
EDITOR /
ASSEMBLER

TRS∙80

Catalog Number 26-2002

User Instruction Manual

CUSTOM MANUFACTURED IN U.S.A. BY RADIO SHACK

 A DIVISION OF TANDY CORPORATION

ii

TRS-80 EDITOR / ASSEMBLER

OPERATION
AND

REFERENCE MANUAL

© Copyright 1978, by Radio Shack, A Division of Tandy Corporation, Ft. Worth, Texas

iii

Table of Contents
Page

Introduction ..1

Notation Conventions ...1

Editor/Assembler ..1

LOADING... 2

COMMANDS ... 2

Assemble (A) .. 2

Basic (B) ... 3

Delete (D).. 3

Edit (E).. 3

Find (F) ... 4

Hardcopy (H) .. 4

Insert (I) .. 4

Load (L) .. 4

Number (N) ... 4

Print (P)... 5

Replace (R) ... 5

Type (T) .. 5

Scroll and Tab ... 5

Write (W) .. 5

Cassette Tapes ... 6

Sample Use.. 6

ASSEMBLY LANGUAGE... 8

Syntax ... 8

Expressions ... 9

Z80 STATUS INDICATORS (FLAGS)... 9

PSEUDO-OPS .. 11

Assembler Commands .. 11

Z80 INSTRUCTION SET..12

INDEX TO INSTRUCTION SET... 12

INSTRUCTION SET TABLE OF CONTENTS... 12

OPERAND NOTATION... 14

Z80 INSTRUCTIONS... 15

8 BIT LOAD GROUP... 15

16 BIT LOAD GROUP... 26

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP ... 36

8 BIT ARITHMETIC AND LOGICAL GROUP ... 45

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS ... 58

16 BIT ARITHMETIC GROUP ... 65

ROTATE AND SHIFT GROUP... 71

BIT SET, RESET AND TEST GROUP ... 83

JUMP GROUP.. 88

CALL AND RETURN GROUP ... 94

INPUT AND OUTPUT GROUP .. 100

Z-80 Hardware Configuration ...111

Z-80 CPU ARCHITECTURE ... 111

iv

CPU REGISTERS ...111

Special Purpose Registers..111

Accumulator and Flag Registers..112

General Purpose Registers...112

ARITHMETIC & LOGIC UNIT (ALU) ...112

INSTRUCTION REGISTER AND CPU CONTROL...112

Z-80 CPU PIN DESCRIPTION...112

Z-80 CPU INSTRUCTION SET ...114

INTRODUCTION TO INSTRUCTION TYPES ..114

ADDRESSING MODES ...114

Immediate. ...115

Immediate Extended. ...115

Modified Page Zero Addressing ..115

Relative Addressing...115

Extended Addressing. ..115

Indexed Addressing ...115

Register Addressing...116

Implied Addressing..116

Register Indirect Addressing. ..116

Bit Addressing. ..116

ADDRESSING MODE COMBINATIONS..116

CPU TIMING ..116

NUMERIC LIST OF INSTRUCTION SET .. 117

ALPHABETIC LIST OF INSTRUCTION SET ... 123

Error Messages... 129

LEVEL II BASIC MEMORY MAP... 133

Editor/Assembler Command List ... 135

1

Introduction
The TRS-80 Editor/Assembler is a RAM-resident text editor
and assembler for the TRS-80 microcomputer system. The
Editor/Assembler was designed to provide the ease of use
required by the novice, while providing capabilities
powerful enough for the expert. LEVEL II BASIC is capable
of directly loading the Editor/Assembler cassette tape.
LEVEL I BASIC must read-in the Editor/Assembler using
the SYSTEM tape (included).

The text editing features of the Editor/Assembler facilitate
the manipulation of alphanumeric text files. The most
common use of the editing capability is in the creation and
maintenance of assembly language source programs.

The assembler portion of the Editor/Assembler facilitates the
translation of symbolic language source programs into
machine executable code. This object code may then be
executed with the SYSTEM tape for LEVEL I BASIC or
directly with the SYSTEM command under LEVEL II
BASIC. Previous knowledge of machine language and the
hexidecimal number system is assumed throughout this
manual.

The Assemble command (A) supports the assembler
language specifications set forth in the Zilog Z80-Assembly
Language Program Manual, 3.0 D.S., REL 2.1, FEB 1977,
with the following exceptions.

Macros are not supported.

Operand expressions may only contain the + and - , &
(logical AND), and < (shift) operators, and are evaluated on
a strictly left to right basis. Parentheses are not allowed!

Conditional assembly commands, where a programmer may
control which portions of the source code are assembled, are
not supported.

Constants may only be decimal (D). hexidecimal (H), or
octal (O). See section under operands.

The only Assembler commands supported are *LIST OFF
and *LIST ON.

A label can contain only alphanumeric characters. (Use of
the - and ? is not supported.) A label can be up to 6
characters long. The first character must be alphabetic. The
other characters must be alphanumeric.

Notation Conventions

[] Square brackets enclose optional information:

P[line1[:line2]]

The :line2 is optional, and the P need not be followed by
anything at all since all options following P are enclosed in
brackets. The brackets are never actually typed.

… The ellipses represent repetition of a previous
item:

A[[^ filename][/switch /switch 1 . . .]]

The /switch may be repeated several times.

CAPITALS Capital letters must be as shown for input and
will be as shown in examples of output.

lowercase The user must substitute in his own values
(eg: inc. filename, line)

underscore Underscored information is output printed by
the Editor/Assembler unless specified
otherwise . This distinguishes user input from
computer output but is never actually typed by
the user.

^ A lowercase B with slash specifies a
mandatory blank(space).

line Any decimal number from 0 to 65529

line1:line2 Numbers specify two different line numbers
(line #1 is usually less than line #2)

• A period may be used in place of any line
number. It represents a pointer to the current
line of source code being assembled, printed,
or edited.

A pound sign may he used in place of any line
number. It represents the first (lowest line
number) source code line in the text buffer .

* An asterisk may be used in place of any line
number. It represents the last (highest line
number) source code line in the text buffer.

inc A number representing an increment between
successive line numbers .

filename A character string specifying the name of a
cassette file. See section on Cassette Tapes.

Editor/Assembler

In brief the Editor/Assembler is designed for a user to type
in source assembler code. This source code is assembled and
the resulting object code may be recorded onto tape. The
Editor/ Assembler may also read-in, record, and edit other
source code files stored on tape. Of course. the source files
manipulated by the Editor/Assembler need not be assembly
programs only. The files may be any text information
created by the Editor/Assembler. BASIC program tapes may
NOT be edited by the Editor/Assembler.

The limit to the size of an assembly language program is the
amount of RAM memory in the user’s computer system. The
Editor/Assembler maintains a “text buffer.” This buffer

2

starts at the end of the Editor/Assembler program and
continues to the end of memory. This usually leaves around
7K of memory for the text buffer which will contain the
source file.

LOADING

LEVEL II BASIC

Since the Editor/Assembler is a machine language program,
it may only be loaded using the SYSTEM command. Place
the Editor/Assembler tape into the cassette recorder and
depress PLAY. The volume should be set to 5 or 6 (this is a
500 baud tape).

Type SYSTEM and then press ENTER. The computer will
respond by typing:

*?

Now type EDTASM, the filename of the Editor/Assembler,
and the tape will be read into memory. Once loading is
completed, type a / (slash) and press ENTER, the monitor
screen is clear and the message : /

TRS-80 EDITOR/ASSEMBLER 1.1

*

is printed. The asterisk is the Editor/Assembler prompt
symbol. This is its way of requesting a command.
Depressing the BREAK key will always return you to an
asterisk except when reading a tape, writing a tape, or
editing a line. The BREAK key may be used to abort an
assembly or a printout in progress.

LEVEL I BASIC

Since the Editor/Assembler is recorded on tape at 500 baud.
LEVEL I BASIC CAN NOT DIRECTLY read-in the tape.
You must first load the SYSTEM tape provided. This
program can then read-in the 500 baud Editor/Assembler
tape.

Load the SYSTEM tape into the cassette recorder. Set
volume to 8 or 9 (this is a 250 baud tape). Type CLOAD and
BASIC I will read-in the SYSTEM tape. The program will
start as soon as loading is finished.

The computer will type:

*

Now load your cassette with the Editor/Assembler tape. Set
volume to 5-6 (this is a 500 baud tape). Type EDTASM and
press ENTER. The Editor/Assembler will be read-in. When
the reading is complete, another * will be typed. Now type a
slash (/) and then the number 18058. Press ENTER to
execute the Editor/Assembler. The number 18058 is the
entry address of the Editor/Assembler.

TRS-80 EDITOR/ASSEMBLER 1.0

*

You may now use the Editor/Assembler as described under
the section on Assembly Language.

The BREAK key works the same way as described in the
third paragraph of this section.

COMMANDS

The TRS-80 Editor/Assembler can perform the following
commands. These commands may be typed after the prompt
symbol * where applicable. The asterisk indicates the
“command level” of the Editor/Assembler. The following
list contains all command level instructions recognized by
the Editor/Assembler with a brief description of each.

A Assemble source currently in text buffer

B Return to BASIC in ROM

D Delete specified line(s)

E Edit a specified command; almost exactly like
LEVEL II BASIC’s EDIT command

F Find a specified string of characters in the text
buffer

H Same as P command except that output
goes to line-printer

I Insert source line(s) at a specified line with a
specified increment

L Load a source file from cassette tape into text
buffer

N Renumber source lines in the text buffer

P Print specified range of source code currently
in the text buffer

R Replace lines currently in text buffer. Like the
Insert command only lines are over-written

T Same as H only no line numbers are printed
(text only).

↑ or ↓ Scroll up or down. Will print the next or
previous source line

→ Horizontal tab

W Write current text buffer onto tape

Assemble (A)

form: *A[[^ filename] [/switch[/switch]…]]

switch may be any of the following four options

NL No listing written to screen. Errors and bad
source lines are still typed.

NO No object code. Inhibits recording of an
object code tape.

NS No symbol table is to be printed

3

LP Send listing, errors, and symbol table to
the TRS-80 LINE-PRINTER

WE Cause assembly to wait when an error
occurs. Depressing any key will continue
assembly until another error is found.
Depressing the “C” key will cause
assembly to continue without stopping for
errors. Pressing BREAK returns to
command level at any time.

The contents of the edit buffer are assembled. The object
code is written to cassette tape under the specified filename
(if no filename is specified the filename is automatically set
to NONAME.) An assembly error is usually written to the
monitor screen immediately before the line the error
occurred on.

After the assembly is completed the total number of errors is
printed. Finally, the symbol table is printed. The computer
then types:

READY CASSETTE

Prepare your object tape for recording and press ENTER. If
you don’t want the object code, simply press BREAK and an
asterisk (command level) will be returned to you. This is the
default procedure which may be altered with the proper
switches.

Examples:

*A Assemble with filename of NONAME; list
on screen

*A^IKKY Same as above; object tile is IKKY

*A/NS Assemble with filename of NONAME, no
symbol table

*A/NS/LP Same as above yet all output is to line-
printer

*A^Q/NL Assemble with filename Q; no listing ^ is a
mandatory blank

Basic (B)

form: *B

Typing a B and then ENTER will return you to a MEMORY
SIZE (power up) condition in LEVEL II BASIC or a
READY state in LEVEL I BASIC.

Example:

*B

MEMORY SIZE?

Delete (D)

form: *D[linel [:line2]]

Deletes the line or lines specified from the text buffer.

Examples:

*D100:500 Deletes lines 100 through 500 (inclusive)
from the text buffer

D:# Deletes entire text buffer. Clears text
buffer

*D Deletes line currently pointed to
by period (.).

*D105 Deletes the single line 105

Edit (E)

form: *E[line]

Allows user to edit/modify source lines just like the EDIT
command in LEVEL II BASIC. The only difference is that
the Delete command does not enclose deleted information in
exclamation points(!).

Examples:

*E Edits current line pointed to by period (.).

*E211 Edit line 211

Sub-commands for Edit are A,C,D,E,H,1,K,L,Q,S,X

Edit Subcommands

A Restart edit

nC Change n characters

nD Delete n characters

E End editing and enter changes

H Delete remainder of line and insert string. The
H command should not be used to delete an en
tire line of text. There must always be at least
one character on a line, or future use of that
line will cause problems.

I Insert string

nKx Kill all characters up to the nth occurrence of X

L Print the rest of the line and go back to starting
position

Q Quit and ignore all editing

nSx Search for the nth occurrence of X

X Move to the end of the line and insert

Backspace Move edit pointer back one space

(SHIFT)(↑) Escape from any edit mode subcommand

ENTER ENTER the line in its present (edited) form

The user should experiment with these or refer to the
LEVEL II BASIC Manual.

4

Find (F)

form: *F[string]

where string is a sequence of 16 characters or less

The edit buffer is searched starting at .+1 for the first
occurrence of the specified string. If no string is specified,
the search is the same as that of the last F command in which
a string was specified. If the search string is found the line
containing it is printed and period (.) is updated to the
printed line. If the string is not found STRING NOT
FOUND is printed and period (.) remains unchanged. P# is
often used to move period (.) to the beginning of the buffer
prior to a search.

Example:

*P#

00100 ORG 7000H

*F3C00

00100 VIDEO ORG 3C00H

*F

00211 LD HL,3C00H

*

Hardcopy (H)

form: *H[line1 [:line2]]

Prints a line or group of lines onto the TRS-80
LINE-PRINTER. Period (.) is updated to point to the last
line printed. This command is exactly like the P command.

Example:

H#: Sends all lines in the text buffer to
printer

*H100: 500 Sends lines 100 through 500 to printer

*H Send current line pointed to by period
(.) to the line-printer.

*H Prints 15 lines starting with the
current line to the printer. Not very
useful for line-printer use.

Insert (I)

form: *I line [,inc]

The I command is used to insert lines of text into the edit
buffer. All lines of source are usually entered with the I
command. After the I command is issued, line numbers are
generated and lines of text are inserted into the edit buffer
until one of the following conditions occurs:

a BREAK is typed (usually way to exit)

the edit buffer is full

The line number of the next line to be inserted would be
greater than or equal to the next exit line in the buffer. The
NO ROOM BETWEEN LINES message is typed.

The line number of the next line to be inserted would be
greater than 65529.

If inc is not specified it is assumed to be the last specified
value. Period (.) is updated to point to the last line inserted.
See section, Sample Use of the I command.

Note: Source lines may be up to 128 characters long. This
size line is usually not needed. It is recommended that
you use lines of approximately 60: characters each
(printout and listings will be neater).

Load (L)

form: *L[^filename]

The tape is searched for the file specified by filename. If the
specified file is found, its contents are added to tire current
contents of the edit buffer. Note that this may result in
improperly sequenced line numbers which must be corrected
by use of the N command for proper operation. If the user
does not wish to add to the current text buffer, then the
buffer must be cleared by the D#: * command.

If filename is not given, the next file on the tape is loaded.

When reading, the familiar asterisks will flash in the upper
right corner of the screen. The L command can only read
source files created by the Editor/Assembler.

Example:

*L Loads next source file

*LbMYPROG Searches for and loads source file named
MYPROG. b is a mandatory blank

Number (N)

form: *N[line [,inc]]

The N command is used to renumber the Lines in the edit
buffer. The first line in the buffer is assigned the number
specified or the default 0:0100 if line is not specified. The
remaining lines in the buffer are renumbered according to
the increment (inc) or the previous inc in an N, R or I
command if inc was not specified. Period (.) points to the
same line it did before the N command was used, but the
number of this line may be changed.

Examples:

*N Renumbers from 100 with previous increment

*N5 Renumbers from 5 with previous increment

*N10,5 Renumber from 10 in steps of 5

5

Print (P)

form: *P[linel [:line2]]

Prints a line or group of lines on the monitor screen. Period
(.) is updated to point to the last line printed.

Example:

P#: Prints all lines in the text buffer

*P100 500 Prints lines 100 through 500 inclusive

*P. Prints current line pointed to by period (.)

*P. Prints 15 lines starting with the current line.
Repeated use of P. allows printout of source
without lines being scrolled off the screen

Replace (R)

form: *R[line [,inc]]

The R command only replaces one line and goes into insert
mode. If line exists, it is deleted then inserted. If line doesn’t
exist it is inserted as with the I command. If inc is not
specified, the last inc specified by an I, R or N command is
used. Period (.) is always updated to the current line.

Example:

*R. Replace current line

*R100,10 Start replacing lines beginning at line 100
and incrementing with 10.

*R100 Start replacing at line 100 using last
specified increments.

Type (T)

form: *T[line1 [:line2]]

Prints a line or group of lines onto the TRS-80 LINE
PRINTER. Period (.) is updated to point to the last line
printed. This command is much like the H command, only
no line numbers are printed. Only the source text is printed.

Example:

T#: Sends all lines in the text buffer to printer

*T100:500 Sends text for lines 100 through 500 to
printer

*T. Sends current line pointed to by period (.)
to the line-printer.

Scroll and Tab

The Editor/Assembler recognizes the following special
characters:

Scroll up

The ↑ command prints the line preceding the current line
and updates period (.) to the printed line. (If the current line
is the first line in the edit buffer, it is printed and period (.)
remains unchanged.)

Scroll down

The ↓ command prints the line following the current line
and updates period (.) to point to the printed line. (If the
current line is the last line in the buffer, it is printed and
period (.) remains unchanged.)

Note: Both ↑ and ↓ must be the first character of the
command line or they will be ignored.

Tab

Typing (→) tabs right to the next 8 character field. Calling
the first position of a source line 1 (line number not
counted), the tabs are at positions 9,17,25,33,41,49,51 and
continue on in increments of 8 up to 255. Tabs should
always be used instead of spaces to conserve text buffer
space: A tab (09 hex) only takes up one byte.

Delete character

Back-arrow (←) will delete the last character typed. If the
last character was a tab, the cursor jumps backwards to the
next non-blank character.

(Shift ←←←←) Delete Line

A (Shift ←) will delete all of the line currently being
entered. This is true for both source lines and commands.

(Shift @) Pause

At any time during an Assembly or printout a (Shift @) may
be typed to halt the computer. Pressing ENTER will
continue the process. The (Shift @) will not be accepted
while a line is being printed or assembled: only between
lines. A pause received while assembling will not be-
recognized

TEXT DEFM ‘TRS-80 MICROCOMPUTER’
while bytes of the text string are being assembled. Another
pause must be typed after this line is finished being
assembled.

Write (W)

form: *W[^filename]

The contents of the edit buffer are written onto a cassette file
under the name filename. If filename is not specified no file
name is used. Period (.) is always left unchanged.

Example:

*W Records text buffer to tape with no
filename

*W^DEMO Records text buffer to tape with a filename
of DEMO. ^ is a mandatory blank.

6

Cassette Tapes

All cassette tapes created by the Editor/Assembler are
written at 500 baud. The cassette tape containing the Editor/
Assembler is also at 500 baud. Whenever reading a 500 baud
tape the VOLUME LEVEL MUST BE BETWEEN 5 AND
6.

The SYSTEM tape, included with the Editor/Assembler,
allows LEVEL I BASIC to read-in the 500 baud Editor/
Assembler tape. First read-in the 250 baud SYSTEM tape
(with volume at 8 to 9), and then load in the Editor/
Assembler (at volume 5 to 6) as specified in section on
Loading.

LEVEL II BASIC may directly read-in the 500 baud Editor/
Assembler tape.

Execution of object code programs stored on tapes is
performed with the SYSTEM command in LEVEL II
BASIC. LEVEL I BASIC must again use the SYSTEM tape

to read-in and then execute object code from a 500 baud
tape. Examples of creating object code and then executing it
are given in section on Sample Use.

Filenames

Cassette filenames must begin with an alphabetic character.
The remaining characters must be alphanumeric. The length
may not exceed 6 characters. Filenames need not be
specified for the A or W commands and in the event that a
name is not specified, the file is assigned the NONAME
filename. If a filename is not specified when using the L
command, the first file encountered on the tape is loaded
into memory.

Sample Use

The following is a sample session using the
Editor/Assembler to write a program. Comments to the
reader are enclosed in [] and are not part of the program.

TRS-80 EDITOR/ASSEMBLER

*I100,10

00100 [→→→→] ORG 5000H [→→→→ IS A TAB]

00110 VIDEO EQU 3C00H

00120 LD HL,VIDEO ;SOURCE ADDRESS

00130 LD DE,VIDEO+1 ;DEST. ADDRESS

00140 LD BC,400H ;BYTE COUNT

00150 LD (HL),0BFH ;GRAPHICS BYTE

00160 LDIR ;WHITE OUT SCREEN

00170 ;DELAY LOOP TO KEEP WHITE OUT SCREEN ON

00180 LD B,5

00190 LP1 LD HL,0FFFFH :VALUE TO DECREMENT

00200 LP2 DEC HL

00210 LD A,H

00220 OR L ;HL=0?

00230 JP NZ,LP2 ;IF NO DEC AGAIN

00240 DJNZ LP1 ;DEC.B--B=0?

00250 JP 0H ;RETURN TO BASIC

00260 END

00270 [BREAK]

7

*A XXX [Assemble] [All the following is computer output]

5000 00100 ORG 5000H

3C00 00110 EQU 3C00H

5000 21003C 00120 LD HL,VIDEO ;SOURCE ADDRESS

5003 11013C 00140 LD DE,VIDEO+1 ;DEST. ADDRESS

5006 010004 00040 LD BC,400H ;BYTE COUNT

5009 36BF 00150 LD (HL),0BFH ;GRAPHICS BYTE

500B EDB0 00160 LDIR ;WHITE OUT SCREEN

00170 ;DELAY LOOP TO KEEP WHITED OUT SCREEN ON

500D 0605 00180 LD B,5

500F 21FFFF 00190 LP1 LD HL,0FFFFH ;VALUE TO DECREMENT

5012 2B 00200 LP2 DEC HL

5013 7C 00210 LD A,H

5014 B5 00220 OR L ;HL=0?

5015 C21250 00230 JP NZ,LP2 ;IF NO DEC AGAIN

5018 10F5 00240 DJNZ LP1 ;DEC.B--B=0?

501A C30000 00250 JP 0H ;RETURN TO BASIC

0000 00260 END

00000 TOTAL ERRORS

LP2 5012 [Symbol table]

LP1 500F

VIDEO 3C00

READY CASSETTE [Load tape; set to RECORD]

[ENTER] [Press ENTER to record object code]

*

Now you can save the information in the text buffer (YOUR
SOURCE PROGRAM) onto another tape.

*W MYPROG

The tape file MYPROG may he read in by the Editor/
Assembler’s L command.

Any assembler errors are printed immediately before the line
the error occurred in.

Execution in LEVEL I BASIC

First load the SYSTEM tape (included with your Editor/
Assembler). Put the SYSTEM tape into your cassette. Be
sure volume is between 8 and 9. Type CLOAD. to load in
the SYSTEM tape. The program will execute as soon as
loading is completed and will type:

*

Now enter the filename of your object tape. which was
created by the Editor/Assembler. Note that you must use the
filename NONAME if a filename was not specified. With
the example program type XXX, the filename of the object
tape.

* xxx

At this point put the object tape XXX into the cassette
recorder and press PLAY. The volume must he at 5 to 6 (this
is a 500 baud tape). Asterisks will flash in the upper right
screen corner. Once loading is complete the computer will
type * again. Now you must enter the starting address of the
machine code program. The starting address (ORG) was
500011 which is a decimal 20480. Now type this decimal
number preceded with a slash (/). The command looks like
this:

* /20480

8

Press ENTER, of course, and the machine code program will
execute. The sample program will white-out the video screen
with solid graphics characters. This will stay on the screen
for about 5 seconds. The program will then return to a
READY condition in BASIC.

Executing in LEVEL II BASIC

Execution is much simpler in LEVEL II BASIC. The object
tape is again loaded at S to 6 volume (as arc all 500 baud
tapes). The typing is as follows; comments are in brackets[]:

READY

> SYSTEM

*? xxx [read in object tape]

*? /20480

The program will now execute and then return to a power up
condition (ENTER MEMORY SIZE?).

Multiple Modules

You may load several machine language programs into
memory, one after the other. The ORG addresses of these
instructions must be such that each object program does not
conflict with other modules. If you have the following files:

XXX 7000 to 70FF hexidecimal
YYY 7100 to 71FF hexidecimal
ZZZ 7200 to 72FF hexidecimal

You may then enter the three programs as follows:

*? XXX

*? YYY

*? ZZZ

*? /28672 [jump to XXX program]

ASSEMBLY LANGUAGE

Syntax

The basic format of an assembly command is:

[LABEL] OPCODE [OPERAND(S)] [COMMENT]

Examples:

ORG 7000H

VIDEO EQU 3C00H

LD DE,VIDEO+1 ;DESTINATION

LABELS

A label is a symbolic name of a line code. Labels are always
optional. A label is a string of characters no greater than 6
characters. The first character must he a letter. A label may
not contain the $ character. S is reserved for the value of the
reference counter of the current instruction.

The following labels are reserved for referring to registers
only and may not be used for other purposes: A, B, C, D, E,
H, L, I, R, IX, IY, SP, PC, AF, BC, DE, and HL.

The following 8 labels are reserved for branching conditions
and may not be used for other purposes (these conditions
apply to status flags):

FLAG CONDITION SET CONDITION NOT SET

Carry C NC

Zero Z NZ

Sign M(minus) P(plus)

Parity PE(even) PO(odd)

Example: JP NZ,LOOP

If the zero flag is clear (not set), the above instruction jumps
to the instruction specified by LOOP.

OPCODES

The opcodes for the TRS-80 Editor/Assembly exactly
correspond to those in the Z-80-Assemble Language
Programming Manual, 3.0 D.S., REL. 2.1. FEB 1977. See
section Index to Instruction Set for the instruction in
question.

OPERANDS

Operands are always one or two values separated by
commas. Some instructions require no operands at all.

Examples:

LD HL,3C00H

XOR A

LD (HL),20H

A value in parentheses () specifies indirect addressing when
used with registers, or “contents of’ otherwise.

Constants may end in any of the following letters:

H – hexidecimal

D – decimal

O – octal

A constant not followed by one of these letters is assumed to
be a decimal. A constant must begin with a digit. Thus FFH
is illegal, while 0FFH is legal.

Expressions using the +, -, &, operations are described in
section, Expressions.

9

COMMENTS

All comments must begin with a semicolon (;). If a source
line starts with a semicolon in column 1 of the lime, the
entire line is a comment.

Expressions

A value of an operand may be an expression consisting of +,
,&, or < symbols. These operations are executed in a strictly
left to right order. No parentheses are allowed. All four
operators are binary. Both + and - have unary uses also.

Addition (+)

The plus will add two constants and/or symbolic values.
When used as a unary operator, it simply echoes the value.

Example:

001E CON30 EQU 30

0010 CONl6 EQU l0H

0003 CON3 EQU 3

3C00 VIDEO EQU 3C00H

3C03 Al EQU VIDEO + CON3

002E A2 EQU CON30 + CON 16

3C00 A3 EQU + VIDEO

Subtraction (-)

The minus operator will subtract two constants and/or
symbolic values. Unary minus produces a 2’s complement.

Examples:

3BFD Al EQU VIDEO - CON3

000E A2 EQU CON30 - CON16

C400 A3 EQU -VIDEO

Logical AND (&)

The logical AND operator logically adds two constants
and/or symbolic values.

Examples:

3C00 Al EQU 3C00H & FFH

0000 A2 EQU 0 & 15

0000 A3 EQU 0AAAAH & 5555H

Shift (<)

The shift operator can be used to shift a value left or right.
The form is:

VALUE < AMOUNT

If AMOUNT is positive, VALUE is shifted left. If
AMOUNT is negative, VALUE is shifted right.

Examples:

C000 Al EQU 3C00H < 4

03C0 A2 EQU 3C00H < 4

BBFF A3 EQU 3CBBH < 8 + 255

03C0 A4 EQU 15 + 3C00H < -4

Z80 STATUS INDICATORS (FLAGS)

The flag register (F and F’) supplies information to the user
regarding the status of the Z80 at any given time. The bit
positions for each flag are shown below:

7 6 5 4 3 2 1 0
S Z X H X P/V N C

WHERE:

C = CARRY FLAG
N = ADD/SUBTRACT FLAG
P/V = PARITY/OVERFLOW FLAG
H = HALF-CARRY FLAG
Z = ZERO FLAG
S = SIGN FLAG
X = NOT USED

Each of the two Z-80 Flag Registers contains 6 bits of status
information which are set or reset by CPU operations. (Bits
3 and 5 are not used.) Four of these bits are testable (C, P/V,
Z and S) for use with conditional jump, call or return
instructions. Two flags are not testable (H, N) and are used
for BCD arithmetic.

CARRY FLAG (C)

The carry bit is set or reset depending on the operation being
performed. For ‘ADD’ instructions that generate a carry and
‘SUBTRACT’ instructions that generate no borrow, the
Carry Flag will be set. The Carry Flag is reset by an ADD
that does not generate a carry and a ‘SUBTRACT’ that
generates a borrow. This saved carry facilitates software
routines for extended precision arithmetic. Also, the ‘DAA’
instruction will set the Carry Flag if the conditions for
making the decimal adjustment are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is
used as a link between the LSB and MSB for any register or
memory location. During instructions RLCA, RLC s and
SLA s, the carry contains the last value shifted out of bit 7 of
any register or memory location. During instructions RRCA,

10

RRC s, SRA s and SRL s the carry contains the last value
shifted out of bit 0 of any register or memory location.

For the logical instructions AND s, OR s and XOR s, the
carry will be reset.

The Carry Flag can also be set (SCF) and complemented
(CCF).

ADD/SUBTRACT FLAG (N)

This flag is used by the decimal adjust accumulator
instruction (DAA) to distinguish between ‘ADD’ and
‘SUBTRACT’ instructions. For all ‘ADD’ instructions, N
will be set to a ‘0’. For all ‘SUBTRACT’ instructions, N will
be set to a "1".

PARITY/OVERFLOW FLAG

This flag is set to a particular state depending on the
operation being performed.

For arithmetic operations, this flag indicates an overflow
condition when the result in the Accumulator is greater than
the maximum possible number (+127) or is less than the
minimum possible number (-128). This overflow condition
can be determined by examining the sign bits of the
operands.

For addition, operands with different signs will never cause
overflow. When adding operands with like signs and the
result has a different sign, the overflow flag is set. For
example:

+120 = 0111 1000 ADDEND
+105 = 0110 1001 AUGEND
+225 = 1110 0001 (-95) SUM

The two numbers added together has resulted in a number
that exceeds +127 and the two positive operands has resulted
in a negative number (-95) which is incorrect. The overflow
flag is therefore set.

For subtraction, overflow can occur for operands of unlike
signs. Operands of like sign will never cause overflow. For
example:

 +127 0111 1111 MINUEND
(-)-64 1100 0000 SUBTRAHEND
 +191 1011 1111 DIFFERENCE

The minuend sign has changed from a positive to a negative,
giving an incorrect difference. Overflow is therefore set.

Another method for predicting an overflow is to observe the
carry into and out of the sign bit. if there is a carry in and no
carry out, or if there is no carry in and a carry out. then
overflow has occurred.

This flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The number
of ‘1’ bits in a byte are counted. If the total is odd, ‘ODD’

parity (P=0) is flagged. If the total is even, ‘EVEN’ parity is
flagged (P=1).

During search instructions (CPI , CPIR, CPD, CPDR) and
block transfer instructions (LDI, LDIR, LDD, LDDR) the
P/V flag monitors the state of the byte count register (BC).
When decrementing, the byte counter results in a zero value,
the flag is reset to 0, otherwise the flag is a Logic 1 .

During LD A, I and LD A, R instructions, the P/V flag will
be set with the contents of the interrupt enable flip-flop
(IFF2) for storage or testing.

When inputting a byte from an I/O device, IN r,(C), the flag
will be adjusted to indicate the parity of the data.

THE HALF CARRY FLAG (H)

The Half Carry Flag (H) will be set or reset depending on
the carry and borrow status between bits 3 and 4 of an 8-bit
arithmetic operation. This flag is used by the decimal adjust
accumulator instruction (DAA) to correct the result of a
packed BCD add or subtract operation. The H flag will be
set (1) or reset (0) according to the following table:

H ADD SUBTRACT

1
There is a carry
from Bit 3 to Bit 4

There is no borrow
from bit 4

0
There is no carry
from Bit 3 to Bit 4

There is a borrow
from Bit 4

THE ZERO FLAG (Z)

The Zero Flag (Z) is set or reset if the result generated by the
execution of certain instructions is a zero.

For 8-bit arithmetic and logical operations, the Z flag will be
set to a ‘1’ if the resulting byte in the Accumulator is zero. If
the byte is not zero, the Z flag is reset to ‘0’.

For compare (search) instructions, the Z flag will be set to a
‘1’ if a comparison is found between the value in the
Accumulator and the memory location pointed to by the
contents of the register pair HL.

When testing a bit in a register or memory location, the Z
flag will contain the complemented state of the indicated bit
(see Bit b, s).

When inputting or outputting a byte between a memory
location and an I/O device (INI; IND; OUTI and OUTD), if
the result of B-1 is zero, the Z flag is set, otherwise it is
reset. Also for byte inputs from I/O devices using IN r,(C),
the Z Flag is set to indicate a zero byte input.

THE SIGN FLAG (5)

The Sign Flag (5) stores the state of the most significant bit
of the Accumulator (Bit 7). When the Z80 performs
arithmetic operations on signed numbers, binary two’s
complement notation is used to represent and process
numeric information. A positive number is identified by a

11

‘0’ in bit 7. A negative number is identified by a ‘1’. The
binary equivalent of the magnitude of a positive number is
stored in bits 0 to 6 for a total range of from 0 to 127. A
negative number is represented by the two’s complement of
the equivalent positive number. The total range for negative
numbers is from -l to -128.

When inputting a byte from a I/O device to a register, IN
r,(C), the S flag will indicate either positive (S=0) or
negative (S=1) data.

PSEUDO-OPS

There are nine pseudo-op (assembler directives) which the
assembler will recognize. These assembler directives,
although written much like processor instructions, are
commands to the assembler instead of the processor. They
direct the assembler to perform specific tasks during the
assembly process but have no meaning to the Z80 processor.
These assembler pseudo-ops are:

ORG nn Sets address reference counter to the value
nn.

EQU nn Sets value of a label to nn in the program:
can occur only once for any label.

DEFL nn Sets value of a label to nn and can be
repeated in the program with different values
for the same label.

END Signifies the end of the source program so
that any following statements are ignored. If
no END statement is found, a warning is
produced. The END statement can specify a
start address i.e. END LABEL, END 6000H.

This address is used by the system program
if no start address is given with the slash (/).

DEFB n Defines the contents of a byte at the current
reference counter to be n.

DEFB ‘s’ Defines the content of one byte of memory
to be the ASCII representation of characters.

DEFW nn Defines the contents of a two-byte word to
be mm. The least significant byte is located
at the current reference counter while the
most significant byte is located at the
reference counter plus one.

DEFS on Reserves nn bytes of memory starting at the
current value of the reference counter.

DEEM ‘s’ Defines the content of n bytes of memory to
be the ASCII representation of strings, where
n is the length of s and must be in the range 0
< = n < = 63.

Assembler Commands

The TRS-80 Editor/Assembler supports only two assembler
commands. Each command must start in column one of a
source line, and must start with an asterisk (*). The
assembler commands are:

*LIST OFF Causes the assembler listing to be
suspended, starting with the next line. Errors
and bad source lines will still be printed .

*LIST ON Causes assembler listing to resume. starting
with this line .

12

Z80 INSTRUCTION SET
INDEX TO INSTRUCTION SET

NOTE: Execution time (E.T.) for each instruction is given
in microseconds for an assumed 4 MHZ clock. Total
machine cycles (M) are indicated with total clock periods (T
States). Also indicated are the number of T States for each
M cycle. For example:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

indicates that the instruction consists of 2 machine cycles.
The first cycle contains 4 clock periods (T States). The
second cycle contains 3 clock periods for a total of 7 clock
periods or T States. The instruction will execute in 1.75
microseconds.

Register format is shown for each instruction with the most
significant bit to the left and the least significant bit to the
right .

INSTRUCTION SET TABLE OF CONTENTS

Page

8 BIT LOAD GROUP.. 15
LD r, r’ ...15
LD r, n..15
LD r, (HL)..16
LD r, (IX+d)...16
LD r, (IY+d)...17
LD (HL), r..17
LD (IX+d), r...18
LD (IY+d), r...18
LD (HL), n ...19
LD (IX+d), n ..19
LD (IY+d), n ..20
LD A, (BC) ..20
LD A, (DE) ..21
LD A, (nn)..21
LD (BC), A ..22
LD (DE), A ..22
LD (nn), A..23
LD A, I ...23
LD A, R..24
LD I, A...24
LD R, A..25

16 BIT LOAD GROUP.. 26
LD dd, nn ...26
LD IX, nn...26
LD IY, nn...27
LD HL, (nn) ...27
LD dd, (nn)...28
LD IX, (nn) ..28
LD IY, (nn) ..29
LD (nn), HL ...29
LD (nn), dd ..30
LD (nn), IX ..30
LD (nn), IY ..31

LD SP, HL...31
LD SP, IX ..32
LD SP, IY ..32
PUSH qq..33
PUSH IX..33
PUSH IY..34
POP qq...34
POP IX ..35
POP IY ..35

EXCHANGE, BLOCK TRANSFER AND SEARCH
GROUP... 36

EX DE, HL ..36
EX AF, AF’ ...36
EXX...37
EX (SP), HL ..37
EX (SP), IX ...38
EX (SP), IY ...38
LDI ..39
LDIR..40
LDD...41
LDDR ..42
CPI...43
CPIR ..43
CPD ...44
CPDR...44

8 BIT ARITHMETIC AND LOGICAL GROUP 45
ADD A, r ...45
ADD A, n...45
ADD A, (HL)...46
ADD A, (IX+d) ...46
ADD A, (IY+d) ...47
ADC A, s ...48
SUB s...49
SBC A, s ..50
AND s..51
OR s...52
XOR s ..53
CPs...54
INC r..55
INC (HL) ...55
INC (IX+d) ..56
INC (IY+d) ..56
DEC m...57

GENERAL PURPOSE ARITHMETIC AND CPU
CONTROL GROUPS.. 58

DAA ..58
CPL..59
NEG...59
CCF ...60
SCF..60
NOP...61
HALT ..61
DI...62
EI ...62
IM 0 ...63
IM 1 ...63

13

IM 2 ...64

16 BIT ARITHMETIC GROUP..................................... 65
ADD HL, ss ...65
ADC HL, ss ...65
SBC HL, ss ..66
ADD IX, pp ...66
ADD IY, rr ..67
INC ss ..67
INC IX...68
INC IY...68
DEC ss ...69
DEC IX..69
DEC IY..70

ROTATE AND SHIFT GROUP..................................... 71
RLCA ..71
RLA...71
RRCA ..72
RRA...72
RLC r ...73
RLC (HL) ..73
RLC (IX+d) ...74
RLC (IY+d) ...74
RL m..75
RRC m...76
RR m..77
SLA m ...78
SRA m ...79
SRL m..80
RLD...81
RRD...82

BIT SET, RESET AND TEST GROUP......................... 83
BIT b, r ..83
BIT b, (HL)..83
BIT b, (IX+d) ..84
BIT b, (IY+d) ..84
SET b, r..85
SET b, (HL) ...85
SET b, (IX+d)..86
SET b, (IY+d)..86
RES b, m..87

JUMP GROUP... 88
JP nn ..88
JP cc, nn...88
JR e ..89
JR C, e ...89
JR NC, e ..90
JR Z, e..90
JR NZ, e...91
JP (HL) ..91
JP (IX) ...92
JP (IY) ...92
DJNZ, e ...93

CALL AND RETURN GROUP 94
CALL nn..94
CALL cc, nn ..95
RET ...96
RET cc...97
RETI ..98
RETN...98

RST p .. 99

INPUT AND OUTPUT GROUP...................................100
IN A, (n).. 100
IN r, (C)... 100
INI ... 101
INIR .. 102
IND ... 103
INDR... 104
OUT (n), A.. 105
OUT (D), r .. 105
OUTI ... 106
OTIR ... 107
OUTD ... 108
OTDR.. 109

14

OPERAND NOTATION

The following notation is used in the assembly language:

1) r specifies any one of the following registers: A, B, C,
D, E, H, L.

2) (HL) specifies the contents of memory at the location
addressed by the contents of the register pair HL.

3) n specifies a one-byte expression in the range (0 to 255)
nn specifies a two-byte expression in the range (0 to
65535)

4) d specifies a one-byte expression in the range (-128,
127).

5) (nn) specifies the contents of memory at the location
addressed by the two-byte expression nn.

6) b specifies an expression in the range (0,7).

7) e specifies a one-byte expression in the range (-126,
129).

8) cc specifies the state of the Flags for conditional JR and
JP instructions.

9) qq specifies any one of the register pairs BC, DE, HL or
AF.

10) ss specifies any one of the following register pairs:
BC, DE, HL, SP.

11) pp specifies any one of the following register pairs: BC,
DE, IX, SP.

12) rr specifies any one of the following register pairs: BC
,DE ,IY, SP.

13) s specifies any of r, n, (HL), (IX+d), (IY+d).

14) dd specifies any one of the following register pairs: BC
,DE, HL, SP.

15) m specifies any of r, (HL), (IX+d), (IY+d).

15

8 BIT LOAD GROUP
LD r, r’
Operation: r ← r’

Format:

Opcode Operands

LD r,r’

0 1 ← r → ← r' →

Description:

The contents of any register r’ are loaded into any other
register r. Note: r,r’ identifies any of the registers A, B, C, D,
E, H, or L, assembled as follows in the object code:

Register r, r'

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register
contains 10H, the instruction

LD H, E

would result in both registers containing 10H.

LD r, n
Operation: r ← n

Format:

Opcode Operands

LD r,n

0 0 ← r → 1 1 0

← n →

Description:

The eight-bit integer n is loaded into any register r, where r
identifies register A, B, C, D, E, H or L, assembled as follows
in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

After the execution of

LD E, A5H

the contents of register E will be A5H.

16

LD r, (HL)
Operation: r ← (HL)

Format:

Opcode Operands

LD r,(HL)

0 1 ← r → 1 1 0

Description:

The eight-bit contents of memory location (HL) are loaded
into register r, where r identifies register A, B, C, D, E, H or L,
assembled as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory

address 75A1H contains the byte 58H, the execution of

LD C, (HL)

will result in 58H in register C.

LD r, (IX+d)
Operation: r ← (IX+d)

Format:

Opcode Operands

LD r, (IX+d)

1 1 0 1 1 1 0 1 DD

0 1 ← r → 1 1 0

← d →

Description:

The operand (IX+d) (the contents of the Index Register IX
summed with a displacement integer d) is loaded into register
r, where r identifies register A, B, C, D, E, H or L, assembled
as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the
instruction

LD B, (IX+19H)

will cause the calculation of the sum 25AFH + 19H, which
points to memory location 25C8H. If this address contains
byte 39H, the instruction will result in register B also
containing 39H.

17

LD r, (IY+d)
Operation: r ← (IY+d)

Format:

Opcode Operands

LD r,(IY+d)

1 1 1 1 1 1 0 1 FD

0 1 ← r → 1 1 0

← d →

Description:

The operand (IY+d) (the contents of the Index Register IY
summed with a displacement integer d) is loaded into register
r, where r identifies register A, B, C, D, E, H or L, assembled
as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IY contains the number 25AFH, the
instruction

LD B, (IY+19H)

will cause the calculation of the sum 25AFH + 19H, which
points to memory location 25C8H. If this address contains
byte 39H, the instruction will result in register B also
containing 39H.

LD (HL), r
Operation: (HL) ← r

Format:

Opcode Operands

LD (HL),r

0 1 1 1 0 ← r →

Description:

The contents of register r are loaded into the memory location
specified by the contents of the HL register pair. The symbol r
identifies register A, B, C, D, E, H or L, assembled as follows
in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair HL specifies memory location
2146H, and the B register contains the byte 29H, after the
execution of

LD (HL), B

memory address 2146H will also contain 29H.

18

LD (IX+d), r
Operation: (IX+d) ← r

Format:

Opcode Operands

LD (IX+d),r

1 1 0 1 1 1 0 1 DD

0 1 1 1 0 ← r →

← d →

Description:

The contents of register r are loaded into the memory address
specified by the contents of Index Register IX summed with d,
a two’s complement displacement integer. The symbol r
identifies register A, B, C, D, F, H or L, assembled as follows
in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 1CH, and the Index Register
IX contains 3100H, then the instruction

LD (IX+6H), C

will perform the sum 3100H + 6H and will load 1CH into
memory location 3106H

LD (IY+d), r
Operation: (IY+d) ← r

Format:

Opcode Operands

LD (IY+d), r

1 1 1 1 1 1 0 1 FD

0 1 1 1 0 ← r →

← d →

Description:

The contents of register r are loaded into the memory address
specified by the sum of the contents of the Index Register IY
and d, a two’s complement displacement integer. The symbol r
is specified according to the following table.

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 48H, and the Index

Register IY contains 2A11H, then the instruction

LD (IY+4H), C

will perform the sum 2A11H + 4H, and will load 4841 into
memory location 2A15.

19

LD (HL), n
Operation: (HL) ← n

Format:

Opcode Operand

LD (HL),n

0 0 1 1 0 1 1 0 36

← n →

Description:

Integer n is loaded into the memory address specified by the
contents of the HL register pair.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction

LD (HL), 28H

will result in the memory location 4444H containing the byte
28H.

LD (IX+d), n
Operation: (IX+d) ← n

Format:

Opcode Operands

LD (IX+d),n

1 1 0 1 1 1 0 1 DD

0 0 1 1 0 1 1 0 36

← d →

← n →

Description:

The n operand is loaded into the memory address specified by
the sum of the contents of the Index Register IX and the two’s
complement displacement operand d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the
instruction

LD (IX+5H), 5AH

would result in the byte 5AH in the memory address 219FH.

20

LD (IY+d), n
Operation: (IY+d) ← n

Format:

Opcode Operands

LD (IY+d),n

1 1 1 1 1 1 0 1 FD

0 0 1 1 0 1 1 0 36

← d →

← n →

Description:

Integer n is loaded into the memory location specified by the
contents of the Index Register summed with a displacement
integer d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IY contains the number A940H, the
instruction

LD (IY+10H), 97H

would result in byte 97 in memory location A950H.

LD A, (BC)
Operation: A ← (BC)

Format:

Opcode Operands

LD A,(BC)

0 0 0 0 1 0 1 0 0A

Description:

The contents of the memory location specified by the contents
of the BC register pair are loaded into the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and
memory address 4747H contains the byte 12H, then the
instruction

LD A, (BC)

will result in byte 12H in register A.

21

LD A, (DE)
Operation: A ← (DE)

Format:

Opcode Operands

LD A,(DE)

0 0 0 1 1 0 1 0 1A

Description:

The contents of the memory location specified by the register
pair DE are loaded into the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the DE register pair contains the number 30A2H and
memory address 30A2H contains the byte 22H, then the
instruction

LD A, (DE)

will result in byte 22H in register A.

LD A, (nn)
Operation: A ← (nn)

Format:

Opcode Operands

LD A,(nn)

0 0 1 1 1 0 1 0 3A

← n →

← n →

Description:

The contents of the memory location specified by the operands
nn are loaded into the Accumulator. The first n operand is the
low order byte of a two-byte memory address.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4 MHZ E.T.: 3.25

Condition Bits Affected: None

Example:

If the contents of nn is number 8832H, and the content of
memory address 8832H is byte 04H, after the instruction

LD A, (nn)

byte 04H will be in the Accumulator.

22

LD (BC), A
Operations: (BC) ← A

Format:

Opcode Operands

LD (BC),A

0 0 0 0 0 0 1 0 02

Description:

The contents of the Accumulator are loaded into the memory
location specified by the contents of the register pair BC.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair
contains 1212H the instruction

LD (BC), A

will result in 7AH being in memory location 1212H.

LD (DE), A
Operation: (DE) ← A

Format:

Opcode Operands

LD (DE),A

0 0 0 1 0 0 1 0 12

Description:

The contents of the Accumulator are loaded into the memory
location specified by the DE register pair.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the
Accumulator contains byte A0H, the instruction

LD (DE), A

will result in A0H being in memory location 1128H.

23

LD (nn), A
Operation: (nn) ← A

Format:

Opcode Operands

LD (nn),A

0 0 1 1 0 0 1 0 32

← n →

← n →

Description:

The contents of the Accumulator are loaded into the memory
address specified by the operands nn. The first n operand in
the assembled object code above is the low order byte of nn.

M CYCLES: 4 T STATES: 13(4,3,3,3) 4 MHZ E.T.: 3.25

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the
execution of

LD (3141H), A

D7H will be in memory location 3141H.

LD A, I
Operation: A ← I

Format:

Opcode Operands

LD A,I

1 1 1 0 1 1 0 1 ED

0 1 0 1 0 1 1 1 57

Description:

The contents of the Interrupt Vector Register I are loaded into
the Accumulator.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise
Z: Set if I-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Example:

If the Interrupt Vector Register contains the byte 4AH, after
the execution of

LD A, I

the accumulator will also contain 4AH.

24

LD A, R
Operation: A ← R

Format:

Opcode Operands

LD A,R

1 1 1 0 1 1 0 1 ED

0 1 0 1 1 1 1 1 5F

Description:

The contents of Memory Refresh Register R are loaded into
the Accumulator.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise
Z: Set if R-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after
the execution of

LD A, R

the Accumulator will also contain 4AH.

LD I, A
Operation: I ← A

Format:

Opcode Operands

LD I,A

1 1 1 0 1 1 0 1 ED

0 1 0 0 0 1 1 1 47

Description:

The contents of the Accumulator are loaded into the Interrupt
Control Vector Register, I.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the
instruction

LD I, A

the Interrupt Vector Register will also contain 81H.

25

LD R, A
Operation: R ← A

Format:

Opcode Operands

LD R,A

1 1 1 0 1 1 0 1 ED

0 1 0 0 1 1 1 1 4F

Description:

The contents of the Accumulator are loaded into the Memory
Refresh register R.

M CYCLES: 2 T STATES: 9(4,5) 4 MHZ E.T.: 2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number B4H, after the
instruction

LD R, A

the Memory Refresh Register will also contain B4H.

26

16 BIT LOAD GROUP
LD dd, nn
Operation: dd ← nn

Format:

Opcode Operands

LD dd,nn

0 0 d d 0 0 0 1

← n →

← n →

Description:

The two-byte integer nn is loaded into the dd register pair,
where dd defines the BC, DE, HL, or SP register pairs,
assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low
order byte.

M CYCLES: 3 T STATES; 10(4,3 3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

After the execution of

LD HL, 5000H

the contents of the HL register pair will be 5000H.

LD IX, nn
Operation: IX ← nn

Format:

Opcode Operands

LD IX,nn

1 1 0 1 1 1 0 1 DD

0 0 1 0 0 0 0 1 21

← n →

← n →

Description:

Integer nn is loaded into the Index Register IX. The first n
operand in the assembled object code above is the low order
byte.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

After the instruction

LD IX, 45A2H

the Index Register will contain integer 45A2H.

27

LD IY, nn
Operation: IY ← nn

Format:

Opcode Operands

LD IY,nn

1 1 1 1 1 1 0 1 FD

0 0 1 0 0 0 0 1 21

← n →

← n →

Description:

Integer nn is loaded into the Index Register IY. The first n
operand in the assembled object code above is the low order
byte.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

After the instruction:

LD IY, 7733H

the Index Register IY will contain the integer 7733H.

LD HL, (nn)
Operation: H ← (nn+1), L ← (nn)

Format:

Opcode Operands

LD HL,(nn)

0 0 1 0 1 0 0 1 2A

← n →

← n →

Description::

The contents of memory address nn are loaded into the low
order portion of register pair HL (register L), and the contents
of the next highest memory address nn+1 are loaded into the
high order portion of HL (register H). The first n operand in
the assembled object code above is the low order byte of nn.

M CYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains
A1H after the instruction

LD HL, (4545H)

the HL register pair will contain A137H.

28

LD dd, (nn)
Operation: ddH ← (nn+1), ddL ← (nn)

Format:

Opcode Operands

LD dd ,(nn)

1 1 1 0 1 1 0 1 ED

0 1 d d 1 0 1 1

← n →

← n →

Description:

The contents of address nn are loaded into the low order
portion of register pair dd, and the contents of the next highest
memory address nn+1 are loaded into the high order portion of
dd. Register pair dd defines BC, DE, HL, or SP register pairs,
assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first m operand in the assembled object code above is the
low order byte of (mm).

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If Address 2130H contains 65H and address 2131M contains
78H after the instruction

LD BC, (2130H)

the BC register pair will contain 7865H.

LD IX, (nn)
Operation: IXH ← (nn+1), IXL ← (nn)

Format:

Opcode Operands

LD IX,(nn)

1 1 0 1 1 1 0 1 DD

0 0 1 0 1 0 1 0 2A

← n →

← n →

Description:

The contents of the address nn are loaded into the low order
portion of Index Register IX, and the contents of the next
highest memory address nn+1 are loaded into the high order
portion of IX. The first n operand in the assembled object code
above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains

DAH, after the instruction

LD IX, (6666H)

the Index Register IX will contain DA92H.

29

LD IY, (nn)
Operation: IYH ← (nn+1), IYL ← (nn)

Format:

Opcode Operands

LD IY,(nn)

1 1 1 1 1 1 0 1 FD

0 0 1 0 1 0 0 1 2A

← n →

← n →

Description:

The contents of address nn are loaded into the low order
portion of Index Register IY, and the contents of the next
highest memory address nn+1 are loaded into the high order
portion of IY. The first n operand in the assembled object code
above is the low order byte of mm.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains
DAH, after the instruction

LD IY, (6666H)

the Index Register IY will contain DA92H.

LD (nn), HL
Operation: (nn+1) ← H, (nn) ← L

Format:

Opcode Operands

LD (nn),HL

0 0 1 0 0 0 1 0 22

← n →

← n →

Description:

The contents of the low order portion of register pair HL
(register L) are loaded into memory address nn, and the
contents of the high order portion of HL (register H) are
loaded into the next highest memory address nn+1. The first n
operand in the assembled object code above is the low order
byte of nn.

M CYCLES: 5 T STATES: 16(4,3,3,3,3) 4 MHZ E.T.: 4.00

Condition Bits Affected: None

Example:

If the content of register pair HL is 483AH, after the
instruction

LD (B229H), HL

address B229H) will contain 3AH, and address B22AH will
contain 48H.

30

LD (nn), dd
Operation: (nn+1) ← ddH, (nn) ← ddL

Format:

Opcode Operands

LD (nn),dd

1 1 1 0 1 1 0 1 ED

0 1 d d 0 0 1 1

← n →

← n →

Description:

The low order byte of register pair dd is loaded into memory
address nn ; the upper byte is loaded into memory address
nn+1 . Register pair dd defines either BC, DE HL, or SP,
assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low
order byte of a two byte memory address.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If register pair BC contains the number 4644H, the instruction

LD (1000H), BC

will result in 44H in memory location 1000H, and 46H in
memory location 1001H.

LD (nn), IX
Operation: (nn+1) ← IXH, (nn) ← IXL

Format:

Opcode Operands

LD (nn),IX

1 1 0 1 1 1 0 1 DD

0 0 1 0 0 0 1 0 22

← n →

← n →

Description:

The low order byte in Index Register IX is loaded into
memory address on ; the upper order byte is loaded into the
next highest address nn+1 . The first n operand in the
assembled object code above is the low order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A30H, after the instruction

LD (4392H), IX

memory location 4392H will contain number 30H and
location 4393H will contain 5AH.

31

LD (nn), IY
Operation: (nn+1) ← IYH, (nn) ← IYL

Format:

Opcode Operands

LD (nn),IY

1 1 1 1 1 1 0 1 FD

0 0 1 0 0 0 1 0 22

← n →

← n →

Description:

The low order byte in Index Register IY is loaded into
memory address nn ; the upper order byte is loaded into
memory location nn+1 . The first n operand in the assembled
object code above is the low order byte of no.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3) 4 MHZ E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IY contains 4174H after the instruction

LD 8838H, IY

memory location 8838H will contain number 74H and
memory location 8839H will contain 41H.

LD SP, HL
Operation: SP ← H L

Format:

Opcode Operands

LD SP,HL

1 1 1 1 1 0 0 1 F9

Description:

The contents of the register pair HL are loaded into the Stack
Pointer SP.

M CYCLES: 1 T STATES: 6 4 MHZ E.T.: 1.50

Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the instruction

LD SP, HL

the Stack Pointer will also contain 442EH.

32

LD SP, IX
Operation: SP ← IX

Format:

Opcode Operands

LD SP,IX

1 1 0 1 1 1 0 1 DD

1 1 1 1 1 0 0 1 F9

Description:

The two byte contents of Index Register IX are loaded into the
Stack Pointer SP.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after the
instruction

LD SP, IX

the contents of the Stack Pointer will also be 98DAH.

LD SP, IY
Operation: SP ← IY

Format:

Opcode Operands

LD SP,IY

1 1 1 1 1 1 0 1 FD

1 1 1 1 1 0 0 1 F9

Description:

The two byte contents of Index Register IY are loaded into the
Stack Pointer SP.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If Index Register IY contains the integer A227H, after the
instruction

LD SP, IY

the Stack Pointer will also contain A227H.

33

PUSH qq
Operation: (SP-2) ← qqL, (SP—1) ← qqH

Format:

Opcode Operands

PUSH qq

1 1 q q 0 1 0 1

Description:

The contents of the register pair qq are pushed into the
external memory LIFO (last-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first decrements
the SP and loads the high order byte of register pair qq into the
memory address now specified by the SP; then decrements the
SP again and loads the low order byte of qq into the memory
location corresponding to this new address in the SP. The
operand qq means register pair BC, DE, HL, or AF, assembled
as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
AF 11

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer
contains 1007H, after the instruction

PUSH AF

memory address 1006H will contain 22H, memory address
1005H will contain 33H, and the Stack Pointer will contain
1005H.

PUSH IX
Operation: (SP-2) ← IXL, (SP—1) ← IXH

Format:

Opcode Operands

PUSH IX

1 1 0 1 1 1 0 1 DD

1 1 1 0 0 1 0 1 E5

Description:

The contents of the Index Register IX are pushed into the
external memory LIFO (last-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first decrements
the SP and loads the high order byte of IX into the memory
address mow specified by the SP; then decrements the SP
again and loads the low order byte into the memory location
corresponding to this new address in the SP.

M CYCLES: 3 T STATES: 15(4,5,3,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack Pointer
contains 1007H, after the instruction

PUSH IX

memory address 1006H will contain 22H, memory address
1005H will contain 33H, and the Stack Pointer will contain
1005H.

34

PUSH IY
Operation: (SP-2) ← IYL, (SP-1) ← IYH

Format:

Opcode Operands

PUSH IY

1 1 1 1 1 1 0 1 FD

1 1 1 0 0 1 0 1 E5

Description:

The contents of the Index Register IY are pushed into the
external memory LIFO (last-in, first-out) Stack. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first decrements
the SP and loads the high order byte of IY into the memory
address now specified by the SP; then decrements the SP
again and loads the low order byte into the memory location
corresponding to this new address in the SP.

M CYCLES: 4 T STATES: 15(4,5,3,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 2233H and the Stack Pointer
contains 1007H, after the instruction

PUSH IY

memory address 1006H will contain 22H, memory address
1005H will contain 33H, and the Stack Pointer will contain
1005H.

POP qq
Operation: qqH ← (SP+1), qqL ← (SP)

Format:

Opcode Operands

POP qq

1 1 q q 0 0 0 1

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into register pair qq. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first loads into the
low order portion of qq, the byte at the memory location
corresponding to the contents of SP; then SP is incremented
and the contents of the corresponding adjacent memory
location are loaded into the high order portion of qq and the
SP is now incremented again. The operand qq defines register
pair BC, DE, HL, or AF, assembled as follows in the object
code:

Pair dd

BC 00
DE 01
HL 10
AF 11

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H
contains 55H, and location 1001H contains 33H, the
instruction

POP HL

will result in register pair HL containing 3355H, and the Stack
Pointer containing 1002H.

35

POP IX
Operation: IXH ← (SP+1), IXL ← (SP)

Format:

Opcode Operands

POP IX

1 1 0 1 1 1 0 1 DD

1 1 1 0 0 0 0 1 E1

Description:

The top two bytes of the external memory LIFO (last-in, first-
out) Stack are popped into Index Register IX. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first loads into the
low order portion of IX the byte at the memory location
corresponding to the contents of SP; then SP is incremented
and the contents of the corresponding adjacent memory
location are loaded into the high order portion of IX. The SP is
now incremented again.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H
contains 55H, and location 1001H contains 33H, the
instruction

POP IX

will result in the Index Register IX containing 3355H, and the
Stack Pointer containing 1002H.

POP IY
Operation: IYH ← (SP+1), IYL ← (SP)

Format:

Opcode Operands

POP IY

1 1 1 1 1 1 0 1 FD

1 1 1 0 0 0 0 1 E1

Description:

The top two bytes of the external memory LIFO (last-in,
first-out) Stack are popped into Index Register IY. The Stack
Pointer (SP) register pair holds the 16-bit address of the
current “top” of the Stack. This instruction first loads into the
low order portion of IY the byte at the memory location
corresponding to the contents of SP; then SP is incremented
and the contents of the corresponding adjacent memory
location are loaded into the high order portion of IY. The SP is
now incremented again.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H
contains 55H and location 1001H contains 33H, the
instruction

POP IY

will result in Index Register IY containing 3355H, and the
Stack Pointer containing 1002H.

36

EXCHANGE, BLOCK TRANSFER AND
SEARCH GROUP

EX DE, HL
Operation: DE ← HL

Format:

Opcode Operands

EX DE,HL

1 1 1 0 1 0 1 1 EB

Description:

The two-byte contents of register pairs DE and HL are
exchanged.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair DE is the number 2822H, and the
content of the register pair HL is number 499AH, after the
instruction

EX DE, HL

the content of register pair DE will be 499AH and the content
of register pair HL will be 2822H.

EX AF, AF’
Operation: AF ← AF’

Format:

Opcode Operands

EX AF,AF’

0 0 0 0 1 0 0 0 08

Description:

The two-byte contents of the register pairs AF and AF’ are
exchanged. (Note: register pair AF’ consists of registers A’
and F’.)

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and the
content of register pair AF’ is number 5944H, after the
instruction

EX AF, AF’

the contents of AF will be 5944H, and the contents of AF will
be 9900H.

37

EXX
Operation: (BC) ↔ (BC’), (DE) ↔ (DE’), (HL) ↔ (HL’)

Format:

Opcode Operands

EXX

1 1 0 1 1 0 0 1 D9

Description:

Each two-byte value in register pairs BC, DE, and HL is
exchanged with the two-byte value in BC’, DE’, and HL’,
respectively.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the contents of register pairs BC, DE, and HL are the
numbers 445 AH, 3DA2H, and 8859H, respectively, and the
contents of register pairs BC’, DE’, and HL’ are 0988H,
9300H, and 00E7H, respectively, after the instruction

EXX

the contents of the register pairs will be as follows:
BC: 0988H; DE: 9300H; HL: 00E7H; BC’: 445AH; DE’:
3DA2H; and HL’: 8859H.

EX (SP), HL
Operation: H ↔ (SP+1), L ↔ (SP)

Format:

Opcode Operands

EX (SP),HL

1 1 1 0 0 0 1 1 E3

Description:

The low order byte contained in register pair HL is exchanged
with the contents of the memory address specified by the
contents of register pair SP (Stack Pointer). and the high order
byte of HL is exchanged with the next highest memory
address (SP+1).

M CYCLES: 5 T STATES: 19(4,3,4,3,5) 4 MHZ E.T.: 4.75

Condition Bits Affected: None

Example:

If the HL register pair contains 7012H, the SP register pair
contains 8856H, the memory location 8856H contains the byte
1 1H, and the memory location 8857H contains the byte 22H,
then the instruction

EX (SP), HL

will result in the HL register pair containing number 2211H.
memory location 8856H containing the byte 12H, the memory
location 8857H containing the byte 70H and the Stack Pointer
containing 8856H.

38

EX (SP), IX
Operation: IXH ↔ (SP+1), IXL ↔ (SP)

Format:

Opcode Operands

EX (SP),IX

1 1 0 1 1 1 0 1 DD

1 1 1 0 0 0 1 1 E3

Description:

The low order byte in Index Register IX is exchanged with the
contents of the memory address specified by the contents of
register pair SP (Stack Pointer), and the high order byte of IX
is exchanged with the next highest memory address (SP+1).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5) 4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair
contains 0100H, the memory location 0100H contains the byte
90H, and memory location 0101H contains byte 48H, then the
instruction

EX (SP), IX

will result in the IX register pair containing number 4890H,
memory location 0100H containing 88H, memory location
0101H containing 39H and the Stack Pointer containing
0100H.

EX (SP), IY
Operation: IYH ↔ (SP+1), IYL ↔ (SP)

Format:

Opcode Operands

EX (SP),IY

1 1 1 1 1 1 0 1 FD

1 1 1 0 0 0 1 1 E3

Description:

The low order byte in Index Register IY is exchanged with the
contents of the memory address specified by the contents of
register pair SP (Stack Pointer), and the high order byte of IY
is exchanged with the next highest memory address (SP+1).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5) 4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 3988H, the SP register pair
contains 0100H, the memory location 0100H contains the byte
9011, and memory location 0101H contains byte 48H, then the
instruction

EX (SP),IY

will result in the IY register pair containing number 4890H,
memory location 0100H containing 88H, memory location
0101H containing 39H, and the Stack Pointer containing
0100H.

39

LDI
Operation:
(DE) ← (HL), DE ← DE+1, HL ← HL+1, BC ← BC-1

Format:

Opcode Operands

LDI

1 1 1 0 1 1 0 1 ED

1 0 1 0 0 0 0 0 A0

Description:

A byte of data is transferred from the memory location
addressed by the contents of the HL register pair to the
memory location addressed by the contents of the DE register
pair. Then both these register pairs are incremented and the
BC (Byte Counter) register pair is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Set if BC–1≠0; reset otherwise
N: Reset
C: Not affected

Example:

If the HL register pair contains 1111H, memory location
1111H contains the byte 88H, the DE register pair contains
2222H, the memory location 222211 contains byte 66H, and
the BC register pair contains 7H, then the instruction

LDI

will result in the following contents in register pairs and
memory addresses:

HL : 1112H
(1111H) : 88H

DE : 2223H
(2222H) : 88H

BC : 6H

40

LDIR
Operation:
(DE) ← (HL), DE ← DE+1, HL ← HL+1, BC ← BC-1

Format:

Opcode Operands

LDIR

1 1 1 0 1 1 0 1 ED

1 0 1 1 0 0 0 0 B0

Description:

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL register
pair to the memory location addressed by the DE register pair.
Then both these register pairs are incremented and the BC
(Byte Counter) register pair is decremented. If decrementing
causes the BC to go to zero, the instruction is terminated. If
BC is not zero the program counter is decremented by 2 and
the instruction is repeated. Note that if BC is set to zero prior
to instruction execution, the instruction will loop through 64K
bytes. Also, interrupts will be recognized after each data
transfer.

For BC≠0:

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC=0:

M CYCLES: 4 1 STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Reset
N: Reset
C: Not affected

Example:

If the HL register pair contains 1111 H, the DE register pair
contains 2222H, the BC register pair contains 0003H, and
memory locations have these contents:

(1111H) : 88H (222211) : 66H
(1112H) : 36H (2223H) : 59H
(1113H) : A5H (2224H) : C5H

then after the execution of

LDIR

the contents of register pairs and memory locations will be:

HL : 1114H
DE : 2225H
BC : 0000H

(1111H) : 88H (2222H) : 88H
(1112H) : 36H (2223H) : 36H
(1113H) : A5H (2224H) : A5H

41

LDD
Operation:
(DE) ← (HL), DE ← DE-1, HL ← HL-1, BC ← BC-1

Format:

Opcode Operands

LDD

1 1 1 0 1 1 0 1 ED

1 0 1 0 1 0 0 0 A8

Description:

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL register
pair to the memory location addressed by the contents of the
DE register pair. Then both of these register pairs including
the BC (Byte Counter) register pair are decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

 5: Not affected
 Z: Not affected
H: Reset
P/V: Set if BC–1≠0; reset otherwise
N: Reset
C: Not affected

Example:

If the HL register pair contains 1111H, memory location
1111H contains the byte 88H, the DE register pair contains
2222H, memory location 2222H contains byte 66H, and the
BC register pair contains 7H, then the instruction

LDD

will result in the following contents in register pairs and
memory addresses:

HL : 1110H
(1111H) : 88H

DE : 2221H
(2222H) : 88H

BC : 6H

42

LDDR
Operation:
(DE) ← (HL), DE ← DE-1, HL ← HL-1, BC ← BC-1

Format:

Opcode Opcodes

LDDR

1 1 1 0 1 1 0 1 ED

1 0 1 1 1 0 0 0 B8

Description:

This two byte instruction transfers a byte of data from the
memory location addressed by the contents of the HL register
pair to the memory location addressed by the contents of the
DE register pair. Then both of these registers as well as the BC
(Byte Counter) are decremented. If decrementing causes the
BC to go to zero, the instruction is terminated. If BC is not
zero, the program counter is decremented by 2 and the
instruction is repeated. Note that if BC is set to zero prior to
instruction execution, the instruction will loop through 64K
bytes. Also, interrupts will be recognized after each data
transfer.

For BC≠0:

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC=0:

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Reset
N: Reset
C: Not affected

Example :

If the HL register pair contains 11 14H, the DE register pair
contains 2225 H, the BC register pair contains 0003H, and
memory locations have these contents:

(1114H) : A5H (2225H) : C5H
(1113H) : 36H (2224H) : 59H
(1112H) : 88H (2223H) : 66H

then after the execution of

LDDR

the contents of register pairs and memory locations will be :

HL : 1111H
DE : 2222H
BC : 0000H

(1114H) : A5H (2225H) : A5H
(1113H) : 36H (2224H) : 36H
(1112H) : 88H (2223H) : 88H

43

CPI
Operation: A – (HL), HL ← HL+1, BC ← BC-1

Format:

Opcode Operands

CPI

1 1 1 0 1 1 0 1 ED

1 0 1 0 0 0 0 1 A1

Description :

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is set.
Then HL is incremented and the Byte Counter (register pair
BC) is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative: reset otherwise
Z: Set if A=(HL); reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if BC-1≠0; reset otherwise
N: Set
C: Not affected

Example :

If the HL register pair contains 1111H, memory location
1111H contains 3BH, the Accumulator contains 3BH, and the
Byte Counter contains 0001H then after the execution of

CPI

the Byte Counter will contain 000H, the HL register pair will
contain 1112H, the Z flag in the F register will be set, and the
P/V flag in the F register will be reset. There will be no effect
on the contents of the Accumulator or address 1111H.

CPIR
Operation: A – (HL), HL ← HL+1, BC ← BC-1

Format :

Opcode Operands

CPIR

1 1 1 0 1 1 0 1 ED

1 0 1 1 0 0 0 1 B1

Description :

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is set.
The HL is incremented and the Byte Counter (register pair
BC) is decremented. If decrementing causes the BC to go to
zero or if A=(HL), the instruction is terminated. If BC is not
zero and A≠(HL), the program counter is decremented by 2
and the instruction is repeated. Note that if BC is set to zero
before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized
after each data comparison.

For BC≠0 and A≠(HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC=0 or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

 S: Set if result is negative; reset otherwise
 Z: Set if A=(HL); reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if BC-1≠0; reset otherwise
N: Set
C: Not affected

Example :

If the HL register pair contains 111 1H, the Accumulator
contains F3H, the Byte Counter contains 0007H, and memory
locations have these contents:

(1111H) : 52H
(1112H) : 00H
(1113H) : F3H

then after the execution of

CPIR

the contents of register pair HL will be 1114H, the contents of
the Byte Counter will he 0004H, the P/V flag in the F register
will be set and the Z flag in the F register will be set.

44

CPD
Operation: A – (HL), HL ← HL-1, BC ← BC-1

Format :

Opcode Operands

CPD

1 1 1 0 1 1 0 1 ED

1 0 1 0 1 0 0 1 A9

Description :

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is set.
The HL and the Byte Counter (register pair BC) are
decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A=(HL); reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if BC-1≠0; reset otherwise
N: Set
C: Not affected

Example :

If the HL register pair contains 1111H, memory location
1111H contains 3BH, the Accumulator contains 3BH, and the
Byte Counter contains 0001H, then after the execution of

CPD

the Byte Counter will contain 0000H, the HL register pair will
contain 1110H, the Z flag in the F register will be set, and the
P/V flag in the F register will be reset. There will be no effect
on the contents of the Accumulator or address 1111H.

CPDR
Operation: A – (HL), HL ← HL-1, BC ← BC-1

Format:

Opcode Operands

CPDR

1 1 1 0 1 1 0 1 ED

1 0 1 1 1 0 0 1 B9

Description:

The contents of the memory location addressed by the HL
register pair is compared with the contents of the
Accumulator. In case of a true compare, a condition bit is set.
The HL and BC (Byte Counter) register pairs are
decremented. If decrementing causes the BC to go to zero or if
A=(HL), the instruction is terminated. If BC is not zero and
A#(HL), the program counter is decremented by 2 and the
instruction is repeated. Note that if BC is set to zero prior to
instruction execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized
after each data comparison.

For BC≠0 and A#(HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5) 4 MHZ E.T.: 5.25

For BC=0 or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A=(HL); reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if BC-1≠0; reset otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 1118H, the Accumulator
contains F3H, the Byte Counter contains 0007H, and memory
locations have these contents:

(1118H) : 52H
(1117H) : 00H
(1116H) : F3H

then after the execution of

CPDR

the contents of register pair HL will be 1115H, the contents of
the Byte Counter will be 0004H, the P/V flag in the F register
will be set, and the Z flag in the F register will be set.

45

8 BIT ARITHMETIC AND LOGICAL
GROUP

ADD A, r
Operation: A ← A + r

Format:

Opcode Operands

ADD A,r

1 0 0 0 0 ← r →

Description:

The contents of register r are added to the contents of the
Accumulator, and the result is stored in the Accumulator. The
symbol r identifies the registers A, B, C, D, E, H or L
assembled as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

MCYCLES: 1 T STATES: 4 4 MHZ E.T.: l.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 44H, and the contents
of register C are 11H, after the execution of

ADD A,C

the contents of the Accumulator will be 55H.

ADD A, n
Operation: A ← A + n

Format:

Opcode Operands

ADD A,n

1 1 0 0 0 1 1 0 C6

← n →

Description:

The integer n is added to the contents of the Accumulator and
the results are stored in the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 23H, after the execution
of

ADD A, 33H

the contents of the Accumulator will be 56H.

46

ADD A, (HL)
Operation: A ← A + (HL)

Format:

Opcode Operands

ADD A,(HL)

1 0 0 0 0 1 1 0 86

Description:

The byte at the memory address specified by the contents of
the HL register pair is added to the contents of the
Accumulator and the result is stored in the Accumulator.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are A0H, and the content of
the register pair HL is 2323H, and memory location 2323H
contains byte 08H, after the execution of

ADD A,(HL)

the Accumulator will contain A8H.

ADD A, (IX+d)
Operation: A ← A + (IX+d)

Format:

Opcode Operands

ADD A,(IX+d)

1 1 0 1 1 1 0 1 DD

1 0 0 0 0 1 1 0 86

← d →

Description:

The contents of the Index Register (register pair IX) is added
to a displacement d to point to an address in memory. The
contents of this address is then added to the contents of the
Accumulator and the result is stored in the Accumulator.

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 11H, the Index Register IX
contains 1000H, and if the content of memory location 1005H
is 22H, after the execution of

ADD A, (IX+5H)

the contents of the Accumulator will be 33H.

47

ADD A, (IY+d)
Operation: A ← A + (IY+d)

Format:

Opcode Operands

ADD A,(IY+d)

1 1 1 1 1 1 0 1 FD

1 0 0 0 0 1 1 0 86

← d →

Description:

The contents of the Index Register (register pair IY) is added
to the displacement d to point to an address in memory. The
contents of this address is then added to the contents of the
Accumulator and the result is stored in the Accumulator:

M CYCLES: 5 T STATES: 19(4,4,3,5,3) 4 MHZ E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 1 1H, the Index Register pair
LY contains 1000H, and if the content of memory location
1005H is 22H, after the execution of

ADD A, (IY+5H)

the contents of the Accumulator will be 33H.

48

ADC A, s
Operation: A ← A + s + CY

Format:

Opcode Operands

ADC A,s

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined
for the analogous ADD instruction. These various possible
opcode-operamd combinations are assembled as follows in the
object code:

ADC A,r 1 0 0 0 1 ← r* →

ADC A,n 1 1 0 0 1 1 1 0 CE

← n →

ADC A,(HL) 1 0 0 0 1 1 1 0 8E

ADC A,(IX+d) 1 1 0 1 1 1 0 1 DD

1 0 0 0 1 1 1 0 8E

← d →

ADC A,(IY+d) 1 1 1 1 1 1 0 1 FD

1 0 0 0 1 1 1 0 8E

← d →

*r identifies registers B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand, along with the Carry Flag (“C” in the F
register) is added to the contents of the Accumulator, and the
result is stored in the Accumulator.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

ADC A, r 1 4 1.00
ADC A, n 2 7(4,3) 1.75
ADC A, (HL) 2 7(4,3) 1.75
ADC A, (IX+d) 5 19(4,4,3,5,3) 4.75
ADC A, (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contains 16H, the Carry Flag is set, the HL
register pair contains 6666H, and address 6666H contains
10H, after the execution of

ADC A,(HL)

the Accumulator will contain 27H.

49

SUB s
Operation: A ←←←← A - s

Format:

Opcode Operands

SUB s

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined
for the analogous ADD instruction. These various possible
opcode-operand combinations are assembled as follows in the
object code:

SUB A,r 1 0 0 1 0 ← r* →

SUB A,n 1 1 0 1 0 1 1 0 D6

← n →

SUB A,(HL) 1 0 0 1 0 1 1 0 96

SUB A,(IX+d) 1 1 0 1 1 1 0 1 DD

1 0 0 1 0 1 1 0 96

← d →

SUB A,(IY+d) 1 1 1 1 1 1 0 1 FD

1 0 0 1 0 1 1 0 96

← d →

*r identifies registers B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand is subtracted from the contents of the
Accumulator, and the result is stored in the Accumulator.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

SUB r 1 4 1.00
SUB n 2 7(4,3) 1.75
SUB (HL) 2 7(4,3) 1.75
SUB (IX+d) 5 19(4,4,3,5,3) 4.75
SUB (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example:

If the Accumulator contains 29H and register D contains 11H,
after the execution of

SUB D

the Accumulator will contain 18H.

50

SBC A, s
Operation: A ← A - s - CY

Format:

Opcode Operands

SBC A,s

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined
for the analogous ADD instructions. These various possible
opcode.operand combinations are assembled as follows in the
object code:

SBC A,r 1 0 0 1 1 ← r* →

SBC A,n 1 1 0 1 1 1 1 0 DE

← n →

SBC A,(HL) 1 0 0 1 1 1 1 0 9E

SBC A,(IX+d) 1 1 0 1 1 1 0 1 DD

1 0 0 1 1 1 1 0 9E

← d →

SBC A,(IY+d) 1 1 1 1 1 1 0 1 FD

1 0 0 1 1 1 1 0 9E

← d →

*r identifies registers B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description

The s operand, along with the Carry Flag (“C” in the F
register) is subtracted from the contents of the Accumulator,
and the result is stored in the Accumulator.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

SBC A,r 1 4 1.00
SBC A,n 2 7(4,3) 1.75
SBC A,(HL) 2 7(4,3) 1.75
SBC A,(IX+d) 5 19(4,4,3,5,3) 4.75
SBC A,(IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

s: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example:

If the Accumulator contains 16H, the Carry Flag is set, the HL
register pair contains 3433H, and address 3433H contains
05H, after the execution of

SBC A, (HL)

the Accumulator will contain 10H.

51

AND s
Operation: A ← A ∧ s

Format:

Opcode Operands

AND s

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined
for the analogous ADD instructions. These various possible
opcode-operand combinations are assembled as follows in the
object code:

AND A,r 1 0 1 0 0 ← r* →

AND A,n 1 1 1 0 0 1 1 0 E6

← n →

AND A,(HL) 1 0 1 0 0 1 1 0 A6

AND A,(IX+d) 1 1 0 1 1 1 0 1 DD

1 0 1 0 0 1 1 0 A6

← d →

AND A,(IY+d) 1 1 1 1 1 1 0 1 FD

1 0 1 0 0 1 1 0 A6

← d →

*r identifies register B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

A logical AND operation, Bit by Bit, is performed between
the byte specified by the s operand and the byte contained in
the Accumulator; the result is stored in the Accumulator.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

AND r 1 4 1.00
AND n 2 7(4,3) 1.75
AND (HL) 2 7(4,3) 1.75
AND (IX+d) 5 19(4,4,3,5,3) 4.75
AND (IX+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Example:

If the B register contains 7BH (011110111) and the
acumulator contains C3H (11000011) after the execution of

AND B

the Accumulator will contain 43H (01000011).

52

OR s
Operation: A ← A ∨ s

Format:

Opcode Operands

OR s

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined
for the analogous ADD instructions. These various possible
opcode-operand combinations are assembled as follows in the
object code:

OR A,r 1 0 1 1 0 ← r* →

OR A,n 1 1 1 1 0 1 1 0 F6

← n →

OR A,(HL) 1 0 1 1 0 1 1 0 B6

OR A,(IX+d) 1 1 0 1 1 1 0 1 DD

1 0 1 1 0 1 1 0 B6

← d →

OR A,(IY+d) 1 1 1 1 1 1 0 1 FD

1 0 1 1 0 1 1 0 B6

← d →

*r identifies register B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

A logical OR operation, Bit by Bit, is performed between the
byte specified by the s operand and the byte contained in the
Accumulator; the result is stored in the Accumulator.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

OR r 1 4 1.00
OR n 2 7(4,3) 1.75
OR (HL) 2 7(4,3) 1.75
OR (IX+d) 5 19(4,4,3,5,3) 4.75
OR (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Example:

If the H register contains 48H (01001000) and the
Accumulator contains 12H (00010010) after the execution of

OR H

the Accumulator will contain 5AH (01011010).

53

XOR s
Operation: A ← A ⊕ s

Format:

Opcode Operands

XOR s

The s operand is any of r,n, (HL),(IX+d) or (IY+d), as defined
for the analogous ADD instructions. These various possible
opcode-operand combinations are assembled as follows in the
object code:

XOR A,r 1 0 1 0 1 ← r* →

XOR A,n 1 1 1 0 1 1 1 0 EE

← n →

XOR A,(HL) 1 0 1 0 1 1 1 0 AE

XOR A,(IX+d) 1 1 0 1 1 1 0 1 DD

1 0 1 0 1 1 1 0 AE

← d →

XOR A,(IY+d) 1 1 1 1 1 1 0 1 FD

1 0 1 0 1 1 1 0 AE

← d →

*r identifies registers B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

A logical exclusive-OR operation, bit by bit, is performed
between the byte specified by the s operand and the byte
contained in the Accumulator; the result is stored in the
Accumulator.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

XOR r 1 4 1.00
XOR n 2 7(4,3) 1.75
XOR (HL) 2 7(4,3) 1.75
XOR (IX+d) 5 19(4,4,3,5,3) 4.75
XOR (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative: reset otherwise
Z: Set if result is zero; reset otherwise
H: Set
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Example:

If the Accumulator contains 96H (10010110), after the
execution of

XOR 5DH (Note: 5DH = (01011101)

the Accumulator will contain CBH (11001011).

54

CPs
Operation: A - s

Format:

Opcode Operands

CP s

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined
for the analogous ADD instructions, These various possible
opcode-operand combinations are assembled as follows in the
object code:

CP A,r 1 0 1 1 1 ← r* →

CP A,n 1 1 1 1 1 1 1 0 FE

← n →

CP A,(HL) 1 0 1 1 1 1 1 0 BE

CP A,(IX+d) 1 1 0 1 1 1 0 1 DD

1 0 1 1 1 1 1 0 BE

← d →

CP A,(IY+d) 1 1 1 1 1 1 0 1 FD

1 0 1 1 1 1 1 0 BE

← d →

*r identifies registers B,C,D,E,H,L or A assembled as follows
in the object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The contents of the s operand are compared with the contents
of the Accumulator. If there is a true compare, a flag is set.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

CP r 1 4 1.00
CP R 2 7(4,3) 1.75
CP (HL) 2 7(4,3) 1.75
CP (IX+d) 5 19(4,4,3,5,3) 4.75
CP (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example:

If the Accumulator contains 63H, the HL register pair contains
6000H and memory location 6000H contains 60H, the
instruction

CP (HL)

will result in the P/V flag in the F register being reset.

55

INC r
Operation: r ← r + 1

Format:

Opcode Operands

INC r

0 0 ← r → 1 0 0

Description:

Register r is incremented. r identifies any of the registers A,B,
C,D,E,H or L, assembled as follows in the object code.

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if r was 7FH before operation: reset

otherwise
N: Reset
C: Not affected

Example:

If the contents of register D are 28H, after the execution of

INC D

the contents of register D will be 29H.

INC (HL)
Operation: (HL) ← (HL)+1

Format:

Opcode Operands

INC (HL)

0 0 1 1 0 1 0 0 34

Description:

The byte contained in the address specified by the contents of
the HL register pair is incremented.

M CYCLES: 3 T STATES: 11(4,4,3) 4 MHZ E.T.: 2.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (HL) was 7FH before operation; reset

otherwise
N: Reset
C: Not Affected

Example:

If the contents of the HL register pair are 3434H, and the
contents of address 3434H are 82H, after the execution of

INC (HL)

memory location 3434H will contain 83H.

56

INC (IX+d)
Operation: (IX+d) ← (IX+d)+1

Format:

Opcode Operands

INC (IX+d)

1 1 0 1 1 1 0 1 DD

0 0 1 1 0 1 0 0 34

← d →

Description:

The contents of the Index Register IX (register pair IX) are
added to a two’s complement displacement integer d to point
to an address in memory. The contents of this address are then
incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (IX+d) was 7FH before operation; reset

otherwise
N: Reset
C: Not affected

Example:

If the contents of the Index Register pair IX are 2020H, and
the memory location 2030H contains byte 34H, after the
execution of

INC (IX+10H)

the contents of memory location 2030H will be 35H.

INC (IY+d)
Operation: (IY+d) ← (IY+d)+1

Format:

Opcode Operands

INC (IY+d)

1 1 1 1 1 1 0 1 FD

0 0 1 1 0 1 0 0 34

← d →

Description:

The contents of the Index Register IY (register pair LY) are
added to a two’s complement displacement integer d to point
to an address in memory. The contents of this address are then
incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (IY+d) was 7FH before operation; reset

otherwise
N: Reset
C: Not Affected

Example:

If the contents of the Index Register pair IY are 2020H, and
the memory location 2030H contain byte 34H, after the
execution of

INC (IY+10H)

the contents of memory location 2030H will be 35H.

57

DEC m
Operation: m ← rn-1

Format:

Opcode Operands

DEC m

The m operand is any of r, (HL),(IX+d) or (IY+d), as defined
for the analogous INC instructions. These various possible
opcode-operand combinations are assembled as follows in the
object code:

DEC A,r 0 0 ← r*→ 1 0 1

DEC A,(HL) 0 0 1 1 0 1 0 1 35

DEC A,(IX+d) 1 1 0 1 1 1 0 1 DD

0 0 1 1 0 1 0 1 35

← d →

DEC A,(IY+d) 1 1 1 1 1 1 0 1 FD

0 0 1 1 0 1 0 1 35

← d →

*r identifies register B ,C ,D ,E ,H ,L or A assembled as
follows in the object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The byte specified by the m operand is decremented.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

DEC r 1 4 1.00
DEC (HL) 3 11(4,4,3) 2.75
DEC (IX+d) 6 23 (4,4,3,5,4,3) 5.75
DEC (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if m was 80H before operation; reset

otherwise
N: Set
C: Not affected

Example:

If the D register contains byte 2AH, after the execution of

DEC D

register D will contain 29H.

58

GENERAL PURPOSE ARITHMETIC
AND CPU CONTROL GROUPS

DAA
Operation: ——

Format:

Opcode

DAA

0 0 1 0 0 1 1 1 27

Description:

This instruction conditionally adjusts the Accumulator for
BCD addition and subtraction operations. For addition (ADD,
ADC, INC) or subtraction (SUB, SBC,DEC,NEG), the
following table indicates operation performed:

OPERA-
TION

C
BE-
FORE
DAA

HEX
VALUE
IN
UPPER
DIGIT
(bit
7-4)

H
BE-
FORE
DAA

HEX
VALUE
IN
LOWER
DIGIT
(bit
3-0)

NUM-
NER
ADD-
ED
TO
BYTE

C
AFT
ER
DAA

0 0–9 0 0–9 00 0
0 0–8 0 A–F 06 0
0 0–9 1 0–3 06 0

ADD 0 A–F 0 0–9 60 1
ADC 0 9–F 0 A–F 66 1
INC 0 A–F 1 0–3 66 1

1 0–2 0 0–9 60 1
1 0–2 0 A–F 66 1
1 0–3 1 0–3 66 1

SUB 0 0–9 0 0–9 00 0
SBC 0 0–8 1 6–F FA 0
DEC 1 7–F 0 0–9 A0 1
NEG 1 6–F 1 6–F 9A 1

M CYCLES: I T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Set if most significant bit of Ace, is 1 after
operation: reset otherwise

Z: Set if Acc. is zero after operation: reset otherwise
H: See instruction
P/V: Set if Acc. is even parity after operation; reset

otherwise
N: Not affected
C: See instruction

Example:

If an addition operation is performed between 15 (BCD) and
27 (BCD), simple decimal arithmetic gives this result:

 15
+27
 42

But when the binary representations are added in the
Accumulator according to standard binary arithmetic,

 0001 0101
+0010 0111
 0011 1100 = 3C

the sum is ambiguous. The DAA instruction adjusts this result
so that the correct BCD representation is obtained:

 0011 1100
+0000 0110
 0100 0010 = 42

59

CPL
Operation: A ← A

Format:

Opcode

CPL

0 0 1 0 1 1 1 1 2F

Description:

Contents of the Accumulator (register A) are inverted (l’s
complement).

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set
P/V: Not affected
N: Set
C: Not affected

Example:

If the contents of the Accumulator are 10110100, after the
execution of

CPL

the Accumulator contents will be 01001011.

NEG
Operation: A ← o-A

Format:

Opcode

NEG

1 1 1 0 1 1 0 1 ED

0 1 0 0 0 1 0 0 44

Description:

Contents of the Accumulator are negated (two’s complement).
This is the same as subtracting the contents of the
Accumulator from zero. Note that 80H is left unchanged.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if no borrow from Bit 4; reset otherwise
P/V: Set if Acc. was 80H before operation; reset

otherwise
N: Set
C: Set if Acc. was not 00H before operation; reset

otherwise

Example:

If the contents of the Accumulator are

1 0 0 1 1 0 0 0

after the execution of

NEG

the Accumulator contents will be

0 1 1 0 1 0 0 0

60

CCF
Operation: CY ← CY

Format:

Opcode

CCF

0 0 1 1 1 1 1 1 3F

Description:

The C flag in the F register is inverted.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Previous carry will be copied
P/V: Not affected
N: Reset
C: Set if CY was 0 before operation; reset otherwise

SCF
Operation: CY ← 1

Format:

Opcode

SCF

0 0 1 1 0 1 1 1 37

Description:

The C flag in the F register is set.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Set

61

NOP
Operation: ——

Format:

Opcode

NOP

0 0 0 0 0 0 0 0 00

Description:

CPU performs no operation during this machine cycle.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

HALT
Operation: ——

Format:

Opcode

HALT

0 1 1 1 0 1 1 0 76

Description:

The HALT instruction suspends CPU operation until a
subsequent interrupt or reset is received. While in the halt
state, the processor will execute NOP’s to maintain memory
refresh logic.

M CYCLES: I T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

62

DI
Operation: IFF ← Ø

Format:

Opcode

DI

1 1 1 1 0 0 1 1 F3

Description:

DI disables the maskable interrupt by resetting the interrupt
enable flip-flops(IFF1 and IFF2). Note that this instruction
disables the maskable interrupt during its execution.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

When the CPU executes the instruction

DI

the maskable interrupt is disabled until it is subsequently re-
enabled by an EI instruction. The CPU will not respond to an
Interrupt Request (INT) signal.

EI
Operation: IFF ← 1

Format:

Opcode

EI

1 1 1 1 1 0 1 1 FB

Description:

El enables the maskable interrupt by setting the interrupt
enable flip-flops(IFF1 and IFF2). Note that this instruction
disables the maskable interrupt during its execution.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

When the CPU executes instruction

EI

the maskable interrupt is enabled. The CPU will now respond
to an Interrupt Request (INT) signal.

63

IM 0
Operation: ——

Format:

Opcode Operands

IM 0

1 1 1 0 1 1 0 1 ED

0 1 0 0 0 1 1 0 46

Description:

The IM 0 instruction sets interrupt mode 0. In this mode the
interrupting device can insert any instruction on the data bus
and allow the CPU to execute it.

M CYCLES: 2 T STATES: 8(4,4) .4 MHZ E.T.: 2.00

Condition Bits Affected: None

IM 1
Operation: ——

Format:

Opcode Operands

IM 1

1 1 1 0 1 1 0 1 ED

0 1 0 1 0 1 1 0 56

Description:

The IM instruction sets interrupt mode 1. Im this mode the
processor will respond to an interrupt by executing a restart to
location 0038H.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

64

IM 2
Operation: ——

Format:

Opcode Operands

IM 2

1 1 1 0 1 1 0 1 ED

0 1 0 1 1 1 1 0 5E

Description:

The IM 2 instruction sets interrupt mode 2. This mode allows
an indirect call to any location in memory. With this mode the
CPU forms a 16-bit memory address. The upper eight bits are
the contents of the Interrupt Vector Register I and the lower
eight bits are supplied by the interrupting device.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

65

16 BIT ARITHMETIC GROUP
ADD HL, ss
Operation: HL ← HL+ss

Format:

Opcode Operands

ADD HL,ss

0 0 s s 1 0 0 1

Description:

The contents of register pair ss (any of register pairs BC,DE,
HL or SP) are added to the contents of register pair HL and the
result is stored in HL. Operand ss is specified as follows in the
assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M CYCLES: 3 T STATES: 11(4,4,3) 4 MHZ E.T.: 2.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If register pair HL contains the integer 4242H and register pair
DE contains 1111H, after the execution of

ADD HL, DE

the HL register pair will contain 5353H.

ADC HL, ss
Operation: HL ← HL+ss+CY

Format:

Opcode Operands

ADC HL,ss

1 1 1 0 1 1 0 1 ED

0 1 s s 1 0 1 0

Description:

The contents of register pair ss (any of register pairs BC,DE,
HL or SP) are added with the Carry Flag (C flag in the F
register) to the contents of register pair HL, and the result is
stored in HL. Operand ss is specified as follows in the
assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry out of Bit 11; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If the register pair BC contains 2222H. register pair HL
contains 5437H and the Carry Flag is set, after the execution
of

ADC HL, BC

the contents of HL will be 765AH.

66

SBC HL, ss
Operation: HL ← HL-ss-CY

Format:

Opcode Operands

SBC HL,ss

1 1 1 0 1 1 0 1 ED

0 1 s s 0 0 1 0

Description:

The contents of the register pair ss (any of register pairs
BC,DE,HL or SP) and the Carry Flag (C flag in the F register)
are subtracted from the contents of register pair HL and the
result is stored in HL. Operand ss is specified as follows in the
assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if no borrow from Bit 12; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example:

If the contents of the HL register pair are 9999H, the contents
of register pair DE are 1111H, and the Carry Flag is set, after
the execution of

SBC HL, DE

the contents of HL will be 8887H.

ADD IX, pp
Operation: IX ← IX + pp

Format:

Opcode Operands

ADD IX,pp

1 1 0 1 1 1 0 1 DD

0 0 p p 1 0 0 1

Description:

The contents of register pair pp (any of register pairs BC,DE,
IX or SP) are added to the contents of the Index Register IX,
and the results are stored in IX. Operand pp is specified as
follows in the assembled object code.

Register
Pair pp

BC 00
DE 01
IX 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IX are 3333H and the
contents of register pair BC are 5555H, after the execution of

ADD IX, BC

the contents of IX will be 8888H.

67

ADD IY, rr
Operation: IY ← IY+rr

Format:

Opcode Operands

ADD IY,rr

1 1 1 1 1 1 0 1 FD

0 0 r r 1 0 0 1

Description:

The contents of register pair rr (any of register pairs BC,DE,
IY or SP) are added to the contents of Index Register IY, and
the result is stored in IY. Operand rr is specified as follows in
the assembled object code.

Register
Pair rr

BC 00
DE 01
IY 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15, reset otherwise

Example:

If the contents of Index Register IY are 3333H and the
contents of register pair BC are 5555H, after the execution of

ADD IY, BC

the contents of IY will be 8888H.

INC ss
Operation: ss ← ss + 1

Format:

Opcodes Operands

INC ss

0 0 s s 0 0 1 1

Description:

The contents of register pair ss (any of register pairs BC,
DE,HL or SP) are incremented. Operand ss is specified as
follows in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M CYCLES: 1 T STATES: 6 4 MHZ E.T.: 1.50

Condition Bits Affected: None

Example:

If the register pair contains 1000H, after the execution of

INC HL

HL will contain 1001H.

68

INC IX
Operation: IX ← IX + 1

Format:

Opcode Operands

INC IX

1 1 0 1 1 1 0 1 DD

0 0 1 0 0 0 1 1 23

Description:

The contents of the Index Register IX are incremented.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the Index Register IX contains the integer 3300H after the
execution of

INC IX

the contents of Index Register IX will be 3301H.

INC IY
Operation: IY ← IY + 1

Format:

Opcode Operands

INC IY

1 1 1 1 1 1 0 1 FD

0 0 1 0 0 0 1 1 23

Description:

The contents of the Index Register IY are incremented.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register are 2977H, after the
execution of

INC IY

the contents of Index Register IY will be 2978H.

69

DEC ss
Operation: ss ← ss - 1

Format:

Opcode Operands

DEC ss

0 0 s s 1 0 1 1

Description:

The contents of register pair ss (any of the register pairs
BC,DE,HL or SP) are decremented. Operand ss is specified as
follows in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M CYCLES: 1 T STATES: 6 4 MHZ E.T.: 1.50

Condition Bits Affected: None

Example:

If register pair HL contains 1001H, after the execution of

DEC HL

the contents of HL will be 1000H.

DEC IX
Operation: IX ← IX - 1

Format:

Opcode Operands

DEC IX

1 1 0 1 1 1 0 1 DD

0 0 1 0 1 0 1 1 2B

Description:

The contents of Index Register IX are decremented.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of Index Register IX are 2006H, after the
execution of

DEC IX

the contents of Index Register IX will be 2005H.

70

DEC IY
Operation: IY ← IY - 1

Format:

Opcode Operands

DEC IY

1 1 1 1 1 1 0 1 FD

0 0 1 0 1 0 1 1 2B

Description:

The contents of the Index Register IY are decremented.

M CYCLES: 2 T STATES: 10(4,6) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IY are 7649H, after the
execution of

DEC IY

the Contents of Index Register IY will be 7648 H.

71

ROTATE AND SHIFT GROUP
RLCA
Operation:

Format:

Opcode Operands

RLCA

0 0 0 0 0 1 1 1 07

Description:

The contents of the Accumulator (register A) are rotated left:
the content of bit 0 is moved to the bit 1; the previous content
of bit 1 is moved to bit 2; this pattern is continued throughout
the register. The content of bit 7 is copied into the Carry Flag
(C flag in register F) and also into bit 0. (Bit 0 is the least
significant bit.)

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0

after the execution of

RLCA

the contents of the Accumulator and Carry Flag will be

C 7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0 1

RLA
Operation:

Format:

Opcode Operands

RLA

0 0 0 1 0 1 1 1 17

Description:

The contents of the Accumulator (register A) are rotated left:
the content of bit 0 is copied into bit 1; the previous content of
bit 1 is copied into bit 2; this pattern is continued throughout
the register. The content of bit 7 is copied into the Carry Flag
(C flag in register F) and the previous content of the Carry
Flag is copied into bit 0. Bit 0 is the least significant bit.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.

Example:

If the contents of the Accumulator and the Carry Flag are

C 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 1 0

after the execution of

RLA

the contents of the Accumulator and the Carry Flag will be

C 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 1

CY 7 0

A A

CY 7 0

72

RRCA
Operation:

Format:

Opcode Operands

RRCA

0 0 0 0 1 1 1 1 0F

Description:

The contents of the Accumulator (register A) is rotated right:
the content of bit 7 is copied into bit 6; the previous content of
bit 6 is copied into bit 5; this pattern is continued throughout
the register. The content of bit 0 is copied into bit 7 and also
into the Carry Flag (C flag in register F.) Bit 0 is the least
significant bit.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 0 of Acc.

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 1

After the execution of

RRCA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

1 0 0 0 1 0 0 0 1

RRA
Operation:

Format:

Opcode Operands

RRA

0 0 0 1 1 1 1 1 1F

Description:

The contents of the Accumulator (register A) are rotated right:
the content of bit 7 is copied into bit 6; the previous content of
bit 6 is copied into bit 5; this pattern is continued throughout
the register. The content of bit 0 is copied into the Carry Flag
(C flag in register F) and the previous content of the Carry
Flag is copied into bit 7. Bit 0 is the least significant bit.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 0 of Acc.

Example:

If the contents of the Accumulator and the Carry Flag are

7 6 5 4 3 2 1 0 C

1 1 1 0 0 0 0 1 0

after the execution of

RRA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

0 1 1 1 0 0 0 0 1

CY7 0

A

CY7 0

A

73

RLC r
Operation:

Format:

Opcode Operands

RLC r

1 1 0 0 1 0 1 1 CB

0 0 0 0 0 ← r →

Description:

The eight-bit contents of register r are rotated left: the content
of bit 0 is copied into bit 1; the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout the
register. The content of bit 7 is copied into the Carry Flag (C
flag in register F) and also into bit 0. Operand r is specified as
follows in the assembled object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Note: Bit 0 is the least significant bit.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of register r are

7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0

after the execution of

RLC r

the contents of register r and the Carry Flag will be

C 7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0 1

RLC (HL)
Operation:

Format:

Opcode Operands

RLC (HL)

1 1 0 0 1 0 1 1 CB

0 0 0 0 0 1 1 0 06

Description:

The contents of the memory address specified by the contents
of register pair HL are rotated left: the content of bit 0 is
copied into bit 1 ; the previous content of bit 1 is copied into
bit 2; this pattern is continued throughout the byte. The
content of bit 7 is copied into the Carry Flag (C flag in register
F) and also into bit 0. Bit 0 is the least significant bit.

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of the HL register pair are 2828H, and the
contents of memory location 2828H are

7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0

after the execution of

RLC (HL)

the contents of memory locations 2828H and the Carry Flag
will be

C 7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0 1

CY 7 0

r

CY 7 0

(HL)

74

RLC (IX+d)
Operation:

Format:

Opcode Operands

RLC (IX+d)

1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

0 0 0 0 0 1 1 0 06

Description:

The contents of the memory address specified by the sum of
the contents of the Index Register IX and a two’s complement
displacement integer d, are rotated left: the contents of bit 0 is
copied into bit 1; the previous content of bit 1 is copied into
bit 2; this pattern is continued throughout the byte. The
content of bit 7 is copied into the Carry Flag (C flag in register
F) and also into bit 0. Bit 0 is the least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IX are 1000H, and the
contents of memory location 1022H are

7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0

after the execution of

RLC (IX+2H)

the contents of memory location 1002H and the Carry Flag
will be

C 7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0 1

RLC (IY+d)
Operation:

Format:

Opcode Operands

RLC (IY+d)

1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

0 0 0 0 0 1 1 0 06

Description:

The contents of the memory address specified by the sum of
the contents of the Index Register IY and a two’s complement
displacement integer d are rotated left: the content of bit 0 is
copied into bit 1; the previous content of bit 1 is copied into
bit 2; this process is continued throughout the byte. The
content of bit 7 is copied into the Carry Flag (C flag in register
F) and also into bit 0. Bit 0 is the least significant bit,

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IY are 1000H, and the
contents of memory location 1002H are

7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0

after the execution of

RLC (IY+2H)

the contents of memory location 1002H and the Carry Flag
will be

C 7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0 1

CY 7 0

(IX+d)

CY 7 0

(IY+d)

75

RL m
Operation:

Format:

Opcode Operands

RL m

The m operand is any of r,(HL),(IX+d) or (IY+d), as defined
for the analogous RLC instructions. These various possible
opcode-operand combinations are specified as follows in the
assembled object code:

RL r 1 1 0 0 1 0 1 1 CB

0 0 0 1 0 ← r* →

RL (HL) 1 1 0 0 1 0 1 1 CB

0 0 0 1 0 1 1 0 16

RL (IX+d) 1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

0 0 0 1 0 1 1 0 16

RL (IY+d) 1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

0 0 0 1 0 1 1 0 16

*r identifies register B,C,D,E,H,L or A specified as follows in
the assembled object code above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The contents of the m operand are rotated left: the content of
bit 0 is copied into bit 1; the previous content of bit 1 is copied
into bit 2; this pattern is continued throughout the byte. The
content of bit 7 is copied into the Carry Flag (C flag in register
F) and the previous content of the Carry Flag is copied into bit
0 (Bit 0 is the least significant bit.)

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

RL r 2 8(4,4) 2.00
RL (HL) 4 15(4,4,4,3) 3.75
RL (IX+d) 6 23(4,4,3,5,4,3) 5.75
RL (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of register D and the Carry Flag are

C 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 1

after the execution of

RL

the contents of register D and the Carry Flag will be

C 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 0

m

CY 7 0

76

RRC m
Operation:

Format:

Opcode Operands

RRC m

The m operand is any of r,(HL), (IX+d) or (IY+d), as defined
for the analogous RLC instructions. These various possible
opcode-operamd combinations are specified as follows in the
assembled object code:

RRC r 1 1 0 0 1 0 1 1 CB

0 0 0 0 1 ← r* →

RRC (HL) 1 1 0 0 1 0 1 1 CB

0 0 0 0 1 1 1 0 0E

RRC (IX+d) 1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

0 0 0 0 1 1 1 0 0E

RRC (IY+d) 1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

0 0 0 0 1 1 1 0 0E

*r identifies register B,C,D,E,H,L or A specified as follows in
the assembled object code above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The contents of operand m are rotated right: the content of bit
7 is copied into bit 6; the previous content of bit 6 is copied
into bit 5; this pattern is continued throughout the byte. The
content of bit 0 is copied into the Carry Flag (C flag in the F
register) and also into bit 7. Bit 0 is the least significant bit.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

RRC r 2 8(4,4) 2.00
RRC (HL) 4 15(4,4,4,3) 3.75
RRC (IX+d) 6 23(4,4,3,5,4,3) 5.75
RRC (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of register A are

7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1

after the execution of

RRC A

the contents of register A and the Carry Flag will be

7 6 5 4 3 2 1 0 C

1 0 0 1 1 0 0 0 1

CY7 0

A

77

RR m
Operation:

Format:

Opcode Operand

RR m

The m operand is any of r, (HL), (IX+d), or (IY+d), as defined
for the analogous RLC instructions. These various possible
opcode-operamd combinations are specified as follows in the
assembled object code:

RR r 1 1 0 0 1 0 1 1 CB

0 0 0 1 1 ← r* →

RR (HL) 1 1 0 0 1 0 1 1 CB

0 0 0 1 1 1 1 0 1E

RR (IX+d) 1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

0 0 0 1 1 1 1 0 1E

RR (IY+d) 1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

0 0 0 1 1 1 1 0 1E

*r identifies registers B,C,D,E,H,L or A specified as follows
in the assembled object code above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The contents of operand m are rotated right: the contents of bit
7 is copied into bit 6; the previous content of bit 6 is copied
into bit 5; this pattern is continued throughout the byte. The
content of bit 0 is copied into the Carry Flag (C flag in register
F) and the previous content of the Carry Flag is copied into bit
7. Bit 0 is the least significant bit.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

RR r 2 8(4,4) 2.00
RR (HL) 4 15(4,4,4,3) 3.75
RR (IX+d) 6 23(4,4,3,5,4,3) 5.75
RR (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of the HL register pair are 4343H, and the
contents of memory location 4343H and the Carry Flag are

7 6 5 4 3 2 1 0 C

1 1 0 1 1 1 0 1 0

after the execution of

RR (HL)

the contents of location 4343H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

0 1 1 0 1 1 1 0 1

CY7 0

A

78

SLA m
Operation:

Format:

Opcode Operands

SLA m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined
for the analogous RLC instructions. These various possible
opcode-operand combinations are specified as follows in the
assembled object code:

SLA r 1 1 0 0 1 0 1 1 CB

0 0 1 0 0 ← r* →

SLA (HL) 1 1 0 0 1 0 1 1 CB

0 0 1 0 0 1 1 0 26

SLA (IX+d) 1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

0 0 1 0 0 1 1 0 26

SLA (IY+d) 1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

0 0 1 0 0 1 1 0 26

*r identifies registers B,C,D,E,H,L or A specified as follows
in the assembled object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

An arithmetic shift left is performed on the contents of
operand m: bit 0 is reset, the previous content of bit 0 is
copied into bit 1, the previous content of bit 1 is copied into
bit 2; this pattern is continued throughout; the content of bit 7
is copied into the Carry Flag (C flag in register F). Bit 0 is the
least significant bit.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

SLA r 2 8(4,4) 2.00
SLA (HL) 4 15(4,4,4,3) 3.75
SLA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SLA (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 7

Example:

If the contents of register L are

7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 1

after the execution of

SLA L

the contents of register L and the Carry Flag will be

C 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 1 0

CY 7 0

m

0

79

SRA m
Operation:

Format:

Opcode Operands

SRA m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined
for the analogous RLC instructions. These various possible
opcode-operand combinations are specified as follows in the
assembled object code:

SRA r 1 1 0 0 1 0 1 1 CB

0 0 1 0 1 ← r* →

SRA (HL) 1 1 0 0 1 0 1 1 CB

0 0 1 0 1 1 1 0 2E

SRA (IX+d) 1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

0 0 1 0 1 1 1 0 2E

SRA (IY+d) 1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

0 0 1 0 1 1 1 0 2E

*r means register B,C,D,E,H,L or A specified as follows in the
assembled object code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

An arithmetic shift right is performed on the contents of
operand m: the content of bit 7 is copied into bit 6; the
previous content of bit 6 is copied into bit 5; this pattern is
continued throughout the byte. The content of bit 0 is copied
into the Carry Flag (C flag in register F), and the previous
content of bit 7 is unchanged. Bit 0 is the least significant bit.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

SRA r 2 8(4,4) 2.00
SRA (HL) 4 15(4,4,4,3) 3.75
SRA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRA (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of the Index Register IX are 1000H, and the
contents of memory location 1003H are

7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0

after the execution of

SRA (IX+3H)

the contents of memory location 1003H and the Carry Flag
will be

7 6 5 4 3 2 1 0 C

1 1 0 1 1 1 0 0 0

CY7 0

m

80

SRL m
Operation:

Format:

Opcode Operands

SRL m

The operand m is any of r, (HL), (IX+d) or (IY+d), as defined
for the analogous RLC instructions. These various possible
opcode-operand combinations are specified as follows in the
assembled object code:

SRL r 1 1 0 0 1 0 1 1 CB

0 0 1 1 1 ← r* →

SRL (HL) 1 1 0 0 1 0 1 1 CB

0 0 1 1 1 1 1 0 3E

SRL (IX+d) 1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

0 0 1 1 1 1 1 0 3E

SRL (IY+d) 1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

0 0 1 1 1 1 1 0 3E

*r identifies registers B,C,D,E,H,L or A specified as follows
in the assembled object code fields above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The contents of operand m are shifted right: the content of bit
7 is copied into bit 6; the content of bit 6 is copied into bit 5;
this pattern is continued throughout the byte. The content of
bit 0 is copied into the Carry Flag, and bit 7 is reset. Bit 0 is
the least significant bit.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

SRL r 2 8(4,4) 2.00
SRL (HL) 4 15(4,4,4,3) 3.75
SRL (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRL (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of register B are

7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1

after the execution of

SRL B

the contents of register B and the Carry Flag will be

7 6 5 4 3 2 1 0 C

0 1 0 0 0 1 1 1 1

CY7 0

m

0

81

RLD
Operation:

Format:

Opcode Operands

RLD

1 1 1 0 1 1 0 1 ED

0 1 1 0 1 1 1 1 6F

Description:

The contents of the low order four bits (bits 3,2,1 and 0) of the
memory location (HL) are copied into the high order four bits
(7,6,5 and 4) of that same memory location; the previous
contents of those high order four bits are copied into the low
order four bits of the Accumulator (register A), and the
previous contents of the low order four bits of the
Accumulator are copied into the low order four bits of
memory location (HL). The contents of the high order bits of
the Accumulator are unaffected. Note: (HL) means the
memory location specified by the contents of the HL register
pair.

M CYCLES: 5 T STATES: 18(4,4,3,4,3) 4 MHZ E.T.: 4.50

Condition Bits Affected:

S: Set if Acc. is negative after operation; reset
otherwise

Z: Set if Acc. is zero after operation; reset otherwise
H: Reset
P/V: Set if parity of Acc. is even after operation; reset

otherwise
N: Reset
C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the
contents of the Accumulator and memory location 5000H are

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0 Accumulator

7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 (5000H)

after the execution of

RLD

the contents of the Accumulator and memory location 5000H
will be

7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 Accumulator

7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 0 (5000H)

3 07 43 07 4 (HL)A

82

RRD
Operation:

Format:

Opcode Operands

RRD

1 1 1 0 1 1 0 1 ED

0 1 1 0 0 1 1 1 67

Description:

The contents of the low order four bits (bits 3,2,1 and 0) of
memory location (HL) are copied into the low order four bits
of the Accumulator (register A); the previous contents of the
low order four bits of the Accumulator are copied into the high
order four bits (7,6,5 and 4) of location (HL); and the previous
contents of the high order four bits of (HL) are copied into the
low order four bits of (HL). The contents of the high order bits
of the Accumulator are unaffected. Note: (HL) means the
memory location specified by the contents of the HL register
pair.

M CYCLES: 5 T STATES: 18(4,4,3,4,3) 4 MHZ E.T.: 4.50

Condition Bits Affected:

S. Set if Acc. is negative after operation; reset
otherwise

Z: Set if Acc, is zero after operation; reset otherwise
H: Reset
P/V: Set if parity of Acc. is even after operation; reset

otherwise
N: Reset
C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the
contents of the Accumulator and memory location 5000H are

7 6 5 4 3 2 1 0

1 0 0 0 0 1 0 0 Accumulator

7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 (5000H)

after the execution of

RRD

the contents of the Accumulator and memory location 5000H
will be

7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 Accumulator

7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 (5000H)

3 07 43 07 4 (HL)A

83

BIT SET, RESET AND TEST GROUP
BIT b, r
Operation: Z ← rb

Format:

Opcode Operands

BIT b,r

1 1 0 0 1 0 1 1 CB

0 1 ← b → ← r →

Description:

After the execution of this instruction, the Z flag in the F
register will contain the complement of the indicated bit
within the indicated register. Operands b and r are specified as
follows in the assembled object code:

Bit
Tested b Register r

0 = 000 A = 111
1 = 001 B = 000
2 = 010 C = 001
3 = 011 D = 010
4 = 100 E = 011
5 = 101 H = 100
6 = 110 L = 101
7 = 111

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.0

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

Example:

If bit 2 in register B contains 0, after the execution of

BIT 2, B

the Z flag in the F register will contain 1, and bit 2 in register
B will remain 0. Bit 0 in register B is the least significant bit

BIT b, (HL)
Operation: Z ← (HL)b

Format:

Opcode Operands

BIT b,(HL)

1 1 0 0 1 0 1 1 CB

0 1 ← b → 1 1 0

Description:

After the execution of this instruction, the Z flag in the F
register will contain the complement of the indicated bit
within the contents of the HL register pair. Operand b is
specified as follows in the assembled object code:

Bit
Tested b

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
H: Reset
C: Not affected

Example:

If the HL register pair contains 4444H, and bit 4 in the
memory location 444H contains 1, after the execution of

BIT 4, (HL)

the Z flag in the F register will contain 0, and bit 4 in memory
location 444H will still contain 1. (Bit 0 in memory location
444H is the least significant bit.)

84

BIT b, (IX+d)
Operation: Z ← (IX+d)b

Format:

Opcode Operands

BIT b,(IX+d)

1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

0 1 ← b → 1 1 0

Description:

After the execution of this instruction, the Z flag in the F
register will contain the complement of the indicated bit
within the contents of the memory location pointed to by the
sum of the contents register pair IX (Index Register IX) and
the two’s complement displacement integer d. Operand b is
specified as follows in the assembled object code.

Bit
Tested b

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

M CYCLES: 5 T STATES: 20(4,4,3,5,4) 4 MHZ E.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit 6 in
memory location 2004H contains 1, after the execution of
BIT 6, (IX+4H)
the Z flag in the F register will contain 0, and bit 6 in memory
location 2004H will still contain 1. (Bit 0 in memory location
2004H is the least significant bit.)

BIT b, (IY+d)
Operation: Z ← (IY+d)b

Format:

Opcode Operands

BIT b,(IY+d)

1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

0 1 ← b → 1 1 0

Description:

After the execution of this instruction, the Z flag in the F
register will contain the complement of the indicated bit
within the contents of the memory location pointed to by the
sum of the contents of register pair IY (Index Register IY) and
the two’s complement displacement integer d. Operand b is
specified as follows in the assembled object code:

Bit
Tested b

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

M CYCLES: 5 T STATES: 20(4,4,3,5,4) 4 MHZ E.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

Example:

If the contents of Index Register IY are 2000H and bit 4 in the
memory location 2004H contains 1, after the execution of
BIT 6, (IY+4H)
the Z flag in the F register will contain 0, and bit 6 in memory
location 2004H will still contain 1. (Bit 0 in memory location
2004H is the least significant bit.)

85

SET b, r
Operation: rb ← 1

Format:

Opcode Operands

SET b,r

1 1 0 0 1 0 1 1 CB

1 1 ← b → ← r →

Description:

Bit b (any bit, 7 through 0) in register r (any of register
B,C,D,E,H,L or A) is set. Operands b and r are specified as
follows in the assembled object code:

Bit
Set b Register r

0 = 000 A = 111
1 = 001 B = 000
2 = 010 C = 001
3 = 011 D = 010
4 = 100 E = 011
5 = 101 H = 100
6 = 110 L = 101
7 = 111

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

After the execution of

SET 4, A

bit 4 in register A will be set. (Bit 0 is the least significant bit.)

SET b, (HL)
Operation: (HL)b ← 1

Format:

Opcode Operands

SET b,(HL)

1 1 0 0 1 0 1 1 CB

1 1 ← b → 1 1 0

Description:

Bit b (any bit, 7 through 0) in the memory location addressed
by the contents of register pair HL is set. Operand b is
specified as follows in the assembled object code:

Bit
Set b

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

M CYCLES: 4 T STATES: 15(4,4,4,3) 4 MHZ E.T.: 3.75

Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, after the
execution of

SET 4, (HL)

bit 4 in memory location 3000H will be 1. (Bit 0 in memory
location 3000H is the least significant bit.)

86

SET b, (IX+d)
Operation: (IX+d)b ← 1

Format:

Opcode Operands

SET b,(IX+d)

1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

1 1 ← b → 1 1 0

Description:

Bit b (any bit, 7 through 0) in the memory location addressed
by the sum of the contents of the IX register pair (Index
Register IX) and the two’s complement integer d is set.
Operand b is specified as follows in the assembled object
code:

Bit
Set b

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3) 4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register are 2000H, after the
execution of

SET 0, (IX+3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory
location 2003H is the least significant bit.)

SET b, (IY+d)
Operation: (IY+d)b ← 1

Format:

Opcode Operands

SET b,(IY+d)

1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

1 1 ← b → 1 1 0

Description:

Bit b (any bit, 7 through 0) in the memory location addressed
by the sum of the contents of the IY register pair (Index
Register IY) and the two’s complement displacement d is set.
Operand b is specified as follows in the assembled object
code:

Bit
Set b

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

M CYCLES: 6T STATES: 23(4,4,3,5,4,3)4 MHZ E.T.: 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register IY are 2000H, after the
execution of

SET 0, (IY+3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory
location 2003H is the least significant bit.)

87

RES b, m
Operation: sb ← 0

Format:

Opcode Operands

RES b,m

Operand b is any bit (7 through 0) of the contents of the m
operand, (any of r, (HL), (IX+d) or (IY+d) as defined for the
analogous SET instructions. These various possible opcode-
operand combinations are assembled as follows in the object
code:

RES b,r 1 1 0 0 1 0 1 1 CB

1 0 ← b → ← r* →

RES b,(HL) 1 1 0 0 1 0 1 1 CB

1 0 ← b → 1 1 0

RES b,(IX+d) 1 1 0 1 1 1 0 1 DD

1 1 0 0 1 0 1 1 CB

← d →

1 0 ← b → 1 1 0

RES b,(IY+d) 1 1 1 1 1 1 0 1 FD

1 1 0 0 1 0 1 1 CB

← d →

1 0 ← b → 1 1 0

Bit
Reset b Register r

0 = 000 A = 111
1 = 001 B = 000
2 = 010 C = 001
3 = 011 D = 010
4 = 100 E = 011
5 = 101 H = 100
6 = 110 L = 101
7 = 111

Description:

Bit b in operand m is reset.

M 4 MHZ
INSTRUCTION CYCLES T STATES E.T.

RES r 4 8(4,4) 2.00
RES (HL) 4 15(4,4,4,3) 3.75
RES (IX+d) 6 23(4,4,3,5,4,3) 5.75
RES (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected: None

Example:

After the execution of

RES 6, D

bit 6 in register D will be reset. (Bit 0 in register D is the least
significant bit.)

88

JUMP GROUP
JP nn
Operation: PC ← nn

Format:

Opcode Operands

JP nn

1 1 0 0 0 0 1 1 C3

← n →

← n →

Note: The first operand in this assembled object code is the
low order byte of a 2-byte address.

Description:

Operand nn is loaded into register pair PC (Program Counter)
and points to the address of the next program instruction to be
executed.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

JP cc, nn
Operation: IF cc TRUE, PC ← nn

Format:

Opcode Operands

JP cc,nn

1 1 ← cc→ 0 1 0

← n →

← n →

Note: The first n operand in this assembled object code is the
low order byte of a 2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into
register pair PC (Program Counter), and the program
continues with the instruction beginning at address nn If
condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential
instruction. Condition cc is programmed as one of eight status
which corresponds to condition bits in the Flag Register
(register F). These eight status are defined in the table below
which also specifies the corresponding cc bit fields in the
assembled object code.

cc CONDITION
RELEVANT
FLAG

000 NZ non zero Z
001 Z zero Z
010 NC no carry C
011 C carry C
100 PO parity odd P/V
101 PE parity even P/V
110 P sign positive S
111 M sign negative S

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the Carry Flag (C flag in the F register) is set and the
contents of address 1520H are 03H, after the execution of

JP C, 1520H

the Program Counter will contain 1520H, and on the next
machine cycle the CPU will fetch from address 1520H the
byte 03H.

89

JR e
Operation: PC ← PC + e

Format:

Opcode Operand

JR e

0 0 0 1 1 0 0 0 18

← e-2 →

Description:

This instruction provides for unconditional branching to other
segments of a program. The value of the displacement e is
added to the Program Counter (PC) and the next instruction is
fetched from the location designated by the new contents of
the PC. This jump is measured from the address of the
instruction opcode and has a range of -126 to +129 bytes. The
assembler automatically adjusts for the twice incremented PC.

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

Condition Bits Affected: None

Example:

To jump forward 5 locations from address 480H, the
following assembly language statement is used:

JR $+5

The resulting object code and final PC value is shown below:

Location Instruction

480 18
481 03
482 —
483 —
484 —
485 ← PC after jump

JR C, e
Operation: If C = 0, continue

If C = 1, PC ← PC + e

Format:

Opcode Operands

JR C,e

0 0 1 1 1 0 0 0 38

← e-2 →

Description:

This instruction provides for conditional branching to other
segments of a program depending on the results of a test on
the Carry Flag. If the flag is equal to a ‘1’, the value of the
displacement e is added to the Program Counter (PC) and the
next instruction is fetched from the location designated by the
new contents of the PC. The jump is measured from the
address of the instruction opcode and has a range of -126 to
+129 bytes. The assembler automatically adjusts for the twice
incremented PC.

If the flag is equal to a ‘0’ the next instruction to be executed
is taken from the location following this instruction.

If condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

If condition is not met:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back 4
locations from 480H. The assembly language statement is:

JR C, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C ← PC after jump
47D —
47E —
47F —
480 38
481 FA (2’s complement-6)

90

JR NC, e
Operation: If C = 1, continue

If C = 0, PC ← PC + e

Format:

Opcode Operands
JR NC,e

0 0 1 1 0 0 0 0 30

← e-2 →

Description:

This instruction provides for conditional branching to other
segments of a program depending on the results of a test on
the Carry Flag. If the flag is equal to ‘0’, the value of the
displacement e is added to the Program Counter (PC) and the
next instruction is fetched from the location designated by the
new contents of the PC. The jump is measured from the
address of the instruction opcode and has a range of -126 to
+129 byte. The assembler automatically adjusts for the twice
incremented PC.

If the flag is equal to a ‘1', the next instruction to be executed
is taken from the location following this instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

If the condition is not met:

M CYCLES: 7 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump
instruction. The assembly language statement is:

JR NC, $

The resulting object code and PC after the jump are shown
below:

Location Instruction

480 30 ← PC after jump
481 00

JR Z, e
Operation: If Z = 0, continue

If Z = 1, PC ← PC + e

Format:

Opcode Operands

JR Z,e

0 0 1 0 1 0 0 0 28

← e-2 →

Description:

This instruction provides for conditional branching to other
segments of a program depending on the results of a test on
the Zero Flag. If the flag is equal to a ‘1’, the value of the
displacement e is added to the Program Counter (PC) and the
next instruction is fetched from the location designated by the
new contents of the PC. The jump is measured from the
address of the instruction opcode and has a range of -126 to
+129 bytes. The assembler automatically adjusts for the twice
incremented PC.

If the Zero Flag is equal to a ‘0’, the next instruction to be
executed is taken from the location following this instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

If the condition is not met:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forward 5
locations from address 300H. The following assembly
language statement is used:

JR Z,$ +5

The resulting object code and final PC value is shown below:

Location Instruction

300 28
301 03
302 —
303 —
304 —
305 ← PC after jump

91

JR NZ, e
Operation: If Z = 1, continue

If Z = 0, PC ← PC + e

Format:

Opcode Operands

JR NZ,e

0 0 1 0 0 0 0 0 20

← e-2 →

Description:

This instruction provides for conditional branching to other
segments of a program depending on the results of a test on
the Zero Flag. If the flag is equal to a ‘0’, the value of the
displacement e is added to the Program Counter (PC) and the
next instruction is fetched from the location designated by the
new contents of the PC. The jump is measured from the
address of the instruction opcode and has a range of -126 to
+129 bytes. The assembler automatically adjusts for the twice
incremented PC.

If the Zero Flag is equal to a ‘1’, the next instruction to be
executed is taken from the location following this instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5) 4 MHZ E.T.: 3.00

If the condition is not met:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back 4
locations from 480H. The assembly language statement is:

JR NZ, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C ← PC after jump
47D —
47E —
47F —
480 20
481 FA (2’ complement-6)

JP (HL)
Operation: PC ← HL

Format:

Opcode Operands

JP (HL)

1 1 1 0 1 0 0 1 E9

Description:

The Program Counter (register pair PC) is loaded with the
contents of the HL register pair. The next instruction is fetched
from the location designated by the new contents of the PC.

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the
contents of the HL register pair are 4800H, after the execution
of

JP (HL)

the contents of the Program Counter will be 4800H.

92

JP (IX)
Operation: PC ← IX

Format:

Opcode Operands

JP (IX)

1 1 0 1 1 1 0 1 DD

1 1 1 0 1 0 0 1 E9

Description:

The Program Counter (register pair PC) is loaded with the
contents of the IX Register Pair (Index Register IX). The next
instruction is fetched from the location designated by the new
contents of the PC.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H, and the
contents of the IX Register Pair are 4800H, after the execution
of

JP (IX)

the contents of the Program Counter will be 4800H.

JP (IY)
Operation: PC ← IY

Format:

Opcode Operands

JP (IY)

1 1 1 1 1 1 0 1 FD

1 1 1 0 1 0 0 1 E9

Description:

The Program Counter (register pair PC) is loaded with the
contents of the IY register pair (Index Register TY). The next
instruction is fetched from the location designated by the new
contents of the PC.

M CYCLES: 2 T STATES: 8(4,4) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the
contents of the IY Register Pair are 4800H, after the execution
of

JP (IY)

the contents of the Program Counter will be 4800H

93

DJNZ, e
Operation: ——

Format:

Opcode Operands

DJNZ e

0 0 0 1 0 0 0 0 10

← e-2 →

Description:

The instruction is similar to the conditional jump instructions
except that a register value is used to determine branching.
The B register is decremented and if a non zero value remains,
the value of the displacement e is added to the Program
Counter (PC). The next instruction is fetched from the location
designated by the new contents of the PC. The jump is
measured from the address of the instruction opcode and has a
range of -126 to +129 bytes. The assembler automatically
adjusts for the twice incremented PC.

If the result of decrementing leaves B with a zero value, the
next instruction to be executed is taken from the location
following this instruction.

If B≠0:

M CYCLES: 3 T STATES: 13(5,3,5) 4 MHZ E.T.: 3.25

If B=0:

M CYCLES: 2 T STATES: 8(5,3) 4 MHZ E.T.: 2.00

Condition Bits Affected: None

Example:

A typical software routine is used to demonstrate the use of
the DJNZ instruction. This routine moves a line from an input
buffer (INBUF) to an output buffer (OUTBUF). It moves the
bytes until it finds a CR, or until it has moved 80 bytes,
whichever occurs first.

LD B,80 ;Set up counter
LD HL,Inbuf ;Set up pointers
LD DE,Outbuf

LOOP:LD A,(HL) ;Get next byte from
;input buffer

LD (DE),A ;Store in output buf
CP 00H ;Is it a CR?
JR Z,DONE ;Yes finished
INC HL ;Increment pointers
INC DE
DJNZ LOOP ;Loop back if 80

;bytes have not
;been moved

DONE:

94

CALL AND RETURN GROUP
CALL nn
Operation: (SP-1) ← PCH, (SP-2) ← PCL, PC ← nn

Format:

Opcode Operands

CALL nn

1 1 0 0 1 1 0 1 CD

← n →

← n →

Note: The first of the two n operands in the assembled object
code above is the least significant byte of a two-byte memory
address.

Description:

After pushing the current contents of the Program Counter
(PC) onto the top of the external memory stack, the operands
nn are loaded into PC to point to the address in memory where
the first opcode of a subroutine is to be fetched. (At the end of
the subroutine, a RETurn instruction can be used to return to
the original program flow by popping the top of the stack back
into PC.) The push is accomplished by first decrementing the
current contents of the Stack Pointer (register pair SP), loading
the high-order byte of the PC contents into the memory
address now pointed to by the SP; then decrementing SP
again, and loading the low-order byte of the PC contents into
the top of stack. Note: Because this is a 3-byte instruction, the
Program Counter will have been incremented by 3 before the
push is executed.

M CYCLES: 5 T STATES: 17(4,3,4,3,3) 4 MHZ E.T.: 4.25

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1A47H, the
contents of the Stack Pointer are 3002H, and memory
locations have the contents:

Location Contents

1A47H CDH
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte
instruction CD3521H will be fetched to the CPU for
execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of this instruction, the contents of memory
address 3001H will be 1AH, the contents of address 3000H
will be 4AH, the contents of the Stack Pointer will be 3000H,
and the contents of the Program Counter will be 2135H,
pointing to the address of the first opcode of the subroutine
now to be executed.

95

CALL cc, nn
Operation: IF cc TRUE: (SP-1) ← PCH

(SP-2) ← PCL,PC ← nn

Format:

Opcode Operands

CALL cc,nn

1 1 ← cc→ 1 0 0

← n →

← n →

Note: The first of the two n operands in the assembled object
code above is the least significant byte of the two-byte
memory address.

Description:

If condition cc is true, this instruction pushes the current
contents of the Program Counter (PC) onto the top of the
external memory stack, then loads the operands mm into PC to
point to the address in memory where the first opcode of a
subroutine is to be fetched. (At the end of the subroutine, a
RETurn instruction can be used to return to the original
program flow by popping the top of the stack back into PC.) If
condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential
instruction. The stack push is accomplished by first
decrementing the current contents of the Stack Pointer (SP),
loading the high-order byte of the PC contents into the
memory address now pointed to by SP; then decrementing SP
again, and loading the low-order byte of the PC contents into
the top of the stack. Note: Because this is a 3-byte instruction,
the Program Counter will have been incremented by 3 before
the push is executed. Condition cc is programmed as one of
eight status which corresponds to condition bits in the Flag
Register (register F). Those eight status are defined in the table
below, which also specifies the corresponding cc bit fields in
the assembled object code:

cc CONDITION
RELEVANT
FLAG

000 NZ non zero Z
001 Z zero Z
010 NC no carry C
011 C carry C
100 PO parity odd P/V
101 PE parity even P/V
110 P sign positive S
111 M sign negative S

If cc is true:

M CYCLES: 5 T STATES: 17(4,3,4,3,3) 4 MHZ E.T.: 4.25

If cc is false:

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents of the
Program Counter are 1A47H, the contents of the Stack Pointer
are 3002H, and memory locations have the contents:

Location Contents

1A47H D4H
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte
instruction D43521H will be fetched to the CPU for execution.
The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory
address 3001H will be 1AH, the contents of address 3000H
will be 4AH, the contents of the Stack Pointer will be 3000H,
and the contents of the Program Counter will be 2135H,
pointing to the address of the first opcode of the subroutine
now to be executed.

96

RET
Operation: PCL ← (SP), PCH ← (SP+1)

Format:

Opcode

RET

1 1 0 0 1 0 0 1 C9

Description:

Control is returned to the original program flow by popping
the previous contents of the Program Counter (PC) off the top
of the external memory stack, where they were pushed by the
CALL instruction. This is accomplished by first loading the
low-order byte of the PC with the contents of the memory
address pointed to by the Stack Pointer (SP), then
incrementing the SP and loading the high-order byte of the PC
with the contents of the memory address now pointed to by the
SP. (The SP is now incremented a second time.) On the
following machine cycle the CPU will fetch the next program
opcode from the location in memory now pointed to by the
PC.

M CYCLES: 3 T STATES: 10(4,3,3) 4 MHZ E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the contents
of the Stack Pointer are 2000H, the contents of memory
location 2000H are B5H, and the contents of memory location
2001H are 18H, then after the execution of

RET

the contents of the Stack Pointer will be 2002H and the
contents of the Program Counter will be 18B5H, pointing to
the address of the next program opcode to be fetched.

97

RET cc
Operation: IF cc TRUE: PCL ← (SP), PCH ← (SP+1)

Format:

Opcode Operand

RET cc

1 1 ← cc→ 0 0 0

Description:

If condition cc is true, control is returned to the original
program flow by popping the previous contents of the
Program Counter (PC) off the top of the external memory
stack, where they were pushed by the CALL instruction. This
is accomplished by first loading the low-order byte of the PC
with the contents of the memory address pointed to by the
Stack Pointer (SP), then incrementing the SP, and loading the
high-order byte of the PC with the contents of the memory
address mow pointed to by the SP. (The SP is mow
incremented a second time.) On the following machine cycle
the CPU will fetch the next program opcode from the location
in memory now pointed to by the PC. If condition cc is false,
the PC is simply incremented as usual, and the program
continues with the next sequential instruction. Condition cc is
programmed as one of eight status which correspond to
condition bits in the Flag Register (register F). These eight
status are defined in the table below, which also specifies the
corresponding cc bit fields in the assembled object code.

cc CONDITION
RELEVANT
FLAG

000 NZ non zero Z
001 Z zero Z
010 NC no carry C
011 C carry C
100 PO parity odd P/V
101 PE parity even P/V
110 P sign positive S
111 M sign negative S

If cc is true:

M CYCLES: 3 T STATES: 11(5,3,3) 4MHZ E.T.: 2.75

If cc is false:

M CYCLES: 1 T STATES: 5 4 MHZ E.T.; 1.25

Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of the Program
Counter are 3535H, the contents of the Stack Pointer are
2000H, the contents of memory location 2000H are B5H, and
the contents of memory location 2001H are

RET M

the contents of the Stack Pointer will be 2002H and the
contents of the Program Counter will be 18B5H, pointing to
the address of the next program opcode to be fetched.

98

RETI
Operation: Return from interrupt

Format:

Opcode

RETI

1 1 1 0 1 1 0 1 ED

0 1 0 0 1 1 0 1 4D

Description:

This instruction is used at the end of an interrupt service
routine to:

1. Restore the contents of the Program Counter (PC)
(analogous to the RET instruction).

2. To signal an I/O device that the interrupt routine has been
completed. The RETI instruction facilitates the nesting of
interrupts allowing higher priority devices to suspend
service of lower priority service routines. This instruction
also resets the IFF1 and IFF2 flip flops.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B connected in a
daisy chain configuration with A having a higher priority than
B.

+ A B

INT

B generates an interrupt and is acknowledged. (The interrupt
enable out, IEO, of B goes low, blocking any lower priority
devices from interrupting while B is being serviced). Them A
generates an interrupt, suspending service of B. (The IEO of A
goes ‘low’ indicating that a higher priority device is being
serviced.) The A routine is completed and a RETI is issued
resetting the IEO of A, allowing the B routine to continue. A
second RETI is issued on completion of the B routine and the
IEO of B is reset (high) allowing lower priority devices
interrupt access.

RETN
Operation: Return from non maskable interrupt

Format:

Opcode

RETN

1 1 1 0 1 1 0 1 ED

0 1 0 0 0 1 0 1 45

Description:

Used at the end of a service routine for a non maskable
interrupt, this instruction executes an unconditional return
which functions identical to the RET instruction. That is, the
previously stored contents of the Program Counter (PC) are
popped off the top of the external memory stack; the low-
order byte of PC is loaded with the contents of the memory
location pointed to by the Stack Pointer (SP), SP is
incremented, the high-order byte of PC is loaded with the
contents of the memory location now pointed to by SP, and SP
is incremented again. Control is now returned to the original
program flow: on the following machine cycle the CPU will
fetch the next opcode from the location in memory now
pointed to by the PC. Also the state of IFF2 is copied back
into IFF1 to the state it had prior to the acceptance of the NMI.

M CYCLES: 4 T STATES: 14(4,4,3,3) 4 MHZ E.T.: 3.50

Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 1000H and the contents
of the Program Counter are 1A45H when a mom maskable
interrupt (NMI) signal is received, the CPU will ignore the
next instruction and will instead restart to memory address
0066H. That is, the current Program Counter contents of
1A45H will be pushed onto the external stack address of
0FFFH and 0FFEH, high order-byte first, and 0066H will be
loaded onto the Program Counter. That address begins an
interrupt service routine which ends with RETN instruction.
Upon the execution of RETN, the former Program Counter
contents are popped off the external memory stack, low-order
first, resulting in a Stack Pointer contents again of 1000H. The
program flow continues where it left off with an opcode fetch
to address 1A45H.

IEI IEO IEI IEO

99

RST p
Operation:
(SP-1) ← PCH, (SP-2) ← PCL, PCH ← 0, PCL ← P

Format:

Opcode Operand

RST P

1 1 ← t → 1 1 1

Description:

The current Program Counter (PC) contents are pushed onto
the external memory stack, and the page zero memory location
given by operand p is loaded into the PC. Program execution
then begins with the opcode in the address now pointed to by
PC. The push is performed by first decrementing the contents
of the Stack Pointer (SP), loading the high-order byte of PC
into the memory address now pointed to by SP, decrementing
SP again, and loading the low-order byte of PC into the
address now pointed to by SP. The ReSTart instruction allows
for a jump to one of eight addresses as shown in the table
below. The operand p is assembled into the object code using
the corresponding T state. Note: Since all addresses are in
page zero of memory, the high order byte of PC is loaded with
00H. The number selected from the “p” column of the table is
loaded into the low-order byte of PC.

P t

ØØH 000
Ø8H 001
1ØH 010
18H 011
2ØH 100
28H 101
3ØH 110
38H 111

M CYCLES: 3 T STATES: 11(5,3,3) 4 MHZ E.T.: 2.75

Example:

If the contents of the Program Counter are 15B3H, after the
execution of

RST 18H (Object code 1101111)

the PC will contain 0018H, as the address of the next opcode
to be fetched.

100

INPUT AND OUTPUT GROUP
IN A, (n)
Operation: A ← (n)

Format:

Opcode Operands

IN A,(n)

1 1 0 1 1 0 1 1 DB

← n →

Description:

The operand m is placed on the bottom half (A0 through A7)
of the address bus to select the I/O device at one of 256
possible ports. The contents of the Accumulator also appear
on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the
data bus and written into the Accumulator (register A) in the
CPU.

M CYCLES: 3 T STATES: 11(4,3,4) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte 7BH
is available at the peripheral device mapped to I/O port
address 01H, then after the execution of

IN A, (01H)

the Accumulator will contain 7BH.

IN r, (C)
Operation: r ← (C)

Format:

Opcode Operands

IN r,(C)

1 1 1 0 1 1 0 1 ED

0 1 ← r → 0 0 0

Description:

The contents of register C are placed on the bottom half (A0
through A7) of the address bus to select the I/O device at one
of 256 possible ports. The contents of Register B are placed on
the top half (A8 through Al 5) of the address bus at this time.
Then one byte from the selected port is placed on the data bus
and written into register r in the CPU. Register r identifies any
of the CPU registers shown in the following table, which also
shows the corresponding 3-bit “r” field for each. The flags will
be affected, checking the input data.

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E.T.: 3.00

Condition Bits Affected:

S: Set if input data is negative; reset otherwise
Z: Set if input data is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 10H, and the byte 7BH is available at the peripheral device
mapped to I/O port address 07H, then after the execution of

IN D, (C)

register D will contain 7BH

101

INI
Operation: (HL) ← (C), B ← B-1, HL ← HL + 1

Format:

Opcode

INI

1 1 1 0 1 1 0 1 ED

1 0 1 0 0 0 1 0 A2

Description:

The contents of register C are placed on the bottom half (A0
through A7) of the address bus to select the I/O device at one
of 256 possible ports. Register B may be used as a byte
counter, and its contents are placed on the top half (A8
through Al 5) of the address bus at this time. Then one byte
from the selected port is placed on the data bus and written to
the CPU. The contents of the HL register pair are then placed
on the address bus and the input byte is written into the
corresponding location of memory. Finally the byte counter is
decremented and register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 10H, the contents of the HL register pair are 1000H, and
the byte 7BH is available at the peripheral device mapped to
I/O port address 07H, then after the execution of

INI

memory location 1000H will contain 7BH, the HL register
pair will contain 1001H, and register B will contain 0FH.

102

INIR
Operation: (HL) ← (C), B ← B-1, HL ← HL + 1

Format:

Opcode

INIR

1 1 1 0 1 1 0 1 ED

1 0 1 1 0 0 1 0 B2

Description:

The contents of register C are placed on the bottom half (A0
through A7) of the address bus to select the I/O device at one
of 256 possible ports. Register B is used as a byte counter, and
its contents are placed on the top half (A8 through Al 5) of the
address bus at this time. Then one byte from the selected port
is placed on the data bus and written to the CPU. The contents
of the HL register pair are placed on the address bus and the
input byte is written into the corresponding location of
memory. Then register pair HL is incremented, the byte
counter is decremented. If decrementing causes B to go to
zero, the instruction is terminated. If B is not zero, the PC is
decremented by two and the instruction repeated. Note that if
B is set to zero prior to instruction execution, 256 bytes of data
will be input. Also interrupts will be recognized after each
data transfer.

If B≠0:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 03H, the contents of the HL register pair are 1000H, and
the following sequence of bytes are available at the peripheral
device mapped to I/O port of address 07H:

51H
A9H
03H

then after the execution of

INIR

the HL register pair will contain 1003H, register B will
contain zero, and memory locations will have contents as
follows:

Location Contents

1000H 51H
1001H A9H
1002H 03H

103

IND
Operation: (HL) ← (C), B ← B-1, HL ← HL-1

Format:

Opcode

IND

1 1 1 0 1 1 0 1 ED

1 0 1 0 1 0 1 0 AA

Description:

The contents of register C are placed on the bottom half (A0
through A7) of the address bus to select the I/O device at one
of 256 possible ports. Register B may be used as a byte
counter, and its contents are placed on the top half (A8
through A15) of the address bus at this time. Then one byte
from the selected port is placed on the data bus and written to
the CPU. The contents of the HL register pair are placed on
the address bus and the input byte is written into the
corresponding location of memory. Finally the byte counter
and register pair HL are decremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 10H, the contents of the HL register pair are 1000H, and
the byte 7BH is available at the peripheral device mapped to
I/O port address 07H, then after the execution of

IND

memory location 1000H will contain 7BH, the HL register
pair will contain 0FFFH, and register B will contain 0FH.

104

INDR
Operation: (HL) ← (C), B ← B-1, HL ← HL-1

Format:

Opcode

INDR

1 1 1 0 1 1 0 1 ED

1 0 1 1 1 0 1 0 BA

Description:

The contents of register C are placed on the bottom half (A0
through A7) of the address bus to select the I/O device at one
of 256 possible ports. Register B is used as a byte counter, and
its contents are placed on the top half (A8 through A15) of the
address bus at this time. Then one byte from the selected port
is placed on the data bus and written to the CPU. The contents
of the HL register pair are placed on the address bus and the
input byte is written into the corresponding location of
memory. Then HL and the byte counter are decremented. If
decrementing causes B to go to zero, the instruction is
terminated. If B is not zero, the PC is decremented by two and
the instruction repeated. Note that if B is set to zero prior to
instruction execution, 256 bytes of data will be input. Also
interrupts will be recognized after each data transfer.

If B≠0:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 03H, the contents of the HL register pair are 1000H, and
the following sequence of bytes are available at the peripheral
device mapped to I/O port address 0711:

51H
A9H
03H

then after the execution of

INDR

the HL register pair will contain 0FFDH, register B will
contain zero, and memory locations will have contents as
follows:

Location Contents

0FFEH 03H
0FFFH A9H
1000H 51H

105

OUT (n), A
Operation: (n) ← A

Format:

Opcode Operands

OUT (n) ,A

1 1 0 1 0 0 1 1 D3

← n →

Description:

The operand n is placed on the bottom half (A0 through A7)
of the address bus to select the 1/0 device at one of 256
possible ports. The contents of the Accumulator (register A)
also appear on the top half (A8 through A15) of the address
bus at this time. Then the byte contained in the Accumulator is
placed on the data bus and written into the selected peripheral
device.

M CYCLES: 3 T STATES: 11(4,3,4) 4 MHZ E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the
execution of

OUT 01H, A

the byte 23H will have been written to the peripheral device
mapped to I/O port address 01H.

OUT (D), r
Operation: (C) ← r

Format:

Opcode Operands

OUT (C),r

1 1 1 0 1 1 0 1 ED

0 1 ← r → 0 0 1

Description:

The contents of register C are placed on the bottom half (A0
through A7) of the address bus to select the I/O device at one
of 256 possible ports. The contents of Register B are placed on
the top half (A8 through Al 5) of the address bus at this time.
Then the byte contained in register r is placed on the data bus
and written into the selected peripheral device. Register r
identifies any of the CPU registers shown in the following
table, which also shows the corresponding 3-bit “r” field for
each which appears in the assembled object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 3 T STATES: 12(4,4,4) 4 MHZ E. T. 3 00

Condition Bits Affected: None

Example:

If the contents of register C are 01H and the contents of
register D are 5AH, after the execution of

OUT (C), D

the byte 5AH will have been written to the peripheral device
mapped to I/O port address 01H.

106

OUTI
Operation: (C) ← (HL), B ← B-1, HL ← HL + 1

Format:

Opcode

OUTI

1 1 1 0 1 1 0 1 ED

1 0 1 0 0 0 1 1 A3

Description:

The contents of the HL register pair are placed on the address
bus to select a location in memory. The byte contained in this
memory location is temporarily stored in the CPU. Then, after
the byte counter (B) is decremented, the contents of register C
are placed on the bottom half (A0 through A7) of the address
bus to select the I/O device at one of 256 possible ports.
Register B may be used as a byte counter, and its decremented
value is placed on the top half (A8 through Al 5) of the
address bus. The byte to be output is placed on the data bus
and written into selected peripheral device. Finally the register
pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 10H, the contents of the HL register pair are 1000H, and
the contents of memory address 1000H are 59H, then after the
execution of

OUTI

register B will contain 0FH, the HL register pair will contain
1001H, and the byte 59H will have been written to the
peripheral device mapped to I/O port address 07H.

107

OTIR
Operation: (C) ← (HL), B ← B-1, HL ← HL + 1

Format:

Opcode

OTIR

1 1 1 0 1 1 0 1 ED

1 0 1 1 0 0 1 1 B3

Description:

The contents of the HL register pair are placed on the address
bus to select a location in memory. The byte contained in this
memory location is temporarily stored in the CPU. Then, after
the byte counter (B) is decremented the contents of register C
are placed on the bottom half (A0 through A7) of the address
bus to select the I/O device at one of 256 possible ports.
Register B may be used as a byte counter, and its decremented
value is placed on the top half A8 through A15) of the address
bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then
register pair HL is incremented. If the decremented B register
is not zero, the Program Counter (PC) is decremented by 2 and
the instruction is repeated. If B has gone to zero, the
instruction is terminated. Note that if B is set to zero prior to
instruction execution, the instruction will output 256 bytes of
data. Also, interrupts will be recognized after each data
transfer.

If B≠0:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MYZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 03H, the contents of the HL register pair are 1000H, and
memory locations have the following contents:

Location Contents

1000H 51H
1001H A9H
1002H 03H

then after the execution of

OTIR

the HL register pair will contain 1003H, register B will
contain zero, and a group of bytes will have been written to
the peripheral device mapped to I/O port address 07H in the
following sequence:

51H
A9H
03H

108

OUTD
Operation: (C) ← (HL), B ← B-1, HL ← HL-1

Format:

Opcode

OUTD

1 1 1 0 1 1 0 1 ED

1 0 1 0 1 0 1 1 AB

Description:

The contents of the HL register pair are placed on the address
bus to select a location in memory. The byte contained in this
memory location is temporarily stored in the CPU. Then, after
the byte counter (B) is decremented, the contents of register C
are placed on the bottom half (A0 through A7) of the address
bus to select the I/O device at one of 256 possible ports.
Register B may be used as a byte counter, and its decremented
value is placed on the top half (A8 through A15) of the
address bus at this time. Next the byte to be output is placed
on the data bus and written into the selected peripheral device.
Finally the register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B-1=0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 10H, the contents of the HL register pair are 1000H, and
the contents of memory location 1000H are 59H, after the
execution of

OUTD

register B will contain 0FH, the HL register pair will contain
0FFFH, and the byte 59H will have been written to the
peripheral device mapped to 1/0 port address 07H.

109

OTDR
Operation: (C) ← (HL), B ← B-1, HL ← HL-1

Format:

Opcode

OTDR

1 1 1 0 1 1 0 1 ED

1 0 1 1 1 0 1 1 BB

Description:

The contents of the HL register pair are placed on the address
bus to select a location in memory. The byte contained in this
memory location is temporarily stored in the CPU. Then, after
the byte counter (B) is decremented, the contents of register C
are placed on the bottom half (A0 through A7) of the address
bus to select the I/O device at one of 256 possible ports.
Register B may be used as a byte counter, and its decremented
value is placed on the top half (A8 through A15) of the
address bus at this time. Next the byte to be output is placed
on the data bus and written into the selected peripheral device.
Then register pair HL is decremented and if the decremented
B register is not zero, the Program Counter (PC) is
decremented by 2 and the instruction is repeated. If B has
gone to zero, the instruction is terminated. Note that if B is set
to zero prior to instruction execution, the instruction will
output 256 byte of data. Also, interrupts will be recognized
after each data transfer.

If B≠0:

M CYCLES: 5 T STATES: 21(4,5,3,4,5) 4 MHZ E.T.: 5.25

If B=0:

M CYCLES: 4 T STATES: 16(4,5,3,4) 4 MHZ E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C Not affected

Example:

If the contents of register C are 07H, the contents of register B
are 03H, the contents of the HL register pair are 1000H, and
memory locations have the following contents:

Location Contents

0FFEH 51H
0FFFH A9H
1000H 03H

then after the execution of

OTDR

the HL register pair will contain 0FFDH, register B will
contain zero, and a group of bytes will have been written to
the peripheral device mapped to I/O port address 07H in the
following sequence:

03H
A9H
51H

111

Z-80 Hardware Configuration
This section gives information about the actual Z80 chip.

Z-80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU
is shown in Figure 1. The diagram shows all of the major
elements in the CPU and it should be referred to throughout
the following description.

Z-80 CPU BLOCK DIAGRAM
FIGURE 1

CPU REGISTERS

The Z-80 CPU contains 208 bits of R/W memory that are
accessible to the programmer. Figure 2 illustrates how this
memory is configured into eighteen 8-bit registers and four
16-bit registers. All Z-80 registers are implemented using
static RAM. The registers include two sets of six general
purpose registers that may be used individually as 8-bit
registers or in pairs as 16-bit registers. There are also two sets
of accumulator and flag resistors.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-
bit address of the current instruction being fetched from
memory. The PC is automatically incremented after its
contents have been transferred to the address lines. When a
program jump occurs the new value is automatically placed
in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit
address of the current top of a stack located anywhere in
external system RAM memory. The external stack memory
is organized as a last-in first-out (LIFO) file. Data can be
pushed onto the stack from specific CPU registers or
popped off of the stack into specific CPU registers through
the execution of PUSH and POP instructions. The data
popped from the stack is always the last data pushed onto it.

The stack allows simple implementation of multiple level
interrupts, unlimited subroutine nesting and simplification
of many types of data manipulation.

Z-80 CPU REGISTER CONFIGURATION
FIGURE 2

3. Two Index Register (IX & IY). The two independent index
registers hold a 16-bit base address that is used in indexed
addressing modes. In this mode, an index register is used as
a base to point to a region in memory from which data is to
be stored or retrieved. An additional byte is included in
indexed instructions to specify a displacement from this
base. This displacement is specified as a two’s complement
signed integer. This mode of addressing greatly simplifies
many types of programs, especially where tables of data are
used.

4. Interrupt Page Address Register (I). The Z-80 CPU can
be operated in a mode where an indirect call to any memory
location can be achieved in response to an interrupt. The I
Register is used for this purpose to store the high order 8-
bits of the indirect address while the interrupting device
provides the lower 8-bits of the address. This feature allows
interrupt routines to be dynamically located anywhere in
memory with absolute minimal access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a
memory refresh counter to enable dynamic memories to be
used with the same ease as static memories. Seven bits of
this 8 bit register are automatically incremented after each
instruction fetch. The eighth bit will remain as programmed
as the result of an LD R, A instruction. The data in the
refresh counter is sent out on the lower portion of the
address bus along with a refresh control signal while the
CPU is decoding and executing the fetched instruction. This
mode of refresh is totally transparent to the programmer and
does not slow down the CPU operation. The programmer
can load the R register for testing purposes, but this register
is normally not used by the programmer. During refresh, the
contents of the I register are placed on the upper 8 bits of the
address bus.

112

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and
associated 8-bit flag registers. The accumulator holds the
results of 8-bit arithmetic or logical operations while the flag
register indicates specific conditions for 8 or 16-bit operations,
such as indicating whether or not the result of an operation is
equal to zero. The programmer selects the accumulator and
flag pair that he wishes to work with a single exchange
instruction so that he may easily work with either pair.

General Purpose Registers

There are two matched sets of general purpose registers, each
set containing six 8-bit registers that may be used individually
as 8-bit registers or as 16-bit register pairs by the programmer.
One set is called BC, DE and HL while the complementary set
is called BC’, DE and HL’. At any one time the programmer
can select either set of registers to work with through a single
exchange command for the entire set. In systems where fast
interrupt response is required, one set of general purpose
registers and an accumulator/flag register may be reserved for
handling this very fast routine. Only a simple exchange
command need be executed to go between the routines. This
greatly reduces interrupt service time by eliminating the
requirement for saving and retrieving register contents in the
external stack during interrupt or subroutine processing. These
general purpose registers are used for a wide range of
applications by the programmer. They also simplify
programming, especially in ROM based systems where little
external read/write memory is available.

ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are
executed in the ALU. Internally the ALU communicates with
the registers and the external data bus on the internal data bus.
The type of functions performed by the ALU include:

Add Left or right shifts or rotates (arithmetic
and logical)

Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical
Exclusive OR

Reset bit

Compare Test bit

INSTRUCTION REGISTER
AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the
instruction register and decoded. The control sections
performs this function and then generates and supplies all of
the control signals necessary to read or write data from or to
the registers, control the ALU and provide all required
external control signals.

Z-80 CPU PIN DESCRIPTION

The Z-80 CPU is packaged in an industry standard 40 pin
Dual In-Line Package. The I/O pins are shown in Figure 3 and
the function of each is described below.

Z-80 PIN CONFIGURATION
FIGURE 3

A0-A15
(Address Bus)

Tri-state output, active high. A0-A15
constitute a 16-bit address bus. The
address bus provides the address for
memory (up to 64K bytes) data
exchanges and for I/O device data
exchanges. I/O addressing uses the 8
lower address bits to allow the user to
directly select up to 256 input or 256
output ports. A0 is the least significant
address bit. During refresh time, the
lower 7 bits contain a valid refresh
address.

D0-D7 (Data
Bus)

Tri-state input/output, active high. D0-D7
constitute an 8-bit bidirectional data bus.
The data bus is used for data exchanges
with memory and I/O devices.

113

m1 (Machine
Cycle one)

Output, active low. m1 indicates that the
current machine cycle is the OP code
fetch cycle of an instruction execution.
Note that during execution of 2-byte op-
codes, m1 is generated as each op-code
byte is fetched. These two byte op-codes
always begin with CBH, DDH, EDH or
FDH. m1 also occurs with iorq to
indicate an interrupt acknowledge cycle.

mreq
(Memory
Request)

Tri-state output, active low. The memory
request signal indicates that the address
bus holds a valid address for a memory
read or memory write operation.

iorq (Input/
Output Request)

Tri-state output, active low. The iorq
signal indicates that the lower half of the
address bus holds a valid I/O address for
a I/O read or write operation. An iorq
signal is also generated with an M1 signal
when an interrupt is being acknowledged
to indicate that an interrupt response
vector can be placed on the data bus.
Interrupt Acknowledge operations occur
during M1 time while I/O operations
never occur during M1 time.

rd
(Memory read)

Tri-state output, active low. rd indicates
that the CPU wants to read data from
memory or an I/O device. The addressed
I/O device or memory should use this
signal to gate data onto the CPU data bus.

wr
(Memory Write)

Tri-state output, active low. wr indicates
that the CPU data bus holds valid data to
be stored in the addressed memory or I/O
device.

rfsh (Refresh) Output, active low. rfsh indicates that
the lower 7 bits of the address bus contain
a refresh address for dynamic memories
and the current mreq signal should be
used to do a refresh read to all dynamic
memories.

halt (Halt
state)

Output, active low. halt indicates that
the CPU has executed a HALT software
instruction and is awaiting either a non
maskable or a maskable interrupt (with
the mask enabled) before operation can
resume. While halted, the CPU executes
NOP’s to maintain memory refresh
activity.

wait (Wait) Input, active low. wait indicates to the
Z-80 CPU that the addressed memory or
I/O devices are not ready for a data
transfer. The CPU continues to enter wait
states for as long as this signal is active.
This signal allows memory or I/O devices
of any speed to be synchronized to the
CPU.

int (Interrupt
Request)

Input, active low. The Interrupt Request
signal is generated by I/O devices. A
request will be honored at the end of the
current instruction if the internal software
controlled interrupt enable flip-flop (IFF)
is enabled and if the busrq signal is
not active. When the CPU accepts the
interrupt, an acknowledge signal (iorq
during M1 time) is sent out at the
beginning of the next instruction cycle.

nmi (Non
Maskable
Interrupt)

Input, negative edge triggered. The non
maskable interrupt request line has a
higher priority than int and is always
recognized at the end of the current
instruction, independent of the status of
the interrupt enable flip-flop. NMI
automatically forces the Z-80 CPU to
restart to location 0066H. The program
counter is automatically saved in the
external stack so that the user can return
to the program that was interrupted. Note
that continuous WAIT cycles can prevent
the current instruction from ending, and
that a busrq will override a nmi.

reset Input, active low. reset forces the
program counter to zero and initializes
the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = 00H
3) Set Register R = 00H
4) Set Interrupt Mode 0

During reset time, the address bus and
data bus go to a high impedance state and
all control output signals go to the
inactive state.

busrq (Bus
Request)

Input, active low. The bus request signal
is used to request the CPU address bus,
data bus and tri-state output control
signals to go to a high impedance state so
that other devices can control these buses.
When busrq is activated, the CPU will
set these buses to a high impedance state
as soon as the current CPU machine cycle
is terminated.

busak (Bus
Acknowledge)

Output, active low. Bus acknowledge is
used to indicate to the requesting device
that the CPU address bus, data bus and
tri-state control bus signals have been set
to their high impedance state and the
external device can now control these
signals.

Φ Single phase TTL level clock which
requires only a 330 ohm pull-up resistor
to +5 volts to meet all clock requirements.

114

Z-80 CPU INSTRUCTION SET

The Z-80 CPU can execute 158 different instruction types
including all 78 of the 8080A CPU. The instructions can be
broken down into the following major groups:

• Load and Exchange
• Block Transfer and Search
• Arithmetic and Logical
• Rotate and Shift
• Bit Manipulation (set, reset, test)
• Jump, Call and Return
• Input / Output
• Basic CPU Control

INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU
registers or between CPU registers and external memory. All
of these instructions must specify a source location from
which the data is to be moved and a destination location. The
source location is not altered by a load instruction. Examples
of load group instructions include moves between any of the
general purpose registers such as move the data to Register B
from Register C. This group also includes load immediate to
any CPU register or to any external memory location. Other
types of load instructions allow transfer between CPU
registers and memory locations. The exchange instructions can
trade the contents of two registers.

A unique set of block transfer instructions is provided in the
Z-80. With a single instruction a block of memory of any size
can be moved to any other location in memory. This set of
block moves is extremely valuable when large strings of data
must be processed. The Z-80 block search instructions are also
valuable for this type of processing. With a single instruction,
a block of external memory of any desired length can be
searched for any 8-bit character. Once the character is found
or the end of the block is reached, the instruction
automatically terminates. Both the block transfer and the block
search instructions can be interrupted during their execution so
as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored
in the accumulator and other general purpose CPU registers or
external memory locations. The results of the operations are
placed in the accumulator and the appropriate flags are set
according to the result of the operation. An example of an
arithmetic operation is adding the accumulator to the contents
of an external memory location. The results of the addition are
placed in the accumulator. This group also includes 16-bit
addition and subtraction between 16-bit CPU registers.

The rotate and shift group allows any register or any memory
location to be rotated right or left with or without carry either
arithmetic or logical. Also, a digit in the accumulator can be
rotated right or left with two digits in any memory location.

The bit manipulation instructions allow any bit in the
accumulator, any general purpose register or any external
memory location to be set, reset or tested with a single

instruction. For example, the most significant bit of register H
can be reset. This group is especially useful in control
applications and for controlling software flags in general
purpose programming.

The jump, call and return instructions are used to transfer
between various locations in the user’s program. This group
uses several different techniques for obtaining the new
program counter address from specific external memory
locations. A unique type of call is the restart instruction. This
instruction actually contains the new address as a part of the 8-
bit OP code. This is possible since only 8 separate addresses
located in page zero of the external memory may be specified.
Program jumps may also be achieved by loading register HL,
IX or IY directly into the PC, thus allowing the jump address
to be a complex function of the routine being executed.

The input/output group of instructions in the Z-80 allow for a
wide range of transfers between external memory locations or
the general purpose CPU registers, and the external I/O
devices. In each case, the port number is provided on the
lower 8 bits of the address bus during any I/O transaction. One
instruction allows this port number to be specified by the
second byte of the instruction while other Z-80 instructions
allow it to be specified as the content of the C register. One
major advantage of using the C register as a pointer to the I/O
device is that it allows different I/O ports to share common
software driver routines. This is not possible when the address
is part of the OP code if the routines are stored in ROM.
Another feature of these input instructions is that they set the
flag register automatically so that additional operations are not
required to determine the state of the input data (for example
its parity). The Z-80 CPU includes single instructions that can
move blocks of data (up to 256 bytes) automatically to or from
any I/O port directly to any memory location. In conjunction
with the dual set of general purpose registers, these
instructions provide for fast I/O block transfer rates. The value
of this I/O instruction set is demonstrated by the fact that the
Z-80 CPU can provide all required floppy disk formatting
(i.e., the CPU provides the preamble, address, data and
enables the CRC codes) on double density floppy disk drives
on an interrupt driven basis.

Finally, the basic CPU control instructions allow various
options and modes. This group includes instructions such as
setting or resetting the interrupt enable flip flop or setting the
mode of interrupt response.

ADDRESSING MODES

Most of the Z-80 instructions operate on data stored in internal
CPU registers, external memory or in the I/O ports.
Addressing refers to how the address of this data is generated
in each instruction. This section gives a brief summary of the
types of addressing used in the Z-80 while subsequent sections
detail the type of addressing available for each instruction
group.

115

Immediate.

In this mode of addressing the byte following the OP code in
memory contains the actual operand.

 OPCode

 Operand
d7

} One or 2 bytes

 d0

Examples of this type of instruction would be to load the
accumulator with a constant, where the constant is the byte
immediately following the OP code.

Immediate Extended.

This mode is merely an extension of immediate addressing in
that the two bytes following the OP codes are the operand.

OPcode one or 2 bytes

Operand low order

Operand high order

Examples of this type of instruction would be to load the HL
register pair (16-bit register) with 16 bits (2 bytes) of data.

Modified Page Zero Addressing

The Z-80 has a special single byte CALL instruction to any of
8 locations in page zero of memory. This instruction (which is
referred to as a restart) sets the PC to an effective address in
page zero. The value of this instruction is that it allows a
single byte to specify a complete 16-bit address where
commonly called subroutines are located, thus saving memory
space.

 OPCode

 Operand
b7

 One byte

 b0 Effective address is (b5 b4 b3 000)2

Relative Addressing

Relative addressing uses one byte of data following the OP
code to specify a displacement from the existing program to
which a program jump can occur. This displacement is a
signed two’s complement number that is added to the address
of the OP code of the following instruction.

OPCode

Operand }
Jump relative (one byte OP code)

8-bit two's complement displacement

added to address (A+2)

The value of relative addressing is that it allows jumps to
nearby locations while only requiring two bytes of memory
space. For most programs, relative jumps are by far the most
prevalent type of jump due to the proximity of related program
segments. Thus, these instructions can significantly reduce
memory space requirements. The signed displacement can
range between +127 and -128 from A + 2. This allows for a
total displacement of +129 to -126 from the jump relative OP
code address. Another major advantage is that it allows for
relocatable code.

Extended Addressing.

Extended Addressing provides for two bytes (16 bits) of
address to be included in the instruction. This data can be an
address to which a program can jump or it can be an address
where am operand is located.

OPCode

Low Order Address or LOW order operand

High Order Address or high order operand

}one or 2 bytes

Extended addressing is required for a program to jump from
any location in memory to any other location, or load and
store data in any memory location.

When extended addressing is used to specify the source or
destination address of an operand, the notation (nn) will be
used to indicate the content of memory at mm, where mm is
the 16-bit address specified in the instruction. This means that
the two bytes of address mm are used as a pointer to a memory
location. The use of the parentheses always means that the
value enclosed within them is used as a pointer to a memory
location. For example, (1200) refers to the contents of memory
at location 1200.

Indexed Addressing

In this type of addressing, the byte of data following the OP
code contains a displacement which is added to one of the two
index registers (the OP code specifies which index register is
used) to form a pointer to memory. The contents of the index
register are not altered by this operation.

OPCode

Operand

Displacement

} two byte OP code

Operand added to index register to form a
pointer to memory.

An example of an indexed instruction would be to load the
contents of the memory location (Index Register + Displace-
ment) into the accumulator. The displacement is a signed
two’s complement number. Indexed addressing greatly
simplifies programs using tables of data since the index
register can point to the start of any table. Two index registers

116

are provided since very often operations require two or more
tables. Indexed addressing also allows for relocatable code.

The two index registers in the Z-80 are referred to as IX and
IY. To indicate indexed addressing the notation:

(IX+d) or (IY+d)

is used. Here d is the displacement specified after the OP code.
The parentheses indicate that this value is used as a pointer to
external memory.

Register Addressing.

Many of the Z-80 OP codes contain bits of information that
specify which CPU register is to be used for an operation. An
example of register addressing would be to load the data in
register B into register C.

Implied Addressing.

Implied addressing refers to operations where the OP code
automatically implies one or more CPU registers as containing
the operands. An example is this set of arithmetic operations
where the accumulator is always implied to be the destination
of the results.

Register Indirect Addressing.

This type of addressing specifies a 16-bit CPU register pair
(such as HL) to be used as a pointer to any location in
memory. This type of instruction is very powerful and it is
used in a wide range of applications.

OPCode } one or two bytes

An example of this type of instruction would be to load the
accumulator with the data in the memory location pointed to
by the HL register contents. Indexed addressing is actually a
form of register indirect addressing except that a displacement
is added with indexed addressing. Register indirect addressing
allows for very powerful but simple to implement memory
accesses. The block move and search commands in the Z-80
are extensions of this type of addressing where automatic
register incrementing, decrementing and comparing has been
added. The notation for indicating register indirect addressing
is to put parentheses around the name of the register that is to
be used as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as
a pointer to a memory location. Often register indirect
addressing is used to specify 16-bit operands. In this case, the
register contents point to the low order portion of the operand
while the register contents are automatically incremented to
obtain the upper portion of the operand.

Bit Addressing.

The Z-80 contains a large number of bit set, reset and test
instructions. These instructions allow any memory location or
CPU register to be specified for a bit operation through one of
three previous addressing modes (register, register indirect and
indexed) while three bits in the OP code specify which of the
eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as
arithmetic instructions or loads). In these cases, two types of
addressing may be employed. For example, load can use
immediate addressing to specify the source and register
indirect or indexed addressing to specify the destination.

CPU TIMING

The Z-80 CPU executes instructions by stepping through a
very precise set of a few basic operations. These include:

Memory read or write
I/O device read or write
Interrupt acknowledge

All instructions are merely a series of these basic operations.
Each of these basic operations can take from three to six clock
periods to complete or they can be lengthened to synchronize
the CPU to the speed of external devices. The basic clock
periods are referred to as T cycles and the basic operations are
referred to as M (for machine) cycles. Figure 4 illustrates how
a typical instruction will be merely a series of specific M and
T cycles. Notice that this instruction consists of three machine
cycles (Ml, M2 and M3). The first machine cycle of any
instruction is a fetch cycle which is four, five or six T cycles
long (unless lengthened by the wait signal which will be fully
described in the next section). The fetch cycle (M1) is used to
fetch the OP code of the next instruction to be executed.
Subsequent machine cycles move data between the CPU and
memory or I/O devices and they may have any-where from
three to five T cycles (again they may be lengthened by wait
states to synchronize the external devices to the CPU). The
following paragraphs describe the timing which occurs within
any of the basic machine cycles. In section 10, the exact
timing for each instruction is specified.

117

NUMERIC LIST OF INSTRUCTION SET
Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:20:50 OPCODE LISTING

LOC OBJ CODE STMT SOURCE STATEMENT

0000 00 1 NOP
0001 018405 2 LD BC,NN
0004 02 3 LD (BC),A
0005 03 4 INC BC
0006 04 5 INC B
0007 05 6 DEC B
0008 0620 7 LD B,N
000A 07 8 RLCA
000B 08 9 EX AF,AF'
000C 09 10 ADD HL,BC
000D 0A 11 LD A,(BC)
000E 0B 12 DEC BC
000F 0C 13 INC C
0010 0D 14 DEC C
0011 0E20 15 LD C,N
0013 0F 16 RRCA
0014 102E 17 DJNZ DIS
0016 118405 18 LD DE,NN
0019 12 19 LD (DE),A
001A 13 20 INC DE
001B 14 21 INC D
001C 15 22 DEC D
001D 1620 23 LD D,N
001F 17 24 RLA
0020 182E 25 JR DIS
0022 19 26 ADD HL,DE
0023 1A 27 LD A,(DE)
0024 1B 28 DEC DE
0025 1C 29 INC E
0026 1D 30 DEC E
0027 1E20 31 LD E,N
0029 1F 32 RRA
002A 202E 33 JR NZ,DIS
002C 218405 34 LD HL,NN
002F 228405 35 LD (NN),HL
0032 23 36 INC HL
0033 24 37 INC H
0034 25 38 DEC H
0035 2620 39 LD H,N
0037 27 40 DAA
0038 282E 41 JR Z,DIS
003A 29 42 ADD HL,HL
003B 2A8405 43 LD HL,(NN)
003E 2B 44 DEC HL
003F 2C 45 INC L
0040 2D 46 DEC L
0041 2E20 47 LD L,N
0043 2F 48 CPL
0044 302E 49 JR NC,DIS
0046 318405 50 LD SP,NN
0049 328405 51 LD (NN),A
004C 33 52 INC SP
004D 34 53 INC (HL)
004E 35 54 DEC (HL)
004F 3620 55 LD (HL),N
0051 37 56 SCF
0052 382E 57 JR C,DIS
0054 39 58 ADD HL,SP
0055 3A8405 59 LD A,(NN)
0058 3B 60 DEC SP
0059 3C 61 INC A
005A 3D 62 DEC A

LOC OBJ CODE STMT SOURCE STATEMENT

005B 3E20 63 LD A,N
005D 3F 64 CCF
005E 40 65 LD B,B
005F 41 66 LD B,C
0060 42 67 LD B,D
0061 43 68 LD B,E
0062 44 69 LD B,H,NN
0063 45 70 LD B,L
0064 46 71 LD B,(HL)
0065 47 72 LD B,A
0066 48 73 LD C,B
0067 49 74 LD C,C
0068 4A 75 LD C,D
0069 4B 76 LD C,E
006A 4C 77 LD C,H
006B 4D 78 LD C,L
006C 4E 79 LD C,(HL)
006D 4F 80 LD C,A
006E 50 81 LD D,B
006F 51 82 LD D,C
0070 52 83 LD D,D
0071 53 84 LD D,E
0072 54 85 LD D,H
0073 55 86 LD D,L
0074 56 87 LD D,(HL)
0075 57 88 LD D,A
0076 58 89 LD E,B
0077 59 90 LD E,C
0078 5A 91 LD E,D
0079 5B 92 LD E,E
007A 5C 93 LD E,H
007B 5D 94 LD E,L
007C 5E 95 LD E,(HL)
007D 5F 96 LD E,A
007E 60 97 LD H,B
007F 61 98 LD H,C
0080 62 99 LD H,D
0081 63 100 LD H,E
0082 64 101 LD H,H
0083 65 102 LD H,L
0084 66 103 LD H,(HL)
0085 67 104 LD H,A
0086 68 105 LD L,B
0087 69 106 LD L,C
0088 6A 107 LD L.D
0089 6B 108 LD L,E
008A 6C 109 LD L,H
008B 6D 110 LD L,L
008C 6E 111 LD L,(HL)
008D 6F 112 LD L,A
008E 70 113 LD (HL),B
008F 71 114 LD (HL),C
0090 72 115 LD (HL),D
0091 73 116 LD (HL),E
0092 74 117 LD (HL),H
0093 75 118 LD (HL),L
0094 76 119 HALT
0095 77 120 LD (HL),A
0096 78 121 LD A.B
0097 79 122 LD A,C
0098 7A 123 LD A,D
0099 7B 124 LD A,E

118

LOC OBJ CODE STMT SOURCE STATEMENT

009A 7C 125 LD A,H
009B 7D 126 LD A,L
009C 7E 127 LD A,(HL)
009D 7F 128 LD A,A
009E 80 129 ADD A,B
009F 81 130 ADD A,C
00A0 82 131 ADD A,D
00A1 83 132 ADD A,E
00A2 84 133 ADD A,H
00A3 85 134 ADD A,L
00A4 86 135 ADD A,(HL)
00A5 87 136 ADD A,A
00A6 88 137 ADC A,B
00A7 89 138 ADC A,C
00A8 8A 139 ADC A,D
00A9 8B 140 ADC A,E
00AA 8C 141 ADC A,H
00AB 8D 142 ADC A,L
00AC 8E 143 ADC A,(HL)
00AD 8F 144 ADC A,A
00AE 90 145 SUB B
00AF 91 146 SUB C
00B0 92 147 SUB D
00B1 93 148 SUB E
00B2 94 149 SUB H
00B3 95 150 SUB L
00B4 96 151 SUB (HL)
00B5 97 152 SUB A
00B6 98 153 SBC A,B
00B7 99 154 SBC A,C
00B8 9A 155 SBC A,D
00B9 9B 156 SBC A,E
00BA 9C 157 SBC A,H
00BB 9D 158 SBC A,L
00BC 9E 159 SBC A,(HL)
00BD 9F 160 SBC A,A
00BE A0 161 AND B
00BF A1 162 AND C
00C0 A2 163 AND D
00C1 A3 164 AND E
00C2 A4 165 AND H
00C3 A5 166 AND L
00C4 A6 167 AND (HL)
00C5 A7 168 AND A
00C6 A8 169 XOR B
00C7 A9 170 XOR C
00C8 AA 171 XOR D
00C9 AB 172 XOR E
00CA AC 173 XOR H
00CB AD 174 XOR L
00CC AE 175 XOR (HL)
00CD AF 176 XOR A
00CE B0 177 OR B
00CF B1 178 OR C
00D0 B2 179 OR D
00D1 B3 180 OR E
00D2 B4 181 OR H
00D3 B5 182 OR L
00D4 B6 183 OR (HL)
00D5 B7 184 OR A
00D6 B8 185 CP H
00D7 B9 186 CP C
00D8 BA 187 CP D
00D9 BB 188 CP E
00DA BC 189 CP H
00DB BD 190 CPL
00DC BE 191 CP (HL)
00DD BF 192 CPA
00DE C0 193 RET NZ

LOC OBJ CODE STMT SOURCE STATEMENT

00DF C1 194 POP BC
00E0 C28405 195 JP NZ,NN
00E3 C38405 196 JP NN
00E6 C48405 197 CALL NZ,NN
00E9 C5 198 PUSH BC
00EA C620 199 ADD A,N
00EC C7 200 RST 0
00ED C8 201 RET Z
00EE C9 202 RET
00EF CA8405 203 JP Z,NN
00F2 CC8405 204 CALL Z,NN
00F5 CD8405 205 CALL NN
00F8 CE20 206 ADC A,N
00FA CF 207 RST 8
00FB D0 208 RET NC
00FC D1 209 POP DE
00FD D28405 210 JP NC,NN
0100 D320 211 OUT N,A
0102 D48405 212 CALL NC,NN
0105 D5 213 PUSH DE
0106 D620 214 SUB N
0108 D7 215 RST 10H
0109 D8 216 RET C
010A D9 217 EXX
010B DA8405 218 JP C,NN
010E DB20 219 IN A,N
0110 DC8405 220 CALL C,NN
0113 DE20 221 SBC A,N
0115 DF 222 RST 18H
0116 E0 223 RET PO
0117 EI 224 POP HL
0118 E28405 225 JP PO,NN
011B E3 226 EX SP).HL
011C E48405 227 CALL PO,NN
011F E5 228 PUSH HL
0120 E620 229 AND N
0122 E7 230 RST 20H
0123 E8 231 RET PE
0124 E9 232 JP (HL)
0125 EA8405 233 JP PE,NN
0128 EB 234 EX DE,HL
0129 EC8405 235 CALL PE,NN
012C EE20 236 XOR N
012E EF 237 RST 28H
012F F0 238 RET P
0130 F1 239 POP AF
0131 F28405 240 JP P,NN
0134 F3 241 DI
0135 F48405 242 CALL P,NN
0138 F5 243 PUSH AF
0139 F620 244 OR N
013B F7 245 RST 30H
013C F8 246 RET M
013D F9 247 LD SP,HL
013E FA8405 248 JP M,NN
0141 EB 249 E1
0142 FC8405 250 CALL M,NN
0145 FE20 251 CP N
0147 FF 252 RST 38H
0148 CB00 253 RLC B
014A CB01 254 RLC C
014C CB02 255 RLC D
014E CB03 256 RLC E
0150 CB04 257 RLC H
0152 CB05 258 RLC L
0154 CB06 259 RLC (HL)
0156 CB07 260 RLC A
0158 CB08 261 RRC B
015A CB09 262 RRC C

119

LOC OBJ CODE STMT SOURCE STATEMENT

015C CB0A 263 RRC D
015E CB0B 264 RRC E
0160 CB0C 265 RRC H
0162 CB0D 266 RRC L
0164 CB0E 267 RRC (HL)
0166 CB0F 268 RRC A
0168 CB10 269 RL B
016A CB11 270 RL C
016C CB12 271 RL D
016E CB13 272 RL E
0170 CB14 273 RL H
0172 CB15 274 RL L
0174 CB16 275 RL (HL)
0176 CB17 276 RL A
0178 CB18 277 RR B
017A CB19 278 RR C
017C CB1A 279 RR D
017E CB1B 280 RR E
0180 CB1C 281 RR H
0182 CB1D 282 RR L
0184 CB1E 283 RR (HL)
0186 CB1F 284 RRA
0188 CB20 285 SLA B
018A CB21 286 SLA C
018C CB22 287 SLA D
018E CB23 288 SLA E
0190 CB24 289 SLA H
0192 CB25 290 SLA L
0194 CB26 291 SLA (HL)
0196 CB27 292 SLA A
0198 CB28 293 SRA B
019A CB29 294 SRA C
019C CB2A 295 SRA D
019E CB2B 296 SRA E
01A0 CB2C 297 SRA H
01A2 CB2D 298 SRA L
01A4 CB2E 299 SRA (HL)
01A6 CB2F 300 SRA A
01A8 CB38 301 SRL B
01AA CB39 302 SRL C
01AC CB3A 303 SRL D
01AE CB3B 304 SRL E
01B0 CB3C 305 SRL H
01B2 CB3D 306 SRL L
01B4 CB3E 307 SRL (HL)
01B6 CB3F 308 SRL A
01B8 CB40 309 BIT 0,B
01BA CB41 310 BIT 0,C
01BC CB42 311 BIT 0,D
01BE CB43 312 BIT 0,E
01C0 CB44 313 BIT 0,H
01C2 CB45 314 BIT 0,L
01C4 CB46 315 BIT 0,(HL)
01C6 CB47 316 BIT 0,A
01C8 CB48 317 BIT 1,B
01CA CB49 318 BIT 1,C
01CC CB4A 319 BIT 1,D
01CE CB4B 320 BIT 1.E
01D0 CB4C 321 BIT 1,H
01D2 CB4D 322 BIT 1,L
01D4 CB4E 323 BIT 1,(HL)
01D6 CB4F 324 BIT 1,A
01D8 CB50 325 BIT 2,B
01DA CB51 326 BIT 2,C
01DC CB52 327 BIT 2,D
01DE CB53 328 BIT 2,E
01E0 CB54 329 BIT 2,H
01E2 CB55 330 BIT 2,L
01E4 CB56 331 BIT 2,(HL)

LOC OBJ CODE STMT SOURCE STATEMENT

01E6 CB57 332 BIT 2,A
01E8 CB58 333 BIT 3,B
01EA CB59 334 BIT 3,C
01EC CB5A 335 BIT 3,D
01EE CB5B 336 BIT 3,E
01F0 CB5C 337 BIT 3,H
01F2 CB5D 338 BIT 3,L
01F4 CB5E 339 BIT 3,(HL)
01F6 CB5F 340 BIT 3,A
01F8 CB60 341 BIT 4,H
01FA CB61 342 BIT 4,C
01FC CB62 343 BIT 4,D
01FE CB63 344 BIT 4,E
0200 CB64 345 BIT 4,H
0202 CB65 346 BIT 4,L
0204 CB66 347 BIT 4,(HL)
0206 CB67 348 BIT 4,A
0208 CB68 349 BIT 5,B
020A CB69 350 BIT 5.C
020C CB6A 351 BIT 5,D
020E CB6B 352 BIT 5,E
0210 CB6C 353 BIT 5,H
0212 CB6D 354 BIT 5,L
0214 CB6E 355 BIT 5,(HL)
0216 CB6F 356 BIT 5,A
0218 CB70 357 BIT 6,B
021A CB71 358 BIT 6,C
021C CB72 359 BIT 6,D
021E CB73 360 BIT 6,E
0220 CB74 361 BIT 6,H
0222 CB75 362 BIT 6,L
0224 CB76 363 BIT 6,(HL)
0226 CB77 364 BIT 6,A
0228 CB78 365 BIT 7,B
022A CB79 366 BIT 7,C
022C CB7A 367 BIT 7,D
022E CB7B 368 BIT 7,E
0230 CB7C 369 BIT 7,H
0232 CB7D 370 BIT 7,L
0234 CB7E 371 BIT 7,(HL)
0236 CB7F 372 BIT 7,A
0238 CB80 373 RES 0,B
023A CB81 374 RES 0,C
023C CB82 375 RES 0,D
023E CB83 376 RES 0,E
0240 CB84 377 RES 0,H
0242 CB85 378 RES 0,L
0244 CB86 379 RES 0,(HL)
0246 CB87 380 RES 0,A
0248 CB88 381 RES 1,B
024A CB89 382 RES 1,C
024C CB8A 383 RES 1,D
024E CB8B 384 RES 1,E
0250 CB8C 385 RES 1,H
0252 CB8D 386 RES 1,L
0254 CB8E 387 RES 1,(HL)
0256 CB8F 388 RES 1,A
0258 CB90 389 RES 2,B
025A CB91 390 RES 2,C
025C CB92 391 RES 2,D
025E CB93 392 RES 2,E
0260 CB94 393 RES 2,H
0262 CB95 394 RES 2,L
0264 CB96 395 RES 2,(HL)
0266 CB97 396 RES 2,A
0268 CB98 397 RES 3,B
026A CB99 398 RES 3,C
026C CB9A 399 RES 3,D
026E CB9B 400 RES 3,E

120

LOC OBJ CODE STMT SOURCE STATEMENT

0270 CB9C 401 RES 3,H
0272 CB9D 402 RES 3,L
0274 CB9E 403 RES 3,(HL)
0276 CB9F 404 RES 3,A
0278 CBA0 405 RES 4,B
027A CBA1 406 RES 4,C
027C CBA2 407 RES 4,D
027E CBA3 408 RES 4,E
0280 CBA4 409 RES 4,H
0282 CBA5 410 RES 4,L
0284 CBA6 411 RES 4,(HL)
0286 CBA7 412 RES 4,A
0288 CBA8 413 RES 5,B
028A CBA9 414 RES 5,C
028C CBAA 415 RES 5,D
028E CBAB 416 RES 5,E
0290 CBAC 417 RES 5,H
0292 CBAD 418 RES 5,L
0294 CBAE 419 RES 5,(HL)
0296 CBAF 420 RES 5,A
0298 CBB0 421 RES 6,B
029A CBB1 422 RES 6,C
029C CBB2 423 RES 6,D
029E CBB3 424 RES 6,E
02A0 CBB4 425 RES 6,H
02A2 CBB5 426 RES 6,L
02A4 CBB6 427 RES 6,(HL)
02A6 CBB7 428 RES 6,A
02A8 CBB8 429 RES 7,B
02AA CBB9 430 RES 7,C
02AC CBBA 431 RES 7,D
02AE CBBB 432 RES 7,E
02B0 CBBC 433 RES 7,H
02B2 CBBD 434 RES 7,L
02B4 CBBE 435 RES 7,(HL)
02B6 CBBF 436 RES 7,A
02B8 CBC0 437 SET 0,B
02BA CBC1 438 SET 0,C
02BC CBC2 439 SET 0,D
02BE CBC3 440 SET 0,E
02C0 CBC4 441 SET 0,H
02C2 CBC5 442 SET 0,L
02C4 CBC6 443 SET 0,(HL)
02C6 CBC7 444 SET 0,A
02C8 CBC8 445 SET 1,B
02CA CBC9 446 SET 1,C
02CC CBCA 447 SET 1,D
02CE CBCB 448 SET 1,E
02D0 CBCC 449 SET 1,H
02D2 CBCD 450 SET 1,L
02D4 CBCE 451 SET 1,(HL)
02D6 CBCF 452 SET 1,A
02D8 CBD0 453 SET 2,B
02DA CBD1 454 SET 2,C
02DC CBD2 455 SET 2,D
02DE CBD3 456 SET 2,E
02E0 CBD4 457 SET 2,H
02E2 CBD5 458 SET 2,L
02E4 CBD6 459 SET 2,(HL)
02E6 CBD7 460 SET 2,A
02E8 CBD8 461 SET 3,B
02EA CBD9 462 SET 3,C
02EC CBDA 463 SET 3,D
02EE CBDB 464 SET 3,E
02F0 CBDC 465 SET 3,H
02F2 CBDD 466 SET 3,L
02F4 CBDE 467 SET 3,(HL)
02F6 CBDF 468 SET 3,A
02F8 CBE0 469 SET 4,B

LOC OBJ CODE STMT SOURCE STATEMENT

02FA CBE1 470 SET 4,C
02FC CBE2 471 SET 4,D
02FE CBE3 472 SET 4,E
0300 CBE4 473 SET 4,H
0302 CBE5 474 SET 4,L
0304 CBE6 475 SET 4,(HL)
0306 CBE7 476 SET 4,A
0308 CBE8 477 SET 5,B
030A CBE9 478 SET 5,C
030C CBEA 479 SET 5,D
030E CBEB 480 SET 5,E
0310 CBEC 481 SET 5,H
0312 CBED 482 SET 5,L
0314 CBEE 483 SET 5,(HL)
0316 CBEF 484 SET 5,A
0318 CBF0 485 SET 6,B
031A CBF1 486 SET 6,C
031C CBF2 487 SET 6,D
031E CBF3 488 SET 6,E
0320 CBF4 489 SET 6,H
0322 CBF5 490 SET 6,L
0324 CBF6 491 SET 6,(HL)
0326 CBF7 492 SET 6,A
0328 CBF8 493 SET 7,H
032A CBF9 494 SET 7,C
032C CBFA 495 SET 7,D
032E CBFB 496 SET 7,E
0330 CBFC 497 SET 7,H
0332 CBFD 498 SET 7,L
0334 CBFE 499 SET 7,(HL)
0336 CBFF 500 SET 7,A
0338 DD09 501 ADD IX,BC
033A DD19 502 ADD IX,DE
033C DD218405 503 LD IX,NN
0340 DD228405 504 LD (NN),IX
0344 DD23 505 INC IX
0346 DD29 506 ADD IX,IX
0348 DD2A8405 507 LD IX,(NN)
034C DD2B 508 DEC IX
034E DD3405 509 INC (IX+IND)
0351 DD3505 510 DEC (IX+IND)
0354 DD360520 511 LD (IX+IND),N
0358 DD39 512 ADD IX,SP
035A DD4605 513 LD B,(IX+IND)
035D DD4E05 514 LD C,(IX+IND)
0360 DD5605 515 LD D,(IX+IND)
0363 DD5E05 516 LD E.(IX+IND)
0366 DD6605 517 LD H,(IX+IND)
0369 DD6E05 518 LD L,(IX+IND)
036C DD7005 519 LD (IX+IND),B
036F DD7105 520 LD (IX+IND),C
0372 DD7205 521 LD (IX+IND),D
0375 DD7305 522 LD (IX+IND),E
0378 DD7405 523 LD (IX+IND),H
037B DD7505 524 LD (IX+IND),L
037E DD7705 525 LD (IX+IND),A
0381 DD7E05 526 LD A,(IX+IND)
0384 DD8605 527 ADD A,(IX+IND)
0387 DD8E05 528 ADC A,(IX+IND)
038A DD9605 529 SUB (IX+IND)
038D DD9E05 530 SBC A,(IX+IND)
0390 DDA605 531 AND (IX+IND)
0393 DDAE05 532 XOR (IX+IND)
0396 DDB605 533 OR (IX+IND)
0399 DDBE05 534 CP (IX+IND)
039C DDE1 535 POP IX
039E DDE3 536 EX (SP),IX
03A0 DDE5 537 PUSH IX
03A2 DDE9 538 JP (IX)

121

LOC OBJ CODE STMT SOURCE STATEMENT

03A4 DDF9 539 LD SP,IX
03A6 DDCB0506 540 RLC (IX+IND)
03AA DDCB050E 541 RRC (IX+IND)
03AE DDCB0516 542 RL (IX+IND)
03B2 DDCB051E 543 RR(IX+IND)
03B6 DDCB0526 544 SLA (IX+IND)
03BA DDCB052E 545 SRA (IX+IND)
03BE DDCB053E 546 SRL (IX+IND)
03C2 DDCB0546 547 BIT 0,(IX+IND)
03C6 DDCB054E 548 BIT 1,(IX+IND)
03CA DDCB0556 549 BIT 2,(IX+IND)
03CE DDCB055E 550 BIT 3,(IX+IND)
03D2 DDCB0566 551 BIT 4,(IX+1ND)
03D6 DDCB056E 552 BIT 5,(IX+IND)
03DA DDCB0576 553 BIT 6,(IX+IND)
03DE DDCB057E 554 BIT 7,(IX+IND)
03E2 DDCB0556 555 RES 0,(IX+IND)
03E6 DDCB055E 556 RES 1,(IX+IND)
03EA DDCB0596 557 RES 2,(IX+IND)
03EE DDCB059E 558 RES 3,(IX+IND)
03F2 DDCB05A6 559 RES 4,(IX+1ND)
03F6 DDCB05AE 560 RES 5,(IX+IND)
03FA DDCB05B6 561 RES 6,(IX+IND)
03FE DDCB05BE 562 RES 7,(IX+IND)
0402 DDCB05C6 563 SET 0,(IX+IND)
0406 DDCB05CE 564 SET 1,(IX+IND)
040A DDCB05D6 565 SET 2,(IX+IND)
040E DDCB05DE 566 SET 3,(IX+IND)
0412 DDCB05E6 567 SET 4,(IX+1ND)
0416 DDCB05EE 568 SET 5,(IX+IND)
041A DDCB05F6 569 SET 6,(IX+IND)
041E DDCB05FE 570 SET 7,(IX+IND)
0422 ED40 571 IN H,(C)
0424 ED41 572 OUT (C),B
0426 ED42 573 SBC HL,BC
0428 ED438405 574 LD (NN),BC
042C ED44 575 NEG
042E ED45 576 RETN
0430 ED46 577 IM 0
0432 ED47 578 LD I,A
0434 ED45 579 IN C,(C)
0436 ED49 580 OUT (C),C
0438 ED4A 581 ADC HL,BC
043A ED4B8405 582 LD BC,(NN)
043E ED4D 583 RETI
0440 ED50 584 IN D,(C)
0442 ED51 585 OUT (C),D
0444 ED52 586 SBC HL,DE
0446 ED538405 587 LD (NN),DE
044A ED56 588 IM 1
044C ED57 589 LD A,I
044E ED58 590 IN E,(C)
0450 ED59 591 OUT (C),E
0452 ED5A 592 ADC HL,DE
0454 ED5B8405 593 LD DE,(NN)
0458 ED5E 594 IM 2
045A ED60 595 IN H,(C)
045C ED61 596 OUT (C),H
045E ED62 597 SBC HL,HL
0460 ED67 598 RRD
0462 ED65 599 IN L,(C)
0464 ED69 600 OUT (C),L
0466 ED6A 601 ADC HL,HL
0468 ED6F 602 RLD
046A ED72 603 SBC HL,SP
046C ED738405 604 LD (NN),SP
0470 ED78 605 IN A,(C)
0472 ED79 606 OUT (C),A
0474 ED7A 607 ADC HL,SP

LOC OBJ CODE STMT SOURCE STATEMENT

0476 ED7B8405 608 LD SP,(NN)
047A EDA0 609 LDI
047C EDA1 610 CPI
047E EDA2 611 INI
0480 EDA3 612 OUTI
0482 EDA5 613 LDD
0484 EDA9 614 CPD
0486 EDAA 615 IND
0488 EDAB 616 OUTD
048A EDB0 617 LDIR
048C EDB1 618 CPIR
048E EDB2 619 INIR
0490 EDB3 620 OTIR
0492 EDB8 621 LDDR
0494 EDB9 622 CPDR
0496 EDBA 623 INDR
0498 EDBB 624 OTDR
049A FD09 625 ADD IY,BC
049C FD19 626 ADD IY,DE
049E FD215405 627 LD IY,NN
04A2 FD225405 628 LD (NN),IY
04A6 FD23 629 INC IY
04A8 FD29 630 ADD IY,IY
04AA FD2A8405 631 LD IY,(NN)
04AE FD2B 632 DEC IY
04B0 FD3405 633 INC (IY+IND)
04B3 FD3505 634 DEC (IY+IND)
04B6 FD360520 635 LD (IY+IND),N
04BA FD39 636 ADD IY,SP
04BC FD4605 637 LD B,(IY+IND)
04BF FD4E05 638 LD C,(IY+IND)
04C2 FD5605 639 LD D,(IY+IND)
04C5 FD5E05 640 LD E,(IY+IND)
04C8 FD6605 641 LD H,(IY+IND)
04CB FD6E05 642 LD L,(IY+IND)
04CE FD7005 643 LD (IY+IND),B
04D1 FD7105 644 LD (IY+IND),C
04D4 FD7205 645 LD (IY+IND),D
04D7 FD7305 646 LD (IY+IND),E
04DA FD7405 647 LD (IY+IND),H
04DD FD7505 648 LD (IY+IND),L
04E0 FD7705 649 LD (IY+IND),A
04E3 FD7E05 650 LD A,(IY+IND)
04E6 FD8605 651 ADD A,(IY+IND)
04E9 FD8E05 652 ADC A,(IY+IND)
04EC FD9605 653 SUB (IY+IND)
04EF FD9E05 654 SBC A,(IY+IND)
04F2 FDA605 655 AND (IY+IND)
04F5 FDAE05 656 XOR (IY+IND)
04F8 FDB605 657 OR (IY+IND)
04FB FDBE05 658 CP (IY+IND)
04FE FDE1 659 POP IY
0500 FDE3 660 EX (SP),IY
0502 FDE5 661 PUSH IY
0504 FDE9 662 JP (IY)
0506 FDF9 663 LD SP,IY
0508 FDCB0506 664 RLC (IY+IND)
050C FDCB050E 665 RRC (IY+IND)
0510 FDCB0516 666 RL (IY+IND)
0514 FDCB051E 667 RR (IY+IND)
0518 FDCB0526 668 SLA (IY+IND)
051C FDCB052E 669 SRA (IY+IND)
0520 FDCB053E 670 SRL (IY+IND)
0524 FDCB0546 671 BIT 0,(IY+IND)
0528 FDCB054E 672 BIT 1,(IY+IND)
052C FDCB0556 673 BIT 2,(IY+IND)
0530 FDCB055E 674 BIT 3,(IY+IND)
0534 FDCB0566 675 BIT 4,(IY+IND)
0538 FDCB056E 676 BIT 5,(IY+IND)

122

LOC OBJ CODE STMT SOURCE STATEMENT

053C FDCB0576 677 BIT 6,(IY+IND)
0540 FDCB057E 678 BIT 7,(IY+IND)
0544 FDCB0586 679 RES 0,(IY+IND)
0548 FDCB055E 680 RES 1,(IY+IND)
054C FDCB0596 681 RES 2,(IY+IND)
0550 FDCB059E 682 RES 3,(IY+IND)
0554 FDCB05A6 683 RES 4,(IY+IND)
0558 FDCB05AE 684 RES 5,(IY+IND)
055C FDCB05B6 685 RES 6,(IY+IND)
0560 FDCB05BE 686 RES 7,(IY+IND)
0564 FDCB05C6 687 SET 0,(IY+IND)
0568 FDCB05CE 688 SET 1,(IY+IND)
056C FDCB05D6 689 SET 2,(IY+IND)
0570 FDCB05DE 690 SET 3,(IY+IND)
0574 FDCB05E6 691 SET 4,(IY+IND)
0578 FDCB05EE 692 SET 5,(IY+IND)
057C FDCB05F6 693 SET 6,(IY+IND)
0580 FDCB05FE 694 SET 7,(IY+IND)
0584 695 NN DEFS 2

696 IND EQU 5
697 M EQU 10H
698 N EQU 20H
699 DIS EQU 30H
700 END

123

ALPHABETIC LIST OF INSTRUCTION SET
Z-80 CROSS ASSEMBLER VERSION 1.06 OF 06/18/76

07/09/76 10:22:47 OPCODE LISTING

LOC OBJ CODE STMT SOURCE STATEMENT

0000 8E 1 ADC A,(HL)
0001 DD8E05 2 ADC A,(IX+IND)
0004 FD8E05 3 ADC A,(IY+IND)
0007 8F 4 ADC A,A
0008 88 5 ADC A,B
0009 89 6 ADC A,C
000A 8A 7 ADC A,D
000B 8B 8 ADC A,E
000C 8C 9 ADC A,H
000D 8D 10 ADC A,L
000E CE20 11 ADC A,N
0010 ED4A 12 ADC HL,BC
0012 ED5A 13 ADC HL,DE
0014 ED6A 14 ADC HL,HL
0016 ED7A 15 ADC HL,SP
0018 86 16 ADD A,(HL)
0019 DD8605 17 ADD A,(IX+IND)
001C FD8605 18 ADD A,(IY+IND)
001F 87 19 ADD A,A
0020 80 20 ADD A,B
0021 81 21 ADD A,C
0022 82 22 ADD A,D
0023 83 23 ADD A,E
0024 84 24 ADD A,H
0025 85 25 ADD A,L
0026 C620 26 ADD A,N
0028 09 27 ADD HL,BC
0029 19 28 ADD HL,DE
002A 29 29 ADD HL,HL
002B 39 30 ADD HL,SP
002C DD09 31 ADD IX,BC
002E DD19 32 ADD IX,DE
0030 DD29 33 ADD IX,IX
0032 DD39 34 ADD IX,SP
0034 FD09 35 ADD IY,BC
0036 FD19 36 ADD IY,DE
0038 FD29 37 ADD IY,IY
003A FD39 38 ADD IY,SP
003C A6 39 AND (HL)
003D DDA605 40 AND (IX+IND)
0040 FDA605 41 AND (IY+IND)
0043 A7 42 AND A
0044 A0 43 AND B
0045 A1 44 AND C
0046 A2 45 AND D
0047 A3 46 AND E
0048 A4 47 AND H
0049 A5 48 AND L
004A E620 49 AND N
004C CB46 50 BIT 0,(HL)
004E DDCB0546 51 BIT 0,(IX+IND)
0052 FDCB0546 52 BIT 0,(IY+IND)
0056 CB47 53 BIT 0,A
0058 CB40 54 BIT 0,B
005A CB41 55 BIT 0,C
005C CB42 56 BIT 0,D
005E CB43 57 BIT 0,E
0060 CB44 58 BIT 0,H
0062 CB45 59 BIT 0,L
0064 CB4E 60 BIT 1,(HL)
0066 DDCB054E 61 BIT 1,(IX+IND)
006A FDCB054E 62 BIT 1,(IY+IND)
006E CB4F 63 BIT 1,A

LOC OBJ CODE STMT SOURCE STATEMENT

0070 CB48 64 BIT 1,B
0072 CB49 65 BIT 1,C
0074 CB4A 66 BIT 1,D
0076 CB4B 67 BIT 1,E
0078 CB4C 68 BIT 1,H
007A CB4D 69 BIT 1,L
007C CB56 70 BIT 2,(HL)
007E DDCB0556 71 BIT 2,(IX+IND)
0082 FDCB0556 72 BIT 2,(IY+IND)
0086 CB57 73 BIT 2,A
0088 CB50 74 BIT 2,B
008A CB51 75 BIT 2,C
008C CB52 76 BIT 2,D
008E CB53 77 BIT 2,E
0090 CB54 78 BIT 2,H
0092 CB55 79 BIT 2,L
0094 CB5E 80 BIT 3,(HL)
0096 DDCB055E 81 BIT 3,(IX+IND)
009A FDCB055E 82 BIT 3,(IY+IND)
009E CB5F 83 BIT 3,A
00A0 CB58 84 BIT 3,B
00A2 CB59 85 BIT 3,C
00A4 CB5A 86 BIT 3,D
00A6 CB5B 87 BIT 3,E
00A8 CB5C 88 BIT 3,H
00AA CB5D 89 BIT 3,L
00AC CB66 90 BIT 4,(HL)
00AE DDCB0566 91 BIT 4,(IX+1ND)
00B2 FDCB0566 92 BIT 4,(IY+IND)
00B6 CB67 93 BIT 4,A
00B8 CB61 94 BIT 4,C
00BA CB62 95 BIT 4,D
00BC CB63 96 BIT 4,E
00BE CB60 97 BIT 4,H
00C0 CB64 98 BIT 4,H
00C2 CB65 99 BIT 4,L
00C4 CB6E 100 BIT 5,(HL)
00C6 DDCB056E 101 BIT 5,(IX+IND)
00CA FDCB056E 102 BIT 5,(IY+IND)
00CE CB6F 103 BIT 5,A
00D0 CB68 104 BIT 5,B
00D2 CB69 105 BIT 5,C
00D4 CB6A 106 BIT 5,D
00D6 CB6B 107 BIT 5,E
00D8 CB6C 108 BIT 5,H
00DA CB6D 109 BIT 5,L
00DC CB76 110 BIT 6,(HL)
00DE DDCB0576 111 BIT 6,(IX+IND)
00E2 FDCB0576 112 BIT 6,(IY+IND)
00E6 CB77 113 BIT 6,A
00E8 CB70 114 BIT 6,B
00EA CB71 115 BIT 6,C
00EC CB72 116 BIT 6,D
00EE CB73 117 BIT 6,E
00F0 CB74 118 BIT 6,H
00F2 CB75 119 BIT 6,L
00F4 CB7E 120 BIT 7,(HL)
00F6 DDCB057E 121 BIT 7,(IX+IND)
00FA FDCB057E 122 BIT 7,(IY+IND)
00FE CB7F 123 BIT 7,A
0100 CB78 124 BIT 7,B
0102 CB79 125 BIT 7,C
0104 CB7A 126 BIT 7,D

124

LOC OBJ CODE STMT SOURCE STATEMENT

0106 CB7B 127 BIT 7,E
0108 CB7C 128 BIT 7,H
010A CB7D 129 BIT 7,L
010C DC8405 130 CALL C,NN
010F FC8405 131 CALL M,NN
0112 D48405 132 CALL NC,NN
0115 CD8405 133 CALL NN
0118 C48405 134 CALL NZ,NN
011B F48405 135 CALL P,NN
011E EC8405 136 CALL PE,NN
0121 E48405 137 CALL PO,NN
0124 CC8405 138 CALL Z,NN
0127 3F 139 CCF
0128 BE 140 CP (HL)
0129 DDBE05 141 CP (IX+IND)
012C FDBE05 142 CP (IY+IND)
012F BB 143 CP E
0130 B8 144 CP H
0131 BC 145 CP H
0132 FE20 146 CP N
0134 BF 147 CPA
0135 B9 148 CPC
0136 BA 149 CPD
0137 EDA9 150 CPD
0139 EDB9 151 CPDR
013B EDA1 152 CPI
013D EDB1 153 CPIR
013F 2F 154 CPL
0140 BD 155 CPL
0141 27 156 DAA
0142 35 157 DEC (HL)
0143 DD3505 158 DEC (IX+IND)
0146 FD3505 159 DEC (IY+IND)
0149 3D 160 DEC A
014A 05 161 DEC B
014B 0B 162 DEC BC
014C 0D 163 DEC C
014D 15 164 DEC D
014E 1B 165 DEC DE
014F 1D 166 DEC E
0150 25 167 DEC H
0151 2B 168 DEC HL
0152 DD2B 169 DEC IX
0154 FD2B 170 DEC IY
0156 2D 171 DEC L
0157 3B 172 DEC SP
0158 F3 173 DI
0159 102E 174 DJNZ DIS
015B EB 175 EI
015C DDE3 176 EX (SP),IX
015E FDE3 177 EX (SP),IY
0160 08 178 EX AF,AF'
0161 EB 179 EX DE,HL
0162 E3 180 EX SP),HL
0163 D9 181 EXX
0164 76 182 HALT
0165 ED46 183 IM 0
0167 ED56 184 IM 1
0169 ED5E 185 IM 2
016B ED78 186 IN A,(C)
016D DB20 187 IN A,N
016F ED45 188 IN C,(C)
0171 ED50 189 IN D,(C)
0173 ED58 190 IN E,(C)
0175 ED40 191 IN H,(C)
0177 ED60 192 IN H,(C)
0179 ED65 193 IN L,(C)
017B 34 194 INC (HL)
017C DD3405 195 INC (IX+IND)

LOC OBJ CODE STMT SOURCE STATEMENT

017F FD3405 196 INC (IY+IND)
0182 3C 197 INC A
0183 04 198 INC B
0184 03 199 INC BC
0185 0C 200 INC C
0186 14 201 INC D
0187 13 202 INC DE
0188 1C 203 INC E
0189 24 204 INC H
018A 23 205 INC HL
018B DD23 206 INC IX
018D FD23 207 INC IY
018F 2C 208 INC L
0190 33 209 INC SP
0191 EDAA 210 IND
0193 EDBA 211 INDR
0195 EDA2 212 INI
0197 EDB2 213 INIR
0199 E9 214 JP (HL)
019A DDE9 215 JP (IX)
019C FDE9 216 JP (IY)
019E DA8405 217 JP C,NN
01A1 FA8405 218 JP M,NN
01A4 D28405 219 JP NC,NN
01A7 C38405 220 JP NN
01AA C28405 221 JP NZ,NN
01AD F28405 222 JP P,NN
01B0 EA8405 223 JP PE,NN
01B3 E28405 224 JP PO,NN
01B6 CA8405 225 JP Z,NN
01B9 382E 226 JR C,DIS
01BB 182E 227 JR DIS
01BD 302E 228 JR NC,DIS
01BF 202E 229 JR NZ,DIS
01C1 282E 230 JR Z,DIS
01C3 02 231 LD (BC),A
01C4 12 232 LD (DE),A
01C5 77 233 LD (HL),A
01C6 70 234 LD (HL),B
01C7 71 235 LD (HL),C
01C8 72 236 LD (HL),D
01C9 73 237 LD (HL),E
01CA 74 238 LD (HL),H
01CB 75 239 LD (HL),L
01CC 3620 240 LD (HL),N
01CE DD7705 241 LD (IX+IND),A
01D1 DD7005 242 LD (IX+IND),B
01D4 DD7105 243 LD (IX+IND),C
01D7 DD7205 244 LD (IX+IND),D
01DA DD7305 245 LD (IX+IND),E
01DD DD7405 246 LD (IX+IND),H
01E0 DD7505 247 LD (IX+IND),L
01E3 DD360520 248 LD (IX+IND),N
01E7 FD7705 249 LD (IY+IND),A
01EA FD7005 250 LD (IY+IND),B
01ED FD7105 251 LD (IY+IND),C
01F0 FD7205 252 LD (IY+IND),D
01F3 FD7305 253 LD (IY+IND),E
01F6 FD7405 254 LD (IY+IND),H
01F9 FD7505 255 LD (IY+IND),L
01FC FD360520 256 LD (IY+IND),N
0200 328405 257 LD (NN),A
0203 ED438405 258 LD (NN),BC
0207 ED538405 259 LD (NN),DE
020B 228405 260 LD (NN),HL
020E DD228405 261 LD (NN),IX
0212 FD225405 262 LD (NN),IY
0216 ED738405 263 LD (NN),SP
021A 0A 264 LD A,(BC)

125

LOC OBJ CODE STMT SOURCE STATEMENT

021B 1A 265 LD A,(DE)
021C 7E 266 LD A,(HL)
021D DD7E05 267 LD A,(IX+IND)
0220 FD7E05 268 LD A,(IY+IND)
0223 3A8405 269 LD A,(NN)
0226 7F 270 LD A,A
0227 78 271 LD A,B
0228 79 272 LD A,C
0229 7A 273 LD A,D
022A 7B 274 LD A,E
022B 7C 275 LD A,H
022C ED57 276 LD A,I
022E 7D 277 LD A,L
022F 3E20 278 LD A,N
0231 46 279 LD B,(HL)
0232 DD4605 280 LD B,(IX+IND)
0235 FD4605 281 LD B,(IY+IND)
0238 47 282 LD B,A
0239 40 283 LD B,B
023A 41 284 LD B,C
023B 42 285 LD B,D
023C 43 286 LD B,E
023D 44 287 LD B,H,NN
023E 45 288 LD B,L
023F 0620 289 LD B,N
0241 ED4B8405 290 LD BC,(NN)
0245 018405 291 LD BC,NN
0248 4E 292 LD C,(HL)
0249 DD4E05 293 LD C,(IX+IND)
024C FD4E05 294 LD C,(IY+IND)
024F 4F 295 LD C,A
0250 48 296 LD C,B
0251 49 297 LD C,C
0252 4A 298 LD C,D
0253 4B 299 LD C,E
0254 4C 300 LD C,H
0255 4D 301 LD C,L
0256 0E20 302 LD C,N
0258 56 303 LD D,(HL)
0259 DD5605 304 LD D,(IX+IND)
025C FD5605 305 LD D,(IY+IND)
025F 57 306 LD D,A
0260 50 307 LD D,B
0261 51 308 LD D,C
0262 52 309 LD D,D
0263 53 310 LD D,E
0264 54 311 LD D,H
0265 55 312 LD D,L
0266 1620 313 LD D,N
0268 ED5B8405 314 LD DE,(NN)
026C 118405 315 LD DE,NN
026F 5E 316 LD E,(HL)
0270 DD5E05 317 LD E,(IX+IND)
0273 FD5E05 318 LD E,(IY+IND)
0276 5F 319 LD E,A
0277 58 320 LD E,B
0278 59 321 LD E,C
0279 5A 322 LD E,D
027A 5B 323 LD E,E
027B 5C 324 LD E,H
027C 5D 325 LD E,L
027D 1E20 326 LD E,N
027F 66 327 LD H,(HL)
0280 DD6605 328 LD H,(IX±IND)
0283 FD6605 329 LD H,(IY+IND)
0286 67 330 LD H,A
0287 60 331 LD H,B
0288 61 332 LD H,C
0289 62 333 LD H,D

LOC OBJ CODE STMT SOURCE STATEMENT

028A 63 334 LD H,E
028B 64 335 LD H,H
028C 65 336 LD H,L
028D 2620 337 LD H,N
028F 2A8405 338 LD HL,(NN)
0292 218405 339 LD HL,NN
0295 ED47 340 LD I,A
0297 DD2A8405 341 LD IX,(NN)
029B DD218405 342 LD IX,NN
029F FD2A8405 343 LD IY,(NN)
02A3 FD215405 344 LD IY,NN
02A7 6E 345 LD L,(HL)
02A8 DD6E05 346 LD L,(IX+IND)
02AB FD6E05 347 LD L,(IY+IND)
02AE 6F 348 LD L,A
02AF 68 349 LD L,B
02B0 69 350 LD L,C
02B1 6A 351 LD L,D
02B2 6B 352 LD L,E
02B3 6C 353 LD L,H
02B4 6D 354 LD L,L
02B5 2E20 355 LD L,N
02B7 ED7B8405 356 LD SP,(NN)
02BB F9 357 LD SP,HL
02BC DDF9 358 LD SP,IX
02BE FDF9 359 LD SP,IY
02C0 318405 360 LD SP,NN
02C3 EDA5 361 LDD
02C5 EDB8 362 LDDR
02C7 EDA0 363 LDI
02C9 EDB0 364 LDIR
02CB ED44 365 NEG
02CD 00 366 NOP
02CE B6 367 OR (HL)
02CF DDB605 368 OR (IX+IND)
02D2 FDB605 369 OR (IY+IND)
02D5 B7 370 OR A
02D6 B0 371 OR B
02D7 B1 372 OR C
02D8 B2 373 OR D
02D9 B3 374 OR E
02DA B4 375 OR H
02DB B5 376 OR L
02DC F620 377 OR N
02DE EDBB 378 OTDR
02E0 EDB3 379 OTIR
02E2 ED79 380 OUT (C),A
02E4 ED41 381 OUT (C),B
02E6 ED49 382 OUT (C),C
02E8 ED51 383 OUT (C),D
02EA ED59 384 OUT (C),E
02EC ED61 385 OUT (C),H
02EE ED69 386 OUT (C),L
02F0 D320 387 OUT N,A
02F2 EDAB 388 OUTD
02F4 EDA3 389 OUTI
02F6 F1 390 POP AF
02F7 C1 391 POP BC
02F8 D1 392 POP DE
02F9 E1 393 POP HL
02FA DDE1 394 POP IX
02FC FDE1 395 POP IY
02FE F5 396 PUSH AF
02FF C5 397 PUSH BC
0300 D5 398 PUSH DE
0301 E5 399 PUSH HL
0302 DDE5 400 PUSH IX
0304 FDE5 401 PUSH IY
0306 CB86 402 RES 0,(HL)

126

LOC OBJ CODE STMT SOURCE STATEMENT

0308 DDCB0556 403 RES 0,(IX+IND)
030C FDCB0586 404 RES 0,(IY+IND)
0310 CB87 405 RES 0,A
0312 CB80 406 RES 0,B
0314 CB81 407 RES 0,C
0316 CB82 408 RES 0,D
0318 CB83 409 RES 0,E
031A CB84 410 RES 0,H
031C CB85 411 RES 0,L
031E CB8E 412 RES 1,(HL)
0320 DDCB055E 413 RES 1,(IX+IND)
0324 FDCB055E 414 RES 1,(IY+IND)
0328 CB8F 415 RES 1,A
032A CB88 416 RES 1,B
032C CB89 417 RES 1,C
032E CB8A 418 RES 1,D
0330 CB8B 419 RES 1,E
0332 CB8C 420 RES 1,H
0334 CB8D 421 RES 1,L
0336 CB96 422 RES 2,(HL)
0338 DDCB0596 423 RES 2,(IX+IND)
033C FDCB0596 424 RES 2,(IY+IND)
0340 CB97 425 RES 2,A
0342 CB90 426 RES 2,B
0344 CB91 427 RES 2,C
0346 CB92 428 RES 2,D
0348 CB93 429 RES 2,E
034A CB94 430 RES 2,H
034C CB95 431 RES 2,L
034E CB9E 432 RES 3,(HL)
0350 DDCB059E 433 RES 3,(IX+IND)
0354 FDCB059E 434 RES 3,(IY+IND)
0358 CB9F 435 RES 3,A
035A CB98 436 RES 3,B
035C CB99 437 RES 3,C
035E CB9A 438 RES 3,D
0360 CB9B 439 RES 3,E
0362 CB9C 440 RES 3,H
0364 CB9D 441 RES 3,L
0366 CBA6 442 RES 4,(HL)
0368 DDCB05A6 443 RES 4,(IX+1ND)
036C FDCB05A6 444 RES 4,(IY+IND)
0370 CBA7 445 RES 4,A
0372 CBA0 446 RES 4,B
0374 CBA1 447 RES 4,C
0376 CBA2 448 RES 4,D
0378 CBA3 449 RES 4,E
037A CBA4 450 RES 4,H
037C CBA5 451 RES 4,L
037E CBAE 452 RES 5,(HL)
0380 DDCB05AE 453 RES 5,(IX+IND)
0384 FDCB05AE 454 RES 5,(IY+IND)
0388 CBAF 455 RES 5,A
038A CBA8 456 RES 5,B
038C CBA9 457 RES 5,C
038E CBAA 458 RES 5,D
0390 CBAB 459 RES 5,E
0392 CBAC 460 RES 5,H
0394 CBAD 461 RES 5,L
0396 CBB6 462 RES 6,(HL)
0398 DDCB05B6 463 RES 6,(IX+IND)
039C FDCB05B6 464 RES 6,(IY+IND)
03A0 CBB7 465 RES 6,A
03A2 CBB0 466 RES 6,B
03A4 CBB1 467 RES 6,C
03A6 CBB2 468 RES 6,D
03A8 CBB3 469 RES 6,E
03AA CBB4 470 RES 6,H
03AC CBB5 471 RES 6,L

LOC OBJ CODE STMT SOURCE STATEMENT

03AE CBBE 472 RES 7,(HL)
03B0 DDCB05BE 473 RES 7,(IX+IND)
03B4 FDCB05BE 474 RES 7,(IY+IND)
03B8 CBBF 475 RES 7,A
03BA CBB8 476 RES 7,B
03BC CBB9 477 RES 7,C
03BE CBBA 478 RES 7,D
03C0 CBBB 479 RES 7,E
03C2 CBBC 480 RES 7,H
03C4 CBBD 481 RES 7,L
03C6 C9 482 RET
03C7 D8 483 RET C
03C8 F8 484 RET M
03C9 D0 485 RET NC
03CA C0 486 RET NZ
03CB F0 487 RET P
03CC E8 488 RET PE
03CD E0 489 RET PO
03CE C8 490 RET Z
03CF ED4D 491 RETI
03D1 ED45 492 RETN
03D3 CB16 493 RL (HL)
03D5 DDCB0516 494 RL (IX+IND)
03D9 FDCB0516 495 RL (IY+IND)
03DD CB17 496 RL A
03DF CB10 497 RL B
03E1 CB11 498 RL C
03E3 CB12 499 RL D
03E5 CB13 500 RL E
03E7 CB14 501 RL H
03E9 CB15 502 RL L
03EB 17 503 RLA
03EC CB06 504 RLC (HL)
03EE DDCB0506 505 RLC (IX+IND)
03F2 FDCB0506 506 RLC (IY+IND)
03F6 CB07 507 RLC A
03F8 CB00 508 RLC B
03FA CB01 509 RLC C
03FC CB02 510 RLC D
03FE CB03 511 RLC E
0400 CB04 512 RLC H
0402 CB05 513 RLC L
0404 07 514 RLCA
0405 ED6F 515 RLD
0407 FDCB051E 516 RR (IY+IND)
040B CB18 517 RR B
040D CB19 518 RR C
040F CB1A 519 RR D
0411 CB1B 520 RR E
0413 CB1C 521 RR H
0415 CB1D 522 RR L
0417 CB1E 523 RR (HL)
0419 DDCB051E 524 RR(IX+IND)
041D 1F 525 RRA
041E CB1F 526 RRA
0420 CB0E 527 RRC (HL)
0422 DDCB050E 528 RRC (IX+IND)
0426 FDCB050E 529 RRC (IY+IND)
042A CB0F 530 RRC A
042C CB08 531 RRC B
042E CB09 532 RRC C
0430 CB0A 533 RRC D
0432 CB0B 534 RRC E
0434 CB0C 535 RRC H
0436 CB0D 536 RRC L
0438 0F 537 RRCA
0439 ED67 538 RRD
043B C7 539 RST 0
043C D7 540 RST 10H

127

LOC OBJ CODE STMT SOURCE STATEMENT

043D DF 541 RST 18H
043E E7 542 RST 20H
043F EF 543 RST 28H
0440 F7 544 RST 30H
0441 FF 545 RST 38H
0442 CF 546 RST 8
0443 9E 547 SBC A,(HL)
0444 DD9E05 548 SBC A,(IX+IND)
0447 FD9E05 549 SBC A,(IY+IND)
044A 9F 550 SBC A,A
044B 98 551 SBC A,B
044C 99 552 SBC A,C
044D 9A 553 SBC A,D
044E 9B 554 SBC A,E
044F 9C 555 SBC A,H
0450 9D 556 SBC A,L
0451 DE20 557 SBC A,N
0453 ED42 558 SBC HL,BC
0455 ED52 559 SBC HL,DE
0457 ED62 560 SBC HL,HL
0459 ED72 561 SBC HL,SP
045B 37 562 SCF
045C CBC6 563 SET 0,(HL)
045E DDCB05C6 564 SET 0,(IX+IND)
0462 FDCB05C6 565 SET 0,(IY+IND)
0466 CBC7 566 SET 0,A
0468 CBC0 567 SET 0,B
046A CBC1 568 SET 0,C
046C CBC2 569 SET 0,D
046E CBC3 570 SET 0,E
0470 CBC4 571 SET 0,H
0472 CBC5 572 SET 0,L
0474 CBCE 573 SET 1,(HL)
0476 DDCB05CE 574 SET 1,(IX+IND)
047A FDCB05CE 575 SET 1,(IY+IND)
047E CBCF 576 SET 1,A
0480 CBC8 577 SET 1,B
0482 CBC9 578 SET 1,C
0484 CBCA 579 SET 1,D
0486 CBCB 580 SET 1,E
0488 CBCC 581 SET 1,H
048A CBCD 582 SET 1,L
048C CBD6 583 SET 2,(HL)
048E DDCB05D6 584 SET 2,(IX+IND)
0492 FDCB05D6 585 SET 2,(IY+IND)
0496 CBD7 586 SET 2,A
0498 CBD0 587 SET 2,B
049A CBD1 588 SET 2,C
049C CBD2 589 SET 2,D
049E CBD3 590 SET 2,E
04A0 CBD4 591 SET 2,H
04A2 CBD5 592 SET 2,L
04A4 CBDE 593 SET 3,(HL)
04A6 DDCB05DE 594 SET 3,(IX+IND)
04AA FDCB05DE 595 SET 3,(IY+IND)
04AE CBDF 596 SET 3,A
04B0 CBD8 597 SET 3,B
04B2 CBD9 598 SET 3,C
04B4 CBDA 599 SET 3,D
04B6 CBDB 600 SET 3,E
04B8 CBDC 601 SET 3,H
04BA CBDD 602 SET 3,L
04BC CBE6 603 SET 4,(HL)
04BE DDCB05E6 604 SET 4,(IX+1ND)
04C2 FDCB05E6 605 SET 4,(IY+IND)
04C6 CBE7 606 SET 4,A
04C8 CBE0 607 SET 4,B
04CA CBE1 608 SET 4,C
04CC CBE2 609 SET 4,D

LOC OBJ CODE STMT SOURCE STATEMENT

04CE CBE3 610 SET 4,E
04D0 CBE4 611 SET 4,H
04D2 CBE5 612 SET 4,L
04D4 CBEE 613 SET 5,(HL)
04D6 DDCB05EE 614 SET 5,(IX+IND)
04DA FDCB05EE 615 SET 5,(IY+IND)
04DE CBEF 616 SET 5,A
04E0 CBE8 617 SET 5,B
04E2 CBE9 618 SET 5,C
04E4 CBEA 619 SET 5,D
04E6 CBEB 620 SET 5,E
04E8 CBEC 621 SET 5,H
04EA CBED 622 SET 5,L
04EC CBF6 623 SET 6,(HL)
04EE DDCB05F6 624 SET 6,(IX+IND)
04F2 FDCB05F6 625 SET 6,(IY+IND)
04F6 CBF7 626 SET 6,A
04F8 CBF0 627 SET 6,B
04FA CBF1 628 SET 6,C
04FC CBF2 629 SET 6,D
04FE CBF3 630 SET 6,E
0500 CBF4 631 SET 6,H
0502 CBF5 632 SET 6,L
0504 CBFE 633 SET 7,(HL)
0506 DDCB05FE 634 SET 7,(IX+IND)
050A FDCB05FE 635 SET 7,(IY+IND)
050E CBFF 636 SET 7,A
0510 CBF9 637 SET 7,C
0512 CBFA 638 SET 7,D
0514 CBFB 639 SET 7,E
0516 CBF8 640 SET 7,H
0518 CBFC 641 SET 7,H
051A CBFD 642 SET 7,L
051C CB26 643 SLA (HL)
051E DDCB0526 644 SLA (IX+IND)
0522 FDCB0526 645 SLA (IY+IND)
0526 CB27 646 SLA A
0528 CB20 647 SLA B
052A CB21 648 SLA C
052C CB22 649 SLA D
052E CB23 650 SLA E
0530 CB24 651 SLA H
0532 CB25 652 SLA L
0534 CB2E 653 SRA (HL)
0536 DDCB052E 654 SRA (IX+IND)
053A FDCB052E 655 SRA (IY+IND)
053E CB2F 656 SRA A
0540 CB28 657 SRA B
0542 CB29 658 SRA C
0544 CB2A 659 SRA D
0546 CB2B 660 SRA E
0548 CB2C 661 SRA H
054A CB2D 662 SRA L
054C CB3E 663 SRL (HL)
054E DDCB053E 664 SRL (IX+IND)
0552 FDCB053E 665 SRL (IY+IND)
0556 CB3F 666 SRL A
0558 CB38 667 SRL B
055A CB39 668 SRL C
055C CB3A 669 SRL D
055E CB3B 670 SRL E
0560 CB3C 671 SRL H
0562 CB3D 672 SRL L
0564 96 673 SUB (HL)
0565 DD9605 674 SUB (IX+IND)
0568 FD9605 675 SUB (IY+IND)
056B 97 676 SUB A
056C 90 677 SUB B
056D 91 678 SUB C

128

LOC OBJ CODE STMT SOURCE STATEMENT

056E 92 679 SUB D
056F 93 680 SUB E
0570 94 681 SUB H
0571 95 682 SUB L
0572 D620 683 SUB N
0574 AE 684 XOR (HL)
0575 DDAE05 685 XOR (IX+IND)
0578 FDAE05 686 XOR (IY+IND)
057B AF 687 XOR A
057C A8 688 XOR B
057D A9 689 XOR C
057E AA 690 XOR D
057F AB 691 XOR E
0580 AC 692 XOR H
0581 AD 693 XOR L
0582 EE20 694 XOR N
0584 695 NN DEFS 2

696 IND EQU 5
697 M EQU 10H
698 N EQU 20H
699 DIS EQU 30H
700 END

129

Error Messages

The TRS-80 Assembler/Editor recognizes two types of errors:

1) Command errors — The error message is printed and
control is transferred to command level.

2) Assembler errors — These three types of errors may
occur while executing an Assemble command.
a) Terminal — Assembly is terminated and control is

returned to command level.
b) Fatal — The line containing the error is not further

processed and no object code is generated for that
line. Assembly proceeds with next source line.

c) Warning — The error message is printed and
assembly of the line containing the warning con-
tinues. The resulting object code may not be what the
programmer intended.

Following is a list of all errors and an explanation of each.

COMMAND ERRORS

1) BAD PARAMETER(S)

Causes —

Increment specified as zero.

I100,0

Parameter(s) not properly separated or terminated.

P 1000,2000 (comma should be colon)
P10:20L (garbage at end of command)

Specified line number or increment is greater than 65529.

E66000

Line specification is not a number or one of the special
characters #, ., or *.

P @:200

Second line number of range is less than first line number of
range.

P 200:100

Specified cassette filename:
i) is longer than 6 characters
ii) does not begin with an alphabetic character
iii) contains characters which are not alphanumeric

W 1 TEST
L TESTFILE

An unsupported assembly switch was specified or the slashes
were misplaced or omitted.

A/NO/NL
A NO
A ZZ

An attempt was made to load a cassette which was not written
by the Editor or for some other reason cannot be properly
read.

2) BUFFER FULL

There is no room in the edit buffer for adding text.

3) ILLEGAL COMMAND

The first character of the command line does not specify a
valid Editor/Assembler command.

*Z1000:1200

4) LINE NUMBER TOO LARGE

Causes —

Renumbering (using the N command with the specified
starting line number and increment would cause line(s) to be
assigned numbers greater than 65529. The renumbering is not
performed.

N60000,1000 (if there are more than 6 lines of text in
the edit buffer)

The next line number to be generated by Insert or Replace
would exceed 65529.

*I 64000,1 600
64000 HELLO
LINE NUMBER TOO LARGE
* (next number would be 65600)

5) NO ROOM BETWEEN LINES

The next line number to be generated by Insert or Replace
would be greater than or equal to the line number of the next
line of text in the edit buffer. The increment must be decreased
or the lines in the buffer renumbered.

*P 100:115
00100 HEY
00114 YOU
*I 112,2
00112 TEST
NO ROOM BETWEEN LINES
* (next number would be 114

which already exists)

6) NO SUCH LINE

A line specified by a command does not exist.

*P100:115
00100 HEY
00114 YOU
*E112
NO SUCH LINE (there is no line 12)

7) NO TEXT IN BUFFER

130

A command requiring text in the buffer was issued when the
edit buffer was empty.
The commands Load, Insert, Basic, and System can be
executed when the buffer is empty. All other commands
require at least one lime of text to be in the buffer.

D#: (empty the buffer)
*P
NO TEXT IN BUFFER

8) STRING NOT FOUND

The string being searched for by the Find command could not
be found between the current line and the end of the buffer.

TERMINAL ERRORS

1) SYMBOL TABLE OVERFLOW

There is not enough memory for the assembler’s symbol table.

FATAL ERRORS

1) BAD LABEL

The character string found in the label field of the source
statement

a) begins with a non alphabetic character
b) is no longer than 6 characters
c) contains characters which are not alphanumeric

2) EXPRESSION ERROR

The operand field contains an ill-formed expression.

3) ILLEGAL ADDRESSING MODE

The operand field does not specify an addressing mode which
is illegal with the specified opcode.

4) ILLEGAL OPCODE

The character string found in the opcode field of the source
statement is not a recognized instruction mnemonic or
assembler pseudo-op.

5) MISSING INFORMATION

Information vital to the correct assembly of the source line
was not provided. The opcode is missing or the operands are
not completely specified.

WARNINGS

1) BRANCH OUT OF RANGE

The destination (D) of a relative jump instruction (JR, DJNZ)
is not within the range (LC-128 <D<(LC+127) where LC is

the address assigned to the first byte of the jump instruction.
The instruction is assembled as a branch to itself by forcing
the offset to hex FE.

2) FIELD OVERFLOW

A number or expression result specified in the operand field is
too large for the specified instruction operand. The result is
truncated to the largest allowable number of bits. For example,
BIT 9, A would cause such an error.

3) MULTIPLY DEFINED SYMBOL

The operand field contains a reference to the symbol which
has been multiply defined. The first definition of the symbol is
used to assemble the line.

4) MULTIPLE DEFINITION

The source line is attempting to illegally redefine a symbol.
The original definition of the symbol is retained. Symbols may
only be redefined by the DEFL pseudo-op and only if they
were originally defined by DEFL.

5) NO END STATEMENT.

The program end statement is missing.

6) UNDEFINED SYMBOL

The operand field contains a reference to a symbol which has
not been defined. A value of zero is used for the undefined
symbol.

131

LEVEL I BASIC Addresses

CURSOR
LOCATION

4068H
Contains a 3C00H to 3FFFH which is the current cursor position on screen.

KEYBOARD SCAN WAIT CALL 0B40H ;SCAN
JR Z,WAIT ;Z=1 IF KB CLEAR

(A-register contains input byte, Input byte is displayed at current cursor).

DISPLAY BYTE
AT CURSOR

PUSH DE ;MUST SAVE
PUSH IY ; DE & IY
LD A,20H ;BYTE TO DISPLAY
RST 10H ;DISPLAY BYTE
POP IY ;RESTORE
POP DE ; DE & IY

TURN ON
CASSETTE

CALL 0FE9H

(On board cassette is turned on via remote plug)

SAVE MEMORY
TO CASSETTE

CALL 0FE9H •TURN ON CASSETTE
LD HL,7000H ;START ADDRESS
LD DE,7100H ;LAST+1 ADDRESS
CALL 0F4BH ;SAVE IT

(Cassette is turned off)

LOAD MEMORY
FROM CASSETTE

CALL 0EF4H ;TURN ON & READ

(On return HL = last + 1 address
Z = 0 if checksum error
Z = 1 if checksum OK)

(Cassette is turned off)

RETURN TO
LEVEL I BASIC

Press RESET

JP 0 ;POWER UP
JP 01C9H ;RE-ENTRY

(Re-entry gives a READY)

RETURN TO TBUG
(UNDER LEVEL I BASIC)

Set a Breakpoint to next opcode address.

JP 40B1H ;RE-ENTER TBUG

LEVEL II BASIC Addresses

CURSOR
LOCATION

4020H
(Contains 3C00H to 3FFF which is the current cursor position on screen)

TURN ON CURSOR
CHARACTER

PUSH DE ;MUST SAVE
PUSH IY ; DE & IY
LD A,0EH ;0EH IS CURSOR BYTE
CALL 33H ;DISPLAY ROUTINE
POP IY ;RESTORE
POP DE ; DE & IY

132

KEYBOARD SCAN AGN PUSH DE ;MUST SAVE
PUSH IY ; DE & IY
CALL 2BH ;SCAN ROUTINE
OR A ;A=0 IF KB CLEAR
JR Z,AGN ;BRANCH IF NO BYTE
POP IY ;RESTORE
POP DE ; DE&IY

(A register contains byte when loop falls through.)
(Byte is NOT displayed on screen!)

DISPLAY BYTE
AT CURSOR

PUSH DE ;MUST SAVE
PUSH IY ; DE & IY
LD A,20H ;BYTE TO DISPLAY
CALL 33H ;DISPLAY
POP IY ;RESTORE
POP DE ; DE & IY

DEFINE DRIVE ;A-REGISTER SPECIFIES CASSETTE

LD A,0 ;ON BOARD CASSETTE
CALL 0212H ;DEFINE DRIVE

WRITE LEADER
AND SYNC BYTE

CALL 0287H

TURN OFF
CASSETTE

CALL 01F8H

SAVE MEMORY
TO CASSETTE

LD A,0 ;ON BOARD CASSETTE
CALL 0212H ;DEFINE DRIVE
CALL 0287H ;WRITE LEADER
LD A,20H ;BYTE TO RECORD
CALL 0264H ;OUTPUT BYTE

(USER must CALL 264H often enough to keep up with 500 baud. Timing is
automatic.)

CALL 01F8H ;CASSETTE OFF

LOOK FOR LEADER
AND SYNC BYTE

CALL 0296H

LOAD MEMORY
FROM CASSETTE

LD A,0
CALL 0212H ;DEFINE DRIVE
CALL 0296H ;FIND SYNC BYTE
CALL 0235H ;READ ONE BYTE

(User must CALL 0235H often enough to keep up with 500 baud. User must do
own checksum if desired. A-register contains byte read.) The user must turn off the
Cassette (CALL 01F8H) when all bytes have been read.

RETURN TO
LEVEL II BASIC

Press RESET

JP 0 ;LIKE POWER UP
JP 1A19H ;RE-ENTRY

(RE-ENTRY gives a READY))

RETURN TO TBUG
(UNDER LEVEL II BASIC)

Set a Breakpoint to next opcode address.

JP 43A0H ;RE-ENTER TBUG

133

LEVEL II BASIC MEMORY MAP

134

135

Editor/Assembler Command List

Assemble *A [[bfilenamel [/switch[/switch] …]]

Basic *B

Delete *D [linel [:line2]]

EDIT *E [line]

Find *F [string]

Insert *I line [,inc]

Hardcopy *H [line1 [:line2]]

Load *L [bfilename]

Number *N [line[,inc]]

Print *P [line1 [:line2]]

Replace *R [line[,inc]]

Type *T [linel [:line2]]

Write *W [bfilename]

136

Z80-CPU REGISTER CONFIGURATION

	Cover
	Table of Contents
	Introduction
	Notation Conventions
	Editor/Assembler
	LOADING
	COMMANDS
	Assemble (A)
	Basic (B)
	Delete (D)
	Edit (E)
	Find (F)
	Hardcopy (H)
	Insert (I)
	Load (L)
	Number (N)
	Print (P)
	Replace (R)
	Type (T)
	Scroll and Tab
	Write (W)

	Cassette Tapes
	Sample Use
	ASSEMBLY LANGUAGE
	Syntax
	Expressions
	Z80 STATUS INDICATORS (FLAGS)
	PSEUDO-OPS
	Assembler Commands

	Z80 INSTRUCTION SET
	INDEX TO INSTRUCTION SET
	INSTRUCTION SET TABLE OF CONTENTS
	OPERAND NOTATION

	Z80 INSTRUCTIONS
	8 BIT LOAD GROUP
	LD r, r’
	LD r, n
	LD r, (HL)
	LD r, (IX+d)
	LD r, (IY+d)
	LD (HL), r
	LD (IX+d), r
	LD (IY+d), r
	LD (HL), n
	LD (IX+d), n
	LD (IY+d), n
	LD A, (BC)
	LD A, (DE)
	LD A, (nn)
	LD (BC), A
	LD (DE), A
	LD (nn), A
	LD A, I
	LD A, R
	LD I, A
	LD R, A

	16 BIT LOAD GROUP
	LD dd, nn
	LD IX, nn
	LD IY, nn
	LD HL, (nn)
	LD dd, (nn)
	LD IX, (nn)
	LD IY, (nn)
	LD (nn), HL
	LD (nn), dd
	LD (nn), IX
	LD (nn), IY
	LD SP, HL
	LD SP, IX
	LD SP, IY
	PUSH qq
	PUSH IX
	PUSH IY
	POP qq
	POP IX
	POP IY

	EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP
	EX DE, HL
	EX AF, AF’
	EXX
	EX (SP), HL
	EX (SP), IX
	EX (SP), IY
	LDI
	LDIR
	LDD
	LDDR
	CPI
	CPIR
	CPD
	CPDR

	8 BIT ARITHMETIC AND LOGICAL GROUP
	ADD A, r
	ADD A, n
	ADD A, (HL)
	ADD A, (IX+d)
	ADD A, (IY+d)
	ADC A, s
	SUB s
	SBC A, s
	AND s
	OR s
	XOR s
	CPs
	INC r
	INC (HL)
	INC (IX+d)
	INC (IY+d)
	DEC m

	GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS
	DAA
	CPL
	NEG
	CCF
	SCF
	NOP
	HALT
	DI
	EI
	IM 0
	IM 1
	IM 2

	16 BIT ARITHMETIC GROUP
	ADD HL, ss
	ADC HL, ss
	SBC HL, ss
	ADD IX, pp
	ADD IY, rr
	INC ss
	INC IX
	INC IY
	DEC ss
	DEC IX
	DEC IY

	ROTATE AND SHIFT GROUP
	RLCA
	RLA
	RRCA
	RRA
	RLC r
	RLC (HL)
	RLC (IX+d)
	RLC (IY+d)
	RL m
	RRC m
	RR m
	SLA m
	SRA m
	SRL m
	RLD
	RRD
	B

	BIT SET, RESET AND TEST GROUP
	BIT b, r
	BIT b, (HL)
	BIT b, (IX+d)
	BIT b, (IY+d)
	SET b, r
	SET b, (HL)
	SET b, (IX+d)
	SET b, (IY+d)
	RES b, m

	JUMP GROUP
	JP nn
	JP cc, nn
	JR e
	JR C, e
	JR NC, e
	JR Z, e
	JR NZ, e
	JP (HL)
	JP (IX)
	JP (IY)
	DJNZ, e

	CALL AND RETURN GROUP
	CALL nn
	CALL cc, nn
	RET
	RET cc
	RETI
	RETN
	RST p

	INPUT AND OUTPUT GROUP
	IN A, (n)
	IN r, (C)
	INI
	INIR
	IND
	INDR
	OUT (n), A
	OUT (D), r
	OUTI
	OTIR
	OUTD
	OTDR

	Z-80	Hardware Configuration
	Z-80 CPU ARCHITECTURE
	CPU REGISTERS
	Special Purpose Registers
	Accumulator and Flag Registers
	General Purpose Registers

	ARITHMETIC & LOGIC UNIT (ALU)
	INSTRUCTION REGISTER�AND CPU CONTROL
	Z-80 CPU PIN DESCRIPTION
	Z-80 CPU INSTRUCTION SET
	INTRODUCTION TO INSTRUCTION TYPES
	ADDRESSING MODES
	Immediate.
	Immediate Extended.
	Modified Page Zero Addressing
	Relative Addressing
	Extended Addressing.
	Indexed Addressing
	Register Addressing.
	Implied Addressing.
	Register Indirect Addressing.
	Bit Addressing.

	ADDRESSING MODE COMBINATIONS
	CPU TIMING

	NUMERIC LIST OF INSTRUCTION SET
	ALPHABETIC LIST OF INSTRUCTION SET
	Error Messages
	LEVEL II BASIC MEMORY MAP
	Editor/Assembler Command List

