The
BASIC

Answer

OG/CAL
SYSTEMS
J:

-
O Tgre— 11520 N. Port Washingten Rd., Mequon, Wl 53092
(414) 241-3066

The BASI C Answer

Tabl e of Contents - - User Quide Section

FNTRODUCTT ON. oottt e e e e e e e e e e e e e e e e e e Page
Source Code Oreati ON. Page
Upper and Lower Case Usage in Source Code.iiiiiininn.. Page
LABELS - How to Use Label s. Page
LABELS - Syntax and Allowabl e Characters....... Page
VARl ABLES - Syntax and Allowable Characters.............. ... Page
Exanmpl es of Variabl es. Page
VARl ABLES - d obal Variable Definitions and Inplenmentation.................... Page
VARI ABLES - Local Variable Definitions and Inplementation..................... Page
VARI ABLES - Array Variabl eS. Page
Special Use of the BASIC REM Statement it e Page
Special Use of the BASIC Statenent RETURN. Page
Directives - Processor Qutput Mdification and Identification................. Page
FPRLINES. .« . ottt Page
Ll ST Page
P ACE. . ot e Page
T TLE. o e e Page
Directives - Conditional Processing of the Source Code........................ Page
X BSSI ON. o o o Page
FEND. L ottt Page
How t 0 Qperate the ProCesSSOr. e Page
ProCessSi NG ParmB. Page
DireCti Ve PromPt. .o Page

Copyright (C 1982 by Logical Systens, |ncorporated
11520 N. Port Washington Rd. Mequon, W 53092
(414) 241-3066

TBA - Table of Contents
Page 1

oA AW

[e2]e))

NNNNNO OO

R oo N

The BASI C Answecr

Tabl e of Contents - - Tutorial Section

FNTRODUCTT ON. oottt e e e e e e e e e e e e e e e e e e Page

DI FFERENCES BETWEEN WRI TI NG BASI C PROGRAMS AND SOURCE CODE
Labels, Not Line NUNMbers. e e Page
Defining and Using Labels....... Page
Wiy Use Label s. Page
How The BASIC Answer Deals with Labels......... Page
Appl yi ng the Theory of Labels to Practical Programming................. Page
Introduction to Variable Usage........... ... Page
Valid Variabl e Names. Page
Invalid Variable Names. Page
Defining Gobal Variables.. Page
Defining Local Variables..... Page
A obal Vs. Local - An Overall Perspective.......... Page
M scel |l aneous Differences and Information.............................. Page

WRI TI NG SQURCE CCDE

Using A Wrd Processor or Text Editor to Wite Source Code............. Page
Using the BASIC Interpreter to Wite Source Code....................... Page
Using Directives Wien Witing Source Code............... . iiiiiina.. Page
PRI NES. .« ot Page
FLE ST ON OFF. .« Page
P ACE. . o o Page
T T, o Page
FLRIXEND. © oo Page
OXPI BSSI ON. . Page

USI NG THE BASI C ANSVER TO PROCESS FI LES

Processing Source Code. Page
Qoj eCt Fil e . Page
Processi NG ParimB. Page
ProCesSSi NG ErrorS. ..o e Page
Sanple Screen and Video QUEPUL.t Page
HON THE PROCESSOR CPERATES.ot e e Page
GENERAL OPERATI ONAL GUI DELI NES & PROGRAM NMAI NTENANCE
Use of Error-Trapping ROUtIiNES. e e Page
Mai Nt ai NE NG Programs. e Page
Enhanci ng Program Operation and Speed........ Page
SAMPLE PROGRAMS AND EXERC SES
FACTOR exercise (step by step processing)......... ... Page
MERGE exercise (LSCRIPT Version). Page
MERGE exercise (LBASIC version).oiii e Page
JCL suggestion and the last exerciSe.ouiiiiinniiiiiiinnnn.. Page
Sanpl e Source EXAMPLE TBA. . . . Page

TBA - Table of Contents
Page 2

10
11
12
13
13
14
15
15
16
16
17
25

26
27
28
28
29
31
32
32
34

37
38
38
41
43

48

50

51
51

The BASIC Answer - | ntroduction

The BASIC Answer is a processing utility designed to allow the creation of neani ngful
and structured BASIC progranms. The BASIC Answer (fromnow on referred to as TBA) is
only for use with the LDCS operating systemcreated by Logical Systens, Inc.
Programming with TBAwill be simlar to programming in a Mcrosoft-conpatible
interpretive BASIC. All of the commands that are available in interpretive BASIC will
be usable with TBA. However, TBA incorporates nmany concepts not found in interpretive
BASI C which will make program code nore descriptive and structured. This becones
especi al |y useful when debuggi ng or nodi fying prograns that have not been exam ned for
I ong periods of tine.

This user guide will contain a brief explanation of syntax and definitions of
statenents needed to utilize the TBA processor. Al detailed explanations are

contai ned in the acconpanying tutorial nanual. The tutorial nanual al so contains
exanpl es of processing and exercises to aid the beginner, an explanation of what the
processor does, concepts of programstructure, rationale for syntax and ideas for
appl i cati ons of sone processor concepts.

Source Code Creation

Source Code can be created either through use of text processors such as LSCRI PT,
SCRIPSI T, SUPERSCRI PSI T, or LED, or through the BASIC interpreter. Source |lines have a
maxi mum al | owabl e | ength of 240 characters. If a text processor is utilized, the
output file nmust be saved in a pure ASC | format. If BASICis utilized, SAVE the
source file by using the ASCI| paraneter ",A' after the filespec.

Upper _and Lower Case Usage in Source Code

TBA utilizes certain technical phrases in lieu of the ordinary BASIC equi val ents.
Anong these are LABELS, VAR ABLES, and EXPRESSIONS all of which are explained in
separate sections. Each of these have sonme things in common, one of which, is the use
of upper and | ower case.

Lower to upper case conversion will normally take place during processing exactly as
it is done in a BASICinterpreter. Any |lower case characters outside of quotes or
REMark statenments will normally be replaced with upper case equival ents. The TBA
processor does provide a means of overriding this procedure. In that case, the

techni cal phrases described will be unique if they are conprised of the same letters
but with unmatched cases. Normally, the word LOOP, Loop, loop and LQop would be
processed as the same word. If the Differentiate Case switch has been specified, those
sane words woul d be four unique | abels, variables, or expressions.

Labels - How to use Labels

Label s are used to reference locations in source code instead of absolute line
nunbers. Source code need not be witten with line nunbers in front of statenents
unless it is actually created in BASIC. To branch in source code use a | abel.

Label s appear in two ways. First, as the procedure identifier so that execution wll
begin at the label. The label in this case nust be the first phrase on the line. It
could then be followed by a colon with BASIC statenents contained on the sane |ine,

@ELAY. LOOP : FOR LOOP% = 1 TO 2000: NEXT
RETURN

or it could stand al one.
@ELAY. LOOP

FOR LOOP% = 1 TO 2000: NEXT
RETURN

TBA - User Quide
Page 3

Second, | abels are used to indicate a branch to a procedure. In this case the |abel
appears after a BASIC branch statenent.

PRI NT" Your chocol ate pudding is infected": GOSUB @ELAY.LOOP: CLS

IF INKEY$ = CHR$(13) THEN GOTO @PROCESS. | NPUT ELSE GOSUB @EET. KEYBOARD

Labels - Syntax and Al owabl e Characters

A | abel must have an "at" synmbol <@ as its first character.
The second character nust be ALPHABETIC in either upper or |ower case.

There can follow up to thirteen nmore ALPHANUMERI C upper/| ower case characters for a
total Iabel length of 15 characters.

Two SPECI AL characters can be used in lieu of one or nore of the last thirteen
characters. These are the period <. > and underline < > characters.

NO OTHER speci al characters or spaces are all owed.

Exanpl es of LEGAL |abels :

@ nput @ Process.input @RETRY_| NPUT
@get . a.record @pl ayi t agai nSAM @get _t he_noney
@Etc.etc.etc... @\. . . nunber 1 @ Print_period.

I LLEGAL | abel s include :

@. for.the. noney : leading nunber; too |ong
@=ET NAME : space in | abel

@.. delay . leading special character
@.1 NElI NPUT#1 : unaut hori zed character

Label s nust be followed by a space, a colon, or a carriage return. Labels used to
identify the entry point to a procedure nust be the first elenent of the line.

O dinary BASIC statenents can follow a | abel if separated by a colon. If a |abel
defines the entry point of a procedure, then LOCAL variable definitions may follow the
label in lieu of BASIC statenents.

Variables - Syntax and Al l owabl e Characters

TBA allows two variable inplenentations, dobal and (pseudo) Local. The uni que aspects
of these will be delineated in separate sections. The simlarities are discussed
bel ow.

TBA vari abl es nust be at |east three total characters in length (including tag).
The first character of a variable nust be ALPHABETIC in either upper or |ower case.

At | east one, but up to thirteen characters, follow ng may be upper/|ower case
ALPHANUVERI C.

Two SPECI AL characters are allowed. The period <.> and/or underline < > characters
may be used in lieu of any of the second through fourteenth characters.

The | ast character MJST be one of the four BASIC variabl e declaration tags. These are
<% for an integer, <!> for a single precision, <#> for a double precision, or <$> for
a string variable.

NO OTHER speci al characters or spaces may be used.

TBA - User Quide
Page 4

Certain RESERVED WORD conflicts MAY NOT be used. These are:
Two character BASIC keywords (FN, ON, OR AS, IF, TO

BASI C keywords ending with a declaration tag (TI ME$, WX$, PRI NT# etc.)
Any word in which the first three letters are : REM

Reserved words may be enbedded in a variable.

Exanpl es of LEGAL Vari ables :

Recor d. Nurmber % Tot al . due# LAST_NAMES$
LOOP% LOOP1% LOOP_2%
Money. owed! TAX#H Start.tinme$
| F. done% order# X. Y_FUNCTI ON

| LLEGAL variabl es include :

TO% . reserved word violation
FLAG END% : no spaces al |l owed

end. of . sequence% : too long

1st.record% : incorrect |lead character
i nput # . reserved word violation

Variabl es are used in the same nanner as they are in ordinary BASIC

Vari abl es Must be surrounded by spaces or non-al phanuneric characters such as
parent heses, commas, math and rel ational operators to prevent msinterpretation.

Singl e character variables are allowed but are not processed or cross referenced by
TBA. They are totally the responsibility of the operator.

Variables - dobal Variable Definitions and | nplenentation

d obal variables are those variables which will be utilized throughout the BASIC
program They are the nobst commonly used and are the only type available in
interpretive BASIC. In TBA they nust be DEFINED in source code.

To define G obal variables, type an equal sign <=> as the first character of a line
followed by the variable name. End the definition line with a carriage return. To
define nore than one dobal variable, put themon the same |ine but separated by
comras. dobal definition lines may appear anywhere in the Source Code. NOTH NG el se
may be on a dobal definition Iine. An exanple of a proper line is

=LOOPY% LOCOPI % TOTAL#, START. Tl ME$

Variables - Local Variable Definition and Inplenentation

A Local variable is one that occurs only in a subroutine (procedure). Its value or
purpose is only relative to that procedure and upon | eaving the procedure the val ue or
purpose is no |onger of use. Therefore, Local variables cannot be used to pass
information to and fromthe main body of a program

TBA - User Quide
Page 5

A Local variable can ONLY be defined after a procedure |abel. After typing the |abel,
type an equal sign <=> followed by the variable nanme. End the line with a carriage
return. To define nore than one Local variable, separate the variable names with a
comma. Only ONE LINE of Local variable definitions is allowed per procedure. The
following line is an exanple of the proper syntax :

@ NKEY. | NPUT=LOOP% | NK$, AT% FI ELD. LEN%
Variables - Array Variables

Array variables are to be defined as either dobal or Local by utilizing the array
nane in a definition line. After defining, sinply use DDMto declare the array size.
The array nane nust conformto all variable name requirenents.
It is not recommended that array dimensions |arger than 10 be defined in a Local
procedure. This neans that no DIMstatenent is necessary and a Redi nensi oned Array
error can be avoi ded.

It is possible to have an array nane be a duplicate of a sinple variable nane. In nost
BASICS, the two variables LP% and LP% xx) are two different variabl es.

Speci al _Use of the BASIC REM st at enent

TBA processes the BASI C REM statenment and its abbreviation <> in two different ways.
If the keyword REM appears as the first elenent of a line, the processor will pass the
line unnodified to the object code. If REM appears later in aline it wll NOT be
recogni zed properly and may generate an error.

The abbreviation <'> will cause the processor to DELETE the line or renai nder of a
line fromthe object code. Unlike, REM the < > nay appear anywhere in a line.

To pass a remark statenent to BASIC use REMat the front of a line. To utilize the
remark only in Source, use <' >

Special Use of the BASIC Statenment - RETURN

RETURN i s used by the processor to signify the end of a subroutine. The RETURN
statenent can be used ONLY ONCE per subroutine. Furthernore, it nust occur as the |ast
physi cal statenent in subroutine.

The RETURN nust be the only BASIC statenent in the line. However, a | abel may precede
the RETURN statenent, as in : @X T.INPUT : RETURN

Directives - Processor Qutput Mdification and ldentification

There are four Directives which can be enbedded in Source to either nodify the output
of the processor or to identify it.

Al Directives and their paranmeters (if any) nust be the only elenents of a Source
l'ine.

*PRLINES is used to specify how nany |ines per page are to be printed. An
X 0C wll be sent to the output device after the nunber of l|ines specified
have been print ed.

The syntax is *PRLINES=N where n is a nunber from 20 through 254.

The default value for *PRLINES is 56.

TBA - User Quide
Page 6

Proper pagation will occur autonatically on 132 columm printers. To achieve
proper results on narrower printers, utilize the printer filter (PR FLT)
avai l abl e on standard LDOS. Set the CHARS paraneter to the proper width.

*LIST ONOFF is used to toggle the process listing on and of f. The proper
syntax is either *LIST ON or *LIST OFF. The default condition is on.

*PAGE is used to send a top of formcharacter (X 0C) to the lineprinter
whenever *PAGE is encountered on the Source.

*TITLE is used to print a header at the top of a page whenever a top of form
has been issued. The proper syntax is *TITLE "string" where stringis a
group of up to fourteen characters. The header will be of the form:

BASI C Answer "string" Septenber 21, 1982 12: 03 A M Page 1

*TITLE i s used ONCE anywhere in Source to toggle on the titles. The default
is OFF for this Directive.

Directives - Conditional Processing of the Source Code

There are three Directives used to process Source on a conditional basis. Al are
interrelated in use. *IF alerts the processor that a CONDI TION nust be true or the
subsequent code is to be ignored.

The *1F is followed on the sane |line, but separated by a space, froman EXPRESSI ON.
The EXPRESSION is a phrase which nust conformto the same rules as applied to
vari abl es except that there is NO declaration tag. The proper syntax is :

*| F expression.

*END i s used separately on a subsequent line to signify the end of the CONDI TI ONAL
bl ock opened by a previous *|F expression statenent.

The *1F expression ... *END sequence cannot be enbedded i n anot her CONDI Tl ONAL
sequence.

In order for the COND TI ONAL sequence to be processed two different methods may be
enpl oyed.

The first method is to place the EXPRESSION in the Source PRIOR to the CONDI TI ONAL

bl ock. To do this, type the SAME expression which occurs after the *IF expression
statement, but precede it with an asterisk <*>. The proper syntax is : *EXPRESS|I ON
where EXPRESSION is a phrase syntactically identical to a variable w thout a declaration
tag. The CONDI TIONAL bl ock *I F expression code, code ... *END containing the sane
phrase as *EXPRESSION wi || then be processed.

The second nethod is to enter the expression phrase during processing in answer to the
"Directives" pronpt.

How to Operate the Processor

To enter TBA type "TBA' at the LDOS Ready pronpt.

Pressing the <BREAK> key any tine during processing or in response to any input pronpt
wi Il cause the processor to abort and return to LDOS Ready.

Answer the pronpt "Source File" with the nane of the ASCII file to be processed. TBA
assumes a default extension of "/TBA".

TBA - User Quide
Page 7

Answer the pronpt "Chject File" with any legal filename or filespec. Pressing <ENTER>
will default to the "source fil ename/ BAS' .

Processi ng Paraneters

Answer the "Processing Parns" pronpt with <ENTER> or one or a list of paranmeters.
Separate the list with commas.

The DEFAULT when pressing <ENTER> i s screen processing.

LP - - processing will be sent to the line printer instead of the screen.
TO - - only the object code and NO Source will be displayed.

NL - - NO processed code will be displayed.

NX - - NOcross reference will be displayed.

EC - - all extraneous spaces will be renoved fromthe object code.

DC - - NOconversion fromlower to upper case in variables, |abels, or

expressions wll occur.

Directive Pronpt
Answer this pronpt by pressing <ENTER> to bypass.
R

Enter one or nore EXPRESSI ONS matching the expressions contained in *IF expression
statenents. Separate nultiple entries with conmas. The pronpt will repeat. If nore
than one line of EXPRESSIONS is necessary, enter themon subsequent repetition of the
pronpt .

The Directives pronpt will continue to repeat until only the <ENTER> key is entered as
the first character of the input |ine.

TBA will now read and process the source file. Current pass information will be

di spl ayed on video. After pass five the nornmal output will be a line of Source

foll owed by "====>>" and the object code. After this occurs to the end of the Source,
a Cross Reference Table is generated.

If some error is encountered during processing the follow ng events will occur:

Di sk or hardware errors are handled just as they are by LDCS.

Erroneous response to an input pronpt will cause the pronpt to repeat.

Errors in Source will cause the processor to display the error, the code at which the
error occurred, and then PAUSE until any key is depressed.

For a detailed list and explanation of the Error nessages, refer to the tutorial
manual starting at page 41.

TBA - User Quide
Page 8

The BASIC Answer - | ntroduction

The BASIC Answer is a processing utility designed to allow the creation of neani ngful
and structured BASIC progranms. The BASIC Answer is only for use with the LDOS
operating systemcreated by Logical Systems, Inc. Programming with The BASI C Answer
(fromnow on called TBA) will be sinilar to progranmmng in a Mcrosoft-conpatible
interpretive BASIC. All of the commands that are available in interpretive BASIC will
be usable with TBA. However, TBA incorporates nmany concepts not found in interpretive
BASI C which will make program code nore descriptive and structured. This becones
especi al |y useful when debuggi ng or nodi fying prograns that have not been exam ned for
I ong periods of tine.

The user's manual will contain different sanples of witten BASIC code capabl e of
bei ng processed by TBA. It will also show the program code generat ed.

TBA - What it is and what it does

TBA is a processing utility, rather than a BASIC conpiler. The difference between a
conpiler and TBA is that a conpiler will generate a "CVMD' (command) type file. TBA
will generate an interpretive programsinilar to prograns that would normally be
created in BASIC. It is a conpiler-type utility because it does process non-executabl e
programtext into an executabl e BASI C program

TBA functions in the followi ng manner:

1.) Programtext is devel oped and saved to a file in ASCI| format. This

non- executabl e programtext will be referred to as SOURCE CODE (or just SOURCE).
Source code may be witten using a word processor, text editor or witten directly
in BASIC. Using a word processor or text editor is the best way to create source
code since editing can be done very easily.

2.) TBA is used to process the source code. The result of this processing is an
ASClI| file which is a BASIC program This processed executable programwill be
referred to as OBJECT CODE (or just OBJECT).

3.) After the processing has been successfully conpleted, the resulting object file
can be run as a normal BASIC program

This expl anation has given a brief idea of how TBA is used and the |ogical flow of
operations needed to create prograns. The remai nder of the docunentation will be
divided into 5 sections. The material covered in these sections will be grouped as
foll ons:

Section | - Differences between witing normal BASI C progranms and witing
sour ce code.

Section |l - Witing Source Code.

Section Il - Using TBAto Process files.

Section IV - Technical Information - How the Processor Operates
Section V - Ceneral Operational Quidelines & Program Mai nt enance

TBA - Tutori al
Page 9

Section | - Differences between witing BASI C Prograns and witing source code

Witing source code to be processed by TBA will be sonewhat |ike witing nornal BASIC
prograns. All of the BASIC program conmands whi ch are available in nornal BAS|IC
programming will be allowed when witing source code. However, since the source code
has to be processed by TBA, there are sone guidelines that need to be foll owed when
witing it. This section of the manual will detail the differences between witing
normal BASIC progranms and witing source code.

LABELS, NOT LI NE NUMBERS

The first aspect of witing source code is that LABELS are used in lieu of line
nunbers. A | abel can be thought of as a phrase which denotes a point of transfer for
program execution or as a reference point in a program This is sinilar to a line
nunber in an ordinary BASIC program Wen witing source code, |ine nunbers MJST NEVER
be used within the programcode. BASIC statements (such as GOTO 100, GOSUB 6000,
RESUME 820, etc.) which require a line nunber follow ng the command, should be witten
in the source code with a |label following the statenent. In turn, the programline to
be referenced will be identified by a |abel.

A | abel consists of the <@ character, followed by a | abel nane. The |abel name can be
fromtwo to fourteen al phanuneric characters in length and the first character in a

| abel nanme nust be al phabetic. A period or underline character <.> or < > may al so

be used in a | abel nane.

The following are exanples of valid | abels:

@ield. bufferl @ st robe. kbd @Process_data
@heck.file @HECK. FI LE @ back_to_LDCs
@cet . A. Record @ROUTE. TAKENOO1 @ find_PRI ME

The followi ng are exanples of invalid |labels. The part of the |abel which nakes it
invalid will be indicated.

@L. character : leading character not alpha
#field. buffer : first character not @
@heck/file : incorrect special character
@ nput char : no spaces all owed

@iel douf f ;. @sign within | abel

@oi nt -t aken : incorrect special character

Note fromthe exanples of valid labels that the first character of a | abel nane nust
be al phabetic. To nake | abels nore readable, a period and/or underline character <.>
or <> may be used to break up words within the [abels. It nust be enphasized

that spaces and other special synbols are not allowed in a |abel nane.

The processing function will nornally convert |ower case characters to upper case
characters except in REM statenents or within quotes. However, the processor provides
a switch to prevent this fromhappening. That is, a |label specified as upper case
could represent a different label than the same | abel name entered in | ower case. If
differentiate case is on, then the | abels @HECK. FI LE and @ check.file would be two
di stinct |abels and woul d be referenced as such. Nornally, however, @HECK FILE and
@heck.file woul d represent the SAME | abel .

The decision to incorporate cases as different, should be made prior to witing Source
code. Proper care should be exercised in either case because when a |abel is

ref erenced and no conversion is done, the | abel nust be exactly as it was defined (in
essence, a character for character match). On the other hand, if conversion wll take
pl ace, the variable names nust incorporate different arrangenents of characters in
order to be unique.

TBA - Tutori al
Page 10

Li ke line nunbers, a label may only be defined once within the source code. Keep in
mnd that |abels are anal ogous to line nunbers. It is not allowed to have a | abe
defined nore than once in the source (just as there cannot be two line nunber 100's in
an ordinary BASIC program). Although a | abel cannot be defined nore than once, it can
be referenced as often as necessary (e.g. in an ordinary BASIC program there

nmay be only one |ine nunbered 100, however, as nany GOTO 100 statenents as required).

Defining and Usi ng Label s

In order to define a label, type it at the beginning of a line (exactly as a line
nunber in ordinary BASIC). Wen defining a | abel, it nust appear first in the text of
the line. That is, a label definition cannot be enbedded within a Iline

Label s not used as narkers but as branch references will appear later in the line
after the appropriate BASI C keyword. (e.g. GOTO @LAN. 3, GOSUB @ NPUT. PROCESS) .

The appropriate termfor a block of code referenced by a label in nmost high | eve
| anguages is a "procedure”. In BASIC, these procedures are called subroutines.
However, source code in TBA is not BASIC code. Therefore, throughout this
docunentation, all subroutines will be called PROCEDURES

The fol |l owi ng exanpl e shows how to define a | abel. The exanple is a procedure
(referenced by the GOSUB command) which will flash a message on the video display, and
wi Il continue flashing the message until the <ENTER> key is pressed. The exanple
represents actual source code which could be processed by TBA

@ ash. message

cls
forl =1t 020
i $=i nkey$
if i%$=chr$(13) then goto @end.fl ash. nssg
next |
print @12, " Fl ashi ng Message - Press <ENTER> to conti nue"
forl =1t 050
i $=i nkey$
if i$=chr$(13) then goto @end.fl ash. nssg
next |

goto @ | ash. message
@nd. fl ash. nssg
return

The code coul d be conprised of either upper or |ower case characters. The point is
that labels are merely line nunbers expressed in a different form Note that the first
line in this procedure defines the label. The body of the procedure is witten just
as ordinary BASIC program code woul d be. The line containing the statenent " goto

@1 ash. message" shows how to reference a label as a point of transfer in a source

pr ogr am

If any BASIC statenents are to follow a | abel reference, they MJST be separated from
the | abel by a non-al phanumeric character (usually a space or a colon). This is to

di stinguish the | abel name fromthe ensuing statenent. As an exanple, suppose it is
desirable to reference this procedure fromw thin a program dependi ng on whet her or
not a specific condition was met. The following line will represent such a statenent.

if a=10 then gosub @ | ash. nessage el se a=a+1
If the space between the |abel "@fl ash. message” and the keyword "el se" was omtted,

the keyword "el se” would be taken to be a part of the |abel name. This woul d produce
an error when the programis processed

TBA - Tutori al
Page 11

Since this particular routine is witten to be referenced by a GOSUB command, note the
use of the RETURN command. The RETURN conmmand will term nate the execution of this
procedure and return control to the program statenent imrediately followi ng the cal

to the procedure.

NOTE

Speci al attention should be paid to the method by which execution of a procedure is
termnated. In both of the Iines which performthe conparison to see whether the
<ENTER> key has been pressed (if i$=chr$(13) ...), if the conparisonis true (i.e. the
<ENTER> key was pressed) a branch is perforned to the @ end.fl ash. mssg | abel in order
to execute the RETURN command. In ordinary BASIC programming, it would be permssible
to have the RETURN statenent following the "then" in an "if" conditional, rather than
branching to a RETURN statenent. However, when witing source code, the RETURN
statenent is handled in a special manner. Only one RETURN statenent can be used in a
procedure and it nust always be the last BASIC statement in a procedure. The reason
for these restrictions of the use of the RETURN command will be expl ai ned nore
thoroughly in the sections on Vari abl e Usage and Processing Source Code

Wiy Use Label s?

Labels are nerely used to denote a point of transfer in a programand are anal ogous to
BASI C | i ne nunmbers. What mi ght not be obvious is the advantage gai ned by using |abels
as opposed to using |ine nunbers.

One advantage is programreadability. Wen review ng source code, it is nmuch nore
descriptive to see a statement such as GOSUB @f | ash. message (rather than GOSUB 1000)
in order to know what sequence of events is supposed to follow The key to making the
nost efficient use of |abel nanes is to choose a nanme that will be descriptive
regarding the function of the routine in question. (It would defeat the idea behind
using labels to nane the routines @outinel, @outine2, @rocedurel, etc.)

Anot her advant age gai ned by using labels is the ability to readily renenber
procedure-names while witing code. Wien witing BASIC prograns, it is much easier to
remenber a descriptive nane pertaining to a routine than it is to remenber the line
nunber associated with a routine. Again, carefully chosen routine nanmes wll increase
program code clarity.

The last reason for using labels is that absolute |ine referencing nay be elimnated
For exanpl e, suppose there is a programthat contains rmany different references to the
sane procedure. Upon conpletion of the program it is realized that additional
statenents need to be added at the beginning of the routine. If the addition of these
statements neant that |ines would need to be inserted in front of it, thenit is
obvious that all references to this routine within the programwoul d have to be
changed (e.g. if line 1000 was the initial entry point to the routine, and |ine 995
had to be added and was to becone the new entry point, all GOSUB 1000 statements in
the program woul d need to be changed to GOSUB 995). By using | abels no absolute line
nunbers are ever used, and naki ng such a change when witing source code would be
acconpl i shed sinply by inserting the necessary code. No changes to referencing
routines will ever need to be done when using TBA since |labels (rather than absolute
line nunbers) are used to denote routines.

The idea of having no absolute line referencing can be carried one step further.

Nor mal BASI C progranm ng does allow one to "Merge" progranms and routines together.
However, absolute line references still nust be considered. Wien witing source code
procedures that will be used in different prograns can be nerged in with the nmain text
of the programin a very conveni ent manner w thout accounting for |ine nunber
conflicts or renenbering |ine nunber references. Wth TBA it is possible to create a
library of procedures that can be used over and over again with nmany different

progr ans.

TBA - Tutori al
Page 12

In summary, |abels provide a means to nmake program source code nore readabl e and
under st andabl e. They allow for ease of referencing routines. In addition, since

absol ute line nunber references no | onger exist, procedures that will be comon to
various prograns can be nerged into the main program wi thout the need to worry about
line nunber conflicts, or the |line nunber needed to reference the routi ne. Because
there are no absolute line references, the capability now exists to wite BASIC
procedures that are relocatable within a program Any procedure can be placed anywhere
within a BASIC program wi thout having to worry about referencing it.

How t he TBA Processor Deals with Labels

It has been noted nunerous tines throughout this section that Labels take the place of
line nunbers in source code and that |ine nunmbers MJUST NEVER be used when witing
source. The reason for this is that the processing operation (the changing of source

code to object code) will insert |line nunbers into the code. The processing operation
will create a programwhich will run under interpretive BASIC. After processing has
taken place, all lines in the source code will have a |ine nunber assigned to them In

addition, any lines in the source code which referenced a | abel (e.g. GOSUB
@ ash. message) will have a line nunber substituted for the |abel.

Using the @fl ash. message routine again as an exanple, assune that the first CLS line
in the procedure (the line imediately followi ng the @ flash. message | abel definition)
had |ine nunber 500 assigned to it after processing. Any reference to this label in
the source code will appear in the object code as GOSUB 500 or GOTO 500. Although no
line nunbers are used when witing source code, the object code will be constructed to
include line nunbers, just as any ordinary BASIC programwoul d. |f absolute line
nunbers do appear within the source code, they will be l|eft unchanged by the
processing routine, and will nore than likely produce sonme type of BASIC error
(undefined line) when the object code is executed.

Appl ying the Theory of Labels to Practical Progranm ng

Knowi ng the proper syntax for defining and referencing | abels is necessary for using
them Wthout realizing when and why | abels are used, programming with TBA woul d be no
different than programmng in ordinary BASIC. Wth the proper use of labels within the
source code, the user will have the necessary tools for building and naintaining
structured, easy to follow, meaningful code.

A structured BASI C program can be broken up into two distinct el enments. The first

el ement woul d be the main body of the program The nain body of the program should be
witten in a manner which incorporates a logical flow Mst of the time, the main body
of the programis conprised of controlling | oops and routines that perform specific
operations on the data used by the program For instance, it will handle the printing
of specific pronpting nmessages, or it will performcal cul ati ons based on the data used
by the program (perhaps in a loop), etc. Branching (using GOTO in nost cases wll be
limted to either a | oop operation, or going to a specific function of the program
froma main menu (and returning to the main nenu after the particular function is
conpl ete).

TBA - Tutori al
Page 13

The second elenent in a structured programis the PROCEDURE. Procedures can be used
for functions that will be done at different |ogical points throughout the program An
exanpl e of a procedure would be a bl ock of code which controls the input of all data
to a program Whatever the purpose of a procedure, it will be accessed by the main
body of the program Procedures should be witten in a manner that will be usabl e by
various functions in the main body of the program A procedure shoul d never be
involved in a decision nmaking process with respect to the nain body of the program
The function of a procedure should be limted to accepting/retrieving data for the

nmai n body of the programto nmani pul ate or nake decisions upon. It will also be quite
common for a procedure to set conditions for the main body of the programto eval uate.
Real i ze that the procedure should only set the conditions, and should let the main
body of the program nmake the deci si ons based on the conditions set.

Branching statements in a procedure should be limted to a branch internal to the
procedure, and shoul d never branch to a point in the main body of the program This
inplies that the proper way to exit a procedure is with the RETURN comand.

For the nost part, |labels will be used to identify procedures that the nain body of
the programwi |l be referencing. Wien using labels in this manner, they will represent
procedure nanes accessed with the GOSUB conmand.

Label s may be used within the nain body of the programto represent |ogical branching
points. Labels, when used in this nmanner, will be referenced by the GOTO command.

It will take sone forethought on the user's part to create procedures which will be
accessed by the nmain body of the program The function of a procedure should be well
defined and shoul d not deal with specifics. The nore generic a procedure is, the nore
applicable it will be, not only in the specific program but also in future prograns
that will be witten.

| NTRODUCTI ON TO VARI ABLE USAGE

The use of variables with TBA does differ fromordinary BASIC progranm ng. This
section will highlight the differences in variabl e usage.

Unlike interpretive BASIC, when witing source code, there is not a two character
limtation to represent a variable nane. Variables may be up to fourteen characters in
I ength. Having | onger variable names will neke programtext nore readabl e and

nmeani ngf ul because descriptive nanes may be used.

Two different types of variables can be utilized when witing source code. They are
d obal variables and Local variables. dobal variables are variables that will be
mai nt ai ned t hroughout the program Local variables are variables that will be

mai ntai ned only through the duration of a procedure.

Having two different types of variables (dobal vs. Local) wll make variabl e usage
much nore manageabl e. The programrer will be at liberty to choose tenporary variable
nanmes whi ch may be used at other points in programcode. In this respect the need to
worry about destroying information stored in a variable by using it in a different
part of the programwill be dininished.

Since TBA introduces this concept of Local and d obal variables, certain guidelines
will need to be followed concerning their usage.

TBA - Tutori al
Page 14

Valid Variabl e Nanes

Variabl e nanmes nay be up to fourteen characters in length. The first character must be
al phabetic. After the first character in a variable nanme, the remaining thirteen
characters may be al phanureric. The period and/or underline character <.> or <_ > nay
also be used in a variable nane to provide readability. The variable name MJST be

foll owed by one of the four variable type declaration tags (one of <%, <I> <#> or
<$>). The declaration tags will represent the follow ng types of variables:

% | nt eger
! Si ngl e Precision
Doubl e Preci sion
$ String

Vari abl e nanes should be at |east two characters long (not including declaration
tags). The use of single character variables is permtted when witing source code,
but single character variables are handled in a special manner. Mre details on the
use of single character variable names will be given later in this section.

The use of upper and | ower case for variable names is also inportant. As was the case
with Label s, consistency in using upper and | ower case nust be mai ntai ned when
defining and referencing variable nanes if no conversion will be done during
processing. For exanple, the variable name LOOP1% coul d represent a different variable
than the name | oopl% Nornally, however, the two names will be identical. The

following will illustrate valid variable nanes.
Loopl1% first.nane$
| oopl% | ast _nane$
| oopl$ total.dol | ars#
Account _total # spvari abl e!

Notice that using a different declaration tag with the sane variable name will create
a unique and distinct variable. Note also that all of the variables |isted above do
contain a declaration tag. If the declaration tag was |left off when defining a
variable, a "Aobal Variable Definition Format" error woul d occur. Al though it may
seemto be a bit of a bother specifying declaration tags, in the long run it wll make
source code nore readabl e and meani ngful. The specific type of variable being used
will always be carried along in the variabl e nane.

Invalid Vari abl e Nanes

The variabl e names al | owned when witing source code will enable the capability of
choosi ng nore descriptive and neani ngful variable names. However, there remain sone
vari abl e nanes that MJST NEVER be used. The following is a list of such variable
nanes.

Two character BASIC keywords (such as IF, OR O\, FN, AS)
BASI C keywords that end with a declaration tag (such as TIME$S, MKDS, | NPUT# etc)
A variabl e whose first three characters begin with the letters REM

It is allowed to have these BASI C keywords enbedded within a variable nane (such as
real ti ne$, sprenenber% ifset#, etc.). Any BASIC keyword that is |onger than 2
characters (and does not end with a declaration tag) may be used as a variabl e nane
(such as goto% Iset!, etc.). If any invalid variable nane is used, an "Il egal
Variable" error will occur.

TBA - Tutori al
Page 15

Before any variabl es may be used, they nust be defined in sone type of definition
statenent. The definition of variables will differ, depending on whether Qd obal or
Local variables are being defined.

Defining dobal Variables

To define G obal variables, begin a |line of source code with an "equal sign" <=>
followed by the variable or list of variables to define. If nore than one variable is
to be defined, the variables nmust be separated by commas. A dobal variable definition
statenment nust be restricted to just the definition of variables and no other
statenents may appear on a variable definition line. The follow ng exanple will
illustrate how G obal variables are to be defined.

=l oopl% | oop2% t ot al dol | ar s#, fi r st nane$, | ast name$, spvari abl e!

In the above exanple, six variables are defined as d obal variables. The variabl es
| oopl% and | oop2% will be integer, totaldollars# wll be double precision,
firstnane$ and | astnane$ will be string, and spvariable! wll be single precision.

d obal variables nay be defined anywhere within the source code. It is highly
recommended that d obal variables be defined at the very beginning of the source code.
Defining variables at the beginning of the programw |l cause it to have nore
structure. It will no |l onger be necessary to "hunt" through the program code to
determine if a variable has been defined. Defining variables at the beginning of the
code will also serve as a quick reference list of all dobal variables currently in
use.

Defining Local Variables

Local variables will be defined in conjunction with the entry point to a given
procedure. To define a variable as Local to a given procedure, the variable (or |ist
of variables) will follow the |abel which defines the entry point into the procedure.
An "equal sign" <=> nust separate the end of the label name fromthe first character
of the first local variable defined. If nore than one variable is to be defined as
local to a given procedure, these variables nust be separated by conmas.

As the nane inplies, Local variables are used explicitly in a given routine. The val ue
assigned to a Local variable is only inportant during the duration of the routine.
After the routine has been conpleted, the value of the variable will have no effect on
the remai nder of the program

As an exanple, consider the following rewite of the exanple which incorporates the
use of local variables. The following will represent the actual source code that could
be witten to include |ocal variables in this routine.

TBA - Tutori al
Page 16

@ | ash. message= del ayl oopl%, del ayl oop2%, kbdscan$
cls
for delayloopl% =1 to 20

kbdscan$=i nkey$

i f kbdscan$=chr$(13) then goto @end.fl ash. nssg
next del ayl oopl%
print @12, "Fl ashi ng Message - Press <ENTER> to conti nue"
for delayloop2% = 1 to 50

kbdscan$=i nkey$

if kbdscan$=chr$(13) then goto @end.fl ash. nssg
next del ayl oop2%
goto @l ash. nessage
@nd. fl ash. nssg
return

In this exanple, there are three |ocal variables which are defined (del ayl oopl%

del ayl oop2% and kbdscan$). Notice that defining local variables is nuch the sane as
defining global variables. The exception is that the variable definition appears after
a | abel

A obal vs. Local - An Overall Perspective

d obal variables are transforned throughout the program while local variables are
transformed only during the procedure for which they were defined. This is a result of
t he processing which is performed when changi ng source to object code. The processing
operation will create a programwhich will be run under the normal interpretive BASIC
environnent. The operation perforned by the processor when dealing with variables is
to change each variable encountered to a two character variable. The first phase of
the processing will replace all local variables with a distinct two character variable
nane. After the local variables have been processed, all global variables will have
the same repl acenent process perforned on them

The result is that a local variable will be transforned to a unique two letter
variable for the lines actually contained in a given procedure. At no other place in
the code will this particular conbination of |letters be used again. This makes the
variable "local" in essence. However, the object code will contain a valid variable
nanme that nakes it no different fromany other variable. The real difference between
d obal and Local variables is merely how TBA processes them and does not actually have
anything to do with altering the BASIC interpreter.

The followi ng exanple is an extension of the @ flash.nessage routine. It is a program
consi sting of two procedures, which are referenced by the nain body of the program
The program does contain several lines which will serve to end the operation of the
program The variable testvar% is defined as a global variable. Note that the each of

the two procedures contain tw |ocal variables

TBA - Tutori al
Page 17

* Kk

" Mai n body of program
Tk k ok
cl ear 1000
=testvar%
@egi nni ng
testvar %0
gosub @I ash. messagel
if testvar% 1 then goto @endi ng. nesg
gosub @I ash. message?2
if testvar%1 then goto @endi ng. nesg el se goto @egi nni ng

L

" Procedure #1

L

@1 ash. nessagel=kbdscan$, | oop%
kbdscan$=""
cls:for | oop%1to20
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.flashl
if kbdscan$="X" or kbdscan$="x" then testvar%1l:goto @nd.flashl
next | oop%
print@12,"flashing mssg | - enter for 2, x to abort"
for | oop%1t o050
kbdscan$=i nkey$
i f kbdscan$=chr$(13) then goto @nd.flashl
i f kbdscan$="X" or kbdscan$="x" then testvar%1l:goto @nd.flashl
next | oop%
goto @I ash. nessagel
@nd. fl ashl
return

'k k ok

" Procedure #2

'k kK

@ ash. message2=kbdscan$, | oop%
kbdscan$=""
cls:for | oop%1t 020
kbdscan$=i nkey$
i f kbdscan$=chr$(13) then goto @nd.flash2
i f kbdscan$="X"' or kbdscan$="x" then testvar%1:goto @nd.flash2
next | oop%
print@12,"flashing nmssg 2 - enter for 1, x to abort™
for | oop%1t 050
kbdscan$=i nkey$
i f kbdscan$=chr$(13) then goto @nd.flash2
if kbdscan$="X"' or kbdscan$="x" then testvar%1l:goto @nd.flash2
next | oop%
goto @I ash. message?2
@nd. fl ash2: return
"Note : The preceding |ine DOES nmeet restrictions on the use of "RETURN'

L

"End of program

k% Kk

@ndi ng. nsSg
cls:print@12,"this programhas been run in its entirety."
end

TBA - Tutori al
Page 18

The main body of the programw |l initialize the variable testvar% as a globa
variable after which it will set this variable equal to zero. Fromthis point a

| ooping situation will occur. The nmain body of the programw ||l call the first
procedure which will cause nessage #1 to flash on the screen. Message #1 will continue
to flash until one of two keys is pressed. If the <ENTER> key is pressed a return from
the procedure to the main body of the programwill be performed and the gl oba

variable testvar% will be unchanged. |If the <X> key (either upper or |ower case) is
pressed, the global variable will be set equal to one, and a return will be made to
the nmain body of the program

Once control of the programis returned to the nain body fromthe first procedure, the
global variable will be tested. If it is set equal to one (the <X> key was pressed),
the programw || branch to the ending message routine at the end of the program and
program execution will stop. If the global variable is equal to zero (the <ENTER> key
was pressed), normal program execution will continue, and the second procedure wll be
called

The second procedure will execute in a simlar fashion to the first (with the
exception that flashing nessage will be different). Upon returning to the nain body of
the program either a branch will be performed to the begi nning of the main body of
the program (<ENTER> was pressed to exit the second procedure), or a branch will be
perforned to the endi ng nessage part of the program (<X> was pressed to exit the
second procedure).

Al t hough sonewhat sinplistic, the exanple will illustrate the differences between

gl obal and local variables. These differences can be noted by observing the object
code which will be produced when the source code is processed (Note that the remarks
listed in the foll ow ng object code would not nornally be produced by the processing
operation, but have been inserted to make the object code nore readabl e and
under st andabl e) .

TBA - Tutorial
Page 19

T kkk

"Mai n body of program
"k xk
CLEAR 1000
TEY%0
@0suUB 18
| F TE%1 THEN GOTO 60
aosuB 39
| F TE%1 THEN GOTO 60 ELSE GOTO 7

T k%%

' Procedure #1

L

KB$=""

CLS: FOR LO#F1TQR0

KB$=I NKEY$

| F KB$=CHR$(13) THEN GOTO 32

I F KB$="X' OR KB$="x" THEN TE¥%1: GOTO 32
NEXT LO%

PRI NT@12, "flashing nssg 1 - enter for 2, x to abort"
FOR LO#1TGB0

KB$=I NKEY$

| F KB$=CHR$(13) THEN GOTO 32

I F KB$="X' OR KB$="x" THEN TE¥%1: GOTO 32
NEXT LO%

Q010 18

RETURN

T kK%

" Procedure #2

L

KC$=""

CLS: FOR LPY%1TQ20

KC$=1 NKEY$

| F KC$=CHR$(13) THEN GOTO 53

I F KC$="X'" OR KC$="x" THEN TE%1: GOTO 53
NEXT LP%

PRINT@12,' -flashing nssg 2 - enter for 1, x to abort"
FOR LP%1TC60

KC$=1 NKEY$

| F KC$=CHR$(13) THEN GOTO 53

I F KC$="X" OR KC$="x" THEN TE%1: GOTO 53
NEXT LP%

GOoro 39

RETURN

T %% %

'End of program

L

CLS: PRINT@12, "this program has been run in its entirety."
END

TBA - Tutori al
Page 20

From conparing the original source code to the processed object code note that the

| abel s and variabl es contained in the source code were transforned into |ine nunbers
and two character variables in the object code. The chart listed below will give the
transformati ons performed on the | abels.

Label s in Source Li ne Nunbers in Object
@egi nni ng 7
@1 ash. nessagel 18
@nd. fl ashl 32
@1 ash. nessage2 39
@nd. fl ash2 53
@ndi ng. mssg 60

The processing perforned on the | abel nanmes shoul d be quite obvious. The file was

assi gned |ine nunbers based upon the character X 0D . Line 1 was conprised of al
characters fromthe beginning of the file until the first "<ENTER>" key character

Line 2 was conprised of all characters fromthat point until the next carriage return
(<ENTER>) was encountered, etc. The processing perforned on the variabl e nanes may not
be quite as obvious. Below is an explanation of the results of the processing
perforned on both the global and | ocal variables.

Wien variabl es are processed, the |ocal variables are done first. Consider the
flashing programlisted. The first variables processed were the |ocal variables
(kbdscan$ and | o0o0p% defined in the @I ash. messagel routine. Conpare the source to the
object code and it will be detected that the variable kbdscan$ in the source code is
represented as KB$ in the object. Simlarly, loop%was transformed to LO%

Notice that in the source of the @I ash. nessage2 procedure, the sane two | oca
variabl es defined in the first procedure were also defined here. The point to notice
is the transfornmation of these two variables. In the second flashing routine, the
variabl e kbdscan$ was translated into KC$ (as opposed to KB$ in the first routine),
while | oop% was changed to LP% (as opposed to LO¥%. This translation of the same |oca
variabl e nane (used in two different procedures) into two different variable nanes
is the basis for having | ocal variables.

For the duration of any procedure, all occurrences of a defined local variable will be
translated into a uni que variable nane. A procedure is defined as being the

sel f-contai ned code between the | abel defining the entry point into the procedure and
the first occurrence of a RETURN statenent. Al variables that are within this

sel f-contai ned procedure and are defined as being |local to the procedure will be
translated into uni que variable nanes. |If the sane local variable is defined in nore
than one procedure, it will get translated into a different variable nane in each
subsequent procedure. Wiat this nmeans is that if a variable is defined to be local to
a procedure, there is no chance of destroying a val ue which mght be assigned to a
vari abl e that has the same nanme. This concept of local variables will elimnate the
need to "chase down" variabl es when a new variable is introduced. There is no |onger a
need to worry about destroying a value already assigned to a variable.

Using | ocal variables will also aid in the debugging of prograns. Wen entering a
procedure, the value assigned to a |local variable will be solely determ ned by the
procedure. This will prevent the occurrence of having a variable assigned to sone
obscure nunber as the procedure is entered. When re-entering a procedure, it will be
up to the programmer to initialize the local variables in the procedure (if required).
If a procedure is re-entered, the val ues assigned to the local variables will be
carried over fromthe last time the procedure was executed. Values carried to and from
procedures nmust be equated to d obal vari abl es

TBA - Tutori al
Page 21

When t he processing of |ocal variables in a given procedure is taking place, the
transformati on of variables will take place fromthe begi nning of the procedure up to
the RETURN statenent. For this reason, there nay only be one RETURN statenent

associ ated with each procedure definition and the RETURN st at enent MUST appear as the
last line of the procedure, and MJST be the only BASIC statenent on that |ine.

If it is necessary to performa return fromsomewhere within a procedure, the return
must be done as illustrated in the @flash. nessage routines. That is performa GOIQ
and branch to a label at the end of the procedure. Following this label will be the
RETURN statement. (It is allowed to have the | abel and the RETURN statenent on the
sane line. EG "@nd.flashl: RETURN') As is illustrated in the @ fl ash. message
exanpl es, the | abel name " @end. procedure" could be chosen to represent the branch to
the RETURN statenent (e.g. @nd.flashl was used as the | abel nane to represent the
branch to the RETURN statenent).

After all local variables have been processed, the global variables are transforned
into two character variable nanmes. In the above exanple, the only gl obal variable
defined was the variable testvar% This variable was GLOBALLY repl aced throughout the
entire programtext by the variable TE% Note that regardl ess of where testvar %
appeared in the source code (i.e. in the main body of the programas well as within
the procedures), it was transfornmed into the variable TE%

If it is desirable to have a variable which is naintained throughout the entire body
of the main program define it to be a global variable. If the only concern is with
the value of a variable during the duration of a procedure, defined it as a | ocal

vari abl e. To pass variabl es between the procedure and the main body of the program
the variabl es common to both should be defined as global (in the flashing nessage
program above, testvar%is a variable that is passed between the nain programand the
procedures and hence was defined as gl obal).

When defining variables (either local or global), at |east two characters (not
including the declaration tag) nust be used to represent the variable nane. This is
because no processing will be performed on single character variables. No
transformations will occur to single character variables. If it is necessary to have
variables within the programthat will not get processed and will be nmintai ned solely
by the user, then use single character variable nanes. To use single character

vari abl es, incorporate the variable within the code WTHOUT defining it. Defining a
single character variable as local or global wll generate an error during processing.

The same vari abl e name nay be defined as both global and local. The variable name wll
represent a different variable in the local routine than it represents on a gl obal
basis. Consider the following source code which uses the variable test% as both a
local and gl obal variable.

=test%
clear 1000
t est %0
gosub @ubl
print"this is the current value of test%-->";test%
end

@ubl=t est %
for test%1 to 10

print test%

next test%
return

If this source code were to be processed it woul d produce the foll ow ng object
code.

TBA - Tutori al
Page 22

CLEAR 1000

TFY%0

QosuUB 8

PRINT"this is the current value of test% -->";TF%
END

FOR TE%+1 TO 10

PRI NT TE%

10 NEXT TE%

11 RETURN

oo hwiN

Note that in the procedure @ubl, the local variable test%was transforned into the
variable TE% while the global variable test%was transfornmed into TF% This neans
that to pass a global variable to a procedure, define the variable as bei ng gl obal
O\LY, and do not define it as a local variable in the procedure. Doing the latter

wi Il cause the variable not to be passed. Different variable names will represent the
vari abl e.

If a procedure perforns a call to a second procedure and it is desired to have

vari abl es common to both procedures then these comon variabl es MIJST be defined as
gl obal . Consider the followi ng exanple which illustrates one procedure (@ubl) that
ref erences anot her procedure (@ub2).

@ubl=var 1% | oop%
for | oop%1l to 100
var 1%l oop%

"call of @ub2 within @ubl

gosub @ub2
print varl1%
return

"entry to @ub2
@ub2=var 1%
var 1% var 1%*(5*100)
return

Notice that @ubl defines the variable varl1%to be |ocal, as does @ub2. |If the above
source code was processed, the followi ng object code woul d be generated. (But without
the REM statenents.)

FOR LO%1 TO 100
VAYLO%

REM

REM call of @ub2 within @ubl
REM

GOSUB 14

PRI NT VA%

RETURN

10 REM

11 REMentry to @ub2
12 REM

14 VB%VBY%-(5* 100)

15 RETURN

O©CoOoO~NOOP~hWN

TBA - Tutori al
Page 23

Conparing the source code to the object code, observe that the variable varl%in the
@ubl routine was translated into VA% while varl1%in the @ub2 routine was transl ated
into VB% This would mean that the variable would not be passed between the two
procedures. To renedy this situation, it is necessary to define varl%as a gl oba
variable and NOT define it as a |ocal variable in either procedure.

Up until this point, the use of sinple variables has been discussed and not the use of
arrays. The procedure used to define, dinension and utilize arrays is very simlar to
that of sinple variables. To define an array, place the array NAME in a variable
definition statenent. The array name MJST be followed by a declaration tag just as
though it was a sinple variable being defined. Only the array name should be in the
definition statement (the use of parentheses and/or a subscript value in a variable
definition statement will cause an error during processing). The follow ng exanpl e of
source code will show the proper nethod to define, dinension and utilize an array (the
array that will be utilized is called TOTALS# - all other variables in the definition
statenent represent sinple global variables).

=t ot al s#, | oop1% | ocop2% di nr ow di ncol uMm%

cl ear 1000

di nt owe&E50

di ncol um%20

di m total s#(di ntow di ntol utMm%)

for 1oopl% 1 to dinrowk
for loop2% 1 to dincol um%

total s#(1 oopl% | oop2% =0

next | oop2%

next | oopl%

If the source code were to be processed, the follow ng object code woul d be generat ed.

2 CLEAR 1000
3 DI %50

4 DI%20

5 DIM TP#(Dl % DI%

6 FOR LO% | TO DI %
7 FOR LP% 1 TO D%
8 TP#(LO% LP% =0
9 NEXT LP%
10 NEXT LO%

By conparing the source code to the object code, observe that any references to the
array totals# in the source code were translated to TP# in the object code. Using
defined variabl es as subscripts (in the above exanple, the variables di nr owds and
di nrcol um% were used as subscripts) is allowed. Defined variables may be used in any
facet normally used in a BASIC program (i.e. variables nmay be used along with any
BASI C functi on).

The final point concerning the use of variables is that if they have a declaration
tag, they nmust ALWAYS be defined (with the exception of single character variables).
If a variable is referenced but not defined, no processing will be perforned on the
variabl e and an "Undefined Variable" ERROR will occur in processing. Variable names
without tags will not be processed and m ght cause a syntax error.

By far the nost common errors to occur when | earning these procedures are the onission
of a declaration character to variables and the inadvertent use of an undefined
variable. The latter nay often be due to msspelled variabl e nanes.

TBA - Tutori al
Page 24

M scel | aneous Differences and I nfornmation

The final part of Section | will deal with mnor differences between programmng in
BASI C and writing source code. An additional concept concerning the use of Labels wll
be expl ai ned.

The REM statenent can be used within the source code in the sane nanner that it is
used when witing normal interpretive BASIC progranms. Wien the REM statenent (not the
<'> abbreviation) is used, no processing will be performed on it, and it will renmain
in the object code as it appeared in the source code. Wien the REM abbreviation <' > is
used in the source code it will be renoved by the processing routine and will NOT
appear in the object code. If it is necessary to have REM statenents appear in the

obj ect code use the REM statenent. The REM keyword nust be first on a line and
therefore, the REMIine nust be a separate line. If it is desired to have remark
statements in only the source code then use the REM abbreviation

Spaces nmay be used throughout the source code text to inprove readability. Wen the
processing of source code is perfornmed, all spaces that are not contained in literal
strings can be renoved and the object code will have no extraneous spaces. This will
all ow the incorporation of spaces within the source code without the worry of using up
extra nenory in the processed object code. The only exception to this is the use of
any variable beginning with the letter "C' when used after the keyword "AS" in a field
statenent. Deleting this space would formthe reserved word "ASC' and result in a
syntax error. Therefore, the space is not del eted.

When defining a |label, additional BASIC statenents may appear on the sane line as the
| abel definition, provided that no | ocal variables need to be defined along with the
label. Note that a | abel definition (where it is the start of a branch) may NOT be
enbedded within a line and nust appear as the first statenent on the line. To

i ncorporate BAS|IC statenents on a |labeled line, the | abel nust be followed by a colon
<:>. The following exanple line will show howto wite a source |ine which contains
BASI C statenents which follow a | abel .

@lel ay.l oop:for 1=1 to 2000: next |

This concludes Section | of this manual. The user is encouraged to re-read this
section if all of the concepts are not totally understood.

TBA - Tutori al
Page 25

Section Il - Witing Source Code

This section of the manual will explain howto wite source code. Source code nay be
witten in one of two ways - either by using a word processor/text editor (such as
SCRIPSIT or LED) that has the capability of saving a file in ASCII, or in the ordinary
interpretive BASIC environment. Regardl ess of how source files are created, it is

hi ghly recomrended that they be assigned a conmon file extension when saved to disk.
Since both source and object files will be utilized, using a comon extension (such as
/TBA for The BASIC Answer) will help differentiate between the two. Only the object
file will be an executabl e program

Using a Wird Processor/Text Editor to Wite Source Code

Witing source code is very easy when using a word processor or a text editor. There
are several things that are required to ensure that the source code will be processed
Wi t hout errors.

First of all, the source text to be processed MJIST contain only source text.
Characters or lines that serve a specific function to the word processor or text
editor nmay not be contained in the source code when it is processed. Page formatting
lines, block markers or any other control characters cannot appear in the source code
to be processed. However, they may be used when witing source code (to nove bl ocks of
code around or to nake source listings nore readable). If used, these special
characters nmust be deleted fromthe source code before it is processed.

The second point is that all text MJST be saved as an ASCI| file. Certain word
processors will save some characters in the text as non-ASCI| characters unless told
to save the file in ASCIl. (i.e characters outside of the range X 00" to X 7F). For
exanmple, SCRIPSIT will save a carriage return (X 0D) as a non-ASCI| character

(X 8D). No characters may appear in the text that have a value less that X 20° (with
the exception of a carriage return or |linefeed character). For nore information on
saving a file in ASCI I, consult the docunentation of the word processor or text editor
that will be used.

The last character in the file MJST be a carriage return. All lines in the program
text nmust end with a carriage return character and the | ast character in the text nust
be a carriage return. Some word processors may have "extraneous" spaces at the end of
the last carriage return. It is advised that prior to saving a programtext file a
"delete to the end of text" is perforned after the last carriage return in the

pr ogram

NOTE for SCRI PSI| T users

The upward arrow on the keyboard has a conflicting use in BASIC as opposed to the word
processor. In BASIC, the synbol generated is used to desi gnate exponentiation. "3[2"
neans three squared. The key in Scripsit will generate a reverse line feed. Under LDOS
version 5.1.1 or later, if the KI driver is active (under LSCRI PT), the proper
character will be entered by using <CLR><,> (clear key and comma key).

TBA - Tutori al
Page 26

Using the BASIC Interpreter to Wite Source Code

The easiest and nost efficient way to wite source code is to use a word processor or
a text editor. However, source code may be witten in the normal BASIC environment as
well. If using interpretive BASICto wite source code, there are several guidelines
that nust be adhered to.

As was noted in Section |, the use of internal |ine nunbers in the source code shoul d
not be done. This is true regardl ess of how source code is created. However, when
witing source in interpretive BASIC, |ine nunbers MJUST be used as a neans to enter
the source code. This is due to the fact that BASIC will interpret any keyboard
entries issued fromthe READY pronpt, and act on themimedi ately unl ess preceded by a
line nunber (in which case the line will be stored in nenory as programtext). The
idea behind witing source code in BASICis to use |line nunbers solely for the purpose
of storing the programtext in the nmenory reserved by BASIC for text. No |ine nunber
ref erences shoul d appear in the source code.

The foll owi ng exanple will show how source code should be witten fromw thin BASIC

110 @LASH. MESSAGE

120 CLS

130 FORL=1TC20

140 | $=1 NKEY$

150 | F | $=CHR$(13) THEN GOTO @END. FLASH. M5SG
160 NEXTL

170 PRINT@12, "Fl ashi ng Message - Press <ENTER> to conti nue"
180 FORL=1TCR0

190 | $=I NKEY$
200 |F | $=CHR$(13) THEN GOTO @ND. FLASH M5SG
210 NEXTL

220 GOTO @LASH. MESSAGE
230 @END. FLASH. MBSG
240 RETURN

Note fromthe above exanple that no references are nade to the line nunbers used. The
line nunbers are used so that source code may be stored in nenory w thout being acted
upon immedi ately by the BASIC interpreter.

When source code is processed, any line nunbers that are found at the beginning of a
line will be stripped off. The result will be just the source code (without |ine
nunber s) .

After the source code has been witten, it can be saved just as a nornmal BASIC program
woul d be. However, when saving source code, the "A" parameter MJST be specified in the
SAVE command. The processor can only deal with ASCII files. If the "A" paraneter is

not specified, all BASIC keywords will be saved in their "conpressed" formwhich wll
cause non-ASCI| characters to be saved to the file. This will cause totally
unpredictable results when the file is processed. To save a file in ASCll, use the

fol l owi ng synt ax.

SAVE'fi | ename", A

Two nore | MPORTANT points need to be made concerning the witing of source code in the
BASI C environment. First, no programline can exceed 240 characters in length
(including the line nunber). This is because BASI C cannot | oad a program which has a
line |longer than 240 characters. If an attenpt is nade to load a program|ine | onger
than 240 characters, the load will be aborted and a "Direct Statenent in File" error
will result. The rest of the programw || be inaccessible. It will be necessary to

| oad prograns in BASIC so that the source code may be edited. Having source lines

I onger than 240 characters will |ead to disastrous results.

TBA - Tutori al
Page 27

The second point is that although |line nunbers are not referenced in the source code,
the sequence of |line nunbers used is inportant. As programlines are witten, the
BASIC interpreter will insert theminto the programtext in sequence by |ine nunber.
For this reason, the source statements which are witten nust have |ine nunbers
assigned to themthat will cause the proper sequencing of the lines. Wen using |ine
nunbers to wite source code, it is a MIST to choose |ine nunbers that will result in
the proper sequencing of lines, just as it is done when witing nornal BASIC prograns.
This does not allow the transportability of source code because it will no | onger be
rel ocatable within the program For this reason, it is highly recommended that source
code be witten with a word processor or text editor, rather than fromthe BASIC

envi ronnent. Anot her di sadvantage of using BASIC to create source code is that | ower
case is automatically converted to upper case outside of quotes or renarks. Variables,
| abel s, and directives can not be generated in | ower case.

Usi ng DI RECTI VES when Processing Source Code

The use of directives will enable the advantage of several advanced features
incorporated in TBA. This section will describe how Directives can be used within the
source code, as well as specifying Directives during the processing phase.

A Directive serves as a nmeans to alter the output associated with a processed file. In
addi tion, by proper use of Directives, conditional processing of source files may be
achieved. Here is a list of the allowable Directives.

*PRLI NES (May be used in Source code only)
*LI ST OV OFF (May be used in Source code only)
* PAGE (May be used in Source code only)
*TI TLE (May be used in Source code only)
*| F expression (May be used in Source code only)
*END (May be used in Source code only)
*expressi on (May be used in Source code or at Directive
pronpt)

Any Directive may be incorporated within the source code. Only the Directives that
deal with "expressions" may be used at the "Directive" pronpt in the processing
utility. Source code Directives are identified as an asterisk (*), followed by the
desired Directive. |If used in the source code, a Directive nmust be the only
information contained on a line. Directives cannot be enbedded within a line and no
other statenments (either BASIC or definition) nmay follow a Directive on the Directive
l'ine.

The first four Directives discussed (*PRLINES, *LIST, *PAGE and *TITLE) will control
the output generated by the processing utility, and may only be used w thin source
code.

*PRLI NES

The *PRLI NES directive can be used to set the nunmber of lines to be printed on a page.
It nmust be placed on its own line in the source code and be foll owed by a paraneter
whi ch is a nunber between 20 and 254

The proper syntax is :

*PRLI NES=N

where n is a nunber from 20 through 254. If the directive is not specified the default
woul d be 56 printed |ines per page. Wiile printing, when the specified nunber of |ines
has been printed, an X 0C character will be issued to the printer, resulting in a top
of form position.

TBA - Tutori al
Page 28

Initial top of formalignment should be done prior to processing if the line printer
is to be used. In order to do this, be sure the printer is "on line" and issue a top
of formcomand. (E.G From LBASIC the comrand "LPRI NT CHR$(12)" would do or if
MNDOS filter is active a <CLR><SHF><T> can be used.) After the paper has noved,
position so that the initial print will occur where desired. Fromthis point on, a top
of formcommand will position the paper at the sane relative |ine on subsequent pages.

If the printer is capable of printing only 80 characters per line, the LDCS printer
filter (PRIFLT) should be used with the CHARS paraneter set at 80 or proper pagination
will not occur. In order to do this, at LDOS Ready type FILTER *PR PR (C=80). O her
print filter paraneters may be set, but note that any I NDENT will weak havoc with the
formatted output.

*LI ST QV OFF

The *LIST Directive can be used to turn on/off the listing of the processed code which
is generated by the processing utility. It will work prinmarily as a switch so that the
listing of certain parts of the code may be di sabl ed. The best way to explain its use
and function is through an exanpl e

Assume that it was desired to process source code and only the main body of the
program and the endi ng nmessage were to be displayed in the listing. The foll owi ng
*LIST Directives could be added to the source code to produce the desired results. In
the source code listing that follows the addition of the *LI ST Directives will be
denot ed by bei ng underlined and bol d faced

cl ear 1000
=testvar%
@egi nni ng
testvar %0
gosub @1 ash. nessagel
if testvar%1 then goto @ending. nssg
gosub @1 ash. nessage?
if testvar%1 then goto @endi ng. nssg el se goto @egi nni ng
*LI ST OFF
@1 ash. nessagel=kbdscan$, | oop%
kbdscan$=""
cls:for | oop%1to20
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.flashl
if kbdscan$="X"' or kbdscan$="x" then testvar%1l:goto @nd.flashl
next | oop%
print@12,"flashing mssg 1 - enter for 2, x to abort"
for | oop%1t 050
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.fl ashl
if kbdscan$="X"' or kbdscan$="x" then testvar%1l:goto @nd.flashl
next | oop%
goto @I ash. nessagel
@nd. fl ashl
return
@1 ash. nessage2=kbdscan$, | oop%
kbdscan$=""
cls:for | oop%1t 020
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.fl ash2
if kbdscan$="X"' or kbdscan$="x" then testvar%1l:goto @nd.flash2
next | oop%
print@12,"flashing mssg 2 - enter for 1, x to abort™

TBA - Tutori al
Page 29

for | oop%1t 050
kbdscan$=i nkey$
i f kbdscan$=chr$(13) then goto @nd.fl ash2
i f kbdscan$="X' or kbdscan$="x" then testvar%1l:goto @nd.flash2
next | oop%
goto @I ash. nessage?2
@nd. fl ash2
return
*L|I ST ON
@endi ng. mssg
cls:print@12,"this programhas been run inits entirety.":end

If, during processing, this code is listed to the printer or screen, the follow ng
will represent the |isted output produced.

cl ear 1000
====>> 1cl ear 10000

=testvar%
—===>>

@egi nni ng

=—===>>

t est var %0
====>> 2TE%0

gosub @I ash. messagel
====>> 3gosub?

if testvar%1 then goto @endi ng. mssg
====>> 4i f TE%1t hengot 035

gosub @I ash. message?2
====>> 5gosub2l

if testvar% 1 then goto @endi ng.nssg el se goto @egi nni ng
====>> 6i f TE%1t hengot 035el segot 02

*LI ST OFF
====>>

@endi ng. mssg
—===>>

cls:print@12,"this programhas been run in its entirety.":end
====>> 35c| s: print @12,"this programhas been run in its entirety.":end

It can be seen fromthe above exanple that the *LIST Directive will allow control of

the exact parts of the programthat will be listed during processing. *LIST will have
no effect on the output of the processed file. The entire programw |l be witten to

disk. Listings to either the printer or the screen will be affected by *LI ST.

Notice that the *LI ST ON need not be specified at the begi nning of the source file. A
listing will always be generated until the first *LI ST OFF command i s encountered
Also the *LIST OFF Directive will appear in the listing, and the *LIST ONwill not.
This is normal and will have no effect on the object file.

TBA - Tutori al
Page 30

*PAGE

The *PAGE Directive will allow the sending of a top of formcharacter (X 0C) to the
printer during the listing of a processed file. This will be useful to break up the
printed listing produced. The *PAGE Directive will only affect a listing to the
printer and will have no affect on listings sent to the screen. The foll owi ng exanpl e
will illustrate the function performed by the *PACE Directive

Usi ng the flashi ng nessage program once nore as the source code, here is howto
generate a listing to the printer of the processed file. By using the *PAGE Directive
the printer listing can be sectioned, so that the main body of the programlisting
wi Il appear on a separate page, as well as each individual procedure

cl ear 1000
=testvar%
@egi nni ng
test var %0
gosub @1 ash. nessagel
if testvar%1 then goto @ending. nssg
gosub @I ash. nessage2
if testvar%1 then goto @endi ng. nssg el se goto @egi nni ng
* PACE
@ ash. messagel=kbdscan$, | oop%
kbdscan$=""
cls:for | oop%1to20
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.flashl
if kbdscan$="X" or kbdscan$="x" then testvar%1l:goto @nd.flashl
next | oop%
print@12,"flashing mssg 1 - enter for 2, x to abort”
for | oop%1t 050
kbdscan$=i nkey$
i f kbdscan$=chr$(13) then goto @nd.flashl
i f kbdscan$="X"' or kbdscan$="x" then testvar%1:goto @nd.flashl
next | oop%
goto @I ash. messagel
@nd. fl ashl
return
* PACE
@1 ash. nessage2=kbdscan$, | oop%
kbdscan$=""
cls:for | oop%1to20
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.fl ash2
if kbdscan$="X" or kbdscan$="x" then testvar%1l:goto @nd.flash2
next | oop%
print@12,"flashing mssg 2 - enter for 1, x to abort”
for | oop%1t 050
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.flash2
if kbdscan$="X"' or kbdscan$="x" then testvar%1l:goto @nd.flash2
next | oop%
goto @I ash. nessage2
@nd. fl ash2
return
* PAGE
@endi ng. nssg
cls:print@12,"this programhas been run inits entirety.":end

TBA - Tutori al
Page 31

The printed listing of this file would be contained on four physical pages. The first
page woul d contain the main body of the program The second page woul d contain the
first procedure (@Il ash. nessagel). The third page woul d contain the second procedure
(@1 ash. message2). The final page would contain the ending message routine. The normal
printed output would be one continuous bl ock of printed text.

*TITLE

The *TITLE Directive will allow processed listings to contain titles at the top of
each page. Its primary use will be with printed listings, but it can also be used with
listings which are displayed on the video screen. The *TITLE Directive may appear
anywhere in the source code, and will cause ALL pages of the listing to be titled.
Unlike the *LIST Directive, this one may not be turned off.

The syntax for the *TITLE Directive is as foll ows.

*TI TLE "string"

Where "string" is a paranmeter that MJST be specified with the *TITLE Directive. It
will represent the title string that will be printed. The title string can be up to 14
characters in length and nust be enclosed within quotes (the ending quote is
optional). If the title string is not specified, an error will be generated during
processing, and the appropriate error nessage will be displayed. If the title string
specified is longer than 14 characters, all characters after the 14th will be ignored
and will not be printed.

In addition to the title string being printed, the following information will also
appear on the title |ine.

Page Nunber of listing (Nunbered consecutively fromone).
Current Date
Current Time (retrieved fromthe tinme clock)

The followi ng represents a sanple of the title line that will be generated when using
the *TITLE Directive. The title string that will be used in this exanple is "Fl ash
Message" .

BASI C Answer Fl ash Message June 24, 1982 12:03 A M Page 1
The last piece of infornmation printed on the title line <1> will represent the page
nunmber of the listing. If atitle is used, a double space will separate the title from
the first line listed on the page.

The next three directives (*IF expression, *END and *expression) wll allow
condi ti onal processing of source code.

*| F expression / *END

The *1F expression (which will be referred to as just *IF) and *END Directives will
al l ow t he establishment of conditional processing of the source code. This will be a
useful feature if there is a need to produce nultiple object files that will utilize
the sane code, with the exception of a few differences.

To illustrate howthe *IF/ *END Directives operate, consider the follow ng BASIC |ine
using the conditional |IF/ THEN statenent.

IF A=10 THEN PRINT"Condition is true":PRINT"Ais equal to ten"

TBA - Tutori al
Page 32

This very sinple exanple can be used to explain the concept behind *IF / *END
Directives. In the above line, a condition is tested (is the variable A equal to 10?).
If the condition is true, the two PRINT statements following the THEN will be
executed. If the condition is false, the two PRINT statenments follow ng the THEN will
be i gnor ed.

Wth the *IF/ *END Directives, the same type of conditional testing may be applied.
It will be applied to the processing of source code, as opposed to being incorporated
in the BASIC program Conditional blocks are allowed within the source code. These

bl ocks will begin with the *IF Directive and end with the *END Directive. Al code
that exists between the *IF and *END Directives will belong to that conditional bl ock.
If an *IF Directive is encountered during processing, a conditional test wll occur.
If the condition turns out to be true, all code within that conditional block wll be
processed. If the condition test is false, all code within that conditional block wll
be ignored by the processor.

The means by which conditions are tested are by an "expression" following the *IF. An
expression is represented by al phanureric characters. It can be up to fourteen
characters in length and the first character nust be al phabetic. Period and underline
characters (<.> <_>) may al so be used in expressions to inprove readability.

Before continuing the explanation of *IF / *END Directives, consider the follow ng
exanpl e of source code which incorporates their use.

=total.itens% i ndex.array%
*IF hard.drive

total .itens%4000

*END

*|F floppy.drive
total .itenms%500
*END

dim index.array% total .itens%

In the above exanple, the variable total.itens%and the array index.array% are defined
to be global. Two conditional blocks follow the definition statement. The first
conditional block will test to see if the condition " hard.drive" is true. If it is,

all code between the *IF and the corresponding *END will be processed and will be
contained in the object file after processing is conpleted. If the condition proves to
be fal se, all code between the *IF and the *END wi || be ignored during processing and
will not appear in the object file.

The second conditional block will test to see if the condition " floppy.drive" is true.
If the condition proves to be true, all code between the *IF and *END wi || be incl uded
in the processing and witten out to the object file. If it proves to be false, all
code between the *IF and *END will be ignored during processing and will not be

witten out to the object file.

As the nanes of the conditional blocks might inply, this particular source code nay be
a part of a larger programwhich will nanage data stored on a drive. If the drive in
question is a hard drive (and the proper condition is set), the object code that will
be generated will allow the variable total.iten?to be initialized to 4000 and the
array index.array%w || be dinmensioned accordingly. If the drive in questionis a
floppy, the object code that will be generated will allow the variable to be
initialized to 500 and the array will be dinmensioned accordingly. The difference in
the initialization of the variable mght indicate that 4000 data itens will be allowed
by the programif running on a hard drive and only 500 if running on a floppy.

TBA - Tutori al
Page 33

Up to this point, a foundation has been laid for establishing conditional blocks and
explaining to an extent how they function. There are additional concepts to be used
with conditional blocks. The following is the proper method of establishing
conditionals (i.e. setting a condition true or false). Conditional values are
establ i shed using the *expression Directive.

*expressi on

The *expression Directive is used to establish a condition of being true or false. It
can be incorporated within the source code, or can be issued at the "Directives :"
pronmpt in the processing utility. This directive will be used in conjunction with the
*IF/ *END directives and will dictate the outcome of an *IF conditional block

The "expression” used will be the sane as the expression specified in the *IF
Directive. If an *expression is specified, the corresponding *IF conditional be true
and all code within the conditional block will be processed. By NOT specifying an
*expression, the corresponding *IF conditional be false and the code within the
condi tional block will NOT be processed.

Consi der the follow ng exanpl e, which incorporates the *expression Directive in the
hard/fl oppy drive programfromthe |ast section

*f1 oppy. drive

=total.itens% i ndex.array%
*IF hard.drive

total .itens%5000

*END

*|F floppy.drive
total .itenms%500
*END

dim index.array% total .itens%

Since the expression "* floppy.drive" was specified, any occurrence of the conditiona
"*I'F floppy.drive" would be true and the code within the conditional block would be
processed. Since the expression "* hard.drive" was NOT specified, any occurrence of the
conditional "*IF hard.drive" would be fal se and none of the code within the

condi tional block woul d be processed. |If the above source code were processed, the

foll owi ng object code would be produced.

1 TP% = 500
2 di m | N TP%

The variable total.itens% was translated into TP% while the array (index.array% was
translated into IN% Notice that since the expression * floppy.drive was specified (the
first source code line), the *IF floppy.drive conditional proved to be true and the
variable TP% (total .itenms% was initialized to equal 500. Since the expression

*hard. drive was not specified, the *IF hard.drive conditional proved to be fal se and
the code within that conditional block was not witten out to the object file.

TBA - Tutori al
Page 34

In general, to use Directives to performconditional processing of the source code,
foll ow these steps.

1.) Establish the conditional block within the programby using the *IF and *END
Directives.

2.) To process the code within the conditional block, specify the "*expression"
within the source code, where the expression will be the sanme as the one used in
the *IF block to be processed.

3.) In order NOT to process a conditional block, do NOT specify the "*expression"
whi ch was used in the corresponding *IF Directive.

In sinple terms, conditional blocks may appear anywhere within the source code. If an
"*expression" is found which matches the expression in the *IF directive, the *IF
conditional will evaluate to be true and the code within the block will be processed.
If no "*expression" is found to match the expression in the *IF conditional, it wll
evaluate to be false and the code within the block will not be processed.

Besi des using "*expression" in the source code. The "*expression" D rective may be

i ssued during processing. This is done by entering the "*expression" to be set true as
a response to the "Directives :" pronpt which is displayed by TBA. This gives the
capability of defining the conditional processing required at processing time, rather
than havi ng the conditions enbedded within the source code (this was done in the

previ ous exanpl e).

To set conditions at the time of processing, sinply type in the "*expression" to set
to true in answer to the "Directives :" pronpt. For exanple, to set the " hard.drive"
conditional to true in the previous exanple, answer the "Directives :" pronpt by
typing in the follow ng.

Directives : hard.drive <ENTER>

To input nore expressions sinply separate *expressions with a conma. Any *IF
conditional found in the source code that contains the expression " hard.drive" will
evaluated to be true. After entering the "*expression" at the Directive pronpt, the
pronpt will reappear, at which time press <ENTER> or add nore "*expression"
directives. It is inportant to note that in order to end the "Directives :" pronpt
that the <ENTER> key nust be pressed as the first character of the line. Oherwi se,
the pronpt will reappear because it is assumed that nore *expressions are to be

ent er ed.

A few addi tional points need to be nade concerning the entering of "*expressions" to
set conditionals true. These will apply to having "*expressions" in the source code,
as well as entering themin response to the "Directives :" pronpt.

As with variables and | abels, the processor will normally ignore upper and | ower case
to differentiate "*expressions”. An expression "*HARD. DRI VE' woul d be exactly natched
by "*hard. drive" because the only difference is the case of the letters. However, TBA
can be switched to differentiate cases. In that case, it is nost inportant that the
"*expression" entered MIST be a character for character natch of the corresponding
expression in the *IF conditional. Lower case letters will produce a different
expression than the same expression name in UPPER case (e.g. * hard.drive will
represent a different expression than * hard. Drive).

More than one conditional nay be listed on an "*expression" |ine both during
processing and within the source code. Separate the conditionals that are to be set to
true by conmas.

TBA - Tutori al
Page 35

The foll owi ng exanples will show how nore than one conditional may be set in a single
line (the spaces followi ng the commas and precedi ng the next expression nane are not
required).

During Processing:
Directives : single.den, floppy.drive, forty.track, nodell

Wthin the Source:
*single.den, floppy.drive, forty.track, nodell

Ei ther of the above lines will cause the four conditionals listed to be set to true.

Wien specifying *IF , *END and *expression Directives within the source code, they
MUST be self contained on separate |lines. They cannot be enbedded within a line and no
statenents (either BASIC or definition) can foll ow them

The *expression Directive nust appear in the source code BEFORE the corresponding *IF
conditional. If the *IF conditional physically precedes the *expression, it wll
evaluate to be false. As a general rule, all *expressions used within the source code
shoul d appear sonewhere in the beginning of the source text. Using this as a guideline
will not only ensure that all conditionals get set, but it will also group the setting
of conditionals together at the beginning of the text. It will not be necessary to
"chase" down any unwanted conditionals that were set fromprevious processings of the
fileif this nethod is used.

If an *END Directive is encountered without a corresponding *IF, it will be ignored.
The results of the processing will be the same as if there were no conditional.

If an *IF is specified without a corresponding *END, all code fromthe *IF statenent
to the end of the source file will be taken to be a part of the conditional and will
be processed accordingly.
It is permssible to have as nany *IF / *END conditional blocks within the source code
as is desired. However, these conditional blocks nust be self contained. No nesting
may be done with conditional blocks. The followi ng arrangenent of conditional bl ocks
is NOT all owabl e.

*| F expression

*| F expression

*END

*END

If two *IF Directives are encountered wi thout an *END separating them the follow ng
error nessage w |l be displayed.

Nest ed | F Encount er ed

The processing of this file will be term nated and returned to the "LDOS Ready :"
pronpt .

TBA - Tutori al
Page 36

Section Il - Using TBA to Process files

After source code has been witten it nmust be processed into object code so that it
may be run as a nornal BASIC program This section of the manual will explain howto
use TBA to process source code into an executable program as well as additional
advanced features that can be used when processing.

No matter how the Source Code was generated, a numbered source |isting should be
obtained prior to processing. At the "LDOS Ready" pronpt enter the follow ng :

LI ST fil espec/ ext:d (N, P)
This will send a nunbered listing to the printer of the source file. The nunbers on
the left of the printout will be referenced by the processor both as |ine nunbers and

as the reference point for processing errors.

If printer output is intended, top-of-form should be established on the printer
bef ore precedi ng.

Processi ng Source Code

To use TBA enter the followi ng fromthe LDOS Ready pronpt.

TBA <ENTER>

After typing the above comrand, the followi ng screen display will appear.

LDCS - BASI C Processor
Copyright (C) 1981 by Logical Systems Inc.
Version 1.x

Source File :

At this point it is possible to enter a filespec to tell TBA what file is to be
processed.

Pressing the <BREAK> key at any pronpt will abort the processing program and return
to the LDCS Ready pronmpt. Answering the "Source File" prompt with a filespec will
all ow the processing of a source file into an executable object file. The default
extension on the filespec will be "/TBA'. If the source filespec has no extension,
type the filenane followed by a "/".

TBA - Tutori al
Page 37

The next pronpt will be
oject File :
whi ch can be answered in several ways
<ENTER> - - - - will default the filename to be the same as the source

filespec but with the extension "/BAS' to the first
avai |l abl e drive.

</ ext> - - - - will default the file as above but append the
speci fied extension (/ ext).

<d> - - - - - will default the filename as above and append a / BAS.d
ext ensi on.

<filespec> - - wll save the object code under the specified
filespec. |If no extension is utilized, the default
will be "/BAS".

<filespec/> - - will save the object code under the filespec and no
ext ensi on.

WARNING Wil e processing the source file, the processing WLL beginto wite
processed code to the diskette under the filespec specified for object. Therefore, be
aware that the object file wite nmay occur regardl ess of user selection. Choose an
object filespec so that nothing you wi sh preserved will get overwitten.

The next pronpt will be

Processing Parns :

At this tine specify the type of output to be generated pertaining to the processed
file.

In order to continue, there are several different ways that this pronpt could be
answer ed dependi ng upon the type of output that woul d be required. Pressing <ENTER> in
response to this pronpt will utilize the default processing options |listed as nunber
one bel ow. The choices for output are :

1.) Alisting of the processed code and cross reference will be displayed on the
screen.

R

2.) Alisting of the processed code and cross reference will be sent to the line
printer.

3.) Only the object lines (NO source) of the processed code and cross reference
will be done in option 1 or 2.

R

4.) NO processed code will be displayed but only the cross reference will be done
in option 1 or 2.

R
5.) No cross reference will be done in option | or 2.
6.) Full conpression of the object code will occur.

7.) Variables labels, and directives WLL NOT be converted to upper case.

TBA - Tutori al
Page 38

In the above list note that item1 is the default option performed unl ess anot her
option is switched in. Qotion 1 or 2 nmay be selected (either one or the other) and one
of those is further nmodified by option 3, 4 or 5. Option 6 and 7 may be used with any
conbi nation. The following list will show the switches that are available to alter the
processing options respective to the above list.

1.) <ENTER> - (for default) all processed code and cross reference will be produced
and sent to the video display.

2.) LP - - - (for Line Print) all processed code and cross reference will be sent
to the printer.

3.) TO - - - (for Text Only) only text lines and cross reference will be done in
option 1 or 2.

4,) NL - - - (for No Listing) only a cross reference table will be generated in
option 1 or 2.

5.) NX - - - (for No Xreference) no cross reference table will be generated in
option | or 2.

6.) FC - - - (for Full Conpression) to elimnates as nany spaces as possible from
the object file.
7.) DC - - - (for Differentiate Cases) will cause all variables, |abels and

directives to appear in the object code exactly as it was in
the source with no conversion fromlower case to upper case.

NOTE: Only one output device nay be used to display the listing of the processed
code. If the LP switch is set, then no listing will appear on the video display. If
NL and TO are used together, the NL switch will take precedence, resulting in no
source listing but a cross reference. If NL and NX are used together no video or
printed output will occur.

Any al | owabl e conbi nation of the swi tches nay be specified. By not specifying a switch
the default for that particular output option will be used. If multiple switches are
speci fied, they nust be separated by commas. The foll ow ng exanpl e should clarify how
to properly answer the Processing Paraneters pronpt.

To have the output of the processed file sent to the printer and create a disk file
whi ch contains the processed programand in addition generate a cross reference table
of variables and | abels, answer the Processing Paraneters pronpt in the follow ng
manner .

LP <ENTER>

Speci fying LP as an option will cause a listing to be sent to the printer (NOT to the
video), and a cross reference table will be generated.

NL, NX <ENTER>

This conmbination will cause no video or printer output but will process the code and
wite the object to disk.

LP, NL, NX <ENTER>

This conbination is identical to the preceding one.

TBA - Tutori al
Page 39

<ENTER>
Pressi ng <ENTER> al one wi |l cause the process code to appear on video followed by a
cross reference on video.

The FC output option causes the processor to elimnate as many spaces as possible from
the object code. If NOT specified all single spaces fromthe source file will renmain
intact, however, all groups of spaces will be reduced to a single space. For exanple,
the follow ng source line :

if Cedit.Limt# < Current.Bal# then gosub @Cet.Hostages

Wth FC NOT specified the processor would render the line like this

IF CR# < CU#F THEN GOSUB 128

Notice that the single spaces fromsource were left intact but that the spaces
generated fromreducing variables and | abels were renoved. Wth FC switched, the sane
source |ine becomnes :

| FCRA<CU#THENGOSUB128

Wth FC on, the only spaces not renoved will be in "REM 1|ines, between quote marks,
and after the keyword "AS" if the follow ng variable begins with "C'.

The DC option will prevent the processor fromconverting | ower case characters to
upper case characters in variables,|labels and directives. This nmeans that a Variabl e
call ed LOOP1% now woul d be uni que fromloopl% and from LOopl%etc. A | abel called
@NPUT would be different from @nput, @nput, @ |InpuT etc.

The DC option should NOT be utilized unless the source code was witten to acconmodate
it.

The last pronpt will be

Directives :

This can be answered in one of two ways

<ENTER> - - - - signifies no nore Directives (or no Directives if this
is the first tine the pronpt appears.
exp, exp,etc - - - establishes conditional D rectives which affect
processi ng

To signify zero Directives nmerely press <ENTER>. O herwi se place proper Directives
separated by commas. If directives exceed the input line width, enter as nany as
possi bl e and press <ENTER>. The "Directives :" pronpt will reappear. |nput as nany
*expressions as desired. This pronpt will be repeated until only the <ENTER> key is
pressed as the first character of the line.

After all pronpts have been answered, the disk drive will access and the nessage "Pass
1" will be displayed. It is at this tine that the source file will be passed into
nenory and then witten to the object file.

The source file is processed at this time (labels will be changed to |ine nunbers,
variabl e nanes will be conpressed, etc.). For a nore detailed description of the
processing that occurs, refer to Section IV of the nanual.

During the processing phase, the utility will performa check to see that valid source
code has been witten. (Note: valid source code is not necessarily working BASIC
code.) If no error is detected, the processing phase will continue and the object code
created. As each pass begins a nmessage "Pass X' will appear on the screen.

TBA - Tutori al
Page 40

If an error is detected during processing, one of two things will happen. If it is a
hardware error (e.g. Disk I/O Error, Parity Error, etc.), the utility will abort and
will resune at the LDOS Ready pronpt.

If the error exists within the source code (i.e. sonething in the source code cannot
be processed), the appropriate error nessage will be displayed. The processing will be
suspended at this time. Pressing <BREAK> will abort the processing, and return to the
LDOS Ready pronpt. Pressing any other key will continue the processing so that

addi tional source code errors nay be discovered. After the entire source code has been
processed, control will return to the LDOS Ready pronpt and no additional pronpts wll
appear .

Processing Errors

The following is a |list of processing errors that may be generated due to m stakes or
errors within the source code. Wienever one of these errors is encountered, pressing
any key will continue the processing and display additional errors (if any), while
pressing <BREAK> wi Il abort the processing routine and return to the LDOS Ready

pronpt .

|11 egal Procedure Label

This error will be the result of specifying a | abel name that does not
conformto valid | abel nanes.

Mul tiply Defined Label

This error will be generated when the sane | abel is DEFINED nore than once
within the source code.

Il egal Variable

This error will indicate that a variable has been defined which does not
conformto the variable nane rul es.

Variabl e Definition Format Error

This error will indicate that the proper syntax was not used in a |ine which
defines vari abl es.

Local Procedure Used w thout a RETURN

This error will indicate that a | ocal procedure was defined, but had no
RETURN statenent ending it (remenber that each procedure nust have as its
| ast statenment RETURN, contained on a separate |line).

Undefi ned Procedure Label

This error will indicate that a reference has been nade to a | abel (either a
QOrO, GOSUB or RESUME) and that |abel has not been defined.

TBA - Tutori al
Page 41

Multiply Defined dobal Variable

This error will indicate that a variable has been defined as global in nore
than one pl ace.

Undefi ned Vari abl e

This error indicates that a variable was encountered that had not been
def i ned

Illegal Title Fornat

A Title Drective was encountered which did not followthe criteria for a
correct title

Illegal Directive Fornat

A directive expression was used that did not follow the correct criteria for
directives

The following errors will abort immediately if encountered.

I nsufficient Menory to Load Text

Not enough RAM nenory to process the source file.

Synbol Table Overfl ow

Ei ther too nany variables were used or there are too nany references to those
vari abl es.

Source Line too Long

The length of a line exceeds the 240 character limt.

Vari abl e usage Overfl ow

More than 930 variables of a certain declaration tag were used.

The followi ng errors can only occur at the input pronpts. If encountered, the pronpt
wi Il be repeat ed.

Illegal Fil espec

This error will occur if either the source or object filespec is not a proper
file specification.

Bad *expression fornat

An illegal input format was used in response to the Directives pronmpt. Only
the current input line will be cancell ed.

Bad Par anet er (s)

This error will result if the Processing Options pronpt was not answered
correctly.

TBA - Tutori al
Page 42

I dentical Source and Ohject Fil especs

This is the result of naning the object file identically to the source file
If appropriate, the above error nessages will display the LINE NUMBER i n which the
error was encountered. For debuggi ng purposes, it is recomended that nunbered source

code line list be obtained prior to processing. In order to do this at the LDOS READY
pronpt type

LI ST filespec (N, P)

A printed output of the source file will be generated with an assigned "line nunber”
to the left of each line. Refer to these nunbers regarding error message |ine nunbers.

Sanpl e Screen and Vi deo Qut put

The followi ng represents a sanple of the output that will be seen if alistingis to
be di splayed to the screen or sent to the printer. For the nost part, this sanple
listing will appear the sane, whether it is displayed on the screen or sent to the
printer.

If this is the source file which is being processed:

cl ear 1000
=testvar%
@egi nni ng
testvar %0
gosub @I ash. messagel
if testvar% 1 then goto @endi ng. nssg
gosub @ ash. message2
if testvar%1 then goto @ending. nssg el se goto @egi nni ng
@1 ash. nessagel=kbdscan$, | oop%
kbdscan$=""
cls:for | oop%1t o020
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.fl ashl
if kbdscan$="X"' or kbdscan$="x" then testvar%1l:goto @nd.flashl
next | oop%
print@12,"flashing mssg 1 - enter for 2, x to abort"
for | oop%1t o050
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.fl ashl
if kbdscan$="X"' or kbdscan$="x" then testvar%1l:goto @nd.flashl
next | oop%
goto @I ash. messagel
@nd. fl ashl
return
@ ash. nessage2=kbdscan$, | oop%
kbdscan$=""
cls:for | oop%1t 020
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.fl ash2
if kbdscan$="X"' or kbdscan$="x" then testvar%1l:goto @nd.flash2
next | oop%
print@12,"flashing mssg 2 - enter for 1, x to abort"
for | oop%1to50
kbdscan$=i nkey$
if kbdscan$=chr$(13) then goto @nd.flash2

TBA - Tutori al
Page 43

if kbdscan$="X" or kbdscan$="x" then testvar%1l:goto @nd-flash2
next | oop%
goto @I ash. nessage2
@nd. fl ash2
return
@endi ng. mssg
cls:print@12,"this programhas been run inits entirety.":end

This is the output that will be generated to the screen/printer (with the FC
paranet er specified

cl ear 1000
====>>]cl ear 1000

=testvar%
=—===>>

@egi nni ng

=—===>>

t estvar %0
====>> 4TE%0

gosub @I ash. messagel
====>> 5gosubl0

if testvar%1 then goto @endi ng. mssg
====>> 6i f TE%1t hengot 042

gosub @ ash. message2
====>> 7gosub26

if testvar%1 then goto @ndi ng. mssg el se goto @egi nni ng
====>> 8i f TE%1t hengot 042el segot 04

@ ash. messagel=kbdscan$, | oop%
—===>>

kbdscan$=""
=—===>> 1OKB$:""

cls:for | oop%1t o020
====>> 1lcl s: f or LO/&1t 020

kbdscan$=i nkey$
—===>> 12KB$=inkey$

i f kbdscan$=chr$(13) then goto @nd.flashl
====>> 13i f KB$=chr $(13) t hengot 024

if kbdscan$="X" or kbdscan$="x" then testvar%1l:goto @nd.flashl
====>> 14i f KB$=" X" or KB$="x"t henTEY%1: got 024

next | oop%
====>> 15next LO%

print@12,"flashing nmssg 1 - enter for 2, x to abort"
====>> 16print @12,"flashing nssg 1 - enter for 2, x to abort"

for | oop%1t o050
====>> 17f or LOX&1t 050

TBA - Tutori al
Page 44

kbdscan$=i nkey$
—===>> 18KB$:inkey$

i f kbdscan$=chr$(13) then goto @nd.flashl
====>> 19i f KB$=chr $(13) t hengot 024

if kbdscan$="X" or kbdscan$="x" then testvar%1:goto @nd.flashl
====>> 20i f KB$="X"or KB$="x"t henTEY%1: got 024

next | oop%
====>> 21next LO%

goto @I ash. messagel
====>> 22got 010

@nd. fl ashl
—===>>

return
====>> 24return

@ ash. nessage2=kbdscan$, | oop%
—===>>

kbdscan$=""
====>> 26KC$=""

cls:for | oop%1t 020
====>> 27cl s: f or LP%1t 020

kbdscan$=i nkey$
—===>> 28K£$:inkey$

i f kbdscan$=chr$(13) then goto @nd.flash2
====>> 29i f KC$=chr $(13) t hengot 040

if kbdscan$="X"' or kbdscan$="x" then testvar%1:goto @nd.flash2
====>> 30i f KC$="X"or KC3="x"t henTEY%1: got 040

next | oop%
====>> 31lnext LP%

print@12,"flashing nssg 2 - enter for 1, x to abort"
====>> 32print @12, "flashing nssg 2 - enter for 1, x to abort"

for | oop%1t o050
====>> 33f or LP¥%1t 050

kbdscan$=i nkey$
====>> 34KC$:inkey$

i f kbdscan$=chr$(13) then goto @nd.fl ash2
====>> 35i f KC$=chr $(13) t hengot 040

i f kbdscan$="X" or kbdscan$="x" then testvar%1l:goto @nd.flash2
====>> 36i f KC$=" X" or KC$="x"t henTE¥%1: got 040

next | oop%
====>> 37next LP%

TBA - Tutori al
Page 45

goto @I ash. nessage?2
====>> 38got 026

@nd. fl ash2
—===>>

return
====>> 40return

@endi ng. mssg
—===>>

cls:print@12,"this programhas been run in its entirety.":end
====>> 42cl s: print @12,"this programhas been run inits entirety.":end

Procedur e Label Defn # Line # Ref erenced at Line #'s
@egi nni ng 3 4 8

@ ash. nessagel 9 10 5,22

@nd. fl ashl 23 24 13, 14, 19, 20

@1 ash. nessage? 25 26 7,38

@nd. fl ash2 39 40 29, 30, 35, 36

@ndi ng. mssg 41 42 6,8

Vari abl e Label Def n XLATE Ref erenced at Line #'s
kbdscan$ * 9 KB$ 10, 12, 13, 14, 14, 18, 19, 20, 20
kbdscan$ * 25 KC$ 26, 28, 29, 30, 30, 34, 35, 36, 36
testvar % 2 TE% 4,6, 8, 14, 20, 30, 36

| oop% * 9 LO% 11, 15,17, 21

| oop% * 25 LP% 27, 31, 33, 37

Wien a listing is being displayed on the screen it will scroll. To tenporarily

pause the listing use the <SH FT><@ pause keys. If the listing is paused,
pressing any key will resume the listing

The information which is displayed in a listing should be quite easy to
understand. Each line (sequentially) in the source code will be displayed
Fol | owi ng the source line will be the object line which it was translated into
during the processing. The first |line of source code (clear 1000) was transl ated
into:

1cl ear 1000

Cbject lines will be denoted by a "====>>" synbol preceding the line. Note that
the second and third source lines (= testvar% and @egi nning) were displayed in
the listing, but did not get translated into anything during the processing.

Label and variable definition statements will never be translated into executable
obj ect code. The line following these two definition statements (testvar%0) is
where the translati on process continues. This line was translated into

ATEY%0

Note that lines in the object code will be nunbered consecutively starting from
line nunber 1 and that |ines which do not exist in the object code are al so
nunbered, but that the nunber is mssing after processing. Since there are 42
lines of source code that can be translated i nto executabl e object code, the
object file consists of lines 1-42 with |ine nunbering skipping all deleted

l'i nes.

TBA - Tutori al
Page 46

Fol lowing the last |line of the source/object code translation is a sanple cross
reference listing. The first part of the table gives the translation that was
perfornmed on labels. In the left nost colum of the table is each | abel name that
was defined and referenced

The next colum will give the |line nunber of the object code representing the
translation performed on the |abel. For exanple, the @eginning | abel was
translated into line 4 in the object program which is represented by the first
execut abl e obj ect staterment following the |abel definition (in this case, line 4
is the first executable statenent followi ng the | abel definition).

The last colum in the | abel cross reference part of the table lists all line
nunbers in the object code which reference the given | abel. Note froml ooking at
the listing of the processed code that the @eginning | abel was referenced in the
source line that corresponds to object line 8 (i.e. goto @eginning). Note al so
that object line 8 contains the statement GOI04, which is the line in the object
code that represents the |abel @eginning

The second part of the cross reference table shows the variable translations that
took place. Al variables that are defined in the source code (either globally or
locally) will be listed inthis table. The first colum in the variable
translation table will list all variables as defined and used in the source code
Any variable defined as |ocal will have an asterisk <*> followi ng the variable
name. Note al so that the variables kbdscan$ and |oop% appear twice in the table.
This is because they represent |ocal variables used in two separate procedures,
and have been translated into two distinct variabl es.

The second columm of the variable cross reference table (XLATE) gives the

variabl e nane in the object code that the variable in the source code (listed in
the first colunmm) was translated into. Fromthe table, it can be seen that the

gl obal variable testvar%was translated into TE% Al so, the variable kbdscan$ was
translated into KB$ in the first procedure that it was used in, and KC$ in the
second procedure.

The last colum gives the line nunbers in object code corresponding to where
these variables are referenced. The variable TE% (testvar% appears in |lines
4,6, 8, 14, 20, 30 and 36 of the object code

Al though it cannot be seen in this cross reference table (due to the program
being relatively short), variables in a cross reference table will be grouped in
a special manner. String variables will be listed first, followed by integer
single precision and double precision. Wthin these subgroups of variables, the
following order will be naintained. Al global variables will appear first within
a subgroup, and will be listed in al phabetical order (according to the variable
nane used in the source code). After the global variables will conme the |oca

vari abl es, which will again be al phabetized. This type of grouping will make it
easy to pick out specific variables within the table

TBA - Tutori al
Page 47

Section IV - How the Processor Qperates

This section of the manual will detail the operations that are performed by the
processor to change source code into object. Al information necessary to wite source
code is detailed throughout this manual. This section of the manual is being provided
solely to explain the nore subtle aspects of TBA. It nay not be necessary to read this
section of the manual. However, in order to utilize the processing utility toits

full est extent, read through this section. It is only through a full understandi ng of
the processi ng which takes place that the nost efficient source code will be witten.

The processing of source code into object code is perforned in a series of steps. In
each of these steps, a "pass" is performed on the source code. The term "pass" is used
to nean the operation in question is being performed on current interimcode. Each
particular pass will alter the code changing it fromthe source code into executable

obj ect code and place the interimresults in the object filespec. A pseudo object code
is witten to disk under the filespec specified as the object filespec and is
subsequent |y during the succeedi ng passes

There are six passes that are perforned on the source code. Each pass will performa
speci fic processing function to change the source code into object code. During these
passes, tables are created and maintai ned. These tables are used to store information
about labels, directives and variables defined and to store the cross-reference
information for | abels and variables. The following will describe briefly the actions
that occur during each pass

Pass #1

Any pertinent text information fromthe source file is witten to the disk using
the object filespec. As it is being read in, several processing functions are
perfornmed. Any |ine nunbers that exist at the beginning of the line (if the source
was witten in BASIC) are stripped off. Line nunbers are assigned to all text
lines, starting with Iine nunber one, being incremented by one. As |labels are

pi cked up, a check is done to see whether or not the |abel has already been
defined. If a multiply defined | abel is detected, the proper error message will be
di spl ayed.

The line nunber that will be assigned a | abel definition statenent will be the next
text |ine encountered.

Pass #2

In pass #2, all local variables are evaluated and processed. This is done by going

through the list of |abels that signify procedures and changing the | ocal variabl es
to two character variables. Only variables that have been defined as local will be

affected

The processor naintains a table of two character variable nanes that have al ready
been used. The first two characters in the |local variable are exam ned and the
processor perforns a check to see whether or not that variable nane has been used
For exanple, if the local variable test.variable%is encountered, the processor
will attenpt to change this variable to the two character variable TE% |f TE%
already exists, TF%w Il be used (if it has not already been used).

Each procedure is processed individually, starting at the procedure definition |ine
and ending with the associated RETURN. This is the reason that the sane | oca
variable may be used in two different procedures and will be translated into two
different variables. For instance, if the local variable test.variable%is used in
two different procedures, it will be translated into TE%in the first procedure and
TF%in the second.

TBA - Tutori al
Page 48

Passes #3 & #4

In passes 3 and 4, all global variables are translated. Only variables that have
been defined as global will be affected. The entire source code is exam ned and any
mat ch of a global variable that has been defined will be translated into a two
character variable name. The process used is very simlar to that of translating
local variables. Since |local variables are translated first, it is permssible to
use the sane variable nane to represent a local and gl obal variable. For instance
if the variable test.variable%is defined to be global and is also defined in a

| ocal procedure, it will be translated into TE%in the |ocal procedure and TF%
everywhere el se in the program (since |ocal variables are processed first.

To use a global variable in a procedure, do not define it as local, then it wll

not be transl ated during the processing of |ocal variables (since it was not
defined to be local). It will be translated when the global variables are processed
and thus will be assigned the sane variable name that is used to represent the

gl obal vari abl e throughout the program

Pass #5

In pass 5 all references to |abels are changed to reference the |ine nunber
associated with the label. This is done by going through the table containing the

| abel definitions (and associated |line nunber to be translated into) and translate
all occurrences of the |label reference in the source code to the corresponding |ine
nunber. Any text lines will have the extraneous spaces renoved

Pass #6

In pass 6 (the final pass) the source code is partially or fully conpressed and any
output options (either a listing to the printer/video or the creation of an object
file on disk) are perforned. |If FC has been specified all spaces (with the
exception of those found within quotes, REM statenents and sone others) are
conpressed out and any characters that are found to have the high bit set will have
this bit reset to produce pure ASCII text. The text which is a result of this
processing is the object code

TBA - Tutori al
Page 49

Section V - Ceneral Qperational Cuidelines & Program Maintenance

This section of the manual will detail the all-around programm ng environnment that
shoul d be used when maintaining prograns witten under TBA. In addition, several
points that could not be conveniently brought up in other sections of the manual will
be di scussed here. This section will end with a listing and expl anati on of some sanple
files and exercises. These source and object files are contained on the Mster

di skette that acconpanies this manual. They are provided for the user to inspect and
study, so that user prograns may be witten with the structure and efficiency all owed
by TBA

Use of Error-Trappi ng Routines

Error trapping routines play a najor role in any well witten BASIC program Because
of the nature of the processing which takes place, a few special considerations are
needed when constructing the error handling routines.

Al ONERRCRGOTO statenents should be witten to reference a | abel (e.g. ONERRORGOTO
@rror.routine). The entry point into the error trapping routine will have as its
first line the |abel definition. To resune to a specific line froman error trapping
routi ne, use the RESUVE command, followed by the | abel which represents the point of
return. The followi ng exanple will illustrate how to properly establish error trapping
routines.

"branch to @error.detected if an error is encountered.

ONERRORGOTO @er r or . det ect ed

' program code

"end of program code
"definition of @error.detected routine

@error. det ected

‘error trapping code

‘resunme after error at line defined by the | abel @ error. done

RESUME @ger ror. done

Pl ease note that the use of a |label to define an error trapping routine functions the
sane as referencing a line in the programw th GOTO One point that nust be stressed
is the fact that since error trapping routines are term nated using a RESUME (and not
a RETURN), local variables should NOT be used in error trapping routines. Renenber,
the processing utility will only identify RETURN as a proper neans to end a procedure
(and the definition of |ocal variables used with the procedure). Using | ocal variables
in an error trapping routine which is termnated by use of the RESUME statement will
cause an error to occur during processing.

TBA - Tutori al
Page 50

Throughout the nmanual it has been pointed out that absolute |ine nunbers should never
be used in the source code. There is one exception to this rule and that is the

stat ement ONERRORGOTO 0. The ONERRORGOTO O statenment nay still be used within the
source code, as its function is not to denote a point of transfer, but rather to "turn
of f" any active ONERRORGOTO st at ement .

Mai nt ai ni ng Prograns

When nai ntai ning prograns created by TBA (either fixing bugs or adding new features),
changes to the program should be made to the SOURCE code only and NOT the object code.
The reasons for this should be quite evident. The source code (if witten properly)
shoul d be nuch easier to follow because it is witten in a descriptive dial ogue. The
object code is nore difficult to follow, since |abels have been changed to |ine
nunbers, variable nanmes are only two characters and possibly no extraneous spaces
exist. One of the main reasons for using TBA is ease of programreadability.
Performng edits to the object code instead of the source code will obviate the merit
of writing source code.

More inportant, is the concept of having only one program which represents the current
version. Suppose, for exanple, that there was a slight error in the program which was
corrected by nodifying the object code. If it was decided to add an additional feature
to the program (done by editing the source), it should be easy to see that the source
code woul d not reflect the original change made to the object code. To ensure that the
source file always contains the latest version of the program performALL edits on
the source code. After the appropriate edits have been nade, the source file nay be
processed to create object code reflecting these changes.

Enhanci ng Program Operati on and Speed

This section will |ist sone suggestions that can be inplenented in source code to
i nprove program execution time.

When object files are created by the processing utility, they are witten to disk in
pure ASCI1. No conpression codes are used to represent BASIC keywords. To decrease the
tinme required to load an object file, it is suggested that the program be LQADed and
SAVED to disk. The programwi |l then be saved using conpression codes for all BASIC
keywords and any subsequent |oad of the programwill be performed nmuch faster.

To wite code that will execute faster, there are two suggestions. In order to use a
variable (either locally or globally), it nust be defined. However, defining a
variable in the source code, whether local or global, will NOT initialize the variable
in the object program BASIC does allow initializing variables "on the fly" (as they
are needed). Wilizing variables in this manner does tend to slow the operation of the
program The variable has to be established in BASIC s variable table prior to being
used. If all GLOBAL variables are initialized prior to actually using them the speed
of the programw || be increased, because these variables will already exist in the
variable table prior to being needed. Once a variable has been initialized and pl aced
in the variable table, the tine required to access this variable will be di m nished.
Due to the nature of the processing utility, only global variables nay be initialized.

The foll owi ng exanpl e of source code will illustrate the proper nethod to initialize
gl obal variables. Al variables in the exanple below will be initialized to zero.
Variables can be initialized to any value, particularly to contain a specific value as
the programis entered.

TBA - Tutori al
Page 51

' Source Code variabl e definition statenent

=testvar% delay.loopl% delay.loop2% total.itens% total.dollars#

"variable initialization statenents

testvar %0: del ay. | 00p1%0: del ay. | oop2%0:total .items%0:total.dollars#=0

In dealing with a snall nunber of global variables, the increase in operating speed
will be insignificant. However, when using many gl obal variables, initializing them at
the begi nning of programexecution will elimnate any unexpected del ays when a
variable is initially encountered in the program

There is a trade-off to be considered when initializing variables. There will be a
noti ceabl e del ay encountered when the variable initialization statements are executed
(provided nany variables are being defined). In the long run, it is better to
encounter such a delay before the actual program execution begins rather than
encounter the delay during execution

For esi ght should be used in setting up the physical variable initialization
statenents. d obal variables that will be used frequently throughout the program
shoul d appear at the beginning of the variable initialization statement. This is
because BASI C establishes a variable table when a variable is first encountered in a
program Every tine a variable is accessed, a scan is done of the variable table. If a
frequently used variable is the first variable to appear in the initialization
statement, the tine it takes BASIC to scan the variable table will be decreased
because it will |locate the variable at the beginning of the variable table.

BASI C can perform operations nuch faster on integer (% variables as opposed to single
or double precision. |If possible, variables used in a loop (in conduction with FOR /
NEXT) should be integer type. Since integer values are stored in two bytes (as
oppposed to single precision which are stored in four bytes and doubl e precision which
are stored in eight), operations using themw |l be processed much quicker. If decima
nunbers are required, they should be contained in single precision vari abl es wherever
possi bl e. Doubl e precision variables will be processed nuch sl ower than either integer
or single precision.

In string variables, unfortunately, the "garbage collecting" routines used by BASIC
will inevitably slow up processing. One suggestion to speed up program operation when
dealing with strings is to initialize all string constants that will be assigned to
vari abl es at the beginning of the programin the same manner that nunmeric variabl es
were initialized. Once initialized to represent a string constant, these variabl es
shoul d NOT be used to store any other string information (such as string infornation
input fromthe keyboard or a disk file). The string which is represented by the
variable will be referenced by its actual location in the programtext in RAM String
vari abl es used in such a manner will never be included in the garbage collecting
routine.

Sour ce code shoul d be designed to consist of a program Main body which references
procedures to performvarious tasks. The tasks that these procedures will performwl|
be decided totally on programm ng requirenents. However, the structure used to wite
the program may speed up its operation

TBA - Tutori al
Page 52

Consi der how the BASIC interpreter functions to perform branch operations. Every tine
a backward branch is executed (either with a GOTO or a GOSUB), the programtext is
scanned, starting at the beginning line until the line to branch to is encountered
Since this is the case, it nakes sense that frequently referenced routines (such as an
i nput procedure) shoul d appear at the beginning of the programtext. To allow this,
performa branch to the Main body of the program which will bypass the procedures
that are |ocated at the beginning of the programtext. If there are many gl oba
variables to be initialized, there will still be substantial programcode in front of
these procedures. Since the initialization of global variables is a one tine
operation, it is better to performthe initialization of variables at the end of the
programtext. The following will represent such a programstructure. In many cases the

follow ng programlayout will increase the speed with which a programw || execute
1.) Gobal variable definition statements (will NOT appear in processed code)
2.) Branch statenent to the global variable initialization (step #6)
3.) Procedures which are accessed frequently
4.) Main Body of the program
5.) Procedures (such as error trapping) which are accessed infrequently.
6.) Qobal variable initialization statenents
7.) Branch statenent to the Main body of the program (step #4)

Summary

The point stressed above, is not an inposition of a specific programstructure, but
rather the idea of consistency. In the final analysis, YOUw || be the person witing
the BASI C program Wether to use (or even consider to use) the stated concepts in
witing prograns is a private decision. Wiat is inportant is to devel op consi stent
programm ng nethods and techniques. It nmay take a great deal of forethought to
deternmine the method to use when witing a program However, once havi ng established
an acceptable method for witing prograns, stick with it! It will be found that
programm ng (and debugging) time required to produce a programw || be di m ni shed
drastically.

Following is a listing of some BASIC prograns (both source and object code). The
actual text for the prograns can be found on the naster diskette. Experinment with
these files prior to witing source code, so that a feeling for how the processor
functions and the results that are obtained as a result of the processing operation
will be fluently |earned

TBA - Tutori al
Page 53

Below is a typical snall unconplicated BASIC source. The nane of the source file on
the master disk is FACTOR TBA.

*TI TLE' EXERCI SE 1"

‘gl obal definition statenents are bel ow
=FACTORS$, LOOP1!, LOOP2! , HALF! , HORI Z. LI NE$, START! , END! , | NPUT$

=PRI ME. FLAG% PRI ME. ARRAY! , PRI ME. FACTOR$, COUNTERY START2!

=LO0P. COUNT% PRI MES. FOUNDY%

"dinension and clear statements; note that both array variables are defined above
DI M PRI ME. ARRAY! (10), PRI ME. FACTOR$(10)

CLEAR1000

' program execution start in case subroutines are placed here at a |later date

CLS
INPUT "ORIG N OF SCAN'; | NPUT$
"all IF statenments are indented +2 fromtab mark to set them apart
I F VAL(I NPUT$) <2 THEN @START
START! =I NT(VAL(| NPUT$))
I NPUT " END OF SCAN'; | NPUT$
END! =I NT(VAL(| NPUT$))
| F END! <START! THEN T=START! : START!=END! : END! =T
HORI Z. LI NE$=STRI NG$(63, 61): CLS
FOR LOOP1! = START! TO END!
"statenents contained within a FOR NEXT | oop are tabbed over for clarity
HALF! =LOCP1!
FACTOR$=""
?2@, "factoring "USI NG ###, ###"; LOOPL! ;
?2@2,"prines found on this scan"USI NG ##, ###"; PRI MES. FOUNDY
?@4,"prime factors : " CHR$(30)
?HORI Z. LI NES$; : START2! =2
@RE. LOOP
"loop within a loop is tabbed in further
FOR LOOP2! = 2 TO HALF!
IF HALF!/LOOP2! = INT(HALF!/LOOP2!) THEN GOSUB @3OT. ONE: GOTO @RE. LOOP
NEXT LOOP2! : |F VAL(FACTOR$) = LOOP1! THEN FACTOR$="* Prine Number *"
: PRI MES. FOUND% PRI MES. FOUNDY1 ELSE FACTOR$=LEFT$(FACTOR$, LEN(FACTORS) - 1)
PRI ME. ARRAY! (COUNTERY) =L OOP1!
PRI VE. FACTOR$(COUNTERY) =FACTOR$
LOCP. COUNTY=COUNTERY,
FOR LOCOP2! =0 TO 10
?2@4* LO0P2! +192, PRI ME. ARRAY! (LOOP. COUNTY) , PRI ME. FACTOR$(LOOP. COUNTY) ;

CHR$(30) ;
LOOP. COUNT%=LOOP. COUNT% 1
I F LOOP. COUNT%=- 1 THEN LOOP. COUNT%-10
NEXT LOOP2!
COUNTERY&=COUNTERYs+1
I F COUNTER%=11 THEN COUNTER% =0
NEXT LOOP1!
END
"procedure at end of main body note that this is a subroutine
@0T. ONE
FACTOR$=FACTOR$+STR$(LOOP2!) +" X"
?@0, FACTORS;
HALF! =HALF! / LOOP2!
RETURN

TBA - Exercise 1
Page 54

If the processed output is to be directed to a printer, the printer should be prepared
for output. Atop of formshould be sent to the printer at this tine to ensure proper
pagi nation. To do so, enter the follow ng coonmand at the LDOS Ready pronpt.

LBASI C LPRINT CHR$(12) :CwvD'S"

This will cause the printer to advance the paper to its top of formposition. If the
paper is situated so that the first line of print will appear at the start |line of the
paper, then do nothing, otherw se, take the printer off line and manual |y advance to
the desired position.

If you are using an 80 colum printer, you nmay want to use PR/ FLT to allow for proper
paging. Normally, TBA will assume that 132 characters are to be printed per line. Wth
an 80 colum printer, this may cause w ap-around, and paging could be affected. To

al | ow proper paging on an 80 column printer, enter the follow ng conmand:

FILTER *PR PR (CHARS=80)

NOTE: If you have a full LDOS system the top of formmay be acconplished by using the
M NI DOS/ FLT command -- <CLR><SHI FT><T>.

If the printer is ready, the processed code can be directed to it. If no printer is
avai |l abl e, process to the video. See if you can easily predict the function of this
programprior to running it. It should be a lot easier to determne the results when
viewing this listing, as opposed to viewing a nornmal |isting.

To process the above file into a working BASIC program enter the foll owi ng conmand.
TBA <ENTER>

This will cause the processing operation to begin. The first pronpt that you will see
will be for the Source file. Answer this pronpt by entering the follow ng.

FACTOR<ENTER>

The disk will access as TBA looks for a file called "FACTOR/ TBA'. Entering the entire
filespec would al so be all owed. The above conmmand illustrates how the defaults can be
used when specifying a filespec.

The next pronpt to appear will be for the hject filespec. You nay answer this pronpt
by pressing <ENTER>. This will cause TBA to use "FACTOR/BAS' as a filename both for
the processing operation and the finished file.

The next pronpt to appear will requesting information dealing with processing par s.
If you want the processed streamto be sent to the video, answer this pronpt with
<ENTER>. Ot herwise, if you want the listing to be sent to the Printer, answer the
Processing parns pronpt with the follow ng.

LP <ENTER>

The next pronpt to appear is requesting information on any directives to be acted
upon. Since the source file does not contain any processi ng expressions, this pronpt
may be answered by pressing <ENTER>.

At this tine, disk access will begin, and as each pass starts, a nessage w |l appear
on the screen. Shortly after the Pass 5 nessage appears, the screen or printer
processing will take place and the final object file will be witten to the diskette.

You nmay now wi sh to view the resultant BASIC program To do so, enter the followi ng
comrand LBASI C LOAD' FACTOR'.

TBA - Exercise 1
Page 55

Since TBA creates an ASCI| file, none of the conpression codes used by BASIC are
stored in the file. It is totally permssible to load in a BASIC program stored in
ASClI| (as opposed to being saved with conpression codes). However, the tine it takes
to load a programwhich is stored in ASCI| is greater than the tine it takes to load a
programwhich is stored in conpressed form For this reason, you nay wi sh to "Re-save"
the program so that it will be stored on the diskette in conpressed form Doing so

wi Il cause subsequent |oads of the programto be perfornmed faster. To save the program
in conpressed form enter the followi ng comrand fromthe BASI C Ready pronpt.

SAVE" FACTCR'

At this tine you may wish to LI ST the program and draw conpari sons between the source
code and the object code. Note that there is a variable defined in source code that is
not used. By inspecting the cross reference table, you should be able to locate this
vari abl e.

If the processing operation was conpl eted successfully, the resulting object code
shoul d appear as foll ows.

7 DIM PR (10), PR$(10)

8 CLEARI000

11 Aas

12 INPUT "ORIA N OF SCAN'; IN$

14 | F VAL(IN$)<2 THEN 11

15 ST!=I NT(VAL(I N$))

16 | NPUT " END OF SCAN'; | N$

17 EN =l NT(VAL(I N$))

18 I F EN'<ST! THEN T=ST! : ST!=EN: EN =T

19 HD$=STRI NG$(63, 61): CLS

20 FOR LO = ST! TO EN

22 HALF=LQO

23 FA$=" "

24 PRINT@, "factoring "USI NG ###, ###"; LD ;

25 PRINT@2, "prinmes found on this scan"USI NG ##, ###"; PS%
26 PRINT@4, "prinme factors : " CHR$(30)

27 PRI NTHDS$; : SU =2

30 FOR LP! = 2 TO HA

31 IF HAI/LP' = INT(HA!'/LP!') THEN GOSUB 48: GOTO 30
32 NEXT LP! : IF VAL(FA$) = LO THEN FA$="* Prinme Nunmber *" :PSY% PS%1 ELSE
FA$=LEFTS$(FA$, LEN(FA$) - 1)

33 PR (CO% =LO

34 PR$(CON =FA$

35 LOECO

36 FOR LP'=0 TO 10

37 PRI NT@4*LP! +192, PR (LO% , CHR$(30) PR (LO%
38 LOFLOs 1

39 IF LO®-1 THEN LO®%&10

40 NEXT LP!

41 CO&FCO%-1

42 | F CO%11 THEN CO% =0

43 NEXT LO

44 END

48 FA$=FA$+STRB(LP!)+" x"

49 PRI NT@O0, FAS;

50 HAl =HA! / LP!

51 RETURN

Runni ng the programw || denonstrate its prine-ary purpose dependi ng on the

factors involved. How successful was the prediction of output?

TBA - Exercise 1
Page 56

The next section will denonstrate how existing procedures mght be conbined into a

mai n body program Two procedures will be nerged into source code. Since there are two
net hods of doing this, the first section will outline the step by step process under
the LSCRI PT word processor and the second under LBASIC.

Mer gi ng Procedures with LSCR PT

Belowis a listing of a procedure which is contained on your TBA Master diskette. The
name of the file is CENTER/'SCR It can be viewed by loading it into LSCRI PT.

"procedure to center a string variable given the
' colum wi dth and devi ce
"merge into any TBA source file & define CENTER$ as a d obal
" define WDTH% and DEVI CE% as d obal
'TO USE: define desired string as CENTER$
"define DEVICE% as O for video OR 1 for printer
'set WDTH% to total colums and GOSUB @ENTER DI SPLAY
@ENTER DI SPLAY=FROM LEFT% W DTH1% LENGTH%
@00, LONG LENGTHY+ LEN(CENTERS$) : W DTH1% | NT(W DTH% 2)
I F LENGTH% > W DTH% THEN CENTER$=M D$(CENTERS, (LENGTHY W DTH% / 2, W DTH%)
: GOTO @O0 LONG
FROM LEFT% W DTH1% | NT(LENGTH% 2)
IF DEVICE% < 0 OR DEVI CE% > 1 THEN DEVI CE%0
ON DEVI CE% +1 GOTO @B5CREEN, @RI NTER
@BCREEN: ?TAB(FROM LEFT% CENTER$: GOTO @EXI T. CENTER
@R NTER: LPRI NTTAB(FROM LEFT%) CENTER$
@EXI T. CENTER RETURN

The first eight lines serve as comments to docunent the procedure. They describe the
variabl es that need to be defined as global, the function of the procedure, the
paraneters required and the calling nethod. Take note of the globals to be defined and
the procedure nane for use when witing the main body.

PROCEDURE = @ENTER DI SPLAY
GLCBAL = W DTHY% CENTERS, DEVI CE%
METHOD = SET TARGET $ TO CENTER$: DETERM NE W DTHY% & OUTPUT DEVI CE% : GOSUB

Al so included on your Master TBA diskette is a file naned I NPUT/SCR By viewing this
file in LSCRIPT, the follow ng notations can be nade.

PROCEDURE = @ NPUT

GLOBAL = | NP$, AT% FI ELD%

METHCD = SET SCREEN PGSl TI ON TO AT% MAX | NPUT CHARS TO FI ELD% GOSUB : | NPUT RETURNED
IN I NP$

In this exercise, the Source file DEMOSCR wi Il be created, and will utilize these
pre-existing procedures. The results of this programw || be to input information into
a string array and print it to the center of the screen or printer. The @ NPUT
procedure acts as an input subroutine, used to enter information into the string
array. The @ENTER DI SPLAY procedure will center the information when sending it to
the desired output device.

The following listing is the DEMOSCR file. You will need to use LSCRI PT to create
this file. To facilitate your input, you nay wish to set tabs at locations 5, 10 and
15.

TBA - Exercise 2
Page 57

"exercise 2 main body program: fil enane DEMJY SCR
=I NP$, AT% FI ELDY% CENTERS$, W DTHY DEVI CE% STRI NG ARRAYS$, LOCPY% LOOP1%
CLEAR 2000
DI M STRI NG ARRAY$(50)
GOTO @Al N
" INPUT PROCEDURE W LL GO HERE
' CENTER PROCEDURE WLL GO HERE
@A N
CLS: ?"Enter a sentence of |ess than 50 words"
?STRI NG5(63, 61)
?@z28,"Enter @to stop"
FOR LOOP% = 0 TO 50
| F LOOP%0 THEN ?@L92, CHR$(30) "Last Entry "STRI NG ARRAY$(LOOP% 1)
?@20,"Current Entry ="
AT%=336: FI ELD¥%10: GOSUB @ NPUT
IFINP$ = "@ THEN @ SPLAY. VI DEO
STRI NG. ARRAY$(LOOPY) =I NP$
NEXT LOOP%
@ SPLAY. VI DEO
W DTHY=64: DEVI CE%0
CLS: FOR LOCP1% 0 TO LOOP% 1
CENTER$= STRI NG ARRAY$(LOOP1%)
GOSUB @CENTER. DI SPLAY
| F LOOP1%>0 AND LOOP1% 14 = | NT(LOOP1% 14) THEN GOSUB @Al T. FOR ENTER
NEXT LOOP1%
END
@W T. FOR ENTER
?@®60, "Press <ENTER> to conti nue";
@\GAI N AT%985: FI ELD¥+1: GOSUB @ NPUT
IF INP$ <> "" THEN @G N
CLS
RETURN

After you have entered this text, you will want to save it to disk. To do so, enter
the followi ng commands: (Note that the file will be saved as DEMJ SCR, because LSCRI PT
enpl oys a default extension of /SCR when perform ng | oads and saves).

<SHI FT> <ENTER> -- This will display the Special Conmand pronpt
<L> <, > <C <Space> <D> <EB> <M> <G> <ENTER>

Once the file has been created and saved, the merging of the procedures nmay be done.
This is acconplished by performng a Load and Chain of each procedure. First, Load and
Chain the @NPUT procedure by entering the followi ng command at the Special Command

pronpt .
<L> <, > <C <Space> <| > <N> <P> <U> <T> <ENTER>

The @NPUT procedure will now be added to the end of the text currently in nenory (the
DEMY SCR text).

Simlarly, you will need to Load and Chain the @ENTER D SPLAY source code. To do so,
enter the following at the Special Command pronpt.

<L> <, > <C <Space> <C <BE> <N> <T> <E> <R> <ENTER>

After both procedures have been nerged in, the source file could be processed, and the
resultant object file executed. Note that since |line nunbers are not used, procedures
could virtually appear anywhere within the source file. However, when witing source
code in a word processi ng at nosphere, blocks of code can easily be noved around. Note
in the main body of the program (DEMJ SCR) the remark statements indicating the place
where these subroutines are to be inserted.

TBA - Exercise 2
Page 58

The following will describe the procedure used to nove these bl ocks of code
(procedures) when operating under the LSCRI PT environnment. The first thing you wll
need to do is position the cursor over the "@ synbol in the @NPUT | abel. To nove
this text into the main body of the program you will need to define it as a block. To
do so, enter the follow ng commands.

<CLR> <5> - This will establish the Bl ock Command Mde.
<A> - This will be the nane of the bl ock.

A bl ock mark followed by "A>" will be inserted BEFORE "@NPUT". You will now need to
position the cursor to the end of text. This can be done by either depressing the
<DOMN ARROW+ key (to scroll through the text), or by depressing sinultaneously the
<SHI FT><DOM ARRON<Z> keys which represent the END control function in LSCRI PT.

After the cursor has been positioned to the end of text, enter the follow ng conmands
(to signify the end of Block A).

<CLR> <5> - Bl ock Command Mbde
<SH FT> <DOWN ARROMW <Z> - Denote the END of the bl ock.

The end bl ock marker should appear. Once the bl ock has been identified, it may be
inserted anywhere within the text. To insert it in the proper place, position the
cursor in the main body of the source code programdirectly on the """ in the line
"' | NPUT PROCEDURE WLL GO HERE'. Then key in the follow ng sequence:

<CLR><1> <CLR><5> - This will allow the insertion of a bl ock

The prompt "NAME OF BLOCK TO | NSERT" wi |l appear on the bottom of the screen. Answer
this pronpt by typing in the letter A (the nane that was assigned to the block). If
the procedure was handl ed correctly both the | NPUT and CENTER procedures will be
inserted into the text inmmediately followi ng the cursor.

Note that when you insert blocks, after the insert process, the sane code will appear
twice within your text (once as the original block, and once as the bl ock that was
inserted). At this point, you will want to delete the original block. To do so,
position the cursor over the block marker to the left of the "A" and enter the

foll owi ng conmands.

<CLR><3>

The pronmpt "DELETE OR UNMARK BLOCK (D or U)" will appear at the bottom of the screen.
Answer this pronpt by typing D to delete the bl ock.

At this point, you will want to save your source code to disk.

WARNI NG: After a chain load, the filenane used by LSCRIPT will be the sanme as the

last file chained. Thus, in the above exanple, the current filenane as seen by LSCR PT
woul d be CENTER/ SCR, NOT DEMJ SCR. When saving any file back to disk after performng
a load and chain, a filespec should be included with the save command. Using a default
filespec with the save conmand will overwite the last file chained with the text
currently in nenory.

You may wi sh to process the file and note the results. Al though the end programis
sonewhat usel ess, the procedure is clearly illustrated. Entire prograns can be merged
out of many procedures in much less tine then reconposition in ordinary BASIC.

TBA - Exercise 2
Page 59

Mergi ng Procedures with LBASIC

Belowis a listing of a procedure which is contained on your TBA Master diskette. The
name of the file is CENTER/ TXT. It can be viewed by loading it in as a BASIC program

10 'Procedure to center a string variable given the

20 'colum wi dth and device

30

40 'nerge into any TBA source file & define CENTER$ as a d obal
50 ' define WDTH% and DEVI CE% as d obal

60 ' TO USE: define desired string as CENTER$

70 'define DEVICE% as O for video OR 1 for printer

80 'set WDTH»%to total colums and GOSUB @ENTER DI SPLAY

90 @ENTER. DI SPLAY=FROM LEFT% W DTH1% LENGTH%

100 @O LONG LENGTHY& LEN(CENTERS$) : W DTH1%-I NT(W DTH% 2)

110 | F LENGTH6 > W DTHY% THEN
CENTER$=M D$(CENTERS, (LENGTHY% W DTH%) / 2, WDTHY : GOTO @CO. LONG
120 FROM LEFT% W DTH1% | NT(LENGTHY 2)

130 | F DEVICE% < 0 OR DEVI CE% > 1 THEN DEVI CE%0

140 ON DEVI CE% +1 GOTO @CREEN, @RI NTER

150 @CREEN: ?TAB(FROM LEFT% CENTER$: GOTO @EXI T. CENTER
160 @RI NTER LPRI NTTAB(FROM LEFT% CENTER$
170 @XI T. CENTER RETURN

The first eight lines serve to docunent the procedure. They descri be the variabl es
that need to be defined as global, the function of the procedure, the paraneters
required and the calling method. Take note of the globals to be defined and the
procedure name for use when witing the nain body. Also note |ine nunbers used in the
procedure. Since line nunbers are used in interpretive BASIC, the programplan for the
mai n body shoul d include an area reserved for procedures to be nerged in. If you have
a means to renunber BASIC prograns, |ine nunbers are not extrenely inportant in the
procedures thenselves, as the lines in the procedure can be renunbered to "fit into"
the main body of the program (NOTE: The exanples in this section show the renunbering
procedure by use of the CVMD'N' command. This feature is only available when using a
standard LDCS operating system)

PROCEDURE = @ENTER DI SPLAY

GLCBAL = W DTHY% CENTERS, DEVI CE%

METHOD = SET TARCGET $ TO CENTER$: DETERM NE W DTH% & QUTPUT DEVI CE% GOSUB
LI NE NUMBERS TO BE USED I N MAIN BCDY = 200 - 299

Al so included on your Master diskette is a file nanmed INPUT/ TXT. By viewing this file
in BASIC, the follow ng notations can be nade.

PROCEDURE = @ NPUT

GLCBAL = | NP$, AT% FI ELD%

METHOD = SET SCREEN PCSI TION TO AT% MAX | NPUT CHARS TO FI ELD% GOSUB | NPUT RETURNED
IN I NP$

LI NE NUMBERS TO BE USED I N MAIN BCDY = 100 - 199

In this exercise, the Source file DEMJ TBA will be created. The results of this
programwi |l be to input information into a string array and display it to the center
of the screen or printer. The @NPUT procedure acts as an input subroutine used to
enter information into the string array. The @&ENTER DI SPLAY procedure will center the
information when sending it to the desired output device. The following listing is the
DEMOY TXT file. You will need to use BASICto create this file.

TBA - Exercise 2
Page 60

10 'exercise 2 main body program: filename DEMY TXT
20 =1 NP$, AT% FI ELD% CENTER$, W DTH% DEVI CE% STRI NG ARRAY$, LOOP% LOOP1%
30 CLEAR 2000

40 DI M STRI NG ARRAY$(50)

50 QOTo @Al N

100 ' I NPUT PROCEDURE W LL GO HERE

200 ' CENTER PROCEDURE W LL @GO HERE

300 @AIN

310 CLS: ?"Enter a sentence of |ess than 50 words"
320 ?STRI NG5(63, 61)

330 ?@28,"Enter @to stop”

340 FOR LOOP% = 0 TO 50

350 | F LOOP%0 THEN ?@L92, CHR$(30) "Last Entry : "STRI NG ARRAY$(LOOP% 1)
360 ?@20,"Current Entry ="

370 AT%=336: FI ELD¥%10: GOSUB @ NPUT

380 IFINPS ="@ THEN @ SPLAY. VI DEO
390 STRI NG ARRAY$(LOOPY) =1 NP$

400 NEXT LOOP%

410 @l SPLAY. VI DEO

420 W DTHY=64: DEVI CE%0

430 CLS: FOR LOCP1% 0 TO LOOP% 1

440 CENTER$= STRI NG ARRAY$(LOCOP1%

450 @AOSUB @ENTER. DI SPLAY

460 | F LOOP1%>0 AND LOOP1% 14 = | NT(LOOP1% 14) THEN GOSUB @MW T. FOR ENTER
470 NEXT LOCP1%

480 END

490 @WI T. FOR ENTER

500 ?@60, "Press <ENTER> to conti nue";

510 @\GAI N AT9%985: FI ELD%1: GOSUB @ NPUT

520 IF INP$ <> "" THEN @\GAl N

530 cs

540 RETURN

After you have entered this program you will want to save it to disk. To do so, enter
t he command:

SAVE' DEMO TXT"
Notice that the line nunbers in this programare set to acconplish an easy MERGE of
the two procedures. First, however, the procedures must be renunbered into their new
Ii ne nunber ranges.
To renunber the @NPUT procedure, load it into BASIC using the comand --
<LQAD'I NPUT/ TXT">. After the file is in, renunber it to the chosen 100 to 199 range by
using the LBASIC renunber utility CVMD'N'. The proper syntax is:

CVD'N 10, 100, 1"
This takes the old |line nunber 10, changes it to 100 and increnents each subsequent
line by one. The procedure now should start at line 100 and end at |ine 143. You wl|l
need to Save the result using the ASCII option, since it will later be MERGED into the
mai n body. To do so, enter the command:
<SAVE" | NPUT/ MRG', A>.

Next, load in the CENTER/ TXT procedure and renunber it into the 200-299 range using
t he command:

CMVD'N 10, 200, 1"
The @CENTER. DI SPLAY procedure should now start at line 200 and end at |ine 216.

TBA - Exercise 2
Page 61

Save this file using the command <SAVE'CENTER/ MRG', A>. Al of the preparatory work is
now conplete. If there had been several procedures the idea is to continue in the sane
manner to load themin, renunber to a predeternined range, and save themas an ASCl |
file for latter nerging

To ready the file for final processing, execute the followi ng four command sequences

LOAD' DEMO TXT"
MERGE" | NPUT/ MRG'
MERGE" CENTER/ MRG'
SAVE' DEMO TBA", A

You may wi sh to process the file and observe the resultant code. Experinent by placing
the procedures el sewhere in the source code. The general idea of source code creation
is to absolutely ignore the line nunbers for conposition but use themonly for fina
positioning of witten nodules. This is nmuch easier than BASIC reconposition

TBA - Exercise 2
Page 62

The Final Wrd

The last exercise is to process the file EXAMPLE/ TBA conpl etely on your own. The
Source is provided as an LSCRIPT file. If you wish to alter the source to be readabl e
by LBASIC, run the BASI C program EXAMCON BAS. This will add |line nunbers in front of
the LSCRI PT source |lines so that EXAMPLE/ TBA can be | oaded and edited in LBASIC. Wen
finished, the object code should nmatch the listing on page 69

The following is a list of the files necessary to run all of the exanples. They are
grouped into an LSCRI PT group and an LBASI C group dependi ng on the nmethod you plan on
using when witing Source. You may delete files that are not relevant to you
preferably, on a backup of the nmaster diskette.

Fil es Needed by LSCRI PT

TBA/ CVD

I NPUT/ SCR
CENTER/ SCR
FACTOR/ TBA
EXAMPLE/ TBA
EXAMPLE/ BAS

Fil es Needed by LBASIC

TBA/ CVD

| NPUT/ TXT
CENTER/ TXT
FACTCOR/ TBA
EXAVPLE/ TBA
EXAMCON BAS
EXAMPLE/ BAS

Note to standard LDOS users

The BASI C Answer is highly conducive to JCL usage, especially for debugging. Since
LSCRI PT default extensions are SCR or TXT, a JCL file to copy one of these to a / TBA
extension is quite hel pful. RENAMEing the file is not as advantageous because when
re-entering LSCRI PT the default extensions would no |onger apply. In considering a JCL
to performthis copying function, all files can be constructed to have the sane file
names, and different file extensions (such as EXAMPLE/ SCR for use with LSCRI PT,
EXAMPLE TBA for use with TBA, and EXAMPLE/ BAS to represent the final object code). Al
you need to renmenber is the filenane itself.

TBA inputs can be sent via a JCL file as well, and of course, LBASIC can be entered
and the object code run. In debuggi ng your object code, you may find it to be
extrenely useful to exit LSCRIPT, type DO filenanme and have the JCL copy the program
to the different extension, enter TBAwith all inputs pre-answered, and then | oad and
run the object. This process will alleviate perfornmng the repetitive steps required
to incorporate mnor changes or solve picayune bugs in the source code.

TBA - Exercise 3
Page 63

00001.
00002.
00003.
00004.
00005.
00006.
00007.
00008.
00009.
00010.
00011.
00012.
00013.
00014.
00015.
00016.
00017.
00018.
00019.
00020.
00021.
00022.
00023.
00024.
00025.
00026.
00027.
00028.
00029.
00030.
00031.
00032.
00033.
00034.
00035.
00036.
00037.
00038.
00039.
00040.
00041.
00042.
00043.
00044.
00045.
00046.
00047.
00048.
00049.
00050.
00051.
00052.
00053.
00054.
00055.
00056.
00057.
00058.
00059.
00060.

cl ear 2000
=ARRAY. S| ZE% LABEL. ARRAYS, FI ELD% AT% | NP$, EDI T. FLAG% GLOBAL. LOOP% TEMPORARY%
=TEMPCRARYS$, LABEL. LENGTH%
=NAME. CF. FI LE$, CLEAR LI NE$, CLEAR SCREENS$, NO. OF. LABELS% | NK$, GLOBAL. LOOP1%
=AT. ENTER%
QOTO @TART

"1 NPUT SUBROUTI NE

@ NPUT=I NK$, LOOP1% LOOP2% FLASH. LOCY% FI ELD. LEN% AT. LEN%
|F EDIT. FLAG&0 OR I NP$="" THEN @EG N. | NPUT
FOR LOOP1%LEN(I NP$) TO 1 STEP -1
I F M D$(1 NP$, LOOP1% 1) =" " THEN NEXT LOOP1% GOTO @BEG N. | NPUT
| F LOOP1%:FI ELD% THEN LOOP1%LCOOP1% 1
FI ELD. LENY&=FI ELD% LOOP1%
| NP$=LEFTS$(| NP$, LOOP1%)
AT. LENV&AT%LEN(| NPS$)
GOTO @ SP. FLD
@EG N | NPUT
FI ELD. LENY&FI ELD% AT. LENY=AT%
I NK$="": | NP$=""
PRI NT@T% STRI NG$(FI ELD% 138) ;
@E. | NPUT
FOR LOCP1%:1TOLO
| NK$=I NKEY$
I F I NK$<>"" THEN @RCC. | NPUT
NEXT LOOP1%
FLASH. LOC%LEN(| NK$)
LOOP1%:0
@ELAY
| F LOOP1%0 THEN POKE15360+AT. LENY&FLASH LOC% 32: LOCP1%1: GOTO @XELAY2
| F LOOP1%1 THEN PCKE15360+AT. LEN%-FLASH. LOC% 138: LOCP19%6-0
@ELAY?2
FOR LOOP2% 1 TO 10
| NK$=I NKEY$
I F I NK$<>"" THEN @RCC. | NPUT
NEXT LOOP2%
GOTO @XELAY
@RCC. | NPUT
I F | NK$=CHR$(13) THEN @ND. | NPUT
I F | NK$=CHRS$(8) THEN AT. LENYAT. LEN% 1: FI ELD. LEN&FI ELD. LEN%-1
| F FI ELD. LENY&FI ELD% THEN @EG N. | NPUT
| F | NK$=CHRS(8) THEN | NP$S=LEFT$(1 NP$, LEN(| NP$) - 1) :
I F ASC(1 NK$) <32 THEN | NK$="": GOTO @ SP. FLD
| NP$=I NP$+| NK$
FI ELD. LENY&=FI ELD. LEN% 1
AT. LENY&AT. LENV&-1
| F FI ELD. LEN60 THEN PRI NT@\T% | NP$; : GOTO @ND. | NPUT
@ SP. FLD
PRI NT@AT% | NP$+STRI NGB(FI ELD. LEN% 138) ;
GOTO @RE. | NPUT
@ND. | NPUT
EDI T. FLAG%0
| F FI ELD. LEN%>0 THEN PRI NT@ AT% | NP$; STRI NGS(FI ELD. LEN% 32) ;
RETURN

"END OF | NPUT SUBRQOUTI NE

Sanpl e List fromLDOS of EXAMPLE/ TBA
Page 64

00061.
00062.
00063.
00064.
00065.
00066.
00067.
00068.
0Ov069.
00070.
00071.
00072.
00073.
00074.
00075.
00076.
00077.
00078.
00079.
00080.
00081.
00082.
00083.

00084.
00085.
00086.
00087.
00088.
00089.
00090.
00091.
00092.
00093.
00094.
00095.
00096.
00097.
00098.
00099.
00100.
00101.
00102.
00103.
00104.
00105.
00106.
00107.
00108.
00109.
00110.
00111.
00112.
00113.
00114.
00115.
00116.
00117.
00118.
00119.
00120.

' PRESS ENTER TO CONTI NUE SUBROUTI NE

@RESS. ENTER

PRI NT@ AT. ENTER% " PRESS <ENTER> TO CONTI NUE"
@ NPUT. ENTER

AT% AT. ENTER% FI ELD%1: GOSUB @ NPUT

IF INP$<>"" THEN @ NPUT. ENTER

RETURN

"END OF PRESS ENTER SUBRCUTI NE

@l SPL. LABEL

PRI NT@20, CLEAR SCREENS$

FOR GLCBAL. LOOP%1 TO ARRAY. Sl ZE%
PRI NT@20+(64* GLOBAL. LOCPY%), "LI NE #"; GLOBAL. LOOP% " ": LABEL. ARRAYS
(GLCBAL. LOOP%

NEXT GLOBAL. LOOP%

RETURN

@\BORT. PRI NTI NG

PRI NT@60, CLEAR. SCREENS; "DO YOU W SH TO ABORT PRINTING (Y/N)";
@ NPUT. ABCRT
ATY%998: FI ELD%2: GOSUB @ NPUT
IF INP$="Y" OR I NP$="N' THEN PRI NT@60, CLEAR SCREEN$; ELSE @ NPUT. ABCRT
RETURN

"I F THE DI RECTI VE "EI GHT" WAS PASSED, SET ARRAY. SI ZE% TO 8

*I'F ElGHAT
ARRAY. S| ZE%8
GOTO @l MENSI ON
*END

"I F THE DI RECTI VE "ElI GHT" WAS NOT PASSED, SET ARRAY. Sl ZE% TO 6
ARRAY. S| ZE%6

@i MENSI ON
di m LABEL. ARRAYS$(ARRAY. S| ZE%)
CLEAR LI NE$=CHR$(30) : CLEAR SCREEN$=CHR$(31)

Sanpl e List fromLDOS of EXAMPLE/ TBA
Page 65

o0o121.

00122. '===

00123. 'IF THE DI RECTI VE "CHARS' WAS PASSED, TAKE THE | NPUT FOR THE
00124. ' NUMBER OF CHARACTERS PER LI NE

00125. '===

00126.

OR127. *IF CHARS
00128. @HARS. | NPUT

00129. CLS: PRI NT@24, " ENTER NUVBER OF CHARACTERS PER LABEL"

00130. AT%561: FI ELDV2: GOSUB @ NPUT

00131. IF INP$="@ THEN GOTO @ND. PROGRAM

00132. IF INP$="" THEN @HARS. | NPUT

00133. FOR GLOBAL. LOOPY%=1TOLEN(| NP$)

00134, TEMPORARY$=M DS(| NP$, GLOBAL. LOOP% 1)

00135. | F TEMPCRARY$<" 0" OR TEMPORARY$>"9" THEN @HARS. | NPUT
00136. NEXT GLOBAL. LOCP%

00137. LABEL. LENGTHY&VAL(| NP$)

00138. GOTO @ NPUT. FI LE

00139. *END

00140. '

00141.

00142. LABEL. LENGTHY35

00143. '

00144.

00145. @NPUT. FI LE

00146.

00147. NAME. OF. FI LE$=""

00148. FOR GLOBAL. LOOP%1 TO ARRAY. S| ZE%

00149. LABEL. ARRAY$(GLOBAL. LOOP%) =" "

00150. NEXT GLOBAL. LOOP%

00151. CLS: PRI NTTAB(16) " LABEL PRI NTI NG PROGRAM

00152. PRI NT@30, "DO YOU W SH TO USE AN EXI STING FILE (Y,N, @"
00153. AT%376: FI ELDY%2: GOSUB @ NPUT

ov154. IF INP$="@ THEN @ND. PROGRAM

00155. | F INP$="N' THEN @U LD.LABEL ELSE | F | NP$<>"Y" THEN @ NPUT. FI LE
00156.

00157. @NTER FILE

00158. PR NT@30, CLEAR LI NE$; "ENTER THE NAVME OF THE FI LE"

00159. AT%358: FI ELD%:15: GOSUB @ NPUT

00160. IF INP$="@ THEN @ NPUT. FI LE

00161. ONERRCRGOTO @O, SUCH. FI LE

00162. NAME. OF. FI LE$S=I NP$

00163. OPEN'I ", 1, NAVE. OF. FI LE$

00164. ONERRCRGOTQ0

00165. TEMPORARY%5-0

00166.

00167. @NPUT. LI NE

00168.

00169. | F EOF(L) THEN CLOSE: GOSUB @ SPL. LABEL: ONERRORGOTCO: GOTO @D T. LABEL
00170. TEMPORARY%&TEMPORARY%-1: | F TEMPORARYJ&ARRAY. S| ZE% THEN @WRONG PROG
00171. LI NEI NPUT#1, LABEL. ARRAY$(TEMPCRARY%)

00172. | F LEN(LABEL. ARRAY$(TEMPORARY?%)) >LABEL. LENGTHY THEN @\RONG. PROG
00173. GOTO @ NPUT. LI NE

00174.

00175.

00176. @U LD. LABEL

00177.

00178. PRI NT@4, CLEAR SCREENS$

00179. FOR GLOBAL. LOOP%1 TO ARRAY. S| ZE%

00180. PRI NT@20+(GLOBAL. LOOPY% 64) , " LI NE #"; GLOBAL. LOOP%
00181. AT%=330+(GLOBAL. LOCPY% 64) : FI ELDY%:LABEL. LENGTHY GOSUB @ NPUT

Sanpl e List fromLDOS of EXAMPLE/ TBA
Page 66

00182. IF INP$="@ THEN | F GLOBAL. LOOP%1 THEN @ NPUT. FI LE ELSE

@U LD. LABEL

00183. |F INP$="" THEN | NP$=" "

00184. LABEL. ARRAY$(GLOBAL. LOOP%) =I NP$

00185. NEXT GLOBAL. LOOP%

00186.

00187.

00188. @Di T. LABEL

00189.

00190. PRI NT@60, " ENTER COMMAND (Y | F CORRECT, LINE # TO CORRECT, @ TO ABORT";

00191. AT%:1020: FI ELD%=2: GOSUB @ NPUT

00192. IF INP$="@ THEN @ NPUT. FI LE

00193. IF INP$="Y" THEN @R NT. LABEL

00194. TEMPORARY%VAL (| NP$) : | F TEMPORARY%<1 CR TEMPORARY%ARRAY. S| ZE% THEN

@D T. LABEL

00195. | NP$=LABEL. ARRAY$(TEMPORARY%)

00196. AT%310+(TEMPORARYYS 64) : FI ELD%LABEL. LENGTH% EDI T. FLAGY%=1: GOSUB @ NPUT

00197. LABEL. ARRAYS$(TEVPCRARY%) =I NP$

00198. GOTO @D T. LABEL

00199.

00200.

00201. @RI NT. LABEL

00202.

00203. PRI NT@60, CLEAR SCREENS;

00204, PRI NT" NUMBER OF LABELS TO PRI NT? (<ENTER>=1, <@ TO ABCRT)";

00205. AT%1015: FI ELD%3: GOSUB @ NPUT

00206. IF INP$="@ THEN @DI T. LABEL

00207. | F I NP$=""THEN NO OF. LABELS%1 ELSE NO OF. LABELS%VAL(|1 NP$): | F

NO. OF. LABEL S%| THEN @R NT. LABEL

00208. FOR GLOBAL. LOOP%1 TO NO. OF. LABELS%

00209. | NK$=I NKEY$: | F | NK$="@ THEN GOSUB @\BORT. PRINTING | F | NP$="Y" THEN
@AVE. FI LE

00210. FOR GLOBAL. LOOP1%1 TO ARRAY. Sl ZE%

00211. LPRI NT LABEL. ARRAY$(GLOBAL. LOOP1%)

00212. NEXT GLOBAL. LOCP1%

00213. NEXT GLCBAL. LOCP%

00214. PR NT@60, CLEAR SCREENS; " DO YOU W SH TO PRI NT MORE? (Y/N)";

00215.

00216. @R NT. MORE

00217.

00218. AT%994: FI ELDY%2: GOSUB @ NPUT

00219. I F INP$="Y" THEN @RI NT. LABEL ELSE I F | NP$<>"N' THEN @R NT. MORE

00220.

00221. @SAVE. FI LE

00222.

00223. PRI NT@60, CLEAR SCREENS; "DO YOU W SH TO SAVE THI'S FILE (Y/N)";

00224, AT%997: FI ELD%2: GOSUB @ NPUT

00225. IF INP$="N' THEN @NPUT. FILE ELSE | F | NP$<>"Y" THEN @AVE. FI LE

00226.

00227. @ LENAME

00228.

00229. PRI NT@60, CLEAR SCREENS; " ENTER FI LENAME (<ENTER>=SAVE NANE)";

00230. AT%996: FI ELD%15: GOSUB @ NPUT

00231. I F INP$<>"" THEN NAME. CF. FI LE$=I NP$: GOTO @WR! TE. FI LE

00232. | F NAME. OF. FI LE$="" THEN @ LENAME

00233.

00234. @WR TE. FI LE

00235.

00236. ONERRORGOTO @ANNOT. WRI TE

00237. OPEN'O', 1, NAMVE. OF. FI LES$

00238. FOR GLOBAL. LOOP%1 TO ARRAY. Sl ZE%

Sanpl e List fromLDOS of EXAMPLE/ TBA
Page 67

00239. PRI NT#L, LABEL. ARRAY$(GLOBAL. LOOPY)

00240. NEXT GLOBAL. LOOP%

09241. CLCSE

00242. ONERRCRGOTCO

00243. GOTO @ NPUT. FI LE

00244.

00245.

00246. @NO SUCH. FI LE

00247.

00248. PRI NT@30, CLEAR LI NE$; "CANNOT USE FI LE --->"; NAME. OF. FI LE$

00249. PRI NT@58, " THE ERROR THAT OCCURRED | S ERRCR #"; ERR

00250. AT. ENTERY&586

00251. GOSUB @RESS. ENTER

00252. PRI NT@330, CLEAR. SCREEN$

00253. NAME. CF. FI LE$="": RESUME @NTER FI LE

00254.

00255.

00256. @\RONG PROG

00257.

00258. PRI NT@30, CLEAR. SCREEN$; "CANNOT USE TH S VERSI ON OF THE

PROGRAM': PRI NT@94, "TO PROCESS THE FI LE ---> "; NAME. OF. FI LE$

00259. AT. ENTERY#586: GOSUB @RESS. ENTER

00260. NAME. OF. FI LE$="": CLCSE: GOTO @ NPUT. FI LE

00261.

00262.

00263. @ANNOT. VR TE

00264.

00265. PRI NT@60, CLEAR SCREENS; "CANNOT SAVE FI LE -- ERROR="; ERR ". <R>ETRY OR @

TO ABCRT";

00266. @ NPUT. WRI TE

00267. AT%1017: FI ELD%2: GOSUB @ NPUT

00268. I F INP$="R'" THEN NAME. CF. FI LE$="": RESUVE @BAVE. FI LE ELSE I F I NP$<>"@ THEN
@NPUT. WRI TE

00269. RESUVE @END. PROGRAM

00270. @END. PROGRAM

00271. ONERRORGOTQ0: CLS: PRI NT@05, " LABEL PROGRAM ABORTED': CLOSE: END

00272.

Sanpl e List fromLDOS of EXAMPLE/ TBA
Page 68

1 CLEAR2000
6 GOT0199

11 | FED%=O0OR O$=""THEN20

12 FORLO%LEN(| O) TOLSTEP- 1

13 | FM D$(1 08, LO% 1) =" " THENNEXTLO% GOTCR0

14 | FLOV=FJ%HENLOYELO% 1

15 Fl %FJ% LO%

16 | CB=LEFTS$(1 CB, LO%

17 AT%AW6LEN(| O8)

18 GOT050

20 Fl %FJ% AT%AWb

21 IN$="":1CB=""

22 PRI NT@UW% STRI NG$(F1% 138) ;

24 FORLO%1TOLO

25 | N$=I NKEY$

26 | FI N$<>"" THENAO

27 NEXTLO%

28 FL%LEN(| N$)

29 LO%0

31 | FLO%0THENPOKE15360+AT%FL% 32: LO%1: GOTCB4
32 | FLOY%1THENPOKEL5360+AT%-FL% 138: LO%:0

34 FORLP%1TOLO

35 | N$=I NKEY$

36 | FI N$<>"" THEN4O

37 NEXTLP%

38 QOT031

40 | FI N$=CHR$(13) THENG3

41 | FI N$=CHR$(8) THENAT%AT% 1: FI %=FI %-1

42 | FFl %FJYaHEN20

43 | FI N$=CHR$(8) THENI O5=LEFT$(10$, LEN(| O5) - 1) :
44 | FASC(| N$) <32THENI N$="": GOTCB0

45 | O8=1 OB+ N$

46 Fl %Fl % 1

47 ATYATY1

48 | FFl %0THENPRI NT@\U% | C8; : GOTCB3

50 PRI NT@UW% | O5+STRI NGS(Fl % 138)

51 QOT024

53 ED%:0

54 | FFI %>0THENPRI NT@\W% | O; STRI NGS(Fl % 32) ;
55 RETURN

65 PRI NT@\W% " PRESS <ENTER> TO CONTI NUE"

67 AUEAV, FJ%1: GOSUBLL

68 | FI Gb<>"" THENG7

69 RETURN

81 PR NT@20, OV

82 FORAL%1TOAR%

83 PRINT@20+(64*GL% ,"LINE #"; A% " "; LAS(G%
84 NEXTGL%

85 RETURN

96 PRI NT@60, CM5; " DO YOU W SH TO ABORT PRINTING (Y/N)";
98 AU%998: FJ%2: GOSUBL1

99 | FI GB="Y" ORI G="N' THENPRI NT@60, CM5; ELSE98
100 RETURN

109 AR%S8

110 GOT0118

115 ARY%6

118 DI MLAS(AR%)

119 CL$=CHR$(30) : OMB=CHR$(31)

129 CLS: PRINT@24, " ENTER NUMBER OF CHARACTERS PER LABEL"
130 AUE561: FJ%2: GOSUBL1

Sanpl e out put of EXAMPLE/ BAS
Page 69

131 | FI G8=" @ THENGOT0271

132 | FI Op=""THEN129

133 FORGLY1TOLEN(| C8)

134 TE$S=M D$(| OB, L% |)

135 | FTE$<" 0" ORTE$>" 9" THEN129

136 NEXTQAL.%

137 LAY%VAL(| OB)

138 GOT0147

142 LA%35

147 NA$=""

148 FORG.%1TOAR%

149 LA$(Q%=" "

150 NEXTGL%

151 CLS: PRI NTTAB(16) " LABEL PRI NTI NG PROGRAM'

152 PRI NT@30, "DO YOU W SH TO USE AN EXI STING FILE (Y,N, @"
153 AU%E376: FJ%2: GOSUBL1

154 | Fl 0b=" @ THEN271

155 | FI GB="N' THENL78ELSEI FI O§<>" Y" THEN147

158 PRI NT@30, CL$; "ENTER THE NAVE OF THE FI LE"

159 AU%358: FJ%:15: GOSUBL1

160 | Fl Ob=" @ THEN147

161 ONERRORGOT0248

162 NA$=| OB

163 OPEN'I", 1, NAS

164 ONERRORGOTCD

165 TE%0

169 | FEOF(|) THENCLOSE: GOSUBS1: ONERRORGOTCD: GOTOL90
170 TE%TE%1: | FTEXARVAHENG12

171 LI NEI NPUT#1, LAS(TE%)

172 | FLEN(LAS(TE%)) >LAYTHENS12

173 GOT0169

178 PR NT@4, OVB

179 FORG.%1TOAR%

180 PRI NT@20+(GL% 64), " LI NE #"; GL%

181 AU%330+(GLY% 64) : FJ%LA% GOSUBL1

182 | FI O$=" @ THENI FGL%1THENL47ELSE178

183 | FI Op=""THENI O$=" "

184 LAS(A%= | C8

185 NEXTGL%

190 PRI NT@60, " ENTER COMVAND (Y | F CORRECT, LINE # TO CORRECT, @ TO ABORT";
191 AU%1020: FJ%2: GOSUBL1

192 | Fl 0$=" @ THEN147

193 | FI O8="Y" THEN203

194 TE%VAL(| O8) : | FTE%<10RTEYARYTHENL90

195 | CB=LAS(TE%

196 AUYE310+(TEY 64) : FI%LA% ED%1: GOSUBL1

197 LAS$(TE% =I C8

198 GOT0190

203 PRI NT@60, O\VB;

204 PRI NT"NUMBER OF LABELS TO PRI NT? (<ENTER>=1, <@ TO ABCRT)";
205 AUWE1015: FJ%:3: GOSUBL1

206 | FI Ob="@ THEN190

207 | FI OB=""THENNOY=1ELSENOY&VAL(| G8) : | FNO%&<1THEN203
208 FORGLY%1TONO%

209 | P$=I1 NKEY$: | FI P$=" @ THENGOSUB96: | FI OB="Y" THEN223
210 FORGWE1TOARY

211 LPR NTLAS$(GW)

212 NEXTGWA

213 NEXTAL%

214 PR NT@60, OMB; "DO YOU W SH TO PRINT MORE? (Y/N)";
218 AWE994: F%:2: GOSUBL1

Sanpl e out put of EXAMPLE/ BAS
Page 70

219 | FI Gb="Y" THEN203ELSEI FI OB<>" N' THEN218

223 PRI NT@60, OVB; " DO YOU W SH TO SAVE TH'S FILE (Y/N)";
224 AWE997: FI%2: GOSUBLL

225 | FI Gb="N' THENL47ELSEI FI OB<>" V" THEN223

229 PRI NT@60, OVB; " ENTER FI LENAVE (<ENTER>=SAVE NAVME) " ;
230 AU%996: FJ%:15: GOSUBL1

231 | FI OB<>"" THENNA$=I CB: GOTCR36

232 | FNA$="" THEN229

236 ONERRORGOT0265

237 OPEN'C', 1, NAS

238 FORGLY1TOARY%

239 PRI NT#1, LAS(QL%

240 NEXTG%

241 OLOSE

242 ONERRCRGOTCD

243 GOT0147

248 PRI NT@30, CL$; " CANNOT USE FILE --->"; NA$

249 PRI NT@58, " THE ERROR THAT OOCURRED | S ERRCR #"; ERR
250 AVY586

251 GOSUB6S

252 PR NT@30, OB

253 NA$="": RESUMVE158

258 PRI NT@30, OMB; " CANNOT USE THI'S VERSI ON OF THE PROGRAM : PRI NT@94, " TO PROCESS THE
FILE ---> ": NA$

259 AV&586: GOSUBGS

260 NA$="": CLOSE: GOTOL47

265 PR NT@60, OMB: " CANNOT SAVE FILE -- ERROR=";ERR ". <R>ETRY CR @ TO ABORT";
267 AU%1017: FJ%2: GOSUBL1

268 | FI Gb=" R’ THENNA$="": RESUVE223ELSEI FI C§<>" @ THEN267
269 RESUMVE271

271 ONERRORGOTQD: CLS: PRI NT@05, " LABEL PROGRAM ABORTED' : CLCSE: END

Sanpl e out put of EXAMPLE/ BAS
Page 71

ARRAY. 6, 24 QU DELINES - *IF / *END.. 36
Source in LBASIC. ...27

ASCI| files - source..... 3,9, 26, 27 Qperational 50
Using a Wrd Proc... 26,57
Using LBASIC........ 27, 60 JCL with TBA 63
ASTERI SK with directives. 7,28 LABEL - Valid/Invalid.... 4,10
in x-reference...... 47 Definition of....... 3,11
Processing of....... 13,48
BLOCK - conditional...... 7,32 Theory behind use. .. 13
using LSCRIPT....... 58
MERA NG Files - LBASIC...60
BRANCH - with | abels..... 3,4,11, 22, 25,50 LSCRIPT............. 57
CROSS REFERENCE switch. .. 8,39 PAGATI ON of Listings..... 6, 29, 55
table............... 46
PROCESSI NG - Source...... 7,37
DECLARATI ON TAGS. 4,15 Errors.............. 41
Exercises........... 54
DIRECTIVES. 6, 28 Paranmeters.......... 8, 38
*END. 7,28,32 LP. 8, 39
*EXPRESSION. 7,28, 32,34 TO ..o 8, 39
fall I 7,28,32 NL. ..o 8,39
*LIST. ..ot 7,28,29 NX oo 8, 39
*PAGE. 7,28,31 FC............... 8, 39
*PRLINES. 6, 28 DC.............. 8, 39
*TITLEo L 7,28, 32
PROWPT - Source File..... 7,37
ENHANCI NG PROGRAMS. 51 Goject File......... 8, 38
Processing Parns....8,38
ERRORS - Messages........ 8,41 Drectives.......... 8, 40
Undefined Variable..24
BASI C Source........ 27 REM - Restrictions....... 6, 25
*IF expression...... 36
Error Trapping...... 50 RETURN - Use of.......... 6,12, 22
Variabl e Names...... 5,15
Label nanes......... 4,10 VARI ABLES - Introduction. 14
Valid/lnvalid....... 5,15
EXPONENTI ATI ON- LSCRI PT. . . 26 Definition of....... 5,16
dobal/Local 5,17
Processing of....... 22,48

Theory behind use...22

TBA - | NDEX

[Oiginal Warranty Card]
TBA(TM) - The BASI C Answer
(©) 1982 by Logical Systens, Inc.
Serial # TBA-20029
TRS- 80 Model | 111

LDCS Serial #

Nane

Addr ess

Gty State Zip
Country Phone

Pur chased from Dat e purchased

This product is sold on an "as is" basic, with no expressed or inplied
warranties. The purchaser agrees that he will not duplicate or dissem nate
this product in any way whatsoever, except to nmake copies for his personal
use.

Si gnat ure Dat e

	Top of document
	User Guide Section
	Introduction
	Source Code Creation
	Upper and Lower Case Usage in Source Code
	Labels - How to use Labels
	Labels - Syntax and Allowable Characters
	Variables - Syntax and Allowable Characters
	Examples of LEGAL Variables
	Variables - Global Variable Definitions and Implementation
	Variables - Local Variable Definition and Implementation
	Variables - Array Variables

	Special Use of the BASIC REM statement
	Special Use of the BASIC Statement - RETURN
	Directives - Processor Output Modification and Identification
	*PRLINES
	*LIST
	*PAGE
	*TITLE

	Directives - Conditional Processing of the Source Code
	*IF expression
	*END

	How to Operate the Processor
	Processing Parameters
	Directive Prompt

	Tutorial Section
	Introduction
	Differences between writing BASIC Programs and writing source code
	LABELS, NOT LINE NUMBERS
	Defining and Using Labels
	Why Use Labels?
	How the TBA Processor Deals with Labels
	Applying the Theory of Labels to Practical Programming
	INTRODUCTION TO VARIABLE USAGE
	Valid Variable Names
	Invalid Variable Names
	Defining Global Variables
	Defining Local Variables
	Global vs. Local - An Overall Perspective

	Miscellaneous Differences and Information

	Writing Source Code
	Using a Word Processor/Text Editor to Write Source Code
	Using the BASIC Interpreter to Write Source Code
	Using DIRECTIVES when Processing Source Code
	*PRLINES
	*LIST
	*PAGE
	*TITLE
	*IF
	*END
	*expression

	Using TBA to Process files
	Processing Source Code
	Object File
	Processing Parms
	Processing Errors
	Sample Screen and Video Output

	How the Processor Operates
	General Operational Guidelines & Program Maintenance
	Use of Error-Trapping Routines
	Maintaining Programs
	Enhancing Program Operation and Speed
	Summary

	Sample Programs and Exercises
	FACTOR exercise
	MERGE exercise (LSCRIPT)
	MERGE exercise (LBASIC)
	JCL suggestion and the last exercise
	Sample Source EXAMPLE/TBA

	Index
	Original Warranty Card

