A NEW OVERLAY MODULE FOR NEWDOS/80 VERSION 2

JKL Routine with TRS-80 Graphic Blocks

for the EPSON RX80 / FX80 and Centronics 739 Printers

by Joachim Kelterbaum

(Frankenstr. 305, 4300 Essen 1, West Germany)

Many NEWDOS/80 users find it quite convenient to be able to get a screen dump to printer just by pressing the J-K-L keys. However, since the TRS-80 uses graphic blocks that are not usually included in the character generators of printers, it is not possible to make full use of this facility. Some printers, though, are able to do dot image graphics, and this provides a means to simulate the TRS-80 graphic blocks. In the following article, a way will be shown to implement this facility on NEWDOS/80 version 2 for the Epson RX80 / FX80 / MX80 III printers.

The first part of this article will deal with some general aspects of the function of the DOS overlay loader. In the second part I'll explain the JKL module itself. Part three will deal with a method of incorporating a self-written overlay into the system.

Function of the Overlay Loader

Certainly you know that NEWDOS/80 is a sophisticated operating system. Such degree of sophistication would by no means be possible if all of the system's functions were located in RAM at all times (you could do that, but there would be very little room left for user programs). The solution to this problem is the overlay technique. This is accomplished in the following manner:

There is only one part of the system (SYS0/SYS) permanently resident while NEWDOS/80 operates. In addition, there are approximately 20 overlay modules (SYS1/SYS to SYS21/SYS), of which only one is resident at a time. There are 2 overlay areas (the DOS overlay area at 4D00H-51FFH, and the secondary overlay area - used mostly by BASIC - at 5200H-6FFFH).

Each time a certain overlay is needed by the system, the DOS overlay loader - part of SYS0/SYS - will load this module to the overlay area (if that module is not loaded already). The module used before will simply be 'overlayed'. I suppose that you can well imagine that this particular function of the DOS is of vital importance to the system. This might be the reason why the function of the overlay loader is hardly documented in the manual. Obviously, the authors of NEWDOS/80 - as well as of the other systems - do not want us to fool around with the system.

On the other hand, this overlay area is an ideal place to put programs which do not use up any room in the user RAM and which are practically invisible to the system. But how can one make use of this area?

The answer to this is surprisingly simple. There are only 2 instructions needed: LD A,<code> ; RST 28H. <code> is a 1-byte constant which must meet the following conditions:

At least one of the high order three bits (bits 7, 6, or 5) must be set. The low order five bits (bits 4 through 0) tell the system where in the directory the needed module is located.

To make it easier to understand the following, you should turn on your computer and use the DFS (Display File Sectors) option of SUPERZAP to display File Relative Sector (FRS) 0 of DIR/SYS. Normally (depending on your particular PDRIVE setting) this is disk sector 170 on a single-sided, single-density 40 track disk.

FRS 0 is the GAT sector telling the system which tracks are formatted and which ones are already allocated to files. It also contains the disk name, date, and the AUTO command (if used). FRS 1 is the HIT sector. This is used by the system as a hash table for quickly finding a certain file on this disk. Starting from FRS 2 the directory entries begin. In the relative position 0 (top row) you always find BOOT/SYS. If you turn to FRS 3 you will find DIR/SYS in the top row having relative position 1. The top row of FRS 4 will show the file SYS0/SYS (relative position 2) and so on. Once you have reached FRS 9 of the DIR/SYS file (relative position 7 - in the case of a disk that was formatted using the standard PDRIVE parameter of DDGA=2, this is the end of the DIR/SYS file), you can start over with FRS 2. Now you count the entries in the second row, starting with relative position 8 (SYS6/SYS will be found there). Exactly these position numbers are the values you have to use in the constant <code> (low order 5 bits). As there will only be 5 bits decoded by the overlay loader you can only address up to 32 overlay modules this way (actually only 30, since BOOT/SYS and DIR/SYS occupy the first two positions). Let me give an example of an overlay call:

If you wanted to call SYS5/SYS (DEBUG), you'd find this entry at position 7 in the directory. If you remember to set one of the high order three bits (bit 7 in this case), your value for code should be 1000 0111B = 87H. So it is sufficient to execute the following instructions for an overlay call to DEBUG: LD A,87H ; RST 28H.

Exactly this method will be used to load our self-written JKL module. You will find the details in section three of this article.

I must say a few words on what conditions a /SYS module must meet in order to be loaded correctly by the overlay loader:

The module is a normal machine code routine which has to reside in one piece on disk (no additional extents allowed). The format of the module is the usual load file format which for example is produced by EDTASM. There has to be a start address stated in the END statement. This address will be jumped to after loading the file via RST 28H. The file need not be positioned within the overlay areas (of course, if you choose to have it load elsewhere, you must make sure that that area of memory is somehow "reserved", so that you overlay module won't overwrite another program already in memory). If you end your module with a RET instruction, a return will be made to the calling routine (i.e. the address on top of the stack).

If what you have just read encourages you to experiment, please, do so on a backup system!!! It is quite likely that you will get some errors in the beginning. These errors will sometimes be 'honoured' by a destroyed system. So, be careful!!!

Function of the JKL Module

You'll find the source code of the JKL module at the end of this article. First the printer is initialized, so that the standard settings of 10 Characters Per Inch and 12 dots linefeed will be used. After this the first line of the video RAM is loaded into the two buffers BUFTXT and BUFGRF. The buffer BUFTXT will now be modified to contain only printable ASCII codes - i.e. graphic codes above 7FH will be replaced by 20H and control codes 00H-1FH will be shifted up by 40H so they'll appear on the printer just like the characters being displayed by the TRS-80 character generator (the one normally supplied with the Radio Shack Model I lowercase modification, which duplicates the uppercase character set for ASCII codes 00H-1FH). In the buffer BUFGRF all codes below 80H will be replaced by 80H. This way we have a separation of text and graphics.

Now the program functions in the following manner: If a line only consisted of text codes, this text will be printed and a 12 dot linefeed will be done. If there were graphics, then first those graphics will be printed. As it is not possible to do a reverse linefeed with the MX80 III, only the upper 2 blocks of that row are printed. Then a 1 dot linefeed is done. After this the text is printed and a 7 dot linefeed is done. In a third phase the lower blocks of the graphics are printed and a 4 dot linefeed is done. This makes a full 12 dot high line of mixed graphics and text.

The whole procedure is repeated for all 16 video lines. Finally, the printer is reset to normal again and a return to the calling program (usually DOS or BASIC) is done.

Though this procedure of a JKL-dump sounds quite complicated, it works surprisingly fast.

Hints for Installation of the Module to the NEWDOS/80 System

After you have typed in the source using EDTASM or a similar program, save it as SYSJKL/CMD on a working diskette. Now, make a copy of your (naked) system on a different diskette (COPY,0,1,,FMT,CBF,/SYS or similar). Boot this system. Now you have to install a file at a particular position in the directory (see section 1 of this article). We will use position number 1DH = 29 in this example. To create a file entry in position 1DH proceed as follows:

(The method described here is not the most elegant one, but it's the safest)

Create several files using the CREATE command (CREATE S0:0 ; CREATE S1:0 etc.). Now use SUPERZAP's DFS option again to display DIR/SYS. Find the entry at position 29 (this will be found starting at FRS 7, byte 60H). Write down the name of this entry. If there is no entry at this position, continue creating files.

Now, boot your system again and rename that file at position 29 to SYSJKL/SYS.

Finally, you can purge all those files that are not needed any longer. If you execute a DIR 0 now, you'll find that SYSJKL/SYS is present as a normal visible file. This does not look very professional for a /SYS module. Use SUPERZAP again to change the first 2 bytes of the directory entry of SYSJKL/SYS to 5FH, 20H. Now, your file will only be displayed by DIR 0 /SYS. Now, copy the file SYSJKL/CMD to SYSJKL/SYS onto your new system diskette and you're all set.

The /SYS module is installed now, but your system will not recognize that it is there. In the Model I version of NEWDOS/80, the normal JKL routine is located in SYS3/SYS, FRS 4, starting at byte 96H (byte 73H on the Model III version of NEWDOS/80). At this place we apply the call to our own module: LD A,9DH ; RST 28H, which is 3EH, 9DH, EFH. Once you have zapped those three bytes, your module will work.

Boot your system and try it. Don't forget to copy BASIC/CMD as well as all other programs you need to your new system.

Happy JKL-ing!

 Joachim Kelterbaum

NOTE: This disk contains two versions of this program: EPSONJKL/ASM, for use with Epson and compatible printers, and CENTRJKL/ASM, for use with Centronics 739 printers. The Centronics 739 version is not commented.
