string space will
need to be allocated for the data via the CLEAR statement. The syntax used
for the CMD"O" command is:

 CMD"O",number of elements to sort, first element of array to sort

You will note there are 2 parameters that need to be specified when issuing
the CMD"O" command. The first parameter is the number of elements in the
array that you wish to be sorted. This parameter may be specified as a
numeric constant or a numeric expression.

The second parameter is the array that you wish the sort to be performed on,
and the element number of the array where the sort is to begin. It is
specified as the array name and a subscript. The subscript number may be
specified as a numeric constant or a numeric expression.

Before we say anything more about the CMD"O" command, an example of
implementing it is in order.

 Example

 Suppose you have the string array A$ dimensioned to have 6 positions
 (0-5), and the following assignments have been made to the array:

 A$(0)="ZEKE" A$(1)="HANK" A$(2)="BOB"
 A$(3)="GABE" A$(4)="CLIFF" A$(5)="DON"

 The following sort commands will have these affects on the A$ array,
 assuming that the above assignments have been made to the array prior to
 invoking each sort command.

 CMD"O",6,A$(0)

Page - 15

 A$(0)="BOB" A$(1)="CLIFF" A$(2)="DON"
 A$(3)="GABE" A$(4)="HANK" A$(5)="ZEKE"

 A%=6:B%=0:CMD"O",A%,A$(B%)

 Same results as previous example

 CMD"O",3,A$(2)
 A$(0)="ZEKE" A$(1)="HANK" A$(2)="BOB"
 A$(3)="CLIFF" A$(4)="GABE" A$(5)="DON"

Please note that whenever using the CMD"O" function, the sort cannot be
performed beyond the last element of the array. For instance, in the last
example, if the sort were still to begin with array position 2, the most
elements that could be specified to be included in the sort would be four
(specifying a number greater than four would force the sort beyond the
highest subscript of the array).

It can be seen that the CMD"O" function provides a convenient way of
performing a sort on a string array in ram. But what happens if you wish to
create an alphabetic index file using the sorted array? In many applications,
if a sort is performed in ram on an array, the subscript number of each
element usually represents some type of index information (e.g. a record
number in a random file), and is generally kept with each item throughout the
sorting process. As it stands, the CMD"O" function will not allow you to keep
track of an item's subscript number throughout the duration of the sorting
process.

However, there are several alternatives available which can be used in
conjunction with CMD"O" to maintain an alphabetic index file. One such
alternative is to add a two byte string onto the end of each string in the
array. This two byte string would be a compressed integer representing the
index number associated with the data element (perhaps the array postion of
the element prior to the sort).

The following example will illustrate how to create an index file using the
CMD"O" command.

 Example

 Suppose you have a random file (MYFILE/DAT) which contains an unknown
 amount of 25 byte records, and you wish to sort these records
 alphabetically, creating an index file of sorted position according to
 record number. The following routine will illustrate one way of doing this
 using CMD"O".

Page - 16

 OPEN"R",1,"MYFILE/DAT",25:FIELD1,25 AS D$
 A%=LOF(1):DIM S$(A%)
 FOR L=1 TO A%:GET 1,L:S$(L)=D$+MKI$(L):NEXTL
 CMD"O",A%,S$(1)
 OPEN"R",2,"MYINDEX",2: FIELD2,2 AS E$
 FOR L=1 TO A%:LSET E$=RIGHT$(S$(L),2):PUT 2,L:NEXT L:CLOSE

 After the above lines have been executed, the random file MYINDEX will
 have been created, and will contain 2 byte records representing an
 alphabetic index (by record number) of the file MYFILE/DAT stored as
 compressed integers..

PARITY = ODD

 Since this is the first installation of what will hopefully be a
regular feature, I thought it would be appropriate to introduce both
myself and this column. I am by profession an electrical engineer, and by
avocation a writer. You may have chanced upon some of my product reviews
and articles in BYTE and INFOWORLD (I love to drop names!). My purpose
here is twofold:

 1) To review products of particular merit with an
 emphasis on their compatibility with LDOS.

 2) To serve as a forum for the burning issues of
 the day which relate to LDOS.

I am interested in any and all reader feedback. If there is a particular
piece of software you would like to see covered or a topic which needs to
be discussed please drop me a line or leave a message on MNET.

 Tentatively scheduled (very tentatively!) is a review of several
spelling checkers, and a review of some recent statistical software for
the TRS-80.

 By no means is this column limited to reviews, however. From time
to time I'll delve into the mysterious world of Assembly Language
programming (to the great delight of all you experts out there) and
perhaps explore the hidden secrets of the LDOS JCL. The day may even come
when a reader contribution will be seen in these hallowed lines: provided
you readers start contributing!

 One final word is in order regarding the product reviews. My
responsibility is first to you the readers. I have been told by the
moguls who publish this journal, that advertising in no way influences
what I can or can't say about a product. If its good I'll say so, if its
not, I'll say that too, hopefully with a coherent reason why.

 For those of you who wish to make yourselves heard, I herewith
provide the necessary information:

 Tim Daneliuk
 4927 N. Rockwell St.
 Chicago, IL 60625
 MNET# 70745,1520

Page - 17

Now, onward and upward to today's exciting feature

PRODUCT OVERVIEW
NAME: DATAENTR 200 and ISAM 200
MANUFACTURER: Johnson Associates Software
 Box 1402
 Redding, CA 96099
 916-221-0740

PRICE: $80.00 for DATAENTR 200, $90.00 for ISAM 200 (in BASIC), and
$140.00 for ISAM 200 (in machine language).

DOCUMENTATION: Approximately 20 pages for DATAENTR 200 and
 15 pages for ISAM 200

HARDWARE: TRS-80 Model I, II, or III, and CP/M systems.

INTRODUCTION

 DATAENTR 200 and ISAM 200 are two packages which represent a growing
trend in software development. These programs are not applications
programs in themselves, but rather are a set of subroutines designed to be
integrated into a larger package. Using this software, it might be
possible to create a mailing list program, or a generalized data base
manager for example. They are both available written in BASIC, and ISAM
200 is optionally available in machine language where optimum speed
performance is essential.

DATAENTR200 - FEATURES

 This set of sub-routines provides a convenient way for the
applications programmer to develop keyboard entry programs. This not only
simplifies the programming process, but also forces a bit of program
structure by separating the input routines from the computational
routines.

 The heart of this input process is a data entry screen. This is the
screen which the final user of the program sees as he or she enters data.
In creating this screen the programmer defines the data field names and
lengths. When the end user actually enters the data for these fields, it
is returned as elements in a string array via the DATAENTR 200
subroutines. According to the manual, this program gives the applications
programmer eight principal features to integrate into his or her code:

 1) Load the screen from disk and hold it in memory.
 2) Display the memory stored data entry form.
 3) Provide full cursor and data entry control for
 1 to 30 fields.
 4) Provide verification and correction services for
 the data entry forms.
 5) Provide keyboard controlled Menu selection.
 6) Display data within the data entry form.
 7) Clear screen data fields.
 8) Provide single field correction.

Page - 18

These features are implemented in three distinct sets of programs.

 The first of these programs is a set of run-time data entry
subroutines. These routines read a screen from disk, display the screen,
set up menu selections, input data (with optional checking of the fields
as they are entered), display data, prompt the user to verify and correct
data, clear data fields, and correct individual fields. The documentation
describes each sub-routine individually, giving the variables that must be
set before the routine is called, a description of what the subroutine
does, and a short example.

 The second program consists of run-time utility sub-routines. These
provide time delay, blinking message, date/time strings, Y or N response
checking, packing and unpacking of fields, a moving sign board message
display, and a dated program listing with both time and date stamps. As
with the previous routines, each sub-routine is individually documented.
These two sets of programs are actually both contained in the program
DATAENTR, but may be separated to save space.

 The third program is a screen creation utility called UTSCREEN. This
program allows screens to be created, examined, modified, stored, and
printed. In creating the screen both the normal keyboard set and graphics
characters (except on some CP/M systems) are permitted The utility also
has features like line drawing and enclosing screens in video "boxes".
The major feature of this screen utility is the ability to define field
checking at the time the screen is created. This provides for run-time
checking of data entered into each field. For example, it is possible to
check if all the characters entered are alphabetic.

DATAENTR 200 - EVALUATION

 By it's very nature, this program cannot be rated on overall
performance. Those routines which I experimented with performed exactly
as indicated in the documentation. The UTSCREEN screen utility has one
major failing in that it is insufficiently error-trapped. Several times I
inadvertently keyed in an incorrect key sequence and was rewarded with an
LBASIC error message which bombed the program and destroyed that session's
screen editing. UTSCREEN also has a problem in naming the files which
store the screen configurations. The programmer is prompted for the file
name (the extension /SCR is automatically appended), but one cannot
specify which drive to save the file on! To use the program I had to
write-protect my system disk (which is always full), to force the system
to write the screen file to drive 1. Since I keep a JCL procedures
library on the system drive, it became very cumbersome to have to remove
the write protection every time I wanted to compile and execute a JCL
procedure.

 The documentation is generally adequate but a bit terse. One
excellent feature of the documentation is a set of six step-by-step
lessons which demonstrate the use and application of DATAENTR 200.

ISAM 200 - FEATURES

 As with the program above, this program is a set of subroutines
designed to be implemented in a larger package by the applications
programmer.

Page - 19

These sub-routines are available written in either BASIC or machine
language. As a whole, this set of routines implement ISAM (Indexed
Sequential Access Method) file handling within a BASIC program.
Specifically, the following seven file handling procedures are
implemented:

 1) Open the ISAM file.
 2) Get a specific record.
 3) Update an existing record.
 4) Put a new record into the file.
 5) Delete an existing record.
 6) Get the next record in sequence.
 7) Get the first record in the file.

The various file attributes like field lengths, field names, and record
blocking (LRL) are stored within the file itself. When an ISAM file is
opened, the ISAM 200 routines read these attributes and adjust themselves
accordingly.

 Several other programs are also included which assist in creation and
maintenance of ISAM files. The INIT program is used to create a new file
and write the file attributes to be used later. ISAMPRNT lists a file to
either the printer or the screen. REORG is used to reorganize a file
which has had many insertions and deletions. The program removes deleted
records, and re-sequences the file to optimize run-time file handling.

 As with DATAENTR 200, each sub-routine in ISAM 200 is individually
documented with complete information regarding variable setting, general
description of routine, error return codes, and short examples.
Information is also supplied which discusses how ISAM 200 uses memory, and
how to use multiple sort keys with the routines.

ISAM 200 - EVALUATION

 This program can only be considered to be minimally compatible with
the LDOS operating system. To begin with, the machine language routines
which I evaluated were not fully relocatable, though 32K and 48K versions
were provided on the master diskette. Worse yet was the fact that these
programs did not set the HIGH$ memory pointer to protect themselves. This
makes running any LDOS high memory options impossible unless one manually
sets the memory pointer each time ISAM 200 is loaded.

 Operationally, the routines seem to work well. A sample mailing list
program is provided to demonstrate the power of the ISAM routines, and it
does so convincingly. In general, the experienced BASIC programmer should
have minimal difficulty implementing ISAM 200 in very sophisticated
applications if the problems mentioned above are circumvented.

SUMMARY

 Neither of these programs are for the novice. Both have good
potential applications, but some expertise on the part of the applications
programmer is mandatory.

Page 20

 PRODUCT REVIEW :
 S B T (Structured Basic Translator)
 written by Gene Bellinger
 published and produced by Acorn Software Products, Inc.
 $49.00

 Reviewed by S. L. Ratkowski, Milwaukee, Wisconsin
===
 Structured Programming is the magic buzzword in programming circles.
Everyone 'knows' that BASIC is a poor language to program in because it is
not 'structured'. In actual practice, it is possible to write structured
programs in BASIC, but it takes a little more thought on the programmer's
part than is required in a truly structured language such as Pascal.

 Acorn Software has a new utility that is intended to make structured
programming a little easier for the BASIC programmer -- they call it SBT, for
Structured Basic Translator. SBT is a line oriented translator that
understands only three type of lines:

 1) STRUCTURE ELEMENTS.

 All of the SBT structure elements begin with the '%'
character. The allowable elements are:

 %PROC - this is the PROCedure label. Think of a Procedure as a
subroutine. All programs are made up of one or more procedures.

 %CALL -- this is used to CALL a PROCedure.

 %WHILE -- One of the three allowed loop structures. A DO-WHILE
loop is used in a situation where you may not want the body of the loop to
execute even once, since the test for the exit condition is done before the
body of the loop is executed.

 %UNTIL -- This loop structure is used whenever you want the body
of the loop to execute at least once, no matter what. The exit test is done
after the body of the loop is executed.
 (The third loop structure is simply the BASIC FOR ... NEXT loop.)

 %IF -- Combined with the next two structures, allows the
construction of several forms of the IF-ThEN-ELSE structure.

 %ELSE and

 %ELSEIF -- Used with %IF to construct statements of the IF-THEN
ELSE variety. They allow very versatile uses.

 %ON -- This is used to create the CASE-CALL, which performs a
conditional call of one of several procedures, depending on the value of it's
argument. It translates to the BASIC sequence ON ... GOSUB ...

 %ON ERROR -- Used to code error handling routines of the ON ERROR
GOTO .. type. The programmer must be careful using this, as the last %ON
ERROR block encountered is the one that controls when the error occurs.

Page - 21

'RESUME linenumber' cannot be used because SBT source code has no numbered
lines.

 %END -- This statement is simply a marker to delineate the end of a
%PROC, %UNTIL, %WHILE, %IF, and %ON ERROR.

 2) COMMENTS -- A comment in an SBT source program is any line that
begins with a non-alphabetic character other than '%'. This type of line is
ignored during processing. If you want to include REMarks to be included in
the final BASIC program, include them in the source by beginning the line
with 'REM'. You may not use the abbreviation " ' ", since SBT takes this
line as a comment line not to be processed into the object program.

 3) BASIC STATEMENTS -- Any line which is not a structure element, and is
not a comment is ASSUMED to be a VALID BASIC statement, and is passed
directly to the object program. SBT does NO checking on the validity of such
statements, and this can cause some rather interesting crashes when you
include comment lines not preceded by non-alpha characters, or incorrect
BASIC statements.

 To use SBT, you use the primitive text editor supplied on the disk, or
any word processor capable of producing an ASCII file, to write the 'source'
code of the program. This 'source' file must have the extension 'SBS'. I used
SCRIPSIT to produce the following:

 (Any lines that have '<--- ' in them are not in the source, but are used
to explain what is happening in that program line.)
 (The first 5 lines are examples of COMMENT lines.)
(*--
(* EXAMPLE OF PROGRAM WRITTEN USING S B T
(* --->> Structured Basic Translator <<---
(* by Acorn Software Products, Inc.
(*--
CLEAR 1000 <--- This is a plain BASIC statement
%CALL INIT <--- I am calling the Procedure named INIT
%UNTIL CHOICE = 0
 %CALL MENU <--- Calling the Procedure named MENU
 %CALL INPUT <--- Calling the Procedure named INPUT
 %ON (CHOICE) CALL ENTER,EDIT,PRINT,FILE <--- Depending on your choice,
this will call one of the 4 Procedures.
%END UNTIL
PRINT SML$ <--- This is a pure BASIC statement.
END <--- So is this.
(*---
(* PROCEDURE INIT -- SHOWS USE OF
(* CONDITIONALS TO SET UP CONSTANTS FOR
(* EITHER MODEL I/III OR MODEL II USAGE.
(*---
%PROC INIT <--- This is the Procedure Label.

<--- The next 11 lines are all BASIC statements. I can use this as a
general purpose menu routine just by changing these lines for each
application I have.

Page - 22

 DIM DT$(100)
 N=5
 DIM MN$(N)
 MN$(1)= "1) Enter Data"
 MN$(2)= "2) Edit Data"
 MN$(3)= "3) Print Data"
 MN$(4)= "4) File Data to Disk"
 MN$(5)= "5) End Program"
 M$= "Enter your choice..."
 M2$="MENU OF OPTIONS"
 E$= "Invalid Input. Please re-enter..."

<--- The following lines are examples of CONDITIONAL TRANSLATION. When I
execute the Translator, I can set SWITCHES that will tell the translator to
include some lines but not others. I work on a Model III at home, and use a
Model II at the office. I would love to be able to write programs that would
run on both. By using this feature of SBT, I can.

 All of the lines below that begin with '$M2$' will only be translated if
I set the proper switch at translation time. If I specify NO switches at
translation time, none of these statements will be translated, as they will
be taken to be comments by SBT.

<--- Model II constants

 $M2$ SML$= CHR$(30) (* CLS AND SET TO 80 CHAR MODE *)
 $M2$ BIG$= CHR$(31) (* CLS AND SET TO 40 CHAR MODE *)
 $M2$ ROW = 24 (* 24 LINES ON CRT *)
 $M2$ COL = 80 (* 80 CHAR LINES *)

<--- Model I/III constants

 $M13$SML$= CHR$(28) + CHR$(31) (*CLS & SET TO 64 CHAR MODE *)
 $M13$BIG$= CHR$(28) + CHR$(31) + CHR$(23) (* CLS & SET TO 32 CHR MODE *)
 $M13$ROW = 16 (*16 LINES ON CRT *)
 $M13$COL = 64 (*64 CHAR LINES *)
%END PROC (INIT)

 Once you have created your source file and saved it as an ASCII file
with the extension '/SBS', you go into BASIC and run SBT. Under LDOS 5.1.2
on the Model III, the procedure goes as follows:
LDOS Ready

LBASIC RUN"SBT/"

LBASlC - Version 5.1.2 - 03/01/82
(C) 1981 by Logical Systems Incorporated

 SBT - Structured Basic Translator
 Ver # 3.1 18-Jan-81

Page - 23

F1x> EXAMPL/$M13$ <-- The program prompts you for the file name of the source
code. The extension '/SBS' is assumed.

FEXAMPL/$M13$
 00100 - INIT <--- As SBT processes the source, it shows you the
subroutines it is setting up from the PROCs in your program.

 00200 - MENU
 00300 - INPUT
 00400 - ENTER
 00500 - EDIT
 00600 - PRINT
 00700 - FILE
READY

 At this point, you can LOAD and RUN the object program, which is saved
on the disk as an ASCII program with the extension '/BAS'. Notice that I
used the switches to tell SBT to only translate the Model I/III constants,
not the Model II constants. I include both the source code of the program
(FIGURE 1) and the resulting BASIC program (FIGURE 2) as an example of what
SBT can do.

 The translation of this program took 2 minutes and 16 seconds. The
writing of the source took me about an hour and a half, starting from scratch
with the manual in hand. It took three tries before I cleaned out the goofs
caused by reading the manual too quickly.

 The program is easy to use, but is not for the beginning programmer. If
you make a mistake in the syntax the translator is looking for, you can wind
up with a BASIC program that does not make sense. You must have a feel for
what should come out of the translator to figure out what you did wrong in
the source.

 I like structured programing, but it sometimes requires too much
planning when I program in BASIC. The SBT is definitely a tool that would
help me write more structured programs. The documentation is good, and the
examples will help you over the rough spots.

 This product comes on a 35 track single density TRSDOS diskette that can
be booted on a Model I, or CONVERTed by a Model III. The instructions for
use are included in a small format, 25 page booklet that includes all of the
allowed syntax of the translator and examples of their usage. In addition,
the disk includes three source programs, and the translated object code that
SBT produces. Interestingly enough, one of the examples is SBT itself.

 One other note is that the source program for SBT includes the switches
TRS, CPM, and I. To run on the TRS-80, it must be translated as
SBT/TRS/I. If you wish to translate it to run with Microsoft BASIC 4.51
under CP/M vers. 2.2, use the switches SBT/CPM/I. If you with to run it
under Microsoft BASIC vers. 5.2, use SBT/CPM.

Page - 24

============================
 FIGURE1
============================

(*--
(* EXAMPLE OF PROGRAM WRITTEN USING S B T
(* --->> Structured Basic Translator <<---
(* by Acorn Software Products, Inc.
(*--
CLEAR 1000
%CALL INIT
%UNTIL CHOICE = 0
 %CALL MENU
 %CALL INPUT
 %ON (CHOICE) CALL ENTER,EDIT,PRINT,FILE
%END UNTIL
PRINT SML$
END
(*---
(* PROCEDURE INIT -- SHOWS USE OF
(* CONDITIONALS TO SET UP CONSTANTS FOR
(* EITHER MODEL I/III OR MODEL II USAGE.
(*---
%PROC INIT
 DIM DT$(100)
 N=5
 DIM MN$(N)
 MN$(1) = "1) Enter Data"
 MN$(2) = "2) Edit Data"
 MN$(3) = "3) Print Data"
 MN$(4) = "4) File Data to Disk"
 MN$(5) = "5) End Program"
 M$= "Enter your choice..."
 M2$="MENU OF OPTIONS"
 E$= "Invalid Input. Please re-enter..."
 $M2$ SML$= CHR$(30) (* CLS AND SET TO 80 CHAR MODE *)
 $M2$ BIG$= CHR$(31) (* CLS AND SET TO 40 CHAR MODE *)
 $M2$ ROW = 24 (* 24 LINES ON CRT *)
 $M2$ COL = 80 (* 80 CHAR LINES *)
 $M13$SML$= CHR$(28) + CHR$(31) (*CLS & SET TO 64 CHAR MODE *)
 $M13$BIG$= CHR$(28) + CHR$(31) + CHR$(23) (* CLS & SET TO 32 CHAR MODE *)
 $M13$ROW = 16 (* 16 LINES ON CRT *)
 $M13$COL = 64 (*64 CHAR LINES *)
%END PROC (INIT)
(*---
(* PROCEDURE MENU -- DISPLAY MENU
(*---
%PROC MENU
 PRINT BIG$
 L = ((COL/2)- LEN(M2$))/2
 PRINT TAB(L) M2$
 PRINT
 X=1
 %UNTIL X > N
 PRINT MN$(X)

Page - 25

 X=X+1
 %END UNTIL
%END PROC
(*---
(* PROCEDURE INPUT -- GET CHOICE
(*---
%PROC INPUT
 SCR = (ROW - 1) * COL
 PRINT
 %UNTIL VAL(A$)>0 AND VAL(A$)<6
 L = ((COL/2)- LEN(M$))/2
 PRINT TAB(L) M$
 %UNTIL A$<> ""
 A$= INKEY$
 %END UNTIL
 %IF VAL(A$)<1 OR VAL(A$)>5
 PRINT @ SCR, E$
 %END IF
 %END UNTIL
 CHOICE = VAL(A$)
 %IF CHOICE = N
 CHOICE = 0
 %END IF
%END PROC
(*---
(* PROCEDURE ENTER -- GET DATA FROM KB
(*---
%PROC ENTER
 PRINT SML$
 PRINT "DUMMY ENTER ROUTINE"
 INPUT"HIT 'ENTER' TO CONTINUE";A$
%END PROC
(*---
(* PROCEDURE EDIT -- EDIT DATA
(*---
%PROC EDIT
 PRINT SML$
 PRINT "DUMMY EDIT ROUTINE"
 INPUT"HIT 'ENTER' TO CONTINUE";A$
%END PROC
(*---
(* PROCEDURE PRINT -- PRINT DATA
(*---
%PROC PRINT
 PRINT SML$
 PRINT "DUMMY PRINT ROUTINE"
 INPUT"HIT 'ENTER' TO CONTINUE";A$
%END PROC
(*---
(* PROCEDURE FILE -- FILE DATA
(*---
%PROC FILE
 PRINT SML$
 PRINT "DUMMY FILE ROUTINE"
 INPUT"HIT 'ENTER' TO CONTINUE";A$

Page - 26

%END PROC

============================
 FIGURE 2
============================

1 CLEAR 1000
2 GOSUB 100
3 GOSUB 200
4 GOSUB 300
5 ON((CHOICE))GOSUB 400,500,600,700
6 IF NOT(CHOICE = 0) THEN 3
7 PRINT SML$
8 END
100 DIM DT$(100)
101 N=5
102 DIM MN$(N)
103 MN$(1) = "1) Enter Data"
104 MN$(2) = "2) Edit Data"
105 MN$(3) = "3) Print Data"
106 MN$(4) = "4) File Data to Disk"
107 MN$(5) = "5) End Program"
108 M$= "Enter your choice...
109 M2$="MENU OF OPTIONS"
110 E$= "Invalid Input. Re-enter..."
111 SML$= CHR$(28) + CHR$(31)
112 BIG$= CHR$(28) + CHR$(31) + CHR$(23)
113 ROW = 16
114 COL = 64
115 RETURN
200 PRINT BIG$
201 L = ((COL/2)- LEN(M2$))/2
202 PRINT TAB(L) M2$
203 PRINT
204 X = 1
205 PRINT MN$(x)
206 X = X + 1
207 IF NOT(X > N) THEN 205
208 RETURN
300 SCR = (ROW - 1) * COL
301 PRINT
302 L = ((COL/2)- LEN(M$))/2
303 PRINT TAB(L) M$
304 A$= INKEY$
305 IF NOT(A$<> "") THEN 304
306 IF NOT(VAL(A$)<1 OR VAL(A$)>5) THEN 308
307 PRINT @ SCR, E$
308 IF NOT(VAL(A$)>0 AND VAL(A$)<6) THEN 302
309 CHOICE = VAL(A$)
310 IF NOT(CHOICE = N) THEN RETURN
311 CHOICE = 0
312 RETURN
400 PRINT SML$
40l PRINT "DUMMY ENTER ROUTINE"
402 INPUT"HIT 'ENTER' TO CONTINUE";A$

Page - 27

403 RETURN
500 PRINT SML$
501 PRINT "DUMMY EDIT ROUTINE"
502 INPUT"HIT 'ENTER' TO CONTINUE";A$
503 RETURN
600 PRINT SML$
601 PRINT "DUMMY PRINT ROUTINE"
602 INPUT"HIT 'ENTER' TO CONTINUE";.A$
603 RETURN
700 PRINT SML$
70l PRINT "DUMMY FILE ROUTINE"
702 INPUT"HIT 'ENTER' TO CONTINUE";A$
703 RETURN

THE LIBRARY by Earle Robinson

The library found on your LDOS disk is a continuation of the system begun
under the first versions of TRSDOS. You may have frequently wondered what it
is and what is its use. The library was created in order to provide the user
with a number of utility programs of relatively short length so as to occupy
a minimum amount of disk space. Note that I said these are programs because
that is what they are. It would be possible for each and every one of the
library programs to be on your disk as /CMD files. You could easily extract
these routines and create /CMD files on your disk. You would, however, have a
much more encumbered disk, using over double the space and occupying some 33
file spaces.

The library was created in order to save space on the disk. Remember that the
Model I disk drive system relied on 35 track diskettes in single density.
Model I TRSDOS has far fewer programs than does LDOS, but the library, even
in that rather bare bones operating system, saved enormous space on the disk.
Under LDOS, if the 33 different library programs were individually stored as
programs on the disk, they would occupy at least 165 sectors or 17 tracks (if
a double density disk, 198 sectors, or 11 tracks). You can appreciate that
such a disk would not leave much spare space. Also, not to be forgotten is
the maximum number of permitted files on a single density disk, 48 (*1). If
the library were split into files, the available number of files would be
reduced to only 15! The library in fact concentrates the 33 library programs
into a space of 88 sectors. How is this done?

Each program file on a disk uses a minimum of one gran of a disk (5 sectors
in single density or 6 sectors under double density). Many of the library
routines are quite short, occupying 1 or 2 sectors. If they were stored as
files, each would be allocated at least 1 gran of space though using only a
sector or two. The library packs these routines into 2 separate system files,
SYS6 and SYS7. Two files are used due to the huge size of the library which
would make a single one impractical. In addition, the use of a second file
permits allocating space between each of them based on their importance in
day to day use. (Single drive users of LDOS can easily run most of the time
with a system disk without SYS7 being present). Not only does the packing of
the library programs economize disk space, but it permits double or even
triple use of the same code for certain routines such as COPY and APPEND.
This is accomplished by using different entry points to the same routine
where much of the same code is used by different routines. CONT. Page 37

Page - 28

The method used is described in Roy Soltoff's description of his new program,
PDS, which stands for Partitioned Data Sets, published in the last issue of
the LDOS Quarterly.

Due to the construction of the library, it is impossible to SYSRES it as can
be done with the other overlays. In any case, the very long length of SYS6 in
particular swallows far too much of your RAM. It is possible, however, to put
individual routines into a /CMD file. The choice would depend on your
activity. For example, if you are doing a great deal of copying of files,
then the creation of a command file of the COPY routine might be envisaged.

For those who are interested I shall briefly describe how the library is
accessed. Let us assume that you wish to display the directory. You will type
in DIR (plus any parameters required) and hit the <ENTER> key. That action
will start the long (in number of bytes, but short in time) interpretation of
this command at the address 4405 hex. The accumulator (the A register) will
be loaded with the value of B3 hex and a RST 28 (*2) will follow.

Page - 37

That will put you down at the address of 28 hex in the ROM where there is a
jump instruction to another address in RAM at 400C hex (*3) From there the
B3 value in the accumulator will lead to SYS1 being loaded (*4), and DIR
being parsed, matching this library command with the list located in SYS1.
Once the name DIR is found, the index values following it will be extracted.
These are 21 hex and 80 hex. The latter tells the system that the DIR routine
is in SYS6 (if it had been SYS7 the value would have been C0 hex). The former
value is the index for DIR, located in SYS6.

Another RST28, this time with the value of 88 hex in the accumulator, will
load the first sector of SYS6 where the indices for the programs therein are
examined until 21 hex is located. SYS6 (and SYS7 too) contain each of the
indices for the library routines at the beginning of the file. Each index is
followed by the relative load address for the routine, its entry point, and
the relative address for loading of the code used to run the routine. Note
that this method avoids loading the complete library file in order to reach
the routine desired. This speeds things up a great deal over the method used
by TRSDOS which loads the complete library, and also permits limiting use of
memory to the area between 5200H and 6FFFH. In fact, most routines use much
less space.

The LDOS library files have also been optimized in so far as is practical.
Based on feedback from users, and on LSI's own experience, the routines most
frequently used are placed earlier in the library in order to reduce access
time. In the same way, the split between SYS6 and SYS7 was made in such a way
so that the most frequently accessed routines are in SYS6. It is frequently
asked why TRACE is a library routine since it is rarely used and is not very
practical. Since TRACE is a TRSDOS library routine, LSI included it in SYS7
in order to maintain the upward compatibility which is one of the most
important features of LDOS.

Footnotes

 (*1) In fact, a single density disk has space for 64 files, 8 sectors of 8
 files each. However, 16 of these are reserved for system files. Only 14
 are used at present, including BOOT and DIR). On a double density disk,
 there are 112 files (after deduction of the 16 system slots allocated).

 (*2) RST is an assembler instruction called a restart of which there are
 six for the TRS80. The number is the hex value where the processor is
 sent. One advantage of a restart instruction is that it uses only byte of
 instructions versus 3 bytes for a normal jump command The RST28 is used
 to tell the system which overlay is to be loaded into memory.

 (*3) It is frequently asked why the instruction at 400C is merely a jump
 to another vector. Why not jump immediately to the second vector? There
 are two reasons for this. First of all, it is impossible to modify
 instructions in ROM. Secondly, LDOS strives to maintain upward
 compatibility with TRSDOS and maintains all 'standard' vector values. This
 means that there are frequently jumps to a second (or even a third) vector
 where execution begins.

 (*4) The system subtracts 2 from the value to determine the overlay number
 to be loaded; the upper 4 bits of the byte tell the system which part of
 the overlay to go to. In this case, B3 tells the system that SYS1 is
 required, and that the command is to be parsed. The value of 93, also
 calling SYS1, would have led to the "LDOS Ready" message.

Page - 38

INSIDE THE EXPANSION INTERFACE by Earle Robinson

Model I LDOS users occasionally encounter problems with the Expansion
Interface. As a very non-hardware oriented person myself, I have encountered
my full share of these and will discuss them in the following remarks. Some
of my own experiences and problems may help others in recognizing what is
happening (or often, what is not happening), and more easily overcome or
resolve things like silent death, re-boots, and data write errors.

The first annoyance encountered by Mod I users with the Expansion Interface
is that of what is called 'Silent Death'. The screen display freezes, and
nothing can be entered from the keyboard. Although one may be tempted to
throw the whole computer out the window, a more practical solution is to push
the Reset button. Silent death happens most frequently during disk I/O, and
can be very frustrating if a file or a program is lost. The source of the
problem is within the Expansion Interface, and is called time-out. There is
insufficient delay accorded to the Seek command due to a too small capacitor,
(thanks to Tandy, which in its infinite wisdom, did not wish to be accused of
over-engineering their products.) This capacitor will be replaced upon
demand at your local RS computer center. However, if you prefer, and are
hardware oriented, you may do it yourself.

Unwanted reboots usually happen while in the midst of completing a most
arduous task, running, writing or debugging a program. They also typically
occur very late in the evening, when you don't have a backup of the file, so
that it is lost. The one positive aspect of such a calamity occurring after
Midnight is that your loved ones will already be asleep and therefore less
likely to be in immediate danger of the overwhelming wrath which will seize
you. The usual reason for these re-boots is defective memory above HIGH$.
LDOS uses that area for drivers and devices constantly. Even one bad bit
somewhere in that memory can be disasterous. Fortunately, memory chips have
now become quite cheap, usually around $16 per set of 8. Replace that memory
immediately! Nine times out of ten this will solve the problem.

The final disaster that we'll cover is that of data read or write errors.
Localizing this problem successfully is much more difficult. The usual causes
are: 1) a defective disk controller chip (WD-1771); 2) oxidization of the
connector busses 3) bad diskettes 4) disk drives out of alignment. Tandy,
with its scrupulous concern to avoid being accused of over-engineering its
products bought the series -01 of the controller chip from the manufacturer,
Western Digital. This series might be called less charitably, "seconds".
Since Tandy also avoided installing a so-called data separator in the system,
the problem with the controller chip frequently only becomes evident when a
user installs a separator or a double-density board (which also has a
data-separator). When I installed my double-density board, at first I could
only successfully write in double-density and not in single density. Clearly,
my double-density controller was O.K. but not the old single one. I replaced
it with a series -02, and that was that.

Another cause of data errors can be the connections between the keyboard
unit, the interface and the disk drives. The connector bus on your keyboard
and those on the interface were coated with tin, which oxidizes, rather than
gold, which doesn't.

Page - 39

Though cleaning with a pencil eraser (the so-called pink pearl treatment)
will provide temporary relief, it will also eventually, if repeated too
often, remove the tin. The best solution is to get the connectors replated
with silver or gold or solder another connector, a gold one to the original.
Note that Tandy didn't wish to encourage gold bugs when designing the Model
III either, and also repugned gold connectors on that model.

Use of poor quality diskettes is a frequent cause of data errors, clobbered
directories, and other dire problems. Use first rate diskettes always. LSI
(and this writer) prefer Scotch. Many of my friends condemn Memorex. I know
those who swear by Verbatims, and others who swear at them. Dysans have a
Rolls Royce reputation... .and a similar price, not really all that justified.
For some time I also used Verbatims until I found that the coating seemed to
wear off (especially those used with 80 double density tracks). If you only
operate under single density, then the choice of diskettes is, I might add,
somewhat less critical.

The final cause of data errors is frequently misaligned disk drives. This
source of problems is usually left as the last resort since it usually costs
a minimum of $35 to get a drive re-aligned. It is usually recommended that a
drive be serviced at least once each six months. However, it really depends
on how much use the drive gets, the manufacturer.....and luck. I have two
drives from the same manufacturer. The first one has been in service for over
2 1/2 years and has never been re-aligned. The second one required service
after only 5 months of service. I do recommend, however, that a small fan be
placed so as to aerate the power supplies of disk drives for two reasons.
First of all, heat build up will cause more wear. More important still, the
speed of a drive will vary widely between the time it is turned on and when
it gets warm. Naturally, cleaning the head of the drive occasionally is also
highly recommended to remove oxidized matter. This can be done with a special
diskette kit available from most dealers including Radio Shack stores. Be
careful, however. The head is actually NOT on the side from which the door
closes, but the opposite side. This is not explained in the documentation of
the drive cleaning kits and many people have destroyed the pressure pad by
applying the wet cleaning side of the diskette against the pressure pad
rather than the head itself!

Finally, a number of people complain that they have more disk I/O problems
with LDOS than with brand X operating systems. They forget that LDOS offers
type-ahead, the most accurate system clock and a reasonably good software
based spooler. None of the other systems can equal these features which
disable interrupts much earlier during disk I/O, which eliminates use of
type-ahead and the spooler at that time.

AN ARTICLE by Charlie Butler of The Alternate Source

Per Bill's request, I am going to editorialize; carte blanche, one page, he
says. Thanks for nothing pal. Your turn is coming. Let's talk about

Changing Operating Systems Mid(bit?)stream -- Should you do it?

Page - 40

 Remember the day you first got disk? After getting the cables figured
out and determining which way the write-protect notch went you were on the
way. Your first goal was to learn the operating system. You probably started
with DIR, LIB and FREE, but it would be months (and seem like years) before
you were up to the heavies like APPEND and ATTRIB. And now, it's beginning to
make sense. Most of it, anyway. Wasn't it all fun?

 Quite frankly, it was a pain in the butt. Learning a new DOS slows down
productivity. You don't have enough time to do everything now, much less
fight with a new set of commands and the compatibility problems that
invariably pop up. Why spend weeks of frustration learning a new DOS?

 Try this: Get your most important data file. It could be a program you
just spent many hours writing or your customer master list. From BASIC, type

OPEN,"O",1,"filename"<ENTER>

Now say to yourself, "Oh, that's my very important file." Then type

CLOSE<ENTER>

 Depending on which DOS you're using, your file will either be OK, or it
will be a null file (a file that contains no information). A close inspection
of the directory will reveal that all directory extension pointers have been
reset and the file contains no sectors. Recovery will take hours.

 Combine this problem with a library of wierd acronyms, disrespect for
active drivers when chaining and general incompatibilities in BASIC.

 For example, the BASIC "MERGE" and "LOAD" commands. TRSDOS allows you to
write BASlC statements in ASCII to a file in any order and corrects that
order when LOADing or MERGEing the program. (Many of the new "program
generators" or programs that write other programs use this principle.) For
illustration, study the following program:

10 OPEN"O",1,"TEST:0"
20 PRINT#1,"20 PRINT I"
30 PRINT#1,'10 FOR I = 1 TO 10"
40 PRINT#1,"30 NEXT I"
50 CLOSE

Run this program, then RUN"TEST" with your operating system. If only one
number prints on the screen, the program lines from the file TEST were not
merged properly.

 True, the best laid plans go astray, but I (the programmer) have a
choice of which operating systems I will support. In order to stay in
business, I must support TRSDOS, but any other system must prove its worth.

 The above examples are only a couple of the reasons why I have started
using LDOS for my programming projects. I don't have to worry about the above
problems. But that's not all. What about other "bugs" I discover? I
frequently hear customer complaints about the frequency of updates coming
from Wisconsin ("Do you have the 2 pm or the 4 pm version?"). You should be
applauding.

Page - 41

Updates mean someone is listening to complaints and at least trying to
correct problems. Most of the updates you probably don't need, anyhow. It is
nice to know they are there, if you do.

 Lest you think I am trying to hard-sell LDOS, I am not. It is not a
cure-all for DOS problems (and they ALL have them). Just looking at their
manual shows you they have made a remarkable effort) but it still falls short
of "ideal." It is not indexed to suit me and it doesn't include enough user
examples. Still, for my applications) LDOS is the best product on the market.
It is also the best documented DOS on the market.

 Should you hassle with another operating system? Maybe. If you are
having problems like mine (above), definitely. I don't envy you; just make
sure the DOS you're learning is worthwhile.

Roy's Technical Corner

 This is the fourth in my regular series of articles on LDOS technical
subjects. The first explained the Data Address Mark convention used in LDOS.
The second detailed the functions of the @PARAM vector and how you can ease
the development of your assembly language programming efforts by
incorporating @PARAM to parse command line parameters. The third dealt with
device independence and its implementation on the Models I and III.
Commencing with this issue, my series has been named, "Roy's Technical
Corner" - and you thought RTC meant Real Time Clock, ha!

 One of the many interesting things unique to LDOS amongst the many
TRS-80 DOSes is our extensive use of distinct record types in load modules.
Load modules, you say? What's a load module? Let's set the record straight on
this one and clear up some of the semantics concerning load modules
(according to Pete Barbutti, semantics is the study of salmon and ticks}.

 A load module is simply a file that contains information on where it is
to load into memory. It is usually loaded by the SYSTEM loader. If it can be
directly executed as a program, it then becomes known as an executable load
module (ELM). The usual term that has been applied to such a file is "CMD".
That's because a directly executable load module is thought of as a command.
We further use the default file extension of /CMD for these command files
(ever wonder where Command File Utility got its name?).

 Another problem of semantics arises when we consider the output of the
DUMP library command. The default file extension used is /CIM, short for core
image. This has been an unfortunate specification because the core image dump
is constructed exactly like a load module it, in fact, IS a load module
file. The term core-image, assumed originally coined under TRSDOS by Randy
Cook, does in fact mean executable load modules on main frame computers. It
is generally NOT the case with the TRS-80, although it can be. I have
problems with the use of the CIM extension, in light of the extensive use of
CMD as a directly executable module. Perhaps we shall change the default in
DUMP to something more meaningful.

 Let's get back to the issue at hand. A load module has been said to
include certain "loading" information pertinent to a loader routine. This is
in contrast to a data file, a BASIC program, an ASSEMBLER source file, etc.
which contain no such information. Think of the load module as a sequence of

Page - 42

RECORDS. Note that I did not say an ordered sequence. Thus, the implication
is that the records do not have to be in an ascending order (contiguous load
addresses). Each record stands by itself and can be dealt with by a loader.
The records must have some indicator as to what TYPE of record they are. This
TYPE code is used to denote a record as a HEADER, a TRANSFER ADDRESS, an ISAM
DIRECTORY, a LOAD RECORD, or other meaningful structure. A record must also
have a LENGTH which is the length of the data area field. Under TRS-80
operating systems, the length is constrained to a one-byte value and can be
from 1-256 in value. The remaining part of the record is its DATA AREA and is
used to store program code, directory information, messages, etc. I have
identified three different fields of information for the record; TYPE CODE,
LENGTH BYTE, DATA AREA. If you are familiar with BASIC random access files,
you will see the similarity in the fielding of records - except in this case,
we have variable length sequentially accessed records (with partitioned data
sets, we also have variable length indexed sequential accessed records).

 Let me now build a table of record types used in LDOS. After that is
accomplished, I will then fill in the details where necessary.

 TYPE DATA AREA
 ---- ---------
 01 object code (load block)
 02 transfer address
 04 end of partitioned data set member
 05 load module header
 06 partitioned data set header
 07 patch name header
 08 ISAM directory entry
 0A end of ISAM directory
 0C PDS directory entry
 0E end of PDS directory
 10 yanked load block
 1F copyright block

 Any code above X'1F' is invalid as a record type. In addition, any code
not listed in the above table is reserved for future use. For example, codes
11-18 are reserved for relocatable code module structures as defined in the
LC implementation. As an aside, Tandy uses a type code of X'03' in lieu of
the transfer address type code of X'02' to indicate a load module that is not
executable.

 Let's look at a sample file. Start by listing the first sector of LBASIC
via LIST LBASIC/CMD.BASIC (H). Notice it starts out with:

 05 06 4C 42 41 53 49 43 1F 32 43 ...
 . . L B A S I C . . C ...

What you have here is a load module header (TYPE=05). The length byte
(LENGTH=06) follows the TYPE code. The 6-byte DATA AREA field is the header
name. ALL RECORDS FOLLOW THIS "FIELDING" ORDER. A record is organized with a
TYPE, LENGTH, DATA sequence. The X'1F' begins the second record. Quick now,
what kind is it? It happens to be a copyright record with a LENGTH of X'32'
or 50 decimal bytes. Incidentally, the TYPE=1F record is generated
automatically by the "COM" pseudo-op in EDAS, the assembler used to maintain
LDOS.

Page - 43

 Note that each record begins with the TYPE code and the first byte
following the end of a record is always the TYPE code of the next record. The
only exception is when a TYPE code indicates the end of a file. If you look
further in the record displayed at relative position X'3C', or if you count
50 bytes down from the "C" of "Copyright", you will see:

 01 A1 00 4E C3 8E 5B ...

 The record TYPE is a load block (TYPE=01), and the length of the data
area is X'A1', or 161 data bytes. The two-byte field following the LENGTH is
the starting load address for the rest of the field. This is a special case.
Since the LENGTH value includes the 2-byte load address, a length of x'03'
would indicate only one load byte. A length of x'04' would indicate two load
bytes. A length of X'FF' would indicate 253 load bytes. A length of X'00'
would indicate 254 load bytes. To be able to have a data area with up to 256
bytes of loadable data, the LENGTH values of x'01' and X'02' are indicative
of 255 and 256 load bytes respectfully. This is accomplished by having the
system loader decrement the length value by two when reading a load address.
The resultant value becomes the true length of the loadable data.

 If you let the BASIC listing proceed to the end of the file, the last
four bytes should appear as:

 02 02 C9 52

This will represent the TRANSFER ADDRESS record (TYPE=02). Again, we have a
LENGTH byte which shows a 2-byte data field. The data field contains the
transfer address or entry point to the program in standard low-order,
high-order sequence. Of course, the transfer address value you will see is
dependent on which LBASIC you are listing.

 These are the four types you will find in other operating systems. Now
it's time to get down to the nitty gritty. List the first record of SYS6/SYS
via LIST SYS6/SYS.SYSTEM (H) {note: if you are not using 5.1.1, then the
password to use is WOLVES}. Look at the area just past the copyright. You
will see something like this:

 08 06 1E 00 52 00 00 DB 08 06 21 ...

The TYPE code of X'08' indicates an ISAM DIRECTORY RECORD. The LENGTH byte
denotes a DATA area of six bytes. After the sixth byte, you will see another
TYPE=08 starting another ISAM directory record. SYS6 is a partioned data set.
The TYPE=08 records are its directory.

 In LDOS, the directory data area is used by the SYSTEM loader to locate
where a particular member can be found in the file. The data area has sub
fields as follows. The first byte (1E) is the ISAM entry number. This value
is provided to the SYSTEM loader by the SYS1 command line parsing routine
upon the discovery of a library command request. The entry number is the PDS
member that will execute your request. The SYSTEM loader will search the PDS
directory for a match. The next two-byte sub-field is the transfer address of
the member. The transfer address is contained in the directory so that more
than one transfer address can be applied to a member (i.e. a member can have
multiple entry points).

Page - 44

The three-byte field remaining is the triad pointer which points to the first
byte of the member. The triad pointer is composed of the Next Record Number
(NRN) and Relative Byte Offset for the member's first byte. Consult the LDOS
Technical Reference Guide File Control Block section for more information on
these values. Thus you have six bytes of data as specified by the LENGTH
byte. In the PDS utility offered by MISOSYS, the ISAM directory record has a
length of nine because it includes a three-byte subfield which contains the
TRUE length of the member. That piece of information is needed in many PDS
commands.

 While you are looking at the first sector of 5Y56, proceed to the first
byte following the last ISAM directory record. You will observe the sequence:

 0A 01 00 04 01 00 01 02 00 52 ...

The TYPE=0A indicates that it is the end of a PDS directory. The SYSTEM
loader uses this to discover that the requested ISAM entry happens to not be
in the file being examined. If it gets to the TYPE=0A byte without a match on
the ISAM number, the member is not in the directory. The LENGTH=01 is needed
because ALL load module records MUST have a length byte. The DATA area
contains only a single byte) X'00' We cannot indicate a null record because
a length byte of X'00' indicates 256 data area bytes. Thus) the X'0A' record
type must have a minimum of one byte in its data area.

 The record following is a TYPE=04 to indicate the end of a PDS member.
This record serves but one purpose when used immediately following the
directory - it will result in a load file format error if you attempt to
execute SYS6 or SYS7 as if they were CMD files. When not expecting a
partitioned data set file) the SYSTEM loader will ignore record types other
than X'01' and X'02' except for the X'04'. The file reading will terminate at
the X'04' with the above-mentioned error message.

 The record type X'04' is usually used at the end of a partitioned data
set member. If you list through SYS6, you will discover that each member ends
with "04 01 00". LDOS uses this code in lieu of the transfer address code
because the SYSTEM loader needs to take action different from that when a
standard load file has been completely loaded. Also, the transfer address for
the member is stored in the ISAM directory itself.

 The next record type to discuss is that used in a PDS MEMBER DIRECTORY.
If you have purchased the PDS utility from MISOSYS, list it in hex. Notice
that it starts with X'06' in lieu of an X'05' which is the normal header type
for a load module. Well, PDS uses the X'06' in certain PDS commands to note
whether the target file is a partitioned data set compatible with PDS
utilities. There is a bit set in the LDOS system directory to indicate a file
is a PDS; however that is to be used in a future release of PDS.

 If you list past the front end loader, you will see the start of the PDS
MEMBER DIRECTORY at relative 0001:14. It reads as follows:

 0C 0B 64 69 72 20 20 20 20 20 01 01 7A 0C ...
 . . d i r . . z

The TYPE=0C indicates a PDS member directory record. The LENGTH byte
specifies that the data area is an 11-byte field.

Page - 45

The DATA AREA is subfielded as an 8-byte member name (in lower case), a
one-byte ISAM number that is used to match up with a corresponding ISAM
directory record) and a 2-byte field of member data. The first byte uses bit
position 7 to indicate a data member in contrast to an executable CMD
program. Bit positions 4-6 are reserved for future use. Bits 0-3 and the next
byte contain the date that the member was added to the PDS and is in a format
identical to that explained as DIR+1 and DIR+2 in the DIRECTORY RECORD
section of the LDOS Technical Reference manual. As you look through the PDS
member directory, you will get to the "0E 01 00" record which indicates the
end of the MEMBER directory. The front end loader uses this to note whether
the requested member is in the PDS. The ISAM directory follows.

 One last little one to wrap up is the record types associated with the
PATCH utility. When you apply an X-patch to a file, the name of the patch
file is used as a header name with a record type of X'07'. Thus, if you want
to YANK the patch, the PATCH program can read through the file and search for
a like-named header. If a matching header is found, PATCH will proceed as
follows. Since it may be impossible to remove the patch without bubbling up
any code blocks following the patch (another patch maybe?), PATCH will change
the TYPE=01 records to TYPE=10 records. The TYPE=l0 records will not be
loaded by the SYSTEM loader but will be considered as non loadable comment
records. It is thus possible to "un-yank" a yanked patch; however, this
feature is not implemented in the PATCH utility.

 There we have it, the relatively complete explanation for load module
format records. Send in your requests for the next issues's RTC column. Here
is where you can obtain detailed information on the technical aspects of
LDOS. Regards until next time. By the way, this entire article was composed
using LED, the LDOS Text Editor, and the latest in professional products from
Logical Systems, Inc. After all text editing was done and a print copy was
needed, LSCRIPT was used to print the document.

THE JCL CORNER by Chuck

This month's column will deal with a variety of topics. The first is the
announcement of two new JCL features available with the 5.1.2 update release.
JCL will now flush the typeahead buffer before exiting. This means that all
<ENTERs> pressed in response to a //PAUSE or other macro will not be passed
back to the system when the JCL terminates.

A new compilation symbol, the percent sign (%), has been designated and
allows passing values directly to the system as though they came from the
keyboard. The values should be represented as hexadecimal digits. Any JCL
file using the % symbol must be compiled, or JCL will abort with a "Bad
Format" error upon encountering the line. Also, the character values must be
those normally accepted by the @KEYIN ROM routine. The following example will
clear the screen and print the comment line:

 %1F. This is a cleared screen comment

As you can see, the characters are inserted directly in the line - symbol and
value, symbol and value, and then the period followed by the comment string.
DO NOT put them on a separate line ending with a carriage return. Doing so
will clear the screen and then output the carriage return, generally aborting
the JCL. This same format holds true when % is used with execution macros.

Page - 46

 %1F//pause press <ENTER> to continue
 %1F//flash 10 Starting up job stream

There are some limitations to the use of this new symbol. It is not possible
to pass values to the MiniDOS or KSM filters using this new symbol. However,
programs that do utilize the @KEYIN call for keyboard input should be able to
respond to these characters.

There were three compilation macros that were not discussed in the last
Quarterly; //. COMMENT, //QUIT, and //INCLUDE. The first two are very easy to
understand. The //. COMMENT will allow a message to be displayed during the
compile phase. Unlike an execution comment, the compilation comment will not
be written to the SYSTEM/JCL file. One use for the compilation comment is to
check logic statements as a JCL is compiling. For example:

 .TEST/JCL
 //if A
 //. A was true
 LBASIC RUN"TEST/BAS"
 //stop
 //else
 //. A was not true
 //end

Consider this JCL file as a piece of a large procedure. As the file is being
compiled, the //. COMMENT lines will be displayed. Thus you will know the
status of this section of JCL logic before execution begins.

The //QUIT macro is used, as its name would imply, to abort the JCL compiling
procedure. It is primarily used when it is absolutely necessary that certain
tokens be specified upon entering a JCL procedure. For example:

 .TEST1/JCL
 //if -s+-d
 //. You MUST enter both S and D
 //quit
 //end
 backup :#s# :#d#
 //exit

The //if statement (if not S or not d) tests to see that both tokens s and d
have a logical true value. If not, the comment is displayed and the
compilation aborts. The end result of aborting the JCL procedure could also
be accomplished by using the //ABORT execution macro instead of the //QUIT.
In that case, however, the entire JCL file would be compiled first, and the
abort would actually come during the execution phase.

Before we discuss the //INCLUDE macro in detail, one important point needs to
be stressed. An //INCLUDE macro CANNOT END A JCL FILE. A JCL file ending
with an //INCLUDE will produce a "Record number out of range" error.

The //INCLUDE macro is used to select other JCL files from disk to be
included in the compilation of a JCL procedure. For example:

Page - 47

 .TEST2/JCL
 //if X1
 //INCLUDE test3:0
 //else
 //INCLUDE test4:1
 //end

This example tests the token X1. If X1 is true, the file TEST3/JCL will be
read in from drive 0, and its contents compiled and written to the SYSTEM/JCL
file. As the example shows, the default extension for included files is
/JCL. If X1 is not true, the file TEST4/JCL:1 will be read in and compiled.
It is not necessary to use the //INCLUDE inside an //IF. An //INCLUDE can be
used anywhere in a JCL file.

//INCLUDE's can be nested up to a level of 10 - that is, an //INCLUDEd file
can contain //INCLUDE statements. Refer to the following example, taken from
the 5.1.1 (or later) manual, page 5 - 8.

File #1 => //. NEST0/JCL
 . nested procedure example
 //INCLUDE nest1
 . this is the end of the primary JCL
 //EXIT

File #2 => //. NEST1/JCL
 . this is the first nest
 //INCLUDE nest2
 . this is the end of the first nest

File #3=> //. NEST2/JCL
 . this is the second nest

The above will result in a nest level of two (two pending //INCLUDEs). If
these three JCL files are saved as NEST0/JCL, NEST1/JCL, and NEST2/JCL, and
the NEST0/JCL is compiled and executed, it will result in the following
dialogue:

 //. NEST0/JCL
 //. NEST1/JCL
 //. NEST2/JCL
 . nested procedure example
 . this is the first nest
 . this is the second nest
 . this is the end of the first nest
 . this is the end of the primary JCL

The three compilation comments will be shown immediately as the JCL file is
compiled. When the compilation phase is complete, the compiled SYSTEM/JCL
file will be executed. In this example, the execution phase will merely
display a series of execution comments. As you can see from the order of the
displayed comments, the files are executed similarly to nested FOR-NEXT loops
in BASIC. After all //INCLUDEs are detected, the innermost (last encountered)
//INCLUDE file completes execution first, with execution proceeding back
towards the original //INCLUDE.

Page - 48

The //INCLUDE macro can very easily be used to compile a large JCL procedure
from a series of smaller JCL routines. If the finished SYSTEM/JCL file is a
procedure that will be executed many times, it may easily be saved by copying
SYSTEM/JCL to a file with another name.

Even after last issue's column, there have been questions about the proper
structuring of the //IF and //END statements. The proper use of //IF requires
one //END for each //IF. What might not be readily apparent when nesting
//IF's is that the last //END corresponds to the 1st //IF. For example:

 First IF //IF conditional #1 Line #1
 first block of lines Line #2
 Second IF //IF conditional #2 Line #3
 second block of lines Line #4
 //ELSE Line #5
 Third IF //IF conditional #3 Line #6
 third block of lines Line #7
 //END (ends third IF) Line #8
 //END (ends second IF) Line #9
 fourth block of lines Line#10
 //END (ends first IF) Line#11

Evaluating this example produces the following results, When the first //IF
is false, the entire block between the first //IF and its corresponding //END
are not compiled. Thus, none of the lines in this example would get written
to the SYSTEM/JCL file.

Assuming from this point on that the first //IF is true, evaluating the
results of the second and third //IF's would produce the following.

When the second IF is true, Line #4 would be written to SYSTEM/JCL file.
Lines 5 through 8, the //ELSE conditional, would be ignored. Line #10 would
also be written, as it comes after the //END statement corresponding to the
second //IF.

If the second //IF was false, the third //IF in the //ELSE block would be
evaluated. If it was true, Line #7 would be written to the SYSTEM/JCL file.
Whether or not this third //IF is true, Line #10 will be written out.

As long as the first //IF is true, Line #10 will always be written to the
SYSTEM/JCL file regardless of the logical evaluation of the second and third
//IF macros. This is because it comes after the //END macros for both of
those //IFs. AlS,Q, you can see that the first //END in Line #8 corresponds to
the third //IF in Line #6, the second //END to the second //IF, and the third
//END to the first //IF.

Next issue's column will probably deal with the keyboard macros, and
interfacing JCL with applications programs. If you readers have any subject
you want to see discussed in The JCL Corner, drop a letter in the nearest
mail box, addressed to Customer Support, Attn: Chuck.

P.S. The CMDFILE utility can be totally controlled by a JCL file. Try
creating a JCL, the first line being CMDFILE, and the next lines being the
proper responses for the CMDFILE prompts.

Page - 49

PROGRAMS FROM USERS

This is a directory mapping program from Bill Fields. Besides printing a
directory map, it lists the files in alphabetical order, along with the grans
they occupy.

20 REM GIVE BACK ANY STRING SPACE SO THAT MEM IS ACCURATE
40 CLEAR 0
60 REM I% IS A FACTOR REPRESENTING THE SPACE REQUIRED FOR ALL
80 REM NON-STRING VARIABLES AND STRING ARRAY OVERHEAD
100 REM IF OUT OF MEMORY THEN INCREASE I%. IF TOO MUCH
120 REM GARBAGE COLLECTION, THEN DECREASE I%. THE SCREEN
140 REM WILL ALWAYS HAVE A CHANGING DISPLAY THAT INDICATES
160 REM (BY STOPPING) THAT GARBAGE COLLECTION IS IN PROGRESS.
180 I%=5300
200 CLEAR MEM-I%
220 REM **
240 REM * *
260 REM * -----> DISK MAPPER FOR LDOS FORMATTED DISKS <----- *
280 REM * 03/05/82 VERSION *
300 REM * WRITTEN BY BILL FIELDS *
320 REM * POST OFFICE BOX 1120 *
340 REM * GLENDALE HEIGHTS,ILL 61037 *
360 REM * *
380 REM * NON-COPYWRITED CODE. PUBLIC DOMAIN AS LONG AS *
400 REM * AUTHOR'S NAME AND ADDRESS ARE NOT REMOVED OR *
420 REM * ALTERED. NOT FOR SALE! THE AUTHOR WOULD WELCOME *
440 REM * ANY IMPROVEMENTS OR ENHANCEMENTS TO EITHER *
460 REM * PERFORMANCE OR FUNCTION. ALSO REPORT BUGS,PLEASE. *
480 REM * *
500 REM * DIRECTORY STRUCTURE ALLOWS FOR EIGHT GRANULES PER *
520 REM * CYLINDER (1-8) & 96 CYLINDERS PER DISKETTE (0-95). *
540 REM * IF THE DISKETTE IS DOUBLE DENSITY THEN EACH *
560 REM * GRANULE IS SIX SECTORS AND IF IT IS SINGLE *
580 REM * DENSITY EACH GRANULE IS FIVE SECTORS. A SECTOR IS *
600 REM * ALWAYS 256 BYTES. *
620 REM **
640 REM FOLLOWING DIMENSION STATEMENT PUTS VARIABLES INTO
660 REM BASIC1S SYMBOL IN THE ORDER FROM MOST USED TO LEAST.
680 REM COMPUTING THE ORDER OF VARIABLES USE IS DONE BY FASTER
700 REM WHICH IS AVAILABLE FROM PROSOFT POST OFFICE BOX 839
720 REM NORTH HOLLYWOOD, CALIF 916$3
740 DIM I%,T%,D%,J%,P%,SF%,W%,IK$,E%,DS$,PN$,G%,GC%,S%,Y8%,TC%,EE$,F1$,
Y9$,B4%,TX%,B7%,P1$,P2$,B0%,B1%,B2%,B3%,U%,Y1%,SP%,B5%,B6%,DN$,K1!,ZZ%,F2$
760 CLS
780 REM BIT MASKS FOR BIT0 THRU BIT7
800 B0%=&H01
820 B1%=&H02
840 B2%=&H04
860 B3%=&H08
880 B4%=&H10
900 BS%=&H20
920 B6%=&H40
940 B7%=&H80
960 PRINT @ 260,"LDOS FORMATTED DISK MAPPER"

Page - 50

980 PRINT @835,"USE WHICH DRIVE? ";
1000 FOR T%=1TO5
1020 DN$=INKEY$:IFDN$=""OR(DN$<>""AND(DN$<"0"ORDN$>"7"))THEN T%=1ELSET%=6
l040 NEXTT%
1060 PRINT @835," ";
1080 IF DN$="0"THEN 1140
1100 PRINT @ 320,"PLACE LDOS FORMATTED DISK IN DRIVE "DN$" <PRESS ENTER>
 ";
1120 GOSUB 4620
1140 PRINT @320,"Written by Bill Fields P 0 Box 1120 Glendale Heights, Ill
60137"
1160 REM EACH DIRECTORY ENTRY IS 32 BYTES IN LENGTH
1180 REM SO OPEN DIRECTORY WITH LOGICAL RECORD LENGTH OF 32
1200 OPEN "R",1"DIR/SYS:"+DN$,32
1220 FIELD 1,32 AS F1$
1240 PRINT @835,"Reading GAT ";
1260 REM GET 7TH 32 BYTE RECORD
1280 REM THIS IS X'C0'-X'DF' OF THE GAT RECORD
1300 GET 1,7
1320 REM GAT+X'CB' = VERSION OF SYSTEM UNDER WHICH THE DISKETTE
1340 REM WAS FORMATTED. IF OTHER THAN LDOS5.0 OR LDOS5.1 THEN
1360 REM WARN THAT UNPREDICTABLE RESULTS MAY OCCUR
1380 IF (ASC(MID$(F1$,12,1)) <> (&H50)) AND (ASC(MID$(F1$,12,1)) <> (&H51))
THEN PRINT @ 643,"** WARNING ** NON-LDOS DISKETTE - UNPREDICTABLE RESULTS MAY
OCCUR"
1400 REM GAT+X'CC' HAS DISKETTE CYLINDER COUNT EXPRESSED AS
1420 REM EXCESS OF 35 CYLINDERS. TC WILL HAVE TOTAL CYLINDERS.
1440 TC% = ASC(MID$(F1$,13,1)) + 35
1460 REM IF CYLINDER COUNT OF DISKETTE IS LESS THAN 35 THEN
1480 REM THE CYLINDER COUNT AT GAT + X'CC' WILL BE NEGATIVE
1500 REM LIKE, FOR INSTANCE, X'E2' FOR A 5 TRACK DISKETTE
1520 REM THEREFORE,IF CYLINDER COUNT IS > 255 AND < 291
1540 REM THEN ADJUST IT DOWNWARD.
1560 IF (TC%>255 AND TC%<291) THEN TC%=TC%-256
1580 REM IF GAT+X'CD' HAS BIT 5 = 1 THEN DOUBLE SIDED MEDIA,
1600 REM ELSE SINGLE SIDED MEDIA
1620 IF ASC(MID$(F1$,14,1)) AND B5% THEN S% = 2 ELSE S% = 1
1640 REM IF GAT+X'CD' HAS BIT 6 = 1 THEN DOUBLE DENSITY,
1660 REM ELSE SINGLE DENSITY.
1680 REM GC=GRANULES PER SIDE OF CYLINDER (TRACK) OF A
1700 REM DISKETTE. IF DOUBLE DENSITY THEN GC=3, IF SINGLE
1720 REM DENSITY THEN GC=2.
1740 IF ASC(MID$(F1$,14,1)) AND B6% THEN GC% = 3 ELSE GC% = 2
1760 REM IN CONSIDERATION OF OUR SMALL STORAGE FRIENDS,
1780 REM DIMENSION ONLY WHATS NEEDED.
1800 DIM X$(TC%-1,GC%*S%)
1820 PRINT @ 835,"Initializing for "TC%" cylinder diskette with "s%"side(s)";
1840 FOR I%--0TOTC%-1
1860 FOR J%=1TOGC%*S%
1880 X$(I%,J%)="***empty****"
1900 NEXT J%
1920 NEXT I%
1940 REM DISKETTE NAME AT GAT+X'D0'
1960 DN$ = MID$(F1$,17,8)
1980 REM GET NUMBER OF ENTRIES IN DIRECTORY

Page - 51

2000 ZZ% = LOF(1)
2020 PRINT @771,"total 32 byte records in directory =";ZZ%
2040 REM SET CYLINDERS PROCESSED (FOR LOCKOUT) TO ZERO
2060 TX% = 0
2080 REM NOW SCAN TRACK LOCKED OUT INFO
2100 FOR I% = 4 TO 6
2120 REM WHEN I=4 GET GAT+X'60'-GAT+X'7F'
2140 REM WHEN I=5 GET GAT+X'80'-GAT+X'9F'
2160 REM WHEN I=6 GET GAT+X'A0'-GAT+X'BF'
2180 PRINT @835,"Reading GAT ";
2200 GOSUB 4560
2220 GET 1,I%
2240 REM EACH BYTE IS A CYLINDER. IF = X'FF' THEN LOCKOUT
2260 PRINT @835,"Processing cylinder lockout bytes in GAT ";
2280 FOR J% = 1 TO 32
2300 REM INCREMENT CYLINDER COUNT
2320 TX% - TX% + 1
2340 REM IF ALL BITS ARE ONE THEN SETUP AS LOCKED OUT
2360 IF ASC(MID$(F1$,J%,1)) = B0%+B1%+B2%+B3%+B4%+B5%+B6%+B7% THEN FOR D%
= 1 TO 8 : X$((I%-4)*32+J%-1,D%) = "*LOCKED OUT*" : NEXT D%
2380 IF TX% = TC% THEN J%=33:I%=7
2400 NEXT J%
2420 NEXT I%
2440 REM Y1 = AVAILABLE GRANULES ON DISKETTE
2460 Yl% = 0
2480 REM SET CYLINDERS PROCESSED (FOR ALLOCATION) TO ZERO
2500 TX% = 0
2520 FOR I% = 1 TO 3
2540 REM IF I=1 THEN PROCESSING GAT+X'00'-GAT+X'1F'
2560 REM IF I=2 THEN PROCESSING GAT+X'20"-GAT+X'3F'
2580 REM IF I=3 THEN PROCESSING GAT+X'40'-GAT+X'5F'
2600 PRINT @835,"Reading GAT ";
2620 GOSUB 4560
2640 GET 1,I%
2660 PRINT @835,"Processing granule allocation bytes in GAT "
2680 FOR J% = 1 TO 32
2700 TX%=TX%+1
2720 FOR D%=1TOGC%*S%
2740 E%=l
2760 IF X$((((I%-1)*32)+J%-1),D%)="*LOCKED OUT*"THEN E%=0
2780 REM THE BRACKET IN THE NEXT STATEMENT IS REALLY AN ARROW
2800 REM THANK YOU MX-80!!!!!
2820 IF NOT ASC(MID$(F1$,J%,1)) AND (2[(D%-1)) THEN Y1%=Y1%+1:E%=0
2840 IF E%=1 THEN X$((((I%-1)*32)+J%-1),D%)="==>ERROR<==="
2860 NEXT D%
2880 IF TC%=TX% THEN I%=4:J%=33
2900 NEXT J%
2920 NEXT I%
2940 FIELD1,1 AS Y9$,4 AS F1$,8 AS P1$,3 AS P2$,6 AS F2$,10 AS EE$
2960 REM K1=FREE SPACE ON DISK IN K
2980 IF GC%=3 THEN D%=6 ELSE D%=5
3000 K1! = Y1%*(D%*.25)
3020 REM RECORDS 01-08 ARE GAT RECORD, AND
3040 REM RECORDS 09-16 ARE HIT RECORD, SO
3060 REM THEREFORE START AT THE 17TH 32 BYTE RECORD

Page - 52

3080 FOR Y8% = 17 TO ZZ%
3100 PRINT @835,"reading directory entry at record ";Y8%;
3120 GET1,Y8%
3140 IF (ASC(Y9$) AND B4%) = 0 OR (ASC(Y9$) AND B7%) = 128 THEN 3580
3160 PRINT @835,"Processing FPDE directory entry at record ";Y8%;
3180 IF P2$ <> " " THEN PN$ = LEFT$(P1$,INSTR(P1$+" "," ")-1) + "/" + P2$
ELSE PN$ = P1$
3200 IF LEN(PN$)<>12 THEN PN$=PN$+STRING$(12-LEN(PN$)," ")
3220 FOR J% = 1 TO 10 STEP 2
3240 T%=ASC(MID$(EE$,J%,1)) : W%=ASC(MID$(EE$,J%+1,1))
3260 IF T% = 255 AND W% = 255 THEN 3580
3280 IF T% <> 254 GOSUB 4360 : GOTO 3560
3300 E% = W% AND (B7% + B6% + B5%)
3320 D% = W% AND (B0% + B1% + B2% + B3% + B4%)
3340 E%=E%/32
3360 D% = (D%+2)*8+E%+1
3380 PRINT @835,"Processing FXDE directory entry at record ";D%
3400 GET1,D%
3420 FOR D%=1TO10STEP2
3440 E%=0
3460 T%=ASC(MID$(EE$,D%,1)):W%=ASC(MID$(EE$,D%+1,1))
3480 IF T%=255 AND W%=255 THEN E%=1
3500 IF T% <> 254 AND E% = 0 THEN GOSUB 4360 : E%=1
3520 IF E%<>1 THEN GOTO3300
3540 NEXT D%
3560 NEXT J%
3580 NEXT Y8%
3600 CLS
3620 CLOSE
3660 IF (PEEK(&H37E8) AND (B7%+B6%+B5%+B4%))=48 THEN P%=1 ELSE P%=0
3680 IK$=""
3700 SP%=0: TC%=TC%-1
3720 IF GC%*S%>3 THEN SF%=4 ELSE SF%=10
3740 IF P%=1 THEN LPRINT "Map of diskette by track/gran " ELSE PRINT "Map of
diskette by track/gran"
3760 IF P%=0 AND IK$<>"" THENCLS
3780 IF GC%=2 THEN DS$="Sdns" ELSE DS$="Ddns"
3800 IF P%=1 THEN LPRINT "Diskette "DN$" Tracks" TC%+1" free "Y1%"g "K1! "k
Sides="S%" Dens=";DS$ ELSE PRINT "Diskette "DN$" Tracks "TC%+1" free "Y1%"g
"K1! "k "S%" sides "DS$
3820 IF P%=1 THEN LPRINT "Trk "; ELSE PRINT "Trk ";
3840 FOR D%=1 TO GC%*S%
3860 IF P%=1 THEN LPRINT "Granule "D%" ";ELSE PRINT "Granule "D%" ";
3880 NEXT D%
3900 IF P%=1 THEN LPRINT ELSE PRINT
3920 FOR I%=SP%TOSP%+SF%
3940 IF I%>TC% AND P%=0 THEN 4120 ELSE IF I%>TC% AND P%=1 THEN4720
3960 IF P%=1 THEN LPRINT USING "##";I%;ELSE PRINT USING "##";I%;
3980 FOR J% = 1 TO GC%*S%
4000 IF P%=1 THEN LPRINT USING " % %";X$(I%,J%);ELSE PRINT
USING " % %";X$(I%,J%);
4020 NEXT J%
4040 IF P%=1 THEN LPRINT ELSE PRINT
4060 NEXT I%
4080 IF P%=1 THEN SP%=SP%+SF%+1:GOTO3920

Page - 53

4100 IF SF%=4 THEN SF%=5
4120 U%=0:D%=0
4140 IF SP%<TC%-SF% THEN D%=-1:PRINT @960,"D = Scroll down";
4160 IF SP%>0 THEN U%=-1:PRINT@976,"U = Scroll up";
4180 PRINT @989,"<enter>=end";
4200 PRINT @1000," M = Map by file";
4220 IK$=INKEY$:IF IK$=""THEN 4220
4240 IF (IK$="U" OR IK$="u") AND U% THEN SP%=SP%-SF%:GOTO3760
4260 IF (IK$="D" OR IK$="d") AND D% THEN SP%=SP%+SF%:GOTO3760
4280 IF IK$=CHR$(13) THEN END
4300 IF IK$="M" OR IK$="m" THEN 4720
4320 GOTO4220
4340 REM record location of file's extent
4360 G% = W% AND (B0% + B1% + B2% + B3% + B4%)
4380 G%=G%+1
4400 W%=INT(W%/32)+1
4420 IF LEFT$(X$(T%,W%),1)<>"="THEN PRINT @899,"Directory error in ";PN$;
"TRACK="T%;"SECTOR="W%" press <enter> to continue"; :GOSUB4620
4430 PRINT @899,STRING$(76," ")
4440 X$(T%,W%)=PN$
4460 G%=G%-1
4480 IF G%=0 RETURN
4500 W%=W%+1
4520 IF W%>GC%*S% THEN W%=1:T%=T%+1
4540 GOTO4420
4560 FOR T%=1TO100
4580 NEXT T%
4600 RETURN
4620 FORA%=1TO5
4640 IK$=INKEY$
4660 IF IK$ = CHR$(13) THEN A%=6 ELSE A%=1
4680 NEXT A%
4700 RETURN
4720 I%=-1
4740 IF P%=1 THEN LPRINT CHR$(12)
4760 CLS
4780 DIM S$(GC%*S%*(TC%+1)-1)
4800 FOR D%=0TOTC%
4820 FOR T%=1TOGC%*S%
4840 I%=I%+1
4860 IF LEN(STR$(D%))=2 THEN DS$=STR$(D%) ELSE DS$=RIGHT$(STR$(D%),2)
4880 IF LEN(STR$(T%))=2 THEN PN$=STR$(T%) ELSE PN$=RIGHT$(STR$(T%),2)
4900 S$(I%)=X$(D%,T%)+DS$+PN$
4920 PRINT @835,"PREPARING TRACK "D%;" SECTOR"T%;"INTO RECORD "I%" FOR
SORT"
4940 X$(D%,T%)=""
4960 NEXT T%
4980 NEXT D%
5000 PRINT @835,"Sorting
5020 CMD "O",GC%*S%*(TC%+1),S$(0)
5040 IF P%=1 THEN PRINT@835,"OUTPUTTING";
5060 DS$=""
5080 IF P%=1 THEN LPRINT:LPRINT:LPRINT "MAP OF DISKETTE "DN$" BY FILENAME"
:ELSE CLS:PRINT "MAP OF DISKETTE "DN$" BY FILENAME"
5100 SF%=12

Page - 54

5120 FOR I%=0TOGC%*S%*(TC%+1)-1
5140 IF ((I%-(INT(I%/SF%)*SF%)=0) AND (P%=1) AND (I%=0)) THEN LPRINT
"FILENAME TRACK GRANULE" ELSE IF ((I%-(INT(I%/SF%)*SF%)=0) AND (P%=0)) THEN
PRINT "FILENAME TRACK GRANULE"
5160 IF MID$(S$(I%),1,12)<>DS$ THEN E%=2 ELSE E%=1
5180 ON E% GOTO 5200,5240
5200 IF P%=1 THEN LPRINT " ";ELSE PRINT " ";
5220 GOTO5260
5240 IF P%=1 THEN LPRINT MID$(S$(I%),1,12)" ";ELSE PRINT MID$(S$(I%),1,12)"
";
5260 DS$=MID$(S$(I%),1,12)
5280 IF P%=1 THEN LPRINT MID$(S$(I%),13,2);" ";MID$(S$(I%),15,2) ELSE
PRINT MID$(S$(I%),13,2);" ";MID$(S$(I%),15,2)
5300 IF P%=1 THEN 5540
5320 IF INT((I%+1)-(INT((I%+1)/SF%)*SF%))<>0 THEN5520
5340 D%=$:U%=0
5360 IF I%<INT((GC%*S%*(TC%+1)-1)/SF%)*SF% THEN D%=-1 :PRINT@960,"D=SCROLL
DOWN";
5380 IF I%=>SF% THEN U%=-1:PRINT@976,"U=SCROLL UP";
5400 PRINT @989,"<ENTER>=END";
5420 IK$=INKEY$: IFIK$=""THEN 5420
5440 IF (IK$="U" OR IK$="u") AND U% THEN I%=I%-SF%*2:DS$="":CLS:IFI%<0 THEN
I%=-1: GOTO5520ELSE GOTO5520
5460 IF (IK$="D" OR IK$="d") AND D% THEN :DS$="":CLS:GOTO5520
5480 IF IK$=CHR$(13) THEN END
5500 GOTO5420
5520 IF I%=GC%*S%*(TC%+1)-1 THEN I%-INT(I%/SF%)*SF%:GOTO5340
5540 NEXT I%

This section of the newsletter contains some programs that require the use of
the BINHEX/BAS program to convert them to executable binary files.

Note that the hex program listings must be put into the proper load module
format before they can be used. To use the program, follow these steps:

1) Use Scripsit, LED, or the BUILD command to create an ASCII file containing
the hex code. DO NOT leave spaces between the hex characters - the spaces
were put in for readability only!. The ASCII files must NOT contain more than
254 characters (127 byte pairs) per line.

2) Enter LBasic, and Run the program BINHEX/BAS, choosing the "Hex to Binary"
mode.

BINHEX/BAS

Following is the listing for the LBasic program, contributed by Tim Mann.

Page - 55

10 REM -- Hex to binary/Binary to hex file converter
20 REM -- Tim Mann
30 CLS:PRINT:PRINT"Hex to binary/Binary to hex"
35 PRINT" file converter":PRINT
40 CLEAR 5000
50 GOSUB 58000
100 PRINT "Type 1 to convert a binary file to hex"
110 PRINT " 2 to convert a hex file to binary"
120 PRINT:INPUT D
130 PRINT
140 ON D GOTO 400,200
150 GOTO 100
200 LINE INPUT "Hex file name: ";HF$
210 LINE INPUT "Binary file name: ";BF$
220 OPEN"I",1,HF$
230 OPEN"O",2,BF$
240 IF EOF(1) THEN 320
250 LINE INPUT#1,D$
255 IF D$="" OR D$="OK" THEN 240
260 FOR I=1 TO LEN(D$) STEP 2
270 PRINT#2,CHR$(FND2(MID$(D$,I,2)));
300 NEXT I
310 GOTO 240
320 CLOSE
330 PRINT:PRINT"Done":PRINT
340 GOTO 100
400 LINE INPUT "Binary file name: ";BF$
410 LINE INPUT "Hex file name: ";HF$
420 OPEN"RO",1,BF$,1
430 OPEN"O",2,HF$
440 FIELD 1,1 AS F$
450 FOR I=1 TO 30
455 IF EOF(1) THEN 505
460 GET 1
470 PRINT#2,FNH2$(ASC(F$));
480 NEXT I
490 PRINT#2,
500 GOTO 450
505 PRINT#2,
510 CLOSE
520 PRINT:PRINT"Done":PRINT
530 GOTO 100
58000 DEF FNH1$(X)=MID$("0l23456789ABCDEF",(X AND 15)+1,1)
580l0 DEF FNH2$(X)=FNH1$(X/16)+FNH1$(X)
58040 DEF FND1(X$)=INSTR("123456789ABCDEF",LEFT$(X$,1))
58050 DEF FND2(X$)=FND1(RIGHT$(X$,1))+16*FND1(RIGHT$(X$,2))
58070 RETURN
60000 END

DELETE/CMD: A MultiDle-KILL Utility by Renato B. Reyes Ph.D.

 LDOS has two commands for deleting files from disk, ie., KILL and
PURGE.

Page - 56

KILL deletes single files, while PURGE deletes several files from the same
disk, either automatically (using partspecs and/or wildcard
specifications) or under user control. Between these two library
commands, however, there exists a wide gap.

 I have often found it necessary to kill several files at once,
without being able to use the PURGE (Q=N) command. Sometimes the
filespecs bear no resemblance to each other, which prevents the use of
wildcards or partspecs, or, worse, they bear too much of a resemblance
to other files on the disk. And going through a manual PURGE when you
have seventy or eighty files on a disk can be time consuming. The only al-
ternative was to KILL the files one by one.

 On timesharing systems such as MicroNET, the DELETE command can take
several filenames at once. These filenames are separated on the command
line by some valid terminator such as a comma, and the system goes through
the list and kills each file from your directory. I realized that a
similar facility would be very easy to set up for LDOS.

 The accompanying program, called DELETE, is such a "multiple-KILL"
facility. To use it, you simply type in

 DELETE filespec,filespec,filespec

for as many filespecs as you can fit on the command line. Filename,
extension and password (if any) are required; however drivespecs may be
omitted. The files must be separated from each other by a comma or a
space. DELETE will go through the list and search the currently mounted
disks for the specified files, deleting them one by one. Any errors which
occur cause the program to display the offending file name and the
accompanying error message. At the end of the process, DELETE will display
the number of files successfully killed.

 If in the process of killing the listed files DELETE comes upon an
invalid filespec or unrecognizable terminator, it will display the
message, "Invalid filespec/terminator encountered." and attempt to
continue, skipping past the error if possible.

 DELETE has one advantage over PURGE; it can search every mounted disk
for a particular file to kill, whereas PURGE is restricted to searching a
particular drive only. However, DELETE is limited by the size of the command
buffer. It may be a good idea to rename this utility and give it a single
letter for a filename, in order to maximize the available space in the
command buffer. In spite of this limitation, however, DELETE is much
easier to use than either KILL or PURGE where only two or three (or even
four) files need to be killed.

Use the BINHEX/BAS program to convert this to a /CMD file. For those of you
who have the compiled BINHEX/CMD program, the checksum is *F0.

05 06 44 45 4C 45 54 45 01 02 00 52 E5 21 9B 52 CD 67 44 E1 7E FE 0D 28 1E DD
21 7F 53 11 80 53 CD 1C 44 32 7E 53 20 18 CD 24 44 20 24 CD 2C 44 20 1F DD 34
00 18 E6 21 F5 52 CD 67 44 C3 30 40 3A 7E 53 FE 0D 28 3A E5 21 3D 53 CD 67 44
E1 18 CC E5 F5 3A 80 53 CB 7F 20 03 CD 28 44 21 80 53 3E 0D 01 20 00 ED B1 3E
03 77 21 80 53 CD 67 44 21 66 53 CD 67 44 F1 CB F7 CB FF CD 09 44 E1 18 9C 21

Page - 57

7F 53 11 6A 53 CD 87 52 21 6A 53 CD 67 44 C3 2D 40 7E 0F 0F 0F 0F CD 90 52 7E
E6 0F C6 90 27 CE 40 27 12 13 C9 44 45 4C 45 54 45 20 2D 20 4D 75 6C 74 69 70
6C 65 20 66 69 6C 65 20 64 65 6C 65 74 65 20 75 74 69 6C 69 74 79 20 66 6F 72
20 4C 44 4F 53 20 2D 20 56 65 72 2E 20 32 28 33 29 0A 28 63 29 20 31 39 38 32
20 62 79 20 52 2E 20 42 2E 20 52 65 79 65 73 2C 20 50 68 2E 44 2E 0D 0A 46 69
6C 65 20 73 70 65 63 28 01 A3 00 53 73 29 20 72 65 71 75 69 72 65 64 0A 53 79
6E 74 61 78 20 69 73 3A 20 44 45 4C 45 54 45 20 66 69 6C 65 73 70 65 63 2C 66
69 6C 65 73 70 65 63 2C 66 69 6C 65 73 70 65 63 2C 2E 2E 2E 0D 49 6E 76 61 6C
69 64 20 66 69 6C 65 73 70 65 63 2F 74 65 72 6D 69 6E 61 74 6F 72 20 65 6E 63
6F 75 6E 74 65 72 65 64 2E 0D 20 2D 20 03 30 30 20 66 69 6C 65 28 73 29 20 64
65 6C 65 74 65 64 2E 0D 00 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0D 02 02 00 52

NODAM - Read those OLDAM disks directly - by Chuck

This program came about as a result of needing to read someone's TRSDOS data
disk on my LX-80 at home. This disk also had to be returned to the owner in
original condition. The following program will allow Model III and Model I
LX-80 owners to directly read a diskette that uses the old Data Address Mark.
It is very simple to use, but like some simple programs, it creates a very
simple way to destroy diskettes. Here is a description of the program, and
how to avoid losing data when using it.

The program bypasses the checking for the directory track DAM by indicating
that the proper DAM was found WHENEVER THE SYSTEM ACCESSES THE DIRECTORY
TRACK AS INDICATED IN THE DRIVE CODE TABLE. This means that you MUST
either do a DEVICE or LOG command after installing the program and before
attempting to read the diskette. To install the program, type in the
following command, with the ":d" being the drive number to be used:

 NODAM :d

Then, either do a DEVICE command, or a LOG :d command. This will properly
update the DCT with the correct directory track. The programs may now be read
off of the disk onto a normal LDOS disk. The software write protect bit will
also be set, and should show in the DEVICE command if you are using LDOS 5.1
or later. Now for the pitfalls .

Since the system is relying upon the DCT information, if you switch diskettes
in a NODAMed drive and forget to log it in, and the diskettes have
directories on different tracks, scratch one diskette after the first
attempted write operation to that drive. Also, using the BACKUP command to
move information off of the NODAMed drive will write the new DAM onto that
disk when removing the MOD flags unless it is write-protected! Since the
software write protect will not work with LDOS 5.0, or on LX-80's without the
5.1 ROM, the best procedure to follow is to always physically write-protect
any diskette to be read in the NODAMed drive.

Once the disk is read and copied, NODAM may be removed as follows. For LX-80
owners with any LDOS version, use the SYSTEM (DRIVE ,DRIVER) command to
restore the proper driver information. For those with the 5.1.2 update, use
the SYSTEM (DRIVE=,DRIVER) command and the MOD1/DCT or MOD3/DCT program.
Model 1, 5.1.1 owners can use the SYSTEM (DRIVE=,DRIVER) command, pressing
<BREAK> to restore the dafault driver address. For Model I, 5.0 and Model III
5.1.$, do a global RESET or BOOT to restore the normal drive configuration.

Page - 58

Following is the code for the NODAM/CMD program. Use the BINHEX/BAS program
to convert it, following instructions found with the program. For those with
BINHEX/CMD, the checksum is *59.

05 06 4E 4F 44 41 4D 31 01 FE 00 52 E5 21 6B 52 CD 67 44 3A 25 01 FE 49 21 49
40 20 03 21 11 44 22 35 52 22 3E 52 E1 7E 23 FE 20 28 FA FE 3A 20 3D 7E FE 30
38 38 FE 38 30 34 D6 30 4F CD 8F 47 2A 00 00 01 24 00 B7 ED 42 22 00 00 23 E5
21 E3 52 FD 7E 01 77 23 FD 7E 02 77 E1 FD 75 01 FD 74 02 FD CB 03 FE EB 21 D8
52 ED B0 C3 2D 40 21 C6 52 CD 67 44 C3 30 40 1F 4E 4F 44 41 4D 20 2D 20 4F 6C
64 20 44 61 74 61 20 41 64 64 72 65 73 73 20 4D 61 72 6B 20 72 65 61 64 65 72
20 2D 20 56 65 72 20 31 2E 30 0A 43 6F 70 79 72 69 67 68 74 20 31 39 38 32 20
62 79 20 47 61 6C 61 63 74 69 63 20 53 6F 66 74 77 61 72 65 2C 20 4C 74 64 2E
0A 0D 42 61 64 20 64 72 69 76 65 20 6E 75 6D 62 65 72 21 0D 18 08 00 00 05 4E
4F 44 41 4D CD 00 00 F5 7A FD BE 09 20 0E 78 FE 09 28 04 FE 0A 20 05 F1 3E 06
B7 C9 F1 C9 02 02 00 52

MX80/FLT

This filter will allow the MX-80 to properly print the TRS-80 graphics set.
It will work with both 5.0 and 5.1 versions, and on both the Model I and III.
The BINHEX/CMD checksum is *D4.

05 06 4D 58 38 30 20 20 01 02 00 52 D5 1A F5 21 72 52 CD 67 44 3A 25 01 FE 49
28 08 21 49 40 11 7B 44 18 06 21 11 44 11 8A 42 22 41 52 22 4D 52 ED 53 6D 52
F1 CB 5F 20 32 CB 67 20 33 CB 4F 28 34 DD E1 DD 6E 01 DD 66 02 22 20 53 2A 00
00 22 08 53 01 1C 00 AF ED 42 22 00 00 23 DD 75 01 DD 74 02 EB 21 06 53 ED B0
C3 2D 40 21 CE 52 18 08 21 E0 52 18 03 21 F1 52 CD 00 00 C3 30 40 1F 4D 58 38
30 20 2D 20 4C 44 4F 53 20 4C 69 6E 65 20 50 72 69 6E 74 65 72 20 46 69 6C 74
65 72 20 2D 20 56 65 72 73 69 6F 6E 20 31 2E 31 0A 43 6F 70 79 72 69 67 68 74
20 28 63 29 20 31 39 38 31 20 62 79 20 4C 6F 67 69 63 61 6C 20 53 79 73 74 65
6D 73 2C 20 49 6E 63 2E 0A 0D 44 65 76 69 63 65 20 6E 6F 74 20 61 63 74 69 76
65 0D 44 65 76 69 63 65 20 69 73 20 72 6F 75 74 65 64 0D 4E 6F 74 20 61 6E 20
6F 75 74 70 75 74 20 64 01 24 00 53 65 76 69 63 65 0D 18 07 00 00 04 4D 58 38
30 38 0E F5 79 FE 81 38 07 FE C0 30 03 C6 20 4F F1 C3 00 00 02 02 00 52

The following patches for Radio Shack's PROFILE program were developed by
Dick Yevich. They are for both the Model I and III. Following are the text
and patches from Dick.

PROFILE ON LDOS

The following patches will allow the program PROFILE to run under LDOS. They
are presented for both the 3.1 version for the MOD-I and the 3.2 version for
the MOD-III. After these patches is an alternate patch which offers some
changes to the product to allow it to be more easily used. Following this
brief description are the patches which affect this result:

 1. The PROFILE/CMD and the overlays SORT, INIT, ACCESS, and PRINT can be
 on any drive.

 2. As standard PROFILE, the PRODAT file must start on drive 0, and the
 other files of INFOFILE, FORMFILE, and LPFORM will also be built on :0.

Page - 59

 3. PRODAT will use:

 MOD-I: drive 0 - 144 sectors
 drives 1-3 - 302 sectors
 MOD-III: drive 0 - 448 sectors
 drives 1-3 - 672 sectors

 4. For the MOD-III 3.2 version only, KI/DVR is utilized, but TYPE AHEAD
 is turned off on entry and turned-on on exit (if it was on at the
 start). The <SHIFT><0> is supported for upper and lower case for field
 names, video display, and print headings.

. 3.1.1 patch for PROFILE/CMD, vers 3.1, MOD-I
X'527F'=20 20 4C
X'52AC'=2E 31 20
X'534F'=4C 44 4F 53 20
X'5AFD'=03
X'5B04'=03
X'5B0D'=03
X'5B15'=03
.EOP

. 3.1.1 patch for INIT, vers 3.1, MOD-I
X'7388'=90 00 2E 01 2E 01 2E 01
.EOP

. 3.1.1 patch for SORT, vers 3.1, MOD-I
X'76F1'=20 4C
X'7701'=20
.EOP

. 3.1.1 patch for PRINT, vers 3.1, MOD-I
X'73BD'=20 4C
X'73D1'=20
.EOP

. 3.2.1 patch for PROFILE/CMD, verB 3.2, MOD-III
X'527E'=20 20 4C
X'52AB'=2E 31 20
X'534E'=4C 44 4F 53 20
X'5AFC'=03
X'5B03'=03
X'5B0C'=03
X'5B14'=03
X'5FB3'=00 00 00 00 00 00
X'5FD0'=C3 00 67
X'65C3'=C5 CD 4D 52 FE 61 38 06 FE 7A 30 02 E6 DF C1 C9
X'6700'=3E 00 21 1C 40 CB BE CB 4F 21 15 67 C2 99 42 C3
X'6710'=2D 40 53 59 53 54 45 4D 20 28 54 59 50 45 29 0D
.EOP

Page - 60

. 3.2.1 patch for INIT, vers 3.2, MOD-III
X'7031'=00 00 00 CD 80 76
X'7062'=1A
X'738A'=C0 01 A0 02 A0 02 A0 02
X'7680'=21 1C 40 CB FE 3A 89 42 32 01 67 AF 32 05 44
X'768F'=3E 0A C3 40 40
.EOP

. 3.2.1 patch for PRINT, vers 3.2, MOD-III
X'73BD'=20 4C
X'73D1'=20
.EOP

. 3.2.1 patch for SORT, vers 3.2, MOD-III
X'76F1'=20 4C
x'7701'=20
.EOP

ADDITIONAL PATCH FOR THE MOD-III

This changes 2 and 3 above for the MOD-III as follows:

 1 - The PRODAT file will start being formatted on drive 1, and the other
 files will also be built on drive 1, allowing a normal SYSRES to be
 used.

 2 - PRODAT uses: drive 1 - 592 sectors
 drives 2-4 - 672 sectors

On drives 2-4, that leaves 1.5K for BOOT, 4.5K for SYS0 and 6.0K free for
misc. On drive 1, it leaves enough room to hold the INFOFILE, FORMFILE,
LPFORM, and the command and overlays.

------- these are additions to the above patches.

. 3.2.2 patch for PROFILE/CMD, vers 3.2, MOD-III
X'52AB'=2E 32 20
X'5AD9'=31
X'5AE4'=31
X'5AED'=31
X'5AF6'=31
.EOP

. 3.2.2 patch for INIT, vers 3.2, MOD-Ill
X'7101'=00
X'7198'=01
X'7292'=37
X'7355'=00
X'738A'=50 02 A0 02 A0 02 A0 02
.EOP

. 3.2.2 patch for SORT, vers 3.2, MOD-III
X'77B4'=CD 7C 7B
X'7B7C'=3C DD 77 07 C9
.EOP

Page - 61

Any problems encountered can be conveyed to us and we will attempt a
resolution. We will assist anyone in adding the KI/DVR to the MOD-I version.
Call Dick Yevich at Yevich Assoc., Inc. (609) 428-0021.

Old Subject Revisited

By popular demand, the following section is a reprint of the SALVAGE/BAS
program and Radio Shack patches from the October newsletter.

Since Radio Shack made some major changes to TRSDOS for the Model I and III,
we have developed a program to move files off of the new TRSDOS 2.3B Model I
disks. This is an LBASIC program called SALVAGE/BAS. It will copy files from
a 2.3B or later TRSDOS disk to an LDOS disk.

10 REM--SALVAGE/BAS
20 REM--Program to get files from a TRSDOS 2.3B disk
30 REM-- onto LDOS disks, Model I or III.
40 REM--Use only on the Model I, 2.3B or later. Model III owners should
50 REM-- use CONV to get the files from the ThSDOS 1.3 disk.
100 LINE INPUT "Source filespec? ";SF$
110 LINE INPUT "Destination filespec? ";DF$
200 OPEN"RO",1,SF$
210 OPEN"R",2,DF$
220 FIELD 1,1 AS D1$ 'Find source FCB
230 FIELD 2,1 AS D2$ 'Find destination buffer
240 Z1=VARPTR(D1$):Z1=PEEK(Z1+1)+256*PEEK(Z1+2)
250 Z2=VARPTR(D2$):Z2=PEEK(Z2+1)+256*PEEK(Z2+2)
260 POKE Z1-32+3,Z2AND&HFF:POKE Z1-32+4,Z2/&H100 'Use 1 bfr
270 N=PEEK(Z1-32+12)+256*PEEK(Z1-32+13) 'Get ERN
280 IF PEEK(Z1-32+8)=0 THEN 300 'Adjust if needed
290 N=N+l:POKE Z1-32+12,NAND&HFF:POKE Z1-32+13,N/&H100
300 FOR I=1 TO N 'Copy file
3l0 GET 1:PUT 2
320 NEXT I
330 POKE Z2-32+8,PEEK(Z1-32+8) 'Transfer offset
340 POKE Z1-32-2,0 'Don't close source file!
350 END

 It was also necessary to develop some small patches for Radio Shack's
Cobol and RSBasic compilers. The Cobol package will refuse to run under
anything but TRSDOS 2.3B on the Model I or TRSDOS 1.3 on the Model III unless
patched, and both packages do some peculiar things in attempting to handle
the <Break> key, which may not work under LDOS. Although this may not be
clear from the documentation, these programs were designed to run on either
the Model I or Model III, so the patches can be applied to a copy taken from
either the Model I or Model III disks in the Radio Shack package. The
resulting patched programs will run on either Model I or Model III LDOS. Due
to the incompatibility between TRSDOS 2.3B and earlier versions of TRSDOS, it
was also necessary to write a special program to recover files from 2.3B
disks. The REPAIR utility is not capable of repairing 2.3B diskettes (see
SALVAGE/BAS, page 15). If you have LDOS 5.1, it is recommended that you use
the CONV utility to transfer the Model III package to an LDOS formatted disk.

Page - 62

. RSCOBOL/FIX

. Patch for Radio Shack COBOL compiler version 1.3B

. to run under LDOS Model I and III
X'A196'=4F
X'A1D8'=50
X'9A4F'=D2
X'9A5A'=3E C9 32 0C A0 00
. End of patch

. RUNCOBOL/FIX

. Patch for Radio Shack COBOL Version l.3B runtime package

. to run under LDOS Model I and III
X'AE6B'=4F
X'AE7E'=50
X'9B38'=38
X'9B4A'=3E C9 32 B0 A9 00
. End of patch

. CEDIT/FIX

. Patch to RS Cobol editor version 1.3B to run under LDOS

. model I or III.
X'5832'=3E C0 32 13 5C 00 00 00 00 00 00 00
X'5C05'=C3
. End of patch

. RSBASIC/FIX

. This patch corrects the Radio Shack Basic Compiler 2.4

. for proper operation under LDOS Model I and III.

. Either the Model I or Model III version may be patched,

. and the resulting program will run on either model0
X'9971'=C9
X'997B'=00 00
. End of patch

. BEDIT/FIX

. This patch corrects the Radio Shack Compiler Ba8ic editor

. program for proper operation on Model I/III LDOS.

. Either the Model I or Model III version may be patched,

. and the patched version runs on both models.
X'58DB'=00 3E C9 32 7C
X'58E4'=00 00 00
X'5C6E'=C3
. End of patch

Page - 63

Patches to MOD I - LDOS 5.1.2 - 03/23/82

These patches are to be installed on all MOD I - 5.1.2 disks with files dated
before 03/20/82.

Fixes a problem with the <ENTER> key Fixes a problem with RS232R.
when using a single drive or the (X)
parameter in BACKUP.

Patch BACKUP/CMD.RRW3 Patch RS232R/DVR.GSLTD
X'5408'=E8 55 D02,49=00 00
X'55E8'=CD 2B 00 B7 C9 D02,4F=98
.EOP .EOP

The KI driver setup the wrong type byte FORMAT initialized the wrong
in the DCB. passwords for BOOT and DIR.

Patch KI/DVR.GSLTD Patch FORMAT/CMD.RRW3
D02,82=05 D04,F2=AE 01 F5 9C
.EOP D05,12=AE 01
 .EOP

The PDUBL driver did not setup all 8 DCTs

Patch PDUBL/CMD.RRW3
D00,40=51
D00,86=08
D00,8F=0A
.EOP

Patches to MOD III - LDOS 5.1.2 - 03/23/82

These patches are to be installed on all MOD III - 5.1.2 disks with files
dated before 03/20/82.

The KI driver setup the wrong FORMAT initialized the wrong
type byte in the DCB. passwords for BOOT and DIR.

Patch KI/DVR.GSLTD Patch FORMAT/CMD.RRW3
D02,85=05 D04,F2=AE 01 F5 9C
.EOP D05,12=AE 01
 .EOP

RS232T could not be "configed".

Patch RS232T/DVR.GSLTD
D02,5D=C7
.EOP

The LDOS QUARTERLY is copyrighted in its entirety. No material contained
herein may be duplicated for any purpose without the written permission of
Logical Systems, Incorporated.

Page - 64

	Top of document
	V I E W F R O M T H E B O T T O M F L O O R
	LED - THE LDOS EDITOR
	M O D E L I 5 . 1 . 2 U P D A T E
	UTILITY PROGRAM CHANGES
	DRIVER/FILTER PROGRAM CHANGES
	LBASIC PROGRAM CHANGES

	M O D E L I I I 5 . 1 . 2 U P D A T E N E W S
	NEW FILES
	LIBRARY COMMAND CHANGES
	UTILITY PROGRAM CHANGES
	DRIVER/FILTER PROGRAM CHANGES
	LBASIC PROGRAM CHANGES

	WHAT'S NEW ?
	ITEMS OF GENERAL INTEREST
	TCHRON - Time and Date board Patch
	Updated TTIMER Patches
	FILTER PACKAGE NEWS
	HIGH MEMORY AND LDOS
	CMD"O" - Implementation and Possible uses
	PARITY = ODD
	THE LIBRARY by Earle Robinson
	Advertisement - MISOSYS
	Advertisement - POWERSOFT
	Advertisement - GALACTIC SOFTWARE
	Advertisement - POWERSOFT
	Advertisement - POWERSOFT
	Advertisement - QUALITY COMPUTER SERVICES
	Advertisement - GALACTIC SOFTWARE
	Advertisement - LAREDO SYSTEMS
	INSIDE THE EXPANSION INTERFACE by Earle Robinson
	AN ARTICLE by Charlie Butler of The Alternate Source
	Roy's Technical Corner
	THE JCL CORNER by Chuck
	PROGRAMS FROM USERS
	DISK MAPPER FOR LDOS FORMATTED DISKS
	BINHEX/BAS by Tim Mann
	DELETE/CMD: A MultiDle-KILL Utility by Renato B. Reyes Ph.D.
	NODAM - Read those OLDAM disks directly - by Chuck
	PROFILE ON LDOS
	Old Subject Revisited

	Patches to MOD I - LDOS 5.1.2 - 03/23/82
	Patches to MOD III - LDOS 5.1.2 - 03/23/82

