o§ AL

Form |=_~r1;5r the
-

S

> Fl:lrf 3 I.eamlng Assembly Lunguuge
p#The Electronic Inﬂusm

{.

e I.DQSund SuperSCRIPT | / .
» Moreon ‘C’* / ?

/)’

Har¥

)5

SIX ISSUES TOGETHER AT LAST!

MNow Available — Volume One of the LDOS Quar- .ﬁm
terlies, Including the July 1981 through ODetober 1982 -
issues, Owver 325 pages of information sure to henefit

all LDMDS uszers,

A ony $19.00

WEHE Plus 84,00 Shipping ond Handling
INC.

OO
LOGICAL SYSTEMS 8970 M. 55th Sireat / P.O., Box 23958 / Milwaukes, W1 53223 [(414) d05-0404

The Next Generation

SUPERLOG

ADVANCED ELECTRONIC NOTEBOOK
BY KSoft

Over the past two years, LOG Electronic Notebook has quietly been creating a revolution in personal information management. Designed to
emulate a familiar pencil and notebook, LOG Electronic Notebook can do for random infonnation what a spreadsheet program does for
numbers.

Now, even the best has been improved! KSoft is pleased to announce SUPERLOG, the next generation of the LOG family. SUPERLOG is
not a patch! It is a totally rewritten version of the original LOG concept, fully compatible with the LDOS 5.1.3 operating system currently
endorsed by Tandy.

SUPERLOG retains all of the versatile features of LOG while adding many new options requested by professional users: Floppy or hard
disk. Any number of LOG files per diskette. 1 to 32767 pages per file. Password protection and error checking. New text editing commands
include automatic text Wrap-Around. Expand and Delete for entire lines, a Page Copy command, and an Undo key to reverse editing
changes. Cursor motion is more flexible with new key commands plus a Forms simulator. The SEARCH function is greatly enhanced with a
Wild-Card character, case-independent search, and multiple word search at 10 pages/second.

Also Note: SUPERLOG is now fully interrupt activated; it may be accessed from practically any foreground task including LDOS Uitilities,
LBASIC, LSCRIPT, EDAS, etc. with non-destructive return to the foreground program. No other information management program is this
versatile!

Write or call Today! We'll be glad to tell you about SUPERLOG and what it can do for you!
SUPERLOG Specify Model | or Il $119.95

LDOS 5.1.3, 48K, and 2 Drives required.
(Model IV version to be offered soon.)

LOG TRSDOS versions, Models, 1,111 still available.
KSoft (601) 992-2239
318 Lakeside Drive Mastercard and Visa accepted.
Brandon, MS 39042 Add $5.00 for shipping and handling.

(TRSDOS is a trademark of Tandy Corporation) (LDOS is a trademark of Logical Systems Inc.)

THE LSI JOURNAL OCTOBER 1983 Vol ume 2, Nunber 4

CONTENTS

| NTRODUCTI ON FROM LSI :
ARTI CLE SUBM SSI ON POLI CY .. e e e e e e e e e
VI EW FROM THE BOTTOM FLOOR e e e e e e e e e e e e e
A CASE OF M S- ALLOCATI ON . .ot e e e e e e e e e e e e e
NEW PRODUCT ANNOUNCENMENTS e e e e e e e e e e e e e
FROM OUR USERS:
The Electroni c InBasket e
Fast Graphics for " LC
Using Interrupts and SVCs in FORTRAN it
REGULAR USER COLUWNS:
... er ... EBEarle Robinson at large
* PARITY = QDD * TimbDanel i UK e e e
"C What’'s Happening - Earl Terwilliger
FROM THE LDOS SUPPORT STAFF:

Itenms of General I nterest e
updates, patches and clarifications

LET US ASSEMBLE - Rich learns yet nore assenbler

LDOS: HOWIT WORKS - Using non-relocatable code
"Foreign" machi ne code, and other stuff in high nenory discussed

THE JCL CORNER - by Chuck (sort of) e
Automatic Chaining With JCL e e

Letters fromthe Customer Service Mailbag
LDOS and Super SCRI PSI T e e e e
MAX-80 MEMDrY MAP .ottt e e
Perform ng DATE Conversions in BASIC i,
LES | NFORMATI ON - by Les MKesel |l e

View From Below the Bottom Fl oor i

Copyright (c) 1983 by Logi cal Systems, |ncorporated
8970 N. 55th Street P.O Box 23956
M | waukee, W sconsin 53223
Mai n swi tchboard: (414) 355-5454
LDOS Hotline: (414) 355-4463

Page 1

AOWN

15
16
19

28
31
34

38

40

50

52

52

54

55

58

60

61

64

The LSI Journal policy on the subm ssion and paynent for articles is as follows:
Articles sent for consideration nust be submitted in the follow ng format:

1. A cover letter, summarizing the content and intent of the article
2. A printed hardcopy (lineprinted or typewitten) of the article. Desired
print effects and formatting shoul d be indicated where necessary.

A diskette with--

3. A 'plain vanilla ASCII text file containing the article. The text
should be free-form but if any tables or other structured data is
present, the file should be formatted as 87 characters per |line, and
62 lines per page, with no headers or footers. Do NOT send SuperSCRIPSIT
or Newscript files. Also, please do not enbed print effects.

4. If the article involves assenbly | anguage prograns, include both
the source code and the object code.
5. Any ot her necessary files or patches should also be supplied in

machi ne readable form

Pl ease do not send in printed text without a diskette, as it will NOT be considered for
publication. Paynment will be made in the form of an LSl product, or $40 per published
page in the current LSI Journal format. The size of the article will determne the
val ue of the LSI product avail able as paynent.

Pl ease include your nane, address, telephone nunber and LDOS serial nunber with your
subm ssion, firmy attached to your hardcopy printout, and affixed to the diskette you
submit.

LSI is extrenely interested in seeing submssions from our users, and is open to
suggesti ons on any ideas for the LSl Journal

Submi ssi ons shoul d be sent to:

The LSI Journal Editor
c/o Logical Systens, Inc.
8970 N. 55th Street
P. O. Box 23956
M | waukee, W sconsin 53223

UNI X is a trademark of Bell Laboratories
MAX-80 is a trademark of LOBO Systens, Inc.
PC-DCS and | BMPC are trademar ks of |BM Corp.
TRSDCS is a trademark of Radi o Shack/ Tandy Corp.
MS- DOS and XENI X are tradenmarks of M crosoft, Corp.
WrdStar is a trademark of McroPro International Corp.
CP/IM CP/IM80, and CP/M 86 are tradenmarks of Digital Research, Inc.

The LSI Journal is copyrighted in its entirety. No material contained herein may be
duplicated in whole or in part for commercial or distribution purposes without the
express witten consent of Logical Systens, Inc. and the article’ s author.

Page 2

VI EW FROM THE BOTTOM FLOOR

by Bill Schroeder
Yes, there is now an LDGOS 5. 1. 4!

K, what did LSI do to 5.1.3 to make it 5.1.4? From the standpoint of the DCS itself,
5.1.4 is sinply a needed change in the version nunmber after a dozen or so patches.
This means that 5.1.4 contains all patches to date, some are VERY | MPORTANT, others are
less inportant, and sone that are just plain arbitrary. New functions have been added
that make this a very valuabl e update for our LDOS users and a nust for Mdel 4 users.

A BI G FEATURE CF LDOS 5.1.4 IS THAT THE ORIG NAL FED (LSI FILE ZAPPER) IS NOW | NCLUDED
WTH THE LDOS 5. 1.4, AT NO EXTRA CHARGE!!!

FED is the fanmpus LSI utility that allows sinple nmaintenance and updating of all
LDOS-type files. FED originally sold for $40 and was recently reduced to $19 with the

introduction of FED-1l. Sure, there is an ulterior motive. First, | would like all of
our users to have the power of a FED-type program and then again there is FED-11. |
bel i eve that when our users find out how handy FED is, they wll becone purchasers of
our FED-II product. | may be wong, but in any case, the LDOS user benefits.

A NEW H GH SPEED BACKUP UTILITY (QFB) COMES WTH LDCS 5.1.4

I have often been asked if LSI could provide a FASTER method of creating a "mrror-
i mage" duplicate of an LDOS-type disk. Well, 5.1.4 has this feature in a new program
called "QB" (for Quick Format and Backup). This new utility will duplicate a disk in
about half (or less) of the time that a FORVAT/ BACKUP sequence takes. QFB and its
docunentation are provided at no additional charge with a 5.1.4 update. Please note
that QB is for mirror-image backups of standard LDOS-formatted di skettes only.

| MPORTANT NOTE:

The cost to update to 5.1.4 is just $10 ($5 with ESA). This is an inportant and
val uabl e update, so please send in your naster disk (disks in the case of Mdel 1) and
let LSI update your system The official date of 5.1.4 is Septenber 1, 1983. There
are still many 5.1.3 systens available from LSl dealers and from Radi o Shack and these
can and should be purchased wi thout worry that they are not 5.1.4 versions. ANYONE WHO
PURCHASES THE FULL LDOS 5.1.3 SYSTEM AFTER AUGUST 1, 1983 IS ENTITLED TO A FREE 5.1.4
UPDATE AT ANY TIME! Note: Proof of purchase date is required and nust acconpany naster
di sks sent to LSI for this "FREE"' update.

Anot her item worthy of comrent is the NEW nane for the LDOS Quarterly. It is now
called the "LSI JOURNAL". The nane change was necessary, because our publication wll
be addressing nmany wi de and varied topics in the future. For the present, LDOS and its
rel ated products will be the main thrust of this publication but in the future nany
other topics and products wll be discussed. The new nane nore aptly describes the
future route of our publication. For those perceptive folks, you nmay realize that the
removal of the word QUARTERLY from the publication could mean that a nore frequent rate
of publication may be in the offing. You never can tell

More "news" is that the cost to receive the LSI JOURNAL has been reduced. Ef fective
i medi ately, a four issue subscription is just $14.95! Subscriptions to the LSI JOURNAL
are now available to ANYONE. That’'s right, there is no requirenent to be a registered
owner of any LSI product . LSI will continue to bring you this publication, full of
straight forward technical and user information, from professionals, and with very
little advertising material.

Page 3

The ESA programis no longer available but all existing ESA agreenents wll be HONORED
TO THE LETTER until expiration

We have opened up the LDOS SIG (Special Interest G oup) on mcroNET/ ConpuServe to the
public so that all LDOS and TRSDCS 6.x users, or anyone else for that matter, can now
access this bulletin board service. Note: You nust be a current nenber of ConpuServe
to use this service

Cccasionally, | get a letter from an LSl custoner, who conplains about LSI offering a
new generation of a product or a drop in the price of an existing product. | would like
to address this issue.

First of all, let’s discuss purchased products and updates. Updates are just that. They
are intended to correct defects or oversights in a released product. Wien we enhance a
product, it is not the sane thing. For sonme reason, some software purchasers have

placed the software industry in a category previously unknown in a capitalistic
econony. An industry where a purchase by a custoner creates a permanent responsibility
to provide future enhancenents or version changes at little or no cost to that
custoner. | can’t think of another industry that is ever expected to provide this type
of custonmer support or service. There is no way that a non-cottage industry conpany
could function on this basis. Wtness the many, many software conpanies that are no
| onger in business due to their attenpts to satisfy these unrealistic expectations.

To bring the issue very close to hone, look at the TRS-80 software industry. |
guarantee you that as you |ook through the software you have purchased over the past
two years, you will find that over half of the providers of those products are no
| onger around to provide any type of support, enhancenents, or upgrades. Tough industry
to stay afloat in-- don't you think?

Now | ook el sewhere in the industry. | have purchased many printers for LSI, often to
find that within nonths (in one case days) that the manufacturer dropped the price
enhanced the product, or in nost cases did BOTH at the sane tine. Was | upset or did
feel used or abused? O course not, things change, nmarkets change, conpetition
changes, production costs and techni ques change, and on and on. | want to see things
progress and | am quite willing to pay the price for that progress. The advancenents
in conputer hardware and software have to be paid for and the conpanies involved nust
make a profit.

About nomi nal cost upgrade to new versions of a product | can only say... HONW Sone
letters | receive indicate that an upgraded or enhanced version of a product should be
provided for free or at nom nal cost because the custoner supported the original effort
by purchasing the product. COVE ON NON | purchased an MX-80 when it first cane out.
have also purchased a radar detector, pocket <calculators, digital watches, 35mm
caner as, color TVs, air conditioners, new cars, FM personal radios, VCRs and dozens of
other itens shortly after they were introduced for consunption. Wthin a year or so of
purchasing every one of these itenms, | could have bought a BETTER VERSION, FOR LESS
MONEY! Why? Sinply because the manufacturer was able to continue to upgrade and enhance
the original product to create better, cheaper, nore desirable versions of the product.

It should be clearly noted that NOT ONE of the conpanies that nmanufactured or sold ne
these products offered any type of TRADE-IN, UPGRADE, UPDATE, or even a token discount
for support of their original version. Nor would | have been so naive as to have
expect ed one.

| believe that | got what | paid for with every one of these products. | bought the
itemas it was designed, for the price as marked. No one held a gun to ny head or
forced me to buy the first, second or third generation of a product. Wen and what to
buy was My choi ce. Yes, a later generation of a product is usually better and costs
| ess, but | had the use of the itemfor the ensuing tine period until that next version

became available. | <certainly did not expect the conpany to let me trade up to a new
VCR or SLR canera at a nom nal update fee. If I wanted the newer nodel, | sold, gave
away or threw away the one | had and BOUGHT the NEW version. However, whenever |
purchased a product that did not function as | was lead to believe, | insisted that it

Page 4

be repaired, replaced, upgraded or as a last resort that | be allowed to return it for
a full refund. In all fairness though, | would only expect these options within a
reasonabl e tine frane.

If one is not willing to accept progress in technology as the "way of things" then, it
woul d be safest to never buy anything, unless it has been out of production for ten or
nore years. |In that case, you probably won't ever have a new version of the product to
feel bad about.

Whi ch brings me to another point. The customer who decides to purchase a new, probably
i nconpati bl e conputer. I own a VHS format video tape recorder. If | decide to go out
and buy a BETA recorder, knowing full well that these two formats are inconpatible, |
certainly can't tell the stores were | bought ny "VIDEO SOFTWARE" (tapes) that they
should or have to give ne BETA-type copies of the nobvies at a nomnal charge. |'d be
thrown out of the store. Alternatively, if for sone strange reason the store did do
this type of thing, it would soon be bankrupt.

In spite of this, sone of our custoners think LSI should "G VE" them Moddel 4 versions

of our products. Why? Well, because they once bought the Model-111 version. Now |
ask you, did Radio Shack "G VE" you a Mdel 4 conputer on the basis that you have one
com ng because two years ago you were nice to them and bought a Model-111? | doubt it.

Yet, with all this as common know edge to ALL of the Anerican consuners, there is still

a strange perception about software suppliers. It’s alnmpst as though sone of our
custoners think that witing software is a very sinple process and, therefore, is worth
very little. It is very expensive to design, wite, test, debug, docunent, publish,

advertise, and support GOOD conputer software! Many of the software suppliers have not
made the financial grade and are no | onger around for disgruntled custonmers to conplain
to. Maybe they should not have used as much of their resources providing upgrades to
wor ki ng products, each of which | ost them noney.

It is your choice to buy a MAX-80 or a Mddel 4, or any other conputer that LSI is
supporting or is going to support in the future. It is your choice to get CP/M or any
other 0S, and yes, sone of our products are conming out on CP/M XEN X and MS-DOS. W
do not intend to offer upgrades or updates or trade-ins under these circunstances. LSl
policy will be to update ONLY the sane product title, sanme product series for the sane
conputer and operating system These updates will be for ERROR corrections only.
Enhanced or second generation products and the same product for a different environnent
nmust be purchased.

| often hear from customers and other people in the micro industry how terribly
profitable the software industry is. That is plain ignorance speaking (or maybe too
much belief in what Wayne Green has said in 80-Mcro). If this industry was all a "bed
of roses" then | ask you, why is the failure rate of young software conpanies SO hi gh?
It is not conmon for conpanies that are naking high profits to go out of business, wth
many unpaid debts. Watch the nmgazines. Watch the software conpanies conme and go.
Better yet, if you are one of the people who thinks this industry is so easy to nmke
noney in, you should take the Great American Alternative and start your own software
conpany, or try to nmake a living as a independent software author. The odds are very
much agai nst success, but some wll succeed and beconme financially strong. These are
the ones with FIRM FAI R and PROFI TABLE policies regarding their goods and services.

Take FED and FED-11 as exanpl es. FED is one of LSI's nobst popular utilities. The
original FED sold hundreds of copies but has not yet even paid for its devel opnent.
FED-11 cost over twice as nuch to develop. W priced the original FED at $40, when we
i ntroduced FED-11 we dropped the price of FED to $19 and offered the new version FED
I, at the $40 price. Yes, a better product for the same nmoney! Now we have included
the original FED on LDOS 5.1.4 for (alnpost) FREE. Wel| and good, but all this does not
change the fact that FED and many of our other products are efforts to support our
operating systens and are not likely to becone profitable products to LSI. Sone day,
with our ongoing enhancenents to FED and rewiting it in "C', for use on other
machi nes, LSI may break even on the product, or possibly even nake some profit on it,
but | doubt it.

Page 5

The FED exanple is not unique. LSI has in the past and will in the future, invest tens

of thousands of dollars on support itens for our product lines. Some of these wll
recover their costs, sone will nake a profit, but alas, nobst will be "losers" as stand
al one products. Many LSI products are slated as non-profit products when they are
started. They are created to support our products and our nost valued asset, our
cust oners.

Sof tware econonmics and the profitability of a software conpany is hard to understand
and/or control. Mst software conpanies and custoners have very close personal ties to
the conputer industry in one fashion or another. Mst are programers and conputer
enthusiasts first and business people second. Not a good ordering of things if the
conpany is going to be here sone years from now.

LSI intends to be in this industry for a long tine to come. W will be fair with our
pol i ci es, but not to the overall detrinment of LSI. That would be a detrinment to our
custoners as well. The ULTIMATE in bad support is having the conpany you buy a product
from go out of business. We doubt that this will happen at LSI, because we do not
intend to give away our products. Many software conpanies have failed for this reason,
and this reason al one.

I should make one thing very clear-- | do not believe that a defective product is the
responsibility of the customer. The software provider has a responsibility to provide
updat es, at a nodest handling cost, to repair defects found in any version of a

product. The custoner has the right to expect that. But if the product is purchased by
the customer and it functions as advertised and documented at the tinme of purchase,
then the custoner has gotten what he agreed to pay for at the tinme of purchase and
shoul d not expect nore.

| have had many questions about our software protection plans for the LSl 6.x products.

First of all, I nust say that we have no intention of changing our stated RIGHT TO
PROTECT OUR PROPERTY. Those who disagree and feel that by purchasing an LSl product
they shoul d have conplete ownership rights to that product, with the right to duplicate
it whenever and for whonever they like, are norally, legally, and ethically incorrect.

Secondly, we do NOT have the intention at this time of protecting nore than a sel ected
few of our products. W wll be protecting products that we have found to be the nost
likely to be pirated. W do get calls daily fromthieves, some of them openly adnit to
havi ng pirated copies of our products, and justify this, with sone assinine reason why
THEY have the right to STEAL FROM US. | for one am just plain sick of it. Mst other
conpanies in this industry are taking a simlar stand and with good reason. VI S| CORP,
M CROSOFT, TANDY and many others are now protecting at |east SOME of their products
fromillegal duplication. So whether users like it or not, they will have to get used
to it. Even the nuch acclaimed and probably the npbst owned utility in the TRS-80
industry is FULLY BACKUP PROTECTED. This is of course SUPER UTILITY from Powersoft.

In the last issue | spoke of our plans to provide SOVE of our products for the Mdel 4
(6.x OS) on disks that only allow a limted nunber of backups. This is certainly our
right and we are providing several itens in this manner. W are under no obligation to
provide unlinited reproduction of our property. The nunber of backups that can be made
from these products will vary from 3 to 25 depending on the nature of the product and
how often sonmeone offers to sell me a pirated copy of ny own software. W are not going
to indicate when and if a product will be protected or the type of protection that wll
be used. The packaging of protected products will carry a clear warning (visible
wi t hout breaking the package seal) indicating the nunber of backups, if any, that can
be made from the nmaster. If this is unacceptable to the custoner, and the product has
not been opened, the product may be returned for an i nmedi ate refund.

At this time, only Mdel 4 products wll be subject to limted backup protection.

Future LSI products (for all environments) may be provided on backup-proof nedia. If we
elect to take this step, we will provide two or three MASTER copies w th each package.

Page 6

When you buy a conputer, YOU GET ONE! At LSI we have many products which we purchase
for use on XENNX, CP/M MS-DOS and LDOS, sone of which are provided on backup- proof
nmedia. We have no problemwi th this concept or the use of these products. W feel this
is the right of the software producer. O course, it is the right of the customer not
to buy the product. If you enter the world of the IBMPC, vyou will find that prograns
on protected nmedia are very conmon.

One decision that we are quite sure of is that LSI WLL BE SUPPORTI NG Ms-DCS, CP/M and
XENI X with future products. This is a market of the future and LSI will be there.

We feel that many of our products and our superior after sale support nmake many LSI
products good bargai ns.

In the interest of fairness to our custoners, we wish to do sonething that nost
retailers would never do, tell them well in advance of planned price increases.
Effective with our January 1984 catalog, you will see rises in the retail price of MOST
of our products. The increases will vary fromlittle or nothing to as nuch as several
times the present price. You have plenty of time to take advantage of our present
pricing and acquire the itenms that are of interest to you. | reconmend that you do so
now, because as of the first of next year, you can expect to pay nore for those itens.

LSl S NOWLICENSING THE LDOS 6.x SYSTEM TO TH RD PARTY | MPLEMENTORS

As of Septenber 1983, LSI began making available FULL licenses to the LDOS 6.x system

LSl will provi de COMPLETE LDOS 6.x SOURCE CODE to outside conpanies so that the LDOS
6.x system may be quickly nmade available on nmany diverse nmachines. Qur licensing terms
are much nore |iberal than those of other OGS licensing conpanies, and a lot I|ess

expensive. There are many, nmany details involved in these licenses and it would not be
appropriate to go into themat this tine. But, if there is a conputer that you think
the LDCS system "shoul d" be on, let the manufacturer of that machine, and LSI know.

These inplenmentations will all be nedia and software conpatible with other LDOS 6.x
systens within the limts of the hardware. For instance, alnobst any Radi o Shack Mdel 4
software should run on these other machi ne inplenentations, w thout change!

This is, of course, due to the nature of the 6.x SVC system Any programer witing for
the 6.x version need only use the SVC structure in the docunented manner, and the
software will run on other systems with no problems. The beauty of the 6.x architecture
is that there are NO HARD ADDRESSES, STORAGE LOCATI ONS or VECTORS, at all!

There are several CEMs and sone well known OS inplenentors either considering this
program or already in it. In the next issue of the LSI JOURNAL, | w Il be announcing
sone of the nmachines being supported and the conpanies who are doing the
i mpl erent ati ons. Many of our customers will be very pleasantly surprised.

ABOUT SOME NEW PRODUCTS (and SPECI ALS)

By the tine that you read this, you should be able to run down to your nearest Radio
Shack store and pick up a copy of the MODEL 4 TECHNI CAL MANUAL, Catal og Nunmber 26-
2110. This is without a doubt one of the best nanuals ever published by Radi o Shack. W
have heard many negative comments about the superficial nature of the Mdel 4 user’s
manual . The "USER S' manual was intended as just that. No progranmming or system
interface informati on was provided (or intended). The release of this technical manual
shoul d clear up all questions regarding the 6.x systemand its functions. This docunent
is the ONLY TRSDOS 6.x (LDCS 6.x) official specification.

Every effort will be nmade to maintain full upward conpatibility to this spec as the 6.x

system is expanded. Any use of the systemin ANY WAY that is not stated in this spec
will cause program conpatibility problens. There will be other publications that may

Page 7

provide incorrect information regarding things that we have every intention of
changing. So, beware! DO NOT USE ANY FUNCTION or SVC THAT IS NOT DOCUMENTED DI RECTLY
BY LSI or RADI O SHACK. There are many changes planned for the future of our 6.x
product . Don’t become the victim of unofficial information. THINKI Get a copy of the
official Mdel 4 Tech Spec from Radi o Shack and treat it as the "BIBLE TO 6.x". You'll
be happier in the | ong run.

Now how about a year end special just for Mdel 4 owners? W have LS-FED Il at $49,
LS-FM at $49, and LS-QFB/COW at $39, for a total of $137. But from now until Decenber
31, 1983, you can get all three for just $98. That’s right, for the price of LS-FM and
LS-FED Il alone, you get the LS-QFB/COVWP package thrown in. Don't pass this one up.
Beat the price increases. The savings amount to OVER 28% OFF the conbined retail
prices. Wen ordering this special offer specify the "LSI MODEL 4, TOCLKIT SPECI AL" and
you will get all three products for just $98 plus $5 shi ppi ng and handl i ng.

CP/M for your Mdel 4 is now available. CP/M 2.2 has been adapted to your Model 4 by a
conpany call ed MONTEZUMA M CRO. W have a copy here for review and it seens to be fully
functional. For conplete information or ordering this product, contact MONTEZUVA
M CRO, CP/ M group, P.O Box 32027, Dallas, TX 75232 or call (214) 339-5104 and ask for
John, John or John (I think you must be nanmed JOHN to work for these people). Wth this
package your Model 4 will be able to function as a true CP/M machi ne. Wiy wait, and
wait, and wait, and wait... You can have CP/Mnow (if you need it).

The nunber one TRS-80 aut hor, BILL BARDEN has outdone hinself once again and produced a
book entitled, "HONTO DO IT ON THE TRS-80". This is the ultimate in TRS-80 reference
material and covers the MXDs 1, 2,3, CoCo,etc. No TRS-80 owner, whether user, progranmer,
or novice should be without this fantastic book. To this end, LSI has purchased a fair
quantity of these "fellers" and is making a special offer to our LDOS users. The book
nornmally sells for $29.95, but while supplies last (and we gots, lots) you can get this
great and USEFUL book for just $25 plus $4 shipping and handling if ordered al one, or
$20 plus $2 if ordered with nore than fifty dollars worth of other LSI products. | am
so confident that you will agree that this book is the npbst valuable reference guide in
your library, that if you don’t agree, SEND IT BACK and we will cheerfully refund your
noney.

By the end of 1983 LSI hopes to have rel eased several of our products on PC/ Ms-DOS. W
have made a rather large commitment to enter and support the |IBMPC and Ms- DOS
environnment. We will bring to those products the quality and support that you have cone
to expect from LSl products. W want to stress however, that we intend to continue our
support of the Z-80 narket as we nove into the 8088/ 86 and 68000 nmarkets. We are going
to try very hard to continue in both the 8 and 16 bit nachines.

A CASE OF M S- ALLOCATI ON

by Bill Schroeder

Getting a file onto a diskette is not a sinple process. Let’'s take a closer |ook. Wen
an operating systemis asked to create a file, it must first go to the directory and
establish a "directory entry". This is done by placing the fil espec and other assorted
information into the directory.

Now that the file exists in the directory, data will probably be witten to the file.
To wite to a newy created file, the operating systemnust now find a piece of storage
area on the disk (a granule) at which to start witing the data. Sounds sinple so
far... well, maybe not.

There are many ways in which an operating system can select just where to start this

file. 1 will describe and discuss a few of them starting with the method used in LDOS
5.1.3 and before.

Page 8

This nethod is to randomy select a cylinder on the disk in a fairly balanced pattern
ranging fromthe first cylinder on the disk (#0) through the highest nunbered cylinder
on the disk. The first granule on the selected cylinder is exanmned. If the granule is
found to be in use or flawed, the system will begin to nove upward through the
cylinders and through each cylinder’'s set of granules (e.g. toward the inner tracks).
The systemwi ||l check each granule on the way, |ooking for a vacant usable one. As soon
as an acceptable granule is found, it will be assigned in the GAT and in the file's
directory entry as the first granule of that file.

O her variations on the above thenme usually involve sonme type of weighted selection of
where to start looking for space on the disk. I will now refer to the random all ocati on
met hods as the "RANDOM' nethod. The algorithm used to select this random | ocation can
be witten to force the selection to be a nunber, below the directory, above the
directory, on the lower 1/3 or 1/4 of the disk, and on and on. In the case of LDOS
5.1.3, the algorithmattenpts to select a cylinder randomy fromthe entire disk.

Anot her method of selecting file space is very sinple. | wll call this nmethod the
"CONTROLLED' allocation nethod. This nethod sinply starts to search at a given spot on
the disk and progresses upward through the cylinder nunbers until an acceptable space
is found. Usually the search will start at cylinder #0 or #1. Space wll then be
allocated solidly fromthe |ow nunbered cylinders (e.g. the outer tracks) to the high
nunbered cylinders.

Now, some "systens analysts" have taken sides on exactly which nethod of space
allocation is nost efficient and reliable for micro floppy disk usage. | nust first
state that when | started to check out the "real world" inplications to the user, | did
not think that it could rmake rmuch of a difference one way or another. But after sone
experinentation, significant results were obtained. Prograns were witten, and the
results were obtained from actual testing. It becane quite apparent that one side of
this argunent is totally wong! One nethod is far superior to the other in all tested
cases.

Li sted below are the nmain points that were posed to LSl in a letter from a promn nent
systens progranmer. He is very much in favor of RANDOM allocation techniques. His
opi ni ons have been very highly regarded by the TRS-80 user’s community. These points
were brought to LSI 's attention as a result of our decision to alter the nethods of
allocation used in current and future LSl operating system products. No supportive
facts, mathematical analysis, or test results were provided to support this
i ndividual's position.

1) Random al | ocation provides nore uni formwear of the nedia surface.
2) Random al | ocati on mnimzes the average access tine across the nedia.
3) Random al |l ocati on mnimzes the nunber of extents nore so than nobst other nethods.

4) Random al |l ocation will cause the use of less directory records. Since the nunber of
extents that can be retained in each directory record is finite (four), a new
directory record (extended directory entry) nust be used when the primary directory
entry is filled. In LDOS this happens when a file contains five or nore extents.

The letter went on to strongly protest even the consideration of such a radical idea as
no |onger having RANDOM allocation in LDOS OS products. It even stated this RANDOM
technique to be the HEART of the LDOS file handling system After testing, analysis,
and careful consideration of these clains and assunptions, | now believe them to be
total ly inaccurate.

Now | et us review each of these clains for the RANDOM net hods:
PO NT #1, nakes no sense at all. The reason is very sinple. Al operating systems that
do not retain the entire disk directory in nenory MJST nake frequent directory accesses

to locate, OPEN, CLOSE and access records in files. Also, with an overlay based system
like LDOS, the operating system itself nmust go to the directory every time it is

Page 9

necessary to change the overlay which is currently in nenory. What all this points to
is sinple. The directory cylinder will fail fromwear |ong before any other cylinder on
the disk wears out. To validate this statement, tests were perforned to make actual
counts of the accesses of each cylinder on a disk under varying circunstances. These
tests proved that under all uses of the LDOS operating system the directory cylinder
was accessed five to fifty tinmes nore often than any other cylinder.

It is also known that the use of higher cylinder nunbers (inner tracks) is nuch nore
likely to cause disk faults such as parity or CRC errors. This is because the bits of
data are packed nuch closer together on the inner cylinders. The data density on the
i nner tracks approaches the maximumreliable resolution that current floppy systens can
attain.

PO NT #2. The concept of RANDOM pl acenent has little bearing on file access tinmng. If
the file starts at a RANDOM cylinder on the disk it has the sane probability of
starting at cylinder 0, as say, cylinder 39. It does not sound |like faster access woul d
be attained on these files.

That’'s just the beginning of the problem If a file should start on one of the upper

cylinder nunbers (say above 35 on a 40 track disk), it will have a very good chance of
wr appi ng around to a |low nunbered cylinder. This results in the file being broken and
another extent created. A simlar action will occur every tine a file needs to acquire
another gran and the next physical gran on the disk is unavailable. |f RANDOM

allocation is beginning to sound a little silly, well hang on, I T GETS WORSE.

Because nost user’'s diskettes are between 60 and 80 percent filled with files, | nust
assune that any allocation technique other than full RANDOM is better for rapid access.
A pure RANDOM technique has the possibility of using both extrenes on a disk and
nothing near the directory. CONTROLLED allocation will progress toward the directory
until the disk is half full, then it will continue on the other side of the directory.
The two extrenes (cylinders 0 and 39 used) cannot occur until the disk is alnost 100%
filled.

It is very inportant that an operating system tries to keep a file as contiguous as
possi ble. Based on our actual testing, | have found that this could be a valid reason
to have RANDOM allocation... if there is only one file on a disk, and the file is not
very large, and the RANDOM starting granule is near the directory.

Just to verify these statenents, | created files using a test program using both the
RANDOM and CONTROLLED nethods. Then | OPENed, READ and CLOSEd the files in a nanner
which assured that a simlar nunber of files were accessed and the sane nunber of
records were read. Surprise! Here too, CONTROLLED access was consistently faster. In
general, the disk access tine was about 15-20 percent faster.

PO NT #3, a real bummer here. My actual tests were quite conclusive in this regard.
The average nunber of file extents generated by the RANDOM net hod was about 2.0 extents
per file. The average fromthe controlled nethod was nmuch better at about 1.3 extents
per file.

PO NT #4, My answer to point nunber three said enough. However, certain other things
were tabulated during nmy tests. As pointed out earlier, a directory entry can only hold
a finite nunber of extents. In the case of LDOS 5.1, this is four. If the system needs

a fifth extent it nust use an FXDE (extended directory entry). This entry will use up
an additional directory slot, and extended directory entries are very time consunming to
the system wunder all conditions. Therefore, | counted the nunber of files that were

stored with five or nore extents during the testing.

Again, the test results proved ny contention that RANDOM allocation is not the best
met hod. When using RANDOM al | ocation, nineteen files (or nore than 15% required five
or nore extents. The CONTROLLED al |l ocati on nethod, on the other hand, produced only one
file with five extents.

Page 10

In the spirit of fairness, I would like to point out one condition under which the
RANDOM t echni que may be a better nethod. This is during a period of alternate extension
of two files that are open at the sane time (or opened alternately). If this case
should arise with CONTROLLED allocation, the two files will occupy alternate granules
as they expand. This would be a very inefficient file layout. If a program does extend
files alternately, the RANDOM technique would serve this type of program better than
the CONTROLLED net hod. However, nost prograns that use nultiple large files tend to
capture large blocks of space at a tinme. "Space capture" techniques that are used by
wel | written applications tend to elimnate this problem This concept is generally
referred to as file pre-allocation. LDOS does nmke provision for pre-allocating files
(see the "CREATE" library command in your LDCS manual).

I do not find this point to be serious for three reasons. First, there are very few
prograns that use a file creation procedure that would induce this problem Second, if
this situation does occur, it is very easy to correct the space usage under CONTROLLED
allocation by a sinple BACKUP $:S :D. This will cause any fragnented files to becone
contiguous, providing the backup is to an enpty disk. Last is the reliability factor. |
strongly believe that not utilizing the inner tracks on a floppy disk for as long as
possible is far nmore inportant than this benefit of RANDOM al |l ocati on.

If a disk full of files has becone badly fragnented, it can easily be put "back in
order" under CONTRCOLLED allocation. Wth a RANDOM system good |luck. Every tine files
are witten (backup by class and copy are no exceptions) the RANDOM technique is used.
Therefore, the disk will alnost always have fragnented files no matter what is done.
Wth the CONTROLLED type of system a sinple backup by class will place all the files
on the disk into a mininumfragnentation state (the nost efficient).

How many tines does a PARI TY ERROR or DATA RECORD NOT FOUND ERROR occur? In nobst cases,
this is the fault of the hardware, and is nost likely to occur on the inner disk
cylinders. Wile is the fault of the hardware or nedia, the operating system could
help! If the OS uses CONTROLLED allocation starting at the |ow nunbered cylinders and
proceeds inward, the use of the nbst error prone areas of a floppy disk is avoided. The
inner cylinders will be used only as the disk is alnost full. If you have a drive that
is slightly out of alignment or a head with low output, it is possible not to fill the
di sks over 3/4. This would keep all the files below track 30. This type of control is
not available in a RANDOM system Since we have begun using CONTROLLED all ocation
(starting at track #1), we have had a marked decrease in the occurrence of disk faults!
This in itself is a perfectly valid reason for the change.

I have included ny test results in chart format. For those of you who are anbitious, |
am naking the test programitself available. If you are a die-hard believer in RANDOM
don't take my word for it. Examine the test program and run it yourself. | have the
results and wll never again allow the use a RANDOM allocation schene in any LSl
operating system

At LSI we try to do things correctly and pride ourselves in the technical accuracy of
our products. If we nmake a mistake, we will admt it and we will fix it. On the very
i mportant concept of allocation, however, it seens that we did not take as much care in
deciding on a nethod as we should have. W fell for the hype that the RANDOM concept
was the greatest thing since the Z-80. For this oversight, | sincerely apologize. |
will make every effort to see to it that any future design decisions are nmade purely on
facts, and not on heresay or personal opinions or "guesses".

Al'l 5.1.x MASTER duplication disks at LSl will be altered to incorporate the CONTROLLED
al location nethod as of disks with FILE DATES of Septenber 1, 1983. NOTE: See VI EW FROM
THE BOTTOM FLOCOR for conpl et e UPDATE detail s.

In TRSDOS 6.1 and any future LDOS 6.x or LDOS 5.x operating system all allocation
searching will begin at track nunber 1. The patch to allocate fromtrack nunber 1, on
all LDCS 5.1 products, is as follows:

. PATCH TO ALLOCATE STARTI NG AT CYLI NDER #1
apply to SYS8/ SYS. SYSTEM on LDOS 5. 1. x

Page 11

D00, FE=2E 01 00 00 00 00

. EOP

This can be applied as a command |ine patch by entering the followi ng at LDOS Ready:
PATCH SYS8/ SYS. SYSTEM 0 (DO, FE=2E 01 00 00 00 00) <ENTER>

The '01' in the above patches is the track nunber at which all allocation searches wll
begi n.

If you have any intention of changing back and forth between allocation schenes (I
can't see any reason for RANDOM however) or mght want to be changing the starting
track nunber that your system will use, then JCL is what you need. JCL will let you
create custom conmands for your system This one is fairly sinple but shows the basic
ability of JCL. This JCL file will create a comand that has the followi ng syntax: ’'DO
TK (RND)’ or "DO TK (TK=nn)' or just 'DO TK'. The 'nn’ is of course, a user selectable
track (TK) nunber.

ALLOCATI ON SETTING JCL - FOR USE WTH LDOS 5.1 - 06/01/83
Set SYS8/SYS to Allocate fromtrack TK
If Tk is not specified it will be set to 01

)/IF -TK
/1 ASSI GN TK=01
//END | F

. If RANDOM (RND) not requested then patch in CONTROLLED
/11 F -RND

PATCH SYS8/ SYS. SYSTEM 0 (DO, FE=2E #TK# 00 00 00 00)
[TEXIT

/1END I F

If RND is specified, Allocation will be set to RANDOM

i:’ATCH SYS8/ SYS. SYSTEM 0 (DO, FE=D5 CD 4E 44 D1 6C)

[TEXIT

A test program was created to perform the test. The function of the program was to
create files as a user might and then kill them The programis not really inportant
t hough, as long as the sane program is used to test each node of allocation. The

program s creation, del etion and access activities are not intended to duplicate the
wi de variance of actual system usage. Instead, they are intended to provide a yard
stick by which the two allocation nethods can be conpared | DO NOT claim that this
program accurately represents ANY particular type of actual disk usage.

What | did was run the test program with the operating system set for RANDOM and then
again with the operating system set for CONTROLLED (SYS8 properly altered). The
conputer was a stock Radio Shack Model Il The operating system was LDOS 5.1.3
(06/10/83). Scotch diskettes were used. The step rate of the test drive was set at 6ns.
For speed | SYSRESed overlays 2,3, 8, 10.

Note: Make sure that SYS8 is patched to the desired test nmethod before SYSRESing it!
Pat ching SYS8 on the OS will not alter the one that is already resident in high nmenory.
It is also NOT advisable to SYSRES SYS8 if the ACCESS SPEED test is to be perforned
because this wll alter results in favor of the RANDOM node. This is because nore
extents and, therefore, additional accesses to SYS8 are likely to be required by the
RANDOM node.

Speaki ng of using the SYSRES command, here is a sinple /JCL to handle nultiple SYSRESes
for you.

Page 12

RES/JCL - 06/01/83 - Sinple MILTI-SYSRES command
To USE ENTER "DO RES (1, 2,3...)<ENTER>
. 1,2,3... etc. are the SYS nodul es to be "RESed"
[1if 1
system (sysres=1)
[lend if
I1if 2
system (sysres=2)
/lend if
I1if 3
system (sysres=3)
[lend if
[1if 4
system (sysres=4)
[lend if
/1if 5
system (sysres=5)
/lend if
I1if 8
system (sysres=8)
[lend if
/1if 9
system (sysres=9)
/lend if
/[1if 10
system (sysres=10)
[lend if
/1if 11
system (sysres=11)
/lend if
[1if 12
system (sysres=12)
[lend if

Now back to the subject at hand. The maximum file size was set to 600 records for al
runs. Each run was done THREE times. The runs with the |lowest and highest average
rati os were discarded. This, in effect, tends to remove the extrenes. The renaining
"medi an" runs are tabul ated bel ow.

FI LE ALLOCATI ON TEST RESULTS

TEST AVERAGE NUMBER OF EXTENTS PER FI LE AT COVPLETI ON

RUN# RANDOM ALC. CONTROLLED ALC.
1 1.818 1.397
2 1.945 1.367
3 1.794 1.342
4 2.145 1.275
5 1. 950 1.315
6 1.867 1.262
7 2.075 1.288
8 2.347 1.386
9 1.895 1. 365
10 2.212 1.325
Overal |l Average 2.005 1.333

Due to space constraints, the program listings are not included in this issue. Copies
of the listings may be obtained for no charge by sending a LARGE sel f-addressed stanped
envel ope (6 by 9, with postage for two ounces).

Page 13

NEW PRODUCTS

Many peopl e have requested a high [evel HOST/ TERM NAL environment to use with the 6.x
system We have created such an program called FourTALK, which wll be available
shortly. This package includes a conplete HOST system that works in conjunction with
the TERM NAL portion of the package. The TERM NAL portion is set up look |like a Radio
Shack DT-1, enmulating an ADDS-25 terminal. Full cursor positioning, reverse video, etc.
are supported. Another feature of this programis the availability of all the features

of "COW', to nake the emulation of the ADDS nuch nore powerful than just a termnal.
Full upload and download are available for file transfer as well as spooled printer
support and all the other high level functions of COW while maintaining an ADDS-25

protocol for the handling of the video and keyboard.

The HOST will allow you to renotely operate your Mdel 4, with full cursor positioning
in the ADDS-25 node. Wth this package you can use a DI-1 as a renpte work station to
your Mbdel 4 or another Mddel 4 as an ADDS-25 ternminal, for use with the Mdel 12/16
under XENI X, or as a terminal to a Mddel 4 running the HOST portion of the package.

The ever popular WrdStar word processing systemis now available for use on LDCS 5. 1.
It is supplied on smal-LDOS, and is available for the Mddels 1 and 3 (or 4, in the 3
node). The special introductory price of just $249 plus $5 shipping and handling wll
be in effect until Decenber 31, 1983. The regular price will be $395. If you always
wanted the power of WordStar on your TRS-80, then NOW IS THE TIME. O der W37-010 for
Model 1, and W37-020 for Mdel 3 and MAX-80. We are working on the popul ar Mil Merge
option, and it should be avail able shortly.

The LDOS QUARTERLY ANTHOLOGY, LSI Catal og Nunber L-49-110, which contains all of Volune
#1 of the LDOS QUARTERLY is now available for just $19 plus $3 for shipping and
handling. This is a conplete reprint of all the issues in volune #1, just as they were
originally sent to our LDOS users. The anthology is provided "three hole drilled",
ready for placenent in any standard three ring binder.

LS-TBA, LS-FEDI I, LS-FM and LS-HELP for the Mdel 4 running under TRSDCS 6.x (LDOS 6. x)
are now bei ng shi pped.

Di skDISK is a brand-new package that we should be be shipping by the tine you read
this. Wth this package, you can create a file on a disk that appears to the systemto
be another disk drive! That's right, if you have a double-sided 40 or 80 track drive,
or a hard drive, you can create "logical drive partitions" as files on the physical
drive. ALL system functions are available as though this file were an actual physical
drive. Now you can have a disk within a disk. These DiskDl SKs can be used as though
they are just another disk drive. Even mirror-inmge backups function in a nornally.

This concept is nuch nore versatile and powerful than the use of "partitioned data set"
type files. There are no restrictions on reading and witing to these DiskDI SK files as
there are with other concepts. You can now partition your hard drive as "logical"
floppy drives. This keeps groups of related files together, and nakes backup and file
mai nt enance a breeze. DiskDI SK is just $99 plus $3 shipping and handling. DiskDl SK, LSI
Catal og Nunber L-35-211 is for LDOS 5.1 systems, and LS-DiskDl SK (L-35-212) is for
LDOS/ TRSDOS 6. x. For hard drive users this is a "MJST HAVE" item

Anot her NEW PACKAGE for the Model 4 6.x systemis LS-QFB/COW 6.x. This is the new high
speed "Quick Format and Backup" utility and our popular disk and file conpare utility
conbi ned into one package for just $39 plus $3 shipping and handling. Wth COVW you can
conpare two FILES or two DI SKS and find out about every byte that does not natch
between the two. Qutput is provided to the video or optionally to your printer. Wth
QFB you can create byte for byte duplicates in about half the tinme that format and
backup would do the sane job. This neat package will make your Model 4 even nore
pl easant to use. Order LSI Catal og Nunber L-32-010. NOTE: QFB will NOT create copies of
backup limted or protected disks.

Page 14

THE ELECTRON C | NBASKET

by Gordon B. Thonpson, 5 Bay Hill Ridge, Stittsville, Ontario, Canada KOA 3Q&0
Tel ephones: Voi ce (613) 836-3554 and El ectronic | nbasket (613) 836-5578

The El ectronic Inbasket is a sinple BASIC program that makes a Mddel | or IIl act as a
nmessage coll ector. It sits there, on the end of a nbdem and waits for any inconng
calls. Upon the detection of carrier by the nodem the program responds with a suitable
banner, and then collects the nmessage and displays it on the screen, character by
character. Wen the caller disconnects and the carrier vanishes, the nmessage is
appended to a disk file, al | formatted for printing out in your favourite word
processor .

This program makes use of the REFLEX filter, which appeared in "The Conmunicating
Mcro" in the LDOS Quarterly for Cctober 1982. Wth REFLEX, the INKEY$ instruction can
capture the data coming in over the nodem For this service, input nust be character by
character with a check for carrier between each character to nake the program safe from
hangi ng due to not receiving a carriage return character or logoff fromthe caller.

The use of REFLEX also allows the keyboard of the TRS-80 dedicated to this service to
be used while a message is being received, should one wish to conmunicate with the
sender in real tinme. No command is necessary, just start typing, and the |ocal nachine
running this program will act just like a half duplex terminal. The characters typed
this way are sent to the distant party by the REFLEX filter. The Electronic I|nbasket
operates in half duplex, and does not echo the incomng data stream If it were to echo
the incomng stream characters entered at the |ocal keyboard would get sent twice,
once by REFLEX and once by the echo routine. The disk routine can be activated fromthe
| ocal keyboard by typing a "EOM' or CONTROL D, <SH FT DWN ARROM<D>. This w Il not
cause the conmmunications link to sever, however, as no break signal is sent to the
caller’s nodem

Qutput to the comunication |ine nmakes use of the device independent features of LDOCS.
An OPEN statenent is used to open the file "*SI", and all outgoing data is sent via the
PRINT # command to that "file". These two tricks, the use of REFLEX for incom ng data,
and the OPEN'CO',0,"*SI" statenent, greatly sinplify the handling of the communications
line in this particular case.

Because of differing screen formats, and other vagaries, the programis designed to put
its major output onto a disk along with the requisite print control statenents so the
output can be formatted by a word processing package. My favourite word processor is
NEWECRI PT, so the ELECTRONI C | NBASKET contains NEWSCRIPT's control words. Oher word
processors, like SCRIPSIT, would require other control sequences.

For stability purposes, the program only opens the disk file at the end of a nessage,
and then imediately closes it again, clears all variables, and returns to its waiting
state with a clean slate. Not all nessages are short, or sinple.

In nornal use, a second telephone line is needed to run this service. A Mdel I, a
single disk drive and an auto-answer nodem conplete the hardware requirenments. The
communi cation specification will be 300 baud, even parity and half duplex if the RS232

driver is set as indicated.

The new Model 100 is sinply great at sending nessages to the older Mdels | or |11
running this ELECTRONI C | NBASKET program and the 100's TELECOM specification should be
set to MVELID for this purpose. However, not until we learn how to nake the Mdel 100
detect the presence of carrier, as opposed to nmere inconing data, and how to receive
that data character by character with an interleaving carrier detect routine, can the
100 replace its older brothers in this Electronic |Inbasket service.

100 * * * * Electronic |nbasket * * *

110 ' Note:
120 * Requires LDOS with the followi ng configuration:

Page 15

130 SET *KI KI (TYPE)

140 SET *SI RS232R(DTR=Y, RTS=Y) for Mbdel 1, or
150 SET *SI RS232T(DTR=Y, RTS=Y) for Model 111.

160 FI LTER *KI REFLEX/ FLT

170 ' * * * Communi cati ons Specification: * * *

180 - 300 Baud, Even Parity, Half Duplex.

190

200 ' REFLEX/ FLT uses different locations for storing its
210" flag in Models | and IlIl. This routine determ nes

220 ' which nodel, and then sets the REFLEX flag to on.
230 MEPEEK(&H125):" See if it is a Moddel | or II1.

240 | FM=73 POKE&H4413, 1: GOTQ270:’ It’s a three.

250 POKE&H401A, 1:" It's a one.

260 ’ Setup routine.

270 CLS: CLEAR 5000: DI M C$(100): PRINT"Started at "+TI MES
280 PRINTV\altlng ":OPEN'O', 1,"*SI":" Reentry point.
290 Mai n or V\al ting Routl ne.

300 POKE&H3FFF, 32: FORN=1TC60: NEXT: GOSUB460: | FB=0GOTC330

310 POKE &H3FFF, &H2A: FORN=1TC50: NEXT: GOTC300

320’ Openi ng Banner Routi ne.

330 FORN=1TOB0: NEXTN: PRI NT#1, CHR$(13) +CHR$(10) +"* * THE ELECTRON C | NBASKET *
*" +CHR$(10)

340 PRINT#1,"Date and tine are: "+TI ME$S+CHR$(10): PRI NT#1, "Pl ease | eave your nessage and
t hen di sconnect . " +CHR$(10)

350 PRINTTIME$:” Screen print of nessage arrival tine.

360 PRI NT#1, CHR$(13) +CHR$(10) +">"; : PRI NT" >";

370 Get Character Routlne

380 ' Wth REFLEX on, it can come fromeither *KI or *SI.
390 A3$=I NKEY$: GOSUB460: | FB<>0THENGOTO480ELSEI FA$="" GOT0890
400 PRI NTAS$; : B$=B$+A$: L=LEN(B$) : | FA$=CHR$(8) B$=LEFT$(B$, L- 2)
410 I FA$=CHR$(04) GOTO480EL SEl FA$<>CHR$(13) GOTCB390

420 Li ne End Routi ne.

430 C$(K)=B$+CHR$(13) : K=K+1

440 A$:"": B$="":GOT(B60: ' Go back for next nessage |ine.
450 Modem Carrier Detect Subroutine.

460 A—I NP(&HE8) : B=AAND(&H20) : RETURN

470 End of Message and Di sk Routi ne.

480 OPEN'E", 2, "MESSAGE/ TXT": PRI NT#2, TI ME$

490 ’ Word Processor conmands are for

500 ' Prosoft’s NEWSCRI PT. Change themto suit.

510 PRI NT#2,".br":" NEWSCRI PT control word.

520 FORL=0TOK: PRI NT#2, C$(L); : NEXTL

530 PRI NT#2,".sk 2":’ NEWSCRI PT Control Word.

540 PRINT:’ Insert a blank Iine on screen display.

550 CLGSE : CLEAR5000: DI MC$(100) : GOTQ280

FAST GRAPHI CS FOR ' LC

by Scott A Looner, 315 Pal om no Lane, Madison, W 53705
(608)-233-7739 or M\et [70075, 1033]

One of the fine features of the '"LC is its library of graphics routines. In addition

to the set, reset and test functions famliar in BASIC, there are routines for line,
box and circle draw ng. These routines are primarily the work of Karl Hessinger and
Kar | is to be commended for a fine job. The line drawing (and consequently the box
routine) is very fast, but the circle routine is slowed by its use of calls to the
floating point routines in ROM This article introduces a circle routine which replaced
the LC library circle routine in version 1.1. This routine is approxinmtely twenty
times faster than the current one. Note that there are no floating point nmath or
trancendent al functions used. Also presented is a routine that will fill in an area

that is continuously bounded. The FILL routine is non-recursive which means that it

Page 16

does not use calls to itself. It is very regular in the manner in which it fills an
area and is, therefore, nore pleasing than the typical recursive approach.

These routines were adapted from algorithms presented in the book "Fundanentals of
Interactive Conputer Gaphics" by Foley and Van Dam (published by Addison Wesley,
1982). This book is a nmust for anyone interested in conputer graphics. Mst algorithns
in the book are denobnstrated in Pascal which is easy to convert to 'C.

The new graphics functions that are listed here may be added to a user library by
following the instructions in the LC nmanual .

Circle Routine

/* CIRCLE - fast circle plotting by Scott A Looner
Adapt ed from Fundanental s of Interactive Conputer G aphics by Foley and Van Dam
This routine will plot circles using a fast, non-floating point algorithm Syntax
and return codes are identical to the circle function in the LCINLIB. */
#option INLIB

circle(funcod, x1,y1,r1)
int funcod, x1,y1,r1;
{ int d,dx,dy;
if (funcod > 1 || funcod < 0) return(-3);
dx=0;
dy=r1;
d=3- 2*dy;
whi | e (dx<dy)
{ circlepoints(funcod, x1, y1, dx, dy);
i f (d<0) d=d+4*dx+6;
el se
{ d=d+4*(dx-dy) +10;
dy--;
}

dx++;

}

i f (dx==dy) circlepoints(funcod, x1,y1, dx, dy);

d=r 1/ 2;

if (((x1+r1)>127) || ((x1-r1)<0) || ((y1+d)>47) || ((y1-d)<0))
return(-1);

el se return(funcod);

}

circl epoi nts(funcod, x, y, dx, dy)

int funcod, x,y, dx, dy;

{ int tdy,ty;
tdy=dy/ 2;
pi xel (funcod, x+dx, y+t dy);
pi xel (funcod, x+dx, y-tdy);
pi xel (funcod, x-dx, y-tdy);
pi xel (funcod, x-dx, y+tdy);
t dy=dx/ 2;
pi xel (funcod, x+dy, y+t dy);
pi xel (funcod, x+dy, y-tdy);
pi xel (funcod, x-dy, y-tdy);
pi xel (funcod, x-dy, y+tdy);
return;

Non-recursive Fill Routine
/* Non-recursive Fill A gorithm- by Scott A Loomner

Adapt ed from Fundanental s of Interactive Computer G aphics by Foley and Van Dam
When given an x,y coordinate in an area bounded by contiguous border or the screen

Page 17

edge, this algorithmw |l change all internal pixels to the border val ue

calling syntax: fill(funcod,x,y) where

funcod - is the value of the fill character, which nust
al so be the value of the border character, 0 = reset,
1 = set

X, Y - is a coordinate in the area (must not be equa

to border char)
*/
#option INLIB
int top,sx[l|28],sy[128];

fill (funcod,x,y)
char funcod
int x,vy;
{ int idx,mx,mn,xl,yl
t op=1;
while (test(funcod, ++x,Yy))
{1
push(--x,Yy);
while (pop(&x, &y))
{ max=x;
do pixel (funcod, x, y);
while (test(funcod,--x,y));
nm n=x++;
for (idx=1;idx>=-1;idx-=2)
{ yl=y+idx;
x| =max;
while (xI > mm
{ if (test(funcod,xl,yl))
{ while(test(funcod, ++xl,yl))

{:}
push(--xl,yl);
whi | e(test (funcod, --xl,yl))
{:}
}

--xl;
}
}
}

return;
}

test (bord_char, x,y)

char bord_char;

int x,vy;

{ int ret;
return(((ret=point(x,y))!=bord_char)&&(ret!=-1));

}

push(x,y)

int x,vy;

{ sx[top]=x;
sy[top++] =y;

}

pop(x, y)
int *x,*y;
{ *x=sx[--top];
*y=sy[top];
return(top);

Page 18

Test Program

/* Test of the new CI RCLE and FILL routines
Assumes that CIRCLE and FILL have been placed in a library called USER LI B
*/
#option I NLIB
#opti on USERLIB

mai n()

{ int x,y;
prode(1);
fill(1,0,0);
circle(0,0,0, 24);
fill(o,5,5);

circle(0, 96, 24, 24);
circle(0,96,24,12);
fill(0, 96, 15);

box(0, 24, 24, 36, 36) ;

fill(0,0,47)

fill(1,0,47);

exit(0);
}

Usi ng | NTERRUPTS and SVCs in FORTRAN
by J. Gary Bender, PO Box 773, Los Al ainos, New Mexico 87544

"VWHY?" Why would anyone want to wite an interrupt routine in Fortran... after all,
interrupt level stuff is certainly the realm of assenbly |anguage. Those were exactly
ny initial thoughts. On the other hand, the nore | can get done in a high level
| anguage is usually the nore that | get done ... period. So | was notivated to try it.

By using SVC calls from Fortran, you can do nmany things that may surprise you. You can,
for exanple, avoid the FORLIB I/O routines. The subject of this article is how to have
the LDOS interrupt handler execute a Fortran subroutine. A few other exanples of SVC
use from Fortran are included.

SVC's are not really required. A direct call to @WDITSK and @MISK woul d work just as

well ... for the nonent. Wth all the potential new LDOS nachi nes on the horizon, it is
time to make the SVC table a normal part of your system CONFIG The SVC s allow you to
get closer to the operating system than Fortran normally permits and still renmain
conpatible with the Model I, II1, or Max 80.

There are occasions when you may need, or at |least could use, an interrupt driven
subroutine in an application |evel program The "dead man" timer in this exanple is one
of the nore useful, yet sinple, capabilities. Besides the timed input shown here, it

can permt you to wite prograns with uncluttered logic. | wuse it in an automatic
nmessage exchange program that dials and comunicates with a remote host. Every tinme an
expected "event" occurs, such as receiving a character, the tinmer is reset. Wile

waiting for an event to occur, the tiner is included in the loop. If it counts down
bef ore sonething el se happens, sonething went wong and | can take sone action to abort
the exchange. Mst of the program does not have to be concerned with the multitude of

things that can go wong during the exchange. Also, | am not confined to the prinmary
loop. | can wander off and do anything |I want and have control over whether or not the
deadrman tinmer resets, st ops, or continues to countdown. The conventional Fortran
technique would require the use of do-loops -- all over the place -- to insure the

program did not nake an 8 hour |ong distance phone call waiting for a crashed host to
respond.

Page 19

Let’s look at how this works from Fortran. The three elenents of an interrupt procedure
are: the routine itself, a Task Control Bl ock that points to the routine, and a
facility to install/renove the routine in the LDOS interrupt task table.

The routine that does "sonething" upon interrupt is a standard Fortran SUBROUTI NE
ending with a RETURN statenent. It can call other Fortran subprograns. It should NEVER
access any routines in the "mainline" program (Renmenber, you do not know when it will

execute. If it were to change a local value in the mainline, there is no telling what
coul d happen.) The subroutine is included with your other subroutines, but it is never
CALLed. It will execute independent of the nminline program however, while it is

installed in the LDOS interrupt task table.

Since it is not directly called by the Fortran program argunents cannot be used. That
means it nust conmunicate with the rest of the program through COWON. As long as the
routine is included with one of your Fortran source files, LINK-80 will load it, even
if it is not referenced. Actually, it is referenced as an EXTERNAL.

The TCB is easier to handle than may be apparent at first. Al the TCB is is an
I NTEGER*2 Fortran variable that contains the address of the interrupt subroutine. The
only problemis that you have no way of knowi ng where the subroutine will ultimtely
reside in nenory. Fear not, it is quite easy to determine the address of a subroutine
at runtine. Due to the calling conventions used by Mcrosoft FORTRAN-80, a SUBROUTI NE
LOC (ARG that does nothing but RETURN will return the address of the ARG argunent
(regardless of ARGs type) if it is accessed as an | NTEGER*2 FUNCTI ON.

Shall | try that one again? This is what happens: a function reference such as | ADDR =
LOC(DEADIWN) puts the address of DEADMN in the HL register ... the first argument’s
ADDRESS is always passed in the HL register by convention. LCC itself does nothing at
all, it just returns. Al so by convention, INTEGER*2 functions return their VALUE in the
HL register. Since the calling Fortran program thinks LOC is an integer function, it
uses the value in HL as the function value. The value in HL is the address the caller
just put there as the argunent. It is a little roundabout, but it works.

To install and renove the interrupt subroutine, you need access to the @\WDTSK and
@RMTSK SVCs. The interlude routine nust be witten in assenbler, since Fortran cannot
directly call the routines with the proper register settings.

The followi ng program denbnstrates two other SVC calls. @BD, sinmlar to the |NKEY$
function in Basic, and @SP, which displays one character on the screen. The exanple
program checks for a character from the keyboard. If nothing happens in about 16

seconds, it times out. The deadman counts down in increnments of 4 seconds because both
the Model | and Mddel I11 interrupts are very close to "even" if you count interrupts
for 4 seconds. The Model | has 20 "ticks" and the Mdel |11 has about 15. For npst

deadrman type requirements you do not need exact timng, but if you tell the user there
is a 60 second tineout, don’t zap himin 45 seconds just because he is on a Mdel 1I.

A precaution nust be observed when using interrupts: YOU MJUST REMOVE THE TASK BEFORE
EXI TI NG THE FORTRAN PROGRAM You wi |l alnost certainly have a systemcrash if you |eave
the Fortran program while the interrupt task is still running. If the Fortran program
bombs out without first renmoving the task, you should re-boot the system |If the
program is susceptible to abnormal, uncontrolled termnation, you should install and
remove the interrupt task as needed.

Let me briefly discuss the individual routines in the exanple. 1'Il start with the
assenbly language SVC interlude routines. You nust use MACRO- 80 to assenble the
routines in order to have a LINK-80 formatted rel ocatabl e nodul e.

DSP$ | oads a character from a Fortran variable into the C register and calls the @SP

SVC. It displays one character at a time at the current cursor position and advances
the cursor over one position. KDB$ (or INKEY$) does a little nmore work since LDCS
returns nmore information. M/ objective when witing KBD$S was to nmake all the

information easy to use (or ignore) at the Fortran |level. Besides the character itself,
which is normally all that is needed, the first 4 bits of the INFO argunment tell vyou

Page 20

everything you are apt to want to know about the input character. KDB$ does not wait
for a key. If there was no key depressed, INFO and ICHAR will both be zero. The routine
is set up so you can call it as a subroutine, an INTEGER*1 function, or an |NTEGER*2
function. Either of the function calls will return the character (or zero).

ADTSK$ and RMISK$ are the routines that install or renmove the interrupt driven
subroutine in LDOS interrupt table. ADTSK$ needs the address of the subroutine to be
executed by the interrupt handler and the slot nunber to assign it to. See the LDOS
manual for slot assignments. The exanple uses slot 0, a low priority slot that executes
5 times per second on the Model |. RMISK$ only needs the slot nunber.

The Fortran subroutines include a couple additional goodies. CLS clears the screen
using DSP$ and control characters. DISPL is a great time saver for me. It will display
a string enclosed in any pair of delimters. An array can be used for the string, but
it nust still include the delimters. Wen using a string constant to call DI SPL, as in
t he exanpl e, remenber to enclose everything, including the string delinmters, between
single quote marks. The single quotes tell the conpiler it is a string, they are not
part of the string itself.

TINP$R is the Tined I NPut subroutine. The version | normally use returns a Ratfor
string, which is where the "$R' comes from For this exanple there is no need to get
into an alternate string convention. TINP$R has six arguments which are docunented
before the CALL in the Main program The routine displays a non-blinking cursor and
|l oops calling KBD$. Wen KBD$ indicates that a character was depressed, TINP$R first
checks that it was not an ENTER or BREAK key, puts the character into the |INBUF array,
echos the character to the screen, and noves the underscore cursor over.

In a non-tined routine, this would go on until the maxi num characters were typed, or an
ENTER or BREAK. The tined routine adds the deadman counter. Wien TINP$R is called, it
starts the DEADMN interrupt routine by calling SETDM (.TRUE., MAXSEC), i.e. turn the
deadman on and set it for MAXSEC. Each time through the loop it checks for a timeout.
Each tine a character is typed, the deadman counter is reset to MAXSEC. Wen the input
loop is exited for any reason, the deadman is shut off. This also renpbves the task,
which is safer than waiting until the program ends.

DEADWN is just sitting there in the mddle of the program and is never called by the
mai nl i ne program When installed as an interrupt task, however, it will execute about 5
times per second. Al that it does is count down 20 ticks (or 15) and then subtract 4
seconds fromthe nmain counter DMKONT. |f everything gets counted down to zero, it stops
decrenenting. It is up to the mainline programto check for a tineout by exam ning the
val ue i n COVVON.

There is no reason that DEADMN cannot nmmintain several counters or call other
subroutines. Just avoid using any subroutines in the "other program" Think of the
DEADWMN task as a separate program running concurrently with the mainline and sharing
some of its nenory.

SETDM will install or remove the DEADWN task depending on the truth of the first
argunrent (. TRUE. == ON) and initializes/resets the counter to the number of seconds
speci fi ed. SETDM is part of the mainline program It controls DEADWN by inserting
values into COWON and by nmaking the actual calls to add or renove the task. It does
not change the deadman counter when renoving the task. That lets you renpve the task
before you check for a tineout. Notice that all that is needed to get the address of
DEADMN are the statements EXTERNAL DEADMN and DMICB = LOC (DEADMN). In a critical
application, it would be advisable to disable interrupts while SETDM is setting val ues
since a counter may be decrenented midway through the setting process. For nornal
applications it should not natter.

TIMEDO is an easy way to check for a tineout by using a logical function call. NTIMED
checks for a NOT tined out condition. It cheats a little by just returning . NOT.
TI MEDO.

Page 21

LOC is just what | prom sed before. A very handy "do-nothing" routine. | also use it to
have my Fortran progranms use the @ARAM SVC --- comrand line options with LDOS doing
all the work!

All the Main programdoes is set up the denpb, call TINP$R and tell you what happened.
Before using this program you MJST have the SVC table installed: SYSTEM (SVC) is all
that is necessary. If you use the names TIMEDI/FOR and Tl MESUBS/ MAC for your source
code, then the following will conpil e/ assenble the program

F80 TI MEDI =TI MEDI
MBO TI MESUBS=TI MESUBS

Link the programwith:

L80 TI MEDI, Tl MESUBS, Tl MEDI - N- E

Do not be concerned if you have $I OERR and/or $LUNTB show up as unsatisfied references
after the link and |l oad. The warning is extraneous and caused by FORLIB | oadi ng bl ocks
of code rather than individual routines.

Take a good look at the size of the program ... about 1600 bytes! You've witten a
Fortran program that does 1/0O and used less than 6K Maybe there |S sonething
worthwhile in using SVCs fromFortran

When typing the following listing, do not include the "/*" coments. F80 does not
pernmit that style of conment.

C TIMEDI/FOR Denonstrate Interrupt driven timed input
C JG Bender 24 Jul 83

C
C
PROGRAM Tl MEDI
C
| NTEGER*2 ACTCHR
BYTE SCRATC(64)
LOd CAL BROKE, TI MOUT
LOG CAL TINP$R
C
| NTEGER* 2 DVKONT, DMTIPSS, DMSECS, DMl CS
COWDON / DEADCM DMKONT, DMTPSS, DMSECS, DMTI CS
C
DATA DVKONT/ 0/, DMSECS/ 4/, DMTI CS/ 0/
C
C set the DeadMan increnent counter (low priority ticks / 4 secs)
C (for a Model IIl, set DMIPSS = 15)
C
DMIPSS = 20
C
C Announce the program
C
CALL CLS
CALL DSP$(X 0D) /* a carriage return
CALL DISPL ('/ You have 16 seconds to type sonething: /')
C
C In the follow ng TINP$R cal |:
C SCRATC <= huffer to receive input characters
C 1 => maxi mum nunber of characters to accept.
C 16 => nunber of seconds to wait
C ACTCHR <= nunber of characters returned
C BROKE <= .TRUE. if user hit .BREAK key
C TIMUT <= .TRUE. if user tinmeout during input

Page 22

700

800

00 000000000000 00000O00O00O0

OO0 00000

o000 000

CALL TINP$R (SCRATC, 1, 16, ACTCHR, BROKE, TI MOUT)
I'F (TIMOUT) GOTO 700
IF (BROKE) GOTO 800

CALL DSP$ (X OD)
CALL DISPL (’/You made it!/’)

GOTO 990
CALL DSP$ (X 0OD)
CALL DISPL (’'/You took too long !/")
GOTO 990
CALL DSP$ (X 0D)
CALL DISPL ('/You QU T/ ")
GOTO 990
CONTI NUE
END
SUBROUTI NES
Cont ent s:
CLS Cl ear screen
DI SPL Display a delinmted string, no CR
TI NP$R Ti med i nput
DEADWN Dead Man countdown ti ner
SETDM Set DeadMan counter ON, and initialize count
TI MEDO Check if deadman counted down to O
NTI MED Check if deadman DI D NOT tineout (== Tl MEDO)
CLS Cl ear Screen

SUBROUTI NE CLS

Assume Model /111 control chars
CALL DSP$ (X 1C) /* hone cursor
CALL DSP$ (X 1F) /* clear to end-of-frane
RETURN
END
DI SPL Display a delimted string on screen

SUBROUTI NE DI SPL (DSTRNG)

all strings will be <= 127 chars
no carriage return for this routine
BYTE DSTRNG(1), DELIM
| NTEGER* 1 |

the first character of the string is the delimter
DELI M = DSTRNG(1)

the following is a 'FOR |oop in RATFOR

Page 23

I = X 02

23000 IF (DSTRNG 1) .EQ DELIM.OR | .GE X 7E) GOTO 23002
CALL DSP$ (DSTRNG(I))
I =1 + X 01
GOTO 23000
C
23002 CONTI NUE
RETURN
END
C s s s s s s p————
C TI NP$R Ti med | nput
C
LOd CAL FUNCTI ON TI NP$R (1 NBUF, MAXCHR, MAXSEC, ACTCHR, BROKE, TI MOUT)
C
C .TRUE. if input recvd, .FALSE. if tined out w no data
C
BYTE I NBUF(1), | CHAR
LOG CAL BRCKE, TI MOUT, NTIMED, TI MEDO
BYTE KBLANK, KBSPAC
| NTECER*1 MAXCHR, |, 1ONE, 1126, | MAX
| NTEGER* 2 MAXSEC, ACTCHR, | NFO
C
DATA IONE/ X 01’ /, 1126/ X 7E [/
DATA KBLANK/ X' 20’ /, KBSPAC/ X 18’/
C
C install the deadman interrupt routine
CALL SETDM (. TRUE. , MAXSEC)
BROKE = .FALSE.
TI NP$R = . FALSE.
TIMOUT = . FALSE.
C
C range check
| MAX = MAXCHR
IF (MAXCHR .LT. IONE) I MAX = 1126
C
C display an underscore and a backspace
C
CALL DSPS$ (')
CALL DSP$ (KBSPAQ)
C

| = X 00
23005 IF (TIMEDO(O) .OR (I .GE. IMAX)) GOTO 23010 /* end | oop
CALL KBD$ (| CHAR, I NFO)
IF (INFO .EQ 0) GOro 23009 | * no char --> | oop
TINP$R = . TRUE.
IF (ICHAR .EQ X OD .OR ICHAR .EQ X 01') GOTO 23006

C .CR . BREAK.
I =1 + IONE /* next char in string
INBUF(I) = ICHAR /* put the chr into string
GOTO 23008 /[* -->1o0p
C
23006 IF (ICHAR .EQ X 01') BRKE = .TRUE.
GOTO 23010 /* end | ooping -->
C
C reset deadman and di splay the character just typed
23008 CALL SETDM (. TRUE. , MAXSEC)

CALL DsP$ (I CHAR)
CALL DsP$ (' _")
CALL DsSP$ (KBSPAC)
C bottom of | oop
23009 GOTO 23005

Page 24

23010

O0000 00000

00

o0 00000

O 00 O

exit loop to here

CALL SETDM (. FALSE. , MAXSEC) /* kill the deadnman
| F (TIMEDO(0)) TIMOUT = . TRUE.

ACTCHR = |

CALL DSP$ (KBLANK) /*renove the cursor

CALL DSP$ (KBSPAC)

RETURN

END

DEADMN Dead Man, interrupt tinmer, count down

SUBROUTI NE DEADWN
ONLY called by the Interrupt driver
Al'l set/reset of values nust be done by
calling routine
Install in alowpriority task sl ot

| NTEGER* 2 DIVKONT /* nunber of seconds to countdown

| NTEGER* 2 DMTPSS /* nr ticks before need decrenment DMKONT
| NTEGER* 2 DVSECS /* nr seconds per DMIPSS ticks

| NTEGER* 2 DMTI CS /* current tick countdown

COWON / DEADCM DIMKONT, DMIPSS, DMSECS, DMII CS

countdown a tick for each call
DMIICS = DMTICS - 1
IF (DMMICS .GI. 0) GOro 23014 /* still counting ticks -->
reset |ocal countdown
DMI1 CS = DMIPSS
| F (DMKONT . LE. DMSECS) GOTO 23012 /* TIMED QUT -->
decrenent a chunk of seconds fromtiner
DVKONT = DMKONT - DMSECS

G&OTo 23014
DMKONT = 0
CONTI NUE
RETURN

SUBROUTI NE SETDM (ONOFF, SECS)
Install/remove DDMin slot O

| NTEGER*2 SECS, LOC
| NTEGER*2 DMTCB /* Task Control Block for DeadMan
| NTEGER*1 | SLOT /* task slot to use
LOG CAL ONCFF /* caller instruction to turn
t he deadman ON or OFF
LOd CAL DM SON /* flag if DeadMan IS ON

it is necessary that this routine have the foll owi ng EXTERNAL:
EXTERNAL DEADWN

| NTEGER* 2 DIVKONT, DMIPSS, DMSECS, DMTI CS
COWON / DEADCM DIMKONT, DMIPSS, DMVSECS, DMII CS

DATA DM SON . FALSE./, 1SLOT/ X 00’/

Page 25

I'F (. NOT. (ONOFF)) GOTO 23016 /[* .T. == turn it on
C reset counters
DWVKONT = SECS
DMTI CS = DMIPSS
IF (DM SQ\) GOTO 23015 /* task already running ?
DMICB = LOC (DEADWN) /* no, install it
CALL ADTSK$(DMICB, | SLOT)
DM SON = . TRUE.
23015 GOTO 23018

C
C ONCFF is F., shutdown the deadman

C DO NOT reset the DMKONT. A programer may renove the
C interrupt task before checking for a tinmeout.

C

23016 IF (.NOT. (DM SON)) GOTO 23018 /* is it running ?
CALL RMTSK$ (1 SLOT) /* yes, renove it
DM SON = . FALSE.

C
23018 CONTI NUE

RETURN

END
C
C o - - - - - - . o . . o . o
C TIMEDO Check if DEADMN timed out
C o - - - - - - . o . . o . o
C

LOG CAL FUNCTI ON TI MEDO (/| DUMMY)
C

| NTEGER* 2 DMKONT, DMIPSS, DMSECS, DMII CS

COWDON / DEADCM DMKONT, DMTPSS, DMSECS, DMTI CS
C

TI MEDO = . FALSE.

IF (DMKONT .LE. 0) TIMEDO = . TRUE.

RETURN

END
C
C o - - - - - - . o . . o . o
C NTI MED See if DEADWN did NOT tineout
@
C

LOG CAL FUNCTI ON NTI MED (| DUMMY)
C

LOG CAL Tl MEDO

NTI MED = (. NOT. TIMEDO (| DUMWY))

RETURN

END
C
C s s s s s s s s s s
C LOC return arg address as 1*2 function
G s m o e e e e e e e e e e e e mmmeeo oo
C

SUBROUTI NE LOC

RETURN

END
C

C this is the end of the Fortran code.

File: TIMESUBS/ mac

Rk S b S b S R R S Rk e S b ok Sk I R

Page 26

DSP$/ mac
. J@& 25 Feb 83

é_V_C EQU X 28’ ; RST vector for SVC call
DSP_ EQU 2 ; @SP SVC

: FORTRAN usage:
: CALL DSP$ (char)

; char => FORTRAN variable with character to
; send in | oworder byte.

DSP$:: LD C, (HL)
LD A DSP_
RST SV.C
RET
; EE R O S
: KBD$/ mac
; JCB 14 Feb 83
KBD ~ EQU 8 . @BD SVC
FORTRAN usage: (BYTE function)
; (may be typed BYTE or | NTEGER*2)
: CALL KBDS$ (1 CHAR, | NFO) I NKEY$ == synonym
; -or- JCHAR = I NKEY$ (| CHAR, | NFO)
; (byte) {H} {Dg}

Returns K/ B char W THOUT wai ti ng.

; (byte) ICHAR <= 0 or byte fromK B -- FORTRAN variabl e
; (1*2) INFO <= 0 if no key pressed -- FORTRAN vari abl e
; bit: 0 if key pressed
; bit: 1if Control-key also down
; bit: 2 if CLEAR key al so down
; bit: 3 if char == BREAK
; Note high bit of ICHAR will be on if CLEAR key was
; al so down
KBD$: : NOP : see LDOS manual for @XBD
| NKEYS: : ; synonym
PUSH DE . ->info
PUSH HL ; ->char variable
LD A, KBD_
RST SVv_Ce
POP HL
LD (HL),A ; return char in Low byte of arg.
POP HL ; ->I NFO
LD (HL),0 ; clear the INFO byte
JR Z,KBD4 ; there was NO character -->
SET 0, (HL)
JR NC, KBD2 ; no Shift-Down-Arrow -->
SET 1, (HL)
KBD2: OoR A ; clear flags
BI T 7, A
JR Z,KBD3 ; no CLEAR key
SET 2, (HL)
KBD3: cP X 01 ; == BREAK key ?
JR NZ, KBD4

Page 27

SET 3, (HL)

KBD4: I NC HL ; ->high order byte of info
LD (HL), O
LD H 0 ; return in {A} and {HL}
LD L, A ; [byte] [Int*2]
RET

LR R S S O I

;. ADTSK$/ mac
. JGB 25 Feb 83

ADTSK_ EQU 29 ; @DTSK SVC

; FORTRAN usage:

; Cal | ADTSK$ (task_tcb, slot_no)

; task_tcb => FORTRAN | NTEGER*2 vari abl e cont ai ni ng

; t he ADDRESS of the subroutine to install

; in the LDOS interrupt task handler.
; slot_no => task slot nunber to use

ADTSKS$: :

EX DE, HL ;. tcb in DE

LD C (HL) ; slot nunber in C

LD A, ADTSK _

RST SVC

RET
j EE I S I S I I I I T I I I T I
RMI'SK$/ nac

; JGCB 26 Feb 83

RMISK_ EQU 30 . @MISK SVC
; FORTRAN usage:

; CALL RMISK$ (sl ot_no)

; slot no => FORTRAN | NTEGER*1 or | NTEGER*2 vari abl e
; containing slot nunber to renove the

; task from
RMISK$: :
LD C (HL) ; slot nunber into C
LD A, RMISK_
RST SVv_C
RET
END

- ER---

by Earl e Robinson, 300 Grenola, Pacific Palisades, CA 90272
As promised last time, here are sone remarks about the 'in' operating system UN X

Since there appear to be articles, and new books appearing every day, | won't try to
fully explain UNI X, except to very briefly tell you what it is.

Page 28

UNIX is a nmulti-user and nulti-task operating system which was originally devel oped for
the Digital Equiprment PDP-7 by Bell Labs engineers. Witten in assenbly, it was later
re-witten in a low |evel von Neumann | anguage called C so it becane somewhat nore
portabl e between different nmachines than it had been. The origins of UNIX in 1969, are
reflected in its sonmewhat difficult syntax. Renenber that in those days tel etypes were
used as ternminals and every letter was precious in a conmmand. Consequently, to get a
directory listing of files, you type 'Is’ plus any of the various sw tches which are
avai | abl e.

Most other comrands are equally confusing to the new user. And, if you think the LDOS
manual is long, try the 2 volunme UNI X Programmers manual s! They total over 1000 pages!

The UNI X system itself is noteworthy for three main characteristics: a hierarchical
file structure, 1/O redirection and Pipes. Under UNI X, the directory structure is |ike
an upside down tree with branches. Fromthe so-called root directory you nay create one
or nore sub-directories, and each of these may have sub-directories, and each of those,

etc. etc. As you can imagine, this wll pernmit you to have as many files in your
storage nedium as nmenory will permt. Thus, with a hard drive, you are not obliged to
partition at all; the sub-directories provide their own dynanmic partition. As for /O

redirection, all LDOS users should be reasonably famliar with this feature; it is one
of the bases of the operating system The device concept as inplenmented by the author
of LDOS precursor, VTGOS, further refined and devel oped by LSI, was undoubtedly drawn
fromUN X itself. However, where UNIX really excels is in the use of pipes and filters.
This permits the concurrent processing of several tasks. For exanple, you could have a
file sorted, witten to another file and finally printed out on your printer with a
single command line expression. UNI X nmakes full use of nenory and creates tenporary
files, erased at the end of the task processing, to acconmplish this. As you can
i magi ne, such intensive 1/0O using poor little 5 1/4" disk drives would be painfully
sl ow. And, even with the use of hard disk, things can be slowed down a great deal,
especially if there are several users accessing the drive at the same tinme. Further,
the maxi mum nmenory on nost 8 bit machines, 64 K, linmts their ability to effectively
use UNI X

One further constraint with UNIX is that it requires several negabytes, that is several
mllion bytes of accessible disk storage to use it and the many utilities which
acconpany it. As you nay begin to inmagine, UNIX is not a systemthat you are likely to
ever run on your Model 1, 111, MAX-80, or even the Mdel 4. These machines just do not
have sufficient RAM to handle such a bulky system Watever conputer you nmay use, a
hard disk of at l|least 10 negabytes should be enployed. Al so, a minimmof 192 K of RAM
is required; in fact, nmost systens need at |east 512 K

Most of us are also confused when UNI X is discussed because of the nyriad versions and
formse it may take. To begin with, would you inmagine that System V was introduced after
Version 7, and that there are still inplenmentations using Version 6 and System III,
which itself appeared after Version 7? And, then there is the quarrel about whether one
should be using a true UNIX or a UN X-conpatible system The latter are often cheaper
for the user because there are no license fees collected by Bell and can be better
supported with further extensions. Most inplenentations are for nulti-user systems
t hough some single-users ones are offered, too.

The final problem with UNIX in the micro world is that it is even less user-friendly
than CP/I'M LDOS or any other known system For this reason, a ’'shell’ is often put
around the operating systemso that the user is faced with nenus and sub-nmenus until he
reaches the application he intends to run. UNIX may be a programer’s delight, but end
users will require a full scale shell inplenentation to use conputers enploying it. At
present, the Bourne shell appears the nmost widely used, though it still is confusing to
many unsophi sticated users.

Whatever its strengths and weaknesses, you are likely to hear and see a | ot about UN X
in the next few years. And, if good enough shells are used, it may well survive as the
standard operating environnment on 16 bit nachines. Watever the systemis, however, one
thing is quite certain: operating systens, and nost utilities, will be witten in 'C
or another high level |anguage. Assenbly |language will be less and | ess used except for

Page 29

narrow uses where speed nust be inproved. This is because mai ntenance of progranms wll
be easier and portability obtained, not to nention the |ower cost for software houses
in witing and debuggi ng.

| have been having a wonderful tinme with the new version of FED, called FED Il. It has
many new features and is faster. | only regret that | don’t have such a program for ny
IBM PC, too. | have also had a great deal of fun using the |atest version of Super
Uility Plus V.3 on my MAX-80. This is a terrifically useful utility program The
manual is well-witten and quite clear. But , | suppose that nobst of you have it
al r eady.

Speaking of the IBM you may be interested in sonme initial conments about the nachine
which is sweeping nost of the conpetition into Chapter XI, or at |least into some steep

operating | osses. Har dwar e-wi se, the PC is superbly built. There were a few design
flaws, however. There are too few slots in the nother board and the power supply is
barely adequate. The XT version, which contains a hard drive, has rectified those
pr obl ens. The keyboard is controversial. You either like it or detest it. As for the
nmonochrone nonitor, it is a beauty, the easiest to read and use that | have seen on a
m cro.

Sof tware? Well, that is another story. Let’s begin with the 2 principal operating

systens offered, PC-DOS and CP/ M 86. The fornmer, called M5-DOS on |BM conpatible
machi nes, is a creation of Mcrosoft, and was originally very close to CP/M (ugh!). The
| atest version, 2.0, is already a big inprovenent and is approaching Xenix, little by
little. There are hierarchical directories, I[/Oredirection, and Pipes and Filters. It
is not as fast as LDCOS, and in sone ways nore cunbersone. As for CP/M86, it appears to
have lost out in this market, partly because |BM pushed the M crosoft DOS nore. Market
studi es show that DOS has over 95% of the nmarket. CP/M 86 has sone nice features, but
it is nmore cunbersome to use, per haps because it is still so rmuch like CP/IM its
antecedent. It was also reported to be full of bugs, at least in the initial rel eases.

Most of the original software offered for the PC was nerely CP/M stuff which was cross
conpiled to the 8088 nicroprocessor used in the IBM nachines and its copies. Alas, this
meant that the code was far from optimzed and ran even slower than on 8 bit nachines.
However, since the market has grown so nuch, virtually everyone is rushing to introduce
products. There are now literally dozens of word processing packages, several spread
sheet programs, and rmuch nmore. Wen you see the massive advertising for sone of these
prograns you can understand that the stakes are high in the IBM world, and that |arge
capital is required to obtain a market share. The two mmj or magazi nes, PC Magazi ne, and
PC Wrld, are the thickness of a large city' s tel ephone book. They are so full of ads
that it is hard to find the editorial matter.

In the realm of wutilities for the PC, there is still surprising little, certainly
nothing like the products offered by LSI and others for the Radio Shack line. On the
other hand, there is a wonderful choice in progranm ng |anguages, nearly a dozen full
i mpl enentati ons of C, a couple of Pascals, Lisp, Mdula 2, and others.

Many people criticize the Intel chip used in the IBM and its so-called clones because
it is not as powerful as the 16 bit offered by Mdtorola or National Sem conductor. They
cite the need to use segnented addressing and the fact that |BM uses the 8088 rather
than the 8086 and that the former uses only an 8 bit data bus which slows everything
down. Naturally, the Tandy 16 & the Fortune 16/32 are faster and nore el egant machi nes.
But, there are probably a million or nore IBMs and its clones already out there while
| doubt that npre than 100,000 of all the Mdtorol a based machi nes have been sold. Wat
the IBM lacks today is multiuser and nultitasking capabilities. This wll coneg,
probably when |IBM uses a newer version than the 8088 from Intel, and when Xenix or
IBMs in house operating systemis finally put on the narket.

You may not know it yet, but you can now have a telex number and send and receive
tel exes without getting one of those awful tel etypes, and without any outlay at
all........ if you already have a nodem and hal f-way decent communications program In
fact, Lcommw Il serve very nicely. Here’s how RCA will be glad to give you a telex
nunber which wll permt sending telexes direct to either RCA or Wstern Union

Page 30

termnals, send overseas telexes and telegrans. It is not necessary have a line and a
conputer tied up either. You have incom ng nessages routed to RCA's store and forward
menory bank. Then, you nerely have to dial an 800 nunber to retrieve nessages whenever
you wish. And, you send telexes from your conputer using an 800 nunber, too. | do not
recommend tying up a line & conputer for another reason than the obvious one. To
recei ve messages directly on-line your program nust be designed to respond to a Crl-E
sent from RCA (and Western Union uses the sane), i.e. the ASCII ENQ character. You have
one (1) second to return the answer back when requested by the Ctrl-E Oherw se, the
line is dropped imediately. | also find that it is very econonical to conpose nessages
off-line, using Scripsit, LED, or another text editing program of your choice, then to
upload it when the recipient’'s termnal replies. If any of you are interested in
further details, drop ne a |line.

A couple of people at LSI have nade a bet whether | would ever do an article wthout
nmentioning printers or word-processing programs. So, | shall NOT nention | recently
heard that Harv Pennington has witten (hinself!!) an IBM PC version of Electric
Pencil. | shall also NOT mention that..........

by Ti m Danel ui k, 4927 N. Rockwel|l St., Chicago, IL 60625
© 1983 T&R Communications Associates

RUMORS DEPT.

Fall is upon us, and as always | have more products to look at than time to do it in!

Not only is there more new software coming out every week, but a whole host of new
machines are expected to be announced this quarter. Herewith is a list of completely
UNSUBSTANTIATED rumors that I've heard, but my sources are impeccable (I know a janitor
at the Tandy towers!):

RUMOR #1 - The IBM "PEANUT" is supposed to be using an INTEL IAPX 186 (80186) as its
main processor. This processor is a real power-house with built in
programmable timers, DMA controller, and has true 16 bit capability. The
rumor mill also has it that the PEANUT will come with 64 K of memory, 1
floppy drive, and a keyboard for under $800! If all this comes true, you can
bet that PC sales will fall off, since about the only thing the older
machine will offer is more expandability (i.e. the PC-XT for example).
Personally, | hope IBM builds a little performance into the PEANUT, because
the PC is way too slow to justify its $3000+ price tag. They certainly have
the processor it takes to do this. The 8086 family of machines isn't as
elegant perhaps as a 68000 or one of its derivatives, but the Intel machines
are plenty powerful in their own right. The poor performance of the PC is
more a function of the "hurry up and get it done" mentality of its
designers, than it is the basic choice of processor.

RUMOR #2 - Tandy is supposedly working on a version of the Model 4 with a built-in 5
Meg. hard disk. That's no big surprise, and makes a lot of sense for the
market the 4 is directed at. Given today's pricing structure, the machine
ought to sell for about $3000 - $3500. I've been playing with a Model 4 on
and off, and with a hard disk in it, | may even buy one myself!

RUMOR #3 - This one isn't so much rumor as it is a not yet released product. A
replacement printed circuit board for the TRS-80 Model | will shortly be
available which turns your trusty old 'I' into a Model lll! EVERYTHING is
built into this board including the disk controller and expansion edges, so
you don't even need an expansion interface! The whole business fits inside
the Model | keyboard housing, and uses the Model | power supply and video
display. I've gotten a look at the thing, and it is VERY well built -
probably better than the original Tandy Model Ill electronics. Hopefully,
by the time the next issue of this magazine appears, | will have one here

Page 31

for review, and will be able to tell you nobre about it. The conpany
producing this appears to be a real business, not a "nmaw and paw' garage
operation, so it looks like this mght be a big seller. By the way, the
price should be under $400 retail for this goodi e!

LOBO THE LX-80, AND WHY YOU CAN' T RUN ALL YOUR SOFTWARE

The Model | is apparently far fromdead! |’'ve gotten several letters from people asking
nme to devote a whole colum to the LX-80. Unfortunately, there weren't THAT many
|letters. However, a few comments are in order. LOBO the people who build the LX-80,
have al ways taken the position that their designs should outperform the Tandy hardware
they replace. The MAX-80 conputer, for exanple, has no rivals in performance or
reliability in the 8-bit line of Radio Shack machines. (For that matter, the MAX-80 has
NO 8-bit peers that 1’'ve found under about $4000-$5000!)

For those of you new to the TRS-80, the LX-80 is a high performance interface unit
desi gned for the Model | conputer as a replacenent for the infanbus Expansion
Interface. In many ways, the LX-80 had a lot to do with LDOS coming into being. LOBO
designed the interface to have nmany features not normally present in a standard El.
They included double-density, 5" and 8" drive interfaces, tw RS-232C ports, and a
built-in power supply. In short, the LX-80 overcane every deficiency ever present in
the Radio Shack interface. Unfortunately, the price paid in the design, was that the
LX-80 was not hardware conpatible with the EI. This neant that nany of the device
dependent portions of the operating system for the Mdel | had to be rewitten. LOBO
decided to also offer a new DOS for their interface, and contracted soneone to wite
LDOS. Unfortunately, that soneone never finished the job....so, LOBO cane to Galactic
Software (now LSI) and contracted themto finish the job. In the process, LSl cane into
being, and eventually ended up owning LDOS. The rest, npost of you know. Bill Schroeder
and his bunch of "not-ready-for-prinme-tine programmers” went hog-wild and wote LDOS
not just for the LX-80, but for the Mddel | and the new Mddel Il as well!

The net result of all this is that the LX-80/Mdel | system runs LDOS just fine, but
sone existing pieces of software won't work. This software falls into three general
cat egori es:

1) The software is "self-booting" and uses no operating system

2) The software is witten specifically for a DOS other than LDGCS.

3) The software ignores the DOS and tries to do physical /O (Input/CQutput) to
the hardware itself.

Software in the first category usually consists of things |ike ganmes, utilities (Super-
Uility, for exanple), and alnost all forns of protected nedia. The LX-80 has its own
speci al "boot ROM (Read Only Menory) that is used to initially load the operating
system This ROMis substantially different than the ROM used when booting a "standard"
Radi o Shack interface. This is because the LX-80 supports things like booting in
doubl e-density, booting from an 8" disk, or even booting from a hard disk, and these
speci al procedures have to be inplemented in the boot ROM Self-booting nedia expects
to use a standard boot procedure, and invariably fails to work when used in an LX-80
environment. Even if you could get the program to boot on the LOBO interface, it
probably still wouldn’t work. These prograns typically use no operating system and
access the hardware directly. Since the "innards" of an LX-80 are different than the
El, many sel f-booting prograns, especially those involving disk I1/0O CRASH on an LX-80.

Little needs to be said about prograns in the second category. Prograns specific to
another DOS usually can be nodified to run under LDOS, and therefore the LX-80.
However, this requires sone ability on your part, and is not always a sinple thing to
do. Now that LDOS is an accepted standard within Radio Shack, hopefully this kind of
software will cease to be witten (or at |east purchased!).

Those of you who read this colum regularly (all four of you) will renenber nmy soapbox

some tine ago on software which does its own physical 1/O To repeat, very rarely if
EVER shoul d applications software deal with the hardware itself. The LX-80 is a perfect

Page 32

exanpl e of why. So long as software uses LDOS to "talk" to hardware, the operating
systemis able to accommopdate differences in the hardware itself. Once the application

bypasses the DOCS, there is no guarantee that it will be able to run on other TRS-80
conpati ble systems. For exanple, the printer port on the LX-80 returns slightly
different status bits than a regular El does, even though the printer interface on the
LX-80 is still mapped to X 37E8 . An application which uses LDCS calls to print data

works just fine on the LX-80. An application which goes directly to X 37E8 nay or may
not work. Again, some patching may get this kind of software to work, but it is usually
nore trouble than it is worth.

Here then, is a short and by no neans conplete listing of software which will/will not
wor k on the LX-80:

WLL NOT WORK

Any DOS ot her than LDOS
St and- Al one Machi ne Language Monitors
Al nost all self-booting disks
Di sk-drive timng prograns
Di sk-drive di agnostic prograns

WLL WORK
SNAPP Ext ended BASI C SCRIPSIT w LSI patches
M crosoft EDTASM+ for disk MACRO- 80
POSTVAN FORTRAN- 80
di scat ER BASCOM
ALCOR PASCAL ZCAT
MACRO- MON (nostly, sone mnor problens) POVNER- VAI L
LSl and MYSCSIS utilities/languages LDOS TOOL BOX
LAZY-WRI TER (nostly, sonme functions |ike directories, and RS232 won't wor k)
ELECTRIC-PENCIL 2.0 (nostly, sone functions don’'t work right, like getting directories)

One final thing, you cannot "Un-Repair" an LDOS disk on an LX-80 so that the disk wll
be readabl e under TRS-DOS 2.3. This is because of the Floppy Disk Controller chip used
in the interface. If any of you LX-80 owners out there have patches for software to
make it LDOS/LX-80 conpatible, please send it to ne. 1'll publish them here, for
everyone’s benefit - besides, you get your nane in print that way!

MODEL 4 / TRSDOS 6.0 CORNER

Al t hough the Model 4 is relatively new, several pi eces of software are already
avail able for it. Logical Systens has both FMand FED in 6.0 fornats. (Don’t forget LS-
Technical Help 6.x! ed.) FM is a sophisticated file backup and purge utility which
will be of special interest to those of you with hard di sks (whenever Tandy gets around
to putting the hard disk on the Mdel 4!). FEDIl is the latest iteration of the nost
useful utility a nachine |anguage programer can have. It is made to edit any sector,
or any file on an LDOS disk directly. You can make changes in ASCI|I or hex, and nany
search features are also supported. FEDII lets you step through /CVMD files by Ioad
nodul e (forward and backward), and has an in-line disassenbler built in. You can
di sassenbl e byte-by-byte, or an instruction at a tine. As with the original FED, FED I
has on-line help in the form of a command nmenu. Be aware of the fact that nmany LSl

products for the 6.x operating systems are "limited backup masters". This means that
there is a limt to the nunber of copies of the product you can get from the
distribution diskette. The products | have seen provide for 25 total copies, which

seens adequate for al nbost everyone.

M sosys has also released many of their products to run under TRSDOS/LDOS 6.0. So far,

|’ve seen 6.0 versions of EDAS, DSMBLR IIl, PDS, MEMDI R PARMDI R and DOCONFI G The
|last three are included in one package simlar to the MSP-01 package for LDOS 5.1.3. A
new program SWAP, is included in this package. SWAP allows you interchange any two

Page 33

| ogi cal drives in the system For exanmple, SWAP :1 :2 exchanges the DCT (Drive Code
Table) information for |ogical drives 1 and 2.

Power Soft in Dallas is also introducing several products for the Mdel 4. Power-Mil,
which is just about the best mailing |list program|’ve ever used, is available now, and
ot her products will follow.

As you've probably noticed, al | these products are versions of existing LDOS 5.1
sof tware packages. This nmeans, that for the first tine, a generally popular personal
conputer is being supported with mature second-generation software. Even though LDOS
has gone through a major new inplenentation, the general design and concept of the

system survives! If | were betting on the market, 1’'d say Tandy is gonna sell a LOT of
Model 4s, and that this machine is going to have some of the best and npbst conpatible
software ever seen in this industry. If this does happen, it will be in no snmall

nmeasur e because Tandy chose to adopt the nost powerful DOS in the 8-bit market as their
new standard........

THE "C' LANGUAGE (Part V)

by Earl "C Terwilliqger Jr. 647 N Hawkins Ave. Akron, Chio 44313

Hel | o! Nice to 'C vyou again! The topic for PART IV is logic, control and flow. The
specific C | anguage vocabul ary words that will be used in this part are:

for whi | e i f el se
switch br eak conti nue do goto

In previous parts, statenments and bl ocks were nentioned. In conjunction with the above
| ogi c, control and flow vocabulary words, statements and blocks of statenents
acconplish the tasks designed into a C program Let’s take a | ook at these C vocabul ary
words and their use in a C program

But first, a quick rem nder about (expressions) statements and bl ocks! Renenber, a C
statenent is an expression followed by a sem col on. For exanpl es:

a 24;
c getchar();
printf("% \n";e-18);

These are all exanples of C statenents. Each expression is ended with a sem colon. It
is used in C as a statenent term nator rather than a separator. (You mght also note in
the above example with the printf() function a general rule in C \erever it is
permitted to use the value of sone type of variable, it is also permtted to use an
expression of that type. Hence the e-18 expression is used instead of having to assign
it to sone internmediate variable. You can save a lot of coding using this rule, but be
careful! You can al so make your program confusing!)

Whenever it is necessary to group statenments (declarations, etc.) and treat them as
one, they can be enclosed in braces {}. This creates a "block" or "conpound statenment".
This block enclosed by the {} braces is not followed by a semicolon even though the
encl osed statenents are treated as one. The need for blocks or conpound statenents will
be seen as the C logic, control and flow vocabul ary words are explained. Shall we begin
as K&R does with the if statement?

The general format (syntax) of the if statenent is:

if (expression) statenment_1
el se statenent _2

(You will note the inportance of differentiating between a statenent and an
expression!) The if-else statenent is used to make decisions. The expression is

Page 34

evaluated. If it is true (i.e., has a non-zero value) then statenent_1 is executed. The
else is optional. If it is present and the expression is false (i.e., has a zero val ue)
then statenment 2 is executed. Since the else is optional and can be omtted, you could
be confused by the follow ng:

if (a == 2)
if (c == 2)
d = 2;
el se
d = 4,

The rule in Cis that the else is associated with the closest previous else-less if.
The way the above conmpound if statenent is indented you nmay be led to falsely believe
that the else should be paired with the if it is aligned with. Another inportant point
to mention here deals with indentation. It is generally practiced to have the else
aligned with the if to which it belongs. Thus the following is nore readabl e

if (a==2)
if (c == 2)
d= 2;
el se
d= 4,

If the else was in actuality to be paired with the first if, then the {} can be used to
force the proper association as follows:

if (a==2) {
if (c == 2)
d = 2;
}
el se
d = 4

The else is thus paired with the first if. The second if is contained in a "block" and
is the statement_1 referenced in the general format of the if statement. O sonme note
also is the placenent or "style" of placing the {} and their alignnent in the above if
el se statenent. Each C programer develops a way of placing and or aligning if-else
else-if and the {} braces. Consider the follow ng two exanpl es

/* EXAMPLE 1 */

i f (expression) statenent
el se if (expression) statenment
el se if (expression) statenent
el se st at enent

/* EXAMPLE 2 */
if (expression)
st at enent
el se if (expression)
st at enent
el se if (expression)
st at enent
el se
st at enent

Both exanples work the sane but are of different styles. Perhaps the nost popul ar or
comon style (used in the K& book) is represented via the second exanple. Exanple 1
may | ook nice too, but consider how |ong the actual expressions and statenents may be
If they are quite long, the style of exanple 2 nmmy appear nicer. Wichever style
(method) you choose, it is a good rule to be consistent.

If you noticed, the above two exanples denonstrate a generalized way of witing a
multi -way decision. If any expression is true, its associate statenent is executed and

Page 35

the whole else-if chain i s ended. If none of the expressions are true then the
statenent after the last else is executed. This represents the "default case". Any of
the statenents can be a block of statenments in the {} braces. The last else could also
be missing and there would be no default statenent executed.

Anot her way of making a multi-decision in Cis with the switch statenent. The syntax
for the switch statenment is:

switch (expression) {
case const ant :
st at enent
br eak;
case const ant :
case const ant :
st at enent
br eak;
case const ant :
st at enent
br eak;
defaul t:
st at enent
br eak;

}

(Notice again the style used to place the {} braces!) The switch statenent is followed
by an i nteger expression and a block enclosed in braces. The logic of the swtch
statenent is to evaluate the integer expression and conpare its value to the constant
case values. Each case is "labeled" by a constant expression (usually an integer or
character constant). If a case matches the value of the expression, that case begins
the execution. Statenents after that case are then executed. If a break statenent is
encountered the switch statenent (block within {} braces) is exited. If no cases natch
the expression then the default case begins the execution. The default case is
optional . The cases and default can occur in any order, but the cases nust all be
different. If no cases match and no default case is present, nothing happens at all.
(Not hi ng happening at all has been described as "the sound of one hand clapping"). It
is good programming practice to put the break statenent at the end of a case. If a
break is not present, execution "falls through" to the statements which follow This
may not be the desired action! An exanple of the switch statenment follows:

switch (answer) {

case 'y’

case 'Y :
printf("The answer was YES!");
br eak;

case 'n

case 'N:
printf("The answer was NO ");
br eak;

defaul t:
printf("Enter only Y or Nl ");
br eak;

}

The above switch statenent could possibly be used to test for a Y<es> or N<o> reply.
Note that it uses a case for the upper or |ower case possible responses. You are no
doubt asking what happens if the default case is executed and you want to allow another
response until Y or Nis entered? Well, you could use the C statenents which allow
| oopi ng! Looping (executing a statement or groups of statenents a given nunber of
ti mes) can be acconplished in Cvia four basic ways: for, while, do-while and goto.

The syntax of the while statenent is:

while (expression) {

Page 36

st at enent

}

If the expression after evaluation is true, the statenent is executed. The expression
is then re-evaluated and if true statement is executed again. This process is repeated
until expression is false (zero).

The syntax of the for statement is:

for (expression_1; expression_2; expression_3) {
st at ement
}

Expression_1 and expression_3 are typically assignments or function calls and
expression_2 is an expression to be evaluated as true or false (a relationa
expression).

Another way to wite the for statenent using while is shown as foll ows:
expression_1

whil e (expression_2) {
st at enent
expressi on_3;

}

From the expl anation of the while, you can see how the for statenment works. In the for
statenent the expressions could be mnultiple expressions separated by conmms. For
exanpl e:

for (i=0,j=0; (s[i] '=10); ++i) {
if (s[i] =="a) +4j
}

Whet her you use the while or the for statement is just a matter of choice. Typically
the for is used for sinple initialization and re-initialization. It is analogous to the
FORTRAN DO | oop or BASIC for-next statenents

The syntax of the do-while is

do
st at enent
whi | e (expression);

The difference between the do-while and while is a subtle one. Wth the do-while, the
statenent is always executed at |east once. The expression is evaluated at the bottom
of the loop instead of at the top

Renenber the break statement fromthe switch? It can also be used in the for, while or
do-while to exit. Another statement, the continue statenent is related to break. It
does not exit froma for, while or do-while statenent but causes the next iteration of
the enclosing | oop to happen. An illustration for you to ponder:

for (i=0,j=0; (s[i]); ++i) {

if (s[i] =="'a) continue; /* Skip this character */
if (s[i] =="'\n") break; [* Exit for if newline */
++j ;
}
In the above for statenent, the only ways for it to end are if s[i] equals O or the new
line character. Note that the relational expression is (s[i] !=0) but it can be and is

shortened in this exanple to (s[i]).

Page 37

Wth the above new C | anguage conmmands, you can perform various logic patterns, and
control the flow of a C program Another flow control C statement is the goto. The
object of the goto is a label. A label has the same form as a variable name but is
followed by a full colon. The goto and the |label to go to nust be in the same function.
The use of the goto is not recommended, except for possibly branching out of sone
heavily nested | ogic.

Next tine, in PART V, the topic will be initialization, nore on blocks, pointers and
arrays. C you next tine!

GENERAL | NTEREST

It has been reported that the "Active Variable Analyzer" in the last issue works as
listed only with the old "Menory Size" Mddel 1 ROM. M. C E. Cayes reports that if
the 9B at the 21st row down, and the 18th columm across in the BINHEX listing is
changed to a 7C, the resulting program will work on the new "MEM SIZE' ROMs. Anot her
LDOS user reports that a change to 6F should work on both ROM types.

Sone people have been reporting difficulties with the Radio Shack Double Density
adapter. Renenber-- the RS DDen unit requires at least LDOS 5.1.3,and will not function

with any earlier releases. Al'so, the proper driver to use is RDUBL, not PDUBL.
Lastly, this adapter should only be installed by a conpetent conputer technician, as it
requires alignment when it is installed. If you just "plug it in", it may seemto work,

but reliability of disk I/Ow Il be questionable.

In regards to "Fix that SOLE GAT error" in the April '83 LDOS Quarterly, M. R D.
Geet reports that there is an easier nmethod. He has supplied the follow ng patch:

Patch for SOLE2/ CVD

This patch nodifies SOLE2 so that Directory 'fix’ prograns
. do not generate a GAT error for track O on DDen boot disks
X 53D5' =CD CB 57
X 57CB =3C 32 17 58 3A 01 58 CB FF 32 01 58 9

END OF PATCH

M. Geet has a Percomtype DDen adapter. This patch nay work with the RS-type al so.
He al so has supplied the following patch to correct existing directories. |f you patch
DI R/ SYS, you must use REPAIR :d (ALIEN) or the extended debugger to re-wite the system
DAM on the directory track. Do NOT work on a disk in drive O.

PATCH DI R/ SYS. SYSTEM (D02, 02=80: D02, 17=02)

The following are nandatory patches to LSl products:

In 5.1.4, the Date and Tinme pronpts were changed to accept a wide range of delinmters
between digits, rather than just "/" and ":". However, the Time pronpt wll now NOT
accept a colon (oops). To remedy that, apply the following patch to SYSO:

. Patch SYSO/ SYS. SYSTEM - MOD 3 ONLY! . Patch SYSO/ SYS. SYSTEM - MODEL 1 ONLY!
DOE, A5=3B DOE, 63=3B
EOP . ECP

FMA FI X - 07/ 14/ 83
. This patch is to the 5.1 version of FMto correct problens in noving systemfiles
D19, 62=" a"
D01, 09=11 80 58 C3 DE 66
DOE, 3C=CD C8 59
D01, OF=11 40 58 7E E6 50 FE 50 CO F1 C3 7D 5E
D05, B2=CD CE 59

Page 38

D01, 1C=CD 90 5A 36 22 C9
D27, A3=C3 DB 59
ECP

TBA51B/ FI X - 07/ 22/ 83
This patch is to the LDOS 5.1 version of The BASI C Answer
. It fixes the local variable DC problem
D06, BO=EB 1A CD 6E 6C BE 20 04 23 C3 C6
D06, CF=13 10 DF 22 41 5F C3 B3 5F
D05, 64=04 48 7E CD 07 5E 10 FA
D05, 05=C3 OE 5E CD 6E 6C 12 23 13 9
D1B, 9D="b"
EOP

The followi ng are optional patches

MAXPR - Auto LF patch to SYSO
This patch is for SYSO/SYS on the MAX-80. It provides for permanent
linefeed after carriage return for use with printers that need this,
. and elinmnates the need to set the PR/ FLT (ADDLF).
X 0401’ =CD 09 01
X 0109’ =DD 34 05 FE 0D C0 CD 22 04 20 FB 3E OA 32 E8 37 9
EOP

The followi ng patch has been requested. This patch will "back-off" the patch to Mdel 3
LDOS that allows use of the faster clock rate of the Mddel 4. This should only be used
on Model 3 machines with speed-up kits. The resulting configuration will match the
i nformation published in the Jan '83 article on speed-up kits.

Reverse of Mdd 4/3 node clock patch. This patch is for Mdel 3 LDOS ONLY!.
. Patch SYS7/SYS and al so apply the SYSO/ SYS patch.
DOD, A2=3A A0 42 F6 01
DOD, AE=3A A0 42 E6 FE 32 A0 42 D3 FE

end of patch

Reverse of Mod 4/3 node clock patch. This patch is for Mbdel 3 LDOS ONLY!.
Pat ch SYSO/ SYS and al so apply the SYS7/SYS patch.

DOF, 66=FE 01 21 A0
end of patch

The follow ng patch was supplied by M. W Fields

High/Fix - This nodification to the HGH utility from Uility Disk #1 causes H GH to
pause at the end of each screen and pronpt the user to press any key to continue. This
will prevent the information fromscrolling off the screen if nore than six nodules are
in high menory. This patch will also correct a bug in the display of "UNKNOM s.

H GH FI X

This fix is for the version of H&
that has a nodification date of

16- FEB-83. (Version 1.0.1 in output
headi ngs)

Wl liam Fields
Post Office Box 1120
G endal e Heights, 111 60137

First we patch each significant call
to @Isply to go instead to the patch

Page 39

area code first.

X 5207’ =9D 53
X 521F =Al1 53
X 5233 =A5 53
X 528C =A5 53
X 52B1' =D0 53

Now free up a byte for a counter
X' 5312' =10 04 DD E1 C9 00
Pat ch area code here
The following code creates the screen pauses

X 539D =3E 04 18

X 53A0' =06 3E 02 18 02 3E 01 F5 CD 67 44 F1 21 17 53 86
X 53B0' =FE OE 30 04 32 17 53 C9 21 D7 53 CD 67 44 CD 49
X 53C0' =00 CD C9 01 21 4A 53 3E 00 32 17 53 CD 9D 53 9
X 53D0' =CD 33 00 3E 01 18 D5

X 53D7' ="Press any key to continue."

X 53F0' =03

. The followi ng code corrects the address display for "UNKNOMN s"
x' 5283 =C3 F2 53

X' 53F2' =E5 2B EB CD E5 52 C3 88 52

. END OF PATCH

LET US ASSEMBLE

by Rich Hlliard

Wl cone back! Last time we discussed various cutesy screen displays of famous sorts.
While no criticism from you was apparent, we may have noved too quickly into the Iand
of nod. Keep in mind that the purpose of this colum is to be of assistance to you, the
viewer. Therefore, if you want sonething specific discussed, please wite in and tell

nme and we will work on it. So far, we have had a very interesting suggestion from M.
Wbodson of Atlanta, which is an assenbler programto conpute noving averages. This type
of program takes a long time in BASIC W wll start the prelimnary work on this

project next tine.

By the way, this is exactly the type of subject which is ideal for |earning assenbler.
If you have a BASIC program of your own which lasts as long as an an all day sucker,
why not submit it?

And now on to the task at hand, nunber base conversion. GCh no! Not nunber base
conversion ... anything but base conversion please, please get us out of this!!!
Holy bovine fecal matter, batman, calm down. Conversions are our friends (just like
dogs and fire, however, they can do us harmif abused). Actually, they are not bad at
all. Amaze your friends, wite a conversion program for LDCS.

Nunber base conversion is often present in assenbler progranmng because the stupid
conputer can only calculate in binary. Meaningful nunbers (decinal) nmust be obtained
from the ten-digit nonkey running the nachine, converted so that the stupid two-digit
conputer can deal with it, and then the result converted back to nonkey. The three nost
used nunber bases in our little corner of the universe are (in alphabetical order):
bi nary, decimal, and hexadecimal which are respectively the conputer’s, ours, and our
net hod of | ooking at the conputer’s.

Page 40

Base conversion is very sinple in itself but we have (of course) a further problemto
deal with. The conputer is quite content to honk along wi thout ever telling us what is
going on. Furthernore, it has no use whatsoever for English. After all we made all that
up in order to get fed (and keep from being a meal). Since nobst conmputers do not eat,
they have no use for our |anguage. The need does exist for us to know what our little
inventions are doing, and fromtime to time, to send this information to other devices
or conputers. To do this, a standard (ho, ho, ho) code was established called ASCII.
Li ke every other standard that | know of in this industry, it isn't.

The purpose behind ASCII is so that when a byte (in English) is sent to a printer or
anot her nachine, the character sent is understood at the other end. Were this breaks
down is as follows: ASCII only accounts for seven bits out of the eight bits in a byte.
This nmeans that while the values 0 through 127 are nore or |ess accounted for, the
nunbers 128 through 255 are up for grabs. In fact, even within a single manufacturers
product line, that manufacturer seldom is sooth (this last for D & D fans) regarding
their purpose. As an exanple, in a Mdel 111, 128-191 are used for graphics, and 192 to
255 are space conpression codes. An "alternate set" can be switched in which w pes out
space conpression and gives you the greek al phabet and other assorted junk. (On the Md
4, reverse video occupies these codes as yet a third alternative.)

This puts an additional conversion sequence into any code because the nunmber "3" when
typed at the keyboard is not represented by the value 0000 0011, but by the value
0011 0011 (ASCIl). (Can you guess what must be done to convert it?)

I want you to understand that these conversions are standard in every applications
program witten in assenbler that obtains input. Therefore, let us establish a series
of subroutines necessary to convert all this stuff. BASIC handles much of this
automatically (see "&H'), especially the ASCI|I conversion. But consider, when the
statenent INPUT A is encountered, BASIC already knows that the infornmation conming from
the keyboard will be ASCI| decinmal nunbers only (English - you see), and it rejects any
non-deci mal characters. A better appreciation of our problemis seen by the statenent
LI NEI NPUT AS$. Now BASIC nerely accepts a character stream until the <ENTER> key is
pressed or 255 characters have been received.

In assenbler, all of our keyboard inputs are exactly like that. W have no idea what
characters are coming in, so we nust exam ne every character for its relevance and act
accordingly. Most of the needed conversion routines can be found in a program which
takes in a nunber of any of the mentioned bases, and di splays the converted results in
all three bases.
Let’s define the programin English:
1. Take in an ASCI| binary, decimal, or hexadeci mal nunber.
A. A nunber with suffix "B" is binary
B. A nunber with suffix "H' is hex
C. A nunmber with no suffix or suffix "D' is decimal
2. Convert the input fromASCI| to binary.
A. ASCl|-binary to binary
B. ASClI|-decinmal to binary
C. ASCll-hex to binary
3. Display the ASCI| representations.
A. Binary to ASClI-binary
B. Binary to ASClI-deci nal
C. Binary to ASClI - hex

Rat her than duplicate this process in BASIC, | will sinply include it in the coments.
To nmake life easy on us, we wll demand suffixes for the declared nunmber. | do NOT
recomrend doi ng things "the easy way", but we nust wal k before we decat hal on.

It can be seen that we need a nmain line program which takes a nunber from the keyboard
and whips it to one of three subroutines to get it into binary. W could then wite
code which determnmi nes which was input and not convert it, but why bother? The results
are calculated so quickly that little (if any) time will be lost. Therefore, we wll
sinply convert the nunber through all three "back to ASCII" routines, one of which,

Page 41

adm ttedly, need not have been done. W are going to use system vectors @EYIN, @X T,
and @SPLY. So the first lines of code are as foll ows:

00100 @XIT EQU 0402DH :Normal Exit vector
00110 @SPLY EQU 04467H : PRI NT subroutine
00120 @EYIN EQU 00040H ; LI NEI NPUT routine
00130 ORG 05200H ;start code at X 5200’

The @KEYIN system vector requires the HL register pair point to a spot in nenory where
the input from the keyboard will be stored (be sure to look up @EYIN in your LDOS
manual that you nmay know what secrets are witten therein). This buffer will be of a
maxi mum | ength as deternmined by the contents of the B register plus one. Let’s set a
perfectly arbitrary limt to the size of the converted number to be two bytes long. If
this were entered in binary it would be sixteen characters in length. Finally we need a
suffix of one character, so the buffer length required is eighteen.

By the way, it is good to wite (comunication - what a concept!) down things that need
to be done later in the program so that they are not forgotten. Right now wite down
that we need to define an input buffer of 18 characters naned NBUFFER

Now, the stupid conputer won't tell us what is going on - so we better informthe user
what he is in and what to do about it. To do that, we print the nessage | abeled
"SIGNON' to the video. This routine will be |abeled because we will come here until
told to leave or if an erroneous input is detected. Wite down that we need to conpose
SIGNON. Renenber |esson 1 and code the nmessage printing as foll ows:

00140 START LD HL, SI GNON ;greet the masses

00150 CALL @SPLY ;print it
Since the program is quick, dirty and user hostile, our conplete "docunentation" is
contained in the message we just printed and we can now take in the desired input:

00160 LD B, 17 ; maxi mum chars al | owed

00170 LD HL, NBUFFER ;stick themin nenory

00180 CALL @KEYI N ; GOSUB LI NEI NPUT
@XEYI N does not come back until either the <BREAK> or the <ENTER> key is pressed. If
the maxi mum nunber of characters is reached, @EYIN will not allow any other keys to

wor k except <BREAK>, <ENTER> or the backspace. Wen control cones back to us, the B
regi ster contains the nunber of characters received and if <BREAK> was pressed the C
flag of the F register is set. <BREAK> will be our signal to stop executing. This is
sonewhat of a PROBLEM because if the user has set SYSTEM (BREAK=N) or CMD'B","OFF" from
LBASIC, then we sinply never |eave our program A way to prevent the hang-up would be
to alter our routine to examine for some other key, or to nake certain that the system
does handl e <BREAK> by checking in the SFLAGS vector, but as | said this is user
hostile. Anyway, you can always blanme the user because running with the <BREAK> key
disabled in ALL software is not a good plan. Anyway, we check C flag and junp to
@&XIT. One other thing-- some putz will always press the <ENTER> key by itself so we

will check that the B register contains a not-zero value. Let’'s be kind and junp back
to the pronpt if this happens.

00l 90 JP C@EXT ;1 eave if <BREAK> pressed

00200 I NC B ; TEST for zero characters

00210 DEC B ;1f Bwas zero this sets Z

00220 JR Z, START ;& we start over
Ckay- we got sonething in the input buffer! W nust deternmine which of our three
conversion SUBS to CALL. Renenber that we needed an "H', "B", or "D' at the end of our
input. We are also assuming that if no "H' or "B" is present that "D' is assunmed. HL is
still pointing to the front of the character string we called NBUFFER. Well sir, we
know the length of the string and where it starts so all we have to do is point HL at
the |ast character, load it into A and do a nmess of conpares. W need to find the

equi val ent of M D$(NBUFFER, LEN(NBUFFER)-1,1). Then we look for the suffix. If it is
there we must also lop it off before going to the subroutines. This is done by
decreasing the length by one. W will point HL to the proper location by placing the
| ength of NBUFFER (from B) into the DE pair and adding it to HL. It would be slick if
we could add B directly but such luck is not with us:

00230 LD E, B ;put B contents into DE pr
00240 LD DO ;note the order

00250 DEC E ;adjust for zero

00260 PUSH HL ;save first char

Page 42

00270 ADD HL, DE iHL => | ast char

00280 LD A (HL) ;put pointed to in A
00290 RES 5 A ; Convert to upper
00300 cP "B ;Binary suffix?

00310 JR Nz, TESTH ;GOTO TESTH line if <>
00320 DEC B ; ELSE drop the "B"
00330 POP HL ;updat e pointer

00340 CALL ASCBI N ; GOSUB ASCBI N

00350 JR PRI NTEM ;and GOTO PRI NTEM
00360 TESTH CP H ; Hex suffix?

00370 JR Nz, TESTD ;GOTO TESTD i f <> "H'
00380 DEC B ;1 oose the "H'

00390 POP HL ;updat e pointer

00400 CALL ASCHEX ; GOSUB ASCHEX

00410 JR PRI NTEM ;and GOTO PRI NTEM
00420 TESTD CP 'D ;deci mal suffix?
00430 JR NZ, TESTD1 ;renove "D if present
00440 DEC B

00450 TESTD1 POP HL ;updat e pointer

00460 CALL ASCDEC ; GOSUB ASCDEC

Well that certainly was a boatload. You can see that it only gets to one of the three
ASCI| to binary subroutines. Actually, there is no reason to have three different subs
in this instance, but if we stay universal, the sane three subs can be used again and
agai n. Save them as separate nodul es and then nerge theminto any program In |ine 290,
notice the RES instruction. This resets bit 5 of the A register. The reason for this
mani pul ation is that the suffix received may be in lower case. (Qbserve bit 5 in the
follow ng chart:

Character Upper case ASCl I Lower case ASCI |
B 0100 0010 0110 0010
D 0100 0100 0110 0100
H 0100 1000 0110 1000

You will note that the bit pattern for upper and |ower case is identical except for bit
5, which is set for |ower case al phabetic characters. Therefore, to force upper case
RES bit 5, or to force lower case SET bit 5 of the byte in question. Qur program
converts any |lower case character in the A register to upper case. OQherwise, to be
user friendly, we would have had to make six conpares instead of three. If any of "BDH'
is the last character of the string note that the length of the string is decreased so

that there is no interpretation of the last character. The subroutines will have to be
witten to detect characters outside the allowable range for the type of conversion
bei ng done. If such an illicit character is encountered, we will print an error and

start over. The purpose of saving HL with PUSH and then POPping it back is so that the
| eft most character of the string is pointed to by HL when entering each subroutine. The
ASCl I -binary to binary routine allows two characters 48 (X 30" or 0011 0000 or 0) and
49 (X 31" or 0011 0001 or 1). Renmenber where HL is? Thanks to judicious forethought it
is pointing at the first character of the string because when we decreased the |ength
we renenbered the pointer. Wat if some wise guy punched B, D, or H as the only thing?

Don't worry, we will blow himaway with range checking! First let’s wite the rest of
the main body of the program
00470 PRI NTEM LD HL, (NBUFFER) ;get binary nunber
00480 CALL Bl NASC ;convert Binary to ASClI
00490 CALL HEXASC ;convert hex
00500 CALL DECASC ;convert deci nal
00510 LD HL, PBUFFER ;show results to video
00520 CALL @SPLY
00530 JR START ;& back to the top
Well, if you ve been witing notes correctly, you know that we nust define two buffer
areas, wite six subroutines, and conpose a nessage - inmgine trying to renmenber all
t hat ! Since all that follows will be subroutines, why not finish the this section with
our nessages and buffers and headers (lions and tigers and bears, oh ny).
00540 ERROR LD HL, ERRMVESS ; say bad job
00550 CALL @SPLY
00560 JR START
00570 SI GNON DB OAH,’ Itty Bitty Base Converter :', OAH

Page 43

00580 DB "Enter number to convert - end hex in H - binary in B, 0AH
00590 DB "and decimal in D - - press <BREAK> to quit’, 13

00600 ERRMESS DB OAH, " Nunber out of correct Range’, 13

00610 NBUFFER DS 18

00620 PBUFFER DB 0AH,’ Bi nary Hex Deci mal ', 0AH
00630 BBUFFER DB ’ 0000 0000 0000 0000 '

00640 HBUFFER DB ' 0000 ’

00650 DBUFFER DB 00000 1,13

W will junp to ERROR (540) whenever an input or out of range error occurs. This sinply
prints the string ERRVESS to the video and starts over. DS is an EDAS psuedo-op which
nmerely defines an 18 byte gap in the code. This neans that whatever was in nenory at
that location will not be overwitten by |oading our program Strange stuff can occur
if you rely on default strings coming from areas created by DS That is why
[BHD] BUFFERs are defined as ASCI| zeros and spaces. Defining the buffer in this manner
allows us to use these buffers for the conversion back to ASCI |, and then by pointing
to the string PBUFFER include all four strings (lines 620-650) with one CALL to @DSPLY.
This is a quick way to format the output. Renenber that tabs are not recognized by
either @SP or @SPLY. W nust either format our own spaces our wite a tab generator.
For small stuff like this program it is cheaper codewi se to inbed the spaces wthin
the program code as above. Obviously, for variable text formatting or long outputs this
would be the ultimate in tacky (not including the IRS). Well, you may cross out a few
things fromyour list. Now we need the six conversion subroutines. Here is the code for
the ASCII-binary to binary conversion which we have named ASCBI N:

00660 ASCBIN LD DE, 0 ;DE will hold the binary
00670 ABLOOP LD A (HL) ;char into A

00680 CP 30H ;is A< ASCII 0?

00690 JP C, ERROR ;I F yes THEN GOTO ERROR
00700 JP Z, AGAI N ;1 f A=0 TGEN GOTO Again

0071 0 CcP 31H ;= ASCl I 17

00720 JP NZ, ERROR ;see 520

00730 LD C1 ;store 1 the one in C

The byte values in NBUFFER nust be either 30H or 31H, which are ASCIl "0" and "1"
respectively. HL is pointing to NBUFFER We will use the DE pair to hold our binary
nunber. We will examine the string in NBUFFER one character at a tine until the string
i s exhausted. The maxi mum width of NBUFFER when we get here is 16 characters.
Therefore, it is inpossible to enter a binary value beyond our two byte limt. To
effectively trap errors, we need only check that the digits are either zero or one. The
accunul ator is loaded with an NBUFFER character in 670. W test for a "0" in 680. If
the character found is LESS than "0", we GOTO ERROR and quit (tsk, tsk, tsk - nore on
this later). If it equals "0" we do nothing with it. Why? Renenber that all 16 bits in
the DE pair are already zero (line 660). There is no need to convert a "zero" to a
r eal zero, t hat is the default. If the byte is not "0" then it MJST BE a "1" or
sonebody typed a "B" suffix by accident. Therefore, error city. Now that we know we
must ignite a bit somewhere in DE, which bit do we flip? W will manipulate the bit
position in C. W start by loading it with one and process thusly:

00740 LD A B ; det erm ne pl acehol der
00750 DEC A ; adj ust

00760 cP 8 ;determine high or |ow byte
00770 JR C I NTCE ;if A<= 8 then E register
00780 PUSH BC :save the counter in B
00790 SUB 8 ;reset bit position

00800 JR Z, SKI P1 ;do not rotate |last bit
00810 LD B, A ;set up inner loop

00820 ABLOOP1 SLA C ;shift Cleft, Btines
00830 DINZ ABLOOP1 ;for B tines

The B register contains the count. Watever B's value is the bit position in DE which
nmust be set to one. Note that bits are nunbered I5-0 (left to right) and that the count
in Bwill be 16 to 1 (garbage odds) so that we nust adjust by subtracting one. W | oad
A with B (740) and then DEC A (A=A-1). Now the value in Ais the bit position which we
want to set to 1. W cannot deal with the DE pair on a bit level, but we can deal wth
either D or E on a bit level. W nust deternmne which register the desired bit is in.
If Ais 15 through 8, we deal with D. If Ais 7 through 0, we deal with E. Lines 760
and 770 determ ne which path. Obviously, the D register alone does not have a bit

Page 44

greater than 7. W adjust for this by subtracting 8 A special case arises if the
result of the subtraction is zero. W do not wish to adjust the C register at all so we
skip right to the "stuff the bit in D' giznb located at SKIP1. Oherwise we get the bit
into the correct relative position by shifting it left, for the nunber of times of the
value in A

A neat little one byte loop is possible in Z-80 code. It involves |ooping by the nunber
contained in the B register. We are going to use it a lot. Put the desired nunber of
loops in B, and set up the junk to do between it by establishing a | abel where you want
the the routine to repeat. This is akin to the first BASIC statenent after a FOR ... TO
l'ine. The NEXT equival ent is the menonic DINZ (Decrenent and Junp-relative if Not
Zero). In this case line 820 will repeat until B is zero. SLA (Shift Left Arithmetic)
noves all bits in the named register 1 position to the left and then puts a zero into
the rightnost bit. (Anything dropping off bit 7 is lost.) For exanple, the contents of
C at the start are always 0000 0001. If A were 4, the result in C would be 0001 0000.
We now have the bit in the desired position (bit 4, you will note). Al that remains is
to get it into Dor E, fetch the next byte from nmenory and process for as long as there
are characters.

To get Cinto D or E we cannot use the load instructions. This is because we are in the
process of flipping bits one at a tine. A LD in this case wuld sinply w pe out the
previous work. To flip the correct bit we use boolean algebra - WAIT! Don’t throw up.

I"'msorry | used that term Besides you use it all the time in BASIC. It’'s just that
nobody ever buzzed you with it before. (For those who are interested - it was naned
after George Boole.) (Buzz off, GCeorge. I hate people who nane things after
thenselves). In BASIC, it is sonetines called Hilliardian algebra (but not by many). In

BASI C such statenents as:

IF A=0 AND B=1 THEN GOTO BLAZES ... and

IF A=0 OR B=1 THEN GOSUB MARI NE
are really balgebra (stick it, George) statenents. In assenbler, these operations are
often used to alter the register con{ents one bit at a time according to the follow ng
t abl es:

0: 0| O 0: 0| 0: 0|
1. 0 1 1: 1 1: 1

So to set Dor Ewith the bit in Cwe will ORDC It wuld be nice, but bal gebra works
ONLY with A. So we xfer Cinto A and then OR away. Here is the rest of ASCBIN

00840 SKIP1 LD A C ;place bit into A
00850 OoR D ;merge with current D
00860 LD D A ;update D

00870 POP BC ;recover count from 780
00880 JR AGAI N ;& goto AGAIN

00900 | NTCE PUSH BC ;save the counter in B
00890 CcP 0 ;1f bit zero, skip
00910 JR Z, SKI P2 ;it and do anot her
00920 LD B, A ;set up inner |oop
00930 ABLOOP2 SLA C ;Shift Cleft

00940 DINZ ABLOOP2 ;for Btines

00950 SKI P2 LD A C ;bit isin A

00960 OR E ;merge with E

00970 LD E A ;update E

00980 PCOP BC ;recover count fromOoO
00990 AGAIN INC HL ;point to next char
01000 DINZ ABLOOP ;and do it again

01010 LD (NBUFFER) , DE ;store conversion
01020 RET ;exit subroutine

Now the perceptive out there are probably asking thenselves, "why did we need the C
register at all?" W didn't. We could have loaded A with 1 after deternining whether to
use D or E, and loading the bit count into B. It would have saved us another step in

Page 45

lines 840 and 950. | sinply thought that the nethod we did use was |ess confusing. Note
that we end the loop by reloading NBUFFER with the converted binary value and then
RETur ni ng.

This programis interesting to watch under DEBUG Set the display to 52F3 and single
step with various values. To watch the output conversion, set the display to 5332. By
the way, when the PC points to CD 40 00, do a C (not an |I) and enter the nunber you
wi sh to convert. | suggest we finish the programfirst, however.

Wth the ASCHEX subroutine we also start with the |eftnost character and again store
the converted result in DE Qur binary input could only deal with a bit at a tine.
Every hex digit, however, represents 4 bits (called a nibble - which is half a byte).
This nmeans that four operations on D and E will convert the whole nmess. W do have
another problem Hex digits are conprised of the arabic nunerals 0-9 (ASCII 30H to 39H)
and the letters A-F (ASCII 41H to 46H). Note that they are not contiguous. This neans
we have to check two ranges for valid characters. Al so, the values represented by A-F
hex are not reached by sinmply ignoring the high nibble (sounds |like the |eader of sone
r ubber - chi cken cl ub) as we can do for the digits 0-9. A common way to convert the
decimal nunbers is to subtract 30H fromtheir ASCII value. The A-F's are converted by

subtracting 37H. Since we are learning balgebra, we will use AND to strip off the high
ni bbl e. Now here i s ASCHEX:
01030 ASCHEX LD DE, O ;reset DE
01040 LD A B ;test for >= 5 digits
01050 CP 5
01060 JP NC, ERROR ;too many
01070 CP 0 ;test for O
01080 JP Z, ERROR
01090 AHLOOP LD A, (HL) ;get character
01100 CcP 30H A<O0
01110 JP C, ERRCR
01120 CcP 3AH A< 9
01130 JR NC, CONAF ;convert if <=9
01140 JR STUFFI N
01150 CONAF RES 5 A ;convert to upper
01160 CcP A . A < 65?
01170 JP C, ERRCR
01180 CcP 'G ;o A>= G?
01190 JP NC, ERROR
01200 SUB 7 ;convert from al pha
01210 STUFFI N AND OFH ; mask high nibble
01220 LD C A ; save val ue
01230 LD A B ;determ ne which nibble
01240 cP 3 ; 4&3 goinD
01250 JR C, | NTE
01260 PUSH BC ;save 'iteration
01270 BIT 0, A if zero Isn
01280 JR NZ, LOWN ;else men
01290 LD B, 4
01300 AHLOOP1 SLA C ;shift Cleft 1 bit
01310 DINZ AHLOOP1 for four tines
01320 LOMWN LD A C
01330 OR D ;put into D
01340 LD D A
01350 PCOP BC ;restore count
01360 I NC HL
01370 DINZ AHLOOP ;do anot her
01380 | NTE PUSH BC ;save iteration
01390 BIT 0, A if zero Isn
01400 JR NZ, LOANL ;else men
01410 LD B, 4
01420 AHLOOP2 SLA C ;shift Cleft 1 bit
01430 DINZ AHL OOP2 for four tines
01440 LOWNL LD A C

Page 46

01450 OoR E ;put into D

01460 LD E A

01470 POP BC ;restore count
01480 I NC HL

01490 DINZ AHLOOP ; get anot her
01500 LD (NBUFFER) , DE ;store result
01510 RET

No new concepts are in ASCHEX. Note that the BIT tests in |ines 1270 and 1390 are used
to determne whether A is odd or even. This will deal with the high nibbles if even or
| ow nibbles if odd. Note the use of AND in line 1210. Since 1 AND O results in zero,
this type of maneuver is called a mask. The byte OFH looks like this 0000 1111. The
contents of A are altered. Anything that WAS in bits 7-4 of Ais reset to zero (1 ANDO
= 0). If the bits 3-0 were one, they remain one and if they were zero they remain zero.
You can see that the high nibble was "masked" off. Wiat is left in the low nibble
(after adjusting for A-F) is the value of the ASCI| representation.

ASCDEC presents us with rmuch of the sane approach but we have nore math to do. Since
both binary and hex are conducive to shifting and shafting we could zip around in nib
fashion slipping and sliding bits and nibbles about with a certain audacity and flair
indicative of a bon vivant attitude. This is not a big surprise. Miltiplying and
dividing by 10 in a decinal system involves slipping and sliding the decinmal point
around in exactly the sane fashion. Now, however, we not only convert fromASCII to a
real value, but frombase ten to base two.

W will do this by starting fromthe left of the string, converting the ASCII value to
bi nary. If there is another decinmal nunber, we first nultiply the old nunmber by 10,
because we know that its value is ten tines the next number. Then we add the old nunber
(how old is it?) to the value of the new nunber so that the last digit read is always
the least significant (which renminds me of this explanation). For exanple, say that the
string in NBUFFER is "2345". W will store the transient nunbers in |IX which has an
initial value of zero. OK, here goes ; multiply IX by ten [10 * 0 = 0] ; add the first
value (2) to I X which now equals 2 (0010). If the string were only one character |ong
we woul d be finished. Since there is another character we |oop through the routine
again. Miltiply I Xby ten [10 * 2 = 20] ; then add the 3, |IX now equals 23. Note that
the 2 became the "tens" digit. (IX is really 0001 0111). There is another digit.
Miultiply I X by ten [10 * 23 = 230] ; then add the 4, 11X now equals 234 (1110 1010).
There is another digit. (You are in a maze of tw sty passages, all alike). Miltiply IX
by 10 [10 * 234 = 2340] ; then add the 5, |IX now equals 2345 (0000 1001 0010 1001).
Wal | ah! As you can see, the process can be carried through all 16 bits of I X

Two really mnor problens. (1 knew it.) The Z-80 has no multiply function. Wit!
There's nore. Multiplication is actually only shorthand addition. The A, HL, IX and |Y
registers are the ones capable of math. A can do it all, but is only eight bits w de.

HL can add and subtract but can do nothing else. I X and IY can only add. HL is being
used to fetch our string, so that leaves IX and IY for the 16 bit arithnetic. Ten is
not a very handy binary nunber, but two is. Can we think of a good method of using two
in succession to exploit the power of two and still be ten? Wwuld | bother witing all
of this broohaha if there weren’t? Wen we add a nunber to itself, we get that nunber
doubled (X+ X =2 * X). W now have nmultiply by two. Renenber that. Add the result
to itself and we have 4 * X Add that result to itself and we have 8 * X. (Al npbst
there!) Add that to itself and we've gone too far but - | say but - if we "nenorized"
the first doubling (2 * X) we can add it to the third doubling (8 * X) and we have TEN
times the original nunber! We did it! (the crowd roars)

Here is the uncensored text for ASCDEC

01520 ASCDEC LD DE, 0 ;reset DE

01530 LD I X 0 ;reset | X

01540 LD A B ;test for >= 6 characters
0l 550 CP 6

01560 JP NC, ERROR

01570 CP 0 ;test for zero char

01580 JP Z, ERROR

01590 ADLOOP LD A (HL) ;get char

Page 47

01600 cP 30H ;test for <0

01610 JP C, ERROR

01620 cP 3AH ;test >--

01630 JP NC, ERROR

01640 AND OFH ; mask high nibble

01650 ADD I X 1 X ymultiply 1 X by two
01660 JP C, ERROR

01670 PUSH I X ; save product

01680 ADD I X 11X IX = 1X¥2 (4 * start)
01690 JP C, ERROR

01700 ADD I X 11X ;X =1 X¥2 (8 * start)
01710 JP C, ERROR ; >65535

01720 POP DE ;retrieve doubled I X
01730 ADD I X, DE ;I X =1X* 10 fromstart
01740 JP C, ERROR ; >65535

01750 LD D0 ;put amt into I X

01760 LD E A ;picked up digit into IX
01770 ADD I X, DE ;add into buffer

01780 JP C, ERROR ; >65535

01790 I NC HL

01800 DINZ ADLCOOP ;do another if necessary
01810 LD (NBUFFER) , | X ;stuff in buffer

01820 RET

Notice all the junps to ERROR This is because the carry flag is set if a bit falls off
bit 15 of IX. Since this can happen in so many places, there are many checks. It means
that the decimal nunber entered was greater than 65535. The other error traps involve
range checking for the digits 0-9. Actually, nothing fatal happens if all the JP
C, ERROR statenents from 1660 on, are renoved. Entry of nunbers 65536 through 99999 will
return a nmodul o 65535 result.

Vell , where are we? W now have any number input from the keyboard into NBUFFER in a
bi nary state. Using NBUFFER we now convert back to ASCII for each of the three bases.
No new concepts. Here is the rest of the code in subroutines DECASC, HEXASC, and
Bl NASC:

01830 DECASC PUSH HL ;save for next one

01840 LD DE, DBUFFER ;point to decimal in nem
01850 LD BC, 10000 ;# of ten-thousands

01860 CALL DECASC1 ; GO8UB find decascl

01870 LD BC, 1000 ;# of thousands

01880 CALL DECASC1

01890 LD BC, 100 ;# of hundreds

01900 CALL DECASC1

01910 LD BC, 10 ;# of tens

01920 CALL DECASC1

01930 LD BC, 1 ;# of . ones

01940 CALL DECASC1

01950 POP HL ;recover nbuffer

01960 RET

01970 DECASCL XOR A ;cheap way to Id a,0
01980 ALOOP OR A ;clear carry flag

01990 SBC HL, BC ;find how many tines BCis
02000 JR C, ADD ;in hl, if neg put it back
02010 I NC A ; pl ace count in accumul at or
02020 JR ALOCP

02030 ADD ADD HL, BC ;restore the one too far
02040 ADD A, 30H ;make it ASCl |

02050 LD (DE), A ;put digit in buffer

02060 I NC DE ;point to next place

02070 RET
We sinmply take the number in HL (NBUFFER) and subtract the highest possible rmultiple of
ten that could be in it. W set BC to 10000 and subtract. If the subtraction results in
a positive number (NC), we subtract again. Wien the result is negative, we have gone
too far, so we ADD back the last mnuend to restore the positive value. W al so counted

Page 48

the nunber of successful subtracts in A The nunber in A is then the nunber of ten-
thousands that was in the original nunmber. To convert this value to an ASCI| nunber,
ADD 30H or OR 30H. You know that we can print the contents of A to the video through
@SP. Here is the best illustration of our problem Assume A has 6. If we CALLed
@SP with 6 in A NOTH NG woul d print because the ASCI|I value for 6 is an unprintable
(not obscene) character used to ACKnow edge in serial comunications. To get the nunber
"6" to print on the video, we nust first nodify it to 36H.

In DECASC, we use DBUFFER to build the string of ASCI|I characters one byte at a tine.
Returning fromthe sub DECASCi, we try each dimnutive power of ten until the nunber is
0. At that tine, DECASC returns to the main body which calls HEXASC

02080 HEXASC PUSH HL ; save count

02090 LD DE, HBUFFER ;point to buffer with DE
02100 LD A H ;convert high half of H
02110 AND OFOH ;mask off bits 3-0

02120 CALL SHI FT ;shift it down to |snibble
02130 CALL CONASC ;make it ASC |

02140 LD A H ;convert |ow nibble of H
02150 AND OFH ;mask off 7-4

02160 CALL CONASC

02170 LD AL ;convert L as we did H
02180 AND OFOH

02190 CALL SHI FT

02200 CALL CONASC

02210 LD A L

02220 AND OFH

02230 CALL CONASC

02240 POP HL

02250 RET

02260 SHI FT LD B, 4 ;loop 4 tines

02270 SHLOOP SRL A ;shift right 1 bit

02280 DINZ SHLOOP

02290 RET

02300 CONASC ADD A, 30H ;make it an ASClI

02310 CP 3AH ;does it surpass arabic
02320 JR C, &1 ;I F no THEN oki ELSE
02330 ADD A7 ;offset for A-F range
02340 1 LD (DE), A ;stuff in buffer

02350 I NC DE ;point to next position
02360 RET

This is the easiest because it just involves adding 30H to the values 0-9 and 37H to
the values A-F (10-15) for each of the four nibbles. The sub SH FT noves information
obtained fromthe high nibble to the low nibble that it mght undergo the services of
CONASC which adds 30H. If the sumis greater than 39H ("9") then another 7 is added.
The string is concantenated in HBUFFER and HEXASC returns control to the nain body
whi ch cal |l s Bl NASC.

02370 BI NASC PUSH HL ;save HL

02380 EX DE, HL : DE <==> HL

02390 LD HL, BBUFFER ;point to buffer

02400 LD B, 2 ;establish oop of 2 bytes
02410 BLOOP LD A, OH ;set up bit marker in A
02420 BLOOP2 LD (HL), 30H ;set bit to zero

02430 PUSH AF ;save bit position

02440 AND D ;see if position is set
02450 JR Z, ZEROD ;if not - skipit

02460 LD (HL), 31H ;ELSE put a "1" in buffer
02470 ZEROD INC HL ;point to next "bit"
02480 POP AF ;restore bit position
02490 SRL A ;shift it right

02500 PUSH AF ;save it

02510 BIT 3, A ;test for nibble s end
02520 JR Z, NOSKI P

02530 I NC HL ; skip over space

Page 49

02540 NOSKI P POP AF ;restore bit position

02550 JR NZ, BLOOP2 ;go til nibble is depleted
02560 I NC HL ; skip space between bytes
02570 LD D E ;place E's pattern in D
02580 DINZ BLOOP ;do the other byte

02590 POP HL

02600 RET

02610 END 5200H

This routine tests each bit to see if it is on or off. It always wites an ASCII "0" to
the String in BBUFFER Then it tests for 1 and if it is a one, wites 31H to the
string. It wites the zero first to alter the contents of any residual string left from
a prior conversion. Also, this procedure skips a space every 5th character to bust up
the 16 character string into 4 four character segments for readability.

Notice the error trapping in the last three subroutines is non-existent. This is
because the information is coming fromthe conputer, and is not subject to an error
whi ch the program can deal with. (You try to program around a dead RAM bank or a power
glitch.) Extensive error work is mandatory whenever getting information from a nonkey
(Monkeys like to type between the keys). A ways remenber that nopst operators are merely
i nconpetent or inadequate but be prepared to deal with the sadistic.

Start by assuming that whatever instructions you provide wll be ignored except in
crisis. Then be prepared to be the object of abuse because your instructions sinply
tell the operator what to do and not every possible conbination of what NOT to do.
Above all else a friendly program nust not rely on witten instructions in lieu of
error traps because if you tell sonebody that such and such a thing will produce bad
results, then that is EXACTLY what they are going to proceed to do in order to observe
the disastrous results. (It's kind of like saying, "Watever you do, don't ever press
that red button".)

The problemwith the error traps enployed in the six routines above is that eventually
a system crash would occur if enough errors were repeatedly made. Wiy? Al of the error
traps are in subroutines. A CALL instruction PUSHes the return address onto the stack.
A RET POPs the address back into the PC. You can see that we JP out of a sub back to
the start of code. This |eaves an address on the stack which is in deplorable taste. |f
enough litter was dunped on the stack (which continues to build down in nenory), it
eventual ly starts overwiting things it shouldn’t because it has finite space to
operate in. These kinds of problens are really up to the programmer to solve. It would
be unlikely, in fact, it would alnbost have to be deliberate (see sadist) for this to be
encountered, but....

The JP to @XI T by the way, restores the stack to its correct level, so if we nake it
back to LDOS Ready we're OK. And now for the LET US ASSEMBLE CONTEST: correct the stack
probl em nmentioned. (hint : see if LD SP,HL and LD (xx),SP can help) Secondly, rewite
ASCBIN and ASCHEX to elimnate use of the C register. Three people will receive a FREE
Techni cal HELP package, for correct replies.

LDOS: HOWN I T WORKS

Configuring with non-rel ocatable code on floppy and hard di sk di scussed
or--- What’'s up there anyway?
by Joseph J. Kyl e-Di pi etropaol o

The LDOS operating system uses high nmenory for nmany different reasons. That does not
mean, however, that LDOS always uses high nenory. The "base" LDOS system does not use
any high nenory, but also does not allow the use of special LDOS features. Many of
these LDOS special features (the KI/DVR Hard Disk operation, KSM ...), do use some
hi gh nmenory. Each item that uses high nmenory can relocate itself to any available area
of high menory. Unfortunately, many prograns that are not distributed by LSI were not
witten to these standards. These progranms require a certain area of nenory to be
avai l able, and this may not be the case for any given LDOS configuration.

Page 50

Does this nean that such a program can’t be used on LDOS? Not necessarily-- if the
program is otherwi se conpatible with LDOS, the solution is relatively sinple. Wthin
LDOS, there is provision to tell the systemnot to use a specified area of nenory. This
area can then be used by whatever programrequires it.

Let’s ook at a specific exanple. Suppose you have a program that requires the nmenory
from X E700’ to the top of nmenory (you nmay insert the appropriate address from your

progranj .

1) Boot up your systemw th the <clear> key held down. This will prevent any existing
configuration file froml oading.

2) Use the MEMORY conmand to protect the area to be used by your program |In this
exanpl e, you would type "MEMORY (H GH=X E700’)". LDOS will now "avoid" this area.

3) Add any LDOS features you may wish to use at this tinme (KI/DVR, PDUBL, RDUBL,
L)

4) Use the "SYSTEM (SYSGEN)" command to save this configuration on disk. It wll
automatically |l oad each tine you boot up this diskette.

If you are running a hard-disk system things are a bit nore difficult. At this point,
you nust set-up your hard disk drivers. This exanple will show how to set-up the RS 5
Meg hard disk, but the principles will be the sanme for any system

1) Use the SYSTEM (DRI VE=n, DRI VER, ... command to set up the system
2) To do so, renenber the follow ng facts:

a) The primary disk drive is I/0 select #1
b) Logical drives 0-3 will be heads 1-4

3) Type the followi ng "SYSTEM (DRI VE=1, DRI VER, DI SABLE)". The driver is "TRSHD3", and
the I/0 select is 1. There are 153 cylinders on this drive. Nunber of heads for
the partition is 1, and starting head nunmber is 2.

4) same, but DRIVE=2. Starting head nunber is 3.
5) sanme, but DRIVE=3. Starting head nunber is 4.

6) sane, but DRIVE=4. Starting head nunber is 1. The hard disk is now set-up, but
drive 0 is still the floppy. The followi ng sequence will finish things up.

7) Enter "SYSTEM (SYSTEM=4)". Floppy disk #0 will now be logical drive #4, and the
hard disk is drives 0-3. If you have two floppies, use the followi ng comand to
set-up the second drive. "SYSTEM (DRI VE=5,DRIVER)", and the driver is MOD3 (or
MOD1). Physical 1/O drive select is #2.

8) Use SYSTEM (SYSGEN) to store this set-up on the hard drive, and COPY
CONFIG SYS.CCC:0 :4 to nove this configuration from the hard disk to the boot-up
fl oppy.

Errata:

In the last issue, this colum indicated that 14 + 9 = 25. Please note that 14 + 9
actually equals 23, not 25. |I'm sure that nobody is interested in the |long and tw sted
chain of events that led to this error.

In the April '83 Quarterly, the LDOS topic was noving files between DOSes. Super
Uility Plus version 3.x will nove files between various different operating systens
with little or no trouble (on single-sided diskettes). If you have a lot of files to
nove, the savings in effort alone could easily be worth $79, not counting future use of
t he program

Page 51

THE JCL CORNER

by Chuck (sort of)

This month’s Corner will be a bit different than nost, in that I'’m not going to wite
it (except for this part, of course). Instead, a guest author will be presented. But
first, here is the correct answer to, and the delayed announcenent of the wi nners of
the last JCL contest, held in the April issue.

The point that the JCL question was trying to nmake is that a label will be found even
if it is in the mddle of a false //IF conditional block. There are several different
things that can be done to correct it, but they all boil down to putting the |abel
sonewhere el se. The three winners drawn out of the bag were Byron Nate of Alberta,
Robert Wight of Georgia, and Mark Vasoll of Gklahoma. Congrats on the luck of the
dr awt

Ever hear the phrase "only limted by your inmmgination"? Well, to show that this is
truly the case with JCL, read the following article by Jim Kyle. By the way, I'd like
to see nore articles of this kind for inclusion here, so if you have a favorite JCL
procedure, send it in now If worse cones to worse, | may even soneday include our JCL
(sort of) procedure used to build SYSO for the MAX-80.

AUTOVATI C CHAI NING W TH JCL

by JimKyle, 12101 Western View, Cklahoma Cty, OK 73132
Cl'S 73105, 1650 (405) 728-3312

LDOS JCL has uses limted only by your imagination. Here's one nore way to use it.
Perform the sane editing operations on a whole set of files with only one line of
keyboard entry.

The task which spawned this idea was to convert a nunber of rather large files into
EDAS- conpati bl e source | anguage. The files thenselves were generated by a mx of
Fortran, Macro-80, and EDAS nodul es, and variables were not named consistently in the
original source programs. Therefore | used DSMBLR-111 to di sassenble each of the large
files into a set of EDAS source files -- but this |ost the menonic names conpletely.

To restore the mmenobnic names, and at the sane time introduce total consistency of
names across the whole set of file sets, | created a sinple JCL file which took as its
i nput argunment the nane of the file to be edited, then invoked EDAS, |oaded the file,
gl obal ly changed each of the desired references, wote the file back in its original
position, and //EXITed. It worked perfectly, but when one original file expanded to 6
or nore *GET files during disassenbly it required constant attention to invoke the JCL
for the next file in sequence. Enter the brainstorm

Years ago, I was working with an interpreter which passed arguments from function to
function, and developed a neans of passing a set of argunents one at a tinme: If the
function actually worked with ARGL, | nmade it accept a sequence such as "ARGlL, ARR,
ARG3,... ARGN', then ended it with a call back to itself which passed only "ARRX,
ARG3,... ARGN'. At the entry, it checked for ARGL="", and if no ARGL was present,
assuned the job was conplete and therefore quit. The effect was that by typing the
whol e set of argunments on the first call, they were processed one at a tine and each
one that had not yet been processed noved over one place on the next call. (You ll see

a resenblance to nornmal recursive-calling techniques here; that's what led to the idea
inthe first place.)

The sane thing works with LDOS JCL. The //IF - //ELSE - //END construct provides a
filter which determines how many argunents were passed to this invocation. Wen the
filter detects that six argunents were passed to DO this tine, for instance, it then
generates a DO to the sane /JCL file, passing only the last five of the argunments to
the new DO (the first one has already been used by now and is no |onger required). The
filter is created by nesting another |F-ELSE-END construct inside the ELSE clause of

Page 52

this one; you wind up, for a 7-argunent filter, with a string of 7 //END statenents in
a row just before the //EXIT statenent.

Here’s nmy EDIT/JCL file as the exanple. The items in angle brackets are comments and
shoul d not be included in your JCL. Note that | also use the //INCLUDE statenment to get
the actual editing commands for EDAS. This makes the outer shell JCL work unchanged for
any editing sequence; I just pass the nane of the file to be INCLUDEd as one nore
argurment. |t does, however, require a second filter to renmove the I NCLUDE file nane.

To start the sequence, just type:

DO EDIT (I NCL=editfile, Fl=fil enane, A=a, B=b, G=qg)
and stand back. It’s fully automatic from there until the set of 8 files has been
edited. If you have nore than 8 files in your set, this JCL will do only 8 at a tine.

For the 9th and | ater ones, type:
DO EDI T (FI=filename, FS=H, A=l ,B=J, G0

There’s no need for the INCL since you won't need to copy the edit sequence again, and
i ncluding the FS argunent keeps the first file from being processed again.

| wel come comments and/or constructive criticism You can find ne on the LDOS SIG of
CIS nost any night; if I'"'mnot there, |eave a nessage
LoLjimo..

/. EDIT/JCL - July 12, 1983

[1if -fi <error check for filename>
/1. Must define base file nane FI=

/1 quit

!/ end

[1if incl <then copy new | NCLUDE fil e>
copy #incl #/ edt nd/ edt

I1if g <and repeat DO wi thout | NCL>
do edit (fi=#fi#, a=#a#, b=#b#, c=#c#, d=#d#, e=#e#, f =#f #, g=#g#)

/el se
[1if f

do edit (f
/el se
I1if e

do edit (fi=#fi#, a=#a#, b=#b#, c=#c#, d=#d#, e=H#e#)
/el se
/1if d

do edit (f
/el se
/1if c

do edit (fi=#fi#, a=#a#, b=#b#, c=#c#)
/el se
[1if b

do edit (f
/el se
/1if a

do edit (f
/el se

do edit (fi=#fi#)

/] end <these unwind the first nested filter>
// end <of //if b>

//end <of //if c>

// end <of //if d>

//end <of //if e>

// end <of //if f>

/'l end <of //if g, and filter>

=#f | #, a=#a#, b=#b#, c=#c#, d=H#d#, e=He#, f =#T #)

=#f | #, a=#a#, b=#b#, c=#c#, d=#d#)

=#f i #, a=#a#, b=H#b#)

=#f | #, a=#a#)

Page 53

/lexit <never reached because DO redoes SYSTEM JCL>
//end <of //1F incl nesting>

edas (jcl,abort)

[1if fs

L #fi ##f s# <concat enate FilenaneSuffix to Fil enanme>
/lelse

L #fi# <use Fil enane only>

// end

/1include incl/edt <enabl es any sequence to be used>
[1if fs

W #f i ##f s# <sane as when Loadi ng>

/lelse

W #fi #

/'l end

b

<get out of EDAS>

I/if g <start of shift-over filter>

do edit (f

=#f | #, f s=#a#, a=#b#, b=#c#, c=#d#, d=#e#, e=#f #, f =#g#)

/el se
[1if f

do edit (f

=#f | #, f s=#a#, a=#b#, b=#c#, c=#d#, d=#e#, e=#f #)

/el se
I1if e
do edit (fi=#fi#, fs=#Ha#, a=#b#, b=#c#, c=#d#, d=#e#)
/el se
[1if d

do edit (f

=#f i #, f s=#a#, a=#b#, b=#c#, c=#d#)

/el se
I1if ¢

do edit (f

=#f i #, f s=#a#, a=#b#, b=#c#)

/el se

[1if b

do edit (fi=#fi#, fs=#Ha#, a=#b#)
/el se

/1if a

do edit (fi=#fi#,fs=#a#)

/el se

EDI T RUN COVPLETE

/'l end <begin unwinding the filter>

/1 end

// end

/1 end

// end

/1 end

//end <of //if g, as before>

/1exit <at conpletion of stacked jobs>

Letters fromthe Custoner Service Milbag

A new feature here in the LSl Journal, Letters fromthe Customer Service Miilbag wll
present sone of the nost frequently posed questions, and questions of topical interest
to all LDOS owners.

Q
A

| just got SuperScripsit from Radio Shack. How can | use it under LDOS?

The | atest version of SuperScripsit fromRS is version 01.02.00 This version cones
with a disk file called "HARDDI SK/JCL". Performing this "DO' file will apply the
necessary LDOS patches. If this file is not on your diskette, or you have the
Model 1 version, contact your vendor to get the proper version and/or conplain.
Al so, see the article on SuperSCRIPSIT later in this issue.

Page 54

Q | want to use ny (Scripsit) or Mcrosoft (FORTRAN) or (MACRO 80) or (BASCOM on
LDOS, but | can't find the version that matches the patches on your "FI X Disk".

A. Send us your original master program diskette for proof of purchase. This would be
the diskette from Mcrosoft or Radio Shack, wth their original |abel. Al so
i nclude $10, or a blank diskette and $5. We will send back your original diskette
unaltered, and also send back a diskette containing a LDOS-conpatible copy of the
appropri ate package. Renenber, that’s $10 or a blank diskette and $5 (per program

package) .
Q | want to use Profile 3+ on LDCS. What should | do?
A. The original version of Profile 3+ will not function under LDOS. You nust get the

"Hard Disk Profile 3+" from Radi o Shack, Cat. # 26-1593. For existing owners, Cat.
#700- 6203 is avail able as an update.

Q I'mtrying to run nmy Profile 3+ with JCL, and it’'s not working right. \What’'s the
deal here?

A: Profile 3+ uses a conbination of input systens, and nost of these inputs wll not
accept data from JCL files. We have had some success here using "TYPEIN', a

utility on our Uility Disk #1. UWility Disk #1 is available directly fromLSI for
$39, plus $3 shipping and handl i ng.

Q Wen | do a LINK *DO *PR to get output on both the video and printer, my printer
starts underlining/(insert appropriate print effect here). Wat’'s wong with LDOS?

A Vel there’s nothing really wong with LDOS, it’s just that your printer is
responding to the nornal video display control codes. One solution is use the
PR/ FLT, with a parameter of XLATE=X OF0O0'. This will effectively renove the
control code that causes the problem If you have an application requiring nore

sophisticated and/or multiple translations, see our Filter Disks #1 and #2. The
Filter disks are available for $29 each plus $3 shi pping and handling per disk.

LDOS and Super SCRIPSI T

by Joseph J. Kyl e-Di Pi etropaol o

LDOS and SuperScripsit is a powerful conbination, but some preparation is necessary to
ensure success. First, nake sure that you have the latest version of SuperScripsit
(henceforth known as "SS'). As of 09/10/83, this was version 01.02.00 For the Mdel 3,
this version includes the LDOS patches for SSin a file called HARDDI SK/JCL. DA ng this

JCL file wll apply the patches to SS. As of 09/10/83, Radio Shack has not issued
patches for the Mddel 1 version of SS. Sonme testing has been done, and it seens to work
pretty well as-is on the Mdel 1 under LDOS. The first listing below is a patch to

allow directory query from inside SS when running on LDCS. Please don't call asking
about use of the Mddel 3 Dictionary, because LSI is not working on it. Contact Radio
Shack with any other questions regardi ng Mbdel 1 usage.

The next four listings are for the use of Mbdel 3 SS on the MAX-80. These patches will
"point" the SS printer driver to the proper MAX-80 address, and provide for special
character usage. The last two listings are for the nodification of the DW2 driver to
allow the linted use of LDOS drivers and filters on the *PR device, including the
RS232 dri ver. Simlar patches could be nmade to any other driver, based on the
information given here. These patches should work on both Mod 1 and 3 SS, but they have
only been tested on the Mbd 3 version.

Page 55

One last note-- if you are attenpting to use the ASCII to SS convert function, and
can’t seemto get SS to read your file, try adding a HEX 0ODOO sequence to the end of
your file. If you don’t have any sort of file editor, use BULD with the HEX and
APPEND paraneters to add these two bytes to your text file.

SCR17ML/ FI X

PATCH for Super SCRIPSIT version 01.02.00 MODEL 1 ONLY!!
This patch will provide directory query fromthe main SS
nmenu, as option <D>. This will not, however, appear on the
nenu, as there is no room

. patch SCR17/CTL
D00, 36=38
D00, 3C=D6 30 4F 06 00
D00, 42=63
D00, D0=37
D02, 4C="LDOCS
D02, A2=44 50 8D
end of patch

SSFI XES/ JCL
PATCHES TO CORRECT SUPERSCRI PSI T PRI NTER DRI VERS 01. 02. 00
. FOR MAX-80 ONLY!!
PATCH DWMP2100/ CTL (D01, 06=32 E8 37)
PATCH DMP2100/ CTL (D02, 95=3A E8 37)
PATCH DW2/ CTL (D02, 21=32 E8 37)
PATCH DW2/ CTL (D03, 35=32 E8 37)
PATCH DW2/ CTL (D02, 03=3A E8 37)
PATCH DWP410/ CTL (D03, 11=32 E8 37)
PATCH DWP410/ CTL (D03, 25=32 E8 37)
PATCH DWP410/ CTL (D01, F3=3A E8 37)
PATCH LP4/ CTL (D00, D0=32 E8 37)
PATCH LP4/ CTL (DO1, C4=3A E8 37)
PATCH LP8/ CTL USI NG LP8/ FI X
PATCH DMP400/ CTL USI NG DMP400/ FI X
all 32 E8 37 sequences are replacing D3 F8 00
3A E8 37 DB F8 00

LP8/ FI X
Patch for LP8/CTL Super SCRIPSIT printer driver 01.02.00
TO RUN ON MAX-80 ONLY!!!!

. CORRECT FOR NEW TOP OF DRI VER PO NTER
D00, A4=22 BE
. PATCH I N VECTOR TO QUTPUT DATA
D00, EF=C3 1E BE
. ALTER STATUS | NPUT TO PROPER LOCATI ON
D01, E6=3A E8 37
ADD NEW OUTPUT CODE
X BELlE =32 E8 37 C9

DMVP400/ FI X
Pat ch for DMP400/ CTL Super SCRIPSIT printer driver 01.02.00
TO RUN ON MAX-80 ONLY!!!!

CORRECT FOR NEW TOP OF DRI VER PO NTER

D00, Ad=46 BE
PATCH | N VECTOR TO OUTPUT DATA

Page 56

D00, FD=C3 1E BE
ALTER STATUS | NPUT TO PROPER LOCATI ON
D01, F4=3A E8 37
. ADD NEW QUTPUT CODE
X BE42' =32 E8 37 C9

Patch to MAX-80 SYSO/SYS for 5.1

This patch will change certain graphic characters to the
speci al characters used by Mod 3 Super SCRIPSIT. These graphic
characters will no longer be available for normal use, so only
patch a special disk for use with Super SCRI PSIT.

. insert "delta"

D06, 9F=00 00 08 14 22 7F 00 00
D08, A4=00 00 00 00 00 00 00 00
. "copyright"

D06, EF=3C 42 9D A1 Al 9D 42 3C
D08, F7=00 00 00 00 00 00 00 00
. " par agr aph”

D06, FF=3E 4A 4A 3A OA OA 0OA OA
D09, 07=00 00 00 00 00 00 00 00
. ()"

D07, 5B=FF E3 DD F3 F7 FF F7 FF
D09, 63=00 00 00 00 00 00 00 00

ROM JCL
This JCL will create an additional driver that uses the
*PR DCB vector to allow linmted use of LDOS DRI VERS and
FILTERS. Main use is to capture a "PRINTER | MAGE FI LE"
. Invoke with "DO ROV'.
COPY DW2/ CTL TO ROM CTL
PATCH ROM CTL USI NG ROM FI X
ITEXIT

ROM FI X

Patches to SuperScripsit 1.2 DW printer driver

t hese changes make the DW2 driver use the system
printer driver call to provide the 'hooks’ into
the system

Correct for new top of driver, as SuperScripsit
. maintains this pointer at |oad address X BB73’
DO, 8D=3D BF

previous contents were 35 BF

Ignore printer ready check, as systemdriver will wait
on printer not ready, and we don't want nmass quantities
of zeros in disk files. This will cause the system
to hang on *PR devi ce not ready

D02, 03=3E 30 00
previous contents were DB F8 00

Insert calls to patch area. This driver happens to have
. two out put sequences.
D03, 21=CD 35 BF
D03, 35=CD 35 BF

previous contents were D3 F8 00 (in both cases)

Now let’'s add the call to @RT. This is an X- PATCH so

that it extends the file. The address will depend on
the value found in the pointer at X BB73', here is the

Page 57

correct address for the DW2/ CTL driver.

X’ BF35' =D5 F5 CD 3B 00 F1 D1 C9
end of patch

To create a disk file of ASCII output---

ROUTE *PR to FI LESPEC/ EXT

enter SuperScripsit...

print the docunent (proportional wll function, but if used
the destination printer nust also be a D2, and the file
will be inordinately large.)

Now, you may exit to LDOS and RESET *PR

This patched driver could be in place at all tines, but then the system would hang on
printer not ready. Don’t forget to "block-adjust" if changing drivers.

MAX- 80 MEMORY MAP - by Chuck

or "Hey... where’d that go??"

The primary design criteria of LDOS for the MAX-80 was to enulate a Mddel |11 running
LDOS. Therefore, all of the docunented system entry points and storage areas HAD to
remain in the sane place as on the Mdel IIl. This included the places in the Mdel |11
ROM even though that area is RAM on the MAX-80. Many of you have asked where we put
t hi ngs, and if there are "safe" areas of nenory still wunused by the system and
available to the user. This article should describe where things are, where they

aren’'t, and where there is nothing.

To nmake things easier, let's define a couple of terns to indicate the different areas
of nenory on the MAX. LONROM will nean the area of nmenory fromO to 2FFFH. This is the

area normally occupied by the 1/0O drivers and the BASIC code on a Mdel | or IlI.
HROM wi Il mean 3000H to 3BFFH. On a Model 111, this is used for various things. On a
Model I, this area was partially unused, with certain nmenory napped addresses defined

here and there. VIDRAM is the area from 3COOH to 3FFFH, and represents the nenory
mapped video on both the TRSO's and the MAX-80 (nore on this later). SYSRES will refer
to the area from 4000H to 4DFFH.

To start things off, hardly anything was changed in LOAROM from 0708H to 2FFBH, as this
area contained the BASIC code licensed from Mcrosoft. The only thing done was to
change the cassette I/O entry points to provide an i mediate return. However, the area
from O000H to 707H (containing all the I/O drivers, SET and RESET, and sone other snall
routines) was radically changed, because this area in the Mdels | and Il ROM is
copyrighted by Tandy. Suffice it to say that we put the necessary code in the right
pl aces to nmake the machine work like a Mdel 111.

Currently, there are scattered areas in the LOMROM area that are not used by the
system However, these cannot be docunented because they are the nost likely areas to
be changed from version to version, and were during the devel opment that produced the
current 09/01/83 master. Anyone (other than us) that attenpts to use these areas is
crazy.

The interesting part of the MAX-80 is the HROM area. Since we didn't need to worry
about keeping anything in any particular place, there was al nbst 2.5K of useable nenory
avail able for us to play around with. Ecstasy! WIld dreanm ng! Wat to do with all that
RAM?? Wl |, here is what cane about.

3000H 30FFH

This area contains all the routines to access the hardware clock/calendar in the MAX
Near the very beginning is a short vector table to handle the entries to the keyboard
driver, @ATE and @l ME. The LBASIC TIME$ code is at the very end of this area.

Page 58

3100H 31FFH

This area contains about half of the floppy disk driver. The other half is up in the
nornmal place, starting around 4585H, just like on a Mbdel 11l. The code does not go all
the way to the end, but it come so close that there is not really any spare RAM that
shoul d be considered avail abl e for users.

3200H 35FFH

Here lives the keyboard driver, the type-ahead and the JKL screen print, plus the type-
ahead buffer. This is why no extra nenory is used when KI/DVR is set on the MAX-80.
There is spare nenmory near the end of this block. The type-ahead buffer stops around
35BFH. This | eaves approxi mately 64 bytes avail abl e.

3600H 36FFH
This is an area that is unused by the system except for two bytes at 36FEH and 36FFH.
It is normal RAM available for the user up to 36FDH.

3700H 37FFH

This is "slow' RAM and contains the nenory mapped |/O | ocations as docunented in the
MAX- 80 techni cal manual . None of the non-1/O locations in this area are used by the
system

3800H 38FFH

As defined in the MAX-80 technical manual, this area represents the keyboard matrix,
and is used as such. This area is the sane as the Mdels | and Ill, except for the

addi ti onal keys provided on the MAX-80.

3900H 3A6CH, 3A6DH 3BFFH

The first part of this area is sort of strange. It is used during booting, but can
| ater be used as regular RAM It is not used by the system once the boot has finished.
The second half starting at 3A6DH holds the driver for the LOBO hard disk controller.

It appears that the safe spare areas still available for the user are from around 35C0H
to 36FDH, and from 3900H to 3A6CH. However, be cautioned that if any patches to the
routines in the HHROM area need to be done, any patch code that has to be added will go
in this free area. Al so, there have already been some utilities witten by MAX-80
owners that use this region, such as MEMDI SK prograns. |If you are using one of these
utilities, check with the author before putting your own code in this region.

Now cones the large gray area referred to as SYSRES. This is an all enconpassing area
that contains the LDOS resident system and areas used by BASIC and LBASIC. Very little
had to be changed in this area on the MAX-80. Mst of what is different deals with the
interrupt handling. Like the Models |I and Ill, there is NO free space in this area.

One speci al area on the MAX-80 is the first area of HIROM from 3000H to 33FFH.
Al'though this is normal RAM under 5.1.3, it is also the same |ocation that the second
hal f of video menory occupies. This video menory is not used in LDOS, because the 16x64
format of the screen only requires 1K of video RAM and 3C00H to 3FFFH can be used.
When using an 80x24 video driver, the real RAM nust be tenporarily switched out and the
extra video nenory switched in to access the screen. From the earlier description of
what normally is kept there by LDCS, you can see the conflict. Those witing their own
drivers should take this into consideration.

. O

Page 59

Perform ng DATE conversions in BASIC

by Di ck Konop

There have been several requests to discuss date conversions in BASIC. In particular,
converting a date in the form MDD YY to its corresponding day of the year. The
following routine wll acconplish this type of date conversion. It will also take a
julian date (in the form -YY/DDD) and convert it to the corresponding date in the form
MM DD YY.

The routine is relatively straight-forward, and the Remark statenents serve as
docunent ati on. For those of you who are not interested in a full blown date conversion
process, consider lines 210 and 220. These two lines will determ ne the day of the year
usi ng the RAM Storage assignment of DAY$. Note that this date determ nation process is
only valid on LDOS-5.1, while the other date routine can be used with any version of
LDCS.

10 "This is the init routine. It nmust be run prior to using the date subroutine.
20

30 DM D(12): D(0) =0: D(1)=3l: D(2)=28: D(3)=3l:D(4)=30: D(5)=3l:D(6)=30

40 D(7)=3l:D(8)=3l:D(9)=30:D(10)=3l:D(11)=30: D(|2) =3l

| 50 ’

200 'Routine to conpute current julian date; DC=day of the year. This date is taken
202 'directly fromthe system Note that Mdel | owners shoul d use the addresses
203 ' X 4047' and X 4048

204

21 0 | F(PEEK(&H4418) AND 1) THEN DC=256 ELSE DC=0

220 DC=DC+PEEK(&H4417)

230

232 'The follow ng routine replaces the ever popular CVMD'J" conmand. The source val ue
236 'is passed in the variable JD$. It may be in the form"midd/yy", in which case the
238 'day of the year will be passed back fromthe subroutine. It may al so assune the
240 'form"-yy/ddd", in which case the subroutine will pass back the date in the form
242 ' W DD/ YY. Note that the value passed to the subroutine nust adhere to the syntax
244 'rules, otherwi se the subroutine will return the string "*".

252 ' The val ue of the subroutine (or error value) will be returned in the variable JC$
254

262 'To use this subroutine, the follow ng sequence of commands can be used:

265

270 LI NEINPUT"Enter date string (either MM DD/ YY or -yy/ddd) ";JD$

275 GOsSUB 300

280 PRI NT JC$: END

285’

300 "The first thing that is needed is to determne the type of val ue being processed
302 ' (i.e. nmmidd/yy or -yy/ddd)

305 LY=0 'reset |leap year to "off"

310 | F LEFT$(JD$, 1) <>"-" THEN 500 'goto 500 if nmidd/yy

311"

312 'Lines 320 - 370 check to see that a valid date string was passed to the

314 'subroutine, and return an asterisk (*) if a proper date string is not passed.
315

320 I|F M D$(JD$, 4,1)<>"/" THEN JC$="*": RETURN

325 | F LEN(JD$) <5 THEN JC$="*": RETURN

330 YR$=M D$(JD$, 2, 2) : CK$=YR$: GOSUB 1000

340 I F CK=-1 THEN JC$="*": RETURN

350 DY$=M D$(JD$, 5) : CK$=DY$: GOSUB 1000

360 I F CK=-1 THEN JC$="*": RETURN

365 | F I NT(VAL(YRS$)/4)=VAL(YRS$)/4 THEN LY=1

370 | F VAL(DY$) =0 OR VAL(DY$)>365+LY THEN JC$="*": RETURN

371

372 'LY=1 if leap year. February (D(2)) nmust be adjusted accordingly

373"

Page 60

375 D(2)=D(2) +LY
380 DY=VAL(DY$)

381
382 'DY contains the day of the year passed to the subroutine. The nonth is detern ned
383 'by subtracting the nunber of days in each nonth fromthis value until it is |ess

385 '"than or equal to the nunber of days in the next nonth. DY will contain the day of
386 "the nonth, while L represents the nonth.

387

389 FOR L=1 TO 12

390 | F DY<=D(L) THEN 400

395 DY=DY-D(L): NEXT L

396

397 ' Lines 400-450 formthe date string given the year (YR$), the nonth (L), and the
398 'day of the nonth (DY).

399

400 JC$=" | [/

405 M D$(JC$, 7) =YR$

410 VT$=M D$(STR$(L), 2): I F LEN(VT$) =1 THEN VT$="0"+VT$

420 M D$(JC$, 1) =VT$

430 VT$=M D$(STR$(DY), 2): I F LEN(VTS$) =1 ThEN VT$="0"+VT$

440 M D$(JC$, 4) =VT$

445 D(2) =28

450 RETURN

455

460 ' Li nes 500-630 deternine the day of the year given the date in the form WM DD YY.
470

472 ' Lines 500-600 performa check to see that a valid date string was passed to the
476 'subroutine, and return an asterisk (*) if an inproper date val ue was passed.
478

500 | F LEN(JD$) <>8 THEN JC$="*": RETURN

510 FOR L=3 TO 6 STEP 3:1F M D$(JD$, L, 1)<>"/" THEN JC$="*": RETURN

520 NEXT L

530 MvB=M D$(JD$, 1, 2) : DD$=M D$(ID$, 4, 2) : YY$=M D$(ID$, 7)

540 CK$=Mvb: GOSUBL1000: | F CK=-1 THEN JC$="*": RETURN

550 MMVEVAL(MMB): I F M1l OR MVW12 THEN JC$="*": RETURN

560 CK$=YY$: GOSUBL1000: | F CK=-1 THEN JC$="*": RETURN

570 I F I NT(VAL(YY$)/4)=VAL(YY$)14 THEN LY=1

580 D(2)=D(2)+LY

590 CK$=DD$: GOSUB1000: | F CK=-1 THEN D(2)=D(2)-LY: JC$="*": RETURN

600 DD=VAL(DD$):|F DD<1 OR DD>D(MV) THEN D(2)=D(2)-LY:JC$="*": RETURN

602 ’

603 'After checking is done, day of the year is calculated, and returned in var JC$
605 ’

610 JC=0: FOR L=0 TO MM 1: JC=JC+D(L) : NEXT L

620 JC=JC+DD: JC$=M D$(STR$(JC), 2)

630 D(2)=D(2)-LY: RETURN

890

900 'This routine checks to see if all characters in a string are numeric, and returns
910 'a -1 in CK if non-nuneric characters are found.

1000 CK=0: FOR LL=1 TO LEN(CK$)

1010 A=ASC(M D$(CKS$, LL,1)): I F A<48 OR A>57 THEN CK=- 1: RETURN

1020 NEXT LL: RETURN

LES | NFORVATI ON

by Les M kesel |
This colum wll cover the differences the @PARAM function between LDOS 5.1 and

TRSDOS/ LDCS 6.x, and also explain a few details about how the system accesses a disk
drive the first time when the systemis powered up.

Page 61

Under LDOS 5.1, the system paraneter scanner (@ARAM wll read a list of input values
typically from the command Iine, and store the parsed value of each input at a
specified |l ocation. The use of the function is as foll ows:

HL => opening parenthesis of input |ist
DE => table of paraneters

CALL @PARAM

The Z flag will be set if successful

The input list is in the famliar syntax of all LDOS command paraneters, the paraneter
nane optionally followed by an ’'equals’ sign and a value. Nuneric values nay either be
deci mal nunbers or hex values using the X notation. The values ON, Y, YES, (or the
name with no value specified) return an X FFFF' or TRUE for the response. OFF, N, or NO
will return O as the response. String values enclosed in quotes return the address of
the first character of the string. If a paraneter is not given, the value stored for
the response i s unchanged.

The table of paraneters is arranged in the follow ng manner:

Par amet er nane (Uppercase and padded to 6 characters wi th spaces)
Address to store response val ue (2 bytes)

....repeat for all paraneters...

X 00 at end of Iist

TRSDOS/ LDOS 6.x versions will also support an identical type of @PARAM using the SVC
functions.

HL => inputs
DE => table
LD A, @GPARAM
RST 28H

The 6.x version can also use a different type of paranmeter table structure which can be
nore conpact and gives nore information about the type of input. If the first byte of
the paraneter table is X 80, the alternate structure is used

X 80 indicate alternate structure

Type and | ength byte:

bits 5-7 indicate type of response desired
bit 4 if set, accept abbreviated response
bits 0-3 indicate | ength of paraneter nane

paranet er nane foll ows (uppercase)

Response byte - filled by paraneter scanner

Bit 7 set indicates numeric val ue found

Bit 6 set indicates flag parameter found (yes/no/on/off)
Bit 5 set indicates string paraneter found

Bits 0-4 = |l ength of paraneter found

2 byte address to store the paraneter val ue
repeat for all paraneters
X 00 to indicate end of list

The setting of bits 5-7 in the type and length byte will not cause an error if the
wong type of input is given, but does forma convenient mask to test the response byte
after the @ARAM SVC is executed. Using the newer type of paraneter table allows the
program to determne the type of input given at run-time, which neans that nuneric
values of 0 and X FFFF can be distinguished from the '"flag’ type of response, and a

Page 62

program can be made to handle string or nuneric inputs for the same paraneter. The
"accept abbreviation’ bit in the type byte nmeans that the entry does not have to be
repeated to allow an abbreviated form of the sane entry, and the ’'length’ field avoids
the wasted space of padding the entries to a fixed number of characters. The bit fields
of the type and length byte are easily constructed using the logical 'OR function of
an assenbler to nmerge the fields.

For exanpl e, to accept a nuneric value for a paraneter called SIZE, and allow
abbrevi ation, the assenbler listing could be:

ABB EQU 10H ; define bit 4 for abbreviation

MUM EQU 80H ; define bit 7 for numeric input

TABLE DB 80H ; <=indicate start of table
DB NUM OR. ABB. OR. 4 ;construct type & length byte
DM ' Sl ZE

SRESP DB 0 ; <-response type byte
DwW SPARM ; <= address to store response val ue
DB 0 ; <=indicate end of table

SPARM DW 0 ; <-response value will be placed here

The above syntax is for the EDAS assenbler; others may use different notation for the
"OR function. After using the @ARAM SVC, the program can check the contents of SRESP.
If bit 7 is set (indicating a nuneric response), then SPARM w ||l contain the val ue that
was given. If anything other than the parameter SIZE (or an abbreviation) and its val ue
is found in the input list, an error will be generated and the function will return
with the Z flag reset.

Car ef ul observers may note that the first access to a disk drive (other than drive
zero) is generally much slower than subsequent accesses. The reason for this effect
lies in the fact that the disk controller must be told the current head position as
well as the desired destination track in order to position the head for a read or
wite. The head position for each drive is one of the values stored in the systemdrive

code table (DCT). However, on the first access to a drive after the system has been
re-booted, there is no way to determ ne the current head |ocation. Thus, the controller
will generally be given the wong information, and will not find the requested sector

on the first attenpt.

When this occurs, the disk driver will automatically issue a RESTORE command to the
disk controller, which wll force the head to go to track zero, regardless of the
current position. Then, once the actual position is established, the controller is able
to calculate the correct nunber of steps to reach the desired track on the next try. An
addition conplication is introduced by the auto-density recognition built into the disk

drivers. This is acconplished by performing re-tries after an error in alternating
densities. Thus, the first attenpt after establishing the head position nay be done in
the wong density, and another re-try will be required. The correct settings are |ogged

into the DCT, so subsequent accesses will be correct.

The TRSDOS 6.0 system attenpts to avoid this problem by issuing the RESTORE conmand to
each drive that is enabled when the system is booted. (This may be made optional in
| ater releases.) This ensures that the current head position is known at all tines.
However, the RESTORE conmmand takes a significant anount of tine to conplete if it is
issued for a drive that is not actually connected. Since the default setting for the
systemis to have 4 drives enabled, and nost machines are only equipped with 2, there
is a very noticeable delay as the systemis booted. This is easily avoided by using the
SYSTEM (drive=d, di sable) command to disable the drives which are not available. Then
SYSGEN this setting (along with any other desired configuration), and boot-up wll
occur without the delay. Disabling the unused drives will also speed up gl obal searches
where a drive nunber is not specified for a file.

Page 63

Vi ew From Bel ow t he Bottom Fl oor

Since we did not wite the TRSDOS 6.x nmanual ourselves, it turns out that there are
sever al undocunented features that users may be interested in. We'll throwing in sone
ot her optional patches to the newer TRSDOS 6.1 rel ease at the same time. Also, a patch
for the 5.1.4 disk driver, as explained |ater.

To start things off, 6.x has a built-in Repeat Last DOS Command. <CTRL><R> wi |l reissue
the last DOS command. This is only valid at the DDS Ready pronpt.

Want to do a directory display of nore than one drive, but not all drives? Wth 6.x,
try the syntax:

DR :2- Show al |l drives 2 or higher.
DIR :1-:3 Show drives 1, 2, and 3.
DR -:1 Show drives 0 and 1.

Here is a patch to the FDC driver for both 6.1 and 5.1.4 that will help alleviate the
300 RPM sync problem and give snoother disk 1/O However, it disables the interrupts
longer, so things |ike type-ahead, LCOW and the spooler will not work quite the sane
during disk /O For TRSDOS 6.1 ONLY, NOT for the original 6.0 rel ease!

. Patch BOOT/ SYS. LSI DOS

DOC, 7D=F3 DB FO A3 28 FB ED A4
FOC, 7D=DB FO A3 28 FB ED A2 F3
DOD, D1=F3 DB FO A3 28 FB ED A3
FOD, D1=DB FO A3 28 FB ED A3 F3

ECP

For 5.1.4 for the Mddel III, use the follow ng:
Pat ch SYS0/ SYS. SYSTEM

D05, 5B=F3
ECP

This patch will correct the FREE map display for TRSDOS 6.x when viewing a hard drive:

Pat ch SYS7/ SYS. LSI DOS
D05, 38=C5 CD 4F 26
FO05, 38=CD 4F 26 C5

This patch to TRSDOS 6.1 will lengthen the drive check timng to be sure of finding a
specified file on the first pass of a drive:

Pat ch SYS2/ SYS. LSI DOS
D00, E6=1F
FO0O, E6=15

For those of you who would like TRSDOS 6.1 to normally display the directory in the
allocation (wide) format, use the follow ng patch to SYS6:

. Patch SYS6/ SYS. LSI DOS
D04, BO=FF FF
FO4, BO=00 00

And last but not least... W have had many requests for a patch to change the REMOVE
Li brary command back to the old famliar KILL. For all you do, this patch’s for you:

Pat ch SYS1/ SYS. LSI DOS

D01, CB=48 49 4C 4C 20 20
FO1 CB=52 45 4D 4F 56 45

Page 64

THE WAIT IS OVER

CP/M

EXCLUSIVELY FOR THE

""Model 4

Now, for the first time, unleash the powerful features resident in your Model 4 computer. Open up the vast store of CP/M
software such as Wordstar®, dBASE Il and Multiplan™, along with thousands of others.

e Includes INTERCHANGE™, a utility that allows
reading, writing and copying 20 different
manufacturer's disk formats such as IBM, KAYPRO,
OSBORNE, XEROX, etc.

e Includes MEMLINK™, a unique feature that uses the
optional 64K RAM memory as a fast disk drive.

e Complete with all these CP/M utilites: ASM, DDT,
DUMP, ED, LOAD, PIP, STAT and SYSGEN.

* Operates at the 4Mhz clock in the standard Model 4
mode.

* NO HARDWARE MODIFICATIONS. Just insert the disk
and boot.

* NO COPY PROTECTION. Backups may be made for
your own use and protection.

* The CONFIGURATION program supports a full range of
5-1/4" disk drives: 35, 40, 77 and 80 tracks, single and

dual sided in any combination as well as the standard
Model 4 drives.

AVAILABLE NOW FOR IMMEDIATE SHIPMENT

e Includes MODEM7, a powerful public domain
communications program for file transfer and remote
data base access such as Compuserve and the
Source.

* Supports 80 x 24 video, reverse video, direct cursor
addressing and more.

» Utilizes the Model 4 function keys and allows user
defined keys.

» Auto Execute command for turnkey applications.

* FORMAT utility permits up to 52 disk formats to be
constructed, all menu driven.

» Fast backup routine with verify for mirror image
copies.

» All support programs are menu driven for ease of use.

* Ready to run in the standard 64K Model 4. The
additional, extra cost, 64K RAM upgrade not required.

» Complete with over 250 pages of comprehensive user
documentation.

... $199.95

The full line of MicroPro software is now available for the Model 4 using our CP/M. Each disk is already configured and ready to run. Just

install the printer of your choice and go.

WordStar ® Fast Memory-mapped version....................
MailMerge ® Multi-purpose file merging program..
SpellStar ® 20,000 word proofreader on a disk......
Starlndex ® Creates index and table of contents ..
WordStar Professional. All the above for only..................

ORDER INFORMATION

InfoStar ® Advanced DBMS
ReportStar ® Report generator & file manipulator
DataStar ® Data entry and retrieval package
SuperSort ® Fast and flexible sorting is yours...
CalcStar ® Advanced electronic spreadsheet

128K MEMORY UPGRADE

Call now and your order will be shipped at once from ORDER NOW ... TOLL FREE Our upgrade includes 64K of 150 nsec RAM, genuine
our Dallas warehouse. We accept American Express, PAL® chip and instructions for installation. This kit
MasterCard, Visa and most any other form of 800_52 7_0347 will upgrade your 64K Model 4 to 128K and allow the
payment known to man. Credit cards are not charged use of our MEMLINK and TRSDOS 6.x MEMDISK.

until your order is shipped. Add $4 UPS surface

Comes with a full 1 year warranty.

shipping and handling on orders within the 48 states.
No State Sales Tax on software or shipments 800-442- 13 10 A BARGAIN AT ONLY $99.95

delivered outside of Texas. No refunds. Defective
items are replaced upon return, postpaid.

The Toll Free lines are for orders only.
Specifications subject to change without notice. ©Copyright Montezuma Micro 1983

CP/M is a Trademark of Digital Research, Inc.; Interchange and Memlink are Trademarks of Montezuma Micro; TRS-80 is a trademark of the Tandy Corporation; WordStar,
MailMerge, SpellStar, Starindex, InfoStar, ReportStar, DataStar, SuperSort and CalcStar are Trademarks of MicroPro International Corporation. Multiplan is a Trademark of

Microsoft.

NONTEZUMA

ra RS AT
"ll:h- daprt, g & {8
b ifis AT

D.l.n Tenss 72210 B
"WE KEEP YOU RUNAING | ig |

