* % * NOTICE * * *

* % % WARRANTY * * *

This software program(s) is warranted to perform as docunented when used on
the specified hardware operating under the specified disk operating system as
shown on the acconpanyi ng docunentation. If within 90 days of the date of pur-
chase the programis found to be defective due to a bug in the code, the pub-
lisher will, upon request, provide a patch to correct the bug or will update
the program diskette with a corrected copy within a reasonable tine period
after return of the program diskette to the publisher. If within 90 days of
the date of purchase the docunmentation proves defective due to m ssing pages,
the publisher will provide substitutes for the m ssing pages upon request.

The publisher shall have no liability or responsibility to the purchaser or
any other person, conpany, or entity with respect to any liability, |oss, or
damage caused or alleged to have been caused by this product, including but
not limted to any interruption of service, |oss of business and anticipatory
profits, or consequential damages resulting fromthe operation or use of this
program

* * * ATTENTI ON * * *

Thi s program package is copyrighted with all rights reserved. The distribution
and sale of this programis intended for the personal use of the original pur-
chaser only and for use only on the conputer system noted herein. Furthernore,
copying, duplicating, selling, or otherwise distributing this product is
expressly forbidden. In accepting this product, the purchaser recognizes and
accepts this agreenent. The purchaser is entitled to nmake as nmany working
copies of this disk as is needed for his or her personal use.

M SQOSYS, | nc.
P. O Box 239
Sterling, Virginia 22170-0239

703-450-4181

MC C- Language Conpil er

Ref erence Manual

Copyright (C) 1985 by M SOSYS, Inc., Al rights reserved

Reproduction in any manner, electronic, nechanical, magnetic, optical,
chem cal, manual, or otherw se, without witten perm ssion, is prohibited.

Publ i shed by:

M SCOSYS, | nc.

P. O Box 239
Sterling, Virginia 22170-0239

703-450- 4181

x ATTENTI ON* * *

The MC conpiler can be used to generate any software product, commercial or
ot herwi se, without paynent of any royalties to M SOSYS, with the exception of
the followi ng: when MC is used to generate another conpiler product, no part

of the MC-supplied libraries may be included in the run-tinme support of the
generated conpil er.

MC conpi |l er:
Copyright 1985 R N. Deglin, Al rights reserved.

MC Libraries (LIBA/ REL, CLIB/REL, MATH REL, | N REL):
Copyright 1985 R. N. Deglin and M SOSYS, Inc., Al rights reserved.

MC is a trademark of M SOSYS, Inc.

LDOS is a trademark of Logical Systens, Inc.

TRS- 80 and TRSDCS are trademar ks of Tandy Corporation.
UNI X is a trademark of Bell Tel ephone Laboratori es.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

| nt r oducti on

Congratul ati ons! You have purchased the finest C conpiler package available
for your machine environnent. MC will prove itself to be a val uable investnent
of your software dollars. Thus, before diving into MC, we suggest that you
foll ow the gui dance expressed in the follow ng paragraphs.

Read the entire introduction to get an idea of what MCis all about. This will
provide an i measurable insight into the C programm ng power available to you
with the MC conpiler. It nay also help you understand the content of the re-
mai ni ng chapters.

MC requires the use of a macro-assenbler that generates M crosoft conpatible
rel ocatable object nodule files. An assenbler is not included with the
conpi l er package. You may have purchased the M SOSYS "Relocating Macro
Assenbl er Advanced Devel opment Systent (MRAS) or Mcrosoft's M 80 assenbl er.

If you have neither, you will not be able to use the conpiler package until
you obtain a copy of either MRAS or M80. C source code is prepared using the
editor which is included with your assenbl er package.

Make backup copies of the MC distribution diskette to use as a working master.
The conpil er package is released on a 40-track double density DOS data disk-
ette. This diskette contains all of the files associated with the conpiler. W
suggest that you nake one set of archival backups and store them away in a
secure area (safe fromdust, dirt, nmagnetic fields, etc.). Then nake a worki ng
backup of the distribution diskette. The procedures for naking backup copies
can be located in the UTILITY section of your DOS user manual under "BACKUP".
If you are going to use MC with MRAS, delete "MJ MAC' and "MCMACS/ MAC' from
the working disk. Conversely, if you are going to use MC with M 80, delete
"M ASM' and " MCMACS/ ASM' from the working disk.

If you are using MC on a two drive floppy system you will have to create a
DOS system di skette with a nmaxi num of free space. Using the DOS PURGE utility
on a fresh backup of DOS can create this “working system disktte”. You may
remove all files except SYSO-SYS4, SYS6, SYS8 (SYS8 can be rempved from TRSDOS
6.x), SYS10-SYS12.

A 40-track double density mninmal system di skette per the above has about 144K
free. Copy your assenbler, linker, and editor from your assenbler disk. Then
copy the MCZJJCL file and the conpiler command files fromthe working backup to
this system diskette. If there is still space left on your system disk, copy
some of the other files fromthe work disk. You will not be able to copy all
of the files; in fact, nmost will still be on the working disk. If your nmachine
has 128K and you are using a RAMIi sk, you will find it beneficial to copy the
library /REL files to your RAMIisk. Once this is done, renpve the files from
the working data disk that were copied to the system disk. This should |eave
wor ki ng space on the data diskette in your second drive for C source files and
the files generated during the programmi ng session.

Notice that MC requires a two-drive system In fact, you may find it prudent
to use MC on a three-drive system - or one using two-sided drives - or even a
hard disk environnent. If you have gotten this far, continue to read this
chapter and di scover everything that MC provides you.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

MC Provided Fil es

MC is a conplete C conpiler. It adheres to the "standards" expressed by Brian
Kerni ghan and Dennis Ritchie in their book, "The C Programm ng Language". MC
i ncludes an extensive UNI X System V conpatible function library. Al you need
to generate executable CVMD prograns is a nmacro assenbler that generates
M crosoft conpatible relocatable object nodules. There are many files on your
distribution diskette. In fact, in order to nmake room for all of the files,
the header files have been nerged together into a single-source archive file.
The following C program (which may be on the disk, space permtting) wll
separate the archive into the individual header files:

/* unarc.ccc - 11/29/85 */
char aline[81];
mai n()

while (gets(aline))
if(!strncnp(aline,"/*%,3) && gets(aline))
if (!freopen(strcat(aline,":3"),"w', stdout))

exit(-1);
el se

fputs("\nGenerating: ",stderr);
fputs(aline,stderr);

el se puts(aline);

}

Once you have established your working conpilation and assenbly system the
unarc program should be typed into a file named "unarc/ccc". You may change
the ":3" which appears in the sixth line of unarc to specify which output
drive the header files should be witten to. Then conpile unarc with the DO
command: "DO MC (N=UNARC)". After the command program has been successfully
created, invoke unarc with the commnd:

UNARC <HEADERS. H

Here is a description of all of the files provided with the MC C conpil er sys-
tem The description for the files provides their uses:

ERRNO' H

This header file supplies the constants associated with the UNI X error num
bers. It also defines the exception structure used in the high-level math
function error trapping.

FCNTL/ H

This header file supplies the definition of the constants required for using
the open() or fcntl () functions.

HEADERS/ H

This is the actual file where all of the header files are stored on the re-
| ease diskette. The header files are separated into distinct files by the
"unarc/ccc" utility.

I N/ REL
The installation function library is contained in this relocatabl e object nod-

ule library. These functions supply graphics plotting, BASIC type string nma-
ni pulation, a DOS call facility, and other hardware specific features.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

LI BA/ REL

This rel ocatabl e object nodule library contains all of the lowlevel routines
needed to service mathematical operations and perform other nmmintenance func-
tions. None of these routines are directly available to the C progranmer at
the function level. Any that are needed by your program are automatically
added to the resulting executable conmand file during the Iinking process.

LI BC REL

This rel ocatabl e object nodule library contains the standard function library.
It is an inplenentation of the portable library avail able under npst installa-
tions of C conpilers. These functions allow prograns to be witten which wll
be directly usable under other C |anguage systens that have the standard
library available. The standard functions perform such tasks as character and
bl ock file input/output, dynam c nenory allocation, system control, formatted
i nput and output, and string handling. The standard |library was designed to be
conpatible with the standard library documented in AT&T's "System V Interface
Definition" for the UNI X operating system

MATH H

This header file defines the error constants used in low level math errors as
well as declares all of the math functions as externs with the proper type. It
al so specifies the "#option MATHLIB" needed to direct an automatic search of
the MATH REL library during the |inking process.

MATH REL

This rel ocatabl e object nodule library contains the high level floating point
function library. It includes the trigononetric library (sin, cos, tan, asin,
acos, atan, sinh, cosh, tanh), functions for logarithm and exponential, square
root and power, and other high | evel nathematical operations. Also irluded is
the support for exception error handling as well as floating point formatted
print and scan.

MC/ ASM or MC/ MAC

This file is the primary assenbler source file assenbled by MRAS or M80. It
accesses your "mmin" program and establishes the necessary interfacing between
your program and the runtinme nodul es needed to nake a "conplete" executable
CVD program

MC/ CVD

This is the root segment of the MC | anguage conpiler. MC accepts, as input, C
source code files, and outputs an assenbly source file. In order to organize
files in a structured manner, MC source code files have a file extension of
"/ CCC"; output assenbler files have a file extension of "/ASM or "/MAC' de-
pendi ng on a conpil er option

M JCL

This is a Job Control Language DO file which is used to turn the nulti-step
process of generating an executable programinto a single conmand |ine invoca-
tion.

M OVl

This is the conpiler overlay which perfornms the preprocessor phase of the com
pilation process. It wll generate an internediate file which contains a
t okeni zed transformati on of your C source file.

MC/ OV2

This is the conpiler overlay which reads the tokenized preprocessor output and
performs major parsing of the C source. The internediate file is then del eted.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

MC/ OV3

This is the conpiler overlay that generates the assenbler output file based on
the internedi ate processing of MJ OV2.

MCMACS/ ASM or MCVACS/ MAC

This file contains the "#option" defaults and assenbly |anguage nmcros re-
ferred to by the conpiler and used by the assenbler. The assenbler always
automatically accesses this file when assenbling the MCJ/ ASMor MO MAC file.
READVE/ TXT

This file contains |ast mnute docunentation not contained in the manuals. It
should be listed via the DOS's LI ST command for reference.

SETIMP/ H

This header file defines the environment buffer associated with the setjnp()
and | ongjmp() functions.

SGITY/ H

This header file defines the structure associated with the use of the ioctl(),
stty(), and gtty() functions.

STAT/ H

This header file defines the structure and synbolic constants associated wth
the fstat() function.

STDIQ' H

The standard 1/O header file supplies constants and definitions which are
needed to use the standard I/Olibrary.

TIME/ H

This header file defines the data structure associated with the asctinme() and
| ocal time() functions.

Z80REGS/ H

This header file defines an easy to use structure for passing data to or from
the machine's registers for use with the call() function.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

MC Envi r onnent

MC was designed to be conpatible with C programs witten and intended to run
under UNIX. Thus many features of UNIX were incorporated into the design.
These features include standard |/O devices, standard |/O redirection, device
i ndependence, command |ine argunents, wld-card file specifications, dynamc
nmenory al l ocation, and a consistent systeminterface.

To make C a portable |anguage, the interface within a programto the external
world is isolated in a standard library. A programwitten in C using only the
standard functions to perform input, output, and menory allocation can be
transported in source code form to another system reconpiled, and run wth
m ni mal changes. The MC system includes a standard library that is conpatible
with prograns devel oped under UNI X System V. Thus, prograns devel oped under
your DOS with MC will be conpilable under UNIX as well. The reverse is also
true, except in cases where features not inplenented in MC are used in the
program devel oped under UNI X

The MC file system supports two nethods of UNI X-type access. The first is con-
ceptually called buffered 1/0O and concerns itself with file streans. The iden-
tification of a file streamis via a FILE PONTER Streans are accessed with
functions such as: fopen(), getc(), putc(), fprintf(), etc. The second type is
conceptually called unbuffered lowlevel I/0O and is generally a direct access
to the DOS. W will termthis type "block file" I/0O The identification of
block file I1/Ois via a FILE DESCRIPTOR and the I/O is accessed via functions
such as: |seek(), read(), wite(), open(), etc. The DOS in this inplenentation
general ly buffers either type.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

St andard | nput/ Qut put

Any program generated by MC will normally have three files automatically
opened when the program begins execution. These files are standard input,
"stdin" (normally the console keyboard); standard output, "stdout" (normally
the console display); and standard error, "stderr" (nornmally the console dis-

pl ay). The program can access these files w thout opening them by using stan-
dard library functions since the C standard library automatically opens these
standard files. They are also automatically closed when the programis exited
as well. Thus, the program which uses the standard 1/0O files exclusively can
deal with input and output and | eave the opening and closing to the C standard
library.

File specifications usually have a filenane field, an extension field, and a
drive field. They may also carry a password. Since sone operating systens use
the slash "/" character to denote the beginning of the file extension while

others use a dot ".", the MC file system accepts either. In this way, your
progranms may include file specifications such as

#i ncl ude "stdio. h"

whi ch makes your source nobre transparent to UNIX [If you w sh, you may also
enter a file specification using the slash separator. This acceptance of the
dot is true everywhere a file specification can be entered throughout MC. The
limtation is that a file specification nust contain an extension field if it
contains a password field. Thus, "YOURFILE. PASSWORD" is an invalid file speci-
fication whereas "YOURFI LE. DAT. PASSWORD" is valid.

MC conpil ed prograns can al so nake use of the wildcard file specification ex-
pander. The incorporation of the wldcard expander is specified at conpile
time by a conpiler #option. Wth this option installed, a filespec command
line entry can use the wildcard characters "*" to indicate an automatic match
of the remmining portion of the field and "?" to indicate an automatic match
for all characters in this character position.

Wl dcards allow you to performan operation on a group of "matched" files on a
single disk drive or on all disk drives. The w | dcard expander searches a des-
ignated drive or drives and expands the command line argunment I|ist (argc,
argv) to include all file specifications that match your wildcard specifica-
tion. This facility is detailed under conpiler options.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Standard 1/ O Redirection

The UNI X system characterizes three standard files: standard input, standard
out put, and standard error output. The standard 1/O files normally operate to
and from the user's console. Under your DOS, these are usually defined as the
"*KlI" (keyboard) and "*DO' (video screen) devices. However, a facility is in-
herent within the MC standard library to permt you to redirect the standard
1/O devices - thus the term"I/O redirection". The user can give a device or
file specification that will be used in place of the normal specification when
a standard file is opened. This is done on the DOS command |ine when the user
i nvokes the program

When the left angle bracket synbol, "<", appears on the command |ine, followed
by a file specification, that file specification is used when the standard in-
put file is opened. Simlarly, the right angle bracket symbol, ">", causes

substitution of the standard output file specification, the ">>" causes stan-
dard output to be appended to the redirected file/device, and the number sign
synbol, "#", causes substitution of the standard error file specification.
Spaces are pernmtted between the redirection character and the file specifica-
tion.

It may not be inmmedi ately obvious how this feature can be used. Here is an ex-
anmple C programthat illustrates the straightforward use of standard 1/0O redi-
rection. The follow ng program can be used to copy any file to any other file
(remenber that "file" can be any device or DOS disk file).

/* CLONE - copy standard input to standard output */
#i ncl ude stdio.h

int c;

main ()

while ((c = getchar()) !'= ECF)
put char (c);
}

The exanple program sinply copies the standard input to the standard out put
until end of file is reached. Once this program is conpiled, assenbled, and
linked, it can be used to copy any file to any other. For exanple:

CLONE <CLONE/ CCC
will display the file "clone/ccc" on the system consol e. The conmmand:

CLONE >*PR

lets the user type to the systemprinter. If disk file copying is needed, the
comrand:

CLONE <I NFI LE/ ASM 1 >QUTFI LE/ BAK: 2
will copy the file "INFILE/ASM 1" to the file "OUTFILE/ BAK:2". |f the user
wi shes to have a printed log of any error nessages that a program puts out,
use sonmething like :

MC TESTLI B #*PR

Any nessages that MC outputs to the standard error file will be redirected to
the printer device in lieu of the consol e display.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Command Li ne Arguments

VWen a C program is invoked, the conmand line is parsed into a list of argu-
nents. A single argunent is represented by a continuous string of nonwhite
space characters surrounded by white space. At a mininum a conmmand invocation
will have one argunent - the program nane itself. The list of argunents is
passed to the executing program through the "argc" and "argv" argunents of
mai n() .

"Argc" is an integer that contains the nunber of argunents while "argv" is an
array of elenments, each elenent of which is a pointer to a character string.
These argunents will usually be declared as:

mai n(argc, argv)
int argc; char *argv[];

providi ng your programw th a nethod of recovering various data entered on the
command line by the invoker. Command |ine argunents to a C program may be en-
closed in single or double quotes. This allows the inclusion of special char-
acters and whitespace in an argunent. The quotes are stripped before the
argument is passed to main(). To include a quote in an argument, precede it
with a backslash "\". To include a backslash, use a doubl e backslash "\\".

For exanple, in a command |ine such as:
PROCESS | NPUT/ DAT: 3 TEMPY/ TXT: 5 +O=:7 -L "+C=This is a nessage"

six argunents will be passed to main() and "argc" wll be equal to 6. If
mai n() was the program

mai n(argc, argv)

while (argc--)
put s(*++argv) ;

}
it would output the strings, "PROCESS', "INPUT/DAT:3", "TEMPY/TXT:5", "+O=:7",
"-L", and "+C=This is a nessage". Note that the latter argument is a text
string having inbedded blanks; this is permtted when the command |ine argu-
nment is enclosed within quotes. Any redirection specifications will be proc-
essed before the command |ine argunents and will not appear in the argunent

list.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

St andard Header Fil es

Standard header files are files that contain definitions peculiar to a sygem
They usually take the form of "#define" statenents and "extern" statements
within the header file. In order to use certain libraries, a corresponding
header file should be included (using the "#include" statement). The file
extension of "/H' is used for MC header files to be consistent across versions
of UNI X and ot her systens sporting C conpilers.

A program to be conpiled and linked with MC should usually have the file
"STDIQ' H' included to conpile properly. STDIOH also defines various system
dependent paraneters, such as end of file (EOF) and end of line (EOL). The
FI LE PO NTERS <stdout>, <stdin> and <stderr> are addresses in the standard
library which do not need to be defined before use; however, the FILE DESCRI P-
TORS <STDI N>, <STDOUT>, and <STDERR> are defined in the header file.

MC i ncludes many header files that are standard under UNI X. These files con-
tain synbolic definitions of constants used in various functions in the stan-
dard library. It is essential that you use the synbols defined in the header
files when noted in the docunentation for the functions. Do NOT exract the
synbolic constant's value and use the nunber in your program Nurbers are not
necessarily portable across C installations; however, the synbolic NAMES are a
part of the AT&T definition and are portable! Thus, by using the synbolic
names defined in the appropriate header files, you will mnimze any conflict
in portability, not to mention conpatibility with future releases of this
conpi |l er package. Any header file required by a function is docunented with
the function needing it.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Function Libraries

Commonly used functions are collected into FUNCTION LIBRARIES. The functions
inalibrary can be used by the programrer without the need to rewite, recom
pile, or reassenble the functions needed. Once a C program has been conpil ed
and assenbled, it can then be conbined during the link phase with the func-
tions it requires. Only those functions necessary for the execution of the
program are |inked to the conpiled program

Certain functions required by many progranms are included in a special library
call ed the STANDARD LIBRARY. The standard library is the conmmon denom nator
among all C language installations. Programs witten using functions in the
standard library are easily transported to any other conmputer supporting a C
| anguage system with the standard library inplenented. The npbst inportant as-
pect of the standard library is that it allows the details of each systens
pecul iar operating environnent to be hidden from the programmer's view. The
standard library provides the functions for input/output, nenory allocation,
and character set mani pul ati ons.

VWhat is typical in UNIX installations is to have the standard functions
"callable" fromCin a library naned "LIBC'. In addition, a collection of sub-
routines used by the conpiled C program to perform basic operations but not
directly callable from C is contained in a library naned "LIBA'. MC follows
these standards. MC also incorporates the high-level math functions into a
"MATH" library as is also found under UNI X systens.

Users can also create their own collections of often-used functions that can
be used in the same manner as the standard library. These USER LIBRARIES re-
duce the progranming tine, conpilation time, assenbly time, and program com
pl exity necessary in creating new progranms. Functions, once defined, witten,
and tested, can be added to the user library and need only be referred to by
name in |later prograns. The linking process brings the functions into subse-
quent progranms w thout the need to reconpile and reassenbl e.

Rel ocat abl e obj ect nodule libraries are created and nmintai ned using the M.IB
librarian. This facility is included with the MRAS assenbler package or is
avail able separately for M80 users. You can even build a user library with
the APPEND conmand in the DOS by using the (STRIP) paraneter. More on library
building is included in Chapter 5, "Advanced Topics".

Speci al purpose libraries may also be created for use in particular types of
applications. For instance, the functions that are specific to the hardware
provided with your C package are in the special purpose library, INREL. This
is an exanple of how the C | anguage avoids the trap of non-standard extensions
bei ng i ncluded within the |anguage.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Runti me Error Control

MC provides certain facilities for the detection and control of four types of
runtime errors. These errors may be classified as DOS 1/O errors, C environ-

nment errors, lowlevel floating point errors, and high-level floating point
mat hematical errors. This section will describe the function and purpose of
the control the programrer has over these errors; however, the mechanics of
i mpl ementing the control will be discussed in Chapter 5, "Advanced Topics".

To begin with, the standards of UNI X System V dictate a protocol for nopst
functions to return a value indicating that an error occurred. Chapter 4,
"Function Libraries", docunents the error return conditions for each function
whi ch supports an error return code. It is up to the progranmmer to provide ap-
propriate code to detect and act on that error return code.

The DOS I/0O errors are characterized by problenms in accessing files, reading
fromfiles, or witing to files. Wen such an error is detected in the MC /O
package, the DOS I/O error is stored in the File Control Area assigned to the
file stream provided the file has been successfully opened. This error nunber
may be obtained through the ferror() function. Next, the error is passed to a

routine in the 1/0O package which will optionally display the runtine error.
The option() function provided in the standard library can be used to control
the behavior of this I/O error display - or suppress it entirely. Next, the
DOS /0O error will be translated to an appropriate UNIX error nunber and
stored in the global error variable, "errno". Finally, the error indication
will be reported back through the highest library function invoked to return

an indication of error to your program

There are other types of errors which could be experienced. A nmenory alloca-
tion request could be unsatisfied because insufficient free menory was avail -
able. A request to obtain status on a file stream could be unsatisfied because
the request was associated with a "character special device" (i.e. *DO rather
than a file. These types of errors have an appropriate UNI X error nunber as-

signed. Thus, any of these errors will store the designated UNI X error nunber
in the global error variable, "errno". The error indication will be reported
back through the highest library function invoked to return an indication of

error to your program

On larger conputers, floating point errors such as overflow and underflow are
usual |y trapped by hardware. When detected, they generate a hardware interrupt
so software routines can be notified to take whatever action is desired. Since
all of the floating point routines provided in MC are inplenented in software,
your conputer cannot generate a hardware interrupt when a floating point error
occurs. When MC does recognize a lowlevel floating point error, it stores an
error code in "errno", the global error variable. In addition, MC provides a
floating point vector, " _fltvec", which is called whenever such an error has
been detected. This vector can be altered by your program to point to your
functi on which takes whatever action you decide to inplement. In its nornal
state, " _fltvec" does nothing but return.

The fourth facility for trapping errors is provided by "matherr()". High-Ievel
floating point errors are characterized by such things as trying to take the
square root of a negative nunmber, trying to take the log of a negative or zero
number, or trying to take the Arc sine of a value which is not in the range
extending from m nus one through plus one. UNI X System V docunents a floating
poi nt exception handler, called matherr(), which is called when such high-
| evel mathematical errors are encountered. An exception structure contains in-
formation pertinent to the detected error at the time that matherr() is in-
voked. The global error variable, "errno", is also |loaded with the appropriate
error nunber. In addition, a uniform error nessage is optionally witten to
standard error. Your program may provide its own matherr() function to handle
the detected error as you see fit. Illustrations of this facility appear in
the docunmentation of those functions that support this high-level floating
poi nt exception handling.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

It should have been evident fromthe discussion that all error types nake use
of the global error variable, "errno". This variable is a UNIX System V fea-
ture. Al of the error nunbers are represented by synbolic val ues and appear
in the "errno" header file. The "math" header file defines the exception
structure and the synbolic definitions of math errors. These header files
should be "#include'd" with your source program as appropriate in order to
make use of the synbolic definitions.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

d osi ng Commrent s

C encourages the use of structured progranm ng nethods. Unless one uses the
"goto" statenent heavily, C practically demands a structured approach to pro-
gram construction. This is not to say that witing prograns in C will auto-
matically nmake you a good, structured programmer. This is a skill that is de-
vel oped by | earning and appl yi ng the basics.

Sonme under standi ng of structured design concepts is necessary in order to ef-
fectively use C. Probably the first frustrating thing that novice C program
ners will encounter, especially if their experience is limted to BASIC and
assenbly | anguage, is the discouragenment of the use of "goto". Kernighan and
Ritchie, in THE C PROGRAMM NG LANGUAGE, state that the "goto" is never neces-
sary, and in practice it is alnpst always easy to wite code without it. The
concept to understand is that the "goto's" are hidden within the program
statements. C provides, in a coherent, understandable form the program con-
structs that you have been buil ding out of "goto's".

Many texts are available that can be part of your library. The follow ng |ist
is not to be considered all-inclusive but lists those texts (al phabetically)
that we have had at our disposal.

THE BI G RED BOOK OF C by Kevin Sullivan (published by Sigma Press)

THE C PRI MER by Les Hancock and Morris Krieger (published by BYTE Books).

C PRIMER PLUS by M chael Waite, Stephen Prata, and Donald Martin (published by
Howard W Sans & Co., Inc.)

C PROGRAMVER S LIBRARY by Dr. Jack Purdum Tinothy C. Leslie, and Alan L.
St egenol | er (published by Que Corp.).

C PROGRAWM NG GUI DE by Dr. Jack Purdum (published by Que Corp.).

THE C PROGRAMM NG LANGUAGE by Brian W Kernighan and Dennis M Ritchie
(published by Prentice-Hall). W wll refer to this book throughout
this manual by the abbreviation, "K&R', for Kernighan and Ritchie.

THE C PUZZLE BOOX by Al an R Feuer (published by Prentice-Hall).

I NTRODUCTI ON TO C by Paul M Chirlian (published by MATRI X)

LEARNI NG TO PROGRAM I N C by Thomas Pl um (published by PLUM HALL).

SYSTEM V | NTERFACE DEFI NI TION (publ i shed by AT&T)

THE UNI X PROGRAMVER S MANUAL Volume | and Volume 11 by Bell Tel ephone
Laboratories, Inc. (published by Holt, Rinehart and W nston).

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Language Definition

Program Envi ronnent - Functions

The C language is, in a word, functional. The basic unit of program construc-
tion when using C is the function. Every C programis a collection of func-
tions. Each function is a collection of statements that work together to
achi eve (hopefully) a useful, well-defined, purpose.

Each function can have information passed to it when it is invoked ("called").
The el enents of information passed to the called function are denoted as argu-
nents. In C, argunents are copied onto the stack. The function can then access
and use the "local" (known only to the called function) argunments, |eaving the
original copy of the argunments unchanged. Each argunent is defined at the
start of the function. Functions also return values to the functions that call
them In C this value can be an integer nunmber, a long integer, a float, a
doubl e, or a pointer. The value returned can be conpared to, placed in a vari-
able, etc. Functions can appear in an arithmetic expression anywhere that a
constant can.

Here is an exanple of a function:

squar e(num

int num
{
return num?* num
}
The function, square(), returns the square of a nunber; in other words, the
argurment, "num', is multiplied by itself and the result is returned. Argunments

are listed in parentheses after the nanme of the function, separated by comas.
These argunments nust be passed by the calling function in the same order as
they appear in this |ist.

The BODY of the function is the group of executable statenments that are within
the braces "{" and "}". Actually, the grouping of statenents in between braces
denotes a special kind of statement called the COVWPOUND statenent. The
conpound statenent is fully explained in the section on C |anguage statenents.

Every C program has a special function called "main" which is always the entry
point to the program Wen referencing a function within this narrative, we

will put "()" after the nane to identify it as a function. This is close to
the way it looks in a C program The function, main(), calls other functions,
which in turn call other functions, etc... Thus, each programis a hierarchi-

cal structure of functions, with main() at the top of the hierarchy.

The DOS conmmand |ine which invokes the C program is passed to the function
mai n() using two paraneters, "argc" and "argv'. One C program can invoke an-
ot her program by using the systen() function. Wwen the called program fin-

i shes, a special function, exit(), is used to return a value to the calling
program Prograns can call other prograns, passing any information using
"argc" and "argv" command Iline argunents as explained in Chapter 1,
"Introduction". In a way, each program appears as a function to other C pro-
granms and to the DOCS.
Pl ease scrutinize the illustration of functions in the follow ng exanpl e:

mai n()

/* The "main" function ...
executi on begi ns here!

*/
say_hel l o();
do_wor k() ;

say_goodbye();
exit(0); /* a normal exit, no error code */

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

/* sorry, we can't "goto" any of the functions below */
say_hel | o()

puts("Hiyal!l!");

say_goodbye()
puts("Bye y'all!ll");

do_wor k()
{
while (not_quitting_tine)

attach(nut, bol t);
pass_on(w dget);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Statements - Sinple and Conpound

To create a C function, you have to state the action to be taken using C | an-
guage STATEMENTS in the desired conbination. Certain special statenents are
built into the language to provide the necessary programmng constructs
(sequence, iteration, and selection). You nmay be surprised, at first, by the
limted nunber of statenents built into the C |anguage. The authors of the
| anguage wi shed to nmaintain the generality of the programmng statenents,
forcing any special features to be outside of the programm ng | anguage itself.
O her |anguages often have extensions in the form of statenents to provide
specialized features, leading to inconpatible versions of the same |anguage
BASIC is a well-known exanple of a | anguage extended in far too many different
ways. The C | anguage avoids this situation by only providing those statements
necessary for structuring the programs logical flow and by placing al
special features into function LIBRARIES. Function libraries are nothing nore
than coll ections of comonly used functions.

Sinple C statenents always end with a semcolon ";", the STATEMENT TERM NATOR
The C conpil er depends on the semicolon to tell when a sinple statenent ends.
Any nunber of sinple statenents may be entered, one after the other, to forma
SEQUENCE of statenents that are executed one at a tine, first to |ast.

The brace characters, "{" and "}", are used to enclose a sequence of state-
nents to forma COVPOUND statenent. A conmpound statement can be used anywhere
a sinple statenent can be used. Thus, the body of a function (that portion en-
closed in braces) is just a special formof conpound statenent.
For exanpl e:

nl = 0;

is a sinple statenment. However, the statenent:

{
h=h/ 2 x0=x0+h/2;, yO =y0 + h/ 2
X =x0 +i * 32; y =y0 + 10; u = x; v =vy;
++;op(1, 0 0);

is a conmpound statenment.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Dat a Representation - Constants

Nurmbers and characters must be entered in your C program in certain ways in
order for the conpiler to understand them properly. A fixed value to be used
in a C expression is called a CONSTANT.

VWere an integer number is required, you enter it just as you would wite it.
A leading zero indicates that the constant is in a base other than decimal. A
| eading zero followed by a string of digits indicates an OCTAL CONSTANT. A
| eading zero followed by 'X or 'x' indicates that a hexadeci mal constant fol -
| ows. Thus, the decimal nunber, 255, can be represented as 0377 or OxFF, as
desired. A long integer constant should be term nated with the uppercase |et-
ter "L" or the lowercase letter "I" as in 1234567L or 0x2a009105L; however, an
i nteger value greater than 65535 will be considered a long. Floating point
constants have the syntax of an optional sign, followed by a string of deci mal
digits possibly containing a decimal point, an optional exponent field con-
taining an 'e' or 'E followed by an optionally signed decimal integer.

If the variable to be assigned the constant is not big enough to contain the
constant, only the least significant bits (LSB) of the nunber are stored.
This, in effect, is storing the remainder of dividing the constant by 256,
65536 or 4, 294,967,296 depending on the variable size. No warning is given
when this happens (except in the case of floating point overflow errors which
can be trapped by the program), so the progranmer nust be sure that the
vari abl e can hold the nunber.

CHARACTER CONSTANTS supply a way to specify the code for a character that does
not depend on any particular character set. A character constant is a list of
characters within single quotes (apostrophes). For instance, the character
constant 'A'" is stored in the conmputer as the nunmber 65 (in decimal). Again,
it is up to the programmer to assure that the nunber of characters bdween
apostrophes can fit into the variable being assigned. If nore characters are
specified than can fit, only the last one or two (as needed) are used.

VWhen a sequence of characters is needed, a STRING can be specified by enclos-
ing the characters between quotes (sonetimes called "double" quotes - i.e.
"This is a string"). C does not place all of these characters into a variable
but rather uses the ADDRESS of the first character of the string. Thus, when
the string, "testing, 1 2 3", is used in a C program the characters between
quotes are stored in nenory, and the address of the first '"t' is used in the
expression where the string was specified. You can say that the nunber gener-
ated by Cto represent the string really PONTS to the string. The subject of
PO NTER vari abl es, which are handy for manipulating strings, will be discussed
later.

There are certain control characters that are needed frequently in prograns,
but which differ from machine to machine. These can be represented in C pro-
grams using ESCAPE SEQUENCES, to provide a machi ne-i ndependent constant. The
backsl ash character, "\", is called the ESCAPE CHARACTER and denotes the be-
ginning of an escape sequence. A letter following the escape character indi-
cates which control code is being specified. Al so, certain characters that
woul d otherwi se be difficult to represent in strings and character constants
are generated by following the backslash with the character. These escape
sequences are shown in the follow ng table:

Escape Control Code ASCI | code used by C
Sequence

\n,\'N NEWLI NE char act er x' 0D CR

Vt,\T Hori zontal tab x' 09' HT

\b,\B Backspace x' 08' BS

\r,\R Carriage return x' 0D CR

\f,\F Form f eed x' 0C FF

\\ Backsl ash x'5C backsl ash

\' Si ngl e quote x' 27" apostrophe
\0 Nul | x"' 00" null byte

\ " Doubl e quote x' 22" doubl e quote

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

For exanple, the character 'A' can be represented as '\x41' wusing a
hexadeci mal escape sequence, or as '\101' in an octal constant. Simlarly, to
place a carriage return at the end of a line, the following three nmethods
coul d be used; however, the first is preferred:

"An exanpl e of a normal escape: \n"
"An exanpl e of a hexadeci nal escape: \x0D"
"An exanpl e of an octal escape: \015"

VWhen a character escape sequence is used within a string, the actual val ue of
the escape sequence is stored in a string (i.e., only one byte of data per
escape). Thus, the string:

"\ n\ x0d\ 015"

is only three bytes long in nenory once the programis conpiled and assenbl ed.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Vari abl e Nanmes (ldentifiers)

The nanes given to identify variables, functions, macros, and |abels are
called "identifiers" and all follow the same rules as to their format. C iden-
tifiers may be of any length (be practical) and nmust start with an al phabetic
character ['A" through "Z', "a' through 'z'] or the underline ['_'"], with the
rest of the characters in the name consisting of upper-case or |ower-case al-
phabetic characters ['A through 'Z', "a'" through 'z'], nuneric characters [0
t hrough 9], or the underline character ['_'].

MC keeps all the characters of your identifier as significant; however, if the
identifier is to be used as an extern, only the first seven (7) characters of
an "extern" identifier will be used by the assenbler and linker, so these
first seven nust be unique. Also, the assenbler you use may limt the length
of synbol nanes.

C is case-sensitive, i.e., recognizes the difference between |ower-case and
upper-case in identifiers. Thus, "EOF", "eof", and "Eof" are all different
identifiers to C. However, identifiers which nust be witten out in assenbler
source code are converted to upper-case, since assenblers, in general, do not
allow | ower case assenbly |anguage code. A good, sinple rule to followis to
use UPPER-case for macro constants only, and |ower-case for all other identi-
fiers. Since macro identifiers are not witten to the assenbly output file,
they will not conflict with any other identifiers, which are the sanme, except
for case differences.

The C | anguage reserves certain "words" which it uses as keywords. These key
words can not be used as identifiers. The list of reserved words is:

auto Br eak case char conti nue def aul t
do Doubl e el se entry enum extern
fl oat For goto i f i nt | ong
register Return short si zeof static struct

switch Typedef uni on unsi gned voi d whi l e

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Dat a Decl arati ons

C variables nmust always be declared before use. The standard procedure is to
declare variables at the beginning of the program (globals) and at the
begi nning of each function (locals). Locals nust be declared before any
executable statenments. MC supports the following variable types and
adj ecti ves:

char - an 8-bit unsigned character

i nt - a 16-bit signed integer

fl oat - a 32-bit floating point

doubl e - a 64-bit floating point

struct - the specifier of a structure

uni on - the specifier of a union

t ypedef - the operand of a typedef

short - usually applied to ints but ignored by MC

| ong - used to specify 32-bit integers

unsigned - applied to ints or long ints
Type char

Character variables are stored in eight bits, or a byte. MC always treats a
char as unsigned. The decl arati on:

char c, string[81];

establi shes a character variable naned "c" and a singly dinmensioned character
array naned "string" which can hold a string of maxinmum |length equal to 80
characters. Arrays of one or nore dinensions are all owed.

Type int [and short int]

Integer variables as well as short integer variables are stored in sixteen
bits. The short declaration is provided in the interest of portability. Mke
no assunptions about the storage size of pointers. Although a pointer may be
stored in either 16 bits or 32 bits, a pointer is not an int! The declara-
tions:

int a;

short b;

short int b2;
are all acceptable declarations, and all result in the sane size integer
field. This is acceptable, since the C |anguage does not guarantee that a
"short" will be shorter than integers. Integers declared in this nmanner are
signed, i.e., their nost significant bit is regarded as a sign bit. Their val-

ues can range from-32,768 to 32,767 (decimal). Unsigned fields do not have a
sign bit. They range fromO to 65,535 (decinmal) and are declared like this:

unsi gned u;
unsi gned int u2;

Type |l ong int
Long integer variables are stored in thirty-two (32) bits. The decl arations:

| ong int nunber;
| ong dat asi ze;

are both acceptable declarations, and each result in a 32-bit integer field.
Long integers declared in this manner are signed, i.e., their nost significant
bit is regarded as a sign bit. The values can range from -2,147,483,648 to
2,147,483,647 (decimal). Unsigned fields do not have a sign bit. They range
fromO to 4,294,967,296 (decimal) and are declared like this:

unsi gned | ong | u;

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

unsi gned long int lu2;
Type float and type double

Fl oat and double floating point variables are stored in thirty-two (32) and
sixty-four (64) bits respectively. The declarations:

fl oat fval ue;
doubl e dvar;

are acceptable declarations; the first results in a 32-bit floating point
field and the second results in a 64-bit double precision floating point
field. Floating point variables are always signed. Their value varies from ap-
proximately -1.7e+38 through +1.7e+38. Floats nmintain about 6-7 digits of
preci sion while doubles maintain about 15-16 digits of precision. The only
direct operations which may be perfornmed on float and double variables are
addition, subtraction, nmultiplication, division, conparison, 1logical not,
negation, increnment, decrement, and address_of. Al others are illegal.

It is inmportant to note that per the specifications in K&R pertaining to argu-
nments of a function, "C converts all float actual paranmeters to double, so
formal parameters declared float have their declaration adjusted to read dou-
ble."

Type struct structure_tag

A structure is a nethod of collecting one or nore variables into one grouping
using a single nane. \Were nore than one variable is grouped together, they
may be of the same or of different types. The grouping is comonly conceptual -
ized as a "record". A structure tenplate is declared with the syntax:

struct structure_tag {
type_1 nenber_1;
type_2 nenber_2;
type_n nenber _n;

b

The structure_tag is optional and is generally used when many structures wll
be using that structure tenplate.

The closing brace of the structure tenplate may be followed by a variable or

list of variables, just like you can do for any of the types noted above
(char, int, long, float, double). Wen no variable follows the closing brace,
the structure tenplate remains just a tenplate and no space is reserved for
the nenbers. Wien a variable list does follow the closing brace, adequate

storage for all of the structure's nmenbers is reserved for each elenent in
that variable list. For exanple, the followi ng declaration is a structure tem
pl ate, which has two nenbers, one of which is an array:

struct keyword ({
char *nane;
int index[2];
1

The menmber "nane" is declared as a pointer_to_char in this structure declara-
tion while the nenber "index" is an integer array of length two. Since this is
only a tenplate, no storage is reserved.

The above structure tenplate may be assigned to a structure by another struc-
ture declaration such as:

struct keyword prinmary;
which declares "primary" to be a type "struct keyword". Wiere a structure

definition is only needed in a single nodule, it may be declared directly
wi t hout the structure tag. For exanple:

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

struct {
int hours, mnutes, seconds;
} clock;

declares a structure nanmed "cl ock"” which contains three ints.

Each elenment of the structure is terned a nenber. A nenber can only be ac-
cessed as part of the structure. For instance, in the "primary" structure de-
fined above, the syntax "primary.nane" refers to the menber, "nane". Likew se,
the second elenment of the index array menber is referenced by the syntax,
"primary.index[1]".

A variable may be typed as an array of structures (not to be confused with an
array menber of a structure). Using the struct keyword tenplate illustrated
above, we can declare an array of type struct keyword with:

struct keyword speech[10];

This declares "speech" to be an array of type struct keyword. The syntax for
referencing an element of the structure is to bind the structure subscript to
the name of the structure. For exanple, the "nanme" and "index[0] nenbers of
the fifth structure of "speech”" would be referenced wth:

speech[4] . nanme
speech[4] . i ndex[0]

A variable may be declared as a pointer_to_struct. Again follow ng our exam
ple, if "ps" is declared via "struct keyword *ps;", then the above nenbers
woul d be referenced via the syntax:

(*ps) . nane
(*ps) . i ndex[1]

Since the structure dot operator has a higher precedence than the indirection
operator, the parentheses are needed. This somewhat kludgy syntax can be re-
placed with the structure indirection shorthand using the "->" operator. The
structure indirection operator is conposed of a minus sign followed by a right
angl e bracket. The above two references woul d now be witten as:

ps- >nane
ps->i ndex|[1]

A pointer_to_structure can be passed as an argunent to a function; a structure
cannot! Likewise, a function can return a pointer_to_structure but cannot
return a structure. Another limtation of structures is that a nmenber of a
structure cannot be a structure of the same type (think about that); however,
it can be a pointer to its type. This does not restrict nenbers from being
ot her structure types.

Type uni on uni on_tag

A union provides a technique for accessing elenents of a record in different
ways at different tines. A union is declared simlarly to a structure. Also,
you can only access a nenber or take the address of a union. The nenbers of a
union all have a zero offset from the union's origin. The actual amount of
nmenory space assigned is the space required by its |largest nenber. The union
declaration is sonewhat simlar to the EQU VALENCE st atenent of FORTRAN.

An interesting exanple of a union is found in the Z80REGS header file. In this
uni on naned "REGS', two nenbers are declared - each a structure. One nenber is
the structure named "wordregs" and the other is a structure naned "byteregs".
The storage space for "byteregs" «conpletely overlaps the storage for
"wor dregs" thereby providing you with a convenient method of accessing the
| ow-order or high-order register of a 16-bit register pair. This exanple has a
union with two structure nenbers. Alternatively, a union could be a nmenber of
a structure.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Type void

The "void" type is used to declare a function that has no return value. It is
beneficial to type "void" such functions because an attenpt to use the value

returned by a void function will be flagged as an error.
Arrays
Arrays of one or nore dinmensions are allowed for short, int, long, unsigned,

float, double, or pointer types, as well as for structures and unions. An ar-
ray is denoted by appending the dinmension enclosed in square brackets to the
identifier. For exanple, arrays of one, two, and three dinensions could be
declared like this:

char buffer[81];
doubl e grid[25][25];
char bit_plane[8][24][80];

The first defines a character buffer of 81 elenents. The second defines a two-
di mensi on array of doubl es having 625 el enments. The third defines bit_plane to
be a three-di nensional character array - 8 planes of 24 rows by 80 col ummns.

Poi nters

Pointers may be declared for any data type. Pointer variables are different
fromthe types described so far, in that they normally contain the ADDRESS of
a data item For exanple,

char *cp;

decl ares a pointer_to_char variable nanmed "cp". The asterisk denotes | ND REC-
TION, i.e. that the data itemis referred to indirectly through the pointer
variable "cp". The address of the data item nust be stored in the variable,
"cp", before it is used as a pointer to access a data item To refer to the
data itself, an asterisk is placed before the nane, e.g., *cp denotes the data
item An exanple of practical use foll ows:

getit(cp)
char *cp;
{ int c;
while ((c=getchar()) !'= EOL && c != EOF)
*cp++ = c;
*cp=NULL;
return c;

}

The function, getit(), inputs characters continually from the standard input
until end-of-file or end-of-line characters are encountered. Wen getit() is
called, the pointer argument, cp, contains the address of a buffer area. One
by one the characters are placed in the buffer, (*cp++ = c), and the buffer
pointer is increnmented by the post increment operator (++).

A sinpl e peek() and poke() set of functions can easily be witten using point-
ers. Wtness the follow ng two functions:

i nt peek(s) char *s;
{ return *s; }
voi d poke(s,c) char *s; int c;

{ *s =¢; }
VWhen the actual argunent to a function is an array, the formal argunment decl a-
ration in the function may be nmade in two ways. It nmay be declared as a

pointer or an array without the size in the array declaration. For exanple,

funk(argl, arg2)
int argl; char arg2[];

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

decl ares a character array, "arg2", of an unknown nunmber of elenents. This
coul d al so have been decl ared as:

funk(argl, arg2)
int argl; char *arg2;

to define arg2 as a pointer to a char. Pointers may be INDEXED to get to the
"nth" itemin an array. Using the exanple above, arg2 would contain the ad-
dress of the beginning of an array of characters. "arg2[0]" denotes the first
element in the array, and "arg2[22]" denotes the 23rd el enent.

No matter how a pointer is declared, either method of using the pointer may be
enpl oyed as the programmer sees fit. Thus, "*arg2" and "arg2[0]" refer to the
same data item and may be used interchangeably in the same program Using
"*arg2" is a little nore efficient, however.

The array declaration w thout the number of elenents within the brackets is
allowed only in external declarations and in argument declarations. Statics,
gl obal s, and locals declared this way are illegal.

Pointers may point to other pointers. This bonbshell of a statenent is proba-
bly too much for you, after the last few paragraphs. It nust be said, however.
C allows pointers to have nore than one LEVEL OF I NDI RECTION. This can be de-
cl ared several ways:

shi ne()
{ ~char *nanes[];
char *(*words);

Both of these declarations result in the sane effect: a pointer that points to
a pointer which points to a character field.

Poi nter variables may have up to 255 levels of indirection. However, the prac-
tical limt is the ability of the progranmer to keep track of all this. In
general, two levels of indirection are all nost fol ks can take.

The operations that may be perforned on pointers are severely restricted. The
al | onwed operations are:

+

(a) Pointer of fset or offset + pointer, offset is scal ed.
(b) Pointer of fset, offset is scaled.

(c) Pointer - pointer, result is scaled.

(d) Poi nter = expression.

(e) ++, --, logical not, ||, && and conparisons.

Initialization of Variables

Callows you to initialize variables within the declaration statenent. For in-
stance, the declarative,

int var = 100;

declares "var" to be of type "int" with an initial value of 100. A pointer to
a string may be declared and initialized with the format,

char *pstring = "This is an initialized string pointer";

You may declare a series of variables of the same type as well as their ini-
tializations with the formt,

float f1=1.0, f2=10.0, f3=100.0, f4=1000.0, f5=10000. 0;

An array can be initialized by placing the initialization values wthin
braces. For exanpl e,

int table[5] = {1, 10, 100, 1000, 10000};

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

declares table to be an integer array of dinmension 5. Table[0] is initialized
to the value 1, table[l] to 10, table[2] to 100, table[3] to 1000, and
tabl e[4] to 10000.

Structures may al so be initialized. For instance, the format,

struct { char *nanme; } dow5] = {"Mon","Tue", "Wed","Thu","Fri"};
defines the array of structures, "dow', consisting of one elenent, "*nane".
The array is of dinmension 5, with each array elenent constituting the struc-
ture. Each structure elenment is initialized as a pointer to the correspondi ng
3-character day nane. Thus, "puts(dow0].name);" would print, "Mn".
Note that automatic structures and automatic arrays (these are considered

"aggregates” by K&) may not be initialized. You also cannot initialize a
uni on.

Scope of Variabl es and Functions

Variables or functions that are declared outside of any function, i.e., which
are not paraneters to functions or declared wthin braces are called
"external". They are external to all functions. External variables and func-

tions can be accessed only from any of the functions subsequently defined
within the nodule being conpiled. They are usually used to create static
variables that are to be accessed only by a function or group of functions.
However, by using the "extern" statement in a separately conpiled nodul e, say
nodul e_B, an external variable or function of npdule_A may be accessed from
that separately conpiled npdule_B. Please do not confuse "extern" and
external . External variables and functions are declared w thout the "extern"
statenent strictly by their position exterior to any function or conpound
st at enent .

Variabl es declared within a function are called "local". Functions may not be
defined within another function, as is the case with the Pascal |anguage.
However, a function may be DECLARED "extern" so that it nmay be accessed within
the currently defined function. Local variables may not be accessed from any
ot her functions. They only exist for the function in which they are decl ared.
Even within the function, a local variable can only be accessed in the bl ock
in which it is declared. Remenber that a block is a section of code contained
wi thin a matching pair of braces.

Local variables can have the sane nane as external variables, or |ocal
vari ables declared in different blocks. If a |ocal variable has the sane nane
as an external variable then the local variable is the one accessed when used
within the local block. In the follow ng exanpl e:

int sane; /* this is an external variable */
f unk(sane)
{ return sane; } /* return local copy */
hunk()

if (block_ 1)

{ int sane;

/* some code could go here */
}
el se

{ char sane;
/* sonme other code here */
}

}

every declaration of "same" was a unique variable. Although legal, the
decl aration of local variables with the sane name within the same function is
not reconmended. This type of trickery, as shown in hunk(), needl essly causes
confusion and is easily avoided.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

St orage C asses

Variables and functions may be declared as being in certain classes. These
cl asses specify where variables are to be stored. The classes available in C
are: auto, static, extern, register, and typedef. The storage class of an
object is specified by placing the class name in front of the normal
decl arati on:

auto char c;
static int ai[20][80];

Storage Class - auto

Variables that are declared “auto” are stored on the stack. This is the
default for variables declared within a function, so the "auto" keyword may
therefore be omitted. Local variables that are “auto” are created afresh each
time the function in which they are declared is called. This allows functions
to be reentrant and recursive. Functions may not be declared with class "auto"
since a function nust be declared outside of any other function. As K&R say,
the C conpiler is incapable of conpiling code onto the stack!

The scope of an auto variable is the block (within braces) in which it is
declared. Al other portions of the code being conpiled are oblivious to the
exi stence of the auto variable, and in fact, there may exist other variables
with the sanme nane.

The auto class is illegal for functions and other external definitions (any
vari abl es declared outside of a function). In terns of speed of access, auto
variables are accessed the slowest; thus, if timng is inportant and your

program does not require recursion, use register or static variables.
Storage Cl ass - Register

Variables declared in the register class are treated sinmlarly to auto
variables by MC. The nunber of register variables permtted depends on the
number of extra machine registers available for use. MC nakes use of the two
index registers of the Z-80 (IX and 1Y) which can be used for ints and
pointers. Register variables are usually accessed faster than autos but not as
fast as statics. Any register variables declared in excess of two are stored
on the stack in the sane manner as an auto and are also illegal outside of a
function; however, each function is permtted up to two register vari abl es.

The scope of register variables is the sane as that for auto variables. The
formal argunents of a function may also be declared register. Note that the
"address_of" operator may not be applied to register variables.

Storage Class - Extern
The "extern" storage class allows an external variable declared in one nodul e
to be accessed from another nodule. A "nodule" is what is processed by one
invocation of MC, i.e., one set of C source input. Let's say that the
foll owi ng decl arati on:

i nt choice;

exists in nodule 1. If nmodule 2 functions need to access this sane vari abl e,
t he decl aration:

extern int choice;
woul d al l ow the access needed. C will not reserve any storage for "choice" in
nodul e 2, since the storage class, "extern", tells C that storage has been
reserved i n another nodul e.

The programmer MJST ensure that the declarations are conpatible between
modules. In other words, all "extern" declarations nust match the external

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

decl aration (declaration w thout "extern") by having the sane type, size, and
amount of indirection. Otherwi se, C nay access the variable in incorrect ways.

The extern statement may also be used to declare the return value of a
function before it is defined in the program This "forward" declaration
allows a function that returns something other than a signed integer to be
defined before it is used. If the forward declaration is not given and a
function is as-yet-undefined, the conpiler assunes that the function returns a
signed integer, which may be incorrect for many functions.

Storage Cass - Static

Static objects are stored in declared, fixed nenory space. Their behavior is
the same as that of external variables; their scope is nore linited, however.
Static variables declared outside of a function can only be accessed by
functions within the nodule being conpiled. Oher (separately conpiled)
nodul es cannot get to them by declaring them "extern". Static variables
decl ared outside of all functions are accessible to all functions subsequently
defined within the nodule. Static variables declared within a function are
simlar in scope to auto and register variables. They can only be accessed in
the block in which they are declared. Thus, two static variables with the sane
name may be declared in different functions.

Functions may also be defined as "static", nmmking them only accessible from
within the current nodule. However, since MC is a one-pass conpiler, the
definition of a static function nust precede any reference to the static
function. This is because the conpiler assumes that an as-yet-undefined
function is an external function. Alternatively, you my use a forward
decl arati on.

Storage C ass - typedef

Typedef is provided in the C |language not as a unique storage class, but as a
nmeans for creating new data type nanes. Note that typedef does not create new
data types, but rather provides a nmethod for giving special nanes to existing
data types. This facility is useful to create custom zed nanes that bear sone
association to the class of objects being typed. For instance, the typedef
st at ement :

t ypedef char *PO NTER;

decl ares "PO NTER' to be a synonym for the type pointer_to_character. Thus, a
statement such as the following can be used to clearly denote the neaning of
t he decl arati ons:

PO NTER first, |ast;
PO NTER t abl e[SI ZE] ;

A typedef is somewhat sinmilar to the preprocessor #define. It perforns sone
textual substitution. It is a little nmore flexible, though, since the actual
substitution can be nore conplex. It has a great use in enhancing the
portability across conpilers by introducing a single point definition of a
variable type rather than having the actual definition scattered throughout
many source nodul es. Thus, where a declaration type nust be changed, it only
need be changed in one place (usually in a header file).

Storage Class - Defaults
VWen a variable is declared by only stating the storage class:

auto x1; register x2;
extern x3; static x3;

the variable type is assuned to be "int". This is a perfectly acceptable
shorthand way to nake integer declarations.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

VWhen the declaration of a local (declared within a function) variable or
argument has no storage class, C assunmes that the variable is an auto
variable. A function that is declared wthin another function body is assuned

to have a storage class of external. The conpiler regards the declaration as
if an "extern" statenent preceded it.

External declarations which do not have a storage class declared are special

entities. They belong to the inplicit class, "external", and may be referenced
fromother (separately conpiled) nodul es that declare the variable "extern".

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Expr essi ons

One of the npbst powerful features of the C language is its expression
capabilities. The ampunt of work that can be done by one expression is
someti mes overwhel m ng. A quick exanpl e:

(end_of _file = (c=getc(file))==ECF)) ? fclose(file) : ++count ;

This convoluted statement will get a character froma file and place it in the
variable, "c". The character is conpared to the value "EOF" which indicates
end of file; the result, true or false, is placed in the variable,
"end_of _file". Finally, if it was the end of the file, the file is closed.
O herwi se, a counter variable, "count", is incremented to provide a count of
t he characters read.

The exanple was a bit exaggerated, and expressions this conplex can be quite
hard to understand. Two statenents nust be nade about the conplexity of
expressions in the C |anguage.

The programmer who does not fully know and use C's expression
capabilities is seriously handi capped, unable to use the full power
of the C | anguage.

On the other hand, a quotation from THE ELEMENTS OF PROGRAMM NG STYLE by
Ker ni ghan and Pl augher is appropriate:

"Everyone knows that debugging is twice as hard as witing a program
in the first place. So if you're as clever as you can be when you

wite it, howw Il you ever debug it?"
The word "maintain" could be substituted for "debug" in the quote above, and
it would still be valid. You nust be able to understand |later what you wote
into your program |If others are going to have to mamintain your program the
principle of KISS (Keep It Sinple, Stupid) should prevail. This is not

intended to discourage the use of conplex expressions. Just keep in mnd that
the nmore operators involved in an expression, the nore difficult it is to
properly place parentheses and keep the precedence of operators straight.

There are two kinds of expressions in many conputer |anguages: | ogical
expressions and arithmetic expressions. Logical expressions are usually for
conparing things and for nmaking choices. The result of a logical expression is
either true or false. Arithnmetic expressions result in a nunmber. Usually an
assignment to a variable is made to save the result of the arithnetic
expression, or it is passed as an argurment. |In nany |anguage i nplenmentations,
only one type of expression nay be used in certain contexts. For instance, the
BASI C program st at enent :

1000 A= (C<= B)

attenpts to assign to A the result of the conparison C to B. This is not
allowed in many inplenmentations because they are expecting an arithmetic
assignment. Even if some BASIC s allow it, it is best not to do this type of
assignment, in order to keep progranms relatively portable.

Anot her situation is shown in PASCAL:
IF A:= (B < C THEN BEG N

where the PASCAL conpiler expects a bool ean expression between |IF and THEN.
Even if A is a boolean variable this assignment is not allowed in npost PASCAL
conpilers. This is not intended to denigrate PASCAL. There are good reasons
why the authors of PASCAL did things this way. However, the C |anguage does
not draw distinctions between types of expressions within the context of the
program The distinctions are nade in the types of operators instead.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Primary Expressions

The elements that are manipulated by operators in an expression are called
primary expressions. The basic elements that make up a primary expression are
identifiers, constants, and strings. ldentifiers are the nanes of variables
and functions. Function and array identifiers effectively resolve to the
address of the function or array, while all other variable identifiers resolve
to the contents of the variable. Constants are character or nuneric (decimal,
hex, octal) values. Strings resolve to a character pointer, which points to
the first character of the string.

The operators that C provides for stating primary expressions group left to
right. This nmeans that the left-nost operator is interpreted first. The five
primary operators supplied by C are: isolating parentheses, subscripting,
function invocation, structure/union ARROW and structure/uni on DOT.

(expression) i sol ati ng parent heses

p_ex [expression] subscripting

p_ex (expression_list) function invocation

. obt ai ns nenmber of structure/union

-> ARROW obtai ns menber indirectly through
structure/ uni on pointer

Note: "p_ex" stands for "primary_expression”

| sol ati ng Parent heses

VWhen the order in which an expression is to be evaluated conflicts with the
precedence of operators, the isolating parentheses provide a way around the
conflict. The expression within parentheses is evaluated first, before the
result of the enclosed expression is used in any expression outside the
parent heses. For exanple, when predicting the percentage of up time for any
equi pnent, the following fornula is used:

MTBF
availability = --------mon--
MIBF + MITR
MIBF = nean tinme between failures
MITR = nean time to repair

VWen witing this formula into a C expression a conflict occurs because the
division operator takes precedence over the addition operator. |If the
expression is witten like this:

up_tinme = mtbf / nmbf + nttr

the result will always be nttr plus one. This is because the division is done
before the addition. To avoid this, the expression can be stated as foll ows:

up_tinme = mbf / (mtbf + nttr)
to achieve the correct result.

Par ent heses can be used on either side of an assignnent operator. At the risk
of confusing the reader with as-yet-undefined operators, we nevertheless
provide an exanple using pointers. In certain cases during the use of pointer
arrays, indirection nust be perfornmed before subscripting into the data item
Si nce subscripting takes precedence over indirection, this kind of expression
nmust be witten as follows:

exanpl e(ar g)
char *arg[]; /* pointer to a char pointer array */

/* wrong way - accesses third pointer */
/* instead of third character. */

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

*arg[3] =0 ;
/* right way - zero's the third character of */
/* first string */

} (rarg)[3] =0 ;

Subscri pting

Subscripting is denoted by a subscript in brackets following a primry
expr essi on:

primary_expression [subscript]
pri mary_expression [subscript_1][subscript_2]

If the primary expression is an array name, or a pointer to an array, the
subscripted expression returns the elenment denoted by the value of the
subscript. C arrays are subscripted from zero, i.e., the first elenent in an
array is nunbered zero. If nore than one dinension is specified, the storage
of array elements is such that the rightnost subscript varies fastest as
el ements are accessed in storage order.

Function identifiers may not be subscripted. A prinmary expression denoting an
array of pointers to functions nay be subscripted. The primary expressi on nust

i ndicate the size of the object being subscripted (char, int, pointer) or the
subscript will produce an error nessage. For exanpl e:
x = 25[3];

is invalid.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Function I nvocation

A primary expression followed by parentheses will cause the function denoted
by the primary expression to be called. Argunents may be passed to the invoked
function by placing themin the parentheses, separated by comm's.

Any nunber of argunents can be passed to the called function. Care nust be
taken that the nunber of argunents passed is the nunber that the function
expects. O herw se, unpredictable behavior may result (certainly not correct
behavior). If a variable nunber of paraneters nust be passed, then a control
i ndi cator nust be passed to tell the called function how many argunents there
are (for exanple, the fprintf() and printf() functions in the standard
library). Arguments can be any valid C expression, including other function
calls. The argunents are evaluated fromright to left, i.e., the right-nost
expression is evaluated first. The programmer should not rely on this order of
eval uation since sonme other inplenmentations of the C |anguage evaluate them
left to right. Statenents like this one:

funk(arg++ arg2[arg]);

will cause different elenents of arg2 to be passed to funk() when different C
conpilers are used. Stay away fromthis sort of trickery if you can.

DOT [desi gnate menmber of structure/union]

The structure/union dot operator is used to specify a nmenber of a structure or
union. Thus, if there exists for exanple, a structure of the name "time" which
has nmenbers nanmed "hour", "mnutes", and "seconds", then the constructs
"time.hour", "tine.mnutes", and "tinme.seconds" refer to the nenber objects
when used in an expression. Other details concerning structures and unions are
provided in the section on data decl arati ons.

-> ARROW [desi gnat e nenber through structure/union pointer]

This structure/union operator is used when you have a pointer to a structure
or union and you wish to reference one of its nmenbers. For exanple, if the
identifier "pt" has been declared a pointer to the tinme structure noted above,
then the constructs, "pt->hour", "pt->mnutes", and "pt->seconds" reference
the objects within the structure. The construct of "structure or union pointer
-> nmenbername” is equivalent to "(* structure or union pointer).nmenbernane”
and is essentially a shorthand nmethod of using the indirection operator.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Unary Operators

Unary operators operate on one object (hence the nane). If nore than one unary
operator operates on the sane object, the operators are evaluated right to
| eft. The unary operators supplied by C are

OPERATCR OBJECT DESCRI PTI ON
* expr essi on indirection; nmeans "object at..."
& | val ue poi nter; means "address of..."
- expr essi on negat es the expression; "mnus expression”
! expressi on | ogi cal conplenment; "not expression”
~ expr essi on one's conpl enent of expression
++ | val ue increnent and save in |value
-- | val ue decrenment and save in |val ue
(typenane) | expression cast the result to "typenane"
si zeof expressi on obtain the size of the result of expression in
"bytes"
si zeof (typenane) ob¥ain the size of "typenane" in bytes
Al unary operators nust appear before (prefix) the object, except the

increment and decrenment operators, which may appear after (postfix) the
object. The term "l value" means an expression that evaluates to the address of
a data element or pointer field. Constants, function identifiers, and array
names are not |values. The term derives from the observation that "lval ues"
are the only expressions allowed on the left side of an assignment expression.

"*' [asterisk - object at]

The indirection operator can only operate on a pointer expression. Its neaning
is effectively "object at..." The address contained in the pointer is the
address of the object referred to by this type of expression. For exanple,

see_poi nter (pointer)
char *pointer; /* a character pointer */

{
/* first print the address passed in pointer */
printf("address is: % ",pointer);
/* now print the data at that address */
printf("data is: % ", *pointer);
}
will print both the address (contents of the pointer variable) and the data at

that address (result of the indirect expression).
'& [anpersand - address of]

This unary operator effectively means "address of..." or "pointer to...". It
eval uates to the address of the lvalue it precedes.

-' [mnus sign - negation]

VWhen the unary negation operator precedes an expression, the result is the
two's conplenment negative of the value of the expression. Wen the °'-
precedes an unsigned or pointer expression, the one's conplenment of the value
is taken.

"1' [exclamation point - |ogical NOT]]

The unary |ogical conplenment operator, or "not" operator, evaluates to FALSE
if the expression is true and to TRUE if the expression is false. FALSE is
defined as 0 and any non-zero value is considered to be TRUE. However, all C
operators which result in TRUE or FALSE produce one (1) as the value for TRUE.
Thus, the least significant bit of the result indicates TRUE or FALSE

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

"~ [tilde - bitwi se conpl ement]

The one's conplenent operator inverts every bit in the expression. No regard
is given to the type of the expression

"++', '--'" [increnent, decrenent]

The increnment and decrenent operators may be used either before (prefix) the
operand or after (postfix) the operand. The operand nust be an |value or
| val ue expression. In either case the contents of the lvalue is increnented or
decrenented and stored back into the |value. The difference between prefix and
postfix is how the result of the expression is produced. Prefix nmeans that the
value after the increnment or decrement is the result of the expression.
Postfix means that the value returned by the expression is the value before
the increment or decrement.

(typenane) [type casts]

The "(typename) expression" is used to explicitly force the result of
"expression" to be converted to the type specified by the cast. Casts are used
when the variable or expression result type does not agree with what nay be
needed for continued evaluation. For instance, to take the log of an integer
number, it is necessary to convert it to a double. Thus, the statenent

dval ue = 1 og((doubl e) nunber);

converts the value of the integer "nunber" to a double before placing it on
the stack as the argunment to the log function. Note that "nunmber" is not it-
sel f changed, but rather the value is typed to conformto the cast. A cast is
simlar to the verbs: CDBL, CSNG CINT conmmonly found in the BASIC | anguage

sizeof [obtain size of operand in bytes]

It is sometinmes useful to be able to use the size of an object in an
eval uation without actually knowi ng the physical size of the storage provided
for the object. For instance, since the actual size in storage units of an int
may vary from machine to machine, the programer may need to conpute a figure
irrespective of the storage el ement size. The "sizeof" operator provides this
facility. Since all sizes are known to the conpiler at conpile tine, "sizeof
object” may be used in the same way as a constant. For instance, the state-
ment s:

int array[100];
bytes = sizeof array;

assigns to "bytes", the actual quantity of storage elements occupied by
"array". "Sizeof" may also be used in the format, "sizeof(typenane)". Thus
sizeof (int) and sizeof(long) are valid operations.

There is significant use of the sizeof operator in calculating the size of a
structure. G ven the structure,

struct functions
{ char *nane;
doubl e (*func)();

} builtins[] =

{ . .
"sin", sin,
"cos", cos,
"tan", tan,

"asin", asin,
"acos", acos,
"atan", atan

"exp", exp,
"l og", |og,
0, O

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

the number of structure entries is sinply sizeof builtins / sizeof (struct
functions)

Bi nary Qperators

Bi nary operators act upon two expressions together. The type of the result
depends on the type of the two expressions. |If both types are not identical,

the lower type will be prompted to the higher type. The order from lower to
hi gher is: char, int, unsigned int, long, unsigned long, float, double. When
the operator is addition or subtraction, if only one expression is a pointer,
the result of the expression is a pointer of the same type; if both

expressions are pointers, the result is unsigned. These "usual arithnmetic
conversions" are docunented in K&R page 184 (section 6.6) and are reproduced
here for convenience:

"First, any operands of type char or short are converted to int,
and any of type float are converted to double. Then, if either
operand is double, the other is converted to double and that is
the type of the result. Oherwise, if either operator is |ong,
the other operand is converted to long and that is the type of
the result. Oherwise, if either operator is unsigned, the other
operand is converted to unsigned and that is the type of the
result. Else, both operands nmust be int, and that is the type of
the result."

VWhen several binary expressions are concatenated together (w thout isolating
parent heses) the order in which the binary expressions are eval uated depends
on the precedence of the operators in the expression. In the expression,

a+b*c

the evaluation of "b * c¢" precedes the evaluation of the addition, since
nmultiplication has a higher precedence than addition. The expression is
evaluated |ike this:

a+ (b* c)

As previously described, isolating parentheses can be used to change the order
of evaluation. To have the addition performed first, the expression can be
witten:

(a+b) *c

Each class of operands is described below in order fromthe highest precedence
to the lowest. When all the operators in a conplex expression have the sane
| evel of precedence, they are evaluated in a certain order; right to left or
left toright. It can be said that a class of operators "group"” left to right,
or right to left. If the order of evaluation between |ike operators does not
matter, the operator is said to be associative. Here is an exanple of how the
order of evaluation affects an expression:

al b/ c/ d

The division operator is said to group "left to right"; thus, this expression
is evaluated a foll ows:

(((al by / c) / d

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS

Inc., Al

rights reserved

The precedence of binary operators is given in the follow ng table:

PRECEDENCE OF BI NARY OPERATORS
(H ghest to | owest)

MULTI PLI CATI VE OPERATORS
expressi on * expression
expression / expression
expr essi on % expression

ADDI TI VE OPERATCRS
expressi on + expression
expressi on - expression

SHI FT OPERATORS
expressi on << expression
expressi on >> expression

RELATI ONAL
expressi on
expressi on
expressi on
expressi on

OPERATORS

< expression
> expression
<= expression
>= expression

EQUALI TY OPERATCRS
expr essi on == expressi on
expressi on ! = expression

Bl TW SE AND OPERATCR
expressi on & expression

expressi on N expression

expressi on | expression

LOGE CAL AND OPERATOR
expressi on && expression

LOG CAL OR OPERATOR
expression || expression

CONDI TI ONAL OPERATOR

ASSI GNVENT OPERATORS

| val ue = expression

| val ue <op>= expression
rel ational, or

COMVA OPERATOR
expressi on , expression

Bl TW SE EXCLUSI VE OR OPERATOR -

Bl TW SE | NCLUSI VE OR OPERATOR -

expressi on ? expression

(<op> i s any binary operator except
condi ti ona

- group left to right
mul tiplication
di vi si on
nmodul us (renai nder)

- group left to right
addi tion
subtraction

- group left to right
shift left
shift right

- group left to right
| ess than
greater than
| ess than or equa
greater than or equa

- group left to right
equal to
not equal to

- associative
bi twi se and

associ ati ve

to
to

bitw se excl usive or

associ ati ve

bitwi se inclusive or

- groups left to right
| ogi cal and

- groups left to right
| ogi cal or

- groups right to left
expressi on

- group right to left
si npl e assi gnment
conmpound assi gnnment
| ogi cal
operators)

- groups left to right

pair of expressions

RN, "% [multiplication

di vi si on,

nodul us]

The multiplicative operators take precedence over all other
and group left to right. Wen the result of integer
an int, or when the result of long integer multiplication over

the left-nmost (high-order) bits are truncated. Since integer
portion of the result
The nodul us operat or

the fractional
truncated toward zero

is lost.
returns the val ue of

bi nary operators
mul tiplication overfl ows
flows a |ong,
division is used,
The result of division is always
t he renai nder

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

in the integer division of the two expressions. Overflow and underflow
floating point errors may be trapped in software by the use of a _fltvec()
error trap. This is docunented in Chapter 5, "Advanced Topics".

"+, '-' [addition, subtraction]

The additive operators result in the addition or subtraction of the two
expressions. In subtraction, unsigned subtraction only takes place when both
expressions are unsigned. If one of the expressions is a pointer and the other
is not, the other value is adjusted to reflect the size of the object pointed
to. Thus, if "p" is a pointer, "p + 3" returns the address of the fourth
object pointed to by "p". If p points to integers, then C automatically
doubl es the offset to account for the two-byte elenments. Likewi se, if p points
to long integers or to doubles, the offset is appropriately adjusted to
account for the size of the object.

'<<, '>> [shift_left, shift_right]

The shift operators shift the left-hand expression by the nunmber of bits
indicated in the right-hand expression. Zeroes are shifted in to replace the
bits shifted out. The right-hand expression is always considered unsigned;
thus a negative integer will be interpreted as a large unsigned integer. If
the right hand expression has a zero value, no shifting takes place. If the
ri ght-hand expression contains a value that is larger than the size of the
| eft hand object, the result is always zero.

The shift operator is a logical shift, not an arithnetic shift as in sone
other C inplementations. Thus shifting a signed value will not preserve the
sign if the shifted value is negative.

<, > t<=') '>=' [less, greater, less_or_equal, greater_or_equal]

Rel ati onal operators result in a TRUE (1) or FALSE (0) value, depending on the
i ndi cat ed condi tion.

==', 'I=" Jequal _to, not_equal _to]

The equality operators, "equal" and "not equal", respectively also return TRUE
(1) or FALSE (0) depending on the two expressions' equality.

'"& [bitwi se AND]

The bitwi se AND operator does a bitwise AND with the two expressions. Each bit
position in the result will be set to be one if and only if both correspondi ng
bits in the expressions are equal to one. This is wuseful for isolating
i ndividual bits within a word by using a "mask" as one of the expressions. Any

bit in the mask which is set to zero will cause that bit in the result to be
zero. Any bit set to one will cause the bit in the other expression to remin
t he sane.

"Nt [bitwi se XOR]

The bitw se exclusive OR operator. Each bit in the result of an exclusive OR

is set only if the corresponding bits in the expressions are opposite, i.e., 1
and 0, or 0 and 1. If they are the sane, that bit in the result will be zero.
This can be used to conplenent bits, using a "mask" expression. Any bit which
is 1 in the mask will cause the corresponding bit of the other expression to
be conplemented in the result. Any mask bit which is 0 wll pass the
correspondi ng bit unchanged into the result.

"|' [bitwise OR

The bitw se inclusive OR operator. Each bit in the result will be set to 1 if

either of the corresponding bits in the expressions are equal to 1. This can
be used to set any particular bit in an expression to one by using a "mask"
expression. If a bit in the mask is equal to 1, then the corresponding bit in

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

the result will be set to 1. If a bit in the mask is equal to 0, then that bit
inthe result will be the sane as in the expression being manipul at ed

'"&&' [l ogical AND]

The logical AND operator results in a TRUE (one) or FALSE (zero) condition,
depending on the relationship of the two expressions. The result is TRUE only
if both expressions are true (non-zero). Moreover, if the first expression is
FALSE, the second is never eval uated.

"I'l|" [logical OR]

The logical OR operator returns a TRUE (1) result if either of the expressions
is true (non-zero). If the first expression is true, the second expression is
not eval uat ed.

'"? " [conditional]

The conditional operator gives the C expression repertoire the equival ent of
an if-then-else construct. It can technically be classified as a binary
operator since only one of the last two expressions is evaluated. The first
expression is evaluated as true (non-zero) or false (zero). Then, if the first
expression was true (non-zero), the second expression is evaluated as the
result of the expression. OGherwise, if the first expression was false (zero),
the third expression is evaluated for the result. The conditional operator
groups right to left:

a?b:c?d?2e: f:g
is evaluated in the follow ng manner:
a?b: (c?(d?2e: f): Q)

Either or both of the second and third expressions can contain conditional
expr essi ons.

=' [assignment]

The sinple assignment, '=', places the result of the right-hand expression
unchanged into the object denoted by the |eft-hand expression.

T, te=t, st =, T UE, tes=t, T, T &S, AT, = [assignnent]

The conmpound assignnent operators place the result of the right-hand
expression into the object denoted by the Ileft-hand expression, after
perform ng the indicated operation with the contents of the |value when an

assi gnment operator other than '= is used. The result is the value stored
into the left hand object. The conpound assi gnnent operators have the form

expression_1 <op>= expression_2
and is evaluated |ike this expression
expression_1 = expression_1 <op> expression_2

The first formis nore efficient since expression_1 only needs to be eval uated
once.

» [coma]

The conma operator sets off a pair of expressions which are evaluated left to
right. Both the type and value of the result are the type and value of the
ri ght most operand; thus, the values of the left operands are discarded. The
comma operator usually finds use in a "for" statenent to initialize nmore than
one quantity.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

St at enent s

C statenents are used to specify the action to be taken by the program The
statements given in the program are nornally executed one after the other.
Certain statenments (conditional and |ooping statenments) will direct the order
of and conditions for execution of other statements. Some definitions of
statements in the following text require that a substatenent be included in
the statement. Any place where a substatenent is required, there may be one
sinple statenent, or nore than one statenment conbined in a conpound statenent.

Sinpl e Statenents

Sinple statenments are of three types: expression, declarative, and control.
The declarative statenents are described fully in the previous sections on
functions and variables. The type, size and scope of functions and vari abl es
are declared in declarative statements.

A sinple statenent always ends with a semcolon. The semcolon is the
STATEMENT TERM NATOR. It is not a statement separator as in the PASCAL
| anguage. It is always required at the end of a sinple statenent.

Conpound St at enent s

The left and right brace characters, "{"and "}", are used to indicate the
beginning and end (respectively) of a conpound statement. A conpound
statement, also called a block, can be used anywhere that a sinple statenent
may be used. Thus, wherever C's syntax requires a statenent, nore than one
statement may be given by enclosing them in braces. Wthin the conpound
statement there may be any conbi nation of sinple and conpound statenents.

The conpound statenment has the fornmat:
{ <decl arati ons> <statenments> }

No declarations or statements are required, although an enpty block could be
used as a null statenent. The declarations nust appear before any executable
statements. Any of the statenents may also be other conpound statenments. No
sem colon is required after the conmpound statenent.

The only place where a conpound statenment is required instead of a sinple
statement is in the body of the switch-case statenent. The body of a function
is one conpound statenent. Here are sonme exanpl es of conpound statenents:

func()

{
/* the body conpound statenent */
a=b; /* sinple statement */
if (a>c)

/* anot her conpound statenent */

c=a;
b=a;
} /* end of conpound statenment */
return at+b+c;
} /* end of function body conmpound statenent */

Nul | St at enent

A null statenent is sort of a placeholder. C requires that a statement be
given in certain places. If no action is needed in the place required then the
nul | statement can be used. No action is taken by the null statenent.

The null statenment is sinply a statement termnator (semcolon) by itself,
with no precedi ng statenent.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

nul | ()
{

/* do-nothing function */
; /* a null statenent */

}

Expressi on St at enent

A C expression followed by a semicolon is called an expression statenent. The
expression is performed when it is encountered. C will allow an expression
that has no assignment in an expression statenment, even if it does nothing.
Expression statenents are used to assign values to or nodify values of
variables, or to invoke functions. Sone sanple uses of expression statenents:

retcode = call _function() ; /* call a function */
a=b=c¢c=0; /* make a, b, ¢ equal to 0 */
++count er /* increnment a counter */

I f Statenent

i f (expression) statenent

el se statenent

I
I
. . |
i f (expression) statenent |
I
I

The "if" statenment gives the progranmer the capability to decide whether a
statement will be executed. The criterion for the decision is the result of
eval uating the expression. The expression may be any valid C expression. If
the expression evaluates to TRUE (non-zero), then the statenent is executed.
If the expression evaluates to FALSE (zero), then the statenent follow ng the
"else" (if any) is executed.

"If" statements may be nested, i.e., the statement within an "if" statenent
may be another "if" statement. Too nmuch nesting of "if" statenents can be hard
to follow, so noderation is advised.

Unl ess clearly established otherwi se by the use of braces, an "else" wll bind
to the closest previous "if".

Sone exanples of "if" statenents:

if (x <0 x =-x; /* absol ute val ue of x */
if (i<=0) { i=x; b=a; 1} /* conmpound statenent */
else --i; /* and an el se cl ause */

if (past_twelve) /* nested if statenments */
if (before_six)
say("good afternoon");
el se
say("good evening");
el se say("good norning");

Swi t ch- Case St at enent

switch (expression) { <switch_statenent> ... }

switch_statenent = statenent
case constant _expression :
def aul t

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
The switch-case statement allows program execution wthin the <switch_
statement> to be determined by the "case" and "default" prefixes. The

expression in the switch statenent
i nteger. Then,
Finally, if any of
expressi on, execution continues
of the cases match the result

the constant_expressions match the
i medi ately past
and there is a

is evaluated first and converted to a short
if any statements precede the first

prefix, they are executed.
result of the switch
"case" prefix. |If none
prefix, then execution

t hat
"defaul t"

continues at the "default" prefix. Execution will continue fromthen on until
either the end of the switch-case statenment is reached or until a "break"
statement is encountered. Oherwi se, when no matching case is found, no

further statenents in the switch_statenent are executed.

The switch-case statenent MJST have a conpound statenent as its substatenent.
This is the only case where this is true. The "default" and "case" statenents
may occur in any order within the body of the switch-case. Local declarations
are acceptable preceding the first prefix or statenent. The "break" statenent
is used to exit the switch_case statenent.
switch (nonth) {
case january: case october: case decenber: case july:
case august: case march: case may:
days = 31; break;
case septenber: case april: case june: case novenber:
days = 30; break;
case february:
days = |l eap_year ? 29 : 28; break;
default: days = 0; error = true;
}
Wi | e St at ement
, , I
| whil e (expression) statenent; |
I I
The npbst basic form of looping is provided in C by the "while" statenent.
Sinply stated, while the expression results in a TRUE (non-zero) value,
"statement” (also called substatenment) is executed. The expression is reeval-
uated before each tinme the substatenment is executed. Therefore, the sub-
statement may be executed from zero to any nunmber of tines depending on the

expression's current val ue.

If nmore than one sinple statenent
t hen the substatenent nust
be used to exit
can be wused to
ski ppi ng the rest

whil e (driving) wat ch(the_road);

whil e (j oggi ng)

t ake(a_step);
br eat he();
if (too_tired) break;

}
Do St at enent

must

be a conpound statenent.

the loop fromw thin the statenment.
continue directly on
of the substatenent,

be placed in the |oop substatenent,
The "break" statenent can
The "continue" statenment

to reevaluate the test expression,
fromanywhere within the statenent.

| do statenment while (expression) ; |
I I
"Do" differs in only one way from the "while" statenent - the expression is
reevaluated after the statenent is executed. Therefore, the substatenent wll

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

al ways be executed at |east once. The substatement will be repeatedly executed
until the expression evaluates to FALSE.

do anything();

while (there_is_still_time) ;
/* shuffle routine */

do

{

cut _the_cards();
shuffle();

}
while (! ready_to_deal) ;

For St at enment

| for (expr_1;expr_2;expr_3) statenent |

The "for" statenent is a |ooping statement which provides a convenient place
for initializing, testing, and incrementing |oop control variables. The format
shown above can be rewitten using the while statenent:

expr_1 ;
while (expr_2)
st at ement
expr_3 ;
}
Expr_1 is evaluated once before the loop is entered. The test expression,
expr_2, is reevaluated before each execution of the substatenent. If it

results in a FALSE (zero) value, the loop is not executed and execution
continues to the next statenent. Expr_3 is reevaluated after each tine the
substatenent is executed.

Both expr_1 and expr_3 can be nobre than one expression, separated by commss.
Expr_2 can only be one expression and should result in a |logical TRUE or FALSE
value. Note that all three expressions may be omtted. If expr_2 is omtted,
the test is always TRUE.

for (¢ ="A ; ¢c<='Z ,; ++Cc)
put char (c); /* print the letter */
/* "Now |l've said ny ABCs ..." */

Break St atenent

I
| br eak; |
I I

"Break" is used to exit any "while", "do", or "for" loop and to exit the body
of a switch-case statenent. Wenever a "break" statenent is encountered,
execution i mediately goes to the next statenent past the |loop or swtch-case
statement. "Break" is ignored outside of any loop or swtch-case conpound
substatenment. For an exanple of the use of "break" in a switch statenent, see
the section on sw tch-case above.

strscan(c,s)
char c, *s;
{

/* find character c in string s */
while (*s !'= c)
{

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

if (*s == NULL) break ; /* end of string */
++s /* next character */

}

return s ;

}

Cont i nue Statenent

| conti nue; |

The "continue" statement is used to skip the remmining statements in a
conpound |oop substatement. In a "while" or "do" statenent, execution
continues at the test expression reevaluation. In a "for" statement, execution
continues at the reinitializing expression (the third expression). The
"continue" statenent is ignored outside of any |oop statenent.

/* convert to |lower case */
while ((c = getchar()) !'= ECF)

if (c<'A || ¢>"Z) [|* not an uppercase character */
continue ; /* doesn't apply */

c = tolower(c) ;

putchar(c) ;

Return St at enent

|
return; |
return expression; |

|

The "return" statenent causes the currently executing function to end. If an
expression is provided, then the result of the expression is returned as the
value of the function. The returned value is undefined if no expression is
provided in the "return" statenent. The "return" statenent is not required in
order to effect a return from a function. Wen no statenents are left (the
bottom of the function body is reached), the function automatically returns as
if a "return" statenment with no expression were encountered. A "return"
statement is needed when a val ue nmust be returned or when the return nust take
pl ace before the end of the function. The result is automatically converted to
the function type, if necessary.

square (num
/* square a nunber */
{
return num?* num;
}
get | i ne(buf)
char buf[] ; /* line input buffer */
{
/* check for a valid file pointer */
if (file_pointer == NULL)
buf[0] ="'\0" ; /* put a null string in buf */
return ; /* back to caller */

fgets(buf, bufsize, file_pointer);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

CGot 0 St at enent

I I
| goto | abel; |

The "goto" statenent causes an unconditional branch to the statenent
identified by label. The |abeled statenent nust be contained in the current

function. It is illegal to attenpt a "goto" to a statement in sone other
function. An attenpt to do so will probably result in an error during the
assenbly phase. The followi ng exanple illustrates the use of "goto" (note: it

is strongly recommended that you avoid the use of the "goto" statement):

rest(tine)

int tine;

{ if (time > 2300) goto sleep;
el se return;
sleep: for (; ;)

) ;

Label ed St at enent

| | abel : statenent; |

Any executable statenent can be prefixed with a label. This construction is
usual ly used to target the argument of a "goto" statenent. The format of a
label is a valid identifier followed by a colon. The following are |abeled
st atenent s:

calculate: i += 10;
bigblock: i =) =k =1 =m=n=0=p = 0;

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

MC Pr eprocessor

Part of the MC conpiler is a preprocessor, which provides for nmacro
substitution, conditional conpilation, inclusion of additional files, and |ine
number control. The features provided in the preprocessor extend the power of
the C | anguage by (1) controlling the flow of C source through the conpilation
process; (2) permtting powerful macro substitution of textual strings; and
(3) offering string replacement naking your program not only nore readable,
but easier to maintain, as well.

Sonme of the work perforned by the preprocessor has to do with massaging the
source text. In this capacity, the preprocessor provides you wth the
foll owi ng features:

Input lines may be termnated with a backslash "\" for continuation;
this is npost wuseful for conplex expressions, function calls, and
macro definitions which may take nore than one line of input for

t heir declaration.

Constructions of the form "string_1"<whitespace>"string_ 2" are
replaced with "string_1string_2". This allows substitution of macros
within strings, if the nmacro itself is defined as a string.
Restriction: the whitespace separating the strings may include an
escaped (backsl ashed) newline but not a bare new i ne.

Unneeded whitespace (spaces, t abs, new- | i nes, conment s) is
automatically renoved; thus you have conplete freedom in inserting
whi t espace throughout your source <code for the purpose of
readability.

A source text conmunicates to the preprocessor via directives that control
various aspects of the conpiler during the conpilation process. One of these
directives, "#include filespec", you wll quickly become famliar with. All
preprocessor directives begin wth a nunber-sign character, "#". The
directives supported by the MC preprocessor are:

#i ncl ude filespec |

I I
| #define identifier text |
| #define identifier(parmist) text |
| #undef identifier |
| #if const ant _expressi on |
| #ifdef identifier |
| #ifndef identifier |
| #el se |
| #endif |
I

I

In addition to the preprocessor directives, others are used in the conpilation
and assenbly processes. The following directives are passed through the
preprocessor to downstream processes:

#option identifier val ue
#asm

#endasm

#line I i nenunber filespec

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Si npl e Synbolic Substitution [#define]

The "#define" directive is a macro definition. It's syntax is:

#def i ne macnane text

macnane - is the synbolic nane to be assigned to the
text replacenent string.

t ext - is the text to replace "macnane" throughout
the C source file.

Description

The "#define" directive is a macro definition. It creates a macro identifier
call ed "macnanme", which is defined to be the string of characters follow ng
the "macnane" (the "text"). Macro identifiers may have any length (1 - n char-
acters), and any nunber of macros may be defined, subject to nmenory avail-
ability. Macro text replacement may be nested to a depth of 20 which neans
that a macro definition may itself invoke a macro, etc. Macros may also be
redefined at will.

Macros may be defined in any order, even if they depend on each other; this is
because preprocessor command |lines are not thenselves preprocessed. However,
note that circular definitions will cause a fatal error.

The preprocessor will substitute the "text" string wherever "macnane" is found
in the C source stream except where "macname" appears within single or double
quotes. For exanple, given a definition of the form

#def i ne DRAW 1

there would not be a substitution in the statenent, 'puts("DRAW ME A BATH");'
but there would be in the statenent, " box(DRAW x1,y1, x2,y2);". It is
recommended that macro "macnanes" be defined in upper-case characters so that
t hey becone distinct when | ooking at your source code.

The "macnane" nust be a valid C identifier following all the rules of nam ng
identifiers, whereas the "text" is anything and everything up to end of the
logical input line. The "text" is substituted until "macnane" is redefined via
anot her "#define" or undefined via the "#undef" directive.

The macro "dos" is predefined. One of the macros dos5 or dos6é wll be
predefined based on the DOS under which MC is running. These macros have no
repl acement text.

The macro "__DATE__ ", when invoked, is replaced with a QUOTED STRING of the
asctine() format "Tue Oct 22 10:03:10 1985\n\0", the date and tine being
retrieved fromthe system when MC is invoked.

The macro "__FILE_ ", when invoked, is replaced with a QUOTED STRI NG cont ai n-
ing the name of the input file currently being read.

The macro "__LINE__", when invoked, is replaced with the nunber of the source
line currently being processed, in decimal. It is NOT a quoted string.

Exanpl e

#i nclude stdio.h
#define PRINTX printf("%\n", x)

mai n()

int Xx;

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

-3+ 4 * 5 - 6; PRINTX
3+ 4 %5 - 6; PRINTX;

Par anet eri zed Macro Substitution [#define]

This powerful directive provides textual substitution with the capability of
speci fying substitution paraneters in a paraneter list that may be different
for each macro invocation.

#defi ne macnane(parmist) text

macnane - is the synbolic nane to be assigned to the
text replacenent string.

par i st - is zero or nore paraneters of the macro.

t ext - is the text to replace "macnane" throughout

the C source file.

Description

Macro definitions may also be witten to include dummy paraneters, which wll
be substituted with actual paraneters when the macro is expanded. This type of
definition requires that there not be any white space between the "nmacnane"
and the opening parenthesis "(". The actual paraneters are designated when the
macro i s expanded. The preprocessor will substitute the "text" string and the
actual paraneters passed in the nacro call wherever "macnane" is found in the
C source stream except where it appears w thin parentheses.

For instance, a macro definition of the Ilibrary function putchar() may be
witten as

#defi ne putchar(byte) putc(byte, stdout)

Thereafter, any C statenent of "putchar(c)" will be replaced with the state-
nment, "putc(c,stdout)". Notice that the actual argunment, "c", replaces the
dummy paraneter, "byte", in the macro definition when the macro is expanded.
It is also not necessary for the macro dummy paraneter nanme to be unique
across different macros, although it is recommended that it be distinct for

t he purpose of clarity.

A paraneterized macro may have up to 128 paraneters - nore than you would ever
have need for. Macro text replacement may be nested to a depth of 20 which
neans that a macro definition may itself invoke a nacro, etc. Macro
identifiers may have any length (1 - n characters), and any nunber of nacros
may be defined, subject to menory availability. Macros may al so be redefined
at will. In a macro call, comms are used to separate actual paraneters, but
are ignored within set(s) of balanced parentheses; a backslash may be used to
escape an i nbedded conma or unbal anced parenthesis within an actual paraneter.

Macros may be defined in any order, even if they depend on each other; this is
because preprocessor command |lines are not thenselves preprocessed. However,
note that circular definitions will cause a fatal error.

Parameters in the definition portion of a paraneterized macro are always
replaced, even if they occur within a doubl e-quoted string. Note that this can
get tricky. For exanple, in the following series of paraneterized macro
definitions, when the string, "PR(cos(d))" is detected, the "x" paraneter is
the string, "cos(d)" resulting in the substituted statenent,

printf("cos(d) = %g\t", cos(d))

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

VWen a paraneterized nmacro is called with one or nore actual argunents
m ssing, the missing arguments will be interpreted as if they were null
strings. Note that you nust still provide any comma(s) needed to specify all
of the paranmeter positions. For instance, the macro "#define test(a,b) a b"
called with the various argunents produces the follow ng results:

test (123, 456) 123 456

t est (abc,) abc

test(, xyz) Xyz

test() Fatal preprocessor error - mssing paraneters
Exanpl es

#define PR(x) printf("x = %g\t", x)
#define NL putchar('\n")

#define PRINT1(x1) PR(x1); NL

#define PRINT2(x1, x2) PR(x1); PRINT1(x2)

Forgetting a Macro Nane [#undef]

This directive will cause the preprocessor to forget the operand nane.

#undef nmacnane

macnane - is the synbolic nane to be "forgotten".

Description

The "#undef" directive is used to cause the preprocessor to forget the
definition of "macnane". Thus, after a macro nane has been forgotten, no text
substitution will be perforned if that "macname" is encountered in the C
source code. Also, the result of an "#ifdef macname" referencing that nacnane
identifier will be a FALSE state.

Exanpl e
#i f def DEBUG
#undef BRI EF
#endi f
Conditional |IF Evaluation [#if]

The conditional "#if expression"” is used for conditional conpilation based on
the result of an expression.

#i f constant _expression

formpermtted in the C |anguage which wll
eval uate to a constant.

I
I
I
| expression - is a sinple or conplex expression of the
I
I
I

Description

The preprocessor will evaluate the "expression", which nust evaluate to a
constant, and consider the result FALSE if it is a zero value or TRUE if it is
a non-zero value. If the expression is TRUE, the C source code up to the
corresponding "#endif" or "#else" wll be processed; otherwise it wll be
i gnored. Conditionals may be nested 256 deep.

A constant_expression in the preprocessor can involve only integer constants
and character constants. The binary operators permtted are: "+", "-" k6 "*",

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

T, OMOB, &, |, AT, MR, >, ta=t Mp=tongn v>totest t>=tand
"?:". The only unary operators permtted are: "-" and "~".
Exanpl e

#if MAXLEN > 80 /* ensure external definition does */

#def i ne MAXLEN 80 /* not exceed our maximumlimt */

#endi f

Conditional test of an ldentifier [# fdef, #ifndef]

These directives will test whether a macro nane has been defined or undefi ned.
The result will be TRUE or FALSE respectively.

#i f def macnane
#i f ndef macnane

macnane - is the synbolic nane to be tested for its
state - defined or undefined.

Description

If the identifier noted as "macname" has been previously defined via a
"#define macnane" and not forgotten via an "#undef nacname", the result of the
"#ifdef" test will be TRUE and the result of the "#i fndef" test will be FALSE.
O herwi se, the result of the "#ifdef" test will be FALSE and the result of the
"#ifndef" test will be TRUE. If the test result is TRUE, the C source code up
to the corresponding "#endif" or "#else" will be processed; otherwise it wll
be i gnor ed.

Exanpl e
#i f def DOS6
#def i ne MAXLEN 80
#el se
#def i ne MAXLEN 64
#endi f

#i f def DBUG
static void dsply();
#endi f

Alternate Conditional Block [#el se]
The "#el se" directive is used to establish an alternate block of C source code

which is to be processed depending on the result of a previous conditional
anal ysi s.

| #el se |

I I
Description

The bl ock of source between the "#el se" and the "#endif" wll be processed and
passed to the output stream only when the test state of the preceding "#if",
"#ifdef", or "#ifndef" was FALSE. This provides a construct simlar to the "if
(expression) statement_1; else statement_2;" in the C source |anguage.
However, in the case of the pre-processor, you can utilize this construct to
conditionally insert alternative groups of C-source code into your program
based on a single test. Miltiple #else's are not accepted for a given #if;
thus, there can be only one "#el se" per "#if".

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Exanpl e
#i f def DOS6
#def i ne MAXLEN 80
#el se
#def i ne MAXLEN 64
#endi f

Condi tional Block Term nation [#endif]

The "#endif" directive is used to define the term nating boundary of a "#if",
"#ifdef", or "#i fndef" conditional bl ock.

I
| #endi f |
I I

Description

The "#endif" nust be used to "close" any of the "#if" directives so the
preprocessor knows the extent of the conditional block.

Including Additional Files [#i nclude]

This directive permts additional files to be included into the C source
stream

#include <fil espec>
#i nclude "fil espec”
#include fil espec

filespec - is the nane of the C source or header file
to be inserted into the source stream

Description

This directive tells the C preprocessor to insert the file designated by
"filespec" into the source stream being conpiled. The "filespec" wll default
to an extension of "/H' if no extension is given. Includes may be nested 8
files deep. The "#include" is wused quite frequently to nerge the STD O
standard header file and other header files into your conpilation. Note that
the preprocessor will accept all three forns of the "#include"; all forns are
treated alike.

Since the preprocessor makes use of the MC standard |/O package, it wll
accept filespecs of the form "filename.ext" or "fil enane/ext".
Exanpl e

/* sanple programto illustrate #include */

#i ncl ude "stdio. h"

mai n()

t

int x;

X =-3+4*5-6; printf("%\n",x)

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Forcing Assenbl er Options [#option]

This directive is passed through to the conpiler, which turns it into an
assenbl er instruction.

#option optname val ue
opt nane - is the synbol nanme to be assigned.

val ue - is the optional value to be assigned to
"opt name" by an assenbl er DEFL instruction.

Description

The "#option" directive is used to pass synbol definitions fromthe C source
code to the assenbly phase. The "optnane" nust be a valid C identifier. The
optional "value" must be an integer or character constant expression. Escape
sequences may be used in the constant. The conpiler translates the "#option"
directive to the form

@ OPTNAME DEFL val ue

If the "value" is omtted, the DEFL statenent will default to a value of
negative one (-1). This indicates TRUE to the assenbler.

The #option directive is used in MC to generate a "request library search"
assenbler directive. This results in an automatic search of a specified
library during the |inking phase. If your application will be using functions

in either the installation library, INREL, or the high-level math library,
MATH REL, you will need to add the statenent(s):

#option INLIB and/ or #opti on MATHLI B
for the installation and high-level math libraries respectively.

MC has reserved additional option nanes for use with the #option directive.
These are:

ARGS specifies the generation of argc and argv for use by main();
FI XBUFS specifies buffer pre-allocation for standard 1/G

MAXFI LES specifies the maxi mum nunber of simultaneously open files;
REDI RECT specifies the acceptance of standard |/O redirection;

W LDCARD specifies wildcard fil espec expansion;

The use of these options and "#option" in general is documented in chapter 3,
"Runni ng the Conpiler"

I ncl udi ng Assenbl er Source [#asm #endasm]

This pair of directives permts assenbler source code to be placed directly
in-line.

#asm
transparent assenbly | anguage code
#endasm

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Description

The directive pair, "#asm - "#endasni', can be used to insert assenbly
| anguage source code directly within the C source file. It should be used ONLY
when it is ABSOLUTELY necessary to wite a routine in assenbly |anguage.
Rermenber that any C source code file that has inbedded assenbly | anguage code
is generally NOT portable. The nore assenbly | anguage code you inbed, the |ess
portabl e your programs become and the nobre you have to recode when trans-
porting your programto another machine.

Al input past the "#asnl directive is passed unchanged into the output file
except for preprocessor commands. O course, since the output file is an
assenbly | anguage source file, the statements follow ng the "#asn' should be
valid assenbly source statements. The block of assenbly statenents is ended
with the "#endasn!' directive. Please note that the "#endasm' directive nmust be
in colum 1; otherwi se the "#endasm' will not be recognized and any C source
code followi ng the "#endasm' will be passed unconpiled to the output file.

Preprocessor commands within an "#asni-"#endasn construct are valid. This
| eads to sone beneficial side effects. For exanple, a pure ASM source file nmay
be #include'd, or "#if/#elsel/#endif" may be used to conditionally pass
assenbl er source to the conpiler. Be aware that all other text between a
"#asm' - "#endasm' pair is passed unchanged to the output; no nmacro text re-
pl acenents are done. "#asnl - "#endasnm' may not be nested.

This escape to assenbly |anguage is provided as a conveni ent kludge mechani sm
only. It is not intended to be the normal way of interfacing assenbly |anguage
functions to a C program The proper way to interface to assenbly |anguage is
to place the assenbly function in a separate nodule, perhaps even in a user
library if it is to be used frequently. This nakes the program easier to
transport to other systens, as the machi ne-dependent code is separated from
the program source. See the Advanced Topics chapter for nore information on
assenbly | anguage programming in the MC environnent.

Li ne Nurmber Control [#line]

The preprocessor provides the "#line" directive to be able to pass source |ine
number and fil espec identification to the conpiler.

#l ine |linenunber {filespec}

l'inenunber - is the nunber to be passed to the output.

filespec - can be used to specify an optional filenane.
Description
For purposes of diagnostic error nessages, it is useful to be able to report
on the physical line nunber of the specific source file where an error was
detected. Since the wuse of "#include" provides a continuous stream of
processed source to the conpiler, it inserts appropriate "#line" statenents
whi ch reveal when a source file swi tchover has occurred. The conpiler expects
"l'inenunber” to be the physical |ine nunber of the next source line. Were
"filespec" is passed, that line is assuned to be originating from the iden-

tified file. If "filespec" is omtted, the filespec is assuned to be the |ast
file identified.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Program Exanpl e - SORTSYM

The follow ng C-source program nmakes use of many different C statenments and
variable types - including structures and unions. The purpose of the program
is to obtain a page listing of the synbol table produced by MINK, the I|inker
provided with the MRAS assenbler developnent system A report sorted
al phabetically by synbol nanme and nunerically by synbol address is produced. A
preponderance of conmments has been added to explain the rationale behind the
program

/*

* SORTSYM - sort M.I NK-generated synbol table by synmbol and by address

* Version 0.1 - Last update - 09/21/85

* Witten by Richard N. Deglin

*

* Invoke via the syntax: sortsym<infile >outfile

*/

#i ncl ude <stdio. h> /* for standard definitions */

#i ncl ude <stat.h> /* to define the stat structure */

#def i ne RECORD uni on record

#def i ne RECLEN si zeof (RECORD)

#def i ne NAVELEN 15

#def i ne ADDRLEN 4

struct stat fdat; /* file's stat data structure */

unsi gned short nrecs, /* nunmber of synbol entries */
fsize, /* SYMfile size bytes to read */
i; /* loop variable */

char tenpnane[NAMELEN], /* wor kspace for swapping nenbers */

t enpaddr [ADDRLEN] ;

The synbol table records generated by M.I NK consist of
a nanme field (15 characters), followed by a space,

foll owed by a 4-byte hexadeci mal address, term nated

by a newline. Since we want to produce a listing
ordered by synbol nane and by address, we declare a
union of two structures. The first structure (bynane)
establishes the fields in the order read fromthe file.
The second structure shows the re-arrangenent of fields
that we will create by noving the data. The union only
requires storage space for the |largest nenber; thus, only
space for one record is actually required for the union.

E I I R T . T I N

/

uni on record
{ struct

{ char nanme[NAMELEN] ; /* synbol's nane */
char space; /* interstitial space */
char addr[ADDRLEN] ; /* synbol's address val ue */
char new i ne; /* termnating newline */

} bynane; /* first nenber of union record */

struct

{ char addr[ADDRLEN] ; /* synbol's address val ue */
char space; /* interstitial space */
char nanme[NAMELEN] ; /* synbol's nane */
char new i ne; /* termnating newline */

} byaddr; /* second nmenber of union record */

} *record, /* A pointer to type "union record". W really */

/* need an array of records and would be able to */
/* use sonmething |ike var[COUNT]; however, since */

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

/* we don't know how many records we need to */
/* obtain storage for, we use a pointer and */
/* allocate storage later with alloc() */
base, / A pointer to the base of the synbol records */
**prec, /* A pointer to the "array" of record pointers. */
*

This is simlar to the specification, *var[]; */
/* however, since we don't know how big to make */
/* the array, we use a pointer to a pointer and */
/

* dynamically allocate the array space. */
**recp; /* an extra one for work use */
/*
* declare the followi ng functions as type void so that the
* conpiler will flag an error if we try to use their
* non-exi stant return val ue.
*/

voi d abend(), puterr(), tabify();

/*

* the conpare() function is needed by gsort(); even though

* MC will assune a function to return an int if not explicitly
* stated as such, declaring all such functions is a good habit
* to get into

*/

nt conpare();

/*

* decl are as externs, all of the library functions used by
* sortsym so that the conpiler knows what kind of val ue,

* if any, they return.

*/

extern int fstat(), gsort(), strncnp(), fputs();
extern char *alloc(), *move();
extern unsigned short read(), wite();

/*

* this is the main function

*/

mai n()

/*

* Si nce standard output will be used to wite the processed
* output, it will be necessary to wite informative nessages
* to standard error. That's the purpose of puterr().

*/

{ puterr("\nReading...");

/*
* fstat() will get the statistics of standard input since
* it is referencing the file descriptor, STDIN. Note that
* the second argunent to fstat() needs to be a pointer to
* a structure of type struct stat. Since fdat has been
* defined to be of type struct stat, we use the "address of"
* operator to denote a pointer_to.
*/
if (fstat(STDIN, & dat) == EOF) /* stat the input file (stdin) */
exit(l); /* a return of EOF neans an error */
/*

* we use the st_size nenmber which is the file size in bytes

EEE R S B

E R T R . . I I I

* % ok F X

| *
*/

| *
*/

* % ok F *

The M SOSYS

C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

to calculate the nunber of records to read. In that way,
we can read the entire file in one gulp. W also store the

file's size in "fsize". Note t

hat st_size is cast to an

unsi gned short (16-bit integer) since st_size is declared to

be a long in the stat header f

ile. By the way, we subtract 1

fromthe SYMfile's size because M.INK adds a newline as the

|l ast byte of the file; that's

i gnored by sortsym

nrecs = (fsize = (unsigned short) fdat.st_size - 1) / RECLEN;

Now we get a little conplicated. W want to make sure that:

(1) since we cast the size to

a short, that it really can

fit into a short; the first test takes care of that; (2) that
we can all ocate enough space for the input read buffer; the
second test takes care of that; and (3) that we can allocate

enough space for the pointers

to each record; that's the

third test. Note also that since alloc() returns a pointer to
type char, it is cast to a "pointer to type RECORD' for the

read buffer allocation, and a

pointer to a pointer of type

RECORD for the "array of pointers to the records".

f (fdat.st_size > OxffffL ||

! (base = (RECORD *) alloc(fsize)) ||
I (prec = (RECORD **) alloc(nrecs * sizeof (RECORD *))))
abend("SYMfile too |arge\n");

The file is now read. The read() function returns the nunber

of characters actually read. |
error occurred.

if (read(STDIN, (char *) base,
exit(l);

f this is not fsize, then an

fsize) '= fsize) /* read SYMfile */

We now generate the array of pointers to each record

for (i=0, record=base, recp=prec; i<nrecs; ++i)

*recp++ = record++;

Sone status to let you know where we are

puterr("\nSorting by nanme...");

Use the library function, gsort(), to sort al phabetically
by synbol name. Qsort() uses our conparison function, conpare()

if (gsort((char *) prec, nrecs,
abend("Can't sort\n");

si zeof (RECORD *), conpare) == ECF)

Si nce MLINK produces a 1-across synbol table when directed to
a disk file, we use tabify() to convert every two out of three
newlines to a tab character. This produces a 3-across table

tabi fy();
puterr("\nWiting by nanme...");

/* nore status to informyou */

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

/*

We now start writing to the output file using stream output.
* fputs() returns NULL if the output was successful, else EOF
*

if (fputs("Al phabetic sort:\n\n", stdout))
exit(l);

Each record is now witten using block file wites.
Simlar to read(), we conpare the function's return val ue
which is the nunmber of bytes actually witten to how nmany
bytes we told it to wite to detect error conditions

* % ok %k X *

for (i =0, recp = prec; i < nrecs; ++i)
if (wite(STDOUT, (char *) *recp++, RECLEN) != RECLEN)
exit(l);

We now swap nanmes and addresses so that sortsym can
produce a table sorted by address. Pay close attention
to the syntax of specifying each el enent of the union.
Since "record" is a pointer to type union, we use the
"->" object_of operator to connect the union's nane to
its menbers. Also, since its nenbers are structures, we
need the dot operator to connect the structure name
with its menber [record->bynane. nane]

E I U T

puterr("\nReformatting...");

for (i =0, record = base; i < nrecs; ++i, ++record)

{ (voi d) nove(record->bynane. name, tenpnane, NAMELEN);
(voi d) nove(record->bynane. addr, tenpaddr, ADDRLEN);
(voi d) nove(tenpnane, record->byaddr.nane, NAMELEN);
(voi d) nove(tenpaddr, record->byaddr.addr, ADDRLEN);
record->byaddr. space = ' ';

Sonme nore status to informyou of where we are. W then
sort the array of records again with gsort() so that it
is ordered by address rather than al phabetically by nane

E I

puterr("\nSorting by address...");
if (gsort((char *) prec, nrecs, sizeof (RECORD *), conpare) == ECF)
abend("Can't sort\n");

A new order requires a new construction of the tabs to
construct a 3-across report format

tabify();

We now continue witing to the output file using stream output.
fputs() returns NULL if the output was successful, else EOF

puterr("\nWiting by address...");
if (fputs("\nAddress sort:\n\n", stdout))
exit(l);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Each record is again witten using block file wites.

As before, we conpare the function's return val ue

which is the nunmber of bytes actually witten to how nany
bytes we told it to wite to detect error conditions

* % ok %k X F

for (i =0, recp = prec; i < nrecs; ++i)
if (wite(STDOUT, (char *) *recp++, RECLEN) != RECLEN)
exit(l);

This is the informati ve message we were | ooking for! W
are also leaving it up to exit() to close the output file
since we did not open it - it was standard out put!

* % ok F *

puterr("\nDone\n");

/*
* This function is used to abort the program execution due

* to sone error. It uses puterr() to wite the error nessage.
*/

voi d abend(s)

char *s;
{ puterr(s);
exit(1);
}
/*
* The library gsort() function requires us to provide a conparison
* function which conpares two argunments. It needs to return <0, O,
* or >0 based on the conparison. We use strncnp() to conpare at
* mpst "RECLEN' characters. We could al so have used nmencnp().
*

/

nt conpare(a, b)

char **a, **b;
{ return strncnp(*a, *b, RECLEN);
}

/*

* This function is used to conveniently wite a nmessage to
* standard error output since standard output is being used
* to wite the processed out put

*/

void puterr(s)

char *s;
{ (void) fputs(s, stderr);
}

/*

* This function changes every two out of three "newlines" to
* atab in order to produce a three-across listing

*/

void tabify()
{ for (i = 0, recp = prec; i < nrecs; ++i, ++recp)
(*recp)->byname.newline = (i + 1) %3 ? "\t' : '"\n';
(*--recp)->bynane. newline ="'

\n'; /* last one always has newline */

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Program Exanpl e - DCAL

The next program can be used in a TRS-80 Mddel 4 enironnment to calculate the
rotational speed of a floppy disk drive. It is based on the know edge of the
actual processor clock speed to calculate the tine it takes the floppy disk
drive to rotate fromindex pulse to index pulse. The program denpnstrates one
form of the use of inline assenbler code via the "#asn - "#endasnm' pre-
processor directives.

/
DCAL - Used to calibrate the speed of a floppy disk drive
Version 0.1 - Last update - 11/20/85

Witten by Roy Soltoff - derived from DCAL/BAS by Ti m Mann

Invoke via the syntax: dcal drive# or dca
/

EEE N I I R

#i ncl ude stdio.h /* to obtain standard constants */
#i ncl ude math. h /* to request a search of MATH REL */
#option INLIB /* to request a search of I N REL */
#defi ne CLOCK 2.02752e6 /* docunented cl ock speed of a

Model 4 in slow speed */
#def i ne SELECT Oxf4 /* FDC port for drive select */
#def i ne COVMMAND 0xf O /* FDC port for commands */
#def i ne STATUS COMVAND /* FDC port for status - Note the

macro is defined with a macro */

#define RESTORE 3 /* Controller comand to restore a
disk drive to track O */
#defi ne BUSY 1 /* FDC status bit for busy */
#defi ne VAR TSTATE 46.0 /* This is the nunber of t-states
taken up by the assenbl er code
in the tight timng | oop */
#defi ne FI X_TSTATE 23.0 /* This is the nunber of t-states
taken up by the assenbl er code
execut ed outside of the tight
timng loop but in the timng */
int ds[4] = {1, 2,4,8}; /* drive select conversion table */
unsi gned drive, ckpul se(); /* these will be unsigned ints */
doubl e sbar = 0.0, /* snmpot hed speed, init to 0 */
rpm /* speed at each iteration */
| o_rpm = 400.0, /* the | owest speed detected */
hi _rpm = 200. 0; /* the hughest speed detected */
char buffer[81]; /* a general purpose input buffer */
/
this is the main function - it makes use of conmand |ine

argunments; thus, it specifies the two argunents of main(),
argc [the count of arguments in argv] and argv [the array
of argument pointers].

* % ok %k F *

/

mai n(argc, argv)
int argc; /* declare argc an int */
char *argv[]; /* argv is a pointer to an
array of character strings */

~—

E I N

We first test to see if dcal was invoked with the drive
specification on the conmand line. If so, then argc woul d
be equal to 2; if not, then argc would be equal to 1

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

if (argc==2)
drive = atoi (*++argv);
el se
/*
* ot herwi se, we request the user to enter the physical floppy
* nunber [this is not necessarily the logical drive nunber if
* the system al so contains a hard drive(s). W nmake use of the
* | abel ed statenment to provide a "branch" point for the "goto".
* You see, there is at |east one place we can nake use of "goto".
* Use fputs() for output since we do not want a new i ne.
* Use gets() for input as it strips the newine.
*
/
. { . .
input: fputs("Enter floppy physical drive number <0-3> : ", stdout);
if (!gets(buffer))
exit(0); /* we do not want to show an error
drive = atoi (buffer); /* convert string entry to an int
}
/*
* Test the input for validity. If not in the range 0-3, then
i ssue the request again (the "goto" will branch to "input”
*
/
if (drive > 3)
goto input;
/*
* The timng test needs a floppy diskette in the drive
*
/
printf("Insert a disk in floppy %d and depress return”,drive);
/*
* Index the drive select code based on the drive slot nunber
* then use getchar() to accept the go ahead entry
*
/
drive = ds[drive];
get char () ;
/*
* Tell how to "escape" fromthe continuous timng test.
* This tine we use puts() to add the new ine character.
*
/
puts("\nDepress any key to exit timng |oop");
/*
* Model 4's vary in effective CPU speed at the high speed because
* some have nore wait states than others; thus, use the system)
* function to issue a DOS "system (slow)" command to force the
* use of the 2 MHz clock speed. W do not have to bother to use
* the portable execl () or execv() functions as this programis
* very machi ne dependent and certainly not portabl el
*

E I

system("system (slow)"); /* clock accurate at 2Megs only */

Use outport() to issue the drive select comand to the FDC
then restore the drive to track 0; the FDC needs a type |1
command to be able to check index pul se status

*/
*/

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

out port (SELECT, dri ve);
out por t (COMMAND, RESTORE) ;

/*
Continue to select the drive until the BUSY flag is reset.
That's when we know the drive has been positioned to track 0
*/
whil e (inport(STATUS) & BUSY)
{
out port (SELECT, dri ve);
if (inkey()) /* we can poll the keyboard as a */
exit(0); /* neans of escaping if desired */
}
/*

* This while | oop continues to check the index pulse timng
* until such time as a keyboard character is detected

while (!inkey()) /* i.e. while no key is sensed */
{

~

* % ok X X X F

The rotational speed is calculated fromthe equation:

60 seconds per minute tines CPU speed in seconds

(loop t-states tines pul ses per loop) plus fixed t-states
/

rpm = 60. 0* CLOCK/ ((doubl e) ckpul se(drive)* VAR _TSTATE+FI X_TSTATE)
If speed this check is lower than the | owest already recorded,

then update the | owest stored; else if speed is greater than
the highest already recorded, then update the highest stored

* % ok F *

/

if (rpm<lo_rpm lo_rpm
if (rpm> hi_rpm) hi_rpm

rpm
rpm

Cal cul ate a "snoot hed" speed by using 90 percent of our
previously cal cul at ed snoot hed speed plus ten percent of
the speed detected on this check. Note that if the snoothed
speed has not already been established, sbar woul d be equa
to zero - its initialized value - and the snoot hed speed is
just set equal to the speed this check

L R S T I

if (!sbar)
sbar = rpm
sbar = sbar * 0.9 + rpm* 0.1;

Print out the driver's speed and the other statistics gathered.
The escape constant, "\x1d", is used to position the cursor

to the beginning of the line; thus, the printed data constantly
overprints itself rather than constantly scroll up the screen.
Note the use of the backslash, "\", to tell the MC preprocessor
to continue the C source line.

EEE I S I I

printf("\x1dSpeed = 9. 1f-9%3. 1f - 9%3. 1f -- Snoot hed speed = %. 1f",\
lo_rpmrpmhi_rpmsbar);
} /* this is the end of the while |oop */

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

/*
* Since we slowed up the normally "fast" CPU at the begi nning
* of the program we now direct it to the "fast" node.
*/
systen("system (fast)");
/*
* No explicit exit() is needed as the closing brace of main()
* always "falls through" to exit().
*/
}
/*
* This function contains the assenbl er routine which perforns
* the actual timng test of the disk drive. It is inserted
* into the source streamvia the "#asn' - "endasni preprocessor
* directive. Note that although the identifier "STATUS" is reused
* here, the preprocessor does not replace it with the substitution
* string "Oxf0" as it is within a "#asnl' - "#endasn' bl ock.
* We use a C function declaration to establish the function
* environment; we could just as well have omitted it and
* declared a "PUBLI C CKPULSE" and a "CKPULSE:" entry | abel.
*/
unsi gned ckpul se(drive) int drive;
{
#asm
STATUS EQU OFOH ; FDC status port
SELECT EQU OF4H ; Fl oppy drive select port
$GA DE ; Get drive nunber into register_DE
DI ;Can't interrupt timng |oop
LD BC, 2. SHL. 8+SELECT
L1 LD HL, O :lnit or re-init counter to zero
L2 ouT (O, E : Sel ect the drive
I NC HL ; Bump count er
I N A, (STATUS) : Get the status
AND 2 :Mask the index bit
JP Z, L2 ;Loop until it's reset
L3 ouT (O, E : Sel ect the drive
I NC HL ; Bump count er
I N A, (STATUS) : Get the status
AND 2 :Mask the index bit
JP NZ, L3 ;Loop until it's set
DINZ L1 ;Do twice to check index to index
El ; Restore interrupts
#endasm
/*
* The closing brace will provide the needed RET statenent.
* Since thus is an "unsigned" function, the returned value will
* be in the HL register pair.
*

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Runni ng the Conpil er

Keyboar d Refresher

Before you begin, renenber that the DOS keyboard driver has a few extra
keyboard conbinations to generate sone of the characters needed for C It's
probably a good idea to refresh your nmenory as to the key conbi nations.

character key conbination

{

| CLEAR- SHI FT- SLASH

} CLEAR- SHI FT- PERI CD

~ CLEAR- SHI FT- SEM COLON

Operation

The MCP preprocessor takes C source code as input and generates a preprocessed
output file for the MC conpiler's input. MC takes that preprocessed file as
its input and generates an assenbler source file as output. The assenbler file
is custom zed for either M SOSYS' MRAS or Mcrosoft's MBO assenbler by neans
of a conpiler option. The assenbler of choice wll produce a relocatable
obj ect module; this npdule nust be conmbined with various nodul es contained in
the supplied libraries in order to produce an executable program file. This
conbining process is called "linking"; it is perforned by the linker (MINK or
L80) supplied with your assenbler of choice. Thus the output of the conpil-
ation process nust be assenbled and linked with any required run-time library
nodul e before it can be executed.

The first stage of the C | anguage process is, of course, to create a C source
file. The editor that is a part of your assenbl er package may be used for this
purpose or you nay use any other text editor. Your assenbler manual should be
consulted for all operations concerning the editor or assenbler functions.

Note for MBO/LB0O Usage

If you are using Mcrosoft's MO/L80 assenbler/linker,
you will have to add the preprocessor statenent:

#i ncl ude nB80O

in any C-source program file which includes your "main()"
function. The "#include nB0" nust be inserted after all
"#option" statements and before any global declarations.
The identifier, "nBObgn", is reserved.

The second stage of the C | anguage process is the conpilation of the C source
using the MCP preprocessor and MC conpiler. This produces an assenbly source
file.

The third stage of the C |anguage process is to convert that assenbly |anguage
file into a rel ocatabl e object nodule. Your assenbl er does this.

The fourth stage of the C |anguage process is to link the relocatable nodule
with any other rel ocatabl e npbdul es you have devel oped for that program and any

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

nodul es needed from the supplied libraries. Your linker wll perform this
st ep.

Finally, your last stage is to test and debug your work. This generally
requires a cycling through the above stages until you are satisfied that your
program behaves as you i nt ended.

The JCL procedure shown bel ow can automate the stages from conpilation through
linking. However, if you want to take direct control of each stage of the
operation, you can invoke MCP and MC directly (as well as your assenbler and
l'inker).

Usi ng Job Control Language

A Job Control Language (JCL) file, "MJJCL", presents the preprocessing,
conpi l ation, assenbly, and linking as a job stream to the operating system
The JCL procedure requires mniml entry of commands by the progranmer to
create an executable CMD file. It provides eight options that are passed to
the procedure in the JCL invocation. The JCL is invoked via the conmand:

DO MC (N=prognane{,parn}{,parm{,...})

pr ognane - Specifies the name of the C source file to
be conpiled and assenbled into a CVD file.

a - Specifies that the /ASMor /MAC file is to
be assenbl ed follow ng a successful
conpi | ati on.

c - Specifies that the input C source file is
to be preprocessed and conpiled (default).

cc - Specifies that the /ASMor /MAC file wll
have the C source i nbedded as comments.

d - Specifies the drive spec of the disk drive
for all file I/O (defaults to d=1).

k - Specifies that the internediate files
(/INT, /ASM or /MAC, and /REL) should be
deleted after the /CVMD file is generated.

- Specifies that the /REL nodule is to be
linked with the needed libraries (default).

list - Specifies that the assenbly phase shoul d
produce a listing.

o - Specifies that the /ASMor /MAC file is to
be optimzed prior to assenbly.

The begi nning user need only be concerned with the "N=prognane" paraneter as
this is the means to identify the name of your C source program The optional
paraneters are useful to the nmore know edgabl e and experi enced user.

If you want to conpile a program called "myprog" which resides on |ogical
drive 1 and generate the finished CMD file with only one statenent, then the
comrand:

DO MC (N=MYPROG)

lets you sit back and relax while the machine does all of the work. If the
/CCC file exists on another drive, use the "d" paraneter.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

I nvoki ng the MCP Preprocessor
The preprocessor is invoked via the command:

MCP filespec {switch} {switch...}

fil espec - Afile specification for the input file.
Only one filespec may be passed.

switch - Represents an optional preprocessor swtch.
These switches are preceded with either a
plus sign (+ = ON) or a mnus sign
(- = OFF). The usable switches follow

+dIDENf=s] - Specifies the definition of a macro with
an optional replacenent text string

+0[=spec] - Specifies the generation of output and the
output file specification.

-0 - Specifies that no output file should be
witten.
-p - Designates that the display should not stop

when error nessages are enitted.

+t - Specifies the output of an untokenized text
file purely for debuggi ng macros.

+ul DEN - Undefines the designated identifier.
The "filespec" mmy optionally include a file extension; however, if it is
omtted, "/CCC'" will be assumed. The drivespec is optional. It is reconmended

that you establish your C source files with the "CCC' file extension for
uniformty and standardi zati on.

Swi t ches:

"Switch" options are specified by a plus "+" or minus "-" sign followed by the
option letter and any additional information needed by the switch(es).

+dI DENTI FI ER[=TEXT]

The plus "dee" switch will define a macro with optional replacenent text from
the command line. If text is not given, the macro is defined as "1". The m nus
"dee" syntax, "-d" is an alternative form A paraneterized macro definition is

accept abl e.
+0[=] [FI LE- OR- PARTSPEC]

This plus "oh" switch instructs MCP to wite output to the nanmed file. If a
partspec is given, the output filespec is constructed from the nane of the

main input file plus the partspec. The output file's extension will be forced
to "/ TOK".
-0

The m nus "oh" switch specifies that no output file is to be witten.
-p

When this switch is ON (+p), the preprocessor will stop when any errors are
found and displayed. Any key except BREAK will continue conpilation. BREAK
wi Il abort the execution of the preprocessor at any time if this switch is on.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

If MCP was invoked from JCL, the JCL wll also be aborted. This swtch
defaults to ON. If you wish to turn OFF the pause facility, enter "-p".

+t

The plus "tee" switch specifies that the output file generated by the
preprocessor will be a pure text file. The normal type of file generated for
input to the conpiler phase is a tokenized file. Thus, the text output may be
useful only for checking your nmacro expansions for correctness.

+ul DENTI FI ER

The plus "you" switch instructs MCP to ignore the first "#define" for this
macro identifier encountered in the input stream The mnus "you" syntax, "-u"
is an alternative form

I nvoki ng the MC Conpil er

MC is invoked to conpile a preprocessed C source internediate file. The
command syntax is as foll ows:

MC fil espec {switch} {switch...}

fil espec - Afile specification for the input file.
Only one filespec may be passed.

switch - Represents an optional conpiler swtch(es)
These switches are preceded with either a
plus sign (+ = on) or a mnus sign
(- = off). The usable switches follow

+C - Specifies that the C source code will be
witten to the output file as conmments.

+f - Specifies the FLOAT option for using the
single precision floating point functions.

+m - Designates that the output should be MO
conpati bl e.

+o=spec - Designates that output should be witten to

the file identified.

-0 - Designates that no output file should be
witten.
-p - Designates that the display should not stop

when error nessages are enitted.

The conpiler is invoked by entering a command |ine such as:
MC CPROGRAM 2

whi ch conpiles the preprocessed C source file, "CPROGRAM TOK: 2", and generat es
the output file, "CPROGRAM ASM', on drive 2. The conpiler wll generate an
MRAS conpati bl e output file.

The switches allow you to control certain features of the conpiler. The
si mpl est conpilation command woul d sinply be "MC PROGNAME' which conpiles the
file, "PROGNAME/ TOK", and generates the output file, "PROGNAVE/ ASM' .

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

File Specifications

There may be only one input file specification given on the command line. No
extensi on should be given for a source file; the default extension "/TOK" is
assuned.

The output file specification defaults to the same nane as the input file
specified. MC will append the file extension "/ASM (or "/MAC' when the +M
switch is specified) to this nane. The drive specifier, if any, of the input
filespec is used as the drive specifier of the output file. The drive
specifier should be given if the output file nust be witten to the sanme drive
as the input file. The OUTPUT option nmay be used to specify a different file
name or change the destination drive nunber. Assenbl er source code output nmay
be suppressed by turning off the OUTPUT option. This can be helpful for
qui ckly checki ng syntax wi thout generating an output file.

Conpiler Swmtch Options

Conpil er option switches are turned on or off by a '+ or '-', respectively,
followed by the nane of the switch. The conpiler regards any command |ine
argument not beginning with a plus or mnus as the input file specification.
Only the first letter of the switch is exam ned, so partial spelling (or
m sspelling) is accepted. Certain switches have operands which are specified
by following the option nanme with '= and the operand. For instance,
"+o=nmyfile:3" wll cause the output by the conpiler to be witten to
"MYFI LE/ ASM 3" instead of the filespec that would have been the default.

Conmrent

This switch controls whether the preprocessed C source code will be witten to
the assenbler output file as commrents. The normal default is OFF. The C-source
appearing as conments may be instrunmental in your understanding the conpiler
output as it generates a mnimally conmented assenbly source program If you
do need these "comments", then specify "+c".

Fl oat

A conpiler option has been included which allows you to change the default
floating point nmode of the conpiler. Use of the "+f" command line option wll
force the conpiler to do float (32-bit) arithnmetic in single precision node,
rather than in double node. Also, this forces floating point constants to be
interpreted in single precision. This results in faster operation with some
| oss of accuracy. Note that this is an MC extension to the K&R standard, and
is not portable! The default mode of the conpiler is "-f". Please consult
Chapter 5, "Advanced Topics" before you attenpt to use this option as there is
a considerable difference in the way float arguments to functions are
automatically casted depending on "+f" vs "-f".

+M - Assenbl er Option Switch

This switch wll cause the conpiler to generate code suitable for the
M crosoft MBO rel ocatabl e assenbler. The default file extension applied to the
output file wll be "/MAC'. Note that throughout the renminder of this
chapter, the output assenbly file may be referred to as / ASM

Qut put =spec

This switch controls the assenbly file output of the conpiler. If the swtch

is OFF (-0), no output file is generated. However, if it is ON, but no SPEC is
given (+0), MC adds the file extension "/ASM' or "/MAC' to the name of the
input file in order to create the output file specification. Wen a file

specification is given for "spec", it becones the name given to the output
file. A default extension of "/ASM (or "/MAC') is inserted if no extension is
given. If only a drive specification (":D') is given, the output file is

witten to that drive, with the same file name as the input file. This swtch
defaults to ON with no "spec" (+0).

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Pause

VWhen this switch is ON (+p), the conpiler will stop when any errors are found
and displayed. Any key except BREAK will continue conpilation. BREAK will
abort the execution of the conpiler at any tine if this switch is ON. If M
was invoked from JCL, the JCL will also be aborted. This switch defaults to

ON. If you wish to turn OFF the pause facility, enter "-p".

Creating an Executable CVD Fil e

Once the conpiler has conpiled your program into assenbly |anguage, you next
need to use the MRAS or MBO macro assenbler to create the relocatable (REL)
object file. In order to provide control for certain MC library options, the
proper initialization in the CMD file, and ensure that all necessary runtine
routines are linked with your program a special assenbler file, MJASM (MJH
for MBO use), has been provided.

The MC/ASM file that is provided with your conpiler package is generic to the
environment of the operating system The MC/ASM file is the file that is
assenbled in concert with your source file which contains main(). MJASM al so
i ncludes special requests to direct the linker to search the libraries for
needed nodul es during the link session.

For a great deal of your prograns, the only MC runtine routines needed will be
located in the LIBC library. Since all C progranms need sone of the routines in
LIBC REL, that library is ALWAYS requested (as well as LIBA). The high-Ievel
math library, MATH REL, will be searched if your program requested it via an
"#option MATHLIB" or "#include math" conpiler macro.

Sonme useful routines are stored in the installation library, INREL. This
library is not normally searched in order to save you linker search tine when
you need not refer to the I NNREL nodul es. However, it is very easy to force an
automatic search of the installation library. All you need to do is specify an
"#option INLIB" conpiler macro in your C source program (sinmlar to "#option
MATHLI B") . For exanpl e,

#option INLIB

mai n()
i nt dot;
for (dot=0, dot < 128, dot++) set(dot, 0);
}
the #option INLIB statement will force a search of the installation library

during the link session to resolve |linkage to the set() function.

If you are adding your own relocatable library, name it "USERLIB/REL". To
force an automatic search of it, add this statenent to your C program

#option USERLIB

Compile-Time Directives
Conpile-time directives are used to convey information from your source file

to the various stages of the program generation. These directives are
initiated via the "#option" prefix. The syntax is as foll ows:

#opti on <opt name> {val ue}

The "#option" directive is used to pass synbol definitions fromthe MC source
code to the assenbly phase of main() and the subsequent 1|ink phase. The
<optname> nmust be a valid C identifier. Value nust be a nuneric or character
constant or constant expression. Escape sequences nmay be used in the constant.
The conpiler translates the "#option" directive to the form

@ OPTNAME DEFL val ue

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

The "value" is optional (as shown above by apearing within braces). If the
value is omtted, the DEFL statement will default to a value of negative one
(-1). This indicates TRUE to the assenbler.

The "#option" directive is used in MC to invoke an automatic search of the
installation library, INNREL, or the high-level floating point math library,
MATH REL. The autommtic search is specified by the generation of "request

library search” special link itens in the resulting relocatable object nodule.
This special link item is used by the linker. If your application will be
using functions in either library, you will need to add the statenment(s):

#opti on MATHLI B
#option INLIB

for the high-Ilevel floating point math and installation libraries
respectively.

MC has reserved additional option nanes for use with the #option directive.
These are: args, fixbufs, maxfiles, redirect, and wldcard. The follow ng
par agr aphs describe their use.

ARGS
This is used to specify that your program {will}/{w Il NOT} be using command
line arguments (argc, argv). MC will suppress the run-tine code nornally used

to process argunents thus reducing the size of your CVD program ARGS defaults
to ON.

Fl XBUFS

This is used to specify pre-allocation of buffers for standard 1/O |If your
program does not need dynamic nmenory allocation, then by specifying this
option, you will inhibit the file 1/O system provided in the standard library
from automatically using dynamc allocation. This will result in a smaller
execut abl e programfile. FIXBUFS defaults to OFF

MAXFI LES

This is used to specify the maxi num nunber of concurrently opened files
permtted. The file 1/0O system provided in MC defaults to a maxi mum of 13;
three additional are always provided which are needed for the standard files.
Each requires nenory overhead for storage. This storage space will normally be
acquired dynamically (via alloc) and thus obtained only when files are opened;
however, if FIXBUFS is ON, the storage space is always reserved at program
execution regardl ess of whether files are opened or not. If your nenory
resources are strained and you are using FIXBUFS, then you may want to pay
close attention to the maxi mum nunber of concurrently open files needed and
set MAXFI LES appropriately. MAXFILES defaults to 13.

REDI RECT

This is used to specify that your program {will}/{wll NOT} be using standard
1/O redirection (> >> <, #). MC will suppress the run-time code used to
process /O redirection thus reducing the size of your program RED RECT
defaults to ON.

W LDCARD

This is used to specify that the resulting executable command program w Il be
using command line wldcard filespec expansion; thus, the library routines
needed to satisfy that request will be included during the Iink session. The

use of this option is detailed in Chapter 5, Advanced Topics. W LDCARD
defaults to OFF.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Assenbly of the ASMfile

The assenbly file output by the conpiler is converted to a relocatable object
nodul e by neans of your assenbler. If the file was a standal one nodule (not to
be linked with other separately conpiled nodules) containing the main()
function and all other user-programmed funcitons needed for main(), then a
sanpl e syntax for the invocation of MRAS or MBO woul d be:

MRAS MC +| =pr ognane +o=pr ognane -nl
MBO pr ognane=pr ognane

For MRAS use, this would assenble the file "MCJASM while it included
"prognanme/ ASM' into the source stream For MO use, it would assenble the
source file "progname/ MAC' while it included the file "MJH' into the source
stream Note that the MC/H header file was inserted into the C source stream
by your explicit "#include nBO" preprocessor statenment. Using either
assenbler, the assenbly would generate the relocatable object file naned
"progname/ REL" .

If you are devel oping an executable program which is conposed of separately
conpil ed nopdules, the procedure for acconplishing the nechanics of the
conpi l e, assenble, and |link phases is covered in Chapter 5, Advanced Topics.

Li nki ng the rel ocatabl e object nodul e

The object nmodule is linked with other nodules supplied in the libraries by
neans of the linker supplied with your assenbler. Sanple syntax for |inking
t he abovenenti oned modul e with your |inker would be:

M_I NK pr ognane +n=prognane -e
L80 prognane-n, prognane, - e: MBOBGN

L80 users please note the "MBOBGN' operand on the "-e:nane" |inker swtch.
This is mandatory! It is used to specify the transfer address of the resulting
execut abl e command file. L80 users also note that the "prognane-n" output file
specification nust be the first specification on the argunent line.

If you are devel oping an executable program which is conposed of separately
conpil ed nodules, the procedure for acconplishing the nechanics of the
conpil e, assenble, and |link phases is covered in Chapter 5, Advanced Topi cs.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Function Libraries

General Information

The libraries provided with the MC conpiler are a collection of useful and
power ful functions, which allow the user to interface with the world external
to the program w thout having to know the specifics of the particular
environment that the program is running in. Werever possible, each function
adheres to the standards of UNI X System V; the "SYSTEM V Interface Definition"
publ i shed by AT&T has served as the reference thereof.

MC provides collections of comon functions in four separate |libraries:
LI BA/ REL, LIBC/REL, MATH REL, and IN REL; commonly called LIBA, LIBC, MATHLIB,
and INLIB respectively. The functions are stored as relocatable object
nodul es. Each file is thusly terned a relocatable object nmodule library. The
specific relocation format used is that docunented by Mcrosoft, Digital
Research, and M SOSYS in their respective assenbl er devel opnent systens.

LIBA contains very lowlevel functions invoked by the conpiler to perform

basi ¢ operations such as add, subtract, nultiply, divide; |ogic operations
(or, and, exclusive or), stack access operations, and others. The functions
included in LIBA are better termed routines. They are, in general, not

available to the C-language programmer but are incorporated by the conpiler
into the conpil ed output as needed by the program being conpil ed.

LIBC contains nost of the functions accessible to the C programmer. This
library constitutes the "standard Library" functions as noted by npbst texts on
the C language. You will find all of the functions associated with stream /0O
and bl ock device 1/O You will find the bulk of the character test operations,
the character nmanipulation operations, the nenory access operations, the
utility operations, as well as print formatting for all variable types except
fl oats.

The MATHLIB library includes all of the high-level floating point and double
preci sion functions such as trigononmetric operations, l|logarithm c operations,
random nunber generation, and a conplete print formatter for floats and
doubles. In order to access any of the functions in this library, your source
program nust include the statenent:

#opti on MATHLI B

In fact, if you are going to utilize any float or double, you need to specify
this preprocessor directive. Mst of the functions contained in MATHLI B nust
be declared prior to their use to inform the conpiler of their "type. It's
very easy to insert a bug into a program by neglecting to advise the conpiler
that a function returns a double such as with the declarative:

extern doubl e exp();

The high-level wmath functions provide error diagnostics per System V
standards. These standards dictate specific error nunber synbolic nanes as
wel |l as an exception structure for the data handling of error fixup. SystemV
docurments a header file, "math.h", which includes all of the synbolic nanes
associated with error handling, the definition of the exception structure, and
a group of mathematical constants defined as synbolic nanes. The "math.h"
header file included with MC also adds the declarations of all functions
accessible to you in MATHLIB. By adding the preprocessor directive:

#include <math. h> or #include "math.h" or #include math

in all of your npdul es which need access to MATHLI B, you need not worry about
function declarations. You will also have the synmbolic nanmes available to you.
The "math" header file also adds the "#option MATHLIB" directive so you won't
have to bother with it.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

The final library included with MCis INLIB. This library contains nonstandard

C functions that are inplenentation specific. If you desire to mmke your
program portable to all System V conpilers at the source level, then do not
utilize any of these functions. However, if you intend to produce a locally
used machi ne dependent program then INLIB will provide you access to pixel

graphic functions for plotting, string manipulations simlar to BASIC, and
speci al character device operations such as keyboard scanni ng and vi deo cursor
mani pul ati on. The functions included in INLIB are automatically accessible to
your program when you include the preprocessor directive:

#option INLIB
wi t hin your program s source.
The pages that follow in this chapter provide detailed information on each
function available to you. The chapter has been arranged purely in
al phabetical order so that it may serve as a useful reference tool. Al nost
every function will appear on a separate page. The library where the function
is stored is listed within parentheses appended to the function's nane.

To assist you in your search for a function that satisfies a particular need,
the followi ng classifications may be of assistance.

Stream |/ O functi ons:

addext checkc clearerr cl ear eof fclose

f dopen f down f eof ferror fflush

fgetc fgets fileno f open fprintf
f pup fputc f puts fread freopen
f scanf f seek ftell fwite genspec
getc get char gets getw i nkey

i octl isatty printf putc put char
puts put w rew nd scanf unget c

unget ch unl i nk

Bl ock 1/0O functions:

addext cl ose creat dup dup2
fentl f down fileno f pup fstat
genspec gtty i octl isatty | seek
open read seek stty tell
ttyname wite

Integer (int, long) math functions

abs at oi bt oi itoa i tob
itoo itou itox | abs | power
| toa | tob | t oo | tou | t ox
ot oi ot ol rand srand Xt oi

xt ol

Single precision (float) math functions

f absf fatn fcos f exp ffix
fint flog fraise frnd f seed
fsin fsgn fsqr ftan ftoa

Doubl e precision (double) nmath functions

acos asin at an at an2 at od
ceil cos cosh _ddv2 _ddv230
df i x di nt dsgn dt oa exp

f abs floor f mod frexp hypot

| dexp | og | 0ogl0 mat herr nodf
pow sin si nh sqrt tan

t anh

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Envi ronnent i nformation functions

asctine ctinme cur pos cur sor freemem
i nkey i nport i sal num i sal pha i sasci i

i shdigit iscntrl isdigit i sl oner i sodigit
i sprint i spunct i sspace i supper i sxdigit
| ocal tinme out port perror gsort sysdat e
systime sys_errlist time t ol ower t oupper

_xlate

Menory access functions:

al |l oc br k cal |l oc fill free
freemem mal | oc nmenccpy nmenchr mencnp
mencpy nenset nove real |l oc sbrk
swab zero

Pl otting functions:

box circle line pi xel pl oc
prode poi nt reset set

Program control operations

abort cal | crdi execl execovl
execv exit _exit | ongj mp mat herr
option setjnp system unl i nk

String handling functions:

at od at of at oi at ol bt oi

dt oa ftoa i ndex itoa itob
itoo itou i tox Itoa Itob
Itoo ltou It ox ot oi ot ol
gsort ri ndex sprintf sscanf strcat
strchr strcpy strcspn strepl strept
strfind stright strleft strlen strmd
st rncat strncnp st rncpy strpbrk strrchr

strspn xt oi xt ol

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

acos(MATH) acos(MATH)

This function can be used to abort the executing program and optionally

performa "core dunp”.

voi d abort ()

Descri ption

Abort() wll first attenpt to close all open files, if possible. Abort()

t hen i ssues the nessage:

Program aborted via abort at X xxxx'

where "xxxx" is the program counter address when abort() was called. If the
Operating Systemis Job Log device (*JL) is active, a formatted menory dunp
will be witten to the job log device. The dunp will include all addresses
fromthe start of the executing programthrough the highest address used by

the program This will be in the format:

ZZZZ. XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX aaaaaaaa aaaaaaaa

where "zzzz" designates the origin of a 16-byte region, "xxxx..." indicates

the contents of the region in hexadecinmal, and "aaaa..." indicates

contents of the region in ASCII; characters outside the range 0x20 through

Ox7f will be converted to a period (0x2b).
Ret urn Code

There is no return fromabort().
Exanpl e

mai n()

/* notice that puts() adds a '\n' character */
puts("Catastropic failure in framus correctus");

/* notice that fputs() does not add a '\n' character */
fputs("\tDo you wi sh to abort <y,n> ? ", stdout);

if (tolower(getchar()) == "y")
abort();

el se
puts("You chose not to abort...");

}

Try the exanple after issuing the DOS command:

ROUTE *JL to *DO

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
abs(LI BC) abs(LI BC)

This function is used to obtain the absolute value of an integer.

int abs(ival);
int ival

i val is the integer whose absolute value is to be deterni ned.

Descri pti on:

The abs() function returns the absolute value of its integer argunment (i.e.
abs(x) = x; abs(-x) = x;).

Exanpl e:

#i nclude stdio.h
char inbuf[81];
mai n()

puts("Enter your nunber: ECF to exit");
whi | e (TRUE)

if (!fgets(inbuf,80,stdin))

br eak;
printf("Absolute value of your nunber is %\ n", abs(atoi (inbuf)));
}

See al so: fabs(), fabsf(), |abs()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
acos(MATH) acos(MATH)

This function is used to obtain the double precision Arc cosine.

#i ncl ude <mat h. h>
doubl e acos(xval);
doubl e xval ;

xval is the doubl e whose Arc cos is desired.

Descri ption

The Arc cos function obtains the double precision principal value of its
argument. The range of the result is 0 to PI. The Arc cos is calculated
fromthe rel ati onshi p:

Arc cos(x) = PI/2 + Arc sin(-x)

Return Code
If the magnitude of the argunent to acos() is greater than one, zero is
returned and errno is set to EDOM In addition, a message indicating
DOVAIN error is printed on the standard error output. This error-handling
procedure may be changed with the function, matherr().

Exanpl e
#i ncl ude stdio

#i ncl ude mat h
int i; char inbuf[81]; double dil,d2;

mai n()
{ puts("Enter your nunber: EOF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;
errno=0;

dl = acos(d2=atod(i nbuf));
printf("dl = %; d2 = %; errno = %\ n",dl,d2, errno);

mat herr (x) struct exception *x;
{ fprintf(stderr,"Type %l function error in %...\n", x->type, x->nane);

fprintf(stderr,"” Args = %, %g: ", x->argl, x->arg2);
return O;
}
Enter your nunber: ECF to exit
0.9 |dl1 = d2 0.9; = 0.451027; errno = 0
1.5 | Type 1 function error in acos...
| Args = 1.5,0: argurment domain error
|dl = d2 1.5; = 0; errno = 70

See al so: asin(), atan(), atan2(), errno

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
addext (I N) addext (I N)

This function adds a default extension to a file specification.

char *addext(filespec, defextn);
char *fil espec, *defextn;

filespec the file specification to which the default should be added.

defextn the extension to add if filespec does not contain an extension.

Descri ption
Addext is used to add a default file extension to a file specification if
the file specification in question does not already contain an extension.
It is useful for autommtically adding standard extensions to files (i.e.
CCC, CMD, TXT, ...) to mininmize the input necessary in conmand |i nes.
Return Code
A pointer to the filespec is returned.

VMr ni ngs

The fil espec argunent nust be a character array of at |east dinmension 15 to
avoid witing beyond the end of the string.

See al so: genspec()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
al | oc(LI BCO) al | oc(LI BO)

This function is used to allocate a menory bl ock

char *alloc (nbytes);
unsi gned i nt nbytes;

nbyt es unsi gned nunber of bytes needed.

Descri ption

Alloc() is used to dynamcally allocate menory during program execution.
The conplenmentary function, free(), is used to release nmenory allocated
through alloc(). Alloc() may be used to get table or buffer space when the
amount of menory space available is unknown, or when the program needs to
dynam cally allocate space for an array.

Ret urn Code
If a menory block has been allocated, the value returned is a pointer to
the menory block (pointer to char). If insufficient nenory is available to
satisfy the allocation, alloc() will return NULL (0).

VMr ni ngs
The program nmust not access nenory outside of the area allocated. File
access routines use alloc() and free() to establish and release File
Control Areas (FCA's). The programrer cannot assume that nmenory not
allocated is free for wuse, since later file opens nmay cause nmenory
overlays. It is advised that the progranmer always use the supplied dynamc
al location functions for nmenory accessing.

Exanpl e
syntbsz -= syntbsz % synsi z; /* make integral */

if ((synmtab = alloc(syntbsz)) == NULL)
abend("not enough nmenory");

gl bptr = startglb = syntab

See al so: brk(), calloc(), malloc(), realloc(), and sbrk()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
asctime (LIBC) ascti me(LI BC)

This function is used to obtain the 26-character tine string.

#i ncl ude <tine. h>
char *asctine(tm);
struct tm*tm

tm is a pointer to the structure which contains the broken down tine.

Descri ption

Asctinme() takes the broken-down tinme data contained in the structure
pointed to by the argunent and converts it to an ASCI| string of the form

Tue Cct 22 10:03:10 1985\n\0
Return Code
A pointer to the resulting string is returned.
Vr ni ng

Note that the string itself is a local static and may be valid only
i medi ately follow ng the function call.

Exanpl e

#include "tine.h"
char *ctime(cl ock) |ong *cl ock;

{

struct tm *localtinme();

char *asctine();

return asctinme(localtine(clock));
}

See also: ctime(), localtinme(), tinme()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
asin (MATH) asin (MATH)

This function is used to obtain the double precision Arc sine.

#i ncl ude <mat h. h>
doubl e asin(xval);
doubl e xval ;

xval is the double whose Arc sine is desired.

Descri ption

The Arc sin function obtains the double precision principal value of its
argument. The range of the result is -PlI/2 to +PI/2. The Arc sin is
calculated fromthe rel ationshi p:

Arc sin(x) = atan2(x, (sqrt(-x*x+1.0)))
Ret urn Code

If the magnitude of the argunent to asin() is greater than one, zero is
returned and errno is set to EDOM |n addition, a nmessage indicating DOVAI N
error is printed on the standard error output. This error-handling
procedure may be changed with the function, matherr().

Exanpl e
#i nclude stdio.h

#i nclude math. h
int i; char inbuf[81]; double dil,d2;

mai n()
{ puts("Enter your nunber: EOF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;
errno=0;
dl = asin(d2=atod(i nbuf));
printf("dl = %; d2 = %; errno = %l\n",dl,d2, errno);
}

mat herr (x) struct exception *x;

{ fprintf(stderr,"Type % function error in %...\n", x->type, x->nane);
fprintf(stderr," Args = %, %g: ", x->argl, x->arg2);
return O;

}

Enter your nunmber: ECF to exit
-.9 |dl =-1.1211977; d2 = -0.9; errno =0
-1.5 | Type 1 function error in asin...
Args = -1.5,0: argunent dommin error
|dl = 0; d2 = -1.5; errno = 70

See al so: acos(), atan(), atan2(), sin(), matherr()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
at an(MATH) ; at an2(MATH) at an(MATH) ; at an2(MATH)

These functions are used to obtain the double precision Arc tangent.

#i ncl ude <mat h. h>
doubl e atan(xval);
doubl e xval ;

#i ncl ude <mat h. h>
doubl e atan2(yval, xval);
doubl e xval, yval;

xval , yval is the doubl e whose arc tangent is to be detern ned.

Descri ption

The Arc tan function obtains the double precision principal value of its
argunent. The range of the result is -PI/2 to +PI/2. The Arc tan2 function
uses the signs of both its arguments to deternmine the quadrant of the
return value which will be in the range -Pl to +PI. The atan() function is

derived according to the algorithm given in SOFTWARE MANUAL FOR THE
ELEMENTARY FUNCTIONS by WlliamJ. Cody, Jr. and WIlliam Wite.

Ret urn Code

If both argunents of atan2() are zero, zero is returned and errno is set to
EDOM In addition, a nessage indicating DOVAIN error is witten to standard

error. This error-handling procedure may be changed with the function,
mat herr ().

Exanpl e
#i ncl ude stdio

#i ncl ude mat h
int i; char inbuf[81]; double dil,d2;

mai n()
{ puts("Enter your nunber: EOF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;
errno=0;
dl = atan(d2=atod(i nbuf));
printf("dl = %; d2 = %; errno = %\ n",dl,d2, errno);
}
}

Enter your nunber: ECF to exit

lel5 |dl = 1.5708; d2 = le+1l5; errno = 0
-2.5 |dl1 = -1.19029; d2 = -2.5; errno = 0
0 |dl = 0; d2 = 0; errno =0

See al so: acos(), asin(), tan(), errno, matherr()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
at od(MATH); atoi (LIBC); atof(MATH); atol (LIBC); at 0?(MATH)

These functions are used to convert character strings of digits to their
nuneri c machi ne val ue.

#i ncl ude <mat h. h>

doubl e atod(string);

float atof (string);
char *string;

int atoi(string);
long atol (string);
char *string;

string is a string containing character digits valid for the nunber
t ype.

Descri ption

These functions are used to convert ASCI| strings to their numeric value
Functions atoi () and atol () convert strings of decimal digits 0-9 to an int
or long int. The converted integers wll be nodulo 65536 or nodulo
4294967296 respectively. Conversion stops as soon as a character is
detected which is not in the valid range. Functions atof() and atod()
convert a string consisting of an optional sign followed by an optiona
sequence of decimal digits followed by an optional deciml point followed
by an optional sequence of decimal digits followed by an optional exponent
specifier ['e', "E, 'd, or '"D] followed by an optional exponent sign
followed by an optional string of decimal digits to a float or a double
respectively. The string cannot exceed 32 digits deciml digits!

Exanpl e
#i ncl ude stdio

#i ncl ude math
char inbuf[81], outbuf[81]; double dnum

mai n()
{ puts("Enter your nunber: EOF to exit");
whi | e (TRUE)

{ if (!gets(inbuf)) break;
dnumeat od(i nbuf);
fputs("Your nunmber is: ",stdout); puts(dtoa(dnum outbuf));

}

Enter your nunber: ECF to exit

1 | Your nunber is: 1.000000E+00
13.476 | Your nunber is: 1.347600E+01

-456.218e19 | Your nunber is: -4.562180E+21

See al so: sscanf(), dtoa(), ftoa(), itoa(), Itoa()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
box (I N) box(I'N)

This function is used to plot a rectangle.

int box(funcod, x1, yl1, x2, y2);
int funcod; x1, yl, x2, y2

funcod an operation code to set (1) or reset (0) the pixels involved in
the geonetric plot.
x1,yl the coordi nate of the northwest corner of the rectangle.
x2,y2 the coordinate of the southeast corner of the rectangle
Descri ption
The "box()" function will plot a rectangle around the diagonal specified by

the coordinate point pairs, (x1,yl) and (x2,y2). If the coordi nates specify
ei ther equal values of x (x1 = x2) or equal values of y (yl =y2), then the
rectangle will dimnish to a line. The rectangle will collapse to a point
if both x1=x2 and yl=y2.

Box() supports virtual points which neans that your plot does NOT have to
limt itself to the CRT inmmge area. For exanple, a "box(1, 10, 20,190, 25);"

function describes a rectangle partially out of the CRT image. In this
exanple, only a portion of a rectangle will be plotted
Return Code

A minus one (-1) indicates that the coordinate points (x1,yl), (x2,y2), or
a portion of any plot is out of range (i.e. virtual and does not appear in
the CRT image). A minus three (-3) will be returned if the function code
passed is invalid (not in the range <0-1>.

Exanpl e

#option INLIB

#define X 79 /* 80 x 24 screen size */
#define Y 35

#def i ne DRAW 1

int x1, yl, x2, y2;

mai n()
for (x1=X, yl=Y, x2=X+1,y2=Y+1; x1 >= 0; x1--,yl--,Xx2++, y2++)
box(DRAW x1, y1, x2, y2);
}

See also: circle(), line(), pixel(), ploc(), pnode(), point(), reset(),
set ()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
br k(LI BC) br k(LI BC)

This function is used to set the program break address.

int brk(address);
char *address;

addr ess is to be the | owest nmachi ne address not used by the program

Descri ption

The | owest nenory address not used by the program (exclusive of the program
stack) is terned the "break". This function will set the program break to
"address". One greater than the highest address used by your program for
program code and static variable storage is defined as "$PROGEND'. One
greater than the highest nmenory address allocated is defined as $LOVEM
$LOVEM is initially equal to $PROGEND. MC mmintains a pointer to this
| ocation called $FREEP. The break argunent, "address", may not be bel ow
$FREEP nor greater than (STACK PO NTER | ess 1024 bytes).

Vr ni ng
NEVER use brk() wth any dynamic allocation routine such as alloc(),
calloc(), free(), or malloc() or with the standard 1/0O package without
speci fyi ng "#option FI XBUFS".

Ret urn Code
Zero is returned if the break could be set while a -1 is returned if the
break exceeded the bounds of the available nenory and thus could not be
set.

Exanpl e
#i ncl ude <stdio. h>

#opti on FI XBUFS
char *brk(), sbrk();

mai n()
char *nmenbuf, *lonmem
| omem = sbrk(0); /* Get current value of $LOVEM */
printf("$LOVEM pointer = X %94x'\n", | omem;
menmbuf =sbr k(1024) ; /* grab a 1K buffer */

printf("$LOVEM pointer = X 9%94x'\n",sbrk(0));
if (!'brk(lonmem) printf("$LOVEM pointer = X 9%94x'\n", | onemn ;
el se puts("Brk error");

}

$LOMEM poi nter = X 54cf’
$LOMEM poi nter = X 58cf"’
$LOMEM poi nter = X 54cf’

See also: alloc(), calloc(), free(), malloc(), sbrk()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
btoi (LIBQO bt oi (LI BC)

This function is used to convert a character string of binary digits to its
i nt eger val ue.

int btoi(string);
char *string;

string is a string containing binary digits <0-1>

Descri ption

This C function obtains the nmachine value of a string of binary digits in
character form (i.e. conposed of nothing but =zeroes and ones). Left
truncation of the integer value takes place if an excess nunber of digits
is present (i.e. ival=btoi("10000000000000001"); would result in the
integer value of 1 decimal). Conversion stops as soon as the first
character not in the valid range is detected

Exanpl e

#i nclude stdio.h
char inbuf[81]; int ival;
mai n()

puts("Enter your binary nunber: EOF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;
i val =bt oi (i nbuf);
printf("Your nunmber in decimal is: %\ n",ival);

}
}
Enter your binary nunber: ECF to exit
10110101 | Your number in decinmal is: 181
11111111 | Your number in decinmal is: 255
100000001 | Your number in decimal is: 257

10000000000000001 | Your nunber in decimal is: 1

See also: atoi(), atol(), otoi(), otol (), xtoi(), xtol()

cal l

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

(IN) call (IN

This is a generalized nmachine specific assenbly |anguage and system SVC
interface routine.

#i ncl ude <z80regs. h>

int

call (address, reg);
char *address; union REGS *reg;

address is the machine address or SVC to call.
reg is a pointer to a structure containing the machine's register
contents.
Descri ption
A generalized assenbly |anguage interface routine, call(), is available in

the installation library. "Reg" is either an integer array of dinmension 6
whi ch should contain the quantities you want placed into the register pairs
AF, BC, DE, HL, IX, and 1Y for regs[0O]-regs[5] respectively, prior to

calling the routine at I|ocation "address", or "reg" is a pointer to a
structure which contains the quantities to be placed into the machine's
registers. The "reg" array or structure will be |oaded with the register

contents that existed upon return fromthe called routine.

On SuperVisor Call accessible systens, an "address" value of |ess than 256
will be interpreted as an SVC reference in lieu of a CALL address. The
call () function will then use the "address" val ue as the SVC nunber.

A union which defines the word and byte structures for the Z-80 register
set is provided in the z80regs header file. Use of the union is denpn-
strated extensively in the exanple bel ow.

Ret urn Code

The return code will be FALSE (0) if the machine's Z-flag is set upon
return fromthe called routine; otherwise, the return code is TRUE (1).

Exanpl e

A rather long exanple which illustrates the use of the REGS union in
various invocations of call() appears on the follow ng page. Note that the
exanpl e is designed for an SVC-driven operating system

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

call (IN) call (IN

#i ncl ude <z80regs. h>
#def i ne CKDRV 33
#def i ne DATE 18
#define DODIR 34
#def i ne DSPLY 10
#def i ne TI ME 19
#option INLIB

int rc,d;
char *ptr, buf[100];
uni on REGS reg;

mai n()

puts("Test of call()...");

for (d=0; d<8; ++d)

{
reg. C=d; /* Set Cto the drive nunber */
rc=cal | (CKDRV, &r eqQ) ;
printf("Drive %d %%\n",d,rc?"not ":"", "ready");
if (reg.F&Ll) puts("Drive is wite protected");

wai t () ;

dt (DATE, "Dat e") ;

dt (TI ME, " Ti ne");

reg. HL.="This is a nessage\n";
cal | (DSPLY, &req);

wai t () ;
reg. B=4; reg. C=0; /* DODIR; function=4, drive=0 */
reg. HL=buf;

cal | (DODI R, ®q);

st rm d(buf +80, buf, 0, 8) ;

st rm d(buf +90, buf, 8, 8) ;

printf("% % free: %K\ n\n", buf+80, buf +90, buf [18] +(buf[19] <<8));

reg. BC=0; /* DODIR; function=0, drive=0 */
cal | (DODI R, ®q);
wai t();
}
wai t ()
{
puts("\nH t any key");
getchar () ;
clscrn();
}

dt (addr, str)
char *addr, *str;

{
reg. HL=buf;
cal | (addr, ®);
*(ptr=reg. HL) =0;
printf("%: %\n",str, buf);
}
cl scrn()

fputs("\xlc\x1f", stdout);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cal | oc(LI BC) cal | oc(LI BC)

This function is used to allocate a zeroed nenory bl ock.

char *calloc (nelem elsize);
unsi gned i nt nelem elsize;

nel em is the nunmber of elenents of "elsize" to be all ocated.
el si ze is the size of an element in bytes; use sizeof(elem for
portability.
Descri ption

Calloc() is used to dynamically allocate nenory during program execution.
The conplenmentary function, free(), is used to release nmenory allocated
through calloc(). Calloc may be used to get table or buffer space when the
amount of menory space available is unknown, or when the program needs to
dynam cally allocate space for an array and the space nust be filled with
bi nary zeroes.

Ret urn Code
If a menory block has been allocated, the value returned is a pointer to
the menory block (pointer to char). If insufficient nenory is available to
satisfy the allocation, calloc() will return NULL (0).

WMr ni ngs

The program nmust not access nenory outside of the area allocated. File
access routines use alloc() and free() to establish and release File
Control Areas (FCA's). The programrer cannot assume that nmenory not
allocated is free for wuse, since later file opens nmay cause nmenory
overlays. It is advised that the progranmer always use the supplied dynamc
al l ocation functions for nmenory accessing.

Exanpl e
if ((synmtab = call oc(MAXSYMS, si zeof (SYMBOL))) == NULL)
abend("not enough nenory");
gl bptr = startglb = syntab;

See also: alloc(), brk(), malloc(), realloc(), and sbrk()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cei | (MATH) cei | (MATH)

This function obtains the ceiling of a double.

#i ncl ude <mat h. h>
doubl e ceil (argx);
doubl e ar gx;

ar gx is the doubl e whose ceiling is desired.
Descri ption
The ceiling of x is the smallest integer value not less than x; it is

returned as a doubl e.
Exanpl e

#i nclude stdio.h

#i nclude mat h. h

char inbuf[81]; double di,d2
mai n()

puts("Ceil: enter your nunber: ECFto exit");
whi | e (TRUE)
{

if (!gets(inbuf))
br eak;
errno=0;
d2 = ceil (dl=atod(i nbuf));
printf("dl = %; d2 = %; errno = %\ n",d1,d2, errno);

—

|I enter your nunber: EOF to exit
-1.7 |dl1 =-1.7; d2 = -1; errno =0
1. 7 |d1 =1.7; d2 = 2; errno =0

See also: fabs(); floor(), fnod()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
checkc(LI BC) checkc(LI BC)

This function is used to detect whether or not a character is available from
an input file stream

int checkc(stream);
FI LE *stream

stream the file pointer of the streamas returned froma successful
fopen() .

Descri ption

For certain types of applications, it is useful to know if a character is
available for input prior to requesting the input via getc() [or other
character input function]. For instance, a termnal program usually needs
to toggle between scanning for standard input and input from a

communi cations line. Since getc() will wait until a character is avail able,
it can lock up such a program until a character is available from the
stream Wth checkc(), you can refrain from invoking getc() wuntil a

character is known to be avail abl e.
Ret urn Code

There are three possible return codes. TRUE is returned if a character is
avail able, or an EOF is detected fromthe file stream FALSE is returned if
a character is not available. EOF is returned if the file pointer
references a closed file or a prior EOF had been detect ed.

WMr ni ngs
The stream pointer passed as the argument of the function nmust be one
obtained from fopen() or nust be the standard input device [stdin]. Also,
checkc() uses ungetc() to store any input character; therefore, you should
refrain frominvoking ungetc() imediately follow ng a checkc() invocation.
Exanpl e
whi | e (TRUE)
i f (checkc(stdin))

getterm();
else if (checkc(comm)

get comn() ;

See al so: putc(), putchar(), getc(), getchar(), ungetc(), ungetch()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
circle(IN) circle(IN)

This function is used to plot a circle (or close to it).

#option I NLIB
int circle(funcod, x1, yi1, rl);
int funcod, x1, y1, r1;

funcod an operation code to set (1) or reset (0) the pixels involved in
the geonetric plot.
x1,yl the coordinate of the circle's center.
rl the radius of the circle in "y" units.
Descri ption
The "circle()" function will plot a circle at coordinate center point

(x1,yl) of radius rl. The integer value, "rl1", specifies the radius of the
circle. Since block graphics are generally taller than their width, it is
necessary to specify the radius in units of either "x" or "y". Wthin these
plotting functions, "r1" is a value representing the radius in "y" units.

Virtual Points

The concept of virtual points is an inportant one. Wat it means is that
your plotting routines do NOT have to limt thenselves to the CRT image
area. For exanple, a circle(1,0,0,20); function describes a circle about
the origin. This neans that a portion of the circle would be plotted off of
the CRT inmage. The plotting functions permt your argunents to describe

such "virtual" inmages; however, any portion of the geonmetric shape that
woul d be outside of the CRT inage area is inhibited. Thus, in the above
exanmple, only a portion of a circle (an arc) will be plotted.

Ret urn Code

A return code of minus one (-1) indicates that the coordinate point (x1,yl)
or a portion of the plot is out of range (i.e. virtual and does not appear
in the CRT image). A mnus three (-3) will be returned if the function code
passed is invalid (not in the range <0-1>).

Exanpl e
circles(sw) /* concentric circles */
int r;
for (r=1;r<36;r+=3)

circle(sw, 79, 35,r);
}

See al so: box(), line(), pixel()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cl ear eof (LI BC) cl ear eof (LI BC)

This function is used to clear the end-of-file condition detected on an input
stream

int cleareof(stream);
FI LE *stream

stream the file pointer of the stream as obtai ned from fopen().

Descri ption

VWhen an end-of-file condition is detected on an input stream (say standard
input, for instance), a flag bit is set in the File Control Area flag to
indicate this condition. Subsequent requests to input a character fromthat
file streamw |l always return a constant EOF. The cleareof() function can
be used to reset that ECF condition flag. It is useful primarily to clear
the EOF condition established by the <BREAK> key for standard input.

Ret urn Code

If the file pointer references a closed file streamor the end-of-file bit
is not set in the file control area, cleareof() will return EOF as defined
in the stdio header file. A return code of NULL (0) indicates successful
clearing of the flag.

VMr ni ngs

The file pointer passed as the argunent of the function nust be one
obtained from fopen() or one of the standard devices [stdin, stdout, or
stderr].

Exanpl e
if (getchar() == EOF)
{

cl eareof (stdin);
br eak;

}

See al so: clearerr(), errno(), ferror(), perror(), sys_errlist()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cl earerr (LI BC) cl earerr (LI BC)

This function is used to clear any error condition detected on an input or
out put stream

int clearerr(stream);
FI LE *stream

stream the file pointer of the stream as obtai ned from fopen().

Descri ption

VWhen an error condition is detected on a streamor block device, a flag bit
is set in the file control area to indicate this error condition and the
DOS error nunber is stored in the File Control Area for access by ferror().

The UNI X error nunber associated with the error will also be stored in the
gl obal error variable, errno. The EOF flag bit is also set. Subsequent
requests to input a character from that file stream will always return a

constant EOF. The clearerr() function can be used to reset the ERROR and
EOF condition flags.

Ret urn Code
If the file pointer references a closed file, cleareof() will return EOF as
defined in the stdio header file. A return code of NULL (0) indicates
successful clearing of the flag.

VMr ni ngs
The stream pointer passed as the argument of the function nmust be one
obtained from fopen() or one of the standard devices [stdin, stdout, or
stderr].

Exanpl e
if (c!=putchar(c))
{

errnum = ferror(stdout);

cl earerr(stdout);
br eak;

}

See al so: cleareof(), errno, ferror(), perror(), sys errlist()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cl ose(LI BO) cl ose(LI BO)

This function is used to close a block device which has been obtained by a
call to either open(), creat(), dup(), dup2(), or fecntl().

int close(fildes);

int fildes;
fildes the file descriptor of the block device.
Descri ption

Close() is used to close an open file and to free the File Control Area
(FCA) and I1/0O buffer for subsequent re-use. The file descriptor passed to
cl ose nmust have been obtained from either open(), dup(), dup2(), fcntl(),
or creat(). In MC, exit() also closes files; however, the progranmmer should
use close() on opened files to ensure conpatibility and portability.

Return Code
A return code of NULL (0) indicates successful closing of the file. If any
error is detected, EOF (-1) will be returned.
Exanpl e
creat _file(nanme) char *nane;
{
int i,fd;
if ((fd=creat(name, 0777))==EOF) open_error(nane);
for (i=0;i<10000;i ++)
{
if ((wite(fd,itoa(i,record), 10))!=10)
printf("Error in witing %\n", nane);
exit(-1);
cursor (10, 3); /* position cursor */
printf("Witing record %d\n",i);
}
cl ose(fd);
}

See al so: creat(), dup(), fentl (), fdown(), fstat(), |seek(), open(), read(),
seek(), tell (), wite()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cndi (LI BO) cndi (LI BO)

This function will exit the program and i nvoke a DOS command.

void cndi (cndstr);
char *cndstr;

crdstr a pointer to the string which contains the DOS conmand which is
to be execut ed.

Descri ption

The cndi () function will close all open files which have the "close on
exec" flag set and then schedule the DOS execution of the conmand either
pointed to by the argunent or by the command contained in the string passed
as the argunent to the function. This could be used, for instance, to chain
to another C program

VMr ni ngs

For portability across C conpilers, the UN X functions execv() or execl ()
shoul d be used in lieu of cndi().

Exanpl e

char buf[81]; /* string space for conmand string */

mai n()
puts("Test of cndi()\n");
fputs("Enter command: ", stdout);
get s(buf); /* Get DOS conmand from user */
cmdi (buf); /* Exit this program and execute the command */
puts("This string will not be witten");

}

See al so: system(), execl (), execv()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

cos(MATH) cos(MATH)

This function is used to obtain the double precision cosine.

#i ncl ude <mat h. h>
doubl e cos(argx);
doubl e ar gx;

ar gx is the doubl e expressed in radi ans whose cosine is to be
det er m ned.

Descri ption

This function will obtain the double precision cosine of its argunent;
argunment mnust be expressed in radi an nmeasure.

Exanpl e
#i nclude stdio

#i ncl ude mat h
char inbuf[81]; double di,d2;

mai n()
puts("Cos: enter your nunber: EOF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;

errno=0;

d2 = cos(dl=at od(inbuf));

printf("dl = %g; d2 = %g; errno = %\ n", dl, d2, errno);

}
Cos: enter your nunmber: EOF to exit

-1.75 |dl = -1.75; d2 = -0.178246; errno = 0
1.75 |dl1 = 1.75; d2 = -0.178246; errno = 0
.5 |dl = 0.5; d2 = 0.877583; errno = 0

t he

See al so: acos(), asin(), atan(), cosh(), sin(), sinh(), tan(), tanh(), fcos()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cosh(MATH) cosh(MATH)

This function is used to obtain the hyperbolic cosine of a double

#i ncl ude <mat h. h>
doubl e cosh(argx);
doubl e ar gx;

ar gx is the doubl e expressed in radi ans whose hyperbolic cosine is to
be determ ned.

Descri ption

This function will obtain the double precision hyperbolic cosine of its
argunment. The hyperbolic cosine of x is defined as [[exp(x)-exp(-x)]/2].

Exanpl e
#i nclude stdio

#i ncl ude mat h
char inbuf[81]; double di,d2

mai n()

{ puts("Cosh: enter your nunber: EOF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;

errno=0;

d2 = cosh(dl=atod(i nbuf));

printf("dl = %; d2 = %; errno = %\ n",d1,d2, errno);

}
}
Cosh: enter your nunber: ECF to exit
0 |dl =0; d2 =1; errno =0
.5]d1 = 0.5; d2 = 1.12763; errno = 0
10 |d1 = 10; d2 = 11013.2; errno = 0
-10 |dl = -10; d2 = 11013.2; errno =0

See al so: acos(), cos(), exp(), sinh(), tanh()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
creat (LI BO) creat (LI BO)

This function is provided to create new files or to rewite old files.

int creat(path, pnode);

i nt pnode;
char *pat h;
pat h a pointer to the string containing the file specification.
pnode the file's assigned protecti on npde.
Descri ption
If the specified file nust be created, it wll be created with the
protecti on node specified by the "pnode" argunent. If the file is existing,
creat() will truncate it to a length of zero. In either case, the access

"OFLAG' will be established as O WRONLY. To mmintain portability with the
UNIX file system pnode is interpreted as a nine-bit integer specifying
read, write, and execute permission for the owner of the file [bits 8-6],
for the owner's group [bits 5-3], and for all others [bits 2-0]. Only the
"all others" 3-bit field is used to establish the file protection under
LDOS/ TRSDOS. This is translated as foll ows:

read wite execute LDOS/ TRSDOS read wite execute LDOS/ TRSDOS

0 0 0 NO ACCESS 1 0 0 READ
0 0 1 EXEC 1 0 1 READ
0 1 0 WRI TE 1 1 0 VWRI TE
0 1 1 WRI TE 1 1 1 FULL

If the file specification included a password field, then this password
will apply only to the OMNER s access (UPDATE password for LDOS 5.1). The
USER s access field (ACCESS password for LDOS 5.1) wll be changed to

bl anks.
Return Code
If the file is properly created, its file descriptor will be returned. If
an error is detected in creating the file, creat() will return EOF (-1).
Exanpl e

creat _file(nane) char *nane;
{

int fd;
if ((fd=creat(name, 0777))==EOF) open_error(nane);
if ((wite(fd, header, RECLEN))! =RECLEN)
printf("Error in witing %\n", nane);

cl ose(fd);

See al so: close(), open()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cti me(LI BO) cti me(LI BO)

This function is used to obtain the ASCII 26-character tine string.

char *ctime(clock);
I ong *cl ock;
cl ock is
ti

a pointer_to_|long which contains the tine as retrieved by
me()

Descri ption

This function converts the UNIX tinme stored as a long integer obtained from
a function such as tinme() into a 26-character string of the form

Tue Oct 22 11:09:08 1985\ n\0

Al of the fields of the time string have a constant wi dth.

Exanpl e
#option INLIB
mai n()
{
| ong cl ock;

long time();
char *ctinme();

clock = time((long *) 0);
printf("At the tone, the tine will be [%d]: ", clock);
put s(ctine(&cl ock));
systen("date");
systenm("tinme");
}
At the tone, the tine will be [500036062]: Tue Nov 05 10:54:22 1985
Tue, Nov 5, 1985
10: 54: 39

See al so: asctinme(), localtinme(), time()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

cur pos(IN) cur pos(IN)

This function is used to obtain the position of the CRT's cursor.

#option I NLIB
unsi gned curpos();

Descri ption

The current location of the cursor can be recovered with the curpos()
function. It returns the cursor position as an encoded value. The cursor
row is in the high-order byte while the cursor colum occupies the |ow
order byte of the integer return code.

Exanpl e

#option INLIB
mai n()

unsi gned int crtrow, crtcol;

put s("\ xlc\ x1f"); /* home, clear, CR */
crtrow=(crtcol =curpos())>>8; /* get curpos; calc row */
crtcol &0x0f f ; /* calc colum */
printf("crt: row=%d, col=%l",crtrow,crtcol);

}

crt: row=l, col =0

DOS Ready

See al so: cursor()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
cursor (I'N) cursor (I'N)

This function is used to nove the cursor to a designated CRT position.

#option I NLIB
int cursor(col, row);
int col, row

col is the colum of the new position.
r ow is the row of the new position.
Descri ption

To reposition the cursor on the CRT screen, use the cursor() function. The
cursor is re-positioned to the location identified by the argunents.

Ret urn Code

If the position that would result is not on the CRT screen, a range error
(-1) is returned. "col" nust be in the range, <0-X>, while "row' mnust be in
the range, <0-Y>. For 64 x 16 screen sizes, the X and Y |limts are 63 and
15. For 80 x 24 screen sizes, the X and Y upper limts are 79 and 23
respectively.

Exanpl e

#option INLIB
wite file(fildes) int fildes;

t
int i;
for (i=0;i<10000;i ++)
if ((wite(fildes,itoa(i,record), 10))!=10)
return i;
cursor (10, 3); /* position cursor to row 3, col 10 */
printf("Witing record %d\n",i);
return NULL;
}

See al so: curpos()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
_ddv2(MATH); _ddv230(MATH) _ddv2(MATH); _ddv230(MATH)

These functions obtain a fast divide_by 2 and a divide_by 2730 of a double.

#i ncl ude mat h. h
doubl e _ddv2(argx);
doubl e ar gx;

doubl e _ddv230(argx);
doubl e ar gx;

ar gx is the argunent for which the divide operation is desired.

Descri ption

These two functions are special and non-standard. Use themonly if you are
not interested in portability. They perform a fast divide operation on a
doubl e. _ddv2() divides a double by 2.0. _ddv230 divides a double by 2730.

Exanpl e

#i ncl ude <mat h. h>
doubl e | dexp(argfr, exp) double argfr; register int exp;
{

static doubl e huge, fr;

static int neg;

static int i;

doubl e frexp(), _ddv230();

fr = argfr;
huge = HUGE_VAL;
neg = 0;

if (fr <0.0) { fr=-fr; neg=1; }
fr = frexp(fr, &);
while (fr < 0.5) { fr *=2.0; --i; }
exp += i;
if (exp > 127) { errno=ERANGE; return neg ? -huge : huge; }
if (exp < -127) { errno=ERANGE; return 0.0; }
while (exp > 30)
{ fr *= (1L << 30L);
exp -= 30;

while (exp < -30)
{ fr = _ddv230(fr); [* fr /= (1L << 30L) */
exp += 30;

—

if (exp >0) fr *= (1L << exp);
if (exp <0) fr /= (1L << -exp);
if (neg) fr = -fr;

return fr;

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

df i x(MATH)

This function obtains the truncated val ue of a double.

df i x(MATH)

#i ncl ude mat h. h
doubl e dfix(argx);
doubl e ar gx;

ar gx is the double value to truncate.

Descri ption

The truncated value is obtained by dropping all digits to the right of the

decimal point so the result is a whhole nunber. If
dfi x(argx) is equivalent to dint(x)+1.0.

Exanpl e

#i nclude stdio.h

#i ncl ude mat h. h

char inbuf[81]; double di,d2;
mai n()

puts("Dfix: enter your nunber: ECF to exit");
whi | e (TRUE)

if (!gets(inbuf)) break;
d2 = dfix(dl=atod(inbuf));
printf("dl = %; d2 = %g\n",d1,d2);

}

Dfi x: enter your nunmber: ECF to exit
-1.275 |d1 -1.275; d2 = -1
1.275 |d1 1.275; d2 =1

See also: dint(), floor(), ceil()

argx is negative,

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
di nt (MATH) di nt (MATH)

This function obtains the integer part of a double. It is identical to the
standard math function, floor().

#i ncl ude mat h. h
doubl e dint(argx);
doubl e ar gx;

ar gx is the double for which the integer part is desired.
Descri ption
This function obtains the largest integer not greater than "argx". The

"dint()" function has been provided only for the sake of a nane
conpatibility with other |anguages. For the sake of portability anong C
conpilers, it is recommended that you use the equival ent function, floor().

Exanpl e

#i nclude stdio.h

#i ncl ude math. h

char inbuf[81]; double di,d2;
mai n()

puts("Dint: enter your nunber: EOF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;
d2 = dint(dl=atod(inbuf));
printf("dl = %; d2 = %g\n",d1,d2);

}

Dint: enter your nunmber: ECF to exit
-1.275 |d1 -1.275; d2 = -2
1.275 |d1 1.275; d2 =1

See al so: dfix(), floor(), ceil()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
dsgn(MATH) dsgn(MATH)

This function obtains the integer sign of a double.

#i ncl ude <mat h. h>
int dsgn(argx);
doubl e ar gx;

ar gx is the double for which the sign is desired.

Descri ption
This function returns AS AN | NTEGER, the state of the sign of the argunent.
Return Code

The returned value will be mnus one (-1) if argx is negative, zero (0) if
argx is zero, and plus one (1) if argx is positive other than zero.

Exanpl e

#i nclude stdio.h

#i ncl ude mat h. h

char inbuf[81]; double dl; int sign;
mai n()

puts("Dsgn: enter your nunber: ECF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;
sign = dsgn(dl=atod(i nbuf));
printf("dl = %; sign = %\ n",dl,sign);

}

Dsgn: enter your nunber: ECF to exit
-3.75 | d1 -3.75; sign = -1

0 | d1 0; sign =0

14.7e-15 | dl1 1.47e-14; sign = 1

See al so: fsgn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
dt oa(MATH) dt oa(MATH)

This function converts a double to string formin "e" notation.

#i ncl ude mat h. h

char *dtoa(argx, string);
doubl e ar gx;
char *string;

ar gx is the double to convert to string form
string is a character array of length 14
Descri ption
This function will convert a double to string formusing the format:

sd. ddddddEnee

where "s" represents a sign character (blank or mnus), "d" represents a
decimal digit, "n" represents an exponent sign (plus or mnus), and "e"
represents an exponent decimal digit.

Ret urn Code

A pointer to the string is returned so that the function may be used as a
"string" argunent.

Exanpl e

#i nclude stdio.h
#i ncl ude mat h. h

char string[14];
mai n()

doubl e | oop;
for (loop=1.25el; |oop < 10.0el; | oop+=2.75el)
put s(dt oa(l oop, string));

1. 250000E+01
4. 000000E+01
6. 750000E+01
9. 500000E+01

See al so: sprintf()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

dup(LI BC); dup2(LIBC) _dup(LIBC); dup2(LIBC

These functions duplicate an open file descriptor.

int dup(fildes);
int fildes;

int dup2(fildes , fildes2);
int fildes, fildes2;

fildes is the file descriptor to duplicate.
fildes2 is the file descriptor to use for the duplication of fildes.
Descri ption

These two functions allocate another file descriptor synonymobus with the
original. The "fildes" argument nust be a file descriptor obtained from an
open() or creat() call or one of the standard file descriptors: STDIN,

STDOUT, or STDERR.

The dup() function will search for a file descriptor to utilize, if one is
avai l able. The dup2() function will reuse the descriptor passed as the
fildes2 argunment. If fildes2 refers to an already opened file, that file
will first be closed prior to duplicating the requested descriptor.

Ret urn Code
EOF will be returned if the fildes argunent passed is invalid or there are
no nore file descriptors left available. In either case, the global error
variable, errno, will contain the UNI X error nunber associated with the
error.

Exanpl e

#i nclude stdio.h

char nessage[] "Witing to dup'd file descriptor\n”;

mai n()
int fil des;
if ((fildes = dup(STDOUT)) ==EOF)
{ fputs("dup() error\n",stderr); exit(-1);
Wi t}e(fi | des, nessage, strl en(nessage)) ;

Witing to dup'd file descriptor

See also: creat(), fcntl (), open(), perror(), wite()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
execl (LI BO) execl (LI BO)

This function exits the program and causes execution of a conmmand string built
fromthe argunent list.

int execl (path, arg0, argl, ..., argn, 0);
char *path, *argO, *argl, ..., *argn
pat h is a pointer to the nane of the program which is to be invoked.
ar gx are pointers to character strings which will be constructed as

argunents to the program bei ng i nvoked

Descri ption

The execl () function will build a command string conposed of the path nane
and the argunents passed to execl(). Files in the current program will
remai n open unless the close_on_exec flag is set [see fopen()]. The current
program then termnates and the resulting command string is passed to the
DOs for execution

Conventionally, the "arg0" argunment is the sane as the path nane.

Ret urn Code
If the resulting command string would exceed the |length supported by the
DOS, execl () will return ECF and the global error variable, errno, will be
set to E2BI G otherw se, execl() will not return

Exanpl e

#i ncl ude stdio.h
char path[]="dir", argO[]="dir", argl[]="sys:0", arg2[]="(sys,inv,a=)";
mai n()

puts("Test of execl()\n");
i f (execl (path,arg0, argil, arg2, 0) ==EOF)
puts("DCS command line is too |long");

Test of execl ()
Drive :0 VROOO5A 153 Cyl, Hard, Free = 732.00K/ 2448.00K, Date 12-Apr-85
SYS0/ SYS SIP SYS1/SYS SIP+ SYS10/SYS SIP SYS11/SYS SIP
SYS12/SYS SIP SYS13/SYS SIP SYS2/SYS SIP SYS3/ SYS SIP
SYS4/ SYS SIP SYS5/ SYS SI P SYS6/ SYS SI P SYS7/ SYS SIP
SYS8/ SYS SI P SYS9/ SYS SI P SYSTEM JCL + SYSUAF/ DAT P+

See al so: execv(), cndi()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
execovl (I'N) execovl (I'N)

This function is used to i nvoke an overlay of the executing C program

i nt execovl (ovhum ovargc, ovargv);
char ovnum int ovargc; char *ovargv[];
ovnum the requested overlay nunber in ASCII
ovar gc the quantity of args to be passed to the overlay in the ovargv
array.
ovar gv a pointer to the argunent vector which is to be passed to the
overl ay.
Descri ption

The execovl () function is used to invoke an overlay where a program
envi ronment has been devel oped around a root nodul e and one or nore overlay
nodul es. The arg vector "ovargv" MJST have ovargc pointers in it. The
"ovargc" and "ovargv" will be passed as argunments to the overlay's ovmain()
function in that order. Note that "ovargc" and "ovargv" are optional

The generation of the root and overlay files requires the use of the MINK
linker provided with the MRAS assenbler devel opnment system Since the
design of a C program environment which uses overlays is a conplex

procedure, its details will be discussed in the "Advanced Topi cs" chapter.
Ret urn Code

A NULL will be returned if the requested overlay executed, otherw se EOF

will be returned and errno will be appropriately set. Note that any return

code fromovmain() is ignored; you can use public nmenory location(s) in the
root for comunications fromthe overl ay.

Exanpl e
/* OVTEST/ CCC - sanple test root nodule */

extern int execovl (), printf();
int ovargc = 3;

char *ovargv[3] = { "ovtest", "this is overlay" };
mai n()
ovargv[2] = "1";
if (execovl('1l, ovargc, ovargv)) error();
ovargv[2] = "2";
if (execovl('2', ovargc, ovargv)) error();
}
error()

perror("ovtest");
exit(1);

/* OVERLAYT/ CCC - sanple overlay for OVTEST */
ovmai n(argc, argv) int argc; char *argv[];

printf("%: % %\n", argv[O0], argv[1l], argv[2]);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
execv(LI BC) execv(LI BC)

This function exits the program and causes execution of a conmmand string built
fromthe array of pointers to strings.

int execv(path, argv);
char *path, *args[];

pat h is a pointer to the nane of the program which is to be invoked.

argsl[] are pointers to null-term nated character strings which will be
used as argunments to the program bei ng i nvoked.

Descri ption
The execv() function will build a command string conposed of the path nanme
and the argunments passed to execv(). The array of pointers is term nated
with a NULL pointer. Files in the current program will remain open unless

the close_on_exec flag is set [see fopen()]. The current program then
termnates and the resulting command string is passed to the DOS for
execution.

Conventionally, args[0] is the sane as the path nane.

Ret urn Code
If the resulting command string would exceed the |length supported by the
DOS, execv() will return ECF and the global error variable, errno, will be
set to E2BI G otherw se, execl() will not return.

Exanpl e
#i nclude stdio.h
char *args[] = {"dir","zzzzz","(n)",0 };
mai n()

puts("Test of execv()\n");
if (execv(args[O0], args)==ECF)
puts("Command |line too long!'");

Test of execv()

Drive :0 VROOO5A 153 Cyl, Hard, Free = 732. 00K/ 2448.00K, Date 12-Apr-85
Drive :1 VROO05B 153 Cyl, Hard, Free = 598. 00K/ 2448.00K, Date 12-Apr-85
Drive :2 Fl XES02 40 Cyl, DDEN, Free = 130.50K/ 180.00K, Date 05-Sep-85
Drive :3 MCTESTO5 40 Cyl, DDEN, Free = 169.50K/ 180.00K, Date 06- Nov-85
Drive :6 VROOO6A 153 Cyl, Hard, Free = 428.00K/ 2448.00K, Date 23-Sep-85
Drive :7 VROO06B 153 Cyl, Hard, Free = 1520. 00K/ 2448. 00K, Date 23-Sep-85

See al so: execl (), cndi()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
exit (LIBC); _exit(LIBC) exit(LIBC); _exit(LIBC)

This function is used to exit your programand return to DOCS.

void exit(retcod);
int retcod;

void _exit(retcod);
int retcod;

ret cod is the return code to be passed to the DOCS.

Descri ption

Exit() and _exit() allow the user to exit cleanly from a program and
control the consequences of exiting. Passing a zero (0) for the "retcod"
argument to exit() indicates normal program termnation, causing exit() to

take the DOS normal exit. If a non-zero retcod is passed, exit() wll take
the error entry into DOS, thus aborting any Job Control Language processing
in effect.

If the term nating program was invoked by the system() function, the value
passed to exit() will be the value returned to the calling program from
system(). An exception is if a negative value is passed to exit(), in which
case a negative one (-1) is returned to cnd().

Exit() closes all open files before returning to DOS; the _exit() function
does not.

MC generates an automatic exit(0) when the term nating brace of main() is
reached; thus, your program need not explicitly call exit() at that point.

Ret urn Code
Exit() does not return to the caller.

VMr ni ngs
For conpatibility with other C | anguage systens, the programmer should not
depend on exit() to close the programs files (other than standard 1/0O

files).

See al so: close(), fclose()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
exp(MATH) exp(MATH)

This function obtains the exponential of a double.

#i ncl ude <mat h. h>
doubl e exp(argx);
doubl e ar gx;

ar gx is the double for which the exponential is desired.

Descri ption

Exp() returns the exponential function of x (e raised to the x power).

Ret urn Code

If the resulting value would overflow, exp() returns HUGE_VAL and the
gl obal error variable, errno, is set to ERANGE. An error nessage indicating
the overflow range error is printed to standard error output. This error
handl i ng may be changed by the use of matherr().

Exanpl e

#i ncl ude stdio

#i ncl ude mat h

char inbuf[81]; double di,d2;
mai n()

puts("Exp: enter your nunber: EOF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;

errno=0;

d2 = exp(dl=at od(inbuf));

printf("dl = %; d2 = %; errno = %\ n",dl1,d2, errno);

}

Exp: enter your nunber: EOF to exit
1.0 |dl =1; d2 = 2.71828; errno = 0
14.8 |dl = 14.8; d2 = 2.67645e+06; errno = 0
150 |overflow range error
|d1 = 150; d2 = 1.70141e+38; errno = 71

See also: log(), matherr(), errno

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f abs(MATH) f abs(MATH)

This function obtains the absolute value of a double.

#i ncl ude <mat h. h>
doubl e fabs(argx);
doubl e ar gx;

ar gx is the double for which the absolute value is desired.

Descri ption

This function returns the absolute value of its argument (i.e if argx is
positive, argx is returned; if argx is negative, -argx is returned).

Ret urn Code
The absol ute value is returned.
Exanpl e

#i ncl ude stdio

#i ncl ude mat h

char inbuf[81]; double di,d2
mai n()

put s("Fabs: enter your nunber: ECF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;

errno=0;

d2 = fabs(dl=atod(i nbuf));

printf("dl = %; d2 = %; errno = %\ n",d1,d2,errno);

}

Fabs: enter your nunmber: ECF to exit
1. 675384692 |d1 1.67538; d2 = 1.67538; errno =0
-13. 47e-3 | d1 -0.01347; d2 = 0.01347; errno =0

See al so: abs(), fabsf(), |abs()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f absf (MATH) f absf (MATH)

This function is used to obtain the absolute value of a float.

#i ncl ude <mat h. h>
float fabsf(xval);

fl oat xval ;
xval is the float whose absolute value is to be determ ned.
Descri ption
This is a non-standard function which will obtain the absolute value of a

float. For portability, use the equival ent construct:
(float)fabs((double)xval);
See al so: abs(), fabs(), labs()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f at n(MATH) f at n(MATH)

This function is used to obtain the arc tangent of a float.

#i ncl ude <mat h. h>
float fatn(xval);

fl oat xval ;
xval is the float whose arc tangent is to be determ ned.
Descri ption
This is a non-standard function which will obtain the arc tangent of a

float. For portability, use the equival ent construct:
(fl oat)atan((doubl e)xval);

See al so: atan(), atan2(), ftan()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fcl ose(LI BC) fcl ose(LI BC)

This function is used to close a file opened with fopen().

int fclose(stream);
FI LE *stream

stream the file pointer obtained from fopen().

Descri ption

Fclose() is used to close an open file and to free the File Control Area
(FCA) and file buffer for later use. The stream file pointer passed to
fcl ose nmust have been obtained fromfopen(). In the MC file system exit()
also closes files; however, the programmrer should use fclose() on files
opened by the programto ensure conpatibility and portability.

There is a limted nunber of files (determined by the MAXFILES conpiler
option), including standard files, that may be open at one tinme. Fclose()
is used to free FCAs so an unlimted nunber of files may be accessed one
after the other.

Ret urn Code
The return code will be NULL if no error was detected in the closing
operation (i.e. a successful close). If an error was detected during the
cl ose operation, then EOF will be returned and the global error variable,
errno, will contain the UNI X error nunber associated with the error.

VMr ni ngs

The return code convention under MC follows the UN X Seventh Edition and
UNI X System V convention. As such, the return codes for success and failure
are opposite as that returned under LC

Exanpl e

if (lastc!=0xla)
put out (0x1a);
fcl ose(fpl);
fcl ose(fp2);
puts("Files now cl osed");
exit(0);

See also: fcntl (), fdopen(), fopen(), freopen(), fflush()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fcntl (LI BO) fcntl (LI BO)

This function provides certain control over files.

#i ncl ude <fcntl. h>
int fentl(fildes, cmd, arg);
int fildes, cnd; "varying type" arg;

fildes is the file descriptor of the file you wish to cntrol.
cmd is the specific fcntl () command (see text).
arg is specific to the fcntl () command.

Descri ption

Fcntl () provides for certain control over open files. The file descriptor
which identifies the file is one obtained from creat(), dup(), dup2(),
fentl (), open(), or one of the standard I/O devices: 0, 1, or 2. The "cnmd"
argunment directs fcntl () to a specific operation. The conmands available to
fecntl () are defined in the "fcntl" header file, and are as foll ows:

F_DUPFD

This command will duplicate the file associated with fildes and return a
new file descriptor having the followi ng characteristics:

is the lowest nunbered available file descriptor greater than or
equal to "arg";

is the sane open file as fildes;

has the same access node as fildes (read, wite, or read/wite);

the close_on_exec flag associated with the new file descriptor is
reset to keep the file open upon execution of execl() or execv()
i nvocati ons.

F_GETFD
This command will get the status of the close_on_exec flag. If the |ow
order bit is a 0, the file will remain open across execl() and execv()
calls; otherwise, the file will be closed upon execution of execl() or
execv().
F_SETFD
This command will set the close_on_exec flag associated with fildes to the

state of the loworder bit of arg, 0 or 1.
F_GETFL

This command obtains the file status flags (O _RDONLY, O WRONLY, O RDWR,
O_APPEND, O CREAT, O TRUNC) identified in the "fcntl" header file.

F_SETFL

This command permits you to set the file status flags according to "arg".
You may only change the follow ng flags: O RDONLY, O WRONLY, or O _RDWR

Ret urn Code

If fildes is invalid, or if the argument passed as "arg" to F_SETFL is
invalid, or if there is no new available file descriptor to return for the
F_DUPFD command, EOF will be returned and the gl obal error variable, errno,
will contain the UNI X error nunber associated with the error.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fentl (LI BO) fentl (LI BO)

Exanpl e

#i ncl ude stdio.h
#include fcntl.h
struct { int mask; char *name; } oflags[] = {
{O_RDONLY, "read_onl y"},
{O_VWRONLY, "write_only"},
{O_ RDVWR, "read_wite"},
{ O_NDELAY, "del ay"},
{ O_APPEND, "append"},
{ O_CREAT, "creat"},
{O_TRUNC, "truncat e"},
{O_EXCL, "excl usi ve"}
e
char *path="defaul t/txt:7", sbuf[81], *itob();
mai n(argc, argv) int argc; char *argv[];

int fildes, i, oflag;
if (argc==2) path=argv[1];
if ((fildes=open(path, O RDWR O CREAT, 0777)) ==EOF)

{ printf("Can't open %\n",path); exit(-1);
el se printf("Opened %; fildes = %\ n", path,fildes);
oflag = fentl (fildes, F_GETFL, NULL);
fputs("oflags = ", stdout); puts(itob(oflag, sbuf));
for (i=0; i<8; i++)

if (ofl ag&ofl ags[i]. mask)

{ putchar(' '); fputs(oflags[i].nane, stdout);

printf("\nc-o-e flag is %@\n",fcntl (fildes, F_ GETFD, NULL) &1) ;
cl ose(fildes);

}

Opened default/txt:7; fildes = 3
of lags = 100100

read_wite creat

c-o-e flag is 1

See al so: dup(), dup2()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f cos(MATH) f cos(MATH)

This function is used to obtain the cosine of a float.

#i ncl ude <mat h. h>
float fcos(xval);
fl oat xval

xval is the float expressed in radi ans whose cosine is to be
det er m ned.

Descri ption

This non-standard function will obtain the single precision cosine of its
argunment. For portability, use the equivalent form

(fl oat)cos((doubl e)xval);

See al so: acos(), asin(), fsin(), ftan(), sin(), tan()

f dopen(LI BC)

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f dopen(LI BC)

This function is used to associate a streamwith an open file descriptor.

FI LE *fdopen(fildes, type);
fildes, char *type;

fildes is the file descriptor of the open file.
type is a character string which indicates the access node chosen from
the foll ow ng:
“rt, "w', tat, "r+", "w", or "at+".
Descri ption

Fdopen() allows the programmer to initiate stream access of a given access
type to a file opened with creat(), dup(), dup2(), fcntl(), or open().

"Fi |l des"

is the file descriptor of the already opened file. "Type" points

to a null-termnated string which defines the node of access and nmust agree

with the

access specified when the file was opened. The all owabl e nodes of

access, which may be entered in upper or |ower case, are:

npn
"
"a"
"4t

"
P

open for reading;

truncate or create for writing;

append; open for witing at the end of the file, or create for
witing;

open for update (reading and witing);

truncate or create for update;

append; open or create for update (appending) at the end of the
file.

VWen a file is opened for update, both reading and witing may be perfornmed
on the stream however, witing may not be inmediately foll owed by reading

wi t hout

an intervening fseek() or rewind(), and reading may not be followed

by witing without an intervening fseek(), rewind(), or an input operation
whi ch encounters an end-of-file [first cleared by cleareof()];

Note that fdopen() is simlar to fpup() in that a stream pointer associated
with a file descriptor is returned; however, fdopen() permts you to alter
the access node of the stream

Ret urn Code

The stream file pointer is returned if no errors are detected in the
fdopen() operation. If fildes does not refer to an open file descriptor or
the access type requested does not agree with the access of the open file,
NULL (zero) will be returned and the global error variable, errno, wll
contain the UNI X error nunber associated with the error.

Vr ni ngs

VWen a file is opened for append, the file is positioned so that the first
out put operation will wite to the end of the file. The output functions do
not perform this positioning operation; therefore, do not use rew nd() or
fseek() with streans to which you wish to append.

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f dopen(LI BC) f dopen(LI BC)

Exanpl e

#i ncl ude stdio.h
extern FILE *fdopen();
char nessage[] = "This is witten to fdopen'd streant;
mai n()
FI LE *stream
if (!'(stream=fdopen(STDOUT, "W')))

puts("fdopen error");
exit(-1);

put s(nessage, strean);
fcl ose(stream;

}
This is witten to fdopen'd stream

See al so: fopen(), freopen()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f down(LI BC) f down(LI BC)

This function is used to convert a streamfile pointer to a file descriptor.
It is identical to fileno().

int fdown(stream);
FI LE *stream

stream the file pointer of the stream

Descri ption

Sonetimes it may be useful to cross between file stream 1/O functions and
bl ock device 1/0O functions which use file descriptors. Since file streans
are referenced with file pointers and block device files are referenced
with file descriptors, the fdown() function may be used to obtain the file
descriptor given a streamfile pointer.

Ret urn Code
If the stream file pointer is recognized as being invalid, EOF wll be
returned; otherw se, the needed file descriptor will be returned.

Vr ni ng

The stream file pointer passed as the argunent of fdown() nust be one
obtai ned from fopen(), fdopen(), or the file pointer of a standard device
(i.e. stdin, stdout, stderr).

Exanpl e
if (fd2 = fentl(fdown(stdin), F DUPFD, 3)) == EOF)
abend(NULL) ;
if (fdown(stderr) != STDERR)
abend("internal error");

See al so: fileno(), fpup()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f eof (LI BC) f eof (LI BC)

This function is used to determne if the end-of-file has been sensed.

int feof(stream);
FI LE *stream

stream the file pointer obtained from fopen().

Descri ption

This function obtains the status of the EOF flag mamintained in the File
Control Area for an open file.

Ret urn Code
If an end-of-file had been previously encountered, feof() wll return a
non-zero val ue; otherw se, NULL will be returned.
Exanpl e
#i nclude stdio.h
mai n()
{
nt c; FILE *fp;
f ((fp=freopen("tfeof/ccc","r",stdin))==NULL)

:
:
{ . .
perror("main: freopen error"); exit(-1);
}
while ((c=getchar())!= ECF)
put char (c);
puts(feof(stdin) ? "ECF received" : "no EOF yet");
printf("DOS error nunber is %\n",ferror(stdin));
if (ferror(stdin))
perror ("main");

}

EOF received
DOS error nunber is O

See also: ferror(), clearerr(), cleareof()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
ferror (LI BC) ferror (LI BC)

This function is used to obtain the last DOS |/ O error nunber associated with
a file stream

int ferror(stream);
FI LE *stream

stream the file pointer obtained fromfopen().

Descri ption

The MC file system maintains the nunber of the last error code associated
with a file stream or file. This error code nmay be recovered via the
ferror() function. Wen an error occurs, the global error variable, errno,
will contain the UNI X error nunber associated with the DOS error. Consult
your DOS manual for the meaning of each DOS error code.

Ret urn Code
If no error has been encountered, NULL will be returned. I|If the file
pointer references a closed file, then EOF will be returned. O herw se, the
return code will be the DOS error code.

Vr ni ngs

The stream file pointer passed as the argunent to the function nust be one
obtained from fopen() or the stream pointer of any standard device (i.e.
stdin, stdout, stderr). The error nunmber storage is shared with the
ungetc() one character buffer; thus, an ungetc() on the stream may w pe out
the error nunber obtainable via ferror().

Exanpl e

#i nclude stdio.h
mai n()
t
int ¢c; FILE *fp;
if ((fp=freopen("tfeof/ccc","r",stdin))==NULL)

perror("main: freopen error");
exit(-1);

}
while ((c=getchar())!= ECF) putchar(c);
puts(feof(stdin) ? "ECF received" : "no EOF yet");
printf("DOS error nunber is %\n",ferror(stdin));
if (ferror(stdin))

perror("main");

}

EOF received
DOS error nunber is O

See al so: perror()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f exp(MATH) f exp(MATH)

This function obtains the exponential of a float.

#i ncl ude <mat h. h>
float fexp(argx);
fl oat argx;

ar gx is the float for which the exponential is desired

Descri ption
The non-standard function, fexp(), returns the exponential function of x (e
raised to the x power) of the single precision argunment (i.e. a float). For
portability, use the equival ent construct:
(fl oat)exp((doubl e)argx);

See al so: flog(), exp(), log()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
ffix(MATH) ffix(MATH)

This function obtains the truncated value of a float.

#i ncl ude <mat h. h>
float ffix(argx);
fl oat argx;

ar gx is the float value to truncate.

Descri ption

The truncated value is obtained by dropping all digits to the right of the
decimal point so the result is a whole nunber. |If argx is negative,
ffix(argx) is equivalent to fint(x)+1.0. This is a nonstandard function.
For portability, use the equival ent construct:

(float)dfix((double)argx);
See also: fint(), dfix, dint(), floor(), ceil()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fflush(LIBC) fflush(LIBC)

This function is used to force a physical wite of any buffered output to an
output file stream and update the DOS directory.

int fflush(stream);
FI LE *stream

stream the file pointer obtained from fopen().

Descri ption

VWhen program crashes occur, sone output data witten to a file stream nay
have been buffered in the streamis 1/0O buffer and not witten to disk. The
file's directory information also may not get wupdated. The fflush()
function can be used to conplete all physical output and update the
streaml's directory without actually closing the file (if invoked prior to
such a program crash).

Ret urn Code

The return code wll be NULL if no error occurs during the flushing
operation. If an error is detected, EOF will be returned and the gl obal

error variable, errno, will contain the UNI X error nunber associated with
the error.

Exanpl e

#i ncl ude <stdi o. h>
char nessage[] = "Testing, 1, 2, 3... Hello, test\n";
mai n()

FILE *stream *fopen();
if ((stream=fopen("testfile/dat:7","w"))==NULL)
{ perror("fopen error"); exit(-2); }
f put s(nmessage, strean); fputs(nessage, strean;
if (fflush(stream)==EOF) perror("fflush error");
puts("Programterm nating through _exit()");
_exit(); /* simulate error termnate wo closing files */

Program term nating through _exit()

DOS Ready
list testfile/dat:7

Testing, 1, 2, 3... Hello, test
Testing, 1, 2, 3... Hello, test

See al so: fopen(), fclose(), putc(), fwite()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fgetc(LIBC) fgetc(LIBC)

This function is used to obtain a character froma file stream

int fgetc(stream);
FI LE *stream

stream is the file pointer of the stream

Descri ption

Fgetc() is used to input a single byte froma file stream The MC library
treats fgetc() as equivalent to getc(): both are functions.

Ret urn Code

The return code is the integer value of the character input from the
stream If an end of file is encountered, then "ECF" (-1) is returned.

Vr ni ng
If the value returned by the function is to be stored before testing for
end-of -file, it nust be stored in an integer variable and not a char. If
not, the end of file value will be truncated and will remin undetected, as

a char of -1 does not equal an int of -1.
Exanpl e

#i ncl ude <stdio. h>
filecopy(fp)
FI LE *fp;
{ int c;
while ((c = fgetc(fp)) !'= ECF)
if (c != fputc(c,stdout))
abort("Qutput file wite error");

}
See al so: getc(), getchar(), getw)

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

f get s(LI BO)

fget s(LI BO)

This function is used to get a buffered line froma file stream

char *fgets(buf, maxlen, strean);
char *buf; int maxlen; FILE *stream

buf is a pointer to the character buffer.

max| en is the maxi mum | ength of the input string.

stream is the stream poi nter obtained from fopen().
Descri ption

Fgets() is used to obtain a buffered line froma file. A file may be the

consol e keyboard, the RS-232 interface, or any input

device or disk file.

Up to (maxlen) bytes will be placed in the buffer. Input is term nated when
either a newWline or end of file is encountered or maxi mum buffer size is
reached. The newline character is not stripped fromthe input.

For conpatibility with DOS Job Control Language files,

keyboard I|ine input

is perfornmed using the @EYIN systemcall. Fgets() recogni zes the BREAK key
as the end of file fromthe keyboard if the OBREAK flag is set via the
option() function. Also, the maxi mum nunber of keyboard characters accepted

for input will be the m ni num of (maxlen, 255).

Ret urn Code
If an error is encountered, NULL will be returned and the global error
variable, errno, will contain the UNI X error nunber associated with the

error; otherwise, a pointer to "buf" is returned.

Exanpl e
#i ncl ude stdio.h
mai n()
{
int i; FILE *stream *fopen(); char buffer[81];
if ((stream=fopen("testfile/dat:7","w+"))==NULL)
{

perror("fopen error");
exit(-1);

}

for (i=1; i<9999; i*=10)
fprintf(stream"Record % is here\n",i);

rewi nd(strean;

while ((fgets(buffer,80,stream)!=NULL)
fput s(buffer, stdout);

Record 1 is here
Record 10 is here
Record 100 is here
Record 1000 is here

See al so: fputs(), gets(), puts()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fill(LIBC) fill(LIBC)

This function will propagate a character throughout a nenory region.

void fill(buffer, count, cval);

char *buffer, cval; int count;
buf f er is the address pointing to the start of the nmenory region you
wi sh to popul at e.

count is the nunmber of bytes to popul ate.

cval is the character to popul ate throughout the regi on of nenory.
Descri ption

The fill() function will propagate the character, "cval", into the nenory

"buffer" for "count" bytes. If "cval" is passed as an integer value, the

| ow-order byte is used for the propagation.

Vr ni ng

Note that although the fill() function is contained in LIBC, it is not a

standard function. For purposes of portability across C conpilers, use the
equi val ent standard function, nenset().

Exanpl e

char *get men(size)
unsi gned si ze;

if (!'(nmptr=alloc(size))

return NULL;
fill(nptr,size, NULL);
return nptr;

}

See al so: nmenset ()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

fint (MATH) fint (MATH)
This function is used to obtain the integer part of a float.
#i ncl ude <mat h. h>
float fint(xval);
fl oat xval
xval is the float whose integer part is to be detern ned.
Descri ption
This is a non-standard function which will obtain the integer part of

float. For portability, use the equival ent construct:
(float)floor((doubl e)xval);

See also: floor(), ffix()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f 1 og(MATH) f 1 og(MATH)

This function is used to obtain the natural log of a float.

#i ncl ude <mat h. h>
float flog(xval);

fl oat xval ;
xval is the float whose log is to be determn ned.
Descri ption
This is a non-standard function which will obtain the natural logarithm

(base e) of a float. For portability, use the equival ent construct:
(float)l og((doubl e)xval);

See al so: log(), fexp()

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

fl oor (MATH) fl oor (MATH)

This function obtains the integer part of a double.

#i ncl ude mat h. h
doubl e floor(argx);
doubl e ar gx;

ar gx is the double for which the integer part is desired.

Descri ption

This function obtains the largest integer not greater than "argx".

Exanpl e

#i ncl ude stdio
#i ncl ude mat h
char inbuf[81]; double di,d2;

mai n()
{ puts("floor: enter your number: EOF to exit");
whi | e (TRUE)

{ if (!gets(inbuf)) break;
d2 = floor(dl=atod(inbuf));
printf("dl = %; d2 = %\n",d1,d2);

}

floor: enter your nunber: EOF to exit
-1.275 |d1 -1.275; d2 = -2
1.275 |d1 1.275; d2 =1

See also: dfix(), dint(), ceil()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f mod(MATH) f mod(MATH)

This function is used to performa floating point nmodul o division.

#i ncl ude <mat h. h>
doubl e fnod(xval, yval);
doubl e xval, yval;

xval i s the doubl e nunerator.
yval is the nodul o divisor.
Descri ption

Frod() returns the floating point remainder of the division of xval by
yval. Zero is returned if xval is zero or if xval/yval would overfl ow.

Exanpl e

#i nclude stdio.h
#i nclude mat h. h
mai n()

doubl e nuner, denom
for (numer=10.1, denone3.0; nuner>0.0; nuner--)
printf ("% ", fmod(numer, denom) ;

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f open(LI BO) f open(LI BC)

This function is used to open a file or device for streaml/QO

FI LE *fopen(path, type);
char *fspec, char *type;

pat h points to a character string which contains the specification of
the file.
type is a character string which indicates the access node chosen from

the foll ow ng:

CpttW,o"at, "r+', "w", or "a+".

Descri ption

Fopen() allows the programmer to initiate access to a file. Except for
standard input, output, and error files which are automatically opened, all
files nust be opened using fopen() [or wvarious other file opening

functions]. "Path" points to a file specification string identifying the
file to open. "Type" points to a null-termnated string which may be in
upper or |lower case and which defines the node of access . The allowable
nodes are:
"r open for reading;
truncate or create for writing;
"a" append; open for witing at the end of the file, or create for
writing;
"r+" open for update (reading and witing);
" truncate or create for update;
"a+" append; open or create for update (appending) at the end of the
file.

The file pointer is used whenever access to the opened file is needed. If
zero is returned, an error occurred during the open process.

VWen a file is opened for update, both reading and witing may be perfornmed
on the stream however, witing may not be imediately followed by input
wi t hout an intervening fseek() or rewi nd(), and reading nmay not be foll owed
by witing without an intervening fseek(), rewind(), or an input operation
whi ch encounters an end-of-file [first cleared by cleareof()];

Ret urn Code

The stream file pointer is returned if no errors are detected in the open
operation. If an error is detected during the open operation, NULL (zero)
will be returned and the global error variable, errno, will contain the
UNI X error nunber associated with the error.

Vr ni ngs

Opening the same file for both input and output with two or nore calls to
fopen() should NOT be done. If the file is accessed in this manner, it will
create unpredictable results, possibly causing loss of file integrity. A
file may be "fopened" for both read and wite using the "r+", "w+", or "a+"
access nodes.

VWen a file is opened for append, the file is positioned so that the first
out put operation will wite to the end of the file. The output functions do
not perform this positioning operation; therefore, do not use rew nd() or
fseek() on streans to which you wish to append.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f open(LI BC) f open(LI BC)

Exanpl e
getfile(path) char *path;
{ FILE *fp;
if ((fp=fopen(path,”r")) == NULL)

printf("Open error - % 20s\n", path);

exit();
el se return fp;
}
Nurmer ous other illustrations of fopen() appear in the many other exanples

t hr oughout this chapter.

See al so: fclose(), fdopen(), freopen(), open()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fprintf(LIBC) (MATH) fprintf(LIBC) (MATH)

These functions create a formatted i mage for output.

#i ncl ude <mat h. h> ...optional
int fprintf(stream control, argl, arg2, ...);
FILE *stream char *control; args SEE TEXT

stream is the streamfile pointer for output.

control is a string containing transparent printing characters and
conver si on specifications.

argn are argunents to be formatted for the output print inmage as
specified by the control.

Descri ption

The fprintf() function is used to wite a formatted output inmage to a file
stream identified by the "stream file pointer. The function contained in
LI BC does not include support for "e", "f", or "g" translation formats. The
math |ibrary package includes a version of fprintf() which supports all
standard format translations and is accessible when your program includes
t he preprocessor directive, "#i nclude <math. h>".

The specifications for formatting the output are determined by the
character string, "control". This string will contain ordinary characters
copied directly to the output imge and/or specifications denoting the
field conversions of all argunents. The conversion specifications take the
form of:

9%{flags}{w dth}{. prec}char

As can be noted, the specification is a sequence of sub-fields of which the
percent sign (% and the "char" are mandatory if variables are to be
printed. The percent is an "escape" character signaling the start of the
field specification. The "char" denotes the format of the output field
immge {binary, decimal, string, etc.}. The sub-field specifications are
interpreted as foll ows:

conversion initiator

% the translation specification initiator

fl ags
space specifies that the result of a signed conversion wll always
start with a mnus sign or space ('-' or ' ")
- specifies that the value will be left-justified within the print
field image, otherwise it will be right-justified
+ specifies that the result of a signed conversion wll always

start with a sign ("+ or '-")

specifies that the value is to be converted to an alternate form
'¢', 'd", 's', and 'u' conversions ignore this flag. For 'O0'
conversions, the precision is increased to force the first digit
to be a zero. For 'b' or 'B' conversions, a non-zero value wll
be preceded with either Ob' or '"OB'. For 'x' or 'X conversions,
a non-zero value wll be preceded with '"Ox'" or 'OX . For 'e',
'"E', 'f', 'g', and 'G conversions, the output wll always
contain a decimal point. Finally, for 'g" or 'G translations,
trailing zeroes will not be renmpved

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fprintf(LIBC) (MATH) fprintf(LIBC) (MATH)

wi dth specifier

wi dth specifies the mnimum width of the print field image. If the
converted val ue has fewer characters than this value, it will be padded
right or left with a pad character which will be a blank unless the
field-width begins with a zero, in which case the pad character will be
a zero. |If the converted val ue has nobre characters than the width, then
it (the width) is adjusted to hold the full result.

preci sion specifier
.prec specifies the maxi nrum nunber of string bytes for 's' translation,

t he maxi mum nunber of digits to the right of the decimal point for 'e',
"E', or 'f' translation, the nunber of significant digits in 'g" or 'G

transl ation, or the mnimum nunber of digits in a 'b', 'B, 'd, o',
u, 'x', or 'X translation (the field will be left padded wth
zeroes); generally called the "precision".
conversion type
h specifies that the following 'b', 'B", 'd", 'o', '"u, '"x', or 'X
transl ation applies to a short integer;
specifies that the following 'b', 'B", 'd", 'o', '"u, '"x', or 'X

transl ation applies to a long integer;
char
t he conversi on character

b=B=bi nary
o=oct a
d=deci ma
x=X=hexadeci nal
s=string
c=character
u=unsi gned
e=E=f | oat]

of the format, "[-]d.dddesdd" or "[-]d.dddEsdd", with the nunber of d's
after the decimal point according to the precision (default of 6),
[f=float] of the format, "[-]ddd.dd", with the nunber of d's after the
decimal point equal to the precision (default of 6); [g=G=float]
printed with format "d", "f", 'e', or "E' whichever gives full
preci sion in mnimum space.

A field width or precision may also be indicated by an asterisk ('*")
instead of a digit string. Wien this is the case, an integer argunent nust
then be supplied which contains the value of the precision. A negative
value will be interpreted as invoking the '-' |left justification. The
i nteger argunent nust i mediately precede the argunment corresponding to the
value to be translated in the argunent list.

Any portion of the control string which cannot be interpreted as a
conversion specification field is considered to be transparent printing
characters and will be passed directly to the print inmage.

VMr ni ngs

Single precision float argunents nust be explicitly casted to double if you
are using the "+f" conpiler option as the print formatter always assunes a
floating point variable to be doubl e precision.

A string longer than 32767 characters will be truncated. A width not in the
range of a short int will fail. The precision nust be in the positive range
of a short int.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

fprintf(LIBC) (MATH) fprintf(LIBC) (MATH)
Ret urn Code
If an output error is detected, EOF will be returned; otherw se, the nunber
of characters actually printed will be returned.
Exanpl e

fprintf(stderr,"%l characters, % |ines were copied\n", bytes,lines);

See al so: fscanf(), printf(), sprintf()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f pup(LI BC) f pup(LI BC)

This function obtains the stream pointer of a file descriptor.

FILE *fpup(fildes);

int fildes;
fildes the file descriptor of the file.
Descri ption

Sonetimes it may be useful to cross between file stream1/0O and file I/Q
Since file streans are referenced with file pointers and files are
referenced with file descriptors, the fpup() function may be used to obtain
the streamfile pointer given the file's descriptor.

Ret urn Code
Fpup() will return NULL on an invalid file descriptor.

Exanpl e
if (seek(fdl, block, 3)) == EOF)
{
err_num = ferror(fpup(fdl));

printf("Error % detected on file %\ n",err_numfdl);

See al so: fdown(), fdopen(), fileno()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f put s(LI BO) f put s(LI BO)

This function will output a string to a file/device.

int fputs(string, stream);
char *string; FILE *stream

string is the address of the string to be output.

stream is the file pointer of the output file.

Descri ption

Fputs() outputs to the file defined by "strean', all characters pointed to
by "string", up to the first NULL byte. This function does not append any
new i ne character to the string.

Ret urn Code
If an error was detected, fputs() will return EOF and the global error
variable, errno, will contain the UNI X error nunber associated with the
error; otherwi se, NULL will be returned.

Vr ni ng

Calling fputs() with an invalid file pointer can result in destruction of
files or other havoc.

Exanpl e
#i ncl ude stdio.h
mai n()
{ int i; FILE *stream *fopen():; char buffer[81];

if ((streamfopen("testfile/dat:7","wt"))==NULL)
{ perror("fopen error"); exit(-1); }

for (i=1; i<9999; i*=10)
fprintf(stream "Record %l is here\n",i);

rewi nd(streamn;

while ((fgets(buffer, 80,streamn))!=NULL)
fput s(buffer, stdout);

}

Record 1 is here
Record 10 is here
Record 100 is here
Record 1000 is here

See al so: fgets(), puts()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

f pow(MATH) f pow(MATH)

This function is the float equival ent of pow().

#i ncl ude <mat h. h>
float fraise(argx, argy);
float argx, argy;

ar gx is the base value to be raised.
ar gy is the power of the base val ue.
Descri ption
This function will raise a single precision nunber to a single precision

power. It is equivalent to:
(fl oat) pow (doubl e) ar gx, (doubl e) ar gy) ;
See al so: | power(), pow()

fread(Ll

This function reads

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
BC) fread(LI BC)

n" itens into an array froma stream i nput.

int fread(ptr, size, nitens, stream);
char *ptr; int size, nitens; FILE *stream
ptr is a pointer to the receiving array.
si ze is the size of an el enent in bytes.
nitens is the nunber of itens to read.
stream is a stream pointer from which to read.

Descri ption
This function will read into the array pointed to by "ptr", "nitens"
elements of data from the file stream defined by "streanf. Each el enent
will be of size "size". It is sonetimes convenient to use the "sizeof"
operator in determning the size of an elenent. This is illustrated in the
exanpl e.

Ret urn Code
The nunber of itens actually read are returned. A NULL will be returned if
"size" or "nitens" is less than or equal to zero. If an error occurs and no

data itens are read, you can use feof () or ferror() to discrimnate between
an error return or a "zero" input.

Exanpl e

#i nc

lude stdio.h

mai n()

}
31

char days[12]; FILE *stream int i;
if ((stream=fopen("boot/sys.|sidos","r"))==NULL)
{ perror("fopen error"); exit(-1); }
f seek(st ream 0x202L, 0); /* seek streamto days_in_nonth data */
fread(days, si zeof (char), si zeof days, strean);
for (i=0; i<12; i++)
printf("% ",days[i]);
fcl ose(stream;

28 31 30 31 30 31 31 30 31 30 31

See also: fwite()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
free(LI BC free(LI BC

This function frees nenory allocated with alloc(), mlloc(), calloc(), or
real l oc().

void free(ptr);
char *ptr;

ptr pointer to a block previously allocated.

Descri ption

Free() is called when a nenory bl ock allocated to the program by any of the
menory allocating functions [alloc(), calloc(), malloc(), or realloc()] is
no |onger needed, and the programrer w shes to free the nenory space for
| ater use. "ptr" points to the first (lowest) byte allocated to the program
and is the pointer returned by the allocating function.

Vr ni ng

Calling free() with an address other than that obtained from a call to
alloc(), calloc(), malloc(), or realloc() may cause unpredictable results.
If the pointer passed to free() is outside the scope of the dynam c heap,
free() will report an error. Since free() is used by the standard /0
facility, the error will be reported directly to the systeni s output device
to avoid circular errors.

Exanpl e

#i ncl ude "stdio. h"
static int (*_conpar)();
static char *_base, *pivot;
static unsigned _w dth;
extern char *malloc(), *nove();
extern void free();
static void _sort(), _swap();
int gsort(base, nel, wi dth, conpar)
char *base; int (*conpar)(); unsigned nel, w dth;
{ if (! (pivot = malloc(wdth)))
return ECF;
_conpar = conpar;
_base = base;
_width = width;
_sort(0, --nel);
free(pivot);
return O;

}

See also: alloc(), calloc(), malloc(), realloc()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

freemen(IN) freemen(IN)

This obtains the size of the |largest block of menory which can be allocated to
your programinmedi ately followi ng the function call.

#option I NLIB
unsi gned freemem();

Descri ption

Freemen() returns the maxi num amount of nenory which can be obtained from
alloc(), calloc(), or malloc() at the time of the call to freemem(). The
figure is obtained by taking the maximum of (a) the largest unused bl ock
kept in the free list available for reuse and (b) the anmount of nmenory
above the program break [reduced by approxi mately 1K | ess bytes than actual
to account for reserved program stack space and function |inkage overhead].

Exanpl e

#option INLIB

#def i ne BLOCK 5000

char *ran{10] = {0,0,0,0,0,0,0,0,0,0};
mai n()

int i; unsigned core_left, core_now, char *alloc();

core_left = freemem);

printf("Beginning core left = %\ n",core_left);

for (i=0; (ranfi]=alloc(BLOCK))&& <10 ; i++)
printf("%u ",freenem());

putchar('\n");

while (i)

if (ranf--i]) free(ranfi]);

core_now = freemem();
printf("% ",core_now);

}

Begi nning core left = 41772

36770 31766 26762 21758 16754 11750 6746 1742
6744 11748 16752 21756 26760 31764 36768 41772

See also: alloc(), free()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
freopen(LI BC) freopen(LI BC)

This function substitutes a nanmed file in lieu of an open stream

FILE *freopen(path, type, stream);
char *path, *type; FILE *stream

pat h points to a character string which contains the specification of
the file.

type is a character string which indicates the access node chosen from
the foll ow ng:
", tw', tat, "r+", "w", or "at+".

stream is the streamfile pointer to "reopen".

Descri ption

Freopen() substitutes the named file denoted by "path" in place of the

al ready opened stream designated by the file pointer, "strean’. The

original stream is closed, regardless of whether the open actually

succeeds. The function wll return a pointer to the new stream The

freopen() function is typically used to attach the standard 1/O streans to
files other than the opened standard devices so that the stream /0
functions such as putchar(), getchar(), puts(), gets(), printf(), scanf(),
etc., may be utilized.

"Type" points to a null-term nated string which defines the nbde of access
and may be in upper or |ower case. The all owabl e nndes are:

r open for reading;

"w!' truncate or create for writing;

"a" append; open for witing at the end of thefile, or create for
writing;

"r+" open for update (reading and witing);

" truncate or create for update;

"at+" append; open or create for update (appending) at the end of the
file.

VWen a file is opened for update, both reading and witing may be perfornmed
on the stream however, witing may not be imediately followed by input
wi t hout an intervening fseek() or rewi nd(), and reading nmay not be foll owed
by witing without an intervening fseek(), rewind(), or an input operation
whi ch encounters an end-of-file [first cleared by cleareof()];

Ret urn Code

The stream file pointer to be used in accessing the file is returned if no
errors are detected in the open operation. If an error is detected during

the open operation, NULL will be returned and the global error variable,
errno, will contain the UNI X error nunber associated with the error.
VMr ni ngs

VWen a file is opened for append, the file is positioned so that the first
out put operation will wite to the end of the file. The output functions do
not perform this positioning operation; therefore, do not use rew nd() or
fseek() on a streamto which you wi sh to append.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
freopen(LI BC) freopen(LI BC)

Exanpl e

getfil e(fnane)
char *fnane;

{
FI LE *fp;
extern FILE *freopen();
if ((fp=freopen(fname,"r",stdout)) == NULL)
fprintf(stderr,"Open error - % 20s\n", f nane);
exit();
el se return fp;
}

See al so: fopen(), fdopen()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
frexp(MATH)

This function separates a double into its manti ssa and exponent.

frexp(MATH)

#i ncl ude <mat h. h>
doubl e frexp(val ue, eptr);
doubl e val ue; int *eptr;

val ue is the double value to separate.
eptr is a pointer _to_int to receive the exponent.
Descri ption

Doubl e precision floating point nunbers may be witten as

a fractional

part, x, tines an integer power, n, of the base, 2; where x is in the range

[0.5 <= x < 1.0]. The frexp() function separates a double
fractional part and the integer "n" exponent of base_2.

into the "x"
The function

returns the fractional part and stores the integer exponent into the

|l ocation pointed to by the integer pointer, eptr. Thus,
relationship is true:

manti ssa = frexp(val ue, &xponent);
val ue = pow(2.0, (doubl e) exponent) * manti ssa;

Ret urn Code

the follow ng

The fractional part of the double is returned. If "value" is zero, both the

fractional part and the exponent are O.
Exanpl e

#i nclude stdio.h

#i ncl ude math. h

char inbuf[81]; double d, v, m int e;
mai n()

puts("frexp: enter your nunber: EOF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;

errno=0;

m = frexp(d=at od(i nbuf), &e);

v = pow(2.0, (double)e) * m

printf("d=9% = %; e = %; m=9%; errno = %\n",d,v,

}

frexp: enter your nunber: EOF to exit

2 |ld =2=2; e=1, m=1; errno = 4

4 |ld =4 =4, e =2, m=1; errno = 4

4.75 |d = 4.75 = 4.75; e = 3; m= 0.59375; errno = 4
5.8e4 |d = 58000 = 58000; e = 16; m = 0.88501; errno = 0
0 |d =0=0;, e=0; m=0; errno =0

See al so: |dexp(), nodf()

e, m errno);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f r nd(MATH) f r nd(MATH)

This function obtains a float random nunber.

#i ncl ude <mat h. h>
float frnd(value);
fl oat val ue;

val ue used to determ ne the range of the result.

Descri ption
This function will return a floating point single precision (a float)
random nunber. If "value" is 0.0, a nunber between greater than or equal to
zero but less than 1.0 will be returned. If "value" is non-negative and is
in the range 1-32767, the returned random nunber will be in the range 1.0

t hrough fint(val ue) inclusive.
Random nunber

If "value" is negative, frnd() will return "value" and errno will be set to
DOVAIN. This error condition may be trapped by the use of a _fltvec().

See al so: errno, fseed(), srand(), rand()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f scanf (LI BC) (MATH) f scanf (LI BC) (MATH)

These functions are used to scan a formatted print image, interpret the inage
fields according to a control string, and store the translated results in the
argunments passed in the function's invocation.

#i ncl ude <mat h. h> ... optional
int fscanf(stream control, argl, arg2, ...);
FILE *stream char *control; args SEE TEXT
stream is the streamfile pointer to read.
control as docunent ed bel ow.
args as required to match the control string.
Descri ption

The fscanf() function is the input analog of the fprintf() function. It
provides similar translations; however, the conversions are from ASClI
string fields to argunent values. Fscanf() inputs from the file stream
identified by "streant.

The argunments identified as "argl, arg2, ..." MJST BE PO NTERS, rather than
values since the scan function stores the converted results into the
argunments. The control string nmay contain:

(1) White space characters [0x20, or O0x09 through 0x0d] which are
i gnor ed,

(2) Ordinary characters other than '% which are expected to match the
next non-white space character of the input stream

(3) A conversion specification consisting of the character '%, an

opti onal assignment suppression character '*', an optional decimal
number specifying a maximum field width, an optional letter "I" or
"h" indicating the size of the receiving variable (i.e. long or

short), and a conversion character.

An input field is defined as a string of non-white space characters
extending to either the next white space or until the field width is
exhaust ed, whi chever comes first. The conversion specification directs the
conversion of the next input field. If assignment suppression is indicated
by the '"*', the input field is skipped over and no argunent should be
passed in the function's invocation. The scan function reads across new
lines ("\n') since they are considered to be white space.

The conversion characters supported are:

d A decimal integer is expected. It may be preceded by '+ or '-

o An octal integer is expected. It does not require the |eading zero.

x A hexadeci mal integer is expected.

b A binary integer is expected.

¢ A single character is expected. The normal skip-over-white-space is
suppressed so that the next character is input and assigned. If you
want to assign the next non-white space character, specify "%s". If
any other width is specified, that many characters will be input and
assigned to the pointed to character array of sufficient size.

s A character string is expected. The assignment wll be term nated
with a NULL ('\0").

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f scanf (LI BC) (MATH) f scanf (LI BC) (MATH)

f A floating point nunber is expected. The conversion character 'e' is
interpreted the same as 'f'. Preceding the 'e'" or '"f' with an "I’
i ndicates a double rather than a float. The input format for a float
is an optional sign, a string of decinmal digits possibly containing
a decimal point, an optional exponent field containing an 'e' or 'FE
followed by a signed decimal integer. NOTE: In this inplenentation,
the scan function will not terminate if an invalid character is
detected in the float string. The assigned float value will be that
which is translated up to the offending character.

n Specifies that the nunber of characters scanned up to that point

will be returned in the corresponding argument; scanning wll
conti nue.

[Indicates string data to be matched against the follow ng set of
characters which are called the "scanset”. Note also that the normal

skip over whitespace is suppressed. The scanset designates the |ist
of perm ssable characters to be acceptable in the input string. The
scanset follows the left bracket and is termnated by a right
bracket ("]").

A range of characters is entered as "abcdefg". This can also be
entered as "a-g" as in 'first'-'last' where the '"first' character of
the range is lexically less than the 'last' character of the range.
A dash is accepted as a nenber of the scanset if it is either the
first character in the scanset, the last character in the scanset,
or the character preceding it 1is lexically greater than the
character following it. A right bracket ("]") may be included in the
scanset if it is the first character following the left bracket.

If a circunflex ("~") is the first character of the scanset, it
indicates that the scanset is actually conposed of all characters
not in the following list; thus, it serves to conplenent the given

list. For exanple, "[”a-z]" indicates that the scanset is to be
conposed of all characters which are not |ower-case. If a right
bracket or dash is to be "excluded" from such a list, it nust

i medi ately follow the circunflex. The scanset is selected fromthe
ASCI| character set only.

The input will be term nated when a whitespace character is input, a
character not in the scanset is input, or the maximum field w dth
specification is exhausted. The corresponding receiving argunment
nmust be large enough to hold the data field and the term nating NULL

which will be automatically appended.
The 'f' [and likewise the "e'] translation will not be supported unless the
preprocessor statenment, "#option MATHLIB" or "#include <math.h>", s

inserted in your C source nodule or the MATH library is manually searched
first during the |inking process.

Any characters remmining in the input stream that were not accepted
including any offending terminating character will still be available to
the next scan invocation [assuming no intervening use of the input file
streani.

Ret urn Code
If end-of-file is reached during the input, EOF wll be returned.
O herwi se, the function's return value wll be equal to the number of

successfully matched and assigned i nput itemns.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

f scanf (LI BC) (MATH)
Exanpl e

#i ncl ude <stdi o. h>

#i ncl ude <mat h. h>

mai n()

{
char achar, string[81];
int n_itenms, aint;

n_itens = fscanf(sfpl,"

printf("Count = % | %

}
For input of: al2345abcdef
Prints : Count = 4 |a

See al so: scanf(), sscanf()

f scanf (LI BC) (MATH)

doubl e f1;
Y%eYB8dYs 2d%6s% f ", &achar, &ai nt, string, & 1) ;
% % %\n",n_itens,achar,aint,string,f1l);

12. 345e5
123 abcdef 1.2345E+06

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f seed(MATH) f seed(MATH)

This function seeds the random nunber generator fetched by frnd().

#i ncl ude <mat h. h>
float fseed(seed);
fl oat seed

seed is the new seed val ue.

Descri ption

This function seeds the single precision random nunber generator with a
known val ue.

Ret urn Code
The function returns the old seed val ue.

See also: frnd(), srand(), rand()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f seek(LI BC) f seek(LI BC)

This function is the stream equival ent of |seek().

int fseek(stream offset, ptrname);
FILE *stream |ong offset; int ptrnane;

stream is the streamfile to re-position.
of f set is the signed new position of the stream

ptrnane specifies seek from begi nning, current position, or the end of
the stream

Descri ption

This function sets the next input or output operation on the identified
stream to occur at the position designated. The new position is the signed
di stance away from the beginning, current position, or end of the file
stream dependi ng on whether "ptrnane" is 0, 1, or 2.

Fseek() will undo the effect of any ungetc() on the associated stream
Not e that you cannot fseek() a tty device!

Return Code
Fseek returns non-zero for inproper seeks, otherw se NULL.

Exanpl e

#i ncl ude stdio.h
mai n()
char days[12]; FILE *stream int i;
if ((stream=fopen("boot/sys.|sidos","r"))==NULL)
{ perror("fopen error"); exit(-1); }
f seek(st ream 0x202L, 0); /* seek streamto days_in_nonth data */
fread(days, si zeof (char), si zeof days, strean);
for (i=0; i<12; i++)
printf("% ",days[i]);
fclose(stream;

}
31 28 31 30 31 30 31 31 30 31 30 31

See also: ftell (), isatty(), |seek(), rew nd(), seek()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f sgn(MATH) f sgn(MATH)

This function obtains the integer sign of a float.

#i ncl ude <mat h. h>
int fsgn(value);
fl oat val ue;

val ue is the float whose sign is desired.

Descri ption
Fsgn() obtains the status as to whether the value is negative, zero, or
posi tive.

Ret urn Code

Fsgn() returns an integer value |less than zero, equal to zero, or greater
than zero, depending on whether the argunent value is less than 0.0, equal
to 0.0, or greater than 0.0.

See al so: dsgn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f sqr (MATH) fsqr (MATH)

This function obtains the square root of a float.

#i ncl ude <mat h. h>
float fsqr(value);
fl oat val ue;

val ue is the float whose square root is desired.

Descri ption

This function is non-standard. It obtains the square root of a float and is
equi val ent to:

(float)sqrt((doubl e)val ue);

See al so: sqrt()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fstat (LI BC) fstat (LI BC)

This function obtains the file status of an open file.

#i ncl ude <stat.h>
int fstat(fildes, buf);
int fildes; struct stat *buf;

fildes is the file descriptor of the file to stat.

buf is a pointer to the structure which will be filled with the
file's status.

Descri ption
This function obtains a great deal of information concerning the open file
known by "fildes". The data structure is defined in the stat header file
and is as foll ows:

struct stat {

dev_t st _dev; /* device # - (DEJ DRV or Device nane) */
ino_t st _i no; /* index node - unused in MC */

unsi gned short st_node; /* nodes - see #define */

short st _nli nk; /* # of file links - unused */

short st _ui d; /* User ID - MC uses 16-bit user pswd */
short st _gid; /* Goup ID- MC uses 16-bit owner pswd */
dev_t st _rdev; /* unused */

of f _t st _si ze; /* Size of file in bytes */

time_t st _ati ne; /* time last read - unused in MC */
time_t st_ntine; /* time last witten - MOD date */
time_t st _cti ne; /* attribute change, ntime - unused */

Masks for the "st_node" field are defined in the header file and are:

S | FMT 0170000 /* type of file - mask */

S IFDI R 0040000 /* directory - set if DIR/ SYS */

S | FCHR 0020000 /* character special - set if device */

S | FBLK 0060000 /* bl ock special - set if SYS */

S | FREG 0100000 /* regular - set for files */

S | FMPC 0030000 /* nultiplexed char special - unused */

S | FMPB 0070000 /* nultiplexed bl ock channel - unused */

S ISUID 0004000 /* set user id on execution - unused */

S 1SAD 0002000 /* set group id on execution - unused */

S 1 SVTX 0001000 /* save swapped text - unused */

S_| READ 0000400 /* read perm ssion, owner */

S IWRITE 0000200 /* write perm ssion, owner */

S | EXEC 0000100 /* executel/search perm ssion, owner */

S_GREAD 0000040 /* read perm ssion, group */

S GARI TE 0000020 /* write perm ssion, group */

S _GEXEC 0000010 /* execute/search perm ssion, group */

S_UREAD 0000004 /* read perm ssion, user */

S UWRI TE 0000002 /* write perm ssion, user */

S_UEXEC 0000001 /* execute/search perm ssion, user */
Ret urn Code

Upon a successful conpletion of the function, NULL is returned; otherwi se,
EOF is returned and errno wll <contain the UNX error nunber which
descri bes the error.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fstat (LI BC)

Exanpl e (a pi ece of sortsyniccc)

#i ncl ude <stat. h>

struct stat stat;

unsi gned short nrecs, fsize, i;

char tenpnane[NAMELEN], tenpaddr[ADDRLEN] ;
uni on record

{

struct

{
char name[NAMELEN] ;
char space;
char addr [ADDRLEN] ;
char new i ne;

} bynane;

struct

{
char addr[ADDRLEN] ;
char space;
char name[NAMELEN] ;
char new i ne;

} byaddr;

} *record, *base, **prec, **recp;

voi d abend();

extern int fstat();

extern char *alloc();

extern unsigned short read(), wite();

mai n(argc, argv)
int argc; char *argv[];

fstat (LI BC)

{
if (fstat(0, &stat) == EOF)
exit(l); /* stat the input file (stdin) *
nrecs = (fsize = (unsigned short) stat.st_size - 1) / RECLEN;
if (stat.st_size > OxffffL
|| !'(base = (RECORD *) all oc(fsize))
|] ' (prec = (RECORD **) alloc(nrecs * sizeof (RECORD *))))
abend("SYMfile too large\n");
if (read(0, (char *) base, fsize) != fsize)
exit(l); /* read SYMfile */
}

See al so: creat(), open()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f t an(MATH) f t an(MATH)

This function obtains the trigononmetric tangent of a float.

#i ncl ude <mat h. h>
float ftan(val ue);
fl oat val ue;

val ue is the float whose tangent is desired.

Descri ption

This function obtains the trigononetric tangent of its single precision
floating point argunent which nust be in radians. It is equivalent to:

(float)tan((doubl e)val ue);

See al so: tan()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
ftell (LI BC) ftell (LI BC)

This function obtains the relative position of a stream

long ftell(stream);
FI LE *stream

stream is the streamfile pointer.

Descri ption

This function returns the position, as a long integer, of the stream for
the next character I/O operation. The position is relative to the beginning
of the stream

Ret urn Code

The current position relative to the beginning of the streamis returned as
a long integer.

Exanpl e

#i ncl ude stdio.h
extern int errno;
extern long ftell();
mai n()
{
voi d abend();
errno = O;
if (isatty(STDIN))
abend("Can't fseek() a character device");
if (fseek(stdin,0x1la05L, 0))
abend("fseek() error 1");
if (fseek(stdin,0x333L,1))
abend("fseek() error 2");
printf("Current positition after seeks is % x\n",ftell(stdin));

voi d abend(s) char *s;

printf("%: errno = %\n",s, errno);
exit(-1);

tftell:3

Can't fseek() a character device: errno = 0
DOS Ready

tftell:3 <seek/dat:7

Current positition after seeks is 1d38

See al so: |seek()

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
f t oa(MATH) f t oa(MATH)

This function converts a float to an ASCII string val ue.

char *ftoa(value, string);
float val ue; char *string;

val ue is the value to convert.
string is a pointer to the string buffer.
Descri ption

The ASCII string is constructed according to a specific "e"

transl ation
formatted as foll ows:

sd. ddddddEnee

where "s" is blank or '+'; "d" represents a decimal digit; "E' is the
exponent indicator; "n" is the sign of the exponent ('+ or '-'); and "e"
is a deci mal exponent digit.

Ret urn Code

The function returns a pointer to the ASCII valuein "string".

See al so: sprintf()

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
fwite(Ll BO) fwite(Ll BC)
This function wites "n" items froman array to a stream output.
int fwite(ptr, size, nitems, stream);
char *ptr; int size, nitens; FILE *stream
ptr is a pointer to the sending array.
si ze is the size of an elenent in bytes.
nitens is the nunber of elenents to wite.
stream is a stream pointer for which to wite.
Descri ption
Fwite() will append at nost "nitens" of data fromthe array identified by
"ptr" to the file stream identified by the file pointer, "streanl'. The
function will stop appending when it has witten "nitens" of data or if it
detects an error condition on the the output "streant.
Return Code
The nunber of data items witten to "streanmt will be returned. A NULL will
be returned if "size" or "nitems" is less than or equal to zero. If an
error occured and no data itenms had been witten, you can use feof() or

ferror() to discrimnate between an error return or a "zero" out put.

Exanpl e

#i nclude stdio.h
#i ncl ude math. h
float array[8];
mai n()
{ int i; FILE *stream
if ((stream=fopen("test/dat:7","w"))==NULL)

{ perror("main fopen() error"); exit(-1); }
for (i=0; i<8; i++)
array[i] =i;
if (!fwite(array,sizeof (float), 8, stream)
{ perror("main fwite error"); exit(-1); }
fcl ose(stream;
execl ("list","list","test/dat: 7", " (hex)", NULL);
}
0000: 00 = 00 00 00 OO OO OO OO 81 00 OO OO 82 00 00 40 82
0000:10 = 00 00 00 83 00 00 20 83 00 00 40 83 00 00 60 83
See al so: fread()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

genspec(IN) genspec(IN)

This function will generate a new file specification using an input and
partial file specification.

char *genspec(inspec, partspec, extn);
char *inspec, *partspec, *extn;

i nspec The input file specification.
part spec The partial specification to expand.
extn The extension to add if one is omtted.
Descri ption
This function will generate a new file specification from the input file

specification, using the given output partial file specification and a
default extension. The new file specification is witten to the character
array pointed to by "partspec". The following rules specify the resulting
specification's nanme, extension, and drive of the partial filespec

expansi on:

(1) The expanded specification will contain all fields passed in
"partspec";

(2)If the "partspec" nane field is omtted, it will be filled
with the nane field of "inspec";

(3)If the "partspec" extension field is omtted, and "extn" is
not a null string, it will be filled with "extn";

(4)1f the "partspec" extension field is omtted, and "extn" is a
null string, and "inspec" contains an extension field, it
will be filled with the extension field of "inspec";

(5)If the "partspec" extension field is omtted, and "extn" is a
null string, and "inspec" does not contain an extension
field, the expanded specification wll not <contain an

extension field;

(6)If the "partspec" drive field is omtted, it will be filled
with the drive field of "inspec", if any.

Ret urn Code
A pointer to the expanded file specification is returned.
Wr ni ng

The partial specification string nust be stored in a character array of at
| east dinmension 15 to avoid overextending the allocated string space.

See al so: addext ()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
getc(LIBC); getchar(LIBC) getc(LIBC); getchar(LIBC)

These functions are used to obtain a character froma file stream Getchar()
al ways refers to the standard input device.

int getc(stream);
FI LE *stream

int getchar();

stream is the file pointer of the stream

Descri ption

Getc() is used to input a single character froma file stream The stream
pointer nust be obtained from fopen(), fdopen(), freopen(), or be a
standard file pointer. MC provides getchar() as a function, not as a
#define macro. Getchar() is identical in operation to getc(stdin). Any of
the 256 possible binary codes may be input using getc().

On character devices [i.e. *KI, *CL], the <BREAK> key mmy be optioned to be
interpreted as an end-of-file condition by neans of the option() function.
This provides a neans to indicate an EOF for character devices not normally
having the capability to generate the EOF indication.

Ret urn Code

The return code is the integer value of the character input from the
stream If an end of file is encountered, then "ECF" (-1) is returned.

Vr ni ng
If the value returned by the function is to be stored before testing for
end-of -file, it nmust be stored in an integer variable and not a char. If
not, the end of file value will be truncated and will remmin undetected as

a char of -1 does not equal an int of -1.

Exanpl es
#i ncl ude <stdio. h>
filecopy(fp) /* copy a file to the standard out put */
FI LE *fp;
{ int c;
while ((c = getc(fp)) !'= EOF)
if (c !'= putc(c,stdout)) abend("Qutput file wite error");
}
bytes = lines = 0;
whil e((c=getchar()) != EOF)
{ putchar(c); ++bytes; if (c==EOL) ++li nes;
}

See al so: gets(), putc(), putchar(),scanf()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
get s(LI BC) get s(LI BC)

This function fetches (inputs) a buffered Iine fromstandard input.

char *gets(buffer);
char *buffer;

buf f er a pointer to a character array of |ength 81.

Descri ption
Gets() inputs a line up to 80 characters long from the standard input
(stdin) and places the line in nenory starting at the address given by
"buffer". The input will terminate on an error or if a newline character

is input. The newline is discarded and the string is term nated by NULL.

If you do not want to have the newline character discarded, use the near-
equi val ent form fgets(buffer,80,stdin);.

Note that if stdin is not the keyboard device and the input line is |onger
than 80 characters, it will be split; any part not accepted will be fetched
by the next request for input from stdin.

Ret urn Code
If an error is encountered during the input, or end-of-file is reached, the
return code will be NULL (0); otherw se, buffer will be returned.

VMr ni ngs

The "buffer" nust be at |east 81 characters |ong.
Exanpl e

#i ncl ude stdio.h

char buffer[81], string[10];

mai n()

tr
int i;
fputs("Enter your string: ",stdout);
gets(buffer);
for (i=0; i<strlen(buffer); i++)

fputs(itox(buffer[i],string), stdout);

putchar('\n");

}

Enter your string: alb2c3d4
6131623263336434

See al so: fgets(), puts(), fputs()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
get w(LI BC) get w(LI BC)

This function will read a "word" froma stream i nput.

int getw(stream);
FI LE *stream

stream is afile pointer streamto read.

Descri ption
Getw() inputs a word fromthe designated stream A "word" is the size of an
i nt eger.

Return Code

If an error is encountered during the input, or end-of-file is reached, the
return code will be EOF (-1).

Vr ni ngs

Since EOF is a valid integer value, ferror() or feof() nust be used to
differentiate between a -1 return and an error return. Note that since the
low byte and high byte storage order of a word may vary in different
machi ne environnents, getw() is an environnment dependent function.

Exanpl e

#i ncl ude stdio.h
int array[16];
mai n()
{ int i; FILE *stream
if ((streamefopen("test/dat:7","w+"))==NULL)
{ perror("main fopen() error"); exit(-1); }
for (i=0; i<16; i++)
array[i] =i;
if (!fwite(array,sizeof(int), 16, stream)
{ perror("main fwite error"); exit(-1); }
rewi nd(streamn;
while (((i=getw(stream)) != EOF) && !feof(stream)
printf("od ",i);
fcl ose(stream;

}
0123456789 10 11 12 13 14 15

See al so: getc(), putw(), swab()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
gtty(LI BC gtty(LIBC

This function obtains information concerning a character special device.

#i ncl ude sgtty.h
int gtty(fildes, argp);
int fildes; struct sgttyb *argp;

fildes is a descriptor of the file.
argp is a pointer to the data structure.
Descri ption

This function obtains control information on a "files". The data obtained
is stored in the data structure pointed to by the "argp" argunment. The
structure is defined in the "sgtty" header file and is as foll ows:

struct sgttyb {

char sg_colctr; /* columm counter */
char sg_control; /* control byte */
char sg_flag; /* FCA flag byte */

b

The "sgttyb.sg colctr” elenent stores a counter for the current colum
position of the output inmage for the device. This itemis relative to zero.
The "sgttyb.sg_control" byte stores various bit fields and is masked as
foll ows:

| O_BREAK 0x10 /* mask for #option BREAK */

1 O_ TABSTOP 0OxOf /* mask for "tabstop-1" */

I O_FDCOE 0x80 /* mask for "close_on_exec" flag */
The gtty() function is equival ent to:

ioctl (fildes, TI OCGETP, ar gp) ;

TIOCGETP is defined in the "sgttyb" header file.

Ret urn Code
If the call was successful, NULL will be returned; otherw se, an EOF will
be returned and the global error variable, errno, will contain the UN X

error nunber associated with the error.

See also: ioctl(), stty()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
hypot (MATH) hypot (MATH)

This function cal cul ates the Euclidian distance of its argunents.

#i ncl ude <mat h. h>
doubl e hypot (argx, argy);:
doubl e argx, aragy;

argx, argy are the two required el enents.

Descri ption
The Euclidian distance is calculated according to the fornula:
hypot = sqrt(argx*argx + argy*argy)
Exanpl e
#i ncl ude stdio.h
#i ncl ude mat h. h
mai n()
doubl e x, vy;

for (x=3.0,y=4.0; x<7.0; x++, y++)
printf("x =%, y = %, hypot(x,y) = %\n",x,y, hypot(x,y));

}

X =3, y =4, hypot(x,y) =5

X =4, y =5, hypot(x,y) = 6.40312
x =5 y =6, hypot(x,y) = 7.81025
X =6, y =7, hypot(x,y) = 9.21954

See al so: sqrt()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
i ndex(LI BC) i ndex(LI BC)

This function obtains the position of the first occurrence of a specified
character within a string. It is identical to strchr(), its UNIX System V
counterpart.

char *index(s, c);
char *s; int c;

s is a pointer to the source string.
c is the character to find.
Descri ption
The index() function will look for the first occurrence of character 'c' in
the string pointed to by "s". The loworder byte of the integer, 'c', wll
be used as the character. Index will operate properly when 'c' is the NULL
character.
Return Code
If the character 'c¢' is not found in string "s", NULL will be returned;
ot herwi se, a pointer to the position of '"¢c' in "s" will be returned.
Exanpl e
#i ncl ude stdio.h
mai n()
{

char *pos, buffer[81], *fgets(), *index();
puts("Enter your string; ECF to exit");
whil e (gets(buffer))

if (!(pos=index(buffer,'r')))
printf("'r' not found in [%]\n? ", buffer);
el se
printf("'r' is character % in [%]\n? ", pos-buffer+1, buffer);

}

Enter your string; EOF to exit

abcdef ghi j kl mop

"r' not found in [abcdefghijkl mop]

? zyxwvut srqponn kj i hgf edcba

"r' is character 9 in [zyxwutsrqgponnm kji hgfedcba]
? abcdef ghi j kl mopqgr st uvwxyz

"r' is character 18 in [abcdef ghijkl mopqgrstuvwxyz]
?

See al so: strcat(), strchr(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

i nkey(IN) i nkey(I N)

The inkey() function scans the DOS keyboard device (*KlI).

#option I NLIB

int inkey();

Descri ption
The inkey() function nakes a single scan of the keyboard and returns the
ASCIl| value of any depressed key. It wll return a zero if no key is
pressed. Note that it will always scan the physical keyboard regardl ess of

any MC standard input redirection.
Vr ni ng

I nkey() cannot return a NULL character.
Exanpl e

#i ncl ude stdio.h
#option INLIB /* needed for automatic search if |INREL */
#defi ne CTL_C 0x03
extern char *ctinme();
unsi gned | ong counter = OL;
mai n()
{
| ong cl ock;
ti me(&cl ock);
fputs(ctime(&cl ock), stdout);

whil e (TRUE) /* simulate some | ong processing | oop */
++count er;
if (inkey() == CTL_O)
br eak;

}
printf("Counter got to %d\n", counter);
ti me(&cl ock);
fputs(ctime(&cl ock), stdout);
}

Tue Nov 19 10: 30: 33 1985
Counter got to 9204
Tue Nov 19 10: 30:44 1985

See al so: checkc(), getchar()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

inport (IN) inport (IN)
This function reads a machine port.
#option I NLIB
int inport(port);
int port;
port is the designated nachi ne port to read.
Descri ption
The function, inport(), returns as an integer, the value read from the

speci fied port.
Exanpl e

#i ncl ude stdio.h
#option INLIB /* needed to automatically search I N REL */

#def i ne FDC OxfO0
mai n()

int fdc[4], i;

for (i=3; i>=0; i--)

fdc[i] = inport(FDC+i);
printf("FDC. data=%2x, sector=%02x, track=%2x, status=%02x\n"\
,fdc[0],fdc[1],fdc[2],fdc[3]);

}

FDC: dat a=00, sector=15, track=03, status=00

See al so: outport()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
i octl (LIBC) i octl (LIBC)

This function perfornms various controlling operations on character special
files (devices).

#i ncl ude sgtty.h
int ioctl(fildes, request, argp);
int fildes, request; struct sgttyb *argp;

fildes is a descriptor of the file.

request is the desired operation code.

argp is a pointer to the data structure.
Descri ption

This function allows you to control certain characteristics about a file.
The data acted upon is stored in the data structure pointed to by the
"argp" argunent and is obtained from an invocation of ioctl() using the
TI OCGETP request. Once you nodify the data, it is presented to the device
handl er via the TIOCSETP request. The data structure is defined in the
"sgtty" header file and is as foll ows:

struct sgttyb {

char sg_colctr; /* columm counter */
char sg_control; /* control byte */
char sg_fl ag; /* FCA flag byte */

b

The "sgttyb.sg _colctr” elenent stores a counter for the current colum
position of the output inmage for the device. This itemis relative to zero.
The "sgttyb.sg_control" byte stores various bit fields and is masked as
foll ows:

| O_BREAK 0x10 /* mask for #option BREAK */
1 O_ TABSTOP 0OxOf /* mask for "tabstop-1" */
1 O_FDCOE 0x80 /* mask for "close_on_exec" flag */

Ret urn Code
If the call was successful, NULL will be returned; otherw se, an EOF will
be returned and the global error variable, errno, will contain the UN X

error nunber associated with the error.
Exanpl e
#i nclude stdio.h

#i nclude sgtty.h
#define TABSTOP 3

int c;
mai n()
{ static struct sgttyb sg = { 0,0 };
if (ioctl (STDOUT, TI OCGETP, &sq))
fputs("Error fromioctl\n",stderr);
el se
{ sg.sg_control &= ~I O _TABSTOR; /* strip current tab stop */
sg.sg_control |= TABSTOP; /* set new tab stop */

i oct| (STDOUT, TI OCSETP, &sg); }
while (((c=getchar())!= EOF) && (c==putchar(c))) {;}
}

See al so: gtty(), stty()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
i swhat (LI BC) i swhat (LI BC)

These are a series of functions which performcharacter type tests.

int iswhat(c);

char c;
i swhat repl aced by the test function nane.
c the character under test.
Descri ption
The followi ng functions will return TRUE when the character under test matches
the test range:
function character range for a TRUE condition
i sal num A-Z, a-z, 0-9
i sal pha A-Z, a-z
i sascii 0x00- Ox7f
_isbdigit 0,1
iscntrl 0x00- Ox1f, Ox7f
isdigit 0-9
i sl owner a-z
_isodigit 0-7
i sprint 0x20- 0x7e
i spunct 0x20- 0x2f, 0Ox3a-0x40, Ox5b-0x60, O0x7b-0x7e
i sspace 0x20, 0x09-0x0d
i supper A-Z
i sxdigit 0-9, A-F, a-f
Ret urn Code
If the character does not match the test range, FALSE will be returned.
Exanpl e
if (isdigit(char))

printf("Character is <0-9>\n");
else if (islower(char))
printf("Character is <a-z>\n");
else if (isupper(char))
printf("Character is <A-Z>\n");
el se
printf("Character is none of the above\n");

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
i satty(LIBC) i satty(LIBC)

This function determines if the designated file is character special.

int isatty(fildes);
int fildes;

fildes is the descriptor of the file to check.

Descri ption

Isatty() returns TRUE if the file descriptor refers to an open character
special file (i.e. a character device). A FALSE condition is returned if
the descriptor is invalid or does not refer to an open file.

Return Code
The return code is TRUE or FALSE as required.
Exanpl e

#i nclude stdio.h
extern int errno;
extern long ftell();
mai n()

voi d abend();
errno = O;
if (isatty(STDIN))
abend("Can't fseek() a character device");
if (fseek(stdin, 0x1la05L, 0))
abend("fseek() error 1);
if (fseek(stdin,0x333L,1))
abend("fseek() error 2");
printf("Current positition after seeks is % x\n",ftell(stdin));

voi d abend(s) char *s;
printf("%: errno = %\n",s, errno);

exit(-1);

tftell:3
Can't fseek() a character device: errno = 0
DOS Ready

See also: gtty(), ioctl(), stty(), ttyname()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
itoa(LIBC); ito?(LIBC itoa(LIBC); ito?(LIBC)

These functions are used to convert integers to character strings of digits
(binary, octal, decinmal or hexadecimal).

char *itoa(ival, string);
char *itob(ival, string);
char *itoo(ival, string);
char *itou(ival, string);

char *itox(ival, string);
int ival; char string[];

i val is an integer value to convert.
string is the resulting string of signed decimal, unsigned decinel,
bi nary, octal, or hexadecimal digits for "?" equal to a", "u",
"b", "0", or "x" respectively.
Descri ption

These standard C functions are used to convert integer values to their
character string image. Functions are provided to deal wth character
strings containing binary, octal, decinmal or hexadecimal digits.

Ret urn Code
A pointer to the character string is returned.
Exanpl e

#i nclude stdio.h
char a[33], b[33], 0o[33], u[33], x[33];
int num = 100;
mai n(argc, argv) int argc; char *argv[];
{ if (argc==2) num = atoi (*+argv);
itoa(num a);
i tob(num b);
i too(num o);
i tou(numu);
i tox(num x);
printf("num= %: %D %B %0 %U %X\n", num a, b, o, u, x);

}

num = 100: 100D 1100100B 1440 100U 64X

num = -32768: -32768D 1000000000000000B 1000000 327%68U 8000X
num = 32767: 32767D 111111111111111B 777770 32767U 7FFFX

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
| abs(LI BC) | abs(LI BC)

This function is used to obtain the absolute value of a long integer.

long labs(lval);

I ong Ival;
| val is the long integer whose absolute value is to be determn ned.
Descri ption
This function will obtain the absolute value of its long integer argunent.
If Ival is negative, -lval wll be returned. If Ival is non-negative,
Ival will be returned.
Exanpl e

#i ncl ude stdio.h
char inbuf[81];
extern long labs(), atol();

mai n()
| ong num
puts("Enter your nunber: ECF to exit");
whi | e (TRUE)
if (!gets(inbuf)) break;
printf("Absolute value of %d is %d\n", numl abs(numratol (inbuf)));
}
}

Enter your nunber: ECF to exit

-123456789 | Absol ute val ue of -123456789 is 123456789
- 276893105 | Absol ute val ue of -276893105 is 276893105
987654321 | Absol ute val ue of 987654321 is 987654321

See al so: abs(), fabs(), fabsf()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
| dexp(MATH) | dexp(MATH)

This function nultiplies a fractional value tinmes two-to-an-exponent.

#i ncl ude <mat h. h>
doubl e | dexp(val ue, exp);
doubl e val ue; int exp;

val ue the fractional part of a double.
exp the integer exponent of two.
Descri ption

This function calculates a double floating point nunber conposed of a
fractional "value" and an integer exponent, "exp", of base 2. It is used in
conbi ning parts of a double floating point nunber.

Ret urn Code
If the resulting value would overflow, +/- HUGE_VAL will be returned and
errno will be set to ERANGE. If the result would cause underflow, O is

returned and errno is set to ERANGE.
Exanpl e
#i nclude stdio

#i ncl ude mat h
char inbuf[81]; double d, v, m int e;

mai n()
puts("l dexp: enter your number: EOF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;
errno=0;

m = frexp(d=atod(inbuf), &e);

v = | dexp(me);

printf("d =% = %; e = %; m= %; errno = %@d\n",d,v,e, merrno);
}

| dexp: enter your nunber: ECF to exit

1234567 |d = 1.23457e+06 = 1.23457e+06; e = 21; m = 0.588687; errno = 0
-7.684el0 |d = -7.684e+10 = -7.684e+10; e = 37; m= -0.559085; errno = 0
1e40 |d = 1.70141e+38 = 1.70141e+38; e = 127; m=1; errno = 3

See al so: frexp(), nodf()

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

line(IN) line(IN)
This function is used to plot a line of pixels on the CRT.
#option I NLIB
int line(funcod, x1, y1, x2, y2);
int funcod, x1, yl1, x2, y2
funcod an operation code to set (1) or reset (0) the pixels involved in
the line.
x1,yl the coordinate of the first point defining the |ine.
x2,y2 the coordi nate of the second point defining the line.
Descri ption
The "line()" function will plot a line connecting coordinate point (x1,yl)

wi th coordinate point (x2,y2).

Virtual Points

A virtual point is any pixel that is part of the plot request which cannot
appear on the CRT screen as it is out of the range of acceptable coordinate
val ues. The line function permts your argunents to describe such "virtual"

i mmges; however, any portion of the geonetric shape that

of the CRT image area is not plotted.

Ret urn Code

woul d be outside

A minus one (-1) indicates that the coordinate points (x1,yl) or (x2,y2),
or a portion of any plot is out of range (i.e. virtual and does not appear

in the CRT inage). A mnus three (-3) will be returned if
passed is invalid (i.e. not in the range <0-1>).

Exanpl e

#option INLIB
#define PLOT 1
#def i ne ERASE 0
int x1,x2,yl,y2,t,t1;
mai n()
{ for (x1=0,y1=0,x2=127,t=0; t<=47; t++)
{ line(PLOT, x1,y1,x2,t); |ine(ERASE, x1,y1,x2,t); }
for (y2=47,t=127; t>=0; t--)
{ line(PLOT, x1,y1,t,y2); line(ERASE, x1,y1,t,y2); }
}

See al so: box(), circle(), ploc(), pnmode(), point(), reset(),

t he function code

set ()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
| ocal ti me(LI BC) | ocal ti me(LI BC)

This function obtains a pointer to the broken down time structure.

#i ncl ude <tine. h>
struct tm*localtinme(clock);
I ong *cl ock;

cl ock is a pointer to the long integer containing the UNI X ti nme.

Descri ption

This function returns a pointer to the structure, tm(defined in the "tine"
header file), which will contain the broken down tinme based on the contents
of the long integer pointed to by "clock". Note that localtime() is based
on the actual tinme set in your machi ne and makes no automatic all owance for
time zone or Daylight Savings Tine.

Ret urn Code
A pointer to the broken down tine structure will be returned.
Vr ni ng

The pointer returned by localtinme() points to local static storage which
may be valid only inmediately follow ng the function call.

Exanpl e

#i ncl ude stdio.h

#include tine.h

extern struct tm *localtinme();

extern long tine();

struct tm *p;

char *ps[4] = { "th","st","nd","rd" };

mai n()

{ I ong clock; int s;
clock = tinme(NULL);
p = local tine(&cl ock);

if ((s = p->tmyday % 10) > 3) s = 0;
printf("The time is %: %: %d on the %% day of %d\n",\
p- >t m_hour, p- >t m_m n, p- >t m sec, p- >t m yday, ps[s], p- >t m year +1900),
systen("date");
systen("time");
}
The time is 15:51:12 on the 323rd day of 1985
Tue, Nov 19, 1985
15:51: 13

See al so: asctinme(), ctime(), sysdate(), systinme(), time()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
| og(MATH) ; | 0g10(MATH) | og(MATH) ; | 0g10(MATH)

These functions calculate the I og of a double.

#i ncl ude "mat h. h"
doubl e I og(argx);

doubl e | 0g10(argx);
doubl e ar gx;

ar gx is the double for which the log or 10gl10 is to be determn ned.

Descri ption

The log() function obtains the natural |log (base_e) of its argunent. The
| 0g10() function takes the base_10 logarithm of its argument. In either
case, the value of "argx" nust be positive.

Ret urn Code

Both log() and |0gl0() return HUGE VAL and set errno to EDOM when "argx" is
not greater than zero. A nessage indicating DOVAIN error is printed on the
standard error output device. This error handling may be changed via the
mat herr () function.

Exanpl e
#i nclude stdio.h

#i nclude mat h. h
char inbuf[81]; double d, le, |10;

mai n()
{ puts("l og: enter your nunber: EOF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;
errno=0;
le = log(d=atod(inbuf)); 110 = 10gl0(d);
printf("d = %; log = %; |10gl0 = %; errno = %\ n" \
,d, e, 110, errno);
}
}
| og: enter your nunber: EOF to exit
100 |d = 100; log = 4.60517; logl0 = 2; errno =0
2.7182818284590452 |d = 2.71828; log = 1; 10gl0 = 0.434294; errno = 0
-5 | argument dommin error

| argument dommin error
|d = -5; log = -1.70141e+38; 10gl0 = -1.70141e+38; errno = 70

See al so: exp(), powm), sqrt(), matherr()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

| ongj np(LI BC) I ongj np(LI BC)

This function perforns a long junp to an environnent saved by setjnp().

#i ncl ude <setj np. h>
voi d | ongj np(env, val);
j mp_buf env; int val;

env is the environnent saved by setjnp().
val is the value returned by setjnp().
Descri ption

A longjnmp() will restore the programto the environment as saved in "env"
by a previous call to setjnp(). After the longjnp() is conpleted, the
program execution will continue as if the corresponding call to setjnp()
had just occurred; however, the returned value will be the val ue passed as
"val" in the longjnp() call, rather than zero. The setjnp()/!|ongjnp()

conpani on functions can be used in error control within nested functions so
as to effect an escape from a lower-level function error wthout back-
tracki ng through error handling in each higher |evel nest.

Exanpl e
#i ncl ude setjnp.h
j mp_buf env;
mai n()
{ int i, val;

if (val =setjnp(env))
printf("Error % on i=%l\n",val,i);
el se
for (i=0;i<3;++i)
{ funcl(i); printf("No error %\n",i); }

}

funcl(i) int i;

{ func2(i); }

func2(i) int i;

{ func3(i); }

func3(i) int i;

{ if (i<2) return; else longjnp(env,1); }

See al so: setjnp()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
| power (LI BC) | power (LI BC)

This function is used to raise a long integer to a |long integer power.

long | pover(argx, argy);
long argx, argy;

ar gx is the base long integer to be raised to the argy power.
ar gy is the long integer exponent.
Descri ption
Lpower() will raise a long integer, argx, to the long integer power, argy.

Note that the result could overflow with relatively small values of argy;
t hus, exercise caution in the argument val ues.

Ret urn code

If argy is not in the range OL through 31L, the value returned will be zero
and the global error variable, errno, will be set to ERANGE. O herwi se, the
returned value will be argx raised to the argy power.

Exanpl e

#i nclude stdio.h
#define SET 1

| ong john, silver;
extern long | power();
mai n()

opti on(O_KBECHO, SET) ;

puts("l power: enter your nunbers: EOF to exit");
whi | e (TRUE)

{

if (scanf("%d % d", & ohn, &silver) != 2) break;

printf("%d to the %9d power = %d\n", \
john, silver, | power(john,silver));

}

| power: enter your nunbers: EOF to exit
2 20 |2 to the 20 power = 1048576

38 |3 tothe 8 power = 6561

See al so: fraise(), pow)

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
| seek(LI BC) | seek(LI BC)

This function is used to reposition a file.

long | seek(fildes, offset, whence);
int fildes, whence; |ong offset;

fildes is a file descriptor obtained fromopen(), creat(), dup(), or
fentl ().

of f set the new position relative to whence.

whence speci fies offset from begi nning, current, or end for origin equal

to 0, 1, or 2.

Descri ption

The |Iseek() function is wused for random positioning in a file in
preparation for reading or witing. Ofset is a signed long integer
allowing you to seek to any relative character position in the file.

Return Code
Upon successful conpletion, the new position relative to the beginning of
the file will be returned. If an error occurs during the seeking function,
EOF (-1) wll be returned and the global error variable, errno, wll

contain the UN X error nunber associated with the error. The DOS error
number may be obtained via ferror(fpup(fildes));.

Vr ni ng

Remenber that "offset" is treated as a SIGNED long integer. Thus, a
negati ve of fset passed with an origin of 0 is an error. It is not an error
to | seek past the end of a file. You cannot |seek() a tty device.

Exanpl e

#i ncl ude stdio.h

#include fcntl.h

char string[58]; int fildes;

mai n()

{ if ((fildes=open("boot/sys.|sidos", O RDONLY)) ==ECOF)
{ perror("open error"); exit(-1); }

| seek(fil des, 0x2c7L, 0); /* seek date mmenonics */
read(fildes, string, 57); /* read theminto string */
string[57] = "\0'; [/* set NULL for stringterm nator */
puts(string); /* display the menonics */
close(fildes); /* close the file */

}
SunMonTueWedThuFri Sat JanFebMar Apr MayJunJul AugSepCct NovDec

See also: feof(), fseek(), isatty(), rewind(), seek(), tell()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
Itoa(LIBC); |to?(LIBC) Itoa(LIBC); |to?(LIBC)

These functions are used to convert long integers to character strings of
digits (binary, octal, deciml or hexadecinal).

char *ltoa(Ival, string);
char *ltob(Ival, string);
char *ltoo(Ival, string);
char *ltou(Ival, string);

char *ltox(lval, string);
long lval; char xstring[];

| val is a long integer value to convert.
string is the resulting string of signed decimal, unsigned deci nal,
octal, decinmal, or hexadecinmal digits for |Ito? equal to "a", "u",
"b", "o", "u", or "x" respectively.
Descri ption

These standard C functions are used to convert long integer values to their
character string image. Functions are provided to deal wth character
strings containing binary, octal, decinmal or hexadecinmal digits.

Ret urn Code
In each case, a pointer tothe resulting string is returned.
Exanpl e
#i ncl ude stdio.h
char a[33], b[33

1,
| ong num = 100000;
extern long atol ();

o[33], u[33], x[33];

mai n(argc, argv)
int argc; char *argv[];
{
if (argc==2) num = atol (*++argv);
I toa(num a);
It ob(num b);
It oo(num 0);
I tou(numu);
It ox(num x);
printf("num= %d: %D %B %0 %U %X\n", num a, b, o, u, x);

100000: 100000D 11000011010100000B 3032400 100000U 186A0X
65537: 65537D 10000000000000001B 2000010 65537U 10001X

num
num

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

mal | oc(LI BC) mal | oc(LI BC)

This function is used to allocate a zeroed nenory bl ock.

char *malloc (size);

unsi gned si ze;

si ze unsi gned nunber of bytes needed.

Descri ption

Mal loc() is used to dynamically allocate menory during program execution.
The conplenmentary function, free(), is used to release nmenory allocated
through malloc(). Malloc may be used to get table or buffer space when the
amount of menory space avail able is unknown, or when the program needs to
dynam cally allocate space for an array.

Ret urn Code
If a menory block has been allocated, the value returned is a pointer to
the menory block (pointer to char). If insufficient nenory is available to
satisfy the allocation, a NULL will be returned.

WMr ni ngs

The program nust not access nenory outside of the area allocated. File
access routines use dynamic allocation to establish and release File
Control Areas (FCA's). The programrer cannot assume that nmenory not
allocated is free for wuse, since later file opens nmay cause nmenory
overlays. It is advised that the progranmer always use the supplied dynamc
al location functions for nmenory accessing.

Exanpl e

synmtbsz -= syntbsz % synsi z; /* make integral */
if (!'(syntab = malloc(syntbsz)))

abend("not enough nmenory");
gl bptr = startglb = syntab;

See also: alloc(), brk(), calloc(), realloc(), and sbrk()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

nmenccpy(LI BC) nmenccpy(LI BC)
This function will copy "n" characters in nmenory until character 'c¢c' is
det ect ed.

char *menctcpy(sl1, s2, ¢, n);
char *s1, *s2; int c, n;

sl a pointer to the receiving nenory area.
s2 a pointer to the originating nenory area.
c the copy stops after the first occurrence of this character or until
n characters.
n the nunber of characters to copy.
Descri ption
This function will perform a copy of characters from the nmenory region

pointed to by "s2" into the nenory region pointed to by "sl1l", stopping
after the first occurrence of character 'c' has been copied or after "n"
characters have been copi ed, whichever conmes first.

Vr ni ng

There is no checking on the magnitude of "n"; thus, a menccpy() with an
erroneous value for "n" could overwite a critical portion of nmenory. Over-

| appi ng copi es may produce unpredictable results.

Ret urn Code
A pointer to the character after the copy of 'c¢' in "s1" is returned if 'c'
was found; otherwi se, a NULL pointer will be returned.

See al so: nmenthr(), mencnp(), nencpy(), nenset()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
menchr (LI BC) menchr (LI BC)

This function finds the first occurrence of a character in nmenory.

char *menthr(s, ¢, n);
char *s; int c, n;

s a pointer to the nenory region to search.
c is the character to | ook for.
n i s the nunber of characters to search.
Descri ption
This function will scan the nmenory region pointed to by "s" for "n"
characters looking for the first occurrence of character 'c'.
Ret urn Code
A pointer to the character 'c¢c' will be returned if that character is found
within the "n" bytes; otherw se, a NULL pointer will be returned.
Exanpl e

#i nclude stdio.h

extern char *menchr();

char *s = NULL, *t; int c; unsigned n = 0;
mai n()

fputs("Enter the character to find: ",stdout);
¢ = getchar();
while (TRUE)

{
if (!'(t=nmenchr(s,c,n)))

br eak;
printf("Found % at %4x (%)\n",c,t,*t);
n=mn-(++tt - s);
s = t;
}

}

Enter the character to find:
Found | at 033d (|
Found | at 0384 (|
Found | at 03ab (]
Found | at 058b (|

conti nued

See al so: nentcpy(), nmencnp(), nencpy(), menset().

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
mencnp(LI BC) mencnp(LI BC)

This function will conpare two regi ons of nenory.

int mencnp(sl1, s2, n);
char *s1, *s2; int n;

sl is a pointer to the first nenory region.
s2 is a pointer to the second nenory region.
n is the number of characters to conpare.
Descri ption
This function will conpare "n" characters of nenory region "sl1" to nmenory

region "s2" and returns an integer |less than, equal to, or greater than O,
dependi ng on whether the first n-characters of "sl1" are |exicographically
| ess than, equal to, or greater than the first n-characters of "s2".

Exanpl e

#def i ne SI ZE 4096
mai n()

char *p, *s;
if (!'(p=alloc(SIZE))) /* allocate non-zeroed nmenory bl ock */
abort();
if (!(s=malloc(SIZE))) [/* allocate zeroed menory block */
abort();
if (menmcnp(p,s, Sl ZE))
puts("Before zero(): nenory conpares different");
zero(p, Sl ZE);
if (menmcnp(p,s, Sl ZE))
puts("After zero(): nmenory conpares different");
el se
puts("After zero(): nmenory conpares sanme");

Before zero(): nenory conpares different
After zero(): nmenory conpares same

See al so: nmentcpy(), nmenchr(), nmencpy(), nenset()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
mencpy (LI BC) mencpy (LI BC)

This function will copy n characters fromone area of nenory to another.

char *mentpy(sl1, s2, n);
char *s1, *s2; int n;

sl a pointer to the receiving nenory area.
s2 a pointer to the originating nenory area.
n the nunber of characters to copy.
Descri ption
This function will performa copy of "n" characters fromthe nenory region

pointed to by "s2" to the nenory region pointed to by "s1".

Vr ni ng
There is no checking on the nagnitude of "n"; thus, a nmencpy() with an
erroneous value for "n" could overwite a critical portion of nmenory. Over-
| appi ng copi es may produce unpredictable results.

Return Code

The function returns a pointer to "sl1".

See al so: nmentcpy(), nmenchr(), mencnp(), nenset()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
nenset (LI BC) nenset (LI BC)

This function sets a region of menory to a given character.

char *nmenset(s, ¢, n);
char *s; int c, n;

s a pointer to the nenory region to set.
c is the character value to set in nenory.
n is the nunmber of nenory characters to set.
Descri ption
This function will set "n" characters of nenory starting with the address

c .

pointed to by "s" with the designated character,

Vr ni ng

There is no checking on the nmagnitude of "n"; thus, a nmenset() with an
erroneous value for "n" could overwite a critical portion of nmenory.

Ret urn Code

A pointer to "s" is returned.

See al so: nenccpy(), nmenchr(), nmencnp(), mencpy()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
modf (MATH) modf (MATH)

This function obtains the signed fractional part of a double.

#i ncl ude <mat h. h>
doubl e nodf (val ue, iptr);
doubl e val ue, *iptr;

val ue the nunber to obtain the fractional part.
iptr a pointer to a double where the integer part of "value" is to be
st or ed.
Descri ption

This function returns the signed fractional part of the double, "value",
and stores the integer part (as a double) in the location pointed to by
"iptr". It is used to split a double floating point nunber into its integer
part and its fractional part.

Exanpl e

#i ncl ude stdio.h

#i nclude math. h

char inbuf[81]; double d, f_part, int_part;
mai n()

puts("nmodf: enter your nunber: ECF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;

f_part = nodf (d=at od(inbuf), & nt_part);

printf("d =9%; f =%; i = %\n",d,f_part,int_part);
}
nodf: enter your nunmber: ECF to exit
1.234e2 |d = 123.4; f = 0.4; i = 123
-1765e-2 |d = -17.65; f = -0.65; i = -17
0.56789e4 |d = 5678.9; f = 0.9; i = 5678

See al so: frexp(), |dexp()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
nove(LI BC) nove(LI BC)

This function will copy a nenmory block in nmenory.

voi d nove(pfrom pto, len);
char *pfrom pto; int |en;

pfrom the address of the block to be noved.
pto the address of the block's new starting address.
I en the I ength of the block, in bytes.

Descri ption
This function will perform a nondestructive nove of a nmenory block. That
neans that if the "pto" address is less than the "pfront address, the nove
will start fromthe beginning of the block. If the "pto" address is greater
than the "pfront' address, the nove will start from the end of the bl ock.
For portability across C conpilers, it is reconmended that you use the

equi val ent function, nencpy().
Vr ni ng

There is no checking on the nagnitude of "len"; thus, a nmove() with an
erroneous value for "len" could overwite a critical portion of menory.

See also: fill(), menccpy(), menchr(), nmencnp(), nencpy(), menset(), zero()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
open(LI BC) open(LI BC)

This function is used to open a file for block I/0Q

#i ncl ude <fcntl . h>
int open(path, oflag [, node]);
char *path; int oflag, node;

pat h a pointer to the string containing the file specification.

of | ag is an ORing of bit-flags defined in fcntl.h which specify the
access of the file.

node user protection | evel when the O CREAT flag is specified and the
file does not exist.

Descri ption

The open() function is used to prepare an existing file or newy created
file for access via read(), wite(), or Iseek(), or other file operation.
If the "oflag" argunent specifies the O CREAT flag, then open requires the
third argunent, "node", which should contain the creation access node to be
applied to the designated file if it is non-existing [see creat()].

The "oflag" field is entered by ORing the desired conditions defined in the
fcntl header file. These synbols are as follows:

O_RDONLY /* Open for reading only */

O VRONLY /* Open for witing only */

O_RDWR /* Open for reading and witing */

O_NDELAY /* Non-blocking 1/O - unsupported */

O_APPEND /* Append (initial wites guaranteed at the end) */
O_CREAT /* Open with file create */

O _TRUNC /* Open with truncation */

O_EXCL /* Excl usive open - unsupported */

Exactly one of the first three nust be specified.

Ret urn Code
If an error is detected in opening the file, open() wll return EOF (-1)
and the global error variable, errno, will contain the UN X error nunber
which describes the error; otherwise, the file's descriptor wll be
r et ur ned.

Vr ni ng
If the "path" field references a character special device, you will not be

able to use Iseek() with the returned file descriptor.
Exanpl e

#i ncl ude <stdi o. h>
#i ncl ude <fcntl. h>

mai n(argc, argv)
int argc; char *argv[];
{

int fdl, fd2, n; char buf[BUFSI ZE];

if (argc !'= 3)
error("Usage: cp fromto", NULL);

if ((fdl=open(argv[1], O RDONLY)) ==ECF)
error("Can't open %\n",argv[1]);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
open(LI BC)

if ((fd2=open(argv[2], O WRONLY| | O_CREAT, 0777)) ==EOF)
error("Can't create %\n",argv[2]);

while ((n = read(fdl, buf, 512)) > 0)
if (wite(fd2, buf,n)!=n)
error("Wite error\n", NULL);
}

error(sl, s2)
char *sl1, *s2;

printf(sl, s2);
exit(l);

See al so: creat()

open(LI BC)

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

option(LIBC) option(LIBC)
This function will set the state of and/or return the state of an option flag
of MC.

int option(flag, swtch);
int flag, swtch;

switch is the designated operation on flag; O to reset; 1 to set; 2 to
t est
flag is the designated flag to test or alter.
Descri ption

This function can be used to alter any of the run-tinme option settings. The
option masks are defined in the stdio header file and are as foll ows:

O _ERRORMSG When reset, the 1/0 systemwi |l be inhibited from di splaying
the usual DOS error nessage on an /O error. This is the
defaul t.

O_KBECHO VWhen set, and keyboard input will be echoed to stdout. The
default is "reset".

O BRI EF VWhen set, this will force the 1/0O system to display brief
error messages if O ERRORMSG has al so been set. MC defaults
this to "reset".

Ret urn Code

The function will return FALSE if the designated flag is reset, TRUE if the
designated flag is set, or EOF if the designated flag is out of range. For
"switch" equal to O or 1, the returned flag state is the state before the
reset or set (i.e the state prior to the option() request).

Exanpl e

#i ncl ude "stdio. h"
mai n()
FI LE *stream
opti on(O_ERRORMSG, 1) ;
if (!(streanrfopen("nosuchf.ile:7","r"))) perror("fopen error");
el se fclose(strean);

}

** Error code = 24, Returns to X 363F
** File not in directory

Fil e = NOSUCHF/ I LE: 7

Last SVC = 102, Returned to X 1A19'
fopen error: File not in directory

The M SOSYS C Language Conpil er

Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
ot oi (LIBC); otol (LIBC) ot oi (LI BC); otol (LIBC)

These functions are used to convert character strings of octal digits to their

i nteger or long integer val ue.

int otoi(string);
char *string;

long otol (string);
char *string;

string is a pointer to a string containing octal digits <0-7>.

Descri ption

These standard C functions are used to convert strings containing octal

character digits to their (long) integer equivalent.

Conversi on stops as

soon as the first character not in the valid range is detected. The result

is returned as the function val ue.
Exanpl e

#i nclude stdio
char inbuf[81]; int ival;

mai n()
{ puts("Enter your octal nunber: ECF to exit");
whi | e (TRUE)

{ if (!gets(inbuf)) break;
i val =ot oi (i nbuf);
printf("Your nunber in decimal is: %\ n",ival);

}

Enter your octal nunmber: ECF to exit
1777 | Your nunber in decimal is: 1023
111 | Your nunber in decimal is: 73

1777777 | Your nunmber in decimal is: -1

See al so: btoi (), btol (), xtoi(), xtol()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
out port (IN)

This function outputs a character to a machi ne port.

out port (IN)

#option I NLIB
voi d outport(port, value);
int port, val ue;

port is the designated machi ne port.
val ue the | ow order byte of value is output.
Descri ption

The outport() function outputs the integer value to the port.
truncated to its | ow order byte.

Exanpl e (partial illustration of dcal/ccc)

#i nclude stdio.h

#def i ne SELECT Oxf4
#def i ne COVMWAND O0xf O
#def i ne STATUS COMVAND
#def i ne RESTORE 3

#def i ne BUSY 1

#option INLIB

int ds[4] = {1, 2,4,8};
unsi gned drive, ckpul se();
char buffer[81];

mai n()

i nput :

The value is

fputs("Enter floppy physical drive nunber <0-3> : ",stdout);

if (!gets(buffer)) exit(0);
drive = atoi(buffer);

if (drive > 3) goto input;

printf("Insert a disk in floppy %d and depress return”,drive);

drive = ds[drive];

getchar () ;

out port (SELECT, dri ve);

out port (COMMAND, RESTORE) ;

whil e (inport(STATUS) & BUSY)
{

out port (SELECT, dri ve);
if (inkey()) exit(0);

}
See al so: inport()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

perror (LI BC) perror (LI BC)

This function produces an error nessage on standard out put.

void perror(s);
char *s;

s is a pointer to a message string printed as a prefix to the
gener at ed nessage.

Descri ption

The perror() function wites an error message corresponding to the error
number contained in the global error variable, errno, to standard error
out put. The argunment string, "s", is first witten. Then a col on and bl ank
are next witten. Finally, a nessage describing the error nunber contained
in "errno" is witten followed by a newline character.

The "errno" nessage witten by perror() is obtained from sys_ errlist().
Note that in order to keep programoccupied nmenmory to a mninmm
sys_errlist is inplemented in MC as a function which generates the nessage
as required rather than as an array of nessage strings.

Exanpl e

#i nclude stdio.h
#opti on MAXFI LES 5

char nessage[] = "Witing to dup'd file descriptor\n";
mai n()
int fildes;

if ((fildes=dup2(STDOUT, 10)) ==ECF)
{

perror("main: dup2() error");

exit(-1);
wite(fildes, nessage, strlen(nessage));
}
mai n: dup2() error: Illegal logical file nunber

See al so: errno, sys_errlist()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

pi xel (I'N) pi xel (I'N)

This plotting function supports the block graphics npbde available to the CRT
screen to turn on, turn off, or determine the status of any point (pixel) in
t he screen inmge.

#option | NLIB
int pixel(funcod, xval, yval);
int funcod, x, y;

funcod speci fies whether the pixel is reset (0), set (1), or pointed
(2).
xval specifies the horizontal coordinate.
yval specifies the vertical coordinate.
Descri ption

The "pixel ()" function can be used to point, reset, or set the pixe

dependi ng on the function code supplied as the argument. The function code
(funcod) specifies the operation to be performed on the pixel. It is an
i nteger value in the range <0-2>. These codes are used as foll ows:

1 Indicates "reset", which will turn off (meke dark) the pixel
2 Indicates "set", which will turn on (nmake light) the pixel

3 Indicates "point", which will return the status of the specified
pi xel . The status wll be zero (0) for reset, one (1) for set,
negative one (-1) if (x1,yl) is not in the CRT inmmge, or negative
two (-2) if the specified pixel does not contain a graphic
character.

The "xval" and "yval" are integers which specify the pixel position along
the x-axis (horizontal) or y-axis (vertical). The value is a virtual pixel

which neans that it does not have to be a position in the CRT inmage. The
direction away fromthe origin is always considered to be in the positive
direction (for nmore information on this subject, see the pnode() function).

Ret urn Code

Pi xel () returns a zero (0) to indicate that the pixel is reset; a one (1)
to indicate that the pixel is set; a mnus one (-1) to indicate that the
point (x1,yl) is out of range (i.e. virtual and does not appear in the CRT
image); a mnus tw (-2) to indicate that the pixel does not contain a
graphics character; or a mnus three (-3) to indicate that the function
code passed to pixel() is invalid (not in the range <0-2>); otherw se, for
functions 0 and 1, a NULL will be returned.

See al so: box(), circle(), line(), point(), reset(), set()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
poi nt (I N) poi nt (I N)

This function is used to sense the state of a pixel in the screen inmge.

#option I NLIB
int point (xval, yval);

int x, y;
xval specifies the horizontal coordinate.
yval specifies the vertical coordinate.
Descri ption
The "point()" function wll obtain the state of the specified pixel
according to the designated point, (x,y). The "xval" and "yval" val ues

specify the pixel position along the x-axis (horizontal) and y-axis
(vertical) respectfively. The value is a virtual pixel, which means that it
does not have to be a position in the CRT i mage.

"point (xval ,yval)" is equivalent to "pixel(2,xval,yval)".
Ret urn Code

Point() returns a zero (0) to indicate that the pixel is reset; a one (1)
to indicate that the pixel is set; a mnus one (-1) to indicate that the
point (x1,yl) is out of range (i.e. virtual and does not appear in the CRT
image); and a mnus two (-2) to indicate that the pixel does not contain a
graphi cs character.

See al so: box(), circle(), line(), pixel(), reset() set()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

pl oc(IN) ploc(IN

This function establishes the starting address of the CRT inmge area.

#option I NLIB
char *ploc(buffer);
char *buffer;

buf f er specifies the starting address of the plotting i nage area.
Plotting functions use the CRT address unl ess changed by ploc().

Descri ption

The ploc() function can be very powerful in creating dynam c displays. By
establishing an of f-CRT buffer equal in length to the CRT inage area, its
address can be passed via ploc() so that the plotting functions plot into
the buffer. The buffer could be subsequently moved to the CRT inmmge area
with the nmpove() function on nmenory-mapped video machines or via a
Super Vi sor Call request on banked vi deo machi nes.

On machines which do not have user-accessible nmenory-mapped video, an
address of zero is used to reference the CRT. Ploc() is initialized to
reference the video region. On nmachines with menory-mapped vi deo, "address"”
is initialized to the video nenory address. Thus, if you pass sone other
address via ploc(), you can restore plotting to the CRT by passing this CRT
nenory address via another ploc() invocation. An address of zero also will
reference the video RAM thus, denoting video reference via a ploc()
argunment of zero will be portable across all MC rel eases.

Passing a zero as the address will also return the current ploc() address
as the function value while it resets the referencing to the video.

Vr ni ng
The buffer nmust be | arge enough to contain the screen inmage.
Exanpl e

#option INLIB
int r; unsigned regs[6]; char *pil;
mai n()
put char (" \ x0f");
if (!'(pl=alloc(1920))) exit(-1);
menset (pl,' ', 1920);
pl oc(pl);
for (r=1;r<40;r+=3) circle(1,79,35,r);
regs[1] =0x500; regs[3] =pl;
call (15,regs); getchar();
}

See al so: pixel (), pnode()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

prode(| N) prode(| N)

The

"pnode()" function establishes the CRT inmage area as one of the four

quadrants in the cartesian coordi nate system

#option I NLIB

int pnode(quadrant);
i nt quadrant;
quadr ant sets the plotting imge to quadrant <1-4> of the x-y plane;
initialized to quadrant 4. If quadrant = 0, then the current
quadrant nunber in effect will be returned.
Descri ption
The pnode() function is quite useful when your application concerns the
graphing of mathematical functions in the standard cartesian coordi nate
system Since nost functions are graphed in the first quadrant, a
"pnode(1)" will establish the image area for that purpose. Please note that
any graphics or characters currently on the screen at the time pnode() is
i nvoked are left undisturbed; pnode() does NOT refresh the current screen
contents to the revised quadrant but prepares the plotting functions for
t he new quadrant.
"Quadrant" is used when changing the base origin of the plot inmage area
with the pnode() function. The inmage area is considered to represent only
one quadrant of the x-y plane in the cartesian coordinate system The
quadrants are nunbered as fol |l ows:
|
2 [1
go
go
3 [4
I
with the point 0,0 (the origin) appearing at the corner identified with the
letter "O'. The standard quadrant used by the plotting functions wll be
quadrant 4 unless changed with a pmode() function call. Renenber that the
direction away fromthe origin is always considered to be positive.
Ret urn Code

A return code of 1, 2, 3, or 4 indicates the current quadrant in effect
when a pnode(0) function is invoked. A value of EOF (-1) is returned if
"quadrant" is not in the range <0-4>.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

pow(MATH) pow(MATH)

This function raises a double value to a doubl e power.

#i ncl ude "math. h"
doubl e powm argx, argy);
doubl e argx, aragy;
ar gx is the base value to raise.

ar gy is the power to raise argx.

Descri ption

This function will raise a double precision nunber to a double precision
power and return a double precision result.

Ret urn Code

Pow() returns 0 and sets errno to EDOM when argx is zero and argy is non-
positive, or when argx is negative and argy is not an integer value. In
both of these cases, a nessage is printed to standard error indicating
DOVAIN error. Wen the correct value for the function would overflow or
underflow the machine maximum or mnimum for a double, pow) returns
HUGE_VAL or zero respectively and sets errno to ERANGE. This error handling
procedure may be changed via the matherr() function.

Exanpl e

#i ncl ude stdio.h

#i ncl ude math. h

doubl e d, e, r;

mai n()

{ option(O_KBECHQ, 1);
puts("pow. Enter your x and y values: EOF to exit");
whi | e (TRUE)

if (scanf("Wf Wf",&d, &) !'= 2) break;
errno=0; r = pow(d,e);
printf("% to the % power = %g; errno = %\n",d, e, r, errno);

mat herr (x) struct exception *Xx;
{ fprintf(stderr,"Type % function error in %...\n", x->type, x->nane) ;
fprintf(stderr,” Ags = %g9,%: ",x->argl, x->arg2); return O;

pow. Enter your x and y values: EOF to exit

2 32 | 2 to the 32 power = 4.29497e+09; errno = 0
| -2 to the 4 power = 16; errno = 4

-5 4.7 | Type 1 function error in pow...
| Args = -2,4.7: argunent donmain error
| -2 to the 4.7 power = 0; errno = 70

See al so: exp(), log(), 10gl0(), matherr(), sqrt()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
printf (LI BC) (MATH) printf (LI BC) (MATH)

These functions create a formatted i mage for standard out put.

#i ncl ude "mat h. h" ... optional
int printf(control, argl, arg2, ...);
char *control; args SEE TEXT

control is a string containing transparent printing characters and
conver si on specifications.

argn argunents to be formatted for the output print inage as specified
by the control .

Descri ption
The printf(...) function is used to wite an output inage to the standard
out put device and is identical to fprintf(stdout,...).
The specifications for formatting the output are determined by the
character string, "control". This string will contain ordinary characters
copied directly to the output imge and/or specifications denoting the
field conversions of all argunments. The conversion specifications are

detai |l ed under the docunentation for fprintf().

Including the preprocessor statenent, "#include math", wll force an
automatic search of the MATH REL library during the link process and link
t he nodul e which supports double precision floating point formatting.

Ret urn Code
If an error is detected during printing, EOF will be returned; otherw se,
t he nunmber of characters actually printed will be returned.

Exanpl e
printf("% characters, % lines were copied\n", bytes, lines);

See also fprintf(), sprintf(), scanf(), fscanf(), sscanf()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
put char (LI BC); putc(LIBC) put char (LI BC); putc(LIBC)

These functions are used to output a character to a file stream

int putc(¢, streanm;
char c; FILE *stream

int putchar(c);

char c;

c is the character to be output.

stream is the file pointer for the output file.
Descri ption

Putc() is used to output single characters to the file streamidentified by
the file pointer, "strean. 'c' is any of the 256 possible character codes.
If an integer value is passed it is left-truncated, so that only the |east
significant byte is output.
Putchar () outputs the character 'c¢' to the standard output file and is
functionally equivalent to putc(c,stdout). Although some C inplenentations
support putchar() as a #define macro, MC supports putchar() as a function.

Ret urn Code
The return code is the character passed in 'c' if no errors are detected;
otherwise, it will be different from the character passed in 'c'. Wen an
error is detected, the global error variable, errno, will contain the UN X

error nunber which describes the error. Ferror() can also be used on the
streamto obtain the DOS error number.

Exanpl e
if (putc(c, fp) !'=1¢c)
return(l);
el se return(0);

See al so: fputc(), puts(), putw()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
put s(LI BC) put s(LI BC)

This function is used to output a string to the standard output.

int puts(string);
char *string;

string is the address of the string to be output.

Descri ption

Puts() outputs "string" to the standard output file. Al characters up to
the first zero byte are output. A newline character is then output. This
function is simlar to fputs(string,stdout); however, puts() adds a new
line character whereas fputs() does not.

Ret urn Code
A NULL (zero) wll be returned if no error was detected in the /0
operation, otherwise, the function will return EOF (-1) and the gl obal
error variable, errno, will contain the UNI X error nunber associated with
the error. The DOS error may be recovered from the stream by invoking
ferror().

Exanpl e
if (argc!=3)
{ puts("Format error: conpare filel file2");

exit();

See al so: putc(), putw()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
put w(LI BC) put w(LI BC)

This function will wite a "word" to a stream out put.

int putw(word, stream);
int word; FILE *stream

wor d is the integer value to write.

stream desi gnates the output file stream

Descri ption
Putw() outputs a word to the designated stream A "word" is the size of an
i nt eger.

Ret urn Code
If an error is encountered during the output, the return code will be ECF
(-1); otherwi se, the word output will be returned.

VMr ni ngs

Since EOF is a valid integer value, ferror() or feof() nust be used to
differentiate between a -1 return and an error return. Note that since the
low byte and high byte storage order of a word may vary in different
machi ne environnents, putw() is an environnment dependent function.

Exanpl e

#i ncl ude stdio.h
mai n()
FILE *stream fopen(); int ii, i, array[10];
if (!(streanrfopen("test.dat:7","wt"))) exit(-1);
for (i=0; i<10; i++
if (putw((ii=i*i),stream) !'=ii) fputs("fwite error\n",stderr);
rewi nd(streamn;
read(fil eno(stream, array, si zeof (array));
for (i=0; i<10; i++)
printf("% ",array[i]);
fcl ose(stream;

}
0149 16 25 36 49 64 81

See al so: getc(), getw(), swab()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
gsort (LI BO) gsort (LI BO)

This function inplenents a recursive qui cker sort algorithm

int gsort(base, nel, width, conpar);
char *base; unsigned int nel, width; int (*conpar)();

base a pointer to the base of the table to sort.

nel is the nunber of elenments in the table.

wi dt h is the size of an el enent in bytes.

conpar is a pointer to a conparison function which returns -1, 0, or +1

according to a conparison of two el enents.

Descri ption

This function inplenments Hoare's quicker sort algorithm The inplenentation
orders the table via a recursive invocation of the ordering function. The
conpari son function nust return a value |less than zero, equal to zero, or
greater than zero depending on whether a conparison of elenment_a to
el ement _b finds elenent_a | ess than, equal to, or greater than el ement_b.

Ret urn Code

If gsort() cannot obtain dynam c storage for the pivot element, an ECF is
returned; otherwise, a NULL is returned to indicate success.

Vr ni ng

An attenpt to gsort() a very large table may result in a stack overflow
wi th unpredictable results.

Exanpl e

/* excerpt fromsortsym ccc */
if (read(0, (char *) base, fsize) != fsize) exit(l); /* read SYMfile */
for (i=0, record=base, recp=prec; i<nrecs; ++i)
*recp++ = record++
puterr("\nSorting by nane...");

if (gsort((char *) prec, nrecs si zeof (RECORD *), conpare) == EOF)
abend("Can't sort\n");
tabify()

puterr (" \nWltlng by nane.
i f (fputs("AI phabetlc sort: \n\n stdout)) exit(1l);
for (i =0, recp = prec; i < nrecs; ++i)
i f (vvrite(l, (char *) *recp++, RECLEN) != RECLEN) exit(1);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
rand(LI BC) rand(LI BC)

Thi s obtains a pseudo-random i nteger nunber in the range 0 to 32767.

int rand();

Descri ption

This function obtains a pseudo-random nunber in the range 0 to 32767. It is
seeded by srand() and initially seeded with a value of 1.

The followi ng functions define the inplenentation of rand() and srand():

static unsigned long int next = 1;
int rand()

next = next * 1103515245 + 12345;
return ((unsigned int)(next/65536) % 32768);

voi d srand(seed) unsigned seed;

{
next = seed;
}
Exanpl e
mai n()
{ int |oop;

for (loop=0; loop < 12; | oop++)
printf("% ",rand());
putchar('\n");
srand(1);
for (loop=0; loop < 12; | oop++)
printf("% ",rand());
}

16838 5758 10113 17515 31051 5627 23010 7419 16212 4086 2749 12767
16838 5758 10113 17515 31051 5627 23010 7419 16212 4086 2749 12767

See also: frnd(), fseed(), srand()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
read(LI BC) read(LI BC)

This function is used to read a bl ock of bytes froma file.

int read(fildes, buffer, n);
int fildes, n; char *buffer;

fildes is the file descriptor of the file.

buf f er a byte buffer of at |east |length n.

n the nunber of bytes (block size) to read.

Descri ption

The read() function will read a nunber of bytes equal to the "n" argunent
or until the file's EOF is reached. In either case, the exact nunber of
bytes read will be returned as the function's return code. If the file is
at it's EOF, zero will be returned. Use the |seek() or seek() function to

position to where you want the reading to start. For sequential reads,
nei ther |seek() nor seek() is needed. The block size which is optinmum for
speed of throughput will be a nultiple of the file's sector size which is
defined as BUFSIZ in the stdio header file.

Ret urn Code

The nunber of bytes actually read will be returned. The file will be at its
EOF when NULL is returned.

Exanpl e

#i ncl ude <stdio. h>
#i ncl ude <fcntl. h>
mai n(argc, argv) int argc; char *argv[];
int fdl, fd2, n; char buf[BUFSI ZE];
if (argc != 3) error("Usage: cp fromto", NULL);
if ((fdl=open(argv[1l], O RDONLY))==ECF)
error("Can't open %\n",argv[1]);
if ((fd2=open(argv[2], O WRONLY| | O_CREAT, 0777)) ==EOF)
error("Can't create %\n",argv[2]);
while ((n = read(fdl, buf, 512)) > 0)
if (wite(fd2,buf,n)!=n) error("Wite error\n", NULL);

}
error(sl, s2) char *sl1, *s2; { printf(sl, s2); exit(1l); }

See al so: close(), open(), wite()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
real | oc(LI BC) real | oc(LI BC)

This function changes the I ength of a previously allocated bl ock.

char *realloc(ptr, size);
char *ptr; unsigned int size;

ptr is a pointer to the current bl ock.
si ze is the size of the new bl ock in bytes.
Descri ption

This function may be used to increase or decrease the size of a block of
menory previously allocated via malloc(), calloc(), alloc() or a previous

realloc(). If the new block size is larger than the old block size, the
existing contents of the block will be unaltered and the renminder of the
block will be zeroed. If the new size is smaller than the old size, the
contents of the block will be unaltered up to the new si ze.

Ret urn Code

If no additional nenory is available, realloc() returns a NULL pointer;
ot herwi se, a pointer to the new block is returned.

Vr ni ng

If insufficient additional menory is available, the contents of the old
bl ock may be | ost.

Exanpl e

nreal l oc(ptr, newsize, oldsize) /* reallocate data space of size bytes */
char *ptr;
unsi gned newsi ze, ol dsi ze;
{ static char *p;
static int i;
printf("attenpting to reallocate % bytes at %X\ n", newsize, ptr - 4);
if (! (p =realloc(ptr, newsize))) /* couldn't do it */
return NULL;
printf("reallocated %d bytes at %#X\n", newsize, p - 4);
printf("data = ");

for (i =0; i < newsize; ++i)
printf("9%®.2X ", p[i]);

printf("\n");

cfill (p, newsize - oldsize, oldsize);

return p;

}

See also: alloc(), brk(), calloc(), free(), malloc()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
reset (I N) reset (IN)

This function is used to turn off any point (pixel) in the screen inmge.

#option I NLIB
int reset (xval, yval);
int xval, yval

xval specifies the horizontal coordinate.
yval specifies the vertical coordinate.
Descri ption
The "reset()" function will turn off the specified pixel according to the

desi gnated point, (x,y). The "xval" and "yval" values specify the pixel
position along the x-axis (horizontal) and y-axis (vertical) respectively.
The value is a virtual pixel, which neans that it does not have to be a
position in the CRT i mage.

"reset(x,y)" is identical in function to "pixel (0,x,y)".
Ret urn Code

A return code of minus one (-1) indicates that the point (xval,yval) is out
of range (i.e. virtual and does not appear in the CRT imge).

Exanpl e
for (x=0, y=40; x<128; x++)
set(X, y);
for (x=0, y=40; x<128; x++)
reset(x, y);

See al so: box(), circle(), line(), pixel(), point() set()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

rew nd(LI BC) rew nd(LI BC)

This function positions a streamto its begi nning.

voi d rewi nd(stream);
FI LE *stream

stream is the streamfile pointer.

Descri ption

This function positions a stream to a zero offset relative to
begi nning. The stream nmust be associated with a block file device rat
than a character special device (i.e. isatty(fileno(stream) nust ret

t he
her
urn

FALSE). It is equivalent to "fseek(streamOL,0);" except that no value is

r et urned.
Exanpl e

#i nclude stdio.h
mai n()
FILE *stream fopen(); int ii, i, array[10];
if (!(streancfopen("test.dat:7","wt"))) exit(-1);
for (i=0; i<10; i++)
if (putw((ii=i*i),stream) !'=ii) fputs("fwite error\n",stderr);
rewi nd(streamn;
read(fil eno(stream, array, si zeof (array));
for (i=0; i<10; i++)
printf("% ",array[i]);
fcl ose(stream;

}
0149 16 25 36 49 64 81

See al so: fseek(), ftell()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
ri ndex(LI BC) ri ndex(LI BC)

This function obtains the position of the last occurrence of a specified
character within a string. It is identical to strrchr(), its UNIX System V
counterpart.

char *rindex(s, c);
char *s; int c;

s is a pointer to the source string.
c is the character to find.

Descri ption
The rindex() function will |ook for the last occurrence of character 'c' in
the string pointed to by "s". The loworder byte of the integer, 'c', wll
be used as the character for which to |ook. Rindex() will operate properly

when 'c¢' is the NULL character.

Ret urn Code

If the character 'c¢' is not found in string
otherwise, a pointer to the position of the |ast
ret urned.

s", NULL will be returned;
¢' in "s" wll be

See al so: index(), strcat(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
sbr k(LI BC) sbr k(LI BC)

This function is used to obtain a nmenory bl ock.

char *sbrk(nbytes);
unsi gned i nt nbytes;

char *sbrk(0);

nbyt es an unsi gned i nteger nunber of bytes needed.

Descri ption

Sbrk() reserves nmenory for use by a program from the system nenory pool.
The nenmory allocated by sbrk() cannot be deallocated until the program
finishes execution. Alloc() uses sbrk() to request blocks of nenory as
needed but maintains a linked list of blocks available but unallocated. If

the nenory requested will only be needed for part of the execution of the
program it is recommended that either alloc(), calloc(), or malloc() be
used.

If the argunent passed to sbrk() is zero, then the current value of the
program break ($LOVEM w |l be returned. This may be useful with brk().

Ret urn Code
The return code, "ptr", is the address of the allocated block of nmenory if
the sbrk() was successful. If not enough nenory is available to satisfy the

request, "ptr" is set to NULL (0).
VMr ni ngs

Only menory allocated by sbrk(), alloc(), calloc(), malloc(), or realloc()
shoul d be used by the programmer for dynami c space. File opens and cl oses,
i ncluding standard files, use these functions for setting up File Control
Areas (FCA' s). These FCAs can be clobbered if the program accesses
unaut hori zed nmenory. |If you inadvertantly pass a negative int as "nbytes",
it will be treated as a | arge unsigned request.

See al so: brk()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
scanf (MATH) ; scanf (LI BC) scanf (MATH) ; scanf (LI BC)

This function is used to scan a formatted print image from standard input,
interpret the image fields according to a control string, and store the
translated results in the arguments passed in the function's invocation.

int scanf(control, argl, arg2, ...);
char *control; SEE TEXT for type of argl, arg2,

control is the decoding control string.
args as required to match the control string.
Descri ption
The scanf() function is the input analog of the printf() function. It

provides similar translations; however, the conversions are from ASClI
string fields to argunent values. Scanf() inputs from standard input
[stdin].

The argunments identified as "argl, arg2, ..." MJST BE PO NTERS, rather than
values since the scan function stores the converted results into the
argunments. For an argunent defined as an array, its nane will be a pointer.

For all scaler arguments, use the "address of" operator. The control string
is detailed under the docunentation for fscanf().

The scanf() function contained in the LIBC library supports all variable

types except floats and doubles; thus "e", "f", and "g" translations wll
be ignored unless #option MATHLIB is specified to request the MATH REL
scanf.

Ret urn Code
If end-of-file is reached during the input, EOF wll be returned.
O herwi se, the function's return value wll be equal to the number of

successful ly matched and assigned i nput itemns.
VMr ni ngs

Argunents receiving strings nust be |arge enough to contain the string.
Exanpl e

#i ncl ude <stdi o. h>

#i ncl ude <mat h. h>

mai n()

{ char achar, string[81], float f1; int n_itens, aint;
n_itens = scanf (" %€%3d% 2d%6s% ", &achar, &ai nt, string, & 1);
printf("Count = % | % % % % \n",n_itens, achar, \

aint,string, (double)fl);

}
For input of: al2345abcdef 12.345e5
Prints : Count = 4 |a 123 abcdef 1.2345E+06

See al so: fscanf(), sscanf()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
seek(LI BC) seek(LI BC)

This function is used to randomy nmove around a file w thout actually reading
or witing (unflushed output buffered by the systemw Il be physically witten
when a seek() is perforned).

int seek(fildes, offset, origin);
int fildes, offset, origin;

fildes the file descriptor of the file.
of f set the new position relative to origin.
origin speci fies offset from begi nning, current, or end for origin equal

to 0, 1, or 2. For origin values of 3, 4, or 5, offset is
multiplied by 512 prior to the seek and origin is then
reinterpreted as 0, 1, or 2.

Descri ption

The seek() function is used for random positioning in a file. Since offset
is treated as a signed integer, you can only seek within 32K of a position
(beginning, current, or end). For files of size greater than 64K, it is
best to consistently use a 512-byte block seek followed by a block offset
seek to postion to a location. Thus for large files, you can use origins of
3, 4, or 5 to seek to any given 512-byte block then invoke a subsequent
seek to position to the offset fromthat bl ock.

It is recommended that you use the long formof the function, |seek().

Ret urn Code
On origins of 0, 1, or 2, the positive offset from the current 512-byte
bl ock prior to the seek will be returned. On origins of 3, 4, or 5, the
number of the current 512-byte block will be returned. These nunbers may be
used to calculate the current record position or the nunber of records in a
file.
If an error occurs during the seek, EOF (-1) will be returned.

Vr ni ng

The file descriptor passed as the fildes argunent of the function nust be
one obtained from open(), creat(), dup(), dup2(), or fcntl(), or be a
standard file descriptor: STDIN, STDOUT, STDERR Also, renenber that the
offset is treated as a SIGNED integer. Thus, a negative offset passed with
an origin of 0O or 3is an error. You can't seek a tty device!

See also: isatty(), |seek(), fseek()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
set (I N) set (I N)

This function is used to turn on any point (pixel) in the screen inmage

#option I NLIB
int set (xval, yval);
int xval, yval

xval specifies the horizontal coordinate.
yval specifies the vertical coordinate.
Descri ption
The "set()" function wll turn on the specified pixel according to the

desi gnated point, (x,y). The "xval" and "yval" values specify the pixel
position along the x-axis (horizontal) and y-axis (vertical) respectively.
The value is a virtual pixel, which neans that it does not have to be a
position in the CRT i mage.

"set(x,y)" is identical in function to "pixel(1,x,y)".
Ret urn Code

A return code of minus one (-1) indicates that the point (xval,yval) is out
of range (i.e. virtual and does not appear in the CRT imge).

Exanpl e
for (x=0, y=40; x<128; x++)
set(X, y);
for (x=0, y=40; x<128; x++)
reset(x, y);

See al so: box(), circle(), line(), pixel(), point() reset()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
setj np(LI BC) setj mp(LI BC)

This function saves the environment for a "far" return via |ongjnp().

#i ncl ude <setj np. h>
int setjnp(env);

j mp_buf env;
env is the environment saved by setjnp().
val is the value returned by setjnp().

Descri ption
The initial call to setjnp() always returns zero. A subsequent | ongjnp()
using the sanme environnent will restore the program to the environnment as
saved in "env" by the previous call to setjnp(). After the longjnp() is
conpl eted, the program execution will continue as if the corresponding call
to setjnp() had just occurred; however, the returned value will be the
value passed as "val" in the longjnmp() call, rather than zero. The

setjnp()/1ongjnp() conpani on functions can be used in error control wthin
nested functions so as to effect an escape from a |ower-level function
error wi thout backtracking through error handling in each higher |evel
nest .

Vr ni ng
The val ues of automatic and register variables are unpredictable follow ng

a longjnp(). Do not use setjnp() in any expression other than an inmediate
assi gnment or relational test.

Exanpl e
#i ncl ude setjnp.h
j mp_buf env;
mai n()
{ int i, val;

if (val =setjnp(env))
printf("Error % on i=%l\n",val,i);
el se
for (i=0;i<3;++i)
{ funcl(i); printf("No error %\n",i); }

}

funcl(i) int i;

{ func2(i); }

func2(i) int i;

{ func3(i); }

func3(i) int i;

{ if (i<2) return; else longjnp(env,1); }

See al so: | ongjnp()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
si n(MATH) si n(MATH)

This function obtains the trigononmetric sine of a double.

#i ncl ude <mat h. h>
doubl e sin(value);
doubl e val ue;

val ue t he doubl e whose sine is desired.

Descri ption

The sin() function obtains the triginometric sine of the double argunent
entered in radians. The result is a double.

Exanpl e
#i nclude stdio.h

#i ncl ude mat h. h
char inbuf[81]; double di,d2

mai n()
{ puts("sin: enter your nunber: ECF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;
errno=0;
d2 = sin(dl=atod(inbuf));
printf("sin of % = %l.14f; errno = %\ n", d1, d2, errno);
}

sin: enter your nunber: ECF to exit

1.5707963 | sin of 1.5708 = 1.00000000000000; errno = 0
1 | sin of 1 = 0.84147098480790; errno = 0
-1 | sin of -1 = -0.84147098480790; errno = 0

See al so: asin(), cos(), tan(), fsin()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
si nh(MATH) si nh(MATH)

This function obtains the hyperbolic sine of a double.

#i ncl ude <mat h. h>
doubl e sinh(val ue);
doubl e val ue;

val ue a doubl e whose hyperbolic sine is desired.

Descri ption

The sinh() function obtains the hyperbolic sine of the double argunment
entered in radians. The result is a double.

Exanpl e
#i nclude stdio.h

#i nclude mat h. h
char inbuf[81]; double di,d2;

mai n()
{ puts("sinh: enter your nunber: ECF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;
errno=0;
d2 = sinh(dl=atod(inbuf));
printf("sin of % = %.14f; erno = %\ n", dl, d2, errno);
}
}

sinh: enter your number: EOF to exit
. | sin of 0.5 = 0.52109530549375; errno = 0
1.0 | sinof 1 = 1.17520119364380; errno = 0

| sin of 10 = 11013.23287470339369; errno = 0

See al so: cosh(), tanh()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
sprintf(LIBC); sprintf(MATH) sprintf(LIBC); sprintf(MATH)

These functions create a formatted i mage for output to a string.

int sprintf(buffer, control, argl, arg2, ...);
char *buffer, *control; args SEE TEXT

buf f er the string area to receive the output.

control is a string containing transparent printing charactes and
conver si on specifications.

argn argunents to be formatted for the output print inage as specified
by the control .

Descri ption
The sprintf() function perforns the sane formatted output operations as the
printf() and fprintf() functions; however, the output is placed in a string
buffer and is termnated by a NULL ['\0'].
The specifications for formatting the output are determined by the
character string, "control". This string will contain ordinary characters
copied directly to the output imge and/or specifications denoting the
field conversions of all argunments. The conversion specifications take the
form of:

o%{flags}{w dth}{. prec}char

and are detail ed under the docunmentation for fprintf().

Sprintf() may be used when nore flexible control over floating point
formatting is required than that provided by dtoa() and ftoa().

Vr ni ng
The buffer nust be |arge enough to contain the entire formatted string.
Ret urn Code

The nunber of actual characters printed excluding the term nating NULL is
ret urned.

Exanpl e

sprintf(buf,"%l characters, % |lines were copied", bytes, lines);
puts(buffer);

See al so: dtoa(), fprintf(), fscanf(), ftoa(), printf(), scanf(), sscanf()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
sqrt (MATH) sqrt (MATH)

This function obtains the square root of a double

#i ncl ude <mat h. h>
doubl e sqgrt(val ue);
doubl e val ue;

val ue a doubl e whose square root is desired.

Descri ption

The sqrt() function obtains the double precision square root of its double
preci sion argunent. The result is a double.

Ret urn Code

Sqrt() returns 0 and sets the global error variable, errno, to EDOM when
"val ue" is negative. A nessage indicating DOVAIN error will also be witten
to standard error. These procedures may be changed via matherr().

Exanpl e
#i nclude stdio.h

#i nclude math. h
int i; char inbuf[81]; double di, d2

mai n()
{ puts("sqrt: Enter your nunber: ECF to exit")
whi | e (TRUE)

{ if (!gets(inbuf)) break;
errno=0; d2 = sqrt(dl=atod(inbuf));
printf("The square root of %g is %g; errno = %\ n", dl, d2, errno);

}

mat herr (x) struct exception *x;

{ fprintf(stderr,"Type % function error in %...\n", x->type, x->nane) ;
fprintf(stderr,"” Args = %, %g9: ", x->argl, x->arg2);
return O

}

sqrt: Enter your number: EOF to exit
170e6 | The square root of 1.7e+08 is 13038 4; errno = 0
-9 | Type 1 function error in sqrt...

| Args = -9,0: Argunment dommin error

| The square root of -9 is 3; errno = 70

See al so: exp(), log(), pow)

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
srand(LI BC) srand(LI BC)

This function seeds the pseudo-random nunber generator, rand().

voi d srand(seed);
unsi gned i nt seed,;

seed a seed for the rand() nunber generator.

Descri ption

The srand() function may be invoked anytinme to seed the random nunber
generator, rand(). Rand() is initially seeded to a value of 1 by the
system

Exanpl e

mai n()
int |oop;
for (loop=0; loop < 12; | oop++)
printf("% ",rand());
putchar('\n");
srand(1);
for (loop=0; loop < 12; | oop++)
printf("% ",rand());
}

16838 5758 10113 17515 31051 5627 23010 7419 16212 4086 2749 1Z67
16838 5758 10113 17515 31051 5627 23010 7419 16212 4086 2749 12767

See also: frnd(), fseed(), rand()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
sscanf (MATH); sscanf (LI BC) sscanf (MATH); sscanf (LI BC)

These functions are used to scan a formatted print image stored in a string,
interpret the image fields according to a control string, and store the trans-
lated results in the argunents passed in the function's invocation.

int sscanf(buffer, control, argl, arg2, ...);
char *buffer, *control; args SEE TEXT
buf f er the string area containing the input inmage.
control a string containing translation control.
args as required to match the control string.
Descri ption

The sscanf() function is the input analog of the sprintf() function. It
provides similar translations; however, the conversions are from ASClI
string fields to argunent val ues.

The argunments identified as "argl, arg2, ..." MJST BE PO NTERS, rather than
val ues since the scan functions store the converted results into the arg-
umrents. The format of the control string is detailed under the docunen-
tation for scanf().

If the end of the string is reached during the input, a newine character
will be automatically supplied to serve as a term nating whitespace.

A typical use for sscanf() is to provide reformatting of variables under
controlled conditions using internal menory buffers along with the conp-
| ementary function, sprintf().

Ret urn Code

VWhen the end of the string is reached during the input, sscanf first treats
it as a newline character for the purpose of terminating the scanned field
by whitespace. Subsequent requests for "input" fromthe string will return
EOF. O herwi se, the function's return value will be equal to the nunber of
successful ly matched and assigned input itemns.

See al so: fscanf(), scanf(), sprintf()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strcat (LI BC) strcat (LI BC)

Thi s function appends one string to another.

char *strcat(dest, source);
char *dest, *source;

dest is a pointer to the destination string.
source is a pointer to the source string.
Descri ption
The strcat() function will concatenate (append) the source string to the

destination string. The "dest" argument is a pointer to a character array
whi ch nust be of sufficient size to contain the appended string.

Return Code
A pointer to the "dest" string is returned.
Exanpl e

char string[81], lilbuf[9];
mai n()

strcpy(string,"Today is ");
strcat (string, sysdate(lilbuf));
strcat(string," and the tine is ");
strcat(string,systime(lilbuf));
puts(string);

}

Today is 11/21/85 and the time is 14:50:56

See also: strchr(), strcpy(), strcspn(), strncat(), strncpy(), strpbrk(),
strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strchr (LI BC) strchr (LI BC)

This function finds the first occurrence of a character in a string.

char *strchr(s, c);
char *s; int c;

s is a pointer to the source string.
c is the character to find.
Descri ption
The strchr() function will look for the first occurrence of character 'c'
in the string pointed to by "s". The |loworder byte of the integer, 'c',
will be used as the character. Strchr() will operate correctly when 'c' is
the NULL character.
Return Code
If the character 'c¢' is not found in string "s", NULL will be returned;
ot herwi se, a pointer to the position of '"¢c' in "s" will be returned.
Exanpl e
char *p, string[81];
mai n()
puts("Enter your string; ECF to exit");
for (1)
- .
if (!gets(string)) break;
p=string; /* poin p to string[0] */
while (p=strchr(p,'.")) /* until no nore dots */
p='?"; / replace '.' with '"?" */
puts(string);
}
}
Enter your string; ECOF to exit
this is a test. | this is a test?
This "..." is an elipsis of dots. | This "???" is an elipsis of dots?

See also: strcat(), strcpy(), strcspn(), strncat(), strncpy(), strpbrk(),
strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strcnp(LI BC) strcnp(LI BC)

This function conpares two strings

int strecnp(string_ 1, string 2);
char *string_1, *string_2;

string_1 is a pointer to the first string.
string_2 is a pointer to the second string
Descri ption

This function conpares "string_ 1" to "string_2" and returns an integer |ess
than zero, equal to zero, or greater than zero, depending on whether
"string_1" is lexicographically less than, equal to, or greater than
"string_2".

Return Code
The return code of strcrmp() is <0, 0, or >0 as noted above.
Exanpl e

If you are unfamliar with how ASCII strings are "ordered", perhaps a
strong exanple will clarify this discussion. The following is an ordered
list of strings in ascending order:

a8hbcde

abc

abcd

jim

kar |

rich

roy

this_is_a long_string

Keep this ordered list in mnd in the foll owi ng exanples. The statenent:
if (strcnp("abc","a8bcd") < 0) ? printf("above") : printf("below);

should print the word, "below' since the string, "abc" is below the string
"a8bcd" in an ascendingly sorted list. The statenent:

if (strcrmp("abc","abcd") < 0) ? printf("above") : printf("below');

should print the word, "above" since the string, "abc" is above the string
"abcd" in an ascendingly sorted list.

See al so: strcat(), strchr(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strcpy(LI BC) strcpy(LI BC)

This function copies one string into another.

char *strcpy(dest, source);
char *dest, *source;

dest is a pointer to the destination string.
source is a pointer to the source string.
Descri ption

The strcpy() function copies an imge of the source string to the
destination string buffer. Strcpy() is useful to initialize an allocated
but unzeroed character array to known string value. You cannot use strcat()
to copy a string into a buffer unless either the first elenment of the
buffer is known to be NULL or the buffer contains a string; thus, strcpy()
is useful in order to "prinme" a string buffer.

Vr ni ng

The destination character array must be |arge enough to contain the source
string.

Ret urn Code

A pointer to the "dest" string is returned.

Exanpl e

char string[81], lilbuf[9];

mai n()

{
strcpy(string,"Today is "); /* initialize output string */
strcat (string, sysdate(lilbuf)); /* add date to string */
strcat(string," and the tine is ");
strcat(string,systime(lilbuf)); /* add time to string */

puts(string);
}

Today is 11/21/85 and the time is 14:50:56

See also: strcat(), strchr(), strecspn(), strncat(), strncpy(), strpbrk(),
strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strcspn(LI BC) strcspn(LI BC)

This function obtains the length of the initial sub-string of a first string
conposed entirely of characters not found in a second string.

int strcspn(stringl, string2);
char *stringl, string2;

stringl is a pointer to the first string.
string2 is a pointer to the second string.

Descri ption
This function will scan "string_1" for a substring of characters beginning
with the first character of "string_ 1" which is conposed entirely of
characters not found in "string 2". Both the "string_1" and "string_ 2"

argunments should be pointers to character arrays.
Ret urn Code

The length of the resulting substring is returned.

Exanpl e
char string[81], *field = "aeiou";
mai n()
{ int count;
puts("Enter your string; ECF to exit");
for (7)
- .
if (!gets(string)) break;
if (count=strcspn(string,field))
{
*(string+count)="\0";
printf("Substring <%> contains no vowel s\n",string);
}
el se
puts("A vowel starts your entry");
}

Enter your string; ECOF to exit
"rhythm' is a great word for the game of hangnan!
Substring <"rhythm > contains no vowels

See al so: strcat(), strchr(), strcpy(), strncat(), strncpy(), strpbrk(),
strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

strepl (I N) strepl (I N)

This function replaces a substring of one string with another string.

char *strepl (source, dest, pos, count);
char *source, *dest; int pos, count;

count is the destination sub-string |ength.
dest is a pointer to the destination string.
pos starting index position or array subscri pt.
source is a pointer to the source string.

Descri ption

The strepl() function replaces that portion of the destination string
starting at relative position "pos" and continuing for "count" characters
[the destination substring] with the source string.

The argunment "pos" represents a starting position relative to the beginning
of the destination string. It is essentially used as an index or subscript
into the "dest" character array.

The argument, "count", controls how much of the destination string is to be
replaced. If "count" is zero (0), then an insert operation is perfornmed
wi t hout del eting any characters of the destination string.

The length of the replacenent string is the length of the entire source
string. If the source string is null (i.e. of zero length), then only the
identified destination sub-string is deleted.

Vr ni ng

The destination character array nust be of a size sufficient to contain the
generated string.

Ret urn Code
If "dest +pos" exceeds the bounds of the destination string, a NULL (0) will
be returned and the string operation will be aborted; otherw se, a pointer
to the destination string will be returned. For instance:

if (!strepl(s, "destination_string", 24, 3)) puts("String error!");

will result in the error nmessage display since the position, 24, is not in
t he range of the destination string.

See al so: strcat(), strchr(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strept (IN) strept (IN)

This function replicates a string.

#option I NLIB
char *strept(dest, source, repeat);
char *dest, *source; int repeat;

dest is a pointer to the destination string.
source is a pointer to the source string.
r epeat a repetition counter.

Descri ption

The strept() function replicates the source string into the destination
string the nunber of times indicated by "repeat". Both "source" and "dest"
represent pointers to character arrays. Note that the replication uses the
entire source string and not just the first source string character.

Return Code
The function returns a pointer to the destination gring.

Vr ni ng

The destination character array must be of a size sufficient to hold the
resultant string generation.

Exanpl e
#option INLIB
char string[81], *repeats[5] = {"*","*=.","*_* " "{[(<>)]}","=="};
mai n()
{ int |oop;

for (loop=0; |oop<5; |oop++)
puts(strept(string, repeats[loop],5));

* * % % * % * % * *

{TI(<)THI() THI() THI () THI (<)1)}

See also: strepl (), stright(), strleft(), strmd(), strfind()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strfind(IN) strfind(IN)

This function will obtain the position of a substring in a string.

#option I NLIB
char *strfind(dest, source, pos);
char *dest, *source; int pos;

dest is a pointer to the destination string.
pos starting index position or array subscri pt.
source is a pointer to the source string.

Descri ption

The strfind() function will search the destination string for the first
appearance of the source string. The destination string will be searched
starting at the position "dest+pos". Both "source" and "dest" represent
pointers to character arrays containing the respective strings. "Pos" is
the starting position relative to the beginning of the destination string.
Return Code
If the source string is a null string, the value of "dest+pos" wll be
returned. If the destination string is a null string or if the source
string is not found (i.e. is not a sub-string of the destination), a NULL
(0) will be returned. If the source string is found in the destination
string, a pointer to its position in the destination string wll be
ret urned.
Exanpl e
#option INLIB
char *p, *string = "This is string one";
char *find[5] = {"hello","is","is","is","is"};

int loop, pos[5] ={ 0,0,3,8,20 };

mai n()
{ for (loop = 0; loop < 5; |oop++)
i f(p=strfind(string,find[loop], pos[loop]))
printf("Found %[%]: %\n",find[loop], pos[!|oop],p);
el se
printf("Could not find %[%]\n", find[loop], pos[loop]);

}

Coul d not find hell o[0]

Found is[0]: is is string one
Found is[3]: is string one

Coul d not find is[8]
Coul d not find is[20]

See al so: strepl (), strept(), strleft(), strmd(), strfind()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
stright(IN) stright(IN)

This function obtains the rightnost substring of a string.

#option I NLIB
char *stright(dest, source, count);
char *dest, *source; int count;

count is the integer sub-string | ength
dest is a pointer to the destination string
source is a pointer to the source string
Descri ption
The stright() function will copy the rightnmost "count"” characters (the sub-

string) of the source string to the destination string. This is NOT an
append operation. The destination string is replaced with the sub-string

"Count" indicates the length of desired substring. If "count"” is zero, the
destination becones a null string. If the "count" is greater than the
source string length, the entire source string is copied.

Vr ni ng

The destination character array should be dinensioned |arge enough to
contain the entire sub-string and term nating NULL

Ret urn Code

The function returns a pointer to the resulting string
Exanpl e

#option INLIB
char *string = "This is a test string", buf[100];
mai n()
{ int |oop;
for (loop=5; |o0p<30; |oop+=5)
put s(stright(buf,string,!loop));

tring

est string

s a test string

his is a test string
This is a test string

See al so: strepl (), strept(), strleft(), strmd(), strfind()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strieft(IN) strieft(IN)

This function obtains the | eftnmpst substring of a string.

#option I NLIB
char *strleft(dest, source, count);
char *dest, *source; int count;

count is the integer sub-string |ength.
dest is a pointer to the destination string.
source is a pointer to the source string.
Descri ption
The strleft() function will copy the leftnmost "count" characters (the sub-

string) of the source string to the destination string. This is NOT an
append operation. The destination string is replaced with the sub-string.
"Count" indicates the length of the desired substring. If "count"” is zero,
the destination becomes a null string. If the "count” is greater than the
source string length, the entire source string is copied.

Vr ni ng

The destination character array should be large enough to contain the
entire substring and term nating NULL.

Ret urn Code
The function returns a pointer to the resulting string.
Exanpl e

#option INLIB
char *string = "This is a test string", buf[100];
mai n()
{ int |oop;
for (loop=5; |o0p<30; |oop+=5)
puts(strleft(buf,string,!loop));

}

Thi s

This is a

This is a test

This is a test strin
This is a test string

See al so: strepl (), strept(), stright(), strmd(), strfind()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strl en(LI BC) strl en(LI BC)

This function obtains the Iength of a string.

int strlen(source);
char *source;

source is a pointer to the source string.

Descri ption
The strlen() function returns the Ilength of the source string. The length
of a string is the nunmber of characters up to but not including the first
NULL.
Return Code
The return code of strlen() is the length of the target string.
Exanpl e
#i ncl ude stdio.h
char buffer[81];
mai n()

puts("strlen: Enter your string; EOF to exit");
whi | e (TRUE)

{
if (!gets(buffer)) break;
printf("Your string length is %\ n",strlen(buffer));

}

strlen: Enter your string; EOF to exit

this is a test string | Your string length is 21
when in the course of human events | Your string length is 34
she sells sea shells down by the seashore| Your string length is 41
to err is human; to forgive is divine | Your string length is 37

See al so: strcat(), strchr(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strm d(IN)

This function will obtain a substring froma string.

strm d(IN)

#option I NLIB
char *strm d(dest, source, pos, count);
char *dest, *source; int pos, count;

count is the integer sub-string |ength.
dest is a pointer to the destination string.
pos starting index position or array subscript.
sour ce is a pointer to the source string.
Descri ption
Strmd() replaces the destination string with a substring of "count"
characters starting at the source string position, "source+pos". "Pos" is
the starting position relative to the beginning of the source string. Both
"dest" and "source" represent pointers to character arrays. "Count"
indicates the length of the desired substring. If "count" is zero, the
destination string will be null. "Count" may be greater than the |ength of
"source+pos".
Vr ni ng
The destination array nmust be a size sufficient to hold the sub-string.
Return Code
If "source+pos" exceeds the bounds of the source string, a NULL (0) will be
returned and no string replacenent will occur; otherw se, strmd() wll
return a pointer to the destination string. For instance:
if (!'strmd(s,"error",6,3)) puts("String error!");
will result in the error nessage display since the position, 6, is not in

the range of the string, "error".
Exanpl e

#option INLIB
char *string = "This is a very long test string", buf[100];
mai n()
{ int |oop;
for (loop=0; |o0p<30; |oop+=5)
put s(strm d(buf, string,!loop,11));

This is a v |
is avery | |
very long t |
long test s |
test string |
string

See also: strepl (), strept(), stright(), strleft(), strfind()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strncat (LI BC) strncat (LI BC)

This function appends at nobst "n" characters of one string to another.

char *strncat(dest, source, n);
char *dest, *source; int n;

dest is a pointer to the destination string.
source is a pointer to the source string.
n t he maxi mum nunber of characters to append

Descri ption
The strncat() function will concatenate (append) at nobst "n" characters of
the source string to the destination string. If "n" is greater than
strlen(source) then the entire source string will be appended.

Vr ni ng

The "dest" character array nust be large enough to contain the resulting
string.

Ret urn Code

A pointer to the "dest" string is returned.

Exanpl e
char *init = "Nowis the tine for all good nmen ",
*string = "to come to the aid of their country",
buf[100];
mai n()
{ int |oop;

for (loop=10; | oop<40; | oop+=5)
{

strcpy(buf,init); [* init buf */
put s(strncat (buf, string,|oop));

Now is the ti
Now is the ti
Now is the ti
Now is the ti
Now is the ti
Now is the ti

for all good nento cone to

for all good nen to cone to the

for all good nmen to come to the aid o

for all good nen to come to the aid of the

for all good nen to conme to the aid of their co

for all good nen to cone to the aid of their country

3333 3a

See al so: strchr(), strcpy(), strcspn(), strncat(), strncpy(), strpbrk(),
strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strncnp(LI BC) strncnp(LI BC)

This function conpares at npbst "n" characters of one string to another

int strncnp(string_1, string_2, n);
char *stringl, *string 2; int n

string_1 is a pointer to the first string.

string_ 2 is a pointer to the second string

n t he maxi mum nunber of characters to conpare
Descri ption
This function wll conpare at nobst "n" characters of "string_1" to

"string_2" and return and integer |less than zero, equal to zero, or greater
than zero, depending on whether "string_1" is |exicographically |ess than,
equal to, or greater than "string_2".

Return Code

The return code of strcnp() is <0, 0, or >0 as noted above.

Exanpl e

If you are unfamliar with how ASCII strings are "ordered", perhaps a
strong exanple will clarify this discussion. The following is an ordered
list of strings in ascending order:

a8bcde

abc

abcd

rich

r oy

this_is_a long_string
Keep this ordered list in mnd in the foll owi ng exanples. The statenent:
if (strncnp("abc", "a8bcd", 2)<0) ? printf("above") : printf("below");

should print the word, "below' since the string, "ab" is below the string
"a8" in an ascendingly sorted list. The statenent:

if (strncnp("abc", "abcd",4)<0) ? printf("above") : printf("below);

should print the word, "above" since the string, "abc" is above the string
"abcd" in an ascendingly sorted list.

See al so: strcat(), strchr(), strcnp(), strcpy(), strcspn(), strncat(),
strncpy(), strpbrk(), strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strncpy(LI BC strncpy(LI BC

This function copies at npbst "n" characters of one string into another

char *strncpy(dest, source, n);
char *dest, *source; int n;

dest is a pointer to the destination string.

source is a pointer to the source string

n t he maxi mum nunber of characters to copy.
Descri ption

The strncpy() function copies an inmage of at npbst "n" characters of the
source string to the destination string buffer. If the Iength of "source"”

is equal to or greater than "n", the result will NOT be null-term nated
If the length of "source is less than "n", NULLs will be added to "dest".
Ret urn Code

A pointer to the "dest" string is returned.

Exanpl e

char *string = "123456789012345678901234567890", buf[100];

mai n()
{ int |oop;
for (loop=25; |oop; | oop-=5)
{
strncpy(buf, string, | oop); /* copy ast nobst n chars */
(buf +l oop) ="\ 0" ; / add NULL, in case! */
put s(buf); /* display the result */
}
}
1234567890123456789012345
12345678901234567890
123456789012345
1234567890
12345

See al so: strcat(), strchr(), strcpy(), strcspn(), strncat(), strpbrk(),
strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strpbrk(LIBC) strpbrk(LIBC)

This function finds the first occurrence in one string of any character in
anot her.

char *strpbrk(string_1, string 2);
char *string_1, *string_2;

string_1 is a pointer to the first string.
string_2 is a pointer to the second string.
Descri ption
This function will scan through "string_1" and return a pointer to the
first character in "string_1" which is also found in "string_2".
Return Code
A NULL will be returned if no character of "string_ 1" is contained in
"string_2"; otherwi se, a pointer to the matching character in "string_1" is
ret urned.
Exanpl e
#option INLIB
char *init = "the quick brown fox junped over the |azy dogs back",
*find[4] = {"aeiou","abc","xyz",",.;:?"}, *p;
mai n()
{ int |oop;
puts(init);
for (loop=0; |oop<4; |oop++)
{

if (p=strpbrk(init,find[loop]))
printf("Found char in set [%] at init+%\n", \
find[loop],p-init);
el se
printf("No chars fromset [%] in init\n", \
find[loop]);

}

the qui ck brown fox junped over the |azy dogs back
Found char in set [aeiou] at init+2

Found char in set [abc] at init+7

Found char in set [xyz] at init+18

No chars fromset [,.;:?] ininit

See al so: strcat(), strchr(), strcnp(), strcpy(), strcspn(), strncat(),
strncpy(), strrchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strrchr (LI BC strrchr (LI BC)

This function finds the |last occurrence of a character in a string.

char *strrchr(s, ¢);
char *s; int c;

s is a pointer to the source string.
c is the character to find.

Descri ption
The strrchr() function will look for the last occurrence of character 'c’
in the string pointed to by "s". The |loworder byte of the integer, 'c',
will be used as the character for which to look. Strrchr() wll operate
properly when 'c' is the NULL character.

Return Code
If the character 'c¢' is not found in string "s", NULL will be returned;
otherwise, a pointer to the position of the last 'c¢c' in "s" wll be
ret urned.

Exanpl e
|nt find[4] = {'a '0'}; char *p, *rule =

012345678901234567890123456789012345678901234567&0123456789012345

*init =
"this function finds the last occurrence of a character in a string";
mai n()
{ int |oop;

puts(rule); puts(init);
for (loop=0; |oop<4; |oop++)

if (p=strrchr(init,find[loop]))

printf("Found |l ast char % at init+%\n",find[loop],p-init);
el se

printf("Char % not in init\n",find[loop]);

}

012345678901234567890123456789012345678901234567890123456789012345
this function finds the |last occurrence of acharacter in a string
Found | ast char a at init+58
Found | ast char e at init+52
Found | ast char i at init+63
Found | ast char o at init+40

See al so: strcat(), strcpy(), strcspn(), strncat(), strncpy(), strpbrk(),
strchr(), strspn()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
strspn(LI BC) strspn(LI BC)

This function obtains the length of the initial substring of a first string
conposed entirely of characters found in a second string.

int strspn(string_ 1, string_2);
char *string_1, string_2;

string_1 is a pointer to the first string.
string_2 is a pointer to the second string.
Descri ption
The "strspn" function will scan "string_1" for a substring of characters

beginning with the first character of "string_1" which is conposed entirely
of characters found in "string_2". The "string_1" and "string_2" argunents
represent pointers to character arrays which contain the strings.

Ret urn Code

The length of the resulting substring is returned.

Exanpl e
char string[81], substr[81], *field = "asdfghjkl";
mai n()
{ int count;
puts("Enter your string; ECF to exit");
for (7)
- .
if (!gets(string)) break;
if (count=strspn(string,field))
{
(string+count)="\0"; / term nate the substring */
printf("Substring <%> on home rown",string);
}
el se
puts("String does NOT start on hone row');
}
Enter your string; EOF to exit
dash | Substring <dash> on hone row

chaff |String does NOT start on home row
shaft | Substring <shaf> on hone row

See al so: strcat(), strchr(), strcnp(), strcpy(), strncat(), strncnp(),
strncpy(), strpbrk(), strrchr()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
stty(LI BC stty(LI BC

This function sets control information concerning a file.

#i ncl ude <sgtty. h>
int stty(fildes, argp);
int fildes; struct sgttyb *argp;

fildes is a descriptor of the file.
argp is a pointer to the data structure.
Descri ption

This function sets control information on files. The data to be set is
stored in the data structure pointed to by the "argp" argunment and has been
previously obtained via a call to gtty() or ioctl(). The structure is
defined in the "sgtty" header file and is as follows:

struct sgttyb {

char sg_colctr; /* columm counter */
char sg_control;/* control byte */
char sg_fl ag; /* FCA flag byte */

b

The "sgttyb.sg _colctr” elenent stores a counter for the current colum
position of the output inmage for the device. This itemis relative to zero
and is reset to zero when a newline is sent to the fildes. It is
initialized to zero when the filedes is opened. The "sgttyb.sg control”
byte stores various bit fields and is masked as fol |l ows:

I O_BREAK 0x10 /* mask for #option BREAK */
| O_ TABSTOP 0xOf /* mask for "tabstop-1" */
1 O_FDCOE 0x80 /* mask for "close_on_exec" flag */

The stty() function is equival ent to:
ioctl (fildes, TI OCSETP, ar gp) ;

TIOCSETP is defined in the "sgtty" header file. The function is typically
used to establish tab stops at other than the default of every 8 columms or
to establish the BREAK key value as EOF on an input device. Note that for
tabs, IO TABSTOP is one less than the stop value (i.e. for every eight
colums, use 7).

Ret urn Code
If the call was successful, NULL will be returned; otherw se, an EOF will
be returned and the global error variable, errno, will contain the UN X

error nunber associated with the error.

See also: ioctl(), gtty()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
swab(LI BC) swab(LI BC)

This function copies bytes fromone region to another w th swappi ng.

voi d swab(from to, nbytes);
char *from *to; int nbytes;

from is a pointer to the region to copy.

to points to the region to copy into.

nbyt es is the nunmber of bytes to swap.
Descri ption

This function copies "nbytes" from the location pointed to by "from into
the location pointed to by "to", while it exchanges odd and even bytes
during the copy operation. The value, "nbytes", should be even and non-
negative. The function is typically used to prepare integer data on the
host machine for transm ssion to another machi ne which uses a reverse order

for storing 2-byte words.

Exanpl e

int loop, flipped[5], words[5] = {1, 10, 100, 1000, 10000} ;
char *p;
mai n()

swab(words, fli pped, si zeof (words));

fputs("Before swab: ",stdout); p = words;

for (loop=0; |oop<sizeof(words); |oop++)
printf("%2x ", *p++);

fputs("\nAfter swab : ",stdout); p = flipped,;

for (loop=0; I|oop<sizeof words ; |oop++)
printf("%2x ", *p++);

}

Before swab: 01 00 Oa 00 64 00 e8 03 10 27
After swab : 00 01 00 Oa 00 64 03 e8 27 10

See al so: getw(), putw()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
sys_errlist(LIBC) sys_errlist(LIBC)

This function returns a pointer to an error nessage for a UNI X error.

char *sys errlist(errnum);
int errnum

errnum is the error nunmber of the desired nessage.

Descri ption

The sys_errlist() function is normally used by perror() to post an error
nessage to standard error. It can be used to obtain the error nessage
string associated wth any UNIX error. In this inplenmentation,
sys_errlist() uses the DOS error nessage dictionary to produce the error
nessage string for selected errors which have a near-UN X counterpart -
al though the actual text may not be that which is printed in sonme manual s
covering the UNI X system

Vr ni ng

UNI X inplenents sys_errlist as an array of strings; however, in order to
keep program occupied nenory to a minimum sys_errlist is inplemented in MC
as a function which generates the nessage as required rather than an array
of message strings. This is non-standard!

Note that the returned character pointer references static data which is
subj ect to change.

Exanpl e

extern char *sys_errlist();
mai n()
int i;
for (i=0; i<75; i++)
printf("%d = %\n",i,sys_errlist(i));
}

See al so: errno, perror()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
sysdat e(LI BC) sysdat e(LI BC)

This function returns the DOS 8-character date string.

char *sysdate(sdate);
char *sdat e;

sdat e is a pointer to your 9-character buffer.

Descri ption
This function obtains the 8-character date string from the system and
places it into your buffer appending a NULL follow ng the eighth character.
The string is in the format:
MM DD: YY\ O
Vr ni ng
Your buffer nust be a mninumof 9 characters in |ength.

Exanpl e

char buf[9];
mai n()

printf("The date is % and from buf: %\n", sysdat e(buf), buf);
printf("The tine is % and from buf: %\n", systine(buf), buf);
}

The date is 11/25/85 and from buf: 11/25/85
The time is 13:40:19 and from buf: 13:40:19

See al so: asctinme(), ctime(), localtinme(), systine(), time()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
syst em(LI BC) syst em(LI BC)

This function is used to invoke a DOS command from within a program and then
return to your program when the DOS command conpl et es.

int system(cmdstr);
char *cndstr;

crdstr a pointer to the string which contains the DOS conmand which is
to be executed.

Descri ption

If you want to execute a conmmand and return to your program use the
system() function. This function will pass the command string pointed to by
the pointer argunent or the command string passed as the function's
argument to the DOS conmand interpreter. Upon conpletion of the command,

control will be returned to the running program Your program and vari abl es
wi Il be saved during the execution of the command.

Ret urn Code
A return code of zero (0) wll be retrieved If the executing conmand
returns through @X T. If the @\BORT exit is taken, the return code gener-
ated will be obtained from the value contained in register pair "HL". If
this value is positive (i.e. bit 15 reset), it becones the return code. If
the value is negative (i.e. bit 15 set), then a negative one (-1) wll be
ret urned.

Exanpl e

#i ncl ude stdio.h
char buf[81];
mai n()
puts("Test of system()\n");
systenm("LIB");
puts("Hit EOF to exit back to DOS");
whi | e (TRUE)
{ puts("Enter command: ");
if (!gets(buf)) break;
printf("\nReturn code is %\n", systen(buf));

i)uts("Nowleavi ng system()...");
}

See al so: cndi (), execl (), execv()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
systime(LI BC) systime(LI BC)

This function returns the DOS 8-character tine string.

char *systinme(s_tinme);
char *s_tine;

s_tine is a pointer to your 9-character buffer.

Descri ption
This function obtains the 8-character time string from the system and
places it into your buffer appending a NULL follow ng the eighth character.
The string is in the format:
HH: MM SS\ 0
Vr ni ng
Your buffer nust be a mninumof 9 characters in |ength.

Exanpl e

char buf[9];
mai n()

printf("The date is % and from buf: %\n", sysdate(buf), buf);
printf("The tine is % and from buf: %\n", systine(buf), buf);
}

The date is 11/25/85 and from buf: 11/25/85
The time is 13:40:19 and from buf: 13:40:19

See al so: asctinme(), ctime(), localtinme(), sysdate(), time()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
t an(MATH) t an(MATH)

This function obtains the double precision trigononmetric tangent of an angle
gi ven in radians.

#i ncl ude <mat h. h>
doubl e tan(argx);
doubl e ar gx;

ar gx is the angle in radians for which the tangent is desired.

Descri ption

The function obtains the double precision trigononetric tangent of a double
preci sion argunent entered in radians. The result is double precision

Exanpl e

#i nclude stdio.h

#i nclude mat h. h

char inbuf[81]; double dl1, d2;
mai n()

puts("tan: Enter your nunber: EOF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;

d2 = tan(dl=atod(inbuf));

printf("The tangent of % is %\n",dl,d2);

}

tan: Enter your nunber: ECF to exit

1 | The tangent of 1 is 1.557408e+00
1.57 | The tangent of 1.57 is 1.255766e+03
1.6 |The tangent of 1.6 is -3.423253e+01

See also: ftan(), sin(), cos()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
t anh(MATH) t anh(MATH)

This function obtains the hyperbolic tangent for an angle in radi ans.

#i ncl ude <mat h. h>
doubl e tanh(argx);
doubl e ar gx;

ar gx is the angle in radians for which the hyperbolic tangent is
desired.
Descri ption
This function obtains the double precision hyperbolic tangent of its double
precision argunment entered in radians. It returns a double precision
result.
Exanpl e

#include stdio.h
#i nclude mat h. h
char inbuf[81]; double dl1, d2;

mai n()

puts("tanh: Enter your nunber: ECF to exit");
whi | e (TRUE)
{

if (!gets(inbuf)) break;
d2 = tanh(dl=atod(i nbuf));
printf("The hyperbolic tangent of %g is %\n",dl,d2);

}
}
tanh: Enter your number: EOF to exit
0.5 | The hyperbolic tangent of 0.5 is 4.621172e-01
1.0 | The hyperbolic tangent of 1 is 7.615942e-01
3.0 | The hyperbolic tangent of 3 is 9.950548e-01

See al so: sinh(), cosh()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
tell (LI BC) tell (LI BC)

This function obtains the current position of a file.

long tell(fildes);

int fildes;
fildes is the file descriptor of the file.
Descri ption

Tell () obtains the current position of the file identified by the file
descriptor, "fildes". The function is identical to

| seek(fildes, OL, 1)
and is consi dered obsol ete.
Ret urn Code

The file's position relative to the beginning of the file is returned as a
| ong i nteger.

See al so: |seek(), open(), creat(), fseek()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
ti me(LI BC) ti me(LI BC)

This function obtains the UNI X time neasured in seconds.

long tine(0);
long time(tloc);

l ong *tl oc;
tloc is a non-zero pointer where the returned value will also be
st or ed.
Descri ption

The UNIX tinme is defined as the nunber of seconds since 00:00:00 standard
local time January 1, 1970. As long as "tloc" is not zero, the return val ue
is also stored at the location pointed to by "tloc".

Exanpl e
mai n()
| ong tod;
ti me(&tod);
printf("Time nowis %d seconds since 1/1/70\n", tod);
printf(" in ASCII is 9%",ctinme(& od));
}

Tinme now is 501780054 seconds since 1/1/70
in ASCII is Mon Nov 25 15:20:54 1985

Tinme now is 501780066 seconds since 1/1/70
in ASCI| is Mon Nov 25 15:21:06 1985

See al so: asctinme(), ctime(), localtinme(), systine(), sysdate()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
toascii (LI BC) toascii (LI BC)

This function is used to convert a character to ASClI.

char toascii(¢);

char c;
c is the character under test.
Descri ption

Toascii() converts the character under test to ASCI|I by stripping bit_7
fromthe character passed as the argunent.

Ret urn Code
The function will return the converted character, as required.
Exanpl e
char *p,*input="Thls Is A f\xf5NnY \ xD3t R nG';
mai n()
p=i nput - 1;
whil e (*++p)

*p=toascii (*p);
put s(i nput);
p=i nput - 1;
whil e (*++p)
*p=t ol ower (*p);
put s(i nput);
p=i nput - 1;
whil e (*++p)
*p=t oupper (*p) ;
put s(i nput);
}
This I's A fuNnY StRinG
this is a funny string
THIS I'S A FUNNY STRI NG

See al so: tol ower(), toupper()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
t ol ower (LI BC) t ol ower (LI BC)

This function is used to convert a character from upper or |ower case to |ower
case.

char tolower(c);
char c;

c is the character under test.

Descri ption

Tol ower is used to convert an upper-case character <A through 'Z' > to a
| oner - case al phabetic <'a' through 'z'> The function affects only al pha-
betic characters; nunbers, special synbols, etc., are returned unaltered.

Ret urn Code
The function will return the converted character, as required.
Exanpl e
char *p,*input="Thls Is A f\xf5NnY \ xD3t R nG';
mai n()
p=i nput - 1;
whil e (*++p)

*p=toascii (*p);
put s(i nput);
p=i nput - 1;
whil e (*++p)
*p=t ol ower (*p);
put s(i nput);
p=i nput - 1;
whil e (*++p)
*p=t oupper (*p);
put s(i nput);
}
Thls Is A fuNnY StRi nG
this is a funny string
THIS | S A FUNNY STRI NG

See al so: toascii(), toupper()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
t oupper (LI BC) t oupper (LI BC)

This function converts a character from|ower or upper case to upper case.

char toupper(c);

char c;
c is the character under test.
Descri ption

Toupper() performs the function opposite to tolower(); a |ower case
character is converted to upper case. The function affects only al phabetic
characters; nunbers, special synbols, etc., are returned unaltered.

Ret urn Code
The function will return the converted character, as required.
Exanpl e
char *p,*input="Thls Is A f\xf5NnY \ xD3t R nG';
mai n()
p=i nput - 1;
whil e (*++p)

*p=toascii (*p);
put s(i nput);
p=i nput - 1;
whil e (*++p)
*p=t ol ower (*p);
put s(i nput);
p=i nput - 1;
whil e (*++p)
*p=t oupper (*p) ;
put s(i nput);
}
This I's A fuNnY StRinG
this is a funny string
THIS I'S A FUNNY STRI NG

See al so: toascii(), |ower()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
ttyname(LI BC) ttyname(LI BC)

This function obtains the file name of the termi nal device associated with an
open file descriptor.

char *ttynane(fildes);

int fildes;
fildes is the file descriptor for which the term nal nane is desired.
Descri ption

This function returns a pointer to the name of the character special file
(i.e. device) identified by the file descriptor, "fildes".

Vr ni ng
The returned pointer references static data which is subject to change.
Exanpl e
/* cktty/ccc */
extern char *ttyname();
mai n()
int fildes;
for (fildes=0; fildes<3; fil des++)

printf("The name of fildes % is %\n",fildes,ttyname(fil des));
}

cktty #*pr

The name of fildes 0 is *Kl
The nanme of fildes 1 is *DO
The nanme of fildes 2 is *PR

See al so: isatty()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
unget c(LI BC); ungetch(LIBC) unget c(LI BC); ungetch(LIBC)

These functions can be used to return a single character to a file stream

int ungetc(c, stream);
char c; FILE *stream

int ungetch(c);
char c;

c the character or byte to un-get.

stream the file pointer obtained from fopen().

Descri ption

The opportunity may present itself where a character that has been obtai ned
via getc() is not needed and should be left available for the next getc()
i nvocati on. The ungetc() function can be used to store this character in a
one-character buffer associated with the file stream

The ungetch() function is identical to the construct, ungetc(c,stdin);.
Note, the scanf() function uses ungetc().

Ret urn Code
If the one-character buffer is already storing a character from a previous
ungetc(), EOF will be returned; otherw se, NULL will be returned.

VMr ni ngs

The file pointer passed as the stream argunent of the function nmust be one
obtained from fopen(). Do not use ungetch(fpup(fildes)) as the block file
1/0O functions do not utilize the ungetc() buffer. The ungetc() storage is
shared with the storage of the last DOS error nunmber encountered.

Exanpl e

/* after newine, strip line feed if present */
if ((c=getchar()) != '"x0a') ungetch(c);

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
unl i nk(LI BC) unl i nk(LI BC)

This function is used to delete a file from di sk.

int unlink(path);
char *pat h;

pat h the file specification of the filethat is to be renoved.

Descri ption

This function perfornms the same operation as the DOS function to delete a
file [LDOS - KILL, TRSDOS - REMOVE]. The file nust not currently be open in
the MC file system

Ret urn Code
The return code will be NULL if the file is unlinked without error. A
return code of EOF indicates that an error has occurred and the gl obal
error variable, errno, will contain the UNI X error nunber associated with
the error.

Vr ni ng

It is an error to try to unlink a file which is currently open [via

fopen(), open(), dup(), dup2(), or creat()] in the MC file system and
unlink() will not permt the deletion.
Exanpl e

#i ncl ude <stdio. h>
mai n(argc,argv) int argc; char *argv[];
{
FILE *fp;
if (argc==1)
{ puts("Usage: testunlk filespec [inhibit]\n"); exit(-1); }
if (argc == 3)
if ((fp=fopen(argv[1l],"R"'))==NULL)
{ printf("Error in opening %\n",argv[1]); exit(-1); }
printf("Unlink's return code = %\ n",unlink(argv[1]));

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
write(Ll BC) write(Ll BC)

Wite() is used to wite a block of bytes to a file.

int wite(fildes, buffer, n);
int fildes, n; char *buffer;

fildes the file descriptor of the file.
buf f er a buffer containing the bytes to wite.
n the nunber of bytes (block size) to wite
Descri ption
The wite() function will wite a nunmber of bytes equal to the "n" argument

or until an error in witing is detected. Use |seek() or seek() to position
to the start of where witing is to occur. If you are witing sequentially,
a seek operation is not needed. The bl ock size which is optinmm for speed
of throughput will be a nultiple of the file's sector size which is defined
as BUFSIZ in the "stdio" header file.

Ret urn Code
The exact nunber of bytes witten will be returned as the function's return
code. If this nunber does not equal "n", then an error has occurred and the
gl obal error variable, errno, will contain the UNI X error nunber which

describes the error. The DOS error nunmber may be obtained with ferror().
Exanpl e

creat _file(nanme) char *nane;

{ int i,fd;
if ((fd=creat(name, 0777))==EOF) open_error(nane);
for (i=0;i<10000;i ++)

{
if ((wite(fd,itoa(i,record), 10))!=10)

{ printf("Error in witing %\n",nane); exit(-1); }
cursor (10, 3); /* position cusor */
printf("Witing record %d\n",i);

}
cl ose(fd);

}
See al so read(), open(), |seek()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
_xl ate(LI BO) _xl ate(LI BO)

This function obtains the equivalent UNI X error nunber of a DOS error.

int xlate(errnum);
int errnum

errnum is the DOS error nunber for which the UNI X equival ent is desired.

Descri ption

This is not a standard UNI X function; thus, it is not portable across C
i mpl ementations. OF course, DOS error codes are not portable, either. The
error nunber may be one obtained fromferror(). The UNIX errors are defined
in the "errno" header file. A Unix error may be displayed via perror() or
the error nessage obtained via sys_errlist().

Exanpl e
mai n()
int i;
for (i=0; i<25; i++)
printf("9®2d ",i);
putchar('\n");
for (i=0; i<25; i++)
printf("9®2d ", xlate(i));
}

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
00 04 02 04 04 04 06 04 08 04 02 04 04 04 04 15 16 04 04 16 04 04 04 04 24

See al so: perror(), ferror(), errno, sys_errlist()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
xtoi (LI BC); xtol (LIBC) xtoi (LI BC); xtol (LIBC)

This function is used to convert character strings of hexadecimal digits to
their integer or long integer val ue.

int xtoi(string);
char *string;

long xtol (string);
char *string;

string is a string containing hexadecimal digits <0-9, a-f, A-F>.

Descri ption

This C function obtains the machine value of a string of hexadecimal digits
in character form (i.e. conposed of nothing but characters in the range O-
9, a-f, and A-F). Left truncation of the integer value takes place if an
excess nunmber of digits is present (i.e. ival=xtoi("10001"); would result
in the integer value of 1 decinmal). Conversion stops as soon as the first
character not in the valid range is detected

Ret urn Code

The obvious return code of the xtoi() function is the integer value of the
string. The xtol () function returns a long integer.

Exanpl e

#i nclude stdio.h

char inbuf[81]; int ival; long lval;
extern long xtol (); /* to show that function returns a |long */
mai n()
{ put s("Enter your hexadeci mal nunber: ECF to exit");
whi | e (TRUE)
{ if (!gets(inbuf)) break;

i val =xt oi (i nbuf);
I val =xt ol (i nbuf);
printf("Nunber in decimal (int|long)is: (%] %d)\n",ival,lval);

}

Enter your hexadeci mal nunber: EOF to exit
1234 | Nunber in decimal (int|long)is: (4660|4660)
12345 | Nunmber in decimal (int|long)is: (9029| 74565)
fffff |Nunber in decimal (int|]long)is: (-1]1048575)
abcd | Number in decimal (int]long)is: (-21555|43981)
8000 | Number in decimal (int]long)is: (-32768|32768)

See also: atoi(), atol(), btoi(), btol(), otoi(), otol ()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved
zero(LI BC) zero(LI BC)

This function will fill a nenmory block wi th binary zeroes.

voi d zero(address, length);
char *address; unsigned | ength;

addr ess is the starting address of the menory region to zero.
| engt h is the nunber of nmenory cells to zero
Descri ption

This function is equivalent to "fill(address, length, 0);".
Exanpl e

#define Sl ZE 4096
mai n()
{
char *p, *s
if (!'(p=alloc(SIZE))) /* allocate non-zeroed nmenory bl ock */
abort();
if (!(s=malloc(SIZE))) [/* allocate zeroed menory block */
abort();
if (menmcnp(p,s, Sl ZE))
puts("Before zero(): nenory conpares different");
zero(p, Sl ZE);
if (menmcnp(p,s, Sl ZE))
puts("After zero(): menory conpares different");
el se
puts("After zero(): nmenory conpares sanme");

}

Before zero(): nenory conpares different
After zero(): nmenory conpares same

See also: fill(), menmset()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Advanced Topi cs

Runtinme options and I/ O control

Runtime options provide flexibility in custom zing sone aspect of the program
that you are developing. Note that the option support provided in MC is not

something usually found in other C conpilers; or where provided, it would
typically be inplenented in some other manner (such as forcing you to edit
some library or invoke sonme function other than a standard function). What

this nmeans is that when you utilize these options, a little lack of port-
ability is introduced into your C source program You therefore should
adequat el y docunent your use of these options so that you may recognize their
ef fects when you choose to port your programto some other system

MC provides a few different facilities for invoking options. The specific
facility used depends on the scope of the desired effect. For instance, the
"#option" preprocessor directive is wusually used to change which library
nodul es are to be included during the link session. The "option()" function is
used to alter the behaviour common to the entire 1/0O package while the
"ioctl ()" function is used to alter the behaviour of a specific device. In
addition, conpiler options, such as "+f", alter a particular aspect of the
conpi l er' s behavi our.

The following sections include material on various options. Some of the
materi al enhances the information provided el sewhere in this docunment while
other material specifically documents the use of an option facility.

ERRORMSG

The 1/ 0O package provided in LIBC has the capability of invoking the DOS I/0O
error handler when any error is indicated by a DOS service call. This handler
uses the "@RROR' DOS facility. Since the DOS error facility always issues its
error nmessage display through the "*DO' device, any display wll be
irrespective of standard output or standard error output redirection. The
default state of "errornsg" is FALSE; thus, any detected error wll not

initiate a request to the DOS error handl er.

There will always be sonme error returned froma library function when a DOS
1/O error has been detected regardless of the state of "errormsg". Using the
function's error indication, along with any DOS error available via ferror()
or the UNIX error variable, "errno", and perror(), your program can obtain
some "controlled" error nessage display. A controlled display is usually nore
appropriate for an installed program The error return codes are docunented
for each function in Chapter 4, "Library Functions", where applicable.

During program devel opnment, you may desire to have the DOS 1/O error nessage
di spl ayed automatically upon detection of an I/O error. Al you need do is set
the "errornsg" flag to TRUE. The state of this flag is altered by coding the
option() function as foll ows:

opt i on(O_ERRORVSG, TRUE) ;

wi thin your C source program The synbolic constant "O ERRORMSG' is defined in
the stdio header file. When an 1/O error occurs, the DOS error handler wll
report an error diagnostic simlar to the follow ng:

** Error code = 24, Returns to X 363F
** File not in directory

File = NOSUCHF/I LE: 7

Last SVC = 102, Returned to X 1A19'

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

BRI EF

This option works in concert with "errornsg”". The DOS provides a facility for
specifying a long or a short (brief) error diagnostic display nessage. If the
| ong nmessage identified above is too lengthy, it can be shortened to:

File not in directory
by invoking the option() function as foll ows:

opti on(O_BRI EF, TRUE) ;

The synbolic constant "O BRIEF" is defined in the stdio header file. Note that

neither the long error diagnostic nor the short error diagnostic wll be
di spl ayed unl ess "errornsg" has been opti oned TRUE.
KBECHO

In certain types of progranms, such as screen and graphics editors, the
programmrer nmay choose to control the display of characters typed at the
keyboard. However, for npbst prograns it is desirable to be able to see what is
being typed wi thout overt action on the part of the program even if standard
out put has been redirected. The "kbecho" option allows this flexibility. Wen

set TRUE, "kbecho" will cause the getc() function (and |ikew se the getchar()
function) to echo all characters input fromthe keyboard to the video display
device (*DO). This holds true for ANY file opened as "*KI", not just the

standard input. Since "kbecho" defaults to FALSE, if you desire its effect,
you need to set it TRUE by invoking the option function as foll ows:

opti on(O_KBECHO, TRUE) ;

The synbolic constant "O KBECHO' is defined in the stdio header file. The
state of "kbecho" (i.e. FALSE to TRUE and TRUE to FALSE) nmay be freely altered
whi |l e your programis running.

BREAK

The TRSDOS 6 keyboard driver provides a facility for generating an end of file
i ndi cation by a specific conbi nation of keystrokes (specifically,
<CTRL><SHI FT><@). Thus, an ECF can be generated from the keyboard just Iike
an EOF is generated when reading a file stream and the end of the file is
reached. Unfortunately, LDOS 5.1 does not have such a capability. Therefore,
an option has been provided to enable the <BREAK> key to be used as an EOF
indicator. This option is device specific; thus, it is enabled or disabled via
the ioctl() function. The option is operational on all MC rel eases. You should
read the docunmentation on the ioctl() function contained in Chapter 4,

"Function Libraries". The "break" option appears in nunmerous exanples
t hr oughout chapter 4.

W LDCARD

The "wi ldcard" facility in MC provides an automatic search of a disk directory
so as to expand a command line wldcard file specification argument into a
vector of all file specifications found in the directory which match the
wildcard file specification found on the command |line. The wildcard file

specification is interpreted as containing three fields: a file nane, a file
extension, and a drive specification.

A wildcard file specification uses two special characters significant for
mat chi ng purposes: the asterisk "*" and the question mark "?". The question

mark will match any character in that character position. The asterisk is used
to match all trailing characters in that field. Wen the asterisk is used, it
should be the last character in a field (the "last"™ mght also be the

"first"). The drive specification field does not accept the two "matching”
characters but is considered to be an asterisk if the field is omtted.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Since the design of a program nust specifically take into account the use of
wi | dcards, the w ldcard expander nodule contained in LIBC is not nornally
linked to your program You specify the use of wldcards by adding an
"#option" directive to your program such as the follow ng:

#option wildcard

As is typical with other #option directives, the operand may be upper or |ower
case. The "wildcard" option directive can also be used to informthe wildcard
expander that you want it to ignore checking the first "n" argunents for
wi | dcards. This is acconplished by specifying the directive as:

#option wildcard nskip

The "nskip" operand is the quantity of argunents that should be skipped. Note
that the first argunent, argv[0], is always the program name and is never
included in the "nskip" count. If no argunents are to be skipped, the "nskip"
operand MUST be onmitted; do NOT enter it as a ZERO This argunent skipping
facility allows you to accept pattern-matching argunments on the command Iine
wi t hout worrying about them being interpreted as w ldcards. The appearance of
the "#option wildcard" directive in either formwll automatically alter the
conditions established in the MJASMfile so as to link the wldcard expander
nodul e to your program during the Iink session.

The typical command |line would use one or nore wldcard specifications to
designate a collection of files for an input stream Any output generated by
the program would need to use the standard output stream which may be
redirected on the command |line or reopened within the program by the freopen()
library function. A command line could also include "sw tches" which are
usual |y prefixed by a plus or nminus sign.

The following rules are used by the w ldcard expander in determ ning whether a
command |line argunent is to be interpreted as a wildcard specification:

1) The first conmand line argument is always interpreted as the invoked
program nane; thus, it is not treated as a w ldcard.

2) The next "nskip" argunents encountered on the command |ine are passed
unchanged to the argunent list; they are never treated as wildcards.

3) Any argunent enclosed in either single quotes or double quotes is NOT
treated as a wldcard, regardless of the presence of any wldcard
characters (*,?) within the text of the argunent.

4) 1f the first character of an argument is a question mark, the argunent
is interpreted as a wldcard.

5) If the first character of an argunent is an asterisk and the follow ng
character is not al phabetic, the argunment is interpreted as a w | dcard.

6) If the first character of an argunent is an asterisk and the follow ng
character is an alphabetic, the argument is not interpreted as a
wi | dcard but as a possibl e devicespec.

7) If the first character of an argument is an al phabetic, then the entire
argunment is scanned for wldcard characters (*,?). If any are found,
the argument is considered a wildcard, otherwise it is passed unchanged
to the argunent |ist.

Non-wi | dcard arguments are included in the argument list in their position
relative to adjacent argunents. WIldcard arguments force a search of the
appropriate directory for matches to the wldcard specification. If the drive
specification is omtted from the wldcard specification, the directories of
all connected disk drives will be scanned for file specifications that match
the wldcard specification. Note that a device specification (the typical
devi ce specification is an asterisk followed by two al phabetic characters) is
still interpreted as a device specification since an al phabetic followi ng an

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

asterisk will not be interpreted as a wildcard file specification. Note that
argunments enclosed within single or double quotes will not be expanded; they
are not treated as wil dcards.

If the command line includes one or nore wildcard specifications and no match
is found during the directory search(es), the diagnostic nessage:

No files matched wi | dcard(s)
wi Il be displayed and the programwi ||l abort. This acts as a safety valve to a

program that could not function since no input file specification was
provi ded.

The followi ng test program can be used to illustrate the expansion effects of
various comand |ines that include one or nore w |l dcards.

/*

* WLDTEST/CCC - test "built-in" wldcard arg expander

*/

#i ncl ude <stdio. h>
#opti on W LDCARD
int i;
mai n(argc, argv)
int argc; char *argv[];

printf("argc: %, argv: %04X\n\n", argc, argv);

for (i = 0; i < argc; ++i, ++argv)
printf("argv[%d]: %#t04X is "%'\n", i, *argv, *argv);
}
The follow ng program reads a collection of assenbler source files and wites
to the standard output, all lines that begin with a comment indicator (the

sem colon). The w ldcard expander nekes it easy to specify the collection of
"*/ASM' files on a particular drive for use as input.

#i ncl ude stdio.h
#option w | dcard
char buffer[81];
mai n(argc, argv)
int argc; char *argv[];

while (--argc) /* while there is still an input spec */
{

if (!'freopen(*++argv,"r",stdin)) /* attenpt to open it */

fprintf(stderr,"Unable to access %s\n", *argv);
conti nue;

}
while (gets(buffer)) /* while the file still has input lines */
{

if (*buffer =="';") [* if a coment, then output it */
if (puts(buffer)==EOF) /* continue if no output error */
exit(-1); /* error exit */

Compiler "float" option

K&R is quite specific concerning the operational characteristics of floating
poi nt nunbers. In paragraph 6.2, they state, "All floating point arithnmetic is
carried out in double-precision; whenever a float appears in an expression it
is |l engthened to double by zero-padding its fraction.” Wiat this nmeans is that
double precision floating point arithnetic is the norm for a standard C
conpiler. The type of float is available only to linmt the storage of floating
poi nt nunbers; arithnetic is carried out in double precision. Thus, C dictates

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

an automatic wupward conversion of floats to doubles for calculations.
Furthernore, in paragraph 10.1 concerning the paraneter list of a function,
they state, "C converts all float actual paraneters to double, so formal
paraneters declared float have their declaration adjusted to read double."

VWhat these preceding statenents nmean is that a standard C conpiler has no
facility for calculating with single precision floating point; double
precision is the standard. MC follows this standard; however, since MC is
targeted for a machine environnent which is necessarily slow in perfornmng
doubl e precision floating point calculations, an option has been provided to
specify a non-standard single precision floating point npode. Bare in mnd,
this option is not w thout headaches. Great care nmust be exercised in its use.
You al so nust thoroughly understand the behavi our of the conpiler when dealing
with the argunents of a function.

Since any float argunent to a function is always converted up to a double,
none of the single precision functions provided in the math library [fabsf(),
fatn(), fcos(), fexp(), ffix(), fint(), flog(), fraise(), frnd(), fseed(),
fsin(), fsgn(), fsqr(), ftan(), and ftoa()] may be used in the normal conpiler
node. You cannot explicitly cast a float argunent to a float and override this
upward conver si on.

The default conpiler npde for floats is to treat them as doubles in three
pl aces:

(1) When used in a conpl ex expression.
(2) When passed as actual arguments to functions.
(3) When declared as formal argunents in function definitions.

The "+f" option disables all three. It also causes floating point constants to
be treated as float, not double, thus causing a (possible) loss of precision.
It also allows you access to the nuch faster single precision floating point
functions (with a resultant |oss of accuracy). The "+f" conpiler option does
not prevent you from using any double precision function or performng any

conpl ex expressi on evaluation that m xes floats and doubles. Floats will still
be upgraded to double when in an expression with a double (see the Arithnetic
conversion specifications noted under "binary operators" in Chapter 2).

Explicit casts to float or double may thus be necessary in certain places. For
i nstance, the various print() functions ALWAYS expect a double for a floating

point argument. |f you have invoked the "+f" conpiler option and pass a float
as a print() paraneter, you nust explicitly cast it to a double since the
conpiler will no longer do this for you. Al this boils down to a couple of

observati ons:

(1) Use this option sparingly; only when |ower precision is acceptable
and/ or when faster execution is desired and/or when code/data space is
at a prem um

(2) The generated code is obviously non-portable.

(3) M xing of doubles and floats is not recomnmended.

(4) The need for casts forces the code to get sonmewhat tricky in places.

Call: DOS SVC interface

You will wusually find the C |angauge useful in witing DOS utility prograns
which extend the capabilities of the DOS just like the DOS provided library
commands. Such utility progranms may need direct access to DOS service calls.
Since these types of prograns are DOS specific in nature, there is usually no
need to worry about portability aspects; however, it is always wi se to provide
some standardi zed nethod of isolating the non-portable DOS interface. Thus,
the progranmer has been provided with a function in the installation library
that provides a | evel of standardization. This is the call() function.

The call() function has been provided in the installation library to
standardi ze the invocati on of nmachi ne | anguage routines and DOS service calls.
The use of call () is thoroughly documented in Chapter 4, "Function Libraries".
The call () function saves the state of the index registers, I X and IY, during

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

its execution; thus, there is no restriction on its use. Note that the

function will either invoke a system SVC or directly CALL a nachine address
based on the "address" parameter value passed in the function's invocation.
That neans that even in an SVC interfaced DOS, it is still possible to use

call () to execute and return from a nenory resident nachine |anguage nodul e
which is external to the C program s environnent.

Separate Conpil ati on of Mdul es

MC supports separate conpilation: functions and nodules can be conpiled at
different times, assenbled separately, then linked together to produce one
program This facilitates the «creation of relocatable nmodule function
libraries, and results in great tinme savings. Commonly used functions can be
conpil ed and assenbled once, then only linked into new prograns, wthout
reconpiling or assenbling. Large prograns may be segnmented and each segnent
conpi |l ed and assenbl ed separately, then linked as a whole by the linker. Wth
the "extern" and "static" statements, the variables used in a nodule may be
specified as external or |ocal.

VWhen separately conpiling nbdules that reference variables in other npdules,
there is only one approach that may be taken to supply declarations for the
shared variables. That approach, which is the proper nmethod and results in
better structure in programs, is to define variables as extern when referenced
by all but one of the nodules with that one nodule defining the "public"
vari abl es outside of all functions that it contains.

To illustrate the nechanics of separate conpilation, consider a |arge program
whi ch has been broken up into four separate C source files. The files are:
"progmai n", "progio", "prognenu", and "progwork". Each of these files may be

conpiled with a JCL command |ine such as:
DO MC (N=pr ognane, C)

The JCL paraneters specify the nane of the file to be conpiled (N=prognane)
and the conpile option (C). After the JCL has been invoked for each of the C
source files, this results in four assenbly output files. Following the
conpil ation phase, the three subordinate files ("progio", "progmenu", and
"progwork") can each be assenbled to a separate relocatable nmodule with a
command such as:

MRAS progname - NL
MBO pr ognane=pr ognane

which results in the generation of a /REL file with the sane filenane as
"prognanme". The "progmain" file which includes the main() function would be
assenbled with a command |ine such as:

MRAS MC +| =PROGVAI N +O=PROGVAI N - NL
MBO prognanmepr ognhamne

The difference in this MRAS invocation is that the MJASMfile is the primary
file to be assenbled with "progmain" as an "INCLUDE" file. The "+O=PROGVAI N'
is used to override the default output file name with a specific designation
of "PROGMAIN'. The "progmain" file could also be conpiled and assenbled in one
command step via the JCL command string previously shown by adding the JCL
paraneter, "A', as in:

DO MC (N=prognane, C, A)

The subordinate files cannot be conpil ed and assenbled in one JCL conmand step
with the MCJJJCL file supplied; however, it could be done by altering the MRAS
i nvocation command line in the JCL file to appear like the first illustration.

Once all of the four files have been conpiled and assenbl ed, you generate the
executable command program wth the Iinker. To <continue wth this
illustration, an appropriate |link comand woul d be:

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

M1 NK PROGVAI N, PROG O, PROGVENU, PROGWORK- N=PROG . d- E
L80 PROG d- N, PROGVAI N, PROJ O, PROGVENU, PROGWORK, - E: MBOBGN

where the ":d" would be replaced with the output drive specification. The
resul ting executable command file would be named "PROGVAI N CMD".

OQobviously, the rationale for using this separate conpilation approach would be
to limt your developnent efforts to nmore managable "chunks" of code. You
would rarely be working on all of the files sinmultaneously but would npst
likely conplete the devel opment of a subordinate nodule (conpile and assenble
steps) prior to continuing with the remaining nodules. This provides a schene
of partitioning your programinto a sequence of small devel opnent efforts.

An alternative nmethod of partitioning a large program into small "chunks"
would be to isolate every function into a separate file. Conpile and assenbl e
each function individually. Wite small test prograns to exercise each

function separately, then build a library, say PROGIB", with the relocatable
function nmodul es. Your "progmain" could then just declare an "#opti on PROGLI B"
to search the library during the link process. See the section on "Building
and Mai ntaining Relocatable Libraries" in this chapter.

Usi ng extern and static

VWien writing a large program it is best to try to logically structure your
program into nodules containing related functions with the data structures
they use wthin the same nodule. Any functions or non-automatic data
structures in a nodule that need not be accessed by any external function can

be declared as "static". These static functions and variables will be unique
in nane when conpiled and assenbled, and wll not be accessible to other
nodul es; thus, there will be no conflicts in nam ng.

Those functions and non-automatic data structures declared in the nodul e which
need to be accessed by functions in other npdul es should be declared w thout
any storage class. This causes these functions and data structures to becone
"public", meaning that they are defined in this nodule, and can be accessed
from ot her nodul es.

When a nodule uses a function or data structure declared in another nodul e,

the "extern" statement is used to declare the type of the object. "extern" is
required for accessing variables outside the nodule. However, if a function is
used without an "extern" declaration, the conpiler wll assume that the
function returns an integer value. If any other result is returned, the

function nust be declared "extern" with the appropriate type.
A few exanples may help you appreciate the distinctions being addressed here.
Spend a little time studying the C source code declarations in the follow ng
nodul e until you understand the accessibility of each variable.

int varil; /* public to all functions of all nodules */

static int var2; /* accessible to functions which follow in
this nmodule: main(), funcl(), func2() */

mai n()
{ static int var3;/* local to main only */

int var4; /* local to main only */
}
int var5s; /* public to all functions of all nodul es */
static int var6; /* accessible to functions which follow in

this nodule: funcl(), func2() */

funcl()

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

{ int var7; /* local to funcl only */
static int var8;/* local to funcl only */
}
static int var9; /* accessible to functions which follow in
this nodul e: func2() */
func2()
{ }

The variables "varl" and "var5" becone public to all nodules because these
vari abl es are defined outside of all functions of this nodule and are al so not
defined with a storage class. Thus, sone other npdule may access these two
variables if that other npdul e includes the statenent,

extern int varl, varbh;

Now even though "var2", "var6", and "var9" are variables defined outside of
all functions in this npdule, since they have the storage class "static", they
beconme accessible only to the functions within this nmobdule. In fact, note that
a static variable defined outside of a function becones accessible only to the
functions that follow the declaration. Thus, "var2" is accessible to main(),
funcl(), and func2(); but "var6" is accessible only to funcl() and func2()
since it is declared follow ng main().

Static variables declared inside of a function are local only to that
function. The primary difference between a static and an auto is that a static
has a specific menory storage assi gnnment whereas an auto's storage is strictly
on the stack. Statics are generally accessed faster than autos; thus, if speed
is inportant, consider the use of statics. The contents of such static
vari abl es al so persist across repeated calls to the same function.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Bui | di ng and Mai nt ai ni ng Rel ocatabl e Libraries

We encourage C users to create libraries of comonly used functions. This
i ncreases your productivity, since functions need not be rewitten for each
program A library should contain self-contained functions; i.e, they do not
require the calling function to know about the library nodule's internal
structure, and do not assume anything about data structures that the calling
function declares. In structured progranming lingo, library functions should
be data-coupled and functionally cohesive. Also, functions should be tested
and be well debugged before being placed in a function library.

The first point to make concerning relocatable libraries is that the filenane
field of a library file specification cannot exceed seven characters. The
second point is if you name your library "USERLIB", you need take no further
action after you have built the library.

If you are using the MRAS assenbl er package, building a library is very easy
since you have the MIB relocatable nodule librarian. M.IB is used to build
and maintain relocatable libraries. If you have no library of your own already
built, you start just by using the "load library" MIB conmand and |oad a
conpi |l ed and assenbl ed function (a nodule). You can continue to add additional
conpi |l ed and assenbl ed function nodul es via the "add nodul e" M.IB conmand. The
library is "built" in nenory as the nodules are added; then you wite it to
di sk via the "save library” MIB comand.

If you are using the MBO assenbler package, you may not have access to a
convenient librarian such as MIB. Thus, you nust build your library
sequentially by appending nodul es together using the APPEND |ibrary command
provided with your DOS. Any nunber of functions can be added in this fashion;
however, since you have no facility to extract or rearrange the library
nodul es, renenber to save a copy of each nodule individually on an archive
di sk. When you use the APPEND command to add each nodule, use the STRIP
paranmeter of APPEND to renove the end of file byte (X 9E') fromthe library
file when you are appending a nodule to the library. For instance, if you want
to build a NEWIlibrary conposed of three nodul es naned "eenie", "neenie", and
"mnie", the sequence of conmands woul d be |ike the follow ng:

COPY EEN E/ REL USERLI B/ REL
APPEND MEENI E/ REL USERLI B/ REL (STRI P)
APPEND M NI E/ REL USERLI B/ REL (STRI P)

The first command is used to copy the first npdule into a new file called
"userlib/rel". The subsequent APPEND commands will append the second and third
nodul es to the "library" while the use of the "strip" paraneter tells APPEND
to backspace over the last byte of the Ilibrary file (the X 9E) before
appendi ng the new nopdul e.

A library is normally searched by the |linker sequentially from beginning to

end unless the library is constructed as an "indexed relocatable” library
(IRL) by the M.IB librarian. Therefore, the order in which functions are
placed in the library becones inportant. If a function of a nodule in the

library is called by another function in another nodule within the library,
then the calling function's nodule nust appear first. This is because the
external reference for the called function wll not be sensed until the
calling function is linked. So the general rule is: Calling functions first,
call ed functions |ast.

Note that in the above discussion, it was reconmended that you nane your
library "USERLI B/ REL". That's because there are two files provided with the MC
package which need to be adjusted depending on the name and quantity of user
provided libraries. The first file which needs nodification is the MCMACS/ ???
file (where ??? could be ASM or MAC dependi ng on the assenbler you are using).
For each user provided library you want to have searched, the definition,

@ L1 BRARYNAME DEFL 0O

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

nust be added to the list of "established defaults". In the follow ng excerpt
of the provided file,

; establish defaults for MC options
@MATHLIB DEFL 0

@I NLI B DEFL O

@ARGS DEFL -1

@ REDI RECT DEFL -1

@FI XBUFS DEFL 0

@ MAXFI LES DEFL 13

@USERLIB DEFL 0

note that the declaration for a "userlib" library has already been inserted
(the seventh line). There is no requirenent for any specific position of the
declaration in this file. It can be placed anywhere.

The other file which needs to be altered is the MJ??? file. This file nust
i ncl ude the statenents:

I F @ L1 BRARYNAME
$REQ LI BRARYNAME
ENDI F

Contrary to the insertion into the MCMACS/ ??? file, the positioning of these
statements is very inportant in the MC/??? file. The follow ng excerpt of the
provided MC/??? file shows that the statements needed for a library naned
"userlib" have already been included.

LD HL, O :Set return code

PUSH HL

CALL EXIT :Back to DCS

| F @ USERLI B ; TRUE i f #option USERLIB
$REQ USERLI B

ENDI F

| F @ MATHLI B ; TRUE i f #option MATHLIB
$REQ MATH

ENDI F

| F @I NLIB ; TRUE i f #option INLIB
$REQ I'N

ENDI F

$REQ LI BC ;Standard Iib al ways!
$REQ LI BA ;Run-time lib al ways!

The "$REQ' assenbler macro statenent passes a request to the linker to search
the designated library. Note that the "userlib" request precedes those for
MATH, IN, LIBC, and LIBA. This nmeans that your "userlib" is searched before
any of the MC provided libraries. It was stated above that calling functions
nust precede called functions in a library. Likewise, it is also mandatory

that a library that has functions that call functions in another library nust
be searched prior to the library that contains the called functions. This
neans that the functions in your library have access to all of the functions

in MATH, IN, LIBC, and LIBA but that no function in those libraries can "call"
any of your user provided functions.

The order of library requests is significant when you want to provide a second
user library, say MYLIB. If the request statenents for MYLIB are inserted into
MC/ ??? prior to the statenents for USERLIB, then no function in "userlib" can
call a function in "nylib" but functions in "nylib" can call functions in
"userlib". These restrictions could be overcone by adding nultiple library
search requests during a manual invocation of the linker; MINK or L80.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Progranms with overlays

MC provides a support function and interface control for the devel opnent of a
conpl ex program environnment involving a root program and one or nobre overlay
prograns. The generation of the root and overlay files requires the use of the
M.INK |'inker provided with the MRAS assenbl er devel opnent system Depending on
the total size of the relocatable nodul es maki ng up the root and the overl ays,
you may need to invoke the virtual nemory facility of the linker. This is
di scussed in the linker docunentation. The design of a C program environnent
that uses overlays is a conplex procedure. It will certainly be difficult to
provide an in-depth analysis of all details concerning the design of such a
conpl ex program environnent. This section will cover only the nechanics for
the procedure, not the underlying rationale behind the design of such a
conpl ex program

In general, a root nodule contains all of the functions and external variables
that must be accessible to the root and all overlay nodules. The root nodul e
contains the function, main(), and also nust contain the overlay handler
provided in the INREL installation library, execovl(). Each overlay nodule
nmust contain a simlar "main" function called ovmain(). Your job is to decide
how your program environnent is to partition itself into root and overlay
nodules. In order to acconplish this, you need to understand exactly what
overlay support is provided.

To begin with, there is absolutely NO facility provided for the automatic
| oading of an overlay when a function is called. Your program MJST know it
wants to access a given overlay. An overlay is |oaded and executed only as the
direct invocation of the C overlay handler, execovl(). Next, the root nodule
does not have know edge of any variable that is a part of any overlay nodul e.
Nei t her does any overlay nodul e have any know edge of any variable that is a
part of another overlay nodule. On the other hand, every overlay nodule has
total know edge of "public" variables declared in the root nodule provided
that they are declared "extern" in the overlay. Remenber from the discussion
of external variables, in the section on separate conpilation, that "public"
variables are variables declared outside of all functions of a nodule and
declared without a storage class. The functions of an overlay nust still
decl are such variables "extern" to be able to access them

The execovl () function wll call an overlay from the root program This
function is wused to invoke an overlay of the executing C program and
optionally pass an argunent list to the called overlay. Duplicating sonewhat

the informati on on execovl () from Chapter 4, it is defined as foll ows:

i nt execovl (ovnum ovargc, ovargv);
char ovnum int ovargc; char *ovargv[];

ovnum - the requested overlay nunmber in ASCII.

ovar gc - the quantity of args to be passed to the
overlay in the ovargv array.

ovar gv - a pointer to the argument vector which is
to be passed to the overl ay.

The argument vector "ovargv" MJST have ovargc pointers in it. The "ovargc" and
"ovargv' will be passed as argunents to the overlay's ovmmin() function in
that order. Note that "ovargc" and "ovargv" are optional.

NULL will be returned if the requested overlay |oaded and executed, otherw se
EOF will be returned and errno will be appropriately set. The options O BRI EF
and O ERRORMSG wi Il be in effect, if set, when such an error occurs. Note that
any return code from ovmain() is ignored; you can use public nmenory
location(s) in the root for communications fromthe overl ay.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Your root program can be preprocessed, conpiled, and assenbled as usual wth

two exceptions. First, all library routines (i.e. functions provided in MATH,
IN, or LIBC as well as runtinme routines in LIBA) which are to be common across
the overlays MJST be declared "extern" in this root program regardless of
whether or not the root nakes use of them The library routines needed by a
program nmay be ascertained by nmanually linking (i.e. not via Job Control
Language) the program with the libraries, specifying the library searches
explicitly, then obtaining a synbol table listing which will include all

public symbols. Second, the C source nodul e must include the directive,
#option root

Thi s statenent passes information to the MJASMfile during the assenbly phase
of your root program The file, OVTEST/CCC, which follows, contains a fully
functional sanple root program

/* OVTEST/ CCC - overlay test root */

#option INLIB /* used to obtain execovl () */

#option root

extern int execovl (), printf();

int ovargc = 3; char *ovargv[3] = { "ovtest", "this is overlay" };
mai n()

ovargv[2] ="

if (execovl ('
error();

ovargv[2] = "2";

if (execovl('2', ovargc, ovargv))
error();

e

, ovargc, ovargv))

error()

perror("ovtest");
exit(l);

The overlay prograns MJST each have a public function called ovnain(), which
will be the entry point to each overlay. They each can be preprocessed,
conpi |l ed, and assenbl ed as usual with one exception. The directive,

#option overl ay

nmust be included in the C source nodule of each overlay. The following file,
OVERLAYT/ CCC, contains a sanple overlay program

/* OVERLAYT/ CCC - overlay for OVTEST */
#option overl ay
ovmai n(argc, argv) int argc; char *argv[];

printf("%: % %\n", argv[O0], argv[1l], argv[2]);
Qobviously, with an understanding of the preceding discussion, it becones

obvi ous that you must conpile and assenble the programand its overlay nodul es
separately. The procedure produces a relocatable npbdule for the root and one

for each overlay. The link session will then utilize the overlay generating
capabilities of the MLINK Ilinker to produce the proper executable root comand
and overlay files. Thus, the linker will need to be operated manually (w thout

the benefit of the provided MJJCL Job Control Language file). The link
session used to generate a root program from ovtest and two overlay prograns
using overlayt (using the same nodule twice just for the purpose of
illustration), is as foll ows:

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

. Link OVTEST etc. to OVTEST/ CMD, OV1, OV2
mink -1=2600 -a=y

ovt est

-0 overl ayt

-0 overl ayt

-n=ovtest -e

/lexit

In general, the link session nust be in sonething like the foll ow ng order:

MLI NK

P -V=I4 oL > optional; preferably a RAM dri ve!
? root _programrel _file(s)
? -S=necessary_library_1
? -S=necessary_library_2

? -S=necessary_library_n
? -Ooverlay_1 rel _file(s)
? -Ooverlay_2 rel _file(s)
? -Ooverlay_n_rel _file(s)
? - N=program name

2 .

When Things Go Wong

C is a language that offers great flexibility, but not without a price. The
price of Cs freedomis the progranmmer's ability to nake catastrophic errors
with ease. The progranmer is not protected from hinself when using C Your
best protection is to carefully check your prograns when you wite them for
any evident errors before you try to run them O course, any tinme you test a
program you shoul d not have any disks in your drives that you woul d care about
if they were suddenly erased. This is not to say that you should limt experi-
nmentation; quite the contrary. However, always be prepared for the worst.

Wth MC, you have an advantage over sone other conpilers. MC generates an
assenbly |anguage source file. You can debug the program without trying to
second- guess the conpiler, or having to disassenble the conpiled output. The
nodul arity of the program also helps, since there are clear interfaces
(functions) to breakpoint at. It would be hel pful, though not essential, for
the programmer to have famliarity with the Z-80 instruction set and with the
debug facility of DOCS.

Debuggi ng Techni ques

One of the nost direct nmethods of debugging a C source program which conpiles,
assenbl es, and links wthout error, yet produces incorrect or unexpected res-

ults, is to liberally sprinkle the C source code with printf() statenents.
These "debuggi ng" statements can usually be contained within a preprocessor
"#if DBUG ... #endif" directive. By using this nmethod, you can conveniently

el im nate the debugging printf() statements after you have corrected the prob-
I em by undefining the DBUG synbol. This saves you a lot of editing. In fact,
it is highly useful to design such debugging printf() statenments into your
program to begin with, rather than wait until you need to debug unexpected
results.

If you feel the need to step through the program s execution with the DEBUG
utility provided with the DOS, it is recommended that you obtain the
appropriate DD&T package to conplenment DEBUG This package adds an online
di sassenbl er to DEBUG s display. Wth a good debugger at your disposal, a copy
of the synbol table produced by the linker, and the assenbly |istings approp-
riate to the nodul es you wi sh to debug, you should be ready to investigate the
behavi our of your program Since nmachine code debugging is a lengthy and
brutal experience, it is strongly recommended that you first go back to your C
source listings and triple check your coding and algorithms. Also verify the

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

proper checking for error codes returned by functions. Your C source listing
is the best place to start your efforts.

Conpi lation Errors

MC generates an error nessage whenever it finds sonething in the input file
that cannot be recognized, or that doesn't fit the syntax of the C |anguage.
VWhen MC outputs an error nessage, it should print the line in error and point
to the particular character where the error was recognized. It also displays
the line nunmber of the file currently being processed as well as the line
number of the function currently being processed. This hel ps you |ocate what
statement in your source streamis being flagged as containing an error. The
actual programming error may be earlier in the program depending on the type
of error.

Sone errors may not be detected until many lines later. For exanple, if a
closing brace is missing in the input file, MC will not be able to detect the
error until the next function declaration, which will then be flagged as a
function call wthout an ending semicolon. This is because MC thinks the

previous function has not been conpleted. Simlarly, if an opening brace is
m ssing, MC may not find out until the last closing brace is encountered, with
no match.

In the appendix of this manual is a list of the error nessages which MC can
generate, and sone likely <causes for each. Mst errors are usually
t ypogr aphi cal, but the user should be well versed in the C |anguage and the MC
i mpl ementation. Learn where to find information regarding syntax and
capabilities of the l|anguage. The |anguage definition chapter of this manual
and the appendi x of the K&R text are good places to | ook when you are not sure
of synt ax.

Assenbly errors

There are few assenbly errors which can occur if you assenble your prograns
using MJ/ ??? with your conpiled C nodules. Your safest bet is to use MJJCL
when conpiling, assenbling, and linking. If you have witten portions of your
program in assenbly |anguage, you may have a few nore errors to deal with.
Please read the section on assenbly |anguage interfacing for hints in
debuggi ng your assenbly | anguage.

If you are creating a CMD file directly from the MJJCL file, you wll be
aware of an assenbly error if the JCL aborts from MRAS. To specifically
isolate the assenbly error, you will need to invoke MRAS without the "-NL"
switch. The nost direct way to acconplish this is to list the SYSTEMJCL file
(the one that is generated from the MJJCL invocation) and examine the line
that invoked MRAS. It may | ook sonething like this:

MRAS MC +| =YOURPROG ASM +O=YOURPROGE CMD - NL

At the DOS Ready pronpt, all you need do is input the line nodified as
foll ows:

MRAS MC +l =YOURPROG ASM - VEE - NC

VWhen the assenbler is invoked in this manner, it will pause when an error is
detected. One of the following two errors should usually prevail.

UNDEFI NED SYMBOL - A synbol that you referenced in your program was
undefined in any nodule in your program This can be caused by omtting
the definition, msspelling the identifier, or defining themincorrectly.
A look at the name that is undefined will give you a clue as to which
situation was the cause. Msspelling should be obvious. Look out for
upper-case versus | ower-case nanes. Renenber that Cis case sensitive.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

MULTI PLE DEFINITION - A synbol was defined twice with the same nane. If
you are assenbling separately conpiled functions, you may have nanmed two
external variables or functions the sane. To correct this, make one or
both of the identifiers static within the nodule. If separate conpilation
is not being used, you have defined two external objects in your program
with the same nane.

It is useful to famliarize yourself with the section on MC assenbly |anguage
out put structure. Also, if you are assenbling separately conpiled functions, a
good understanding of the "extern" statement and external versus static
variables is essential. Refer to the section on storage classes in Chapter 2,
MC Language Definition.

Li nker errors

The linker errors which you may experience may be limted to the follow ng
three errors. A "Synbol table overflow' error could be experienced when you
are linking a large C program |If you are using MINK, you should attenpt to
relink your programusing the virtual menory switch. You al so could experience
a "Multiply defined synbol" error. This nmeans that you have either defined the
same public symbol in tw different nbdules or that you have defined as
public, a synbol already defined in one of the provided library functions.
This is an easy problemto correct in your program The third error would be
"Undefined synmbol". This would arise froma synbol declared as "extern" in one
of your C source files but no nodule defined the synmbol. It may be a spelling
error or a programm ng oversight.

Runtime Error trapping

As stated in the section on Runtine Error Control in Chapter 1, MC provides
certain facilities for the detection and control of four types of runtine
errors: DOS I/O errors, C environnent errors, lowlevel floating point errors,
and high level floating point mathematical errors. The facilities at vyour
di sposal to detect and trap the first two types should be obvious to you after
even a brief perusal of Chapter 4, Library Functions. That's because DOS 1/0O
errors and C environnment errors are indicated by an error return code passed
back froma function call.

The foll owi ng nethods are available to your programfor displaying I/O errors:

1) Enable the ERRORMSG option via "option(O ERRORMSG TRUE);" as discussed
earlier under Runtime Options. This provides automatic display of an
error diagnostic nessage when a DOS I/ O error occurs.

2) Use the ferror() function to obtain the DOS error code from the stream
and act on that code accordingly. You can introduce your own nessages
as appropriate. Wth ERRORMSG set to FALSE, your program controls the
error diagnostic display.

3) Use the perror() function to obtain the UNI X error nessage associ ated
with the error. Renenber that every DOS I/ O error code is automatically
translated to a corresponding UNI X error nunber, which is stored in
"errno". If you desire portability, you should restrict your error
handling to the use of "errno" and perror().

A di scussion covering specific methods of dealing with these errors is beyond
t he scope of this docunent.

The C environnent errors will only be reported via an error return code froma
function call with "errno" set to the appropriate UN X error nunber. Thus,
these types of errors can be displayed by nmethod (3) shown above for DOS I/0O
errors. You don't have to use perror(). Your programcan still invoke its own
nessages in its own nmanner based on the error code contained in "errno".

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Since the detection and control of lowlevel floating point errors is an
i mpl ementation specific entity, this topic will be discussed in a little nore
detail. Al of the low level math routines that operate on floats or doubles,
(i.e. those that perform addition, subtraction, nultiplication, division,
etc.) exit through a commpn routine, which sets "errno" to an appropriate
error nunber if the routine's return code is non-zero. The only math routines
which provide a non-zero return code are the single and double precision
floating point routines. Wwen errno is set, control is passed to a floating
point vector, called " _fltvec". This normally vectors to an assenbler RET op
code. Thus, when such a lowlevel floating point error is detected, nothing
unusual happens other than the setting of "errno".

If your C program wants to take control when such an error is detected, your
programonly needs to replace the default " _fltvec" vector with the address of
your handler function. The following header file illustrates a |owlevel
floating point handler called "floaterr()" which can display an error nessage
appropriate to the detected error. It includes a function which is called from
mai n() naned "initflterr()". This function replaces the "_fltvec" vector with
the address of the "floaterr()" handl er. Exanine closely the behaviour of the
various parts of the header file.

/*
* FLOATERR/H - general floating point error routine - 01/07/86
*/
#i ncl ude <mat h. h> /* needed for definitions */
void floaterr(), initflterr();
extern int _fltvec; /* kludge to declare _fltvec */
static char codes[] = /* error codes returned by math routines */
{ 0o
UNDERFLOW
DOVAI N,
OVERFLOW
Dl VBYO
1
static char *nsgs[] = /* appropriate error nessage strings */
{ "No error",
"Under fl ow',
"I'l'l egal function call",
"Overfl ow',

"Division by zero",
"Unknown error"”

b

/*

* |nitialize floating point error routine - call from main()
*/

initflterr()

{ _fltvec = floaterr; /* set error vector */

}

/*

* Routine to trap floating point error

*/

floaterr(retaddr)
unsi gned r et addr;
{ unsi gned *sp;

int i;
sp = &retaddr; /* get stack pointer */
for (i=0; i< sizeof codes; ++i) /* search table, if not found i =5 */
if (codes[i] == errno)
br eak;

fprintf(stderr, "\nFP error 9%d (%), Trace: %4x, %04x, %04x\n",
errno, msgs[i], *(sp - 1), *sp, *(sp + 1));

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

There is no way to recover the nane of the routine that returned the error;
you can only detect the error number. It is beyond the scope of this docunent
to provide any additional material for such purposes. The follow ng exanple
illustrates a program that uses this header file. The diagnostic error
nessages di spl ayed upon running the exanple are al so noted.

#i ncl ude <stdi o. h>
#i ncl ude <floaterr. h>
mai n()
initflterr(); /* set error vector */
1. / 0.; /* division by zero */
1.701411e+38 * 1.701411e+38; /* overflow */
1.701411e-38 * 1.701411e-38; /* underfl ow */

}
FP error 7 (Division by zero), Trace: 5455, 31d8, 0000

FP error 3 (Overflow), Trace: 5455, 3lea, 4986
FP error 4 (Underflow), Trace: 5455, 31fc, 4c82

MC also supports the high-level mathematical function error exception
reporting as docunented for UNI X System V. In this facility, when errors are

detected by certain high-level functions, they wll invoke the matherr()
function in a structured manner. The supplied matherr() function is a NULL
function; it does nothing. The high-level error handler, however, wll print
an appropriate diagnostic nessage to the standard error file when an error
occurs. |If you supply your own matherr() function, you can disable the

system s nessage display as well as provide your own error handling.

VWen matherr() is called, a pointer to the exception structure as defined in
the math header file is passed as an argunent. This structure includes the
fol |l owi ng nmenbers:

int type; - type of error

char *nane; - pointer to name of function where error ocurred

doubl e argl, - first argument with which *nane was i nvoked
arg2, - second argunment w th which *nane was invoked
retval; - default value returned by the function

The nmenber nanmed "type" contains the error nunber that describes the error.
The following list of synbolic constants, defined in the math header file
along with the systems standard error nessages, shows the possible error
nunbers.

DOVAI N - argunment dommin error

SI NG - argunment singularity
OVERFLOW - overflow range error
UNDERFLOW - underflow range error

TLGSS - total loss of significance
PLOSS - partial loss of significance
DI VBYO - divide by zero

The nmenber "name" points to the actual nane of the function that detected the
error. The following list of functions report errors through matherr(): exp(),
log(), 1o0gl0(), pow(), sqgrt(), asin(), acos(), atan(). This list my not be
all inclusive.

The nenbers "argl" and "arg2" contain the first two val ues of the argunents of
the function which was invoked. Obviously, if the invoked function has only
one argunent, then "arg2" is irrelevant.

The "retval" menber will contain the value that the invoked function wll
return to the calling function. If you want to change that value, all you need
do is assign a new value to the structure nenber.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

The mat herr () function has the follow ng invocation syntax:

#i ncl ude <mat h. h>
int matherr(x);
struct exception *x;

X - is a pointer to the exception structure
defined in the math header file.

The return code from matherr() is used by the system If matherr() returns a
non-zero val ue, the normal error nessage printed to standard error by the math

error handler will be suppressed and the global error variable, "errno", wll
not be altered. On the other hand, if your matherr() function returns a zero
val ue, the systemis error nessage will be output normally and "errno" will be

set to the appropriate error nunber.

Sonme of the exanple prograns provided as illustrations of functions in Chapter
4, Function Libraries, depict various inplenentations of a matherr() function
provided by the program The exanples for exp(), log(), and |0gl0() provide no
mat herr() function so the system supplied error nmessages, "Overflow range
error” and "argunent domain error" are displayed. Make note of the matherr()
functions provided in acos(), asin(), and sqrt(). An exanple of a nore
i nvolved and conplex matherr() function is illustrated here. This version
traps domamin errors which would occur from passing a negative argunent to
sqrt(). The exanple "fixes up" the error by assuming that the argunment to the
square root function should have been positive. Pay attention to the nethod of
altering the value to be returned by the high level math function by assigning
a new value to "x->retval".

mat herr (x)
struct exception *x;
{

fprintf(stderr,"Type % function error in %...\n", x->type, x->nane) ;
fprintf(stderr," Args = %, %g9: ", x->argl, x->arg2);
if ((x->type==DOMAIN) && (!strcnp(x->nane,"sqrt")))
x->retval = sqrt(-x->argl)
return TRUE;

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Assenbly Language | nterfacing

Since we encourage the programmer to use 100% C source code in the generation
of a program no attenpt wll be made to docunent any assenbly |anguage
interface to library npdules. The barest mnimum is provided to assist the
experienced assenbly | anguage programer who desires to include sone assenbly
| anguage control into his C progranmm ng. The programer who w shes to |learn
nore about the interface between the C |anguage and the provided libraries
woul d be best advised to exam ne the conpiler's assenbly |anguage output from
conpilations of various C source statenents. The caution to be observed is
that this output may not be consistant across future rel eases of the conpiler.

VWile it is possible to insert assenbly |anguage source code directly into
your C program using the "#asm #endasm' construct, it is much cleaner to
interface by placing your assenbly |anguage code into a separate nmodule. This
keeps all the non-portable code separate fromthe portable C code. It is best
to call assenbly language as a function, rather than including it directly
into a C function by mxing C and assenbly source code in line.

Program Menory Map

MC progranms, once assenbled and |inked, have the following utilization of
avail abl e nmenory:

$DBEG - Established as the programis LINK ORIG N
[or $CBEQF during the Iink process. This will be the
| owest machi ne address used by the program

$START - Program execution begins here. This is an
ENTRY within the MJJASM fil e.

- MC generat ed nodul es.
- In-line assenbly | anguage nodul es.

- Static variables and strings interm xed
wi t hi n nodul es.

- Library nmodul es from USERLI B/ REL, | N REL,
MATH REL, LIBC/ REL, and LI BA/ REL.

(SMENRY) - Highest machi ne address used by the program
and the static variable storage.

($FREEP) - Contains first machine address avail able
for dynam c nenory allocation.

- Menory allocated by sbrk(); in use by the
program or maintained by alloc(), malloc(),
calloc(), and free().

($LOVEM - Unused nmenory available fromalloc(),
calloc(), malloc(), or sbrk().

(SP-1024) - Menory reserved fromdynam c allocation for
use as program stack space. Local variables
are stored here. MC al ways reserves space
for the program stack when requests for
dynam c allocation of nmenory are nmade.

(H GHS$) - Oiginal CPU Stack Pointer.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

MC I dentifier Qutput

The following table outlines the format of |abel generation from MC

Identifier Cass MC Qut put
Local | abels $?2#
External identifiers NAVE

-l onger than 3 characters NAVE

-3 characters or |ess NAMB

Static identifiers

-external to functions Sane as externals
-internal to functions NAVE@ +
Goto | abel s NAVES ?*

NAVE, NAM MC identifier, 1 to n characters, upper case
[external identifiers should be limted to a
I ength of seven significant characters].

The | ocal |abel nunber
* The function number (within the nodul e)
+ The conpound bl ock nunmber (within the nodul e)

MC generates labels in this fashion so that static variables, external vari-
ables, and labels will not conflict with each other. Thus, there can be an
external variable named x, a static naned x in tw different nodules, a static
named x in two different functions in the same npdule, and a (goto) I abel
named x, all within the sane program wth no conflicts. A dollar sign, '$',
is appended to external or static |labels which are three characters |ong or
less. This prevents possible conflicts with register names and |ogical
operators in your assenbler.

Local | abels are used to inplenment strings, double precision constants, condi-
tional statements and operators, and |oops. They are assigned nunbers starting
with 1 and increnented by 1.

Runtinme vari abl e storage format

Characters occupy eight bits and are stored in single 8-bit bytes; they are
consi dered unsi gned.

Integers and short integers occupy sixteen bits and are stored in two 8-bit
bytes. The leftnpst bit (which is the sign bit of signed integers) is the nost
significant; the rightnost bit the least significant. Integers are stored in
menmory with the | ow order byte occupying the | ower nmachi ne address.

Long integers occupy thirty-two bits and are stored in four 8-bit bytes. The
leftmpbst bit, bit 31 (which is the sign bit of signed integers), is the npst
significant; the rightnbst bit the least significant. Long integers are stored
in menory with the | owest-order byte occupying the |ower nachine address, the
next higher-order byte occupying the next higher nmchine address, and so
forth.

Single precision floating point nunbers occupy thirty-two bits and are stored
in four 8-bit bytes, a three-byte fractional part in bit positions 0-23 and a
one-byte exponent in bit positions 24-31. The leftnost fraction bit (which is

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

the sign bit of the nunber) is the nost significant; the rightnost bit the
| east significant. Floats are stored in nenory with the |owest-order fraction
byt e occupying the | ower nmachine address, the middl e-order fraction byte occu-
pying the next higher nmachine address, the highest-order fraction byte
occupying the next higher machine address, and the exponent occupying the
hi ghest address.

Doubl e precision floating point nunmbers occupy sixty-four bits and are stored
in eight 8-bit bytes, a seven-byte fractional part in bit positions 0-55 and a
one-byte exponent in bit positions 56-63. The leftnost fraction bit (which is
the sign bit of the nunber) is the nost significant; the rightnost bit the
| east significant. Double precision floating point/ nunbers are stored in mem
ory with the |lowest-order fraction byte occupying the |ower nachine address,
t he next higher fraction byte occupying the next higher machi ne address, etc.,
and the exponent occupying the highest address.

The exponent of a floating point nunber is stored in "excess 128" notation.
Using the syntax "**" to indicate "raise to the power", this nmeans that an
exponent of zero (2**0 = 1) is represented by 128D (80H); positive exponents
are denoted by val ues of greater than 128, and negative exponents by val ues of
| ess than 128. Thus, by subtracting 128 from the value, the true exponent is
obt ai ned.

The fractional part of a floating point nunber is always in BINARY normalized
form which neans that the values lie within the range:

2**-1 <= X < 2**0

Alittle sinple arithmetic will show that this range, base 10, is (.5<=X<1).

Al this neans is that there will always be a one (1) inmediately to the right
of the binary point when the binary normalized mantissa is shown in its binary
form Since there will always be a one bit in this high-order bit of the
normal i zed fraction, it is not necessary that it be kept. In fact, the bit is

dropped entirely and the position in the normalized fraction is used to store
the SIGN of the entire nunmber; a one indicating a negative nunber and a zero
i ndicating a positive nunber.

Regi ster Utilization

Al registers are available for use by an assenbly |anguage function with the
exception of the index registers, IX and 1Y. If you want to use the index
registers, they nust be saved on entry to your function and restored on exit.
The stack pointer nust be returned in the sane condition as it was upon entry.

For math operations, the following CPU registers are used, in general, to
contain the various variable types:

Type primary secondary notes

char L* E* * hi gh-order byte zeroed

i nt HL DE

| ong BCDE stack

fl oat BCDE st ack

doubl e (HL) * stack * 8 bytes noved to nenory storage

Argunent passing

C passes argunents on the machine stack. Each argument is pushed onto the
stack according to its nenory storage format [characters take two bytes of
stack space of which the higher order byte is ignored]. Argunents are pushed
in an order opposite of the order they are specified in the function call.
Here is the assenbly | anguage which C generates to performa function call (it
is assuned that "x", "a", "b", and "c" are each static integers and the
function returns an integer; we will ignore the use of nmacros):

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

; x=func(a, b, c);

LD HL, (CS$)
PUSH HL

LD HL, (B$)
PUSH HL

LD HL, (A$)
PUSH HL

CALL FUNC
POP AF

POP AF

POP AF

LD (X$), HL

Thi s process generates the foll ow ng appearance on the Z-80 machi ne stack:

(SP+6) ==> <c>
(SP+4) ==>
(SP+2) ==> <a>
(SP+0) ==> return address

That is how the argunents appear to the called function when first entered.
Several nmethods can be used within the called function to obtain the
argunments. The sinplest nethod is to POP each argunent off the stack. This is
not suitable for large numbers of argunents, but nopst efficient for 3 operands
or less. Using the exanpl e above, the argunents could be retrieved as foll ows:

FUNC POP AF :return address saved
POP BC ;argument <a> in BC
POP DE ;argument in DE
POP HL ;argument <c> in HL
PUSH HL ;restore argunent <c>
PUSH DE " "
PUSH BC " " <a>
PUSH AF ;stack is same as at entry

Note that the stack is returned to its original condition. It is always inpor-
tant to keep track of the stack pointer. However, the contents of the stack,
i.e., the argunents, are "owned" by the called function and can be used like
any local variable. A better nmethod to use when dealing with |arge nunbers of
argunments i s shown bel ow

LD HL, 2 of fset to <a>
ADD HL, SP :HL = address of <a>
CALL @& NT ;get contents of <a>

@I NT is a run-tine library function which gets the integer pointed to by HL
into HL.

Another nethod is to utilize the Z-80 index registers. The stack pointer nust
be placed into the index register first, then index offset values can be used
to get and store the argunents:

PUSH | X ; Must save register |IX
LD I X, 0

ADD | X, SP ;CGet SPinto I X

LD L, (I X+2+2) ; Get LSbyte of a

LD H, (1 X+3+2) ; Get MSbhyte of a

POP | iRestore | X

If an argunent is intended to be a character variable, only the | east signif-
icant byte (LSbyte) is needed, so a single indexed |load is used.

Returning a value froma function

MC prograns use the primary register associated with the function type in
order to return the function's value (see "register utilization" above). For

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

instance, a short int should use the HL register pair for a 16-bit accunu-
lator. Any short int value to be returned by a called function nmust be placed
in HL before returning to the calling function. Take care that a full 16-bit
value is returned. If a character or 8-bit value is being returned, then H
should be | oaded with zero. If a TRUE or FALSE indication is to be returned,

HL should be set to 1 or 0, accordingly.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Appendi x

Error Messages

Preprocessor errors - Warning

The follow ng nmessages may occur during the preprocessor phase of conpilation
and are only warnings; processing continues. Preprocessor warnings are
unnunber ed nessages.

"Conditionals nested too deeply”

The maxi mum conditional nest depth is 256. How you reached that limt is
beyond i magi nati on.

"#el se without #if"

This obviously occurs when a "#else" is detected w thout any previously
corresponding "#if".

"#endi f without #if"

This is emtted when a "#endif" is detected wthout a previously
corresponding "#if".

"Extra macro paraneters, ignored"

A paraneterized macro was invoked with nore argunents than when the macro
was defined. Doubl e check your argument |ist.

"I'll egal preprocessor directive"

The input stream provided a "#sonething" when "sonething" was not one of
the legal directives.

"Miul tiple #el se's"
Only one #else per #if is allowed.
"Redefining <macro_identifier>"

This informs you that a previously defined macro is being redefined. It is
not an error.

"Undef i ni ng nonexi stent macro"

This inforns you that a macro is being undefined which had not previously
been defined. It is not an error.

"Unt erm nated conditional (s)"

The end of the input file stream was reached while one or nobre "#if"
conditionals was | eft unclosed by a correspondi ng "#endif".

"Unterm nated input |ine"

The end of the input file stream was reached with a mssing newline at the
ECF.

"Unterm nated string or char constant"”
A string or character constant was being read fromthe i nput stream and the

end of the line (EOL) was reached w thout the closing correspondi ng double
quote or single quote.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Preprocessor errors - Fatal
The following errors which may occur during the preprocessor phase of

conpilation are considered "fatal errors"; they result in the term nation of
t he process.
"-? argunent too |ong"

A command line -d or -u option is longer than 64 characters.

"Dupl i cate macro argunents”

A paraneterized macro definition has two dummy argunments with the same
nane.

"I'll egal constant expression"”

The operand field of a "# f" or "#option' nust be a valid constant
expr essi on.

"I'llegal floating point constant”
The floating point constant does not follow the K&R rules.
"I'l'l egal hex constant™

A hexadeci mal constant is inproperly forned according to the rules for such
constants as noted in K&R

"I'll egal macro definition"
A paraneterized macro dummy argument |ist was inproperly forned.
"I'nclude fil espec nissing"

A "#include" directive was encountered which had no file specification in
t he operand field.

"I ncl udes nested too deeply"”

The "#include" statement would have nested too deeply, if not ignored. Up
to eight (8) nesting levels are available in M.

"I'nvalid command |ine option"

One of the options specified in the command |ine was not a valid MC option
"lInvalid #line"

A "#line" preprocessor statenent was inproperly forned
"Macro calls nested too deeply"”

The maxi mum macro nest depth is 20 which has been exceeded. You will have
to redesi gn your use of nmmcros.

"Mssing ')

The operand field of a "# f" or "#option" used an open parenthesis in a
constant expression but the correspondi ng cl osing parenthesis was onitted.

"M ssing

The conditional operator "?:" was used in the constant expression operand
of a "#if" or "#option" directive but the ":" was omtted.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

"M ssing macro paraneters”

A paraneterized macro was invoked with fewer formal argunents than when the
macro was defined. Double check your argunment Iist.

"Mssing or illegal identifier"

The syntax required an identifer, but the input text did not conformto Cs
rules for identifiers.

"Must be short int or char constant"”

#option requires a short integer or character constant if a constant
expression is present.

"No input file given"
No input files were specified on the command line that invoked MCP.

"CQut of nenory"

No nmore menory space is available. Either decrease the anount of nenory
reserved in high menory or split the npdule being conpiled into smaller
nodul es with fewer external variables. You may al so consi der decreasing the

amount of nodules in high nemory (filters, KSM SYSRES ed overlays, etc.)
and try to execute MCP again.

"Too many macro argunments”

A paraneterized macro was defined with nore dummy argunments than all owed
(128). Doubl e check your argument |ist.

"Unterm nated nmacro cal |l "

A macro call was mssing the closing parenthesis.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Conmpiler errors - fatal

The following nessages mmy occur during the conpiler phase. The errors
attributing to the emttance of such nmessages are considered fatal errors.
These nessages are unnunbered.

Conpi | ati on aborted

A fatal error was detected which prevented the conpiler from continuing the
process of conpilation.

"No input fil espec”
No input file was specified on the conmand |ine that invoked MC

"Qut of nenory"
No nmore menory space is available. Either decrease the anount of nenory
reserved in high menory or split the npdule being conpiled into smaller
nodul es with fewer external variables. You may al so consi der decreasing the
amount of nodules in high nemory (filters, KSM SYSRES ed overlays, etc.)
and try to execute MC again.

"Too many input files"
Only one input file may be passed on the command |line to the conpiler.

"Unr ecogni zabl e option"

This results froma bad conmand |ine option.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Conpi l er errors - warning
The follow ng nessages are warnings and do not normally result in an inmedate
abort of the conpiler's processing. The nessages fall into broad
classifications. These nessages are enmtted along with the error nunber shown.
General syntax errors (10-19)
10 - "M ssing '":""
A "?" operator was found without a matching ":" operator. This may also
arise from an omission of the colon from a structure/union bit field
decl arati on.
11 - "Mssing "(""
An opening parenthesis was omtted fromwhere it was required.
12 - "Mssing '")""

The syntax of the statenment being parsed required a closing parenthesis,
whi ch was omitted.

13 - "Mssing '"]""

The field specifying the subscript of an array object was not term nated
with the closing square bracket.

14 - "Mssing '{""
The opening brace required to designate a conpund bl ock was omtted.
15 - "Mssing "}"'"

The end of the input stream was encountered without a closing brace for the
current function being found.

16 - "Mssing '";""
No sem colon was found at the end of a statenent. The ';' character is the
statement term nator, and nust be placed at the end of a sinple statenent.
It's also required in a "for" statement [i.e. for (; ;)].

17 - "M ssing ',""
The context of the input required a comma, but none was found.

Const ant expression errors (20-29)

20 - "lllegal constant expression”
A constant expression did not follow the K&R rules.

21 - "Must be short int or char constant"”

An object of case, array dinmension, or initializer requires a short integer
or character constant.

Decl aration errors (30-49)
30 - "lllegal declaration or typenane"

A catchall - Sonme sort of bad syntax in a declaration or cast or sizeof,
not ot herw se nenti oned.

31 -

32

33

34 -

35 -

36 -

37

38

39 -

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

"Decl arati on too conpl ex"

More than 16 levels of "array of", "pointer to", or "function returning"
occurred in a declaration.

- "Struct/union includes self"

A structure/union may not include an instance of itself as a nenber;
however, a pointer to an instance of itself may be included as a nenber.

- "Cannot return struct/union"

It is inmpossible for a function to return a structure or union; however, a
function can return a pointer to a structure or union.

"Function not decl ared"

The context of the input demanded that a function be declared, i.e., the
input did not match anything that could be a conpiler directive or a
vari abl e declaration, so it was assuned that a function was being decl ared.

"Zero size illegal™

An array dinension is zero or missing where required, or sizeof returned
zero when invoked.

"Redefinition"
The obj ect being declared has already been defined in the nodul e.
- "Argunent list illegal™

A function argunent list was found in a function FORWARD DECLARATION. Only
allowed in a function DEFI N TI ON.

- "lllegal argument nane"

An argunent name in the argument list of a function definition is not a
valid Cidentifier.

"Unmat ched ar gument "

The function argument being declared did not match any of those in the
argunment list for the function.

Initialization errors (50-59)

50 -

51

52 -

"I'llegal initializer"

This is a catchall enmtted when sonmething wong is detected with the syntax
of an initializer.

- "Undefined"

The object being referenced in an initializer has not been defined. You may
wi sh to check the spelling.

"Must be static or external”

An initializer using the address of an automatic or register variable is
illegal.

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

Statenment errors (60-69)

60

61 -

62 -

63 -

64 -

65 -

- "Conpound statenent required"

The switch-case statement nust have a conpound statenment as its sub
statement. The body of a function nust also be a conpound statenment (i.e.
one enclosed in curly braces).

"Decl aration foll ows executable statenent”

Al declarations in a block nust precede the first executable statement in
t hat bl ock. Resequence your statenents.

"No while after do"
A "do" statenent was conpiled, but no "while" statenment followed it.
"Void function return”

A function declared as void contains a return statenent with an expression
fol | owi ng.

"Bad | abel "

The | abel specified in a "goto" statement or as a statenent |abel was not a
valid Cidentifier.

"Extra defaul t"

The body of a "switch" statement included nore than one default sub-
st at enent .

Expression errors (70-99)

70 -

71 -

72 -

73 -

74 -

75 -

"I'll egal expression”

The i nput could not be recognized as an expression when the context of the
program requi red an expression.

"I'llegal floating point operation”

A float or double expression is using an operator that's not allowed. See
the |anguage specifications in Chapter 2 for wvalid floating point
operators.

"I'll egal pointer operation”

An operation was attenpted on a pointer other than that docunented on page
2-12.

"I'll egal address"

The "&" (address of) operator was used with an expression that was not an
object in nmenory.

"Not a pointer expression"”

The indirection operator, "*", was used with an expression that does not
result in the address of an object in nmenory.

"Using void result”

An expression is attenpting to use the non-existent return value of a
function that was defined to be of type void.

76 -

77 -

78 -

79 -

80 -

81 -

82 -

83 -

84 -

The M SOSYS C Language Conpil er
Copyright (c) 1985 M SOSYS, Inc., Al rights reserved

"Function name illegal"

The nanme of a function was used inproperly. Check for nisspelling or
m ssing variable definition

"Must be I|val ue"

The expression being processed specifies that a value be placed into an
obj ect, but no object which could be stored into was found. This occurs in

assi gnments, "++", and "--". Usually it's the result of a spelling error
"Must be struct/union and not array"

The left side of a "." or "->" requires this.
"Unknown struct/uni on"

The structure/union object being declared or referenced has not had a
tenplate defined for it.

"Miust be struct/union pointer”
The designated operation requires a pointer, not the object itself.
"Menber nane required"

The operand on the right hand side of a "." or "->" nust be a nenber of the
structure/union on the left hand side.

"No such nenber"

The referenced nenber of a structure/union has not been defined in the
structure/union tenpl ate.

"Must be array or pointer"

Square brackets "[]" were applied to an object which was neither a pointer
nor an array.

"I'llegal function call"

A function call is being attenpted, but the object being called is not a
function nanme or dereferenced function pointer.

	Top of document
	Copyrights
	Introduction
	MC Provided Files
	MC Environment
	Standard Input/Output
	Standard I/O Redirection
	Command Line Arguments
	Standard Header Files
	Function Libraries
	Runtime Error Control
	Closing Comments

	Language Definition
	Statements - Simple and Compound
	Data Representation - Constants
	Variable Names (Identifiers)
	Data Declarations
	Scope of Variables and Functions
	Storage Classes
	Expressions
	Unary Operators
	Binary Operators
	Statements
	If Statement
	Switch-Case Statement
	While Statement
	Do Statement
	For Statement
	Break Statement
	Continue Statement
	Return Statement
	Goto Statement

	MC Preprocessor
	Parameterized Macro Substitution [#define]
	Forgetting a Macro Name [#undef]
	Conditional IF Evaluation [#if]
	Conditional test of an Identifier [#ifdef, #ifndef]
	Alternate Conditional Block [#else]
	Conditional Block Termination [#endif]
	Including Additional Files [#include]
	Forcing Assembler Options [#option]
	Including Assembler Source [#asm, #endasm]
	Line Number Control [#line]
	Program examples
	Program Example - SORTSYM
	Program Example - DCAL

	Running the Compiler
	Keyboard Refresher
	Operation
	Using Job Control Language
	Invoking the MCP Preprocessor
	Invoking the MC Compiler
	Creating an Executable CMD File
	Compile-Time Directives
	Assembly of the ASM file
	Linking the relocatable object module

	MC Library (Function Libraries)
	General Information
	Stream I/O functions
	Block I/O functions
	Integer (int, long) math functions
	Double precision (double) math functions
	Environment information functions
	Memory access functions
	Plotting functions
	Program control operations
	String handling functions
	FUNCTIONS
	A
	abort()
	abs(LIBC)
	acos(MATH)
	addext(IN)
	alloc(LIBC)
	asctime (LIBC)
	asin (MATH)
	atan(MATH)
	atod(MATH)

	B
	box(IN)
	brk(LIBC)
	btoi (LIBC)

	C
	call (IN)
	calloc(LIBC)
	ceil(MATH)
	checkc(LIBC)
	circle(IN)
	cleareof(LIBC)
	clearerr(LIBC)
	close(LIBC)
	cmdi(LIBC)
	cos(MATH)
	cosh(MATH)
	creat(LIBC)
	ctime(LIBC)
	curpos(IN)
	cursor(IN)

	D
	_ddv2(MATH)
	dfix(MATH)
	dint(MATH)
	dsgn(MATH)
	dtoa(MATH)
	dup(LIBC)

	E
	execl(LIBC)
	execovl(IN)
	execv(LIBC)
	exit(LIBC)
	exp(MATH)

	F
	fabs(MATH)
	fabsf(MATH)
	fatn(MATH)
	fclose(LIBC)
	fcntl(LIBC)
	fcos(MATH)
	fdopen(LIBC)
	fdown(LIBC)
	feof(LIBC)
	ferror(LIBC)
	fexp(MATH)
	ffix(MATH)
	fflush(LIBC)
	fgetc(LIBC)
	fgets(LIBC)
	fill(LIBC)
	fint(MATH)
	flog(MATH)
	floor(MATH)
	fmod(MATH)
	fopen(LIBC)
	fprintf(LIBC)(MATH)
	fpup(LIBC)
	fputs(LIBC)
	fpow(MATH)
	fread(LIBC)
	free(LIBC)
	freemem(IN)
	freopen(LIBC)
	frexp(MATH)
	frnd(MATH)
	fscanf(LIBC)(MATH)
	fseed(MATH)
	fseek(LIBC)
	fsgn(MATH)
	fsqr(MATH)
	fstat(LIBC)
	ftan(MATH)
	ftell(LIBC)
	ftoa(MATH)
	fwrite(LIBC)

	G
	genspec(IN)
	getc(LIBC)
	gets(LIBC)
	getw(LIBC)
	gtty(LIBC)

	H
	hypot(MATH)

	I
	index(LIBC)
	inkey(IN)
	inport(IN)
	ioctl(LIBC)
	iswhat(LIBC)
	isatty(LIBC)
	itoa(LIBC)

	L
	labs(LIBC)
	ldexp(MATH)
	line(IN)
	localtime(LIBC)
	log(MATH)
	longjmp(LIBC)
	lpower(LIBC)
	lseek(LIBC)
	ltoa(LIBC)

	M
	malloc(LIBC)
	memccpy(LIBC)
	memchr(LIBC)
	memcmp(LIBC)
	memcpy(LIBC)
	memset(LIBC)
	modf(MATH)
	move(LIBC)

	O
	open(LIBC)
	option(LIBC)
	otoi(LIBC)
	outport(IN)

	P
	perror(LIBC)
	pixel(IN)
	point(IN)
	ploc(IN)
	pmode(IN)
	pow(MATH)
	printf(LIBC)(MATH)
	putchar(LIBC)
	puts(LIBC)
	putw(LIBC)

	Q
	qsort(LIBC)

	R
	rand(LIBC)
	read(LIBC)
	realloc(LIBC)
	reset(IN)
	rewind(LIBC)
	rindex(LIBC)

	S
	sbrk(LIBC)
	scanf(MATH)
	seek(LIBC)
	set(IN)
	setjmp(LIBC)
	sin(MATH)
	sinh(MATH)
	sprintf(LIBC)
	sqrt(MATH)
	srand(LIBC)
	sscanf(MATH)
	strcat(LIBC)
	strchr(LIBC)
	strcmp(LIBC)
	strcpy(LIBC)
	strcspn(LIBC)
	strepl(IN)
	strept(IN)
	strfind(IN)
	stright(IN)
	strleft(IN)
	strlen(LIBC)
	strmid(IN)
	strncat(LIBC)
	strncmp(LIBC)
	strncpy(LIBC)
	strpbrk(LIBC)
	strrchr(LIBC)
	strspn(LIBC)
	stty(LIBC)
	swab(LIBC)
	sys_errlist(LIBC)
	sysdate(LIBC)
	system(LIBC)
	systime(LIBC)

	T
	tan(MATH)
	tanh(MATH)
	tell(LIBC)
	time(LIBC)
	toascii(LIBC)
	tolower(LIBC)
	toupper(LIBC)
	ttyname(LIBC)

	U
	ungetc(LIBC)
	unlink(LIBC)

	W
	write(LIBC)

	X
	_xlate(LIBC)
	xtoi(LIBC)

	Z
	zero(LIBC)

	Advanced Topics
	Runtime options and I/O control
	Call: DOS SVC interface
	Separate Compilation of Modules
	Using extern and static
	Building and Maintaining Relocatable Libraries
	Programs with overlays
	When Things Go Wrong
	Runtime Error trapping
	Assembly Language Interfacing
	Program Memory Map
	MC Identifier Output
	Runtime variable storage format
	Register Utilization
	Argument passing
	Returning a value from a function

	Appendix
	Error Messages
	Preprocessor errors - Warning
	Preprocessor errors - Fatal
	Compiler errors - fatal
	Compiler errors - warning

