Apparat, Inc. takes great pleasure in presenting NEWDOS/80 Version 2.0, a Disk
Operating System for the TRS-80 Model I and Model IXX computers. The following
is an attempt to meet an. ever increasing demand for information on our Disk
Operating System. The information presented here by no means discusses every

feature available nor explains every command. We attempt only to mention the
more outstanding features. '

Almost all disk based computer systems use a Disk Operating System (known as
DOS) to provide a software interface between the user program pertorming disk
I/0 and the actual disk drives and their controllers. Usually these operating
systeme perform many other functions as well, such as controlling what the user
program is executing and the allocation of disk files and file space. Believe
it or not, the primary function of a DOS is to make life easier for the compu-
ter users and programmers.

NEWDOS/80 Version 2 (released August, 1981) is one of a number of Disk Operat-—
ing Systems that operate with the TRS-80 and is the replacement for NEWDOS/ B0
Version 1 (released June, 1980) and for NEWDOS/2l (released March, 1979).
NEWD0S/80 Version 2.0 is designed to operate on the TRS-80 Model I and the
TRS-80 Model III. A particular NEWDOS/80 Version 2 master diskette is tailored
to operate only on one of the two TRS-80 models; if you wish to operate on both
the Model I and the Model III you must purchase different NEWD0S/80's for each.
The TRS-80 model being used must have at least 32K of RAM and at least one 5

1/4 inch, single sided, 35 (40 for the Model III) track disk drive (mounted on
drive 0).

A FEW OF THE NEWDOS/80 FEATURES INCLUDE:
' . Single and/or double density operation supported.
2. Single and/or double sided drive whose diekettes are treated as a
single volume.
3. 80 Track disk drives can read 35/40 track diskettes.
4. Mix and match 35, 40, 77 and 80 track disk drives.
5. Single density 8" disk drives supported; double density if CPU speed
is equal to or greater than 3.55 MHZ,
6. CPU speeds to 4 MHZ ok. (CPU slow down, if required, is NOT supported
by NEWDOS/80). - .
7. Lower case, blinking cursor and repeat key software built-in.
8. Model I to/from Model III file portability under NEWDOS/80 Ver. 2.0.
9. Enhanced copy features (28 different parameters available).
10. Single drive, two diskette file/diskette copy.
il. Copy to or from Model III or Model I TRSDOS diskettes, but will not
directly operate with TRSDOS Model III or Model I 2.3B diskettes.
12. MINI-DOS (allows DOS commands while user program is executing).
13. SUPERZAP (a2 diskette display and modify program).
14. DIRCHECK {(validates directory integrity).
15. Built in RENUMber, variable REFerencing.
16. Enhanced BASIC functions including five new disk I/0 file structures.
17. Dynamic MERGing, DELETing, variable passing.

 k ok k k ok k k%

NEWDOS/80 Version 2.0 ($149.00) may be purchased from your local dealer or
directly from Apparat, Inc., 4401 S Tamarac Parkway, Denver, CO 80237.
Phone (303) 741-1778 or (800) 525-7674.

;

DISK BASIC, KON I/0 ENHANCEMENTS
GENERAL FEATURKS - | |

The KEWDOS/80 DISK BASIC sllows the user to pass File Areas and Variables
between programs. '

BASIC programs may disable the BREAR key via CMD"BREAK,N"

: and reenable it by
CMD"BREAK,Y",

To avoid unintentional Text Line deletes, the KEWDOS/80 DISK BASIC requires
that the DELETE or D command be used to delete a Text Line.

CMD"doscmd"

Allows the user to execute ALL DOS commands from a BASIC program. Also used to
call extended NEWDOS/80 DISK BASIC commands.

The following is a listing of extended NEWDOS/80 DISK BASIC commands:

SASZ Change BASIC!'
variables.

ERASE Allows the specified variables to be cleared,

KEEP Allows the specified variables to be kept; all others are cleared.

DELETE Allows text lines from a specified line number to a specified line
number to be deleted during program execution.

SWAP Swapping of variable contents.

S8 Allows the programmer to gtep through a program one line at a
time from the beginning or starting with a specified line number,
displaying the pending line number in the upper right hand
corner of the display.

0 Main memory sort allowing direct and indirect sorting of up to 9
arrays. Ascending or descending order may be specified.

8 string area size without affecting or clearing the

Reinstate a program deleted by the command NEW.

BASIC

BASIC may be entered using part or all of the following parameters:
BASIC,N,M,RUN"filespec" or BASIC,N,M,LOAD"fileepec"

Where N sets the number of file areas to be reserved, and M sets BASIC's memory
size. If not specified, the default is 3 file areas and DOS's HIMEM value.

The following direct commands are recognized:

. (Period) Lists current text line.

down-arrow Lists the next text line.

up-arrow Lists the previous text line.

; or shift-up-arrow List the first text line.

/ or shift-down-arrow List the last text line.

: 8croll one page toward the start of the text.
a Scroll one psge toward the end of the text.

N Edit the current text line.

L

.
s .
o-——

A or a Auto line numbering. DI Move line nl to line n2.

D or d Delete line number(s). DU Duplicate line nl at line n2.
E or e Edit line number.

L or 1 List line number(s).

MERGE

MERGE will merge either an ASCII or a packed text file. It may be executed as
a direct statement, or as a BASIC program statement (loading an overlag text
code section and continuing execution without disturbing the variables).

The current BASIC program or a part of it may be renumbered while it resides in
the text area.

REF

The BASIC statement REF allows the BASIC progrsmmer to find all places in the

program where a line number, an integer, a variable, a string, a function code,

a packed sequence of characters, or an unpacked sequence of characters is
referenced. A complete reference table may be generated at any time going to
the display or to the printer.

DISK BASIC 1/0 ENHANCEMENTS

The TRSDOS standard file structures (SEQUENTIAL or PRINT/INPUT and RANDOM or
FIELD ITEM) are supported as well ae two new file structures called MARKED ITEM
and FIXED ITEM. VFor marked item and fixed item files, the programmer GETs or
PUTs an item-group of data at one time. The only limitations on the amount of
data transmitted are file size and, if applicable, record size. Logical
records can be any length between 1 and 4095 bytes. The speciazl functions
designed for field item file ops, (MKD$, MKIS$, MKS$, CVD, CVI, CVS, LSET, RSET,
etc.) function as before. However, the use of MKD$, MKI$, MKS$, CVD, CVI, and
CVS may be dropped for marked item or fixed item file operation as GET and PUT
will transmit numeric¢ as well as etring data.
The FI file types are :
MI A marked item file not segmented into records.
MU A marked item file segmented into records of varying lengths, where
the length is determined by searching for either EOF or the
next record's Start Of Record item.

MF A marked item file segmented into fixed lemgth records.
The FF file types are :

F1 A fixed item file not record segmented.

F¥ A fixed item file of fixed length records.

The five new file types (MI, MU, MF, FI, FF) may be used sequentially or ran-
domly except that MI and FI types cannot be updated. MU Records can only be
updated if the new record length is not greater than the old record length.

Theee new file types (The choice of which is up to the user) are initially
difficult to understand, but once understood, make file I/Q both easier and

more flexible. The manual has two appendices to assist the user's education
into the use of these file types.

APPEND
ATTRIB

BASIC2
BLIRK
BOOY
BREAK

CHNON

C1S
COPY
CREATE
DATE
DERUG
DIR

ERROR
FORMAT
FOBRMS
FREE
HIMEM

KILL

LCIVER
LIB
LIST
LOAD
MDBORT
MDCOPY
MDRET
PAUSE
PDRIVE
PRINT
PROT
PURGE

RENAME
ROUTE
SETCOM
STMT
SYSTEM
TIME
VERIFY
WRDIRP

DO5 LIBRARY COMMANDS

Append one file onto the end of another.

Assign attributes to a file,

Define the DOS command to be executed at reset.
Activate non~disk BASIC (Model I onmly).
Enable/disable cursor blinking.

Reset the computer.

Enable/disable the BREAK key.

Shift to keyboard input from disk.

Alter chaining state.

Clear user memory, routes, timer and logical sequences.
Display the time every second.

Clear the display.

Copy single or multiple files or a full diskette.
Pre—-allocate a disk file.

Set computer's date.

Enable/disable the DEBUG facility.

Display a diskette's directory information.

Shift to keyboard input from disk.

Dump memory contents to disk.

Display DOS error message.

Format a diskette for use with the NEWDOS/80 system.
Set printer parameters (Model III only).

Display free granule count of each mounted diskette.
Set DOS's high memory value.

Send current contents of display to the printer.
Delete a file,

Bet keyboard a-z toggle switch to the specified state.
Lower case driver.

Display NEWDOS/80 library commands.

List a text file on the display.

Load a Z-80 machine language file into RAM.
Terminate MINI-DOS and return to main program.

Copy a file while under MINI-DOS.

Exit from MINI-DOS and return to main program.
Display message and pause on ENTER.

Assign default attributes to a physical drive.

List a text file on the printer.

Alter some diskette control data.

Selectively KILL files from a diskette.

Repeat the previous DOS command.

Rename a file.

Route one device to or from another.

Set RS-232C interface parameters (Model III only).
Display specified message.

Change system.

Set the real time clock.

Require verify read after every disk write.

Write directory sectors protected.

DOS FEATURES
JKL

Is a routine for dumping the contents of the display screem to the printer.
This allows the operator to print information that would otherwise be lost as
soon as the display is used for something else. This function may be invoked
from DOS by simultaneously depressing the keys, J, K and L or by execution of
the DOS command "“JKL".

MINI-DOS

There are many times when, during the execution of a main program, the operator
would like to momentarily exit the main program, execute one or more of the DOS
library commands and then resume main program execution without any change
having occured to the main program's state during the exit. This can be
accomplished via MINI-D0OS. To enter MINI-DOS simultanecusly depress the keys
D, F and G. Three MINI-DOS commands are added to the library, MDRET (return
from MINI-DOS), MDGOPY (copy files), MDBORT (abort and return to NEWDOS/80
READY).

CHATNING

This function is invoked via the DOS commands CHAIN or DO. For most TRS-80
users there are functions which use the same series of DOS commands and/or
program responses, and for each of these functions it would save a lot of key
stroking, operator time and errors if this keyboard character sequence could be
saved in a disk file to be called upon when the operator wishes to execute a
specific function. A chain file may be sectiomed, allowing the use of one file
to hold many separate JCL files, thus minimizing disk storage. Message with
pause may be inserted in the chain text. Comment lines are allowed within the
chain text. Message lines can be displayed. Branching to other chain file
sections is allowed. DOS commands CHNON Y, D and N can be embedded in the
chaining text.

RUN ORLY

Is a feature that allows the programmer to create turnkey programs in which

data input and output ie controlled by the program (i.e., BASIC, ASSEMBLER,

COBOL, etc.). MINI-DOS, DEBUG, JKL, the CLEAR key, and the BREAK key may be
disabled,.

DEBUG

As an aid primarily for the machine language programmer but also for use by
higher level language programmers, NEWDOS/80 includes an improved DEBUG facil-
ity for interrupting current execution, inspecting mewmory, altering memory,
inspecting disk, altering disk, single step execution, etc. DEBUG may be
entered by simultaneously depressing the three keyboard keys 1, 2 and 3.

DOS—-CALL
NEWDOS/80 allows any machine language program to call the DOS routine at 4419H

to execute a DOS command or user program. BASIC also uses this command to
execute the CMD"doscmd" functiom. -

SUPPLIED NEWDOS/80 UTILITIES

SUPERZAP (Machine coded)

This handy utility provides the user with the means to read and write standard
256 byte diskette sectors or any part of main memory, except writing to ROM.
Superzap will locate for display/update any sector of a file regardless of
whether the file sectors are contiguous or spread throughout the disk.

Verify Disk Sectors will allow superzap to check each sector for parity errors.
Zero Disk Sectors lets the user "zero out” disk sectors.

Copy Disk Sectors lets you copy contiguous disk sectors from one disk to
another or to itself.

Copy Disk Data lets the user copy up to 65535 bytes anywhere on the disk or to
another diskette. '

Display PassWord Encode will take a password, encode it and display the
resulting encode in hexidecimal as it would appear in a directory FPDE,

Display Bame/Type Hashcode command of SUPERZAP will take the name and extension
of a filespec and display the resulting hashcode in hexidecimal as it would
appear in the directory HIT table.

;

i
DIRCHECE (Machine coded) _.

This module tests and lists the target diskette's directory. If errors are
found in checking the directory, they are listed before the directory listing
of active files. It also allows the option of cleaning up (not repairing) the
directory, and, as an aid to moving single density diskettes back and forth
between the Models I & III under NEWDOS/80, allows the option of writing the
directory protected. The information presented may be listed to the printer or
display.

CHAINBLD (Basic coded)

A mini-text editor that simplifies the c¢reation and modification of chain
files. Allows inserting of new text lines, deletion of lines, extending of
existing text lines, duplication of existing text lines, relocation of text
lines. :

EDTASM (Machine coded)

We have converted Radio Shack's original Model I tape Editor Assembler to work
with disk, 15 line page scrolling on the display, liet symbeols in alphabetical
order with reference list, accept upper and lower—case, display the total
number of bytes left in the text area so the user can judge his approach to
symbol table overflow or text buffer overflow. Use of this program requires

the user be an owner of Radio Shack's original tape Editor Assembler (1978). g

DISASSEMBLER 2.0 (Machine coded)

This is a utility supplied with NEWDOS/80 2.0 which disassemblee Z80 code from
a standard TR5-80 load module or from memory. The disassembled code is sent to
the display or to the printer. Generated source text may be sent to disk and a
location cross table may be generated.

When source is routed to disk it is converted to EDTASM format. The disassem-
bler will reference all Jump Relative (JR) commands.

IMOFFSET {(Machine coded)

This utility reads s tape or disk load module {CMD), displays its load infor-
mation, optionally changes the program's load area, optionally attaches an
appendage enabling the program at execution time to move itselt from its load
area to its execution area, opticnally prepares the module to run under non-
disk BASIC via SYSTEM, and stores the module onto disk or tape with a new name.

ASPOOL (Machine coded)

Written by H. S. Gentry and modified by APPARAT to operate with NEWDOS/80 and
to self relocate. This program will automatically direct your printer output to
disk files, and then automatically print it on the printer. It will print in
the background while your foreground main program is executing provided the
main program every second or so either sends a byte to be spooled or checks the
keyboard for a new input character.

ON GOING SUPPORT

Apparat has, since the first NEWDOS/2l release, always provided continuous and
ongoing support for its users. We provide this support by amswering customer
questions and providing written corrections, known as ZAPS, at no charge to the
customer. Zaps are distributed by mail to all REGISTERED owners {(only those
who send their registration cards are registered) whenever a large number of
zaps have been accumulated.

When Apparat receives a registration card, the latest copy of the zaps will
soon thereafter be mailed to the registered owner. This lets the owner know
that Apparat has received the registration card and provides the owner with any
zaps generated since either that manual (containing zaps as chapter 13) was
made up or that NEWDOS/80 diskette was created. Apparat has an original disk-
ette update service for those users who would prefer that Apparat apply the
zaps. This service is performed ONLY on the MASTER diskette for a $10.00
service and handling charge. .

DOS ROUTINES — FOR ASSEMBLY LANGUAGE PROGRAMMERS

402DR
40308
54008
44058
44090
440DH
4410H
44138
4416H
44198
441CH
44208
4424K
44288
442CH
44308
44338
4436H
44398
A43CH
443FH
44420
44458
44480
44488
444ER
44510
445BR
445EH
4461H
44640
44678
446AH
446DH
44708
44730
0013H
001BH
A4TBH

No Error Exzt.

Error—-already~displayed DOS Error Exit.
Ro-Error Exit.

Enter DOS and execute & command.

DOS Error Exit.

Enterxr DEBUG.

Enqueue a user timer interrupt routine.
Dequeue a user timer interrupt routine.

Keep drives rotating.

DOS—CALL Execute a DOS command and return.
Extract a filespec.

Open a FCB to new or existing disk file.

Open a FCB to a existing file.

Close a FCB.

Kill FCB'e associated file.

Load a program file.

Load and commence execution of a program file.
Read sector or logical record from disk.

Write sector or logical record to disk.

Write sector or logical record to disk with verify read.
Position FCB to start of file.

Position FCB to specified file record.
Position FCB back omne record.

Position FCB to EOF.

Allocate File Space.

Pogition FCB to specified RBA.

Write EOF value from the FCB to the directory.
Select and power up the specified drive.

Test for mounted diskette.

*name routine enqueue.

*name routine dequeue.

Send message to the display.

Send messsge to the printer.

Convert clock time to HH:MM:S8S character format.
Convert the date to MM/DD/YY character format.
Insert default name extension into filespec.
Read & byte from a disk file,

Write a byte to a disk file.

Model III only (performs the same as Model I 4410H),

REGISTRATION NUMBER 025401
’. qozpD Heo DU;/S'p verst

-I‘I-.-‘-/.‘

NGWLUUVYOUV

FOR THE TRS-80

MODEL |

MICRO COMPUTER

Apparat Incorporated takes pleasure in presenting NEWDOS/80,

Version 2.0. Above is the registration number of your NEWDQS/80.

-a _ This registration number must be the same as the registration
- \’Q number you find on your diskette label and the enclosed registration
card. If they are not, return them to the dealer from whom you

purchased your NEWDQS/80 to be reissued. This registration Num-

ber is your assurance of receiving any corrections or minor revisions

to NEWDOS/80 that may be released. The registration card should

be completed and returned to Apparat at your ealiest convenience.

PLEASE RETURN THE CARD IT IS IMPORTANT! It is our only

method of determining who has purchased this copy of the system.

This number shoud be included in all correspondence with Apparat.

' @\ Apparat,inc

4401 So. Tarmarac Parkway e Denver, Colorado 80237

AR
AT

-

NOTICE

NEWDOS/80 is distributed on an "AS IS" basis only and without
warranty. Neither Apparat Inc. nor any authorized dealer of
NEWDOS/80 shall have liability or responsibility to any person
or entity with respect to any liability, loss or damage caused
or alleged to be caused by the computer programs constituting

_NEWDOS/8C, including but not limited to any interruption of

service, loss of business ot anticipitory profits or comsequen-
tial damages resulting from the wuse or operation of such
computer programs.

Good programming practices dictate that frequent backup copies
be made to protect active files. Also, valued data should not
be wused under an unknown system until it has been thoroughly
tested.

All rights reserved. Reproduction or wuse, without express
written permission, in any manner, is prohibited. No liability
is assumed with respect to the use of nor for any damages that
may result from the use of any information contained herein.

All NEWDOS/80 software is copyrighted by Apparat Inc., who
authorizes each NEWD0S/80 owner the right of duplicating the
contents of the NKEWD0OS/80 diskette, provided such duplication
18 for the sole personal use of said owner. Any other
duplication of NEWD0OS/80, in whole or in part, is strictly
prohibited. '

ii

et it e et et et
i
L R =AW R PUR I]

L] L] L] L] L] L] L] L] L] L] L] L] L] L] * * L] L] * L] L] L} * L] L] L]

SN OoOWeRSSTUEWNDEO OSSO W N O

- - - - [L L] -

MRNRRODMNRB RN MMNMEARS MRS RMNMNAMRMNNR R NR N R R NN

Chapter 1

TARLE OF CONTENIS

INTRODUCTION

REGT B TRATION . e s vessvcovasasnscsrsrrasaauvassossonosnssennsnansnnsnel=l
Trademark CreditSsisseeveceessssceasenncsassnsssscasssccasassssnssssl=l
What is Apparat's NEWDOS/80 version 27....cececacasacsssesescseneel=l
Duplicate and Specify the SysStemM.cceisesesesserecsavasansnsnsssnesel=2
Apply Outstanding ZapPSasessvesssvsssssesccasacscssssasssssosvnenssled
Commence Using NEWDOS/80.eesevasancerosaaussonnrocrsnsonanaosannasl=5
Acknowledgements.................................,................1~5

Chapter 2

DOS LIBRARY COMMANDS

Notation Conventions and General InformatioDesesessssescscssssasas—l

APPEND
ATTRIB

AUTO

BASIC2

BLINK
BOOT
BREAK
CHAIN
CHNON
CLEAR
CLOCK
CLS
COPY

CREATE

DATE
DEBUG
. DIR
bo
DUMP
ERROR

FORMAT

FORMS
FREE
HIMEM
JKL

KILL

LC

LCDVR

LIB
LIST
LOAD

MDBORT
MDCOPY

MDRET
PAUSE

PDRIVE

Append one file onto the end of another..eeeieseeesceneass2=2
Assign ﬂttributes to a file..ot.-a-o-o-c-cuou.o.o..a--.o-2-3

- Define the DOS command to be executed at resel.cececececese2=5

Activate non-disk BASIC (Model I only)...vevecaecsaacnnna2=5
Enable/disable cursor blinkingeeeseseossscnsesasasassneesl=5
Reset the COMPULEr.sseenasasasenscanssnsusasvassssnsanaanal=h
Enable/disable the BREAK KeVeevessvessacacasasuennsennesasl=b
Shift to keyboard input from diskeeessvecrsssscascssnsans2=6
Alter chaining stat@isseesvenssssssssoscncssncssvonreseeal=?
Clear user memory, routes, timer and 10g1ca1 enqueues....2-8
Display the time every secondieevesesceceresanaane .
Clear the dlsplay....................................«...2~9
Copy single or multiple files or a full diskette..cecsee.2-9
Pre-allocate a disk filEeuieeaeescocsnssnssnsenanssassanaal=l8
Set computer's datEe.eceesecasassccsvenessrssnrsssscnnsnss2=l9
Enable or disable the DEBUG facilit¥e.eevosrnosvssaacansas2=20
Display a diskette's directory informatioDe.eesevsnssasss2=20
Shift to keyboard input from diSKeeesescosoessnsocssncars2=22
Dump memory contents to disKeeeseseseanssensnsanranesassa2=22
Display DOS eIYOr MeSS8Z€ccsvsesesansenvsrssorsssnnscsasal=24
Format a diskette for use with the NEWDOS/80 system......2-24&
Set printer parameters (Model TIT 0nly)ececescocssescnoee2=26
Display free granule count of each mounted diskette......2-27
Set DOS's high memory value..oceesccecaosenonsoscnanarssa2=27"
Send current contents of display to the printer..........2«27
Delete 8 fi1leuueasevevranssacacasaansnasnasnssnososasanasel=28
Set keyboard a-z toggle switch to the specified state....2-29
Lower case driver (Model I only).iecccscacoscvescvsonsnneal=29
Display NEWDOS/80 library commandS..eesccescscaansasseess2-30
List a text file on the displayesessssvscsssnasssnsnscess2-30
Load a Z-80 machine language file into RAMusocsvonnesseas2=31
Terminate MINI-DOS and go to DOS READY.essesanresssenasees2=3]
Copy a file while under MIKI-DOS.ucecvanssnvsovsosnsnneans2=32
Exit from MINI-DOS and return to main PrograM....ecceeeece. 2-32
Display message and pause on ENTER.usecossasesasssanceess2-33
Assign default attributes to a physical driveciessseesese2=-33

iit

2.38 PRINT List a text file on the printerecesecvessesscaccesaonasss2=30
2.39 PROT Alter some diskette control datlciescesscaceveccansnsasas2=40
2.40 PURGE Selectively KILL files from a diskettCeeessvsoscanavesees?=bl
2.41 R Repeat the previous DOS command...cesecsesconsonnasonensss2=51
2,42 RENAME Rename 8 fileusseeecssnccrnesasancasnnconancarsoncesansss2bi2
2.43 ROUTE Route one device to or from anothericeereseecaravesnanses2~42
2.44 SETCOM Set RS=232 interface parameters (Model III only)...... s 244
2.43 STMT Display specified MesSage.sesnscctssnvesavanennesenneesss2=b5
2,46 SYSTEM Change SYSteMeuissessassasaressancasnnsassmsnsassansseess?2=dh
2.47 TIME Set the real time clocK.eseesuennessssasasnrenconnsnansans2=50
2.48 VERIFY Require verify read after every disk Writ@.sseeesessossse2=51
2.49 WRDIRP Write directory sectors protectedisesssssceresceceeseness2=52
Chapter 3 DOS ROUTINES

3.1 Specifications Definediicieeseccaseensaseoanssonsssanannsennsnpesid=l
3.2 40 2DH NO~Error Exit.ivieesccseesseesonsennscaransenarocanssaeseld=l
3.3 4030H Error-already-displayed DOS Error Exitucecesseevvansnessad=2
3.4 4400H NO—Error EXiteeeesvoansvrssaasesorensssavanosnacnananneesad=2
3.5 4405H Enter DOS and execute a8 cOmmaNd.ccsecscarassscarcoorannasd=2
3.6 44090 DOS Error EXitaueuesosasoannscosuocsossasancnseresonsesesdI=?
3.? QJ*ODH Enter DEBUG ----u--.nolooo.c.--l--o'-o-pcu--o-..ou-.o.a-v-3"3
3.8 44100 Enqueuve a user timer interrupt TOULIN€essesnassnrnrasnanaa3=3
3.9 44134 Dequeue a user timer interrupt TOULINE..cssevearasarsssssd—f
3.10 4416H Keep drives rotalting.ssssscecacescnceocasassnennoaancnsesd=b
3.11 441 9H DOS-CALL Execute a DOS command and returDe.esvssssoes..3—4
3.12 441CH Extract a filespecesesesnenrresasurcosaratovoessonncsnnesd=h
3.13 4420H Open a FCB to new or existing disk filee.eeveceo.. ternena 3-5
3.14 4424h Open a FCB to a existing file.veseearenenvsnsvscsencenesad=h
3.15° 4428RH Close @ FOBueuesuuunsonesasscraesassnnnssnnnsonasannsoesad=?
3.16 442CH Kill FCB's associated fileiseeasevossaseasancnconaannasssdmy
3.17 4430H Load a program file...esvaceiesencnsnsscasavcsnnncosannanad=?
3.18 4433H Load and commence executipn of a program fileueeeseesosee3d—=7
3.19 4436H Read sector or logical record from disKe.eeeesessoarosese3d=7
3.20 4439H Write sector or logical record €0 disKissesosseseacanesss3=8
3.21 443CH Write sector or logical record to disk with verify read..3-9
3.22 443FH Position FCB to start Of fileusesevesacanesersasasensessad=F
3.23 4442H Position FCB to specified file record.sucicecsessescnensa3d=9
3.24 44451 Position FCB back One record.cesessesescncececscacessascsad=0
3.25 4448u Pogsition FCB t0 EOF.euuverssssascsvrnssosansnsesaconnsesed=0
3.26 444BH Allocate File Spaceeeesussssssavsnsntossastrsnsosassncessd=10
3.27 444FR Position FCB to specified RBA..eveesssosroncososansasssadd=l0
3.28 4451H Write the EOF value from the FCB to the directorye.ese...3=10
3.29 445BRH Select and power up the specified drive.essssessesceensas3d=10
3.30 445FH .Test for mounted diskett@uesecrsnsssavnarannsssncncscasssdI~10
3.31 4461H *name routine eNQUEUC..esvesssasssaresrcosasavsssscasansesI=l0
3.32 4b464n *name routine dequUeUC. .asevassssssssosnosnseonoasnansecaed=ll
3.33 4467 Send message to the displayeeesseesssvesescncassncsesnana3d=ll
3.34 446AH Send message to the Printer.sscscsserescescsccnssssnsananed=ll
3.35 446DH Convert clock time to HH:MM:SS character formateececeaes..3-11
3.36 4470H Convert the date to MM/DD/YY character format...ceoee.. ..a3-11
3.37 4473H Insert default name extension into filespeCeieesssgoensea3d=12
3.38 0013m Read a byte from a disk fileescssaonssenssasncnnenconnnse3d—~12

iv

;/_‘H\".

@

3.3%9 001BH Write a byte to a disk filesessssacseroraonasaccannsnaesad=l2
3.40 447BH Model III only {performs as Model I 4410H)...cccoeeceaaas3d-l2

Chapter 4 DOS FEATURES

1 DEBUG FaCility.iuveeassosessssesannncsassnasssnncssannnassncnsaanesali=l
2 MINI—DOS-O|O-..I...i..l...I...'.'lcl.l.l.lclu.-l'.-tull..b..ttuot.!04_5
3 CHAINING..o-ot!-o-a-aoa---voaao--...---.-.h...-o---.-.-.---a-.-o-oA—?
tzl DOS‘CALL.-.-.-.-..-.-o---.o-oacna-...a-noaaaua..na-a-a-ooo-co-noocoz}‘"‘-lz
5 . .
6

JKL.C-CI-.l...l.lt....,.....llllll..l........C.lllll..lI'.‘I.IC..II4_13

ASYI].ChrO‘nOUS Executipntl...lll.l..l.ll..l.llIII.ll.l...l.'...l.l.-&__la

Chapter 5 DOS MODULES, DATA SYRUCYURES, AND MISCELLANEOUS IHFDE!AIIOH

Files Required on each diskette used with NEWDOS/80.eecsesonscsnsd5-1
NEWDOS/80 DOS system moduleS..sueeecesecsesnnssssssosasansasasesaned=l
NEWDOS/80 BASIC Modules...5~2 .
Other Modules on the NEWDOS/B0 diskette.essesessssscessasanssascead=3
~ Reduced Sized SYSLEMSsessssaresssasascnsnsossssssarsseisanansrasssd=d
Diskette DireCtOry SLIUCLUTEsssevvsusacacasassonsasacacasassnssonesI=d

* " a '3

LILnwa e i wun b A Ln
.
W00 = N Pl RO

. FPDE File Primary Directory EDETy.eesesecesasesvesensssonsvensad=?
. FXDE = File Extended Directory EntIyeseescscsessssssvssenssananssd=9
L FCB Flle Control Block...l......III...I.I..II.'...'....-.-...‘5 9

Chapter 6 ADDITIONAL PROGRAMS SUPPLIED ON NEWDOS/80 DISKETTE

6.1 SUPERZAP Inspect/Change Disk/Main MemoOry.sesoevececcsssseesosascasb=l

6.2 DISASSEM Disasgemble Z-80 Code.eesisnsrosasssasssssasassssssssennsb=d
6.3 LMOFFSET Move Module to New Load PoSitiODeesescsscasasanconnasased—9 .
6.4 DIRCHECK Inspect and List 8 DirectOrYesacecrsascesssacnsosssnnsssbd=12
6.5 EDTASM Editor/As8embler. vevestsnsncasssasasasansssvenvannsnveessb—lé
6.6 CHAINBLD Create and Modify Chain FileSeescsescscsacancsanassnsassb-lt
6.7 ASPOOL Automatic SPOOLeTeecicrrasavsasstsavorvnansnescnaanasacab=19

Chapter 7 DISK BASIC, NON 1/0 ENHANCEMENTS

INTRODUCTION, RequirementsSi.eeesccerssenovsencnosonsscassaansncsensi=l
General COMMENtSissesssessersosncancsansacascaancnsansasssrnsssenansl—l
Activating DISK BASIC.sieeesenacsccsannvsnonansnnasnonsorassasnsnel=2
DIRECT Scrolling/Editing CommandsS..eeesesasesosssosascsnsancnnanasl/=3
Text Editing Command TruncatioNesesssesesensnssenascscasasssasasesl=f
" DI and DU text editing fulcCLiOnSeescescesesescsorsnssncssacansacasl—h
RUN and LOAD (optionally retaining variables)e.cieeececsssesessenases?=4
MERGE. Dynamic loading of overlay program..cessesesessvvecssassesse?=3
RENUM renumber the current BASIC Programe.sesesssesevensnonansasal=3
REF List references to variables, line numbers and keywords......7-7
Lower Case Supression (Model I only).ceecersvecscenesonanassssanen?=8

L] L] + L] L] * L] L]

el I” B A=A YL I R LR O

B I P et Bt B B B
-

P S T P WP N
e T - R T I

b e B Bt B Bt B e M Bt Y |

RUN-ONLY .0y evuneenutnsutessetonatsanessnnennnsesaresnsensscsneess?=8
Comparisons in the use of CMD between NEWDOS/80 and TRSDOS..eesse.7-8
CMD"dOSCmd"........--.....-.-...--...-........p.......---......o-.? 11
CMD"F=POPS", CMD"=POPR" and CMDF=POPN". ... eeeecsceronnsvocncvsans =12
CHD"F=SASZ".l|o.n-.tolq.inoll.-otoc.c.1.!.!.00..-.-..oclc.ot.-nl.-7_12
CMD"F=ERASE" and CHMD"F=KEEP" . ieutaveeeanasorononvonansanaaoonnsesl=12
CMD"F" , DELETE s vuvcsvrenaccan srasretenensars tessesecanna *teenasans 7-13
CMD"F= SWAP'...................-...................................7 13
M D =88 . sl eeesenensseesnsonossnnsrnancanssnsnssnsonasancosnnasel=ld
L P i

RENEW....-;-......to-..Ul..llt.ov.,ooo..lnoat--..oo.oc.t..copn-.nq?—l?

Chapter 8 DISK BASIC, Y/0 ENHANCEMENTS

L]
Ll I YR RN - IR R O WL O

Py O

- & ¥ a . a LI I]

00 00 00 Qo Q0 00 00 0O 0 00 0O 02 00 OO

. IntroduCtlonooo..0.-0‘.-.1.....00!..0.I.ol.llo'n-.-ol.clto....ulnos l

Flle Type......-..a.---.-..-o--q..---.c.--.--.---....---o---o...-.s 1

File type differencesS.iresacasscsctsansesacsotasnsoascnonsonansenesBe2

'Cﬂmponents Of GET and PUT..-u...-..lavc-c..l.l-ot.nrnoc.qtt....ncag_s

leed ltem flles..-.....-...-...-.......-...--.-...-....-..-......8-7
Harked 1tem flles..'....'..‘..'.".....‘...-'......-'.....I....‘.'S?
OPEN

GETlto-pcncn;a.o-.n;.lt-.-c-o.ol.lliooo..Itcau.l.llo-o.v'ol.llp..cshlz

.c-u...-nollocnalvovolloll.llcll-’...olof...tt.o..lllloto.lo.aa-g

PUTD.D‘....ll.b-.l.lll.....‘..IIIIOIOI.l...-.....l.0-.'0.....'...'8_14

REMRA and REHBA...I.II..I....U.Ill....lIII.l.l...II..........II.C.S-lﬁ

Pseudo FIELD Fuﬂctlon-.«.-.-....................-...-.............8 17
LOC Functlon.............-....-.........-...............-....,....8 18 -

I/0 Error RecOVerYeeecessnasosoapassssavenossensasnsasesosasasscessB~l0
Addition&l notes about BASIC I,O-..l...l......l..'.‘...'..'..llIQ..8_20

Chapter 9 ERROR MESSAGES

9.1
G.2

DOS Error Codes and MesSsages.ceeeseascnsecosasanensosonaonsinneesed=l
DISK BASIC Error COdeS and Hessages.......-.-.....f..-;--........-guz

Chapter 10 GLOSSARY

Chapter 11 NEWDOS/80 PATCHING (ZAPPING)

11.1
11.2
11.3
11.4
11.5
11.6
11.7
1]1.8
11.9

IntroduCtion s ieseesesasusansasunsnsssascncsovasvescasaopnasvennssasll=l
Incompatibility Handling.seeeeevessasecasasescssssasnnssssanansananll=l
Reporting of NEWDOS/80 Errors and IncompatibilitieSe.eeescecsnesssll=2
Format of NEWDOS/80 ZapPSeueuwsevarvesesananssosnsensonsasanansnessell=2
Zapping Procedur@eassesceacencsrsssesesssnssnncnenacssonorsesensuallerd
NEWDQS/80 Zap DistributioNeesssscesccsenasaseanvaavonvencsenocassell=5
Initial Installation Of ZapPB.esevescseasvanecsaascasrsvevncsnnsanall=5
Subsequent Installation Of ZapSeseceessassncanessascstncnssncsncsasslleb
Diskette Update Serviceussssresesasancscancnansaanss tesavsesanans +.11-6

11.10 ZAP Duplication.........-....-........-......-.-.-...--....--.....11—7

vi

i

ST

.4

Chapter 12 MISCELLANEOUS COMMENTS

12.1 RABs gain in respectibilityeeeseassaseseesscesassversanscasecacanssl2=l
12,2 Converting from Ver. 1 to Ver. 2 on the Model Teeeescocsoonerensaol2=2
12.3 Converting from Ver. 1 Model I to Ver. 2 Model IIleeeevsscvenessosel?2=5
12.4 NEWDOS/80 Ver. 2 incompatibilities with TRSDOS Ver. 2.3vecsoessecs.12-6
12.5 NEWDOS/B0 Ver. 2 incompatibilities with TRSDOS Ver, l.3.eeveecesesel2-7
12.6 Miscellaneous COMMENLS..seessvescacrsosonsssnsnsnsressnssssscansssl2=B

Chapter 13 ZAPS (PATCHES)

APPERDIX A Discussion and example of NEWDOS/80 file routines.
APPERDIX B Example of fixed and warked item file usage
INDEX

vii

1. INTRODUCTION.
l.1. Registration.

As soon as you receive your NEWDOS/88, fill out and mail the registration card.
Apparat will limit its assistance and patches (zaps) to registered owners only.
In your communications with Apparat, always state your name, address and your
NEWDOS/88's registration number. For Version 1 of NEWDOS/8f# we had many com—
plaints of not receiving zaps from users who had not sent in the registration
card, Apparat does not require the owner to agree to anything when filling out
the NEWDOS/8@ Version 2 registration card; just let us know who you are.

1.2 Trademark Credits.

Throughout this manual certain trademarked names will be used to refer to those
trademarked products. Since our printers do not have the tm symbol, we will
acknowledge the trademarked names here. If we have missed rendering an ac~
knowledgement, please forgive us as we do not mean for any trademarked name to
be used to refer to anything that the trademark holder does not mean it to
refer to. In some cases, such as VI0S, the primary manual for that system
shows the name trademarked but does not say who it is trademarked to.

1. TRS-8f is a registered trademark of Radic Shack, Inc.

2. TRSDOS is a registered trademark of Radio Shack, Inc.

3. VTOS is a registered trademark.

4, LDOS is a registered trademark of Lobo- DerES Internatlonal.
5. DOUBLER is a registered trademark of Percom Data Company, Inc.
6. SCRIPSIT is a registered trademark of Radio Shack, Inc.

1.3. What Is Apparat's NEWDOS/8¢ Version 27

Almost all disk based computer systems use a Disk Operating System {(known as a
DOS) to provide a software interface between the user program performing disk
I/0 and the actual disk drives and their controllers. Usually these operating
systems perform many other functions as well such as controlling what user pro-
gram is executing and the allocation of disk files and file space. Believe it
or not, the primary function of a DOS is to make life easier for the computer
users and programmers. NEWDOS/8§ is one of a number of DOSs that operate WLth
the TRS-8¢; in this case only the Model I and Model III are supported.

NEHDOS/BH Version 2 is the replacement for NEWDOS/8f Version 1 that was re-
leased in June, 1989 and for NEWDOS/2l that was released in March, 1979,
BEWDOS/8@ Version 2 is a disk operating system designed to operate on the
TR5-8¢ Model I and the TRS-8f Model ITI. A particular NEWDOS/8f Version 2
master diskette is tailored to operate on only one of the two TRS-8f models; if
you wish to operate on both the Model I and the Model 1II, you must purchase
different NEWDOS/8f's for each. The TRS-8f model being used must have at least
32K of RAM and at least ome 5 inch, single sided, 35 (49 for the Model III)

1-1 : INTRODUCTION

track disk drive (mounted on drive $#). Model I NEWDOS/8f Version 2 is distri-

buted on a 35 track, single sided, single density diskette, and Model III T
NEWDOS/8@ Version 2 master diskette is distributed on a 40 track, single sided, .
double density diskette. You must have a disk drive capable of handling the .
master diskette.

NEWDOS/ 88 Version 2 for the Model I and NFWDOS/8@ Version 2 for the Model III
are mostly downward compatible with NEWDOS/8$ Version 1, NEWDOS/2l and Model I
TRSDOS 2.3, but it will be necessary to maintain certaimn programs with differ-
ent copies for all four systems for incompatibilities do exist. NEWDOS/8p
Version 2 is more incompatible with the Model III TRSDOS than it is with the
Model I TRSDOS, and most programs and files will have to be maintained differ--
ently in the two systems. Imn the past, while TRSDOS was largely dormant,
attempts were made to limit the incompatibilities between NEWDOS and TRSDOS,
but now that TRSDOS is being actively updated more and more incompatibilities
are appearing between the two systems. TRSDOS is going one way; NEWDOS/8f is
going another, If this limits and eventually destroys NEWDOS's usefulness to
the users, so be it. NEWDOS cannot and should not exist to be a mirror image
of TRSDOS; if the user wants that, then please use TRSDOS. NEWDOS was acci-
dently created in the huge vacuum left by Model I TRSDOS, has always incorpo-
rated features not in TRSDOS and, in Version 2, has not implemented many of the
newer features of the Model III TRSDOS., Chapter 12, sections 12.1 through 12.5
give some of the incompatibilites of NEWDOS/8¢ Version 2 with NEWDOS/8§ Version
1 and with the Model I and III TRSDOSs.

The DOS and DISK BASIC portions of NEWDOS/8@ are total rewrites from that of-

fered in NEWD0OS/2l. The requirement that the user purchase TRSDOS as a pre-
condition of use of NEWDOS/2l is not required for NEWDOS/8f. It is still ;
recommended that the user purchase TRSDOS, and NEWDOS/80 users are expected to .
have purchased the TRSD0OS manual and be knowledgeable of its contents as use of
NEWDOS/80 assumes this user knowledge. Users of the EDTASM module are still
required, as a precondition of use of NEWDOS/8f's EDTASM, to have purchased

~ Radio Shack's tape editor/assembler. '

Though NEWDOS/8f, Version 2 was tested more extensively than Version 1, there
will still be errors, and many programs will require at least a zap to work
with NEWDOS/8f Version 2. Error reporting procedures are discussed in chapter
11, and the outstanding zaps are in chapter 13. '

l.4. Duplicate and Specify the System.

NEWDOS/8# is not a simple system. When the NEWDOS/8f user is ready to ini-
tially use NEWDOS/8f, he/she should spend one to two hours studying the docu~
mentation before doing anything with the NEWDOS/8@ diskette.

When ready, put a write protect tab on your NEWDOS/8§ Version 2 master disk-

ette. Then power up your computer, place the master diskette in drive § and

press reset. The NEWDOS/8p banner should appear optionally followed by re-

quests for date and time., If date and time are requested, please give realis-

tic values. Next, NEWD0OS/8§ READY will be displayed to indicate DOS is waiting T

for something to do. _ . . '

INTRODUCTION 1-2

It is good practice to never mount on a disk drive the NEWDOS/8$ master disk-—
ette except to make copies of the diskette and to very carefully apply manda-
tory zaps (see chapter 11). When zapping, you should first apply the zaps to a
working Version 2 system diskette and test them out before applying them to the
master diskette. Keep the master diskette stored away in a safe place; do not
keep it in your NEWDOS/8@ manual and do not use it in normal operatioms.
Apparat will not replace a lost master diskette though it will, under the terms

for the diskette update service offered im section 11.9, replace a damaged
digkette. o :

Enter, via the keyboard, the DOS command;

LIB

A list of all the DOS library commands will be displayed to you. These com—
mands are defined in chapter 2 with examples.

Enter the DOS command:
DIR,@,S,I

A list of all the files on the NEWDOS/8f Version 2 master diskette will be dis-
played. These files, except for NWD82V2/ILF and NWDB2V2/XLF, are discussed in
chapter 5.

Enter the DOS command:

SYSTEM,

NEWDOS/8@ offers the user certain system options which are specified via the
DOS library command SYSTEM (see section 2.46) and activated during each compu-
ter reset. The DOS command SYSTEM,¥ you just executed has displayed the state
of all SYSTEM options, and you should compare these value carefully against the
specifications. You may decide that your system is to use different SYSTEM
specifications. You may change them now if absolutely necessary; otherwise you
should wait until after you have made a few backup copies of the master disk- .
ette. Whenever you decide to update the master diskette, don't forget to take
off the write protect tab. :

Enter the DOS command

PDRIVE, §

NEWDOS/8¢ can operate with a limited mixture of disk drive and interface types.
The characteristics of each of the physical drives # - 3 must be specified to
the system via the DOS library command PDRIVE (see section 2.39). These char-
acteristics are then read by DOS during each computer reset. The PDRIVE com-
mand you just executed has displayed the existing drive specifications plus 6
pseudo drive specifications. You may want to change the specifications for one
or more drives. You may do so now if absolutely necessary; otherwise you
should wait until you have a few backup copies of the master diskette.

Now you must make three or more copies of the NEWDOS/8§ Version 2 master disk-

ette. If possible, perform these initial backups without changing any of the
SYSTEM or PDRIVE parameters. If not possible, change them the minimum neces-

1-3 ' INTRODUCTION

sary and do a reset when done. You should carefully study sections 2.14, 2.39

and 2.46. _ Vs
NEWDOS/80 does NOT have a BACKUP module; format 5 or 6 of DOS library command ' .
COPY (see section 2.14) is used instead. For each of the backups you are about

to do, the master diskette is both the system and the source diskette while the
destination diskette is the diskette to contain the new working copy of the

NEWDOS/89 system. Some examples of the COPY command you will use to make

copies of the NEWDOS/8@ Version 2 master diskette are:

COPY,#,8,,FMT,USD For a single drive system where the master and copy
diskettes have the same PDRIVE characteristics.

COPY,®,1,,FMT,USD For a multiple drive system where the master and
copy (mounted on drive 1) diskettes have the same PDRIVE characteristics.

COoPY,¥,9,,FMT,USD,CBF,DPDN=4 For single drive system wherein the
destination diskette has PDRIVE characteristics different from the master
diskette. You must have previously altered the master diskette PDRIVE
specification for drive 4 (remember to use the A option or to reset the
computer after changing the drive 4 specification).

CcoPY,$,1,,FMT,USD,CBF For a multiple drive system where the drive 1
drive will be moved to drive P after the copy and the destimation drive

has different PDRIVE characteristics than does the current drive $. You
wmust have previously altered the master diskette's PDRIVE specification

for drive 1.

Each system diskette has its own set of SYSTEM and PDRIVE characteristics. .
Therefore, for each working copy of NEWDOS/8@ Version 2 you make, after the

copy is completed, you need to set that system diskette's SYSTEM and PDRIVE
characteristics for the operating conditions it is to operate with.

The NEWDOS/89 owner is authorized to make as many copies as necessary of the
NEWDOS/8@ diskette or individual programs thereon for his/her own personal use.
NEWDOS/8@ owners and users are specifically prohibited from copying the
NEWDOS/8@ diskette or individual programs thereon for use by others. See COPY,
formats 2 and 4, in section 2.14.

1.5. Apply Outstanding Zaps.

Before your NEWDOS/8§ is ready to run user programs, review the outstanding
zaps to both NEWDOS/8P modules and to other modules (such as EDIT/CMD and
SCRIPSIT) that require patches to work properly with NEWDOS/8#. Chapter 11
explains how to apply zaps (patches}, and with your NEWDOS/8# should have come
a chapter 13 which contains the zaps. If part or all of chapter 13 is not in
the proper place in the manual, please put it there. Mandatory zaps must be
applied; optional zaps are at user discretion.

Mandatory zaps to NEWDOS/8@ modules should be applied to all copies of the i
NEWDOS/ 8@ Version 2 master diskette and to the NEWDOS/8# Version 2 master " .
diskette. DO NOT start applying the zaps until you have at least 2 or 3 good

backup copies made of the NEWDOS/8f diskette.

INTRODUCTION _ 1-4

1.6, Commence Using NEWDOS/8¢.

Once all backup copies of the NEWDOS/8§ Version 2 system are made, zaps appli-

ed, system options and drive characteristics specified, you are now ready to
use NEWDOS/8@.

Put away the master diskette and mount in drive § one of the system diskette
just made. Then press reset to re-initialize DOS using the new diskette.
NEWDOS/8@ READY will then appear. The user may now type in a DOS command,
which is either a POS library command as discussed in chapter 2 or the name or
name/ext of a user program to be loaded and run. If a user program does not
have a name extension, name extension CMD is assumed. Examples:

BASIC causes the load and execution of program BASIC/CMD.
SCRIPSIT/LC causes the load and execution of program SCRIPSIT/LC.

If the DOS library command or the user program requires or allows for parame-
ters within the DOS command, one or more spaces or a comma must follow the
command name and precede the parameter(s). Examples: .

BASIC,5,6500p
DIR 1 A

For virtually all programs to be executed under NEWDOS/8f, there are instruc-
tions on how to use the program that usually comes with the program when you

buy it. For NEWDOS/8@ program modules, the instructions are in chapter 6 ex~
cept for BASIC which is covered in chapters 7 and 8.

Those users upgrading from NEWDOS/8f Versiom 1, NEWDOS/21 or TRSDOS to
NEWDOS/8¢ Version 2 should read sections 12.1 through 12.5 carefully.

1.7. Apparat Thanks Its Beta Testers.

Over forty persons throughout the United States and Canada were involved in the
testing of NEWDOS/8f Version 2, finding errors, suggesting enhancements and
providing criticism. Apparat and the NEWDOS/8f author thank each one of these
beta testers for the long hours spent working with the three beta releases that
were sent out. It is Apparat's policy that each beta tester receive a compli-.
mentary copy of the final release of NEWDOS/89 Version 2.

i-5 INTRODUCTION

2, DOS LIBRARY COMMANDS.

2.1, Notation Conventions and General Information.

All DOS commands terminate with an ENTER. In subsequent specificatioﬁs, the
ENTER is not shown, but the user is to supply it.

. DO8 commands are limited to a total of 8@ characters, including the coﬁcluding
ENTER.

il A set of brackets are used to enclose an optional parameter. When using
the optional parameter in a DOS command, the [] are not included.

Example: -
[,PROT=xxx][,ASE=yn}[,ASC=yn]
could be coded as

s PROT=READ, ASC=N

Upper case A — Z and non alphanumeric characters are to be included exactly as
shown. BSee the above example.

Lower case letters or words with or without trailing decimal digits. These
represent prototype valuee for which the user is to substltute the approprlate
actual values. See the above example.

In some cases where the prototype will be replaced by one and only one char~—
acter, the prototype word contains, in lower case, all the characters legal for
that value. This helps serve as a reminder of which characters are legal re~
placement for that prototype value. For example, if ASC=Y and ASC=N are the

only two legal ASC values, then the prototype will usually be written as
ASC=yn.

Where commas are used in DOS commands, they may be replaced by one or more
consecutive spaces.

Numeric values without a suffixed B are considered degimal values unless
otherwise specified. Hexadecimal values must be suffixed with an H unless
otherwise specified. Example:

4@PPH and 16384 are the same value.

When specifying a disk file, the term 'filespec' is used. A filespec is of the
form: :

namel [/extl][.passwordl][:dnl]
Parameters must be specified in the above order.

namel is the file's name consisting of 1 - 8 chars of which the first must
be A - Z and the others A - Z or ﬁ - 9,

extl is the name extension (i.e., CMD, BAS, OBJ CIM, TXT, DOC, COM, etc.)
which classifies a file. A file need not have a name extension, but if it

2-1 . DOS LIBRARY COMMANDS

APPERD

does it must be 1 - 3 chars of which the first must be A — Z and the
others A - Z or § - 9. If a file has a name extension, all filespecs re- .

ferencing the file must include the name extension, unless a default name
extension is provided for (i.e., /CMD).

passwordl is 1 - 8 chars of which the first must be A - Z and the others A
~ 2 or §# -~ 9. Passwordl is the value given to both the access and update
passwords for a file when it is created. Passwordl is value used in
password checking when an existing file is opened. Passwordl is required
in a filespec if passwords are enabled and the file has passwords assign~
ed; otherwise it is not.

dnl is the drive # of the drive which has the diskette containing the
file. FExamples: :

MYFILE8{/BAS. YOURPWSS : §
MYFILE:3
YOURFILE. YOURPW

NEWDOS/8@ will accept lowercase in all DOS library commands and any further
input that might be queried for.

For each DOS library command, the command'keyword is stated along with a brief
definition. Next, if the command is allowed pavameters, a prototype of the
command is given, listing all required and optional parameters. Next comes

explanations of the command, parameters and options. Lastly, some examples of
the DOS command are given.

For documentation ease, the prototype command is sometimes shown spread over ' ‘
multiple lines in this document; however, the user should consider each command
as one contiguous statement. .

Unless otherwise stated, a DOS library command is executable under MINI-DOS
(see section 4.2).

NEWDCS/8# differs from TRSDOS in NOT using parenthesis to enclose parameters.
In NEWDOS/8$ version 1, parenthesis around the operands were optional for
BREAK, CLOCK, DEBUG, DIR, PROT, and VERIFY; they are NOT allowed in version 2.

In the same vein, version 1 allowed the keywords ON or OFF to be used instead

of Y or R in the DOS commands BREAK, CLOCK, DEBUG and VERIFY; this is NOT
allowed in version 2.

2.2, APPEND Append one file onto the end of another.

APPEND, filespecl,[T0O,]filespec2

This command will append the file filespecl onto the end of the file filespec2.

The EOF from file filespec2's directory FPDE determines the point at which file g .
filespecl is appended. This may be trouble if file filespec2 had explicit EOF ‘”
characters, such as in BASIC program files or assembler source files.

DOS LIBRARY COMMAKDS 2-2

APPEND - ATIRIR
File filespecl is not altered. The original contents of flle filegpec? are not
altered; the file is only added to.
APPEND is not executable under MINI-DOS.

APPEND examples:

1. APPEND,XXX:1,YYY/DAT:§ The contents of file XXX on drive 1 are
appended onto the end of file YYY/DAT which is on drive @.

2, APPEND AAA TO BBB The contents of file AAA are ‘appended onto the
end of file BBB. DOS searches the currently mounted diskettes to find
both files.

2,3. ATTRIB Assign attributes to a file.

ATTRIB,filespecl[,INV][,VIS][,PROT=xxx][,ACC=passwordl][,UPD=password2]
[,ASE=e][,ASC=c][,UDF=u]

This command assigns attributes to the fllespecl file. At least one of the
optional parameters must be specified.

If passwords are enabled in your system, then filespecl must specify the
existing update password, if any, for that file,

INV gives the file the invisible attribute. Unless the I option is specified
in DIR, the file will not be listed by DIR.

VIS takes away the invisible attribute, whether the file had it or not.

PROT=xxx specifies the access level to be used during file IfO if passwords are
enabled (see system option AA) and the access, not the update, password was
used to open the file. The levels are defined for values of Xxx as:

LOCK Level 7. No access allowed to the file at all, except by the
system's overlay loader.

EXEC Level 6. Access allowed only to execute the file as a program.
BASIC will require either RUN or LOAD with R option, and will disable the
BREAK key, thereby preventing the user from stopping the RUN and disal-
lowing direct statement execution.

READ Level 5. Access allowed for execute or to read the file's con-
tents.
WRITE Level 4. Access allowed for execute, read or write of the file.

RENAME or RAME Level 2. Access allowed for execute, read, write or to
rename the file.

KILL Level 1. Access allowed for execute, read, write, rename or to
kill the file.

2-3 .DOS_LIBRARY COMMANDS

ATTRIB

FULL Level #. All operations are allowed on the file.

ACC=passwordl Passwordl is assigned as the access password for the file. If .
null, 2 value of all blanks is assumed; otherwise the value must be 1 - 8
chaxacters with the lst = A -~ Z and the others A - Z or § - 9. Assigning the
access password via this parameter of ATTRIB is the only way that will enable
use of the PROT=xxx protection and then only if the access password is differ-
ent from the update password. If a password is specified when the file is
created, it is assumed both the update and the accese password, and the update
password has priority at open time, If passwords are enabled, the password
specified in the filespec at openr time is not the update password, and it is
the access password, the current protection level is stored into the FCB for
later use by the DOS read, write, load, etc. routines., Subsequently, if an

access 18 attempted in violation of the access level, 'ILLEGAL ACCESS TRIED TO
A PROTECTED FILE' error will occur.

UPD=password2 Password2 is assigned as the update password for the file.
The update password is of the same configuration as the access password. Dur-
ing file open where passwords are enabled, the password specified in the file~

spec is checked first against the file's update password. If they match, then
FULL access is allowed to the file.

ASE=¢ where e is either Y or N. This parameter has been added to allow DOS
to automatically allocate diskette space to a file if ASE=Y or to disallow
further allocation if ASE=N, ASE=Y is the default condition when a file is
created.

ASC=¢ where ¢ is either Y or N. This parameter has been added to allow DOS
to automatically deallocate file diskette space beyond the EOF during a CLOSE
operation if ASC=Y is sPec1f1ed, and to disallow this deallocatlon if ASC=N.

ASC=Y is the default setting when a file is created. : '

UDF=u where u is8 either Y or N. This parameter has been added to mark the
file as updated if UDF=Y is specified or to clear the updated mark if UDF=N is
specified. The DOS system marks a file as updated whenever it is about to up-
date a sector to that file and it finds the file's directory emtry not marked
as updated.

ATTRIB command examples:

1, ATTRIB,XXX/CMD:1l,UPD=ZXCVB,ACC=NMLKJ,PROT=EXKEC Asgigns to file
XXX/CMD located on drive 1 the update password ZXCVB, the access password
NMLKJ and protection level 6 which allows the program to be executed but
not read or written to. Since the filespec XXX/CMD:1 did not specify a
password, we must assume that either password checking was disabled
(SYSTEM option AA=N) or the file did not have an update password prior to
the ATTRIB command. '

2. ATITRIB YYY/DAT.QZBV INV ASE=R ASC=N UDF=N This command tests if
file YYY/DAT has update password QZBV, and if so, assigns the file the
invisible attribute, flags that extra space allocation and excess space

deallocation are not to be allowed, and lastly clears the file's updated
flag.

DOS LIBRARY COMMANDS 2-4

AUTO ~ BASTC2 - BLINK -

2.4. AUTOD Define the DOS command to be executed at reset.

AUTO[,doscnd]

This command allows the user to specify 2 1 - 31 character DOS command to be
invoked automatically at reset time. This command is stored in the last 32
bytes of GAT sector of the current system diskette.

If doscmd is not specified, then a null command is stored in the GAI gector to
indicate to reset/power-on that no AUTO command exists.

If SYSTEM option AB = N and BC = Y, by pressing ENTER during reset, the auto
command in the GAT sector will be ignored, and the system will go to DOS READY,

AUTO is useful to the user who usually executes the same command or chain of
commands (see CHAIN, sections 2.9 and 4.3, and DO, section 2.19) at reset time.
By setting system option AB=Y or BC=N, the user is forced to this command or
chain of commands, thus allowing the person(s) controlling a computer to re-
strict the activity of users of the computer.

AUTO command examples:

1. AUTO BASIC RUN"XXX/BAS" causes subsequent reset/power-ons to
activate BASIC and to start the execution of the BASIC program XXX/BAS.

2. AUTO DO RSACTION causes subsequent reset/power—oms to activate

chaining from file RSACTION/JCL, thus executing the DOS and other program
commands contained therein.

3. AUTO causes subsequent reset/power—oms to go to the normal DOS
READY, awaiting the next DOS command to be inputted from the keyboard.

2,5, BASIC2 Activate non-disk BASIC (Model I only).

This command puts the system into non-disk BASIC. WNEWDOS/80 is no longer in
the system.

2,6. BLINK Enable/disable cursor bliﬁking.

BLINK[,yn]
BLINK or BLINK,Y Blirking of the display cufsor is turned om.
BLIKK,N Blinking of the display cursor is turmed off.

SYSTEM option BH can be used to set the cursor blinking state at reset/
power-on.

2-5 DOS LIBRARY COMMANDS

BOOT — BREAK - CHAIN

2.7, BOOT Reset the computer.

On the Model I, this command deselects the drives and then executes Z-8f in- .
struction HALT, which causes both a hardware and a software reset.” For the

Model IIT, since HALT does not cause a hardware reset, this instruction causes

a jump to location # to execute a software reset.

2,8, BREAK Enable/disable the BREAK key.
~ BREAK{ ,ynl]
BREAK or BREAX,Y The BREAK key is enabled as a normal input key (hex-

adecimal code P1) until the next normal DOS READY, when it is set according to
system option AG.

BREAK N The BREAK key is disabled as a normal input key until the next
normal DOS READY, when it is set according to system option AG.

The BREAK command is useful for those programs that want the BREAK key enabled,
and enable it via a DOS-CALL (vector 4419H). The same applies to programs that
definitely want BREAK disabled. NOTE: Executing BREAK from DOS READY is use-
lesg since the immediate return to DOS READY resets the BREAK key according to
system option AG.

In REWDOS/8@ the BREAK key may also be enabled by storing a @C9H byte in Model
I location 4312H (Model III location &4478H) and may be disabled by storing a
@C3H byte in that location. In NEWDOS/8§ version 1, the break key was also
manipulated by changing bit 4 of location 4369H (Model I only); in version 2
for the Model I, setting or clearing this bit does nothing and is harmless.
However, programs on the Model III must NOT alter that bit, as that location is
now in the system buffer.

2,9, CHAIN Shift to keyboard input from disk.
CHAIN, filespecl[,sectionid]
D08 command DO performs exactly the same as CHAIN,

The purpose of the CHAIN command is to cause a predefined set of characters to
be treated as input from the keyboard. This predefined set of ¢haracters has
been previously stored in the file filespecl.

The CHAIN command places NEWDOS/8f in chaining mode, if not already there. The
file filespecl is opened. If sectionid is not specified, the file is posi~
tioned at the beginning. If sectionid is specified, the file is searched for
the matching sectionid record, leaving the file positioned at the byte follow-
ing the section ID record. '

Subsequently, input that is supposed to come from the keyboard comes from the

DOS LIBRARY COMMANDS 2-6

CHAIN - CHNON

chain file until chaining is terminated by the encounter of either end of file

or end of section or until chaining is temporarily halted by the execution of
the DOS command CHNON,N,

Keyboard data is input from the chaining file in one of two modes.

If SYSTEM option AT = N, chaining operates in record mode. In this mode,
whenever NEWDOS/80, BASIC or amy program requests a new record from the
keyboard via the standard ROM keyboard record inmput routine at P5D9H, the
record will come from the chain file. Any other requests for keyboard
input are honored from the keyboard and mot the chain file.

If SYSTEM option AT = Y, chaining operates im byte mode. In this mode,

all requests for keyboard input characters via the standard keyboard input
routine are honored from the chain file.

The CHAIN command may be issued via DOS-CALL or via BASIC's CMD function. When
so, DOS does not immediately return to the calling program but instead contin-
ues to execute commands from the chain file wntil either end of file, end of
section, command CHNON,N or command CHNON,Y is encountered.

CHAIN is not legal under MINI-DOS.

The chain file creator/maintainer is responsible for assuring that chaining
does not create impossible situations for the system or user programs.

NEWDOS/8§ cannot have more than one chain file active at a time. If the new

DOS command from the current chain file is itself a CHAIN or DO command, pro-

cessing in the current file ceases and the new chain file is opened, becoming
the new current chain file.

When the system opens a chain file, name extension in the filespec defaults to
JCL if the filespec doesn't give one.

CHAINING is discussed further in section 4.3,
CHAIN or DO command examples:
1. CHAIN,XXX:9 Chaining starts at the beginning of file XXX/JCL:§.

2. DO YYY/CHN:1,QQQ Chaiﬁing starts at the first byte of the chain
section named QQQ within file YYY/CHN.

2.14. CHNON Alter chaining state.

CHNON , ynd

The CHNON command is used during chaining. An error will occur if a chain file
1s not currently open. A CHNON command should not be the last entry in an un~

sectioned chain file or the last entry in a chain file sectiom as the command
will be meaningless.

2-7 : DOS LIBRARY COMMANDS

CHNON - CLEAR

CHNON,K The current position within the chain file is remembered and chain- L
ing is temporarily suspended so that subsequent keyboard characters to come /
from the keyboard. If chaining was be:Lng done wnder DOS-CALL, the current DOS- .

CALL level is exited.

CHNON,Y causes subsequent keyboard characters to come from the chain file,
starting at the current position within the chain file. If CHNON,Y was exe-
cuted as a DOS~CALL, the current DOS~CALL level ie exited.

CHNON,B causes subsequent keyboard characters to come from'the_chain file,
starting at the current position within the chain file. If CHNON,D was exe-
cuted as a DOS-CALL, DOS remains at that level and executes subsequent commands
from the chain file until either CHNON,Y or CHNON,N or end of section or end
of file is encountered.

See sections 2.9 and 4.3 for further discussion of chaining.

2.11. CLEAR Clear user memory routes, timer and logical enqueues.

CLEAR[,START=addrl] [,END=addr2][,MEM=addr3]

The CLEAR command performs the following functions:

1. Performs ROUTE,CLEAR DOS command function. ‘

2. Dequeues all user routines in the timer interrupt routine chain that
were enqueued by the 4419H (Model 1) or 447BH (Model III} call to DOS.
This includes turning the clock display off.

3. Dequeues all *name routines that were enqueued by a 4461H call to DOS.
This includes the NEWDOS/8p spooler, if active, but not its graceful ter-
mination. The spooler, if in use, should be fully terminated before
executing CLEAR.

4. Resets HIMEM to addr3 or, if addr3 not speclfled, to the highest
memory address.

5. Zeroes memory from addrl or 52§fH, which ever is greater, through
addr3 or HIMEM, whichever is lower. addrl must be greater than or equal
to 520fiH and less than or equal to addr3.

CLEAR command examples:

1. CLEAR,START-6¢9¢H,MEM=¢DFFFH All routes are cleared, and all
timer and *name routines dequeued. HIMEM is set to @DFFFH. The main
memory between 60PPH and PDFFFH is zeroed.

2. CLEAR All routes are cleared, and all timer and *name rou—

tines dequeued. HIMEM is set to the highest main memory locatlon, and all
memory from 520PH to HIMEM is zeroed.

DOS LIBRARY COMMANDS 2-8

@

CLOCK - CLSs - OOPY

2.12, CLOCK Digplay the time every second.
CLOCK[,yn]
CLOCK or. CLOCK,Y The current value of the clock is displayed every

second in positions 53-68 of the display's top line in HH:MM:58 format.
CLOCK,N The displaying of the clock ceases.

Users are warned that the clock will continuously lose time. There is no hard-
ware clock in the sense of seconds, minutes and hours. Computation of clock
time is done from the 25ms interrupt chain in the Model I (in the Model III,
it is done in the ROM from the timer interrupt). Whenever the interrupts are

~ left off for more than 25me (33 or 4§ ms on the Model III), one or more inter-

rupte are lost and for each ome lost, the clock loses 25ms (33 or 4P ms on the
Model III). Lost interrupts are very frequent when disk I/O is being done, is
massive when tape I/O is done, and can also be frequent if other routines hung
off the 25ms chain are more than a few milliseconds long.

2.13. CLS Clear the display.

CLS simply clears the display, resetting it to 64 character mode. On the Model
ITI, reserved top display lines are not cleared.

2,14, cory

The COPY command is used to copy a single file, multiple files or a full
diskette. COPY has 6 formats:

1. COPY,filespecl[,T0],filespec2[,SPDN=dn3][,DPDN=dn&]

2. COPY,$filespecl[,T0],filespec2[,SPDN=dn3]{ ,DPDN=dn4]

3. COPY,[:]dnl,filespecl|,T0],filespec2[,SPDN=dn3][,DPDN=dn4]

4. COPY,[:]dnl,S$filespecl[,T0],filespec2(,SPDN=dn3][,DPDN=dn4)

5. COPY,[:]dnll=tcl]f,TO],[:]dn2[=tc2],0m/dd/yy[,¥][,N]
{ ,NOMW]{ ,FMT][,NFMT][,SPDN=dn3][,DPDN=dn4]{,SPW=passwordl]
{ ;NDPW=password3][,DDND]{,0DN=namel][,KDN][,KDD][,NDN=name2]
[,SN=name3][,USD][,BDU][,UBB])

6. COPY,[:]dnl[,TO],[:]dn2[=tc2],mm/dd/yy,CBF[,Y][,N]
[;USR][,/ext][,UPD][,ILF=filespec3][,XLF=filespecs][,CFWO]
[,NDMW]{ ,FMT][,N¥MT][,SPON=dn3][,DPDN=dn&][,SPW=passwordl]
| ,0DPW=password2]}[,NDPW=password3]{,DDND][,0DN=namel }
[,KDN][,KDD][,NDN=name2][,SN=name3][,USD][,UBB]
[,DDSL=1n1][,DDGA=gcl]

The COPY command has been significantly changed in NEWDOS/80 version 2; all
users, new and old, should carefully read this section. :

COPY cannot be executed under MINI-DOS; however for simple single file copies,
DOS library command MDCOPY is available,

2-9 DOS LIBRARY COMMANDS

QOPY

dnl and dn2 are drive numbers and may be equal. The colon preceding dnl and/or e
dn2 is optional. : /.

Filespecl is the source file's filespec. Filespec2 is the destination file's
filespec. - '

Filespecl prefixed with $ means that either the source or the destination file
or both are to be on drive § and are on diskette(s) that either (1) do not

contain a NEWDOS/8# system identical to the one on drive @ when COPY was init-
iated, (2) do not contain a NEWDOS/8f system, or (3) contain no system at all.

During processing for formats 2, 3, 4, 5 and 6, the system may ask for various
diskette mounts; do what the prompts ask!!

1. When prompted for the system diskette, mount the NEWDOS/8¢ diskette
that was on drive @ at the start of the COPY command execution.

Z. When prompted for the source diskette, mount the diskette containing
~file filespecl (formats 1, 2, 3 and 4) or the data to be copied (formats 5
and 6).

3. When prompted for the destination diskette, mount the diskette to
contain file filespec2 (formats 1, 2, 3 and 4) or to receive the data
being copied (formats 5 and 6).

SPDN=dn3 Source PDrive Number. SPDN=dn3 tells the system that for all source
drive 1/0, the system diskette's PDRIVE specifications (see DOS command PDRIVE,
section 2.37) for drive dn3 are to be used instead of the source drive's normal
PDRIVE specifications. dn3 is a value @ to 9, referring to a drive number
listed by the PDRIVE command.

DPDN=dn4 Destination PDrive Number. DPDN=dn4 tells the system that for all
destination drive I/0s, the system diskette's PDRIVE specifications for drive
dn4 are to be used instead of the destination drive's normal PDRIVE specifica-

tions. dn4 is a value ® to 9 referring to a drive number listed by the PDRIVE
command.

Note that use of SPDN and DPDN for a drive § single drive COPY (formats &,
5 or 6) means that three different PDRIVE specifications (one for the sys-
" tem diskette, one for the source diskette and one for the destination

diskette) will apply during the COPY even though only one drive is used.

Format 1 is the single file copy. It is used to copy the contents of file

" filespecl to file filespec2. The diskette(s) involved in the GCOPY must already
be mounted; the system gives no mount prompts. The contents of file filespecl
are not altered. The previous contents of file filespec2, if any, are lost.

If the leading part of filespecZ equals that of filespecl, filespec2 may be
shortened by leaving off the leading part, the remainder of filespec2 starting
with / or . or :. For example:

COPY,USERFILE/DAT:$,T0,USERFILE/DAT:1
can be shortened to: _ e

COPY,USERFILE/DAT:$,TO, :1

DOS LIBRARY COMMANDS 2-10

Cory

Remember, the keyword TO is optiomal, and spaces may be used instead of commas.
Thus the command could be written:

COPY USERFILE/DAT:§ :1

Format 2 is the same as format 1 except that the $ sign prefixed onto file-
specl indicates that a conflict exists with drive #, the system drive, and DOS
will prompt for the proper diskettes to be mounted on drive §. If the source
and destination drive numbers are both zero but the source and destination
files are on separate diskettes, use format 4 instead of format 2.

Format 3 again is similar to format 1, except that the user has only 1 drive
available for the copy and file filespecl resides on a diskette different from
that of file filespec2. Neither filespec can specify a drive number. DOS will
prompt for the mount of the source and destination diskettes as they are need- -
ed. If drive § is specified, both the source and destination diskettes must
contain a NEWDOS/8@ system identical to the one mounted on drive § at the start
of the COPY command; otherwise use format 4.

Format 4 performs similar to format 3 except that either file or both reside on
diskettes with different NEWDOS/8(systems, non~NEWDOS/89 systems or no systems
at all. DOS will prompt for the mount of the system, source and destination
diskettes as they are needed. Format 4 should only be used when dnl equals §;
otherwise you are wasting time with diskette swaps that are not needed.

Formats 2 and 4 allows suppliers of programs, whether free or purchased, to
send their program products on diskettes that do not contain NEWDOS systems.
Aside from the supplier's programs and/or data files, the diskette need only
contain the directory and the BOOT/SYS file, both created on each diskette
during formatting. Suppliers must not include a NEWDOS system on their disk-
ettes unless they have made explicit arrangements with Apparat.

NEWDOS/8f does not have a diskette BACKUP program. Instead, either formats 5
or 6 is used. Format 5 is a full diskette sector by sector copy without con-
cern for the number and type of files. Format 6 copies some or all of the
source diskette's files onto the destination diskette. Of the two, for the
same amount of data transmitted, format 5 is faster while format 6 allows

greater variation between source and destination diskette types and tries to
reassign files to contiguous space.

Format 5 is a full diskette copy. The default specifications for the two
drives are the PDRIVE specifications currently being used by DOS. The drives
must have the same number of sectors per track, granules per lump and sectors
per granule (five is the current NEWDOS/8f standard); otherwise format 6 must
be used. The destination diskette may have more tracks than the source; if so,
the destination directory is adjusted to account for the extra free granules
(not done if BDU option specified). Format 5 options are defined as follows:

=tecl DOS is to use the value tcl as the source diskette's track count
during the COPY rather than the source drive's default value. -

=tc2 DOS is to use the value tc2 as the destination diskette's track
count during the COPY rather than the destination drive's default value.

mm/dd/yy is the date to be placed in the destination diskette date

2-11 DOS LIBRARY COMMAKDS

oory

field. The mm/dd/yy may be null, and if so the system date is used. The e
only time mm/dd/yy may be entirely left out of the format 5 COPY command -
is when the command has only the two drive number parameters (example: .
COPY § 1)}, Otherwise mm/dd/yy must be the 3rd parameter even if it is

~null or to be overridden by either the KDD or the USD parameter. If the
m/dd/yy is null, this must be so indicated by separating commas (not
spaces) (example: COPY # 1,,FMT CBF).

Y The user doesn't care what was previously on the destination disk-
ette. Y is mutually exclusive with N, ODN, ODPW, DDND, KDN or KDD. Y is
the default {(for COPY} if nomne of its mutual exclusions are specified.

N At the start of the COPY or FORMAT the destination diskette must not
contain recognizable data, i.e., should be in a bulk erase state. COPY
will be terminated if the diskette is found to contain data. N is mutual-
ly exclusive with Y, ODN, ODPW, DDND, KDN or KDD.

NDMW No Diskette Mount Waits. DOS is to assume that all needed disk-

ettes are already mounted on the specified drives. - No mount prompts or

error prompts are displayed. If an error occurs that otherwise would have

caused a prompt, the copy will be terminated., If NDMW is specified and

neither FMT nor NFMT are specified, FMT is assumed. NDMW is intended for

use when COPY {or FORMAT) is invoked via DOS-CALL (i.e., from BASIC) and

the calling program does not want operator interaction. Since NDMW causes

the COPY or FORMAT to bypass error and disk mount queries, it is recom—

mended that NDMW normally not be used when the operator is key1ng in the

COPY (or FORMAT) command. R

FET TFormat. DOS formats the destination diskette before copying data.
FMT is mutually exclusive with NFMT, If neither FMT or NFMT is specified
and NDMW was not specified, the operator will be queried 'FORMAT DISKETTE?
(Y OR ¥)'. 1If neither FMT or NFMT is specified and NDMW was specified,
FMT is assumed.

NFNMT No Format. DOS does not format the destination diskette before
copying data. The user must assure that the destination diskette is al-
ready formatted correctly. NFMT is mutually exclusive with FMT.

SPW=passwordl Source PassWord. If passwords are enabled (system op~
tion AA = Y) and system option AR = N, then COPY requires a source disk-
ette master password match. If passwordl does not match the source disk-
ette's password, the copy function will be terminated.

RDPW=password3 New Destination PassWord. Password3 must conform to
rules for passwords and is assigned as the destination diskette's new
password, NDPW is mutually exclusive with BDU.

DDND Display Destination old Name and Date. The destination disk-
ette's old name and date are prompted to the display, allowing the opera-
tor to decide whether or mot to proceed with the copy. DDND is mutually
exclusive with Y, N, and NDMW,

ODR=namel 01ld Destination Name. If the destination diskette's old . :
name is not equal to namel, then the system prompts, allowing the operator .‘
to decide whether to proceed with the copy. ODN is mutually exclusive

with Y, N and NDMW. o

DOS LIBRARY COMMANDS 2-12

®

COPY

KDN Keep Destination diskette Name. The destination diskette keeps
its old name rather than receive the source diskette's name. KDN is mu~
tually exclusive with Y, N, BDU and NDN,

KDD Keep Destination diskette Date. The destination diskette keeps
its old date rather than receive the mm/dd/yy parameter from the COPY
command. KDD is mutually exclusive with Y, N, BDU and USD.

NDN=name?2 New Destination Name. The destination diskette takes name?2

as its name, rather than receive the source diskette's name. HName? must
conform to the specification for diskette names. NDN is mutually exclu-
sive with BDU and KDN.

Ush Use Source Date. The destination diskette uses as its date the
source diskette's date, rather than receive the mm/dd/yy parameter from
the COPY command. USD is mutually exclusive with KDD and BDU.

SN=name3 Source diskette Name. If the source diskette's name is not
equal to name3, a prompt is issued, allowing the operator to decide
whether or mot to proceed with the copy.

BDU Bypass destination Directory Update. Aside for simply copying
the source sectors onto the destination diskette, the format 5 COPY also
updates the boot and PDRIVE data in the destination file BOOT/SYS and, as
necessary, the name, date, password and extra granule information into
file DIR/SYS. There are times, however, when this file updating is not
wanted, and by specifying option BDU these updates are bypassed. BDU is
useful when the source diskette has a bad directory, has a non-standard
directory (such as a TRSDOS Model III directory) or has no directory at
all or when the user wants a full diskette copy with no alterations. BDU
is mutually exclusive with KDN, NDN, NDPW and USD.

UBB Use Big Buffer In NEWD0S/21 and NEWDOS/8f version 1, COPY was
restricted to using main memory below 7PPPH unless it was a two diskette,
single drive COPY, in which case all of memory to HIMEM was used. If a
user wanted to force the usage of 21l memory to HIMEM, the UBB parameter -
had to be specified. However, in NEWDOS/80 version 2, all of main nemory
to HIMEM is used unless the COPY was invoked under DOS-CALL (i.e., from
BASIC), in which case only main memory below 7##fH is used. Thus, in
NEWDOS/8§ version 2, UBB is a useless parameter left in existence only for
upward compatibility from Version 1.

Format 6 is the multiple file COPY and is distinguished from format 5 by the
inclusion of the CBF (Copy By File) option. Though format 5 is the faster way
to backup a diskette, format 6 offérs more flexibility, allowing files to be
copied between diskettes and drives of widely varying characteristics. The
choice of files to be copied can be limited by the combined effect of options
USR, /ext, UPD, ILF, XLF and CFWO; if one or more criteria are specified, only
those files satisfying all the criteria are copied. Format 5's options, except
BDU, are used in format 6 as well as the following additional options.

If NFMT is specified, then none of Y, N, KDN, KDD, NDN, BDU, USD, NDPW,
DDSL, DDGA or tc2 may be specified, ODPW may be required, and system files
are not copied unless already existent in the destination file directory.

2-13 DOS LIBRARY COMMANDS

CoPY

If NFMT is not specified, then the destination file is formatted as if the
command was FORMAT, including establishing BOOT/SYS and DIR/SYS. Then, K .
before any files are copied, all files to be copied are entered into the .
destination diskette's directory. This is necessary as system files must

occupy the same directory FPDEs in order for DOS to work at all.

e

CBF Copy By File CBF, required for and used only in format 6, ind-
icates the copy will be done by files rather than in straight sequential

. order of diskette sectors.

USR copy user files. Only user files are copied; system and invis-
ible files are excluded.

/ext copy files having name extension ext. Only files with name ex-
tension ext are copied. ext is a § to 3 character name extension.
Examples of this parameter are /fCMD, /, /BAS, /X.

UPD copy updated files Only files that have the updated flag on in
the source diskette directory are copied. This flag is turned on by the
standard DOS sector write routine to indicate that at least one sector has
been written or re-written to this file since the last time the updated
flag was cleared. This flag is turned off by specific request via the
PROT or ATTRIB commands and is NOT turned off by COPY, Since the standard
DOS sector write routine is used to write the file's sectors to the des-
tination diskette, the updated flag is turned on for the copied destina-
tion files,

ILF=filespec3 Include List File Filespec3 specifies a file containing .

a list of files to be copied. If a file is not in the list, it is not

copied. It is not an error if an included file is not on the source disk-
ette., Within the list, each file to copied is specified by its name/ext
followed by a EOL char (#DH). If a specification begins with a semi-
colon, it is bypassed as a comment. Each specification, except comment,
is limited to a maximum of 13 characters, including the EOL. On reading,
the file's bytes are modulated into the ASCII range $§ to 127. The file
cai be made using SCRIPSIT, but the user must assure that no characters
other than null ($PB) follow the last EOL character; - SCRIPSIT tends to
leave extraneous characters so a delete-to-end~of-text should be done.

ILF is mutuvally exclusive with XLF. ‘

XLF=filespec4 Exclusion List File. The file filespec4 is the same
structure as specified for ILF above and specifies the files to be ex-
cluded from the COPY. It is not an error if an excluded file is not on
the source diskette. XLF is mutually exclusive with ILF.

CFWO Check File With Operator. For the qualifying files, DOS asks the
operator, one file at a time, if the file is to be copied to the destina-
tion diskette. Reply Y if the file is to be copied, reply N if not to be
copied, reply R if to restart entire CFWO query sequence, or reply Q if no
more files to be copied. No files are copied until the querying is com-
pleted. : :

ODPW=password2 0ld Destination diskette Password. If NFMT is speci- //fﬂk
fied, if passwords are enabled and if system option AR = N, then copy re- ' .
quires a destination diskette password match. If password? does not match

DOS LIBRARY COMMANDS 2-14

COPY

the destination diskette's password, the copy is terminated.

DDSL~1nl Destination diskette Directory Starting Lump. Formatting will
start the directory on the lst sector of lump lnl if DDSL is specified;
otherwise the default starting lump number for the drive (see PDRIVE com—
mand) will be used. DDSL is mutually exclusive with NFMT.

DDGA=gcl Degtination diskette Directory Granule Allocation. Formattlng
will allocate gel (value 2 - 6) granules to the directory if DDGA is
specified; otherwise it will 3331gn the default # of granules for that
drive (see PDRIVE command)., DDGA is mutually exclusive with NFMT,

1f during a format 6 COPY, the destimation diskette has insufficient space to

contain a file, "DISKETTE FULL = name/ext" is displayed and the destination
file's EOF is set to §. Though EOF is set to §, any space the file may have
allocated to it is not deallocated.

A 31ngle drive format 5 or 6 COPY cannot be executed under DOS-CALL (i.e., from
BASIC) since COPY under DOS-CALL restricts itself to main memory below 7$ppH
and this would necessitate too many diskette swaps.

During a COPY or FORMAT where NDMW was not specified, pressing right arrow at
any time will cause the function to pause, awaiting ENTER to continue or. up-
arrow to cancel. Pressing up-arrow at any time will terminate the function;
however, be careful as the state of the destination diskette will be unknown,
especially if the cancel comes during the actual formatting.

The COPY command and standard 4@ track, double density, single sided, 5 inch
TRSDOS Model III diskettes may be used to transfer TRSDOS Model III diskette

files into or out of the NEWDOS/8f§ system. There are a number of restrictions
to this operation.

NEWD0OS/8f cannot be used to format a TRSDOS Model III diskette; however,
once the user has a formatted empty TRSDOS Model III diskette, he/she may
duplicate it repeatedly under NEWDOS/8(using format 5 COPY with the NFMT
and BDU options, thus obtaining a stock of formatted, empty TRSDOS Model
III diskettes.

The user must assure that where the source amnd/or destination is a TRSDOS

" Model III diskette the proper PDRIVE spece are invoked, either implicity
or directly by the SPDN and/or DPDN parameter (see PDRIVE command example
3, section 2,37 for the exact PDRIVE specification).

A file need not previously exist on a TRSDOS Model III diskette in order
for it to be copied. NEWDOS/89 will allocate the proper directory entry
and diskette space.

Any of COPY formats 1, 2, 3, & or 6 may be used to copy files to or from
TRSDOS Model III diskettes. Remember, FMT must not be specified. If
format 6 is used and one of the source or destination is a TRSD0S Model
IIT diskette, then files marked as SYSTEM files (FPDE lst byte, bit 6 = 1)
are NOT copied.

Files copied between NEWDCS/ 8¢ and TRSDOS Model 1II are always readable
though not necessarily usable on the receiving system.

2-15 . DOS LIBRARY COMMANDS

QoPY

Examples of COPY: : ' L

1, COPY XXX:1 YYY:1 In this format 1 COPY, file XXX on the .
diskette already mounted on drive omne is copied as flle YYY on that same

diskette.

2. COPY,AAA,BBB:2 In this format 1 COPY, the currently

mounted diskettes are searched for the file AAA. If found, it is copied
as file BBB to the diskette already mounted in drive 2.

3. .COPY SUPERZAP/CMD:f# :3 1In this format 1 COPY, the file named
SUPERZAP/CMD is copied from diskette already mounted in drive @ to the
- diskette already mounted in drive 3. Since the file name and name exten-
sion are the same for both files, they were dropped from the second file-
spec.

4, COPY XXX:1 2 SPDN=9 - Im this format 1 COPY SPDR=9 causes, for
the duration of the COPY only, all source file I/0 to assume that drive 1
has the characteristics specified for drive 9 in the PDRIVE specifica-
tions. If we assume that the PDRIVE drive 9 specifications were those for

. @ Model III TRSDOS diskette (see PDRIVE example 3, section 2.37), this
COPY will copy file XXX from the TRSDOS Model III diskette already mounted
on drive 1 to the NEWDOS/8¢ diskette already mounted on drive 2.

5. COPY $XAX:1,YYY:§ In this format 2 COPY, the destination
diskette to contain file YYY is not the same diskette as was mounted on
drive § when the COPY command was initiated. DOS will ask for the mount T
of the destination and the system diskettes as it needs them. .

6. COPY,S$XXX:f§ YYY:1 In this format 2 COPY, the source dlskette
containing file XXX is not the same diskette as was mounted on drive §
when the COPY command was initiated. DOS will ask for the mount of the
source and system diskettes as it needs them.

7. COPY 1 XXX YYY/DAT In this format 3 COPY, the diskette con-
taining file XXX is not the same diskette as the onme to contain file

YYY/DAT yet both the source and destination diskettes are to use drive 1.
DOS will ask for the mount of the source and destination diskettes as it

needs them. Note that, as required for format 3 and 4, neither filespec
contains 3 drive number. :

8. COPY § XXX/DAT /DAT In this format 3 COPY, file XXX/DAT on one
diskette is to be copied as file XXX/DAT on another. Both diskettes are
to be mounted on drive #, and DOS will ask for them as needed. Since
drive § is used and this is format 3 rather than format 4, both the socurce
and destination diskettes must contain NEWDOS/8f systems identical to that
mounted on drive § when the COPY command was initiated.

9. COPY i $XXX/DAT /DAT This format 4 COPY accomplishes essenti-
ally the same thing as the previous example. The difference is that DOS
~assumes that neither the source nor the destination diskette contains the
proper NEWDOS/8f system; so DOS will ask for the mount of the system,
source and destination diskettes as it needs them.

-

——

DOS LIBRARY COMMANDS 2-16

¢

COPY

1. COPY H $XXX XXX SPDN=9 This format & COPY sccomplishes the same
thing as in example 4 above excepting that only drive # is used. For the
duration of this COPY, drive § usés two sets of PDRIVE specificationms.

The standard drive # specifications are used for the system and destina-
tion diskette I/0s, and the system diskette's PDRIVE's drive 9 specifica-
tions are used for the source diskette I/0s. Note, in this example, the
second filespec was not foreshortened as there was nothing to foreshorten.

11. COPY § 1 96/P1/8p FMT This format 5 COPY is an example of one of
the simplest and most commonly used forms of the full diskette COPY. This
COPY copies one diskette to another using drive § as the source drive and
drive 1 as the destination drive. Default track counts for the associated
drives are used as diskette track counts. Both drives, other than pos—
sibly having different track counts (destination must be greater than or
equal to source), have the same characteristics. The operator will be
prompted for d1skette mounts and error choices, if errors occur. Default
parameter Y is in effect, indicating the operator does not care if the
destination diskette previously contained data or not. The destination
diskette will be formatted before the entire source diskette is copied to
it, and it will receive the source diskette's name and password. Its date
will be set to P6/$1/88., If the destination diskette is to have more
tracks than the source, they will be formated and properly accounted for
in the directory such that the destination diskette will be ready for use.

12, COPY £ 1,,NFMT This format 4 COPY is an example of an-
other form of the simplest and most common full diskette copy. The only
difference between this example and the one above is (1) the destination
diskette is assumed already formatted, and (2) the current system date
will become the destlnatlon diskette'e date.

13. cOPY,$,8,P6/01/86 ,NFMT,USD, KDN , ODN=WATCHDOG , SN=GOODDATA |

This format 5 COPY is somewhat the same as the previous example except (1)
this is a single drive, two diskette copy, (2) a prompt will be given if
the source diskette does not have the name specified, (3) a prompt will be
given if the destination diskette does not have the name specified, (&)

the destination diskette will retain its old name, (5) it will receive its
date from the source diskette. Being a single drive, two diskette copy,
more mount prompts will be necessary than for a two drive COPY. Also,
because of the large number of diskette mounts that would be involved,

this single drive COPY cannot be executed via DOS-CALL (i.e., from BASIC).

14, COPY §,1,,FMT,CBF This format 6 COPY is an example of one of
the simplest and most commonly used forms of multiple file COPY. The
destination diskette (to be mounted on drive 1) is to be formatted, and it
receives its name and password from the source diskette (to be mounted on
drive @) and its date from the system date. Next, all of the source

diskette's files, excepting BOOT/SYS and DIR/SYS, are copxed to the des-
tination diskette.

15. coPY #,1,,NFMT,CBF This format & COPY is san example of another
of the simplest and mostly commonly used forme of multiple file COPY. The
differences between this and example 14 are (1) the destination diskette
is not to be formatted, (2) its name, password and date are not changed,
and (3) any source diskette system files {other than BOOT and DIR) that

+ did not already exist on the destination diskette are not copied.

2~17 DOS LIBRARY COMMANDS

COPY ~ CREATE

16. COPY § 1,,NFMT,CBF,USR This format 6 COPY is similar to the pre-
vious example except that system and invisible files are not copied. ‘
17. COPY,#,1,,NFMT,CBF,USR,UPD This format 6 COPY is similar to the

previous example except that the only source files copied are those marked
as updated as well as not being either a system or an invisible file. In
this manner, only the files changed since the last backup are backed up
now. Remember, COPY does not clear the updated flags on the source disk-
ette; use DOS commands PROT or ATTRIB to do this.

18.. COPY,2,3=68,36/91/8p ,FMT,NDMW, CBF ,DDSL=29,DDGA=4

During this format 6 COPY no diskette mount prompts or error choices are
to be displayed; the system is to assume the diskettes are already pro-
perly mounted. The destination diskette is to be formatted with 6§
tracks. The directory will astart on lump 29, and will be allocated 4
granules. All source diskette files, except BOOT/SYS and DIR/SYS, will be
copied to the destination diskette.

19, COPY 2 3 ﬁﬁ/ﬂl/SG,CBF,CFWO,NFMT .

For this format 6 COPY, the destination diskette is assumed previously
properly formatted and may contain existing files. For each source disk-
ette file, excluding BOOT/SYS and DIR/SYS, the operator will be asked if
the file is to be copied to the destination diskette. When all queries
are done, the selected files are copied, excepting that system files that
did not previously exist on the destination diskette are not copied. If

the file already existed on the destination diskette, the file's old data
on the destination diskette is lost.

2.15. CREATE Pre-allocate a disk file.

The CREATE command allows a user to create a file and optionally to write to
the file a specified number of null records, thereby allocating the file's

space as contiguously as possible, given the layout of the free space on the
diskette. '

There are times when a user program expects one or more of the files it uses to
already exist, even though the files may not have any usable data in them;
therefore, the user must create the file prior to the program's first use.
Also, there are times when the efficiemcy of a program is reduced if a file's
diskette space is scattered all over the diskette; to avoid this, the user
should preallocate the needed file space to reduce this scattering.

CREATE,filespecl[,LRL=1n1][,REC=count1][,ASE=yn]{,ASC=yn]

The CREATE DOS command creates new file filespecl or alters the state of
existing file filespecl. C

IBL~lnl specifies the length of each record of the file. 1nl must be a value
between 1 and 256; the default value is 256. .

REC=countl specifies the number of records to. be initially assigned to a file. .

DOS LIBRARY COMMANDS 2-18

cnﬁarx—mn

‘ASE=yn This parameter indicates whether, subsequent to the CREATE comﬁand,
DOS may automatically allocate more diskette space to this file as necedsary.
ASE=Y allows this; ASE=N disallows this. The default is ASE=Y.

ASC=yn This parameter indicates whether the DOS close function will be al-
lowed to automatically deallocate excess diskette space. ASC=Y allows this;
ASC=N disallows it. The default is ASC=Y.

Enough diskette space is allocated to the file to provide for count! records
each of length 1nl. 1nl records of all zerves are them writtem to the file,
establlshlng the file BOF at the end of those records. If ASE=N is specified,
the file is inhibited against further diskette space allocation, and if ASC=N
the file is inhibited against automatic deallocation of excess diskette space.

CREATE command examples:

1. CREATE,XXX:1,LRL=3¢,REC=20fp File XXX is created, if it did not
already exist, on the drive 1 diskette. The record length is 3¢ and 2§$p
of these records, containing all #PH bytes, are written to the file. The
EOF is left at 6Pffp. Subsequent DOS automatic space allocation and deal-
location for this file are allowed.

2. CREATE,YYY:2,280,ASE=N,ASC=N File YYY is created, if it did not
already exist, on the drive 2 diskette. The record length is 256 and 208
of these records, containing z1l #PH bytes, are written to the file. The
EOF is left at 512ff. Subsequent DOS automatic space allocation and deal-
location for this file are not allowed.

3. CREATE,Z2Z:9 File ZZZ is created, if it did not
already exist, on the drive § diskette. The record length is 256, and the
EQOF is set to §. Subsequent DOS automatic space allocation and dealloca-—
tion for this file are allowed.

'2.16. DATE Set computer's current date.

 DATE[,mm/ dd/ yy]

If no parameters are specified, the DATE command d1sp1ays the current system
date in mm/dd/yy format.

1f mm/dd/yy is specified, the date mm/dd/yy becomes the system date and is set

into the real time clock. mm is the month (value $1 - 12). dd is the day
(value 1 - 31). vyy is the year (value B - 99). No check is made on the
validity of the 3 wvalues except to limit them to 2 decimal dlglts. As the
clock reaches 24:Pf:PP, it is reset to PP:PH:P% and the date's day within month
value is incremented. For the Model I, no adjustment is made for end of month

or end of year. For the Model III, end of month and end of year adjustments
are done by the ROM. '

At reset time, the date is set according to SYSTEM options AY or AZ.

2-19 DOS LIBRARY COMMANDS

DATE ~ DEBUG - DIR

DATE command examples:

1. DATE display the system date.
2. DATE,$8/61/81 set system date to August 1, 1981,

2,17. DEBC enable or disable the DEBUG facility.

DEBUGT ,yn]

DEBUG or DEBUG,Y DEBUG is enabled (but not entered). This enabling
causes a DEBUG entry whenmever a user program (such as BASIC, SCRIPSIT, PROFILE,
EDIT, etc.) is activated. The DEBUG entry occurs after the progran load is
completed but just before its first instruction is executed. The purpose of
this pre—execution DEBUG entry is to allow the debugging programmer to change
the state of a program or its initialization parameters before the program
commences execution.

DEBUG,N The above enabling is disabled. At reset/power-on time, DEBUG
is disabled. :

This command has no effect on the operation of '123' (the szmultaneous depress—
ing of the 1, 2 and 3 keys) to enter the DEBUG facility.

Refer to the section 4.1 for the DEBUG facility specificationms.

2.18. DIr Display a diskette'’s directory information.
DIR[:][anlI[,A},S1[,11[,U][,/ext]],P]

Thie command displays directory information for the diskette mounted on drive
dnl or if dnl not specified, on the drive specified by system option AN.

The first display line contains the drive number, the diskette name, its date,
the number of tracks, the pumber of free FDEs and the number of free granules.
The values for track count and free granules are based on the current active
PDRIVE specification for that drive and if those specifications are not proper,
these displayed values may be in error.

The rest of the display contains file information.

If 4 is not specified, the files are dlsplayed four to a line, giving for each
its name and name extension, if any.

If A is specified, DIR will list one file per display line with the display
line containing:

l. The file's name.
2. The file's name extemsion, if any.

DO5 LIBRARY COMMANDS . 2-20

DIR

3. The file's EOF value in xxx/yyy format where xxx is the relative

sector number within the file and yyy is the relative byte number within
that sector.

4, The file's logical record size {LRL} in bytes.

5. The number of logical records (RECS) in the file including any partial
last record.

6. The number of granules (GRANS) allocated to the file.

7. the number of diskette space extents (EXT) allocated where that number
divided by four and rounded up gives the number of directory entries used
by the file, _

8. 12 flags providing file information, defined as follows:

1, 8 = system file.
2, I = invigible file, see ATIRIB DOS command.
3. U = file updated since last time update flags cleared by PROT

DOS command.

4, E = file will not be allowed to- allocate more space that it
already has.

5. € = excess file space beyond EOF is not automatlcally released
during DOS close.
6. - 9. = Reserved for future definition.

1. U = ‘non-blank update password exists.
11. A = non-blank access password exists. _
12. 1L = protection Level, see ATTRIB DOS command.

System files are not displayed unless 5 is specified.
Invisible files are not displayed unleseg I is specified.

If U is specified, only files marked as updated are displayed. Files marked as
updated are those files changed via the standard DOS I/O write routine since
the last time the update flags were cleared on the target diskette by the PROT
or ATTRIB DOS command.

If /ext is specified, only those files having the name extension ext are
displayed. ext is f## to 3 characters. Example: DIR,l,/CMD will list all
files having extension CMD such as EDTASM/CMD.

If both U and /ext are specified, then only files satisfying both conditions
are listed.

When the display screen is full, DIR displays a '?' and waits for the user to
respond ENTER to continue or BREAK to terminate the DIR function. -

If P is specified, the directory information is sent to the printer rather than
to the display. Caution, if the printer is not ready, the system will hang
waiting for it. '

If § is specified, DIR will ask for the mount of the target diskette before the
‘listing and will ask for the remount of the system diskette before exiting. §
should only be used when drive dnl = @. There is no provision for changing the
PDRIVE specifications internal to the DIR command. -

2-21 DOS LIBRARY COMMARDS

- DIR — DO - DUMP

The user must remember that if dnl is not specified, the default drive number
is that specified by SYSTEM option AN which is not necessarlly f.

DIR command examples:

1. DIR @ Display the name and name extension of all non-
system, non-invisible files on the diskette currently mounted in drlve g.
The files will be listed four per display line.

2. DIR §,5,I,P . Same as the previous example except that system and

-~ invisible flles are also listed and that the llstlng is sent to the prlnt—
er instead of the display.

3. DIR 1,/DAT,U Display the name and name extension of all of the
current drlve 1 files that are marked as updated and have name extension
DAT.

4, DIR Z,A All of drive 2's non-system, non-invisible files are

displayed, one file per display line. This display will usually involve
more than one display page with the user stepping from one page to the
next by pressing ENTER and, if deSLred, terminating the DIR function by
pressing BREAK, :

5. DIR %9 Same as example 1 except the system will ask for the
mount of the target diskette on drive § and when DIR is dome, it will ask
for the remount of the system diskette.

2.19 DO Shift to keyboard input from disk.
DO,filespecl[;sectionid]

The DO command executes exactly the same as the DOS command CHAIN (see sectlon
2 9).

2.20 Dump Dump memory contents to digk.
DUMP,filespecl,start~addr,end~addr[,entry~addr{ ,relloc-addr]]

The DUMP command writes main memory image data from main memory to the file
filespecl, starting with the byte at start-addr and ending with the byte at
end-addr.

Start-addr, end-addr, entry-addr and relloc-addr are each numeric values less
than 65536 decimal or 1PPPP hex. If the value is hexadecimal it must be suf-
fixed with a H (i.e. 88PPH); otherwise the value is considered decimal.
Start-addr and relloc-addr may be any value §#§ — PFFFFH.

This command operates in two modes, depending on the entry-addr value. If the ‘
entry-addr value = 65535 (PFFFFH), then an exact image of memory is “dumped. :

DOS LIBRARY COMMANDS _ 2-22

DIMP

The start-addr value is stored in the file's first 2 bytes, and the rest of the
file is the memory dump without any 1nterspersed contrel bytes. This memory
dump file may be displayed or printed via SUPERZAP's DMDB feature, thus allow—
ing debugging to occur later or on another TRS-8f computer.

If entry-addr is less than 65535 ($FFFFH) or is not specified, then the speci-
fied area of memory is assumed to be machine executable code and is sent to the
~file in loader format so that it can be later read back in by the NEWDOS/8p
loader, either for execution or simply for load (see LOAD command). If entry-
addr is not specified, a value of 4@2DH (causing return to DOS READY) is used.
CAUTION!! 1If the user attempts to run or load a file whose start—addr is less
than 52@pH, DOS will be clobbered.

relloc-addr specifies where the start-addr to end-addr range of bytes is to be
loaded to by the LOAD command or when the program file is executed. During
write of the object file, the value (relloc-addr) - (start-addr) is added to
every load address placed in the object file. This value is also added to the
entry-addr if entry—addr is within the start-addr to end-addr range. The
actual object code is NOT altered; only the loader control information is.

If filespecl does not specify an name extension, one is not automstically sup-
plied as is done in TRSDOS.

DUMP command examples:

1. DUMP,PROGRAM/CMD:1,52@pH, 3ABCH,54EDH dumps the contents of memory
from and including 52¢ﬁH to and including 9ABCH to the file PROGRAM/CMD to
exist on drive 1's current diskette. The dump will be in loader format
with entry address equal to 54EDH. Subsequently, the file may be loaded
back into memory via the DOS command:

LOAD, PROGRAM/ CMD
or executed via DOS command:

PROGRAM[,parameters]

2. For this next example, assume that a user program is looping for some
reason or has crashed, the personnel to debug the problem are not immedi-
ately available, and it is necessary to continue using the computer for
other purpeses. If a spare formatted diskette is available with suffi-
cient free space, and if 'DFG' can activate MINI-DOS or if the computer is
already at DOS READY, then issue the following command:

DUMP, TROUBLE/MEM: 2,8 ,65535,65535

which will dump 65536 bytes of main memory, including ROM, the display,
and all of RAM to file TROUBLE/MEM. The first 2 bytes of the file will
contain PPPRH which is the dump start address; the rest of the file is the
memory contents with no interspersed control characters. Once the dump is
completed, the operator should set aside the dump diskette for later use
by the debugging personnel, optionally press reset, and go on with other
taskgs. At some later time, debugging personnel can inspect the problem
using SUPERZAP's DMDB feature to display or print the contents of file
TROUBLE/MEM as if it were actually in memory at the current time. The

2-23 DOS LIBRARY COMMANDS

DUMP — ERROR — FORMAY

debugger must remember that the DOS areas 4f#fH — 51FFH were altered by
DOS actions, including DUMP, after the error occured and before the dump
actually occurred.

2.2]. ERROR Display DOS error message.

ERROR,xx

dlsplays the DOS error msg associated with the error number xx where xx is an
integer between @ and 63. Example:

ERROR, 24 will display 'FILE NOT IN DIRECTORY',

2.22 FORMAT : Format a diskette for use with the NEWDOS/8f system.

Diskettes as they are received from the manufacturer cannot be used with
NEWDOS/8ff. They must first be magnetically divided into tracks with each track
divided into sectors of 256 bytes each. Between 15 and 3§ percent of the disk-
ette's bytes are used as format control information and are not ava1lab1e to
contain user data.

The DOS command FORMAT does this diskette formatting, setting up the tracks and
sectors properly and building the two system files, BOOT/SYS and DIR/SYS, re-
quired on every diskette. When done, the diskette is ready to be used as a
data diskette with NEWDOS/8@.

Formatting can also be done as part of the COPY command, formats 5 and 6 (see
section 2.14).

FORMAT,dn2[= tcé] nameZ,mm/dd/yy,paéswordS[Wil,Y1[,NDMW]
1 DDND][ODN=namel } [,KDN][DDSL—Iul][DDGAFchI[DPDN=dn4]
[,PFST=tn3[,PFTC=tc3]]

FORMAT cannot be executed under MINI-DOS,

In NEWDOS/8f versiom 2, a track's sectors are read immediately after the track

is formatted and before the disk arm is stepped to the mext track. Then, after
all tracks are formatted, if SYSTEM option BM = ¥, the entire diskette is read

during the VERIFYING phase. However, if BM=N, this verifying phase is skipped.
The user can decide whether or not the verlfy-at track format is sufficient and
set option BM accordingly.

FORMAT does not allow the user to specify tracks to be locked out, and when an
unverifiable sector is éncountered, the associated track's lockout byte is not
set to FF to indicate lockout. The lockout table is in the standard diskette
directory only for compatibility with TRSDOS; NEWDOS/8$ does not use it. Re— -
member, NEWDOS/8f does not account for tracks in the directory, it accounts for
lumps which can span tracks. NEWDOS/8¢ operates under the philosophy, however
wrong, that if a diskette cannot be fully formatted it should be discarded.

DOS LIBRARY COMMANDS 2-24

FORMAT

FORMAT requires all parameters be specified in the command. It does not prompt
the user for any. '

dn2 is the pumber of the destination drive to be used during format. Name2 is
the name to be assigned to the diskette unless KDN is specified to retain the
old name, in which case name2 must still be specified but will be ignored.
me/dd/yy is the date to be assigned to the diskette unless RDD is specified as
the diskette date, in which case mm/dd/yy must still be specified but will be
ignored. Password3 is the password to be assigned to the diskette. Password3
must conform to the rules for passwords.

Null parameters may be used to invoke default values for diskette name, date
and password, using the name NOTRAMED, the system date and the password
PASSWORD respectively. Any combination of the 3 null values may be used but
where used the null parameters must be delimited by commas, not spaces. See
examples 2, 3 and 4 below.

Since FORMAT and COPY share the same NEWDOS/88 code wherever possible, the
specifications for the optional parameters are nearly the same as those spec—
ified for COPY, formats 5 and 6, the main difference being that only a2 format
is done rather than both a format and a copy. The reader should read the sec—
tions for COPY, formats 5 and 6 (see section 2.14} to basically understand

FORMAT's optional parameters. Only the differences and two additional options
will be given here.

N is the default if neither it nor any of its mutually exclusive keywords are
specified.

If =tc2? specified, the diskette will be formatted with tc2 number of tracks;
otherwise the digkette will be formatted with the default number of tracke for
that drive (see PDRIVE command). If =tc2 value is greater than the number of
tracks the drive can handle, format will probably hang trying to step to the
non-existent track.

" PFST=tn3 and PFTC=tc3 optional parameters are added to allow the formatting of
& range of tracks rather than the entire diskette. If PFST is specified, =tc2
muet net be specified, and if PFIC is specified, PFST must be specified. PFST
means Partial Format Starting Track, and tn3 specifies the first track to fox-
mat. If PDRIVE TI flags J or K are applicable for drive dnl, DOS will add one
to tnl. PFIC means Partial Format Track Count, and tc¢3 specifies the pumber of
consecutive ascendingly numbered tracks to format. If PFIC is not specified
and PFST is specified, tc3 is assumed equal to 1. After tc3 number of tracks
have been formatted and if SYSTEM option BM = Y, the entire diskette will be
verified. If this full diskette verify is a problem, cancel the format after
verify starts (by pressing up—arrow); remember, each track's sectors were al-
ready verified once immediately after the track was formatted.

FORMAT command examples:

1. TFORMAT,0,AAAP,@8/91/81,PSWD,Y The diskette to be mounted, at
DOS's request, on drive § will be formatted according to the PDRIVE spec~
ifications current for that drive. DOS does not care whether the format
diskette previously contasined data or mot. The diskette is named AAAﬂ,
dated August 1, 1981, and receives PS5¥D as its master password.

2~25 : ’ DOS LIBRARY COMMANDS

FORMAT — FORMS

2. TFORMAT,$,,,.Y This example is identical to the previous example

except that default values are used for the diskette name, date and pass- .
word. The diskette is named NOTNAMED, is dated with the current system :
date and is assigned PASSWORD as its password. :

3. TFORMAT,1,XXX,,PSWD,N,NDMW,DPDN=4 ,DDSL=4§ ,DDGA=6 The diskette al-
ready mounted on drive 1 must not contain recognizable data. It is for-
matted according to the system diskette's PDRIVE drive 4 specifications
(and not according to the existing drive 1 specifications). It is ag~
signed name XXX and password PSWD; its date is taken from the current
system date. The directory starts at the beginning of lump 4# and con-
sists of 6 granules (allows for a maximum of 222 files). Due to NDMW, DOS
-does not ask for the mount of the format diskette nor does it allow error
retry.

4. FORMAT,l,,,,Y,PFST=22,PFTC=2 Suppose a power failure destroyed -
the format of tracks 22 and 23 on a diskette. Using SUPERZAP, you have
verified that indeed SECTOR NOT FOUND error occurs on at least one sector
on each of those tracks and, using the CDS or SCOPY functions of SUPERZAP,
you have saved in free sectors elsewhere, either on this diskette or an-
other, the readable sectors of those two tracks. FExecuting this FORMAT
command will cause only those two tracks to be reformatted; the rest of
the information on the diskette is not affected. .When done, you can now
move back the saved sectors and recreate the ones that were not esavable.

2.23. FOERMS (Model III only) Set printer parameters. .

FORMS[,WIDTH=xxx][, LINES=yyy]

The FORMS command optionally changes some printer parameters and always lists
out the printer parameters. _

WIDTH=xzxx specifies the number of characters per line where xxx must be a
value between 9 and 255. If WIDTH is not specified, the number of characters
per line is not changed.

LINES=xxx specifies the number of lines per page, and must be a value between
1 and 254, where 254 indicates no limit on the lines per page. If LINES is not
specified, the lines per page value is not changed.

FORMS command examples:

1. FORMS,WIDTH=8¢,LINES=60 character per line is set to 8 and lines
per page to 6§. ' : :

2. FORMS,WIDTH=255,LINES=254 Unlimited characters per line and lines
- per page. '

3. FORMS Displays current. values for characters
per line and lines per page..

DOS LIBRARY COMMANDS ' 2-26

FREE — HIMEM - JKL
2.24. FREE Display number of free granules and free FDEs for each
diskette currently mounted. '
FREE[,P}
For each drive with a diskette mounted, FREE will display the drlve number, the
diskette name, the diskette date, the number of tracks for the diskette, the

number of free FDEs and the number of free granules.

If P is specified, the informationm will be sent to the printer instead of the
display.

FREE command examples:

1. FREE : For each diskette currently mount the number of free
granules and free directory emtries is listed on the display.

2. FREE,P Same as above except the listing is sent to the printer.
2.25, HIMEM - Set DOS's high memory value.
HIMEM[,addrl]

DOS maintains a high memory address in the two bytes at Model I location 4§49H
(Model III location 4411H). This high memory value is unsed by COPY, BASIC,
EDTASM, DISASSEM and LMOFFSET as the upper limit of the memory they can use.
User programs should also use this 2 byte HIMEM value as their upper limits,
Caution! The loader does not use HIMEM as its upper limit during program load.

If no parameters are specified, the HIMEM command dlsplays in hexadec1mal the
current high memory value.

If addrl is specified, the DOS high memory address is set to addrl which must
be an integer between 28672 and 65535 decimal (7ppPH - GFFFFH hexadecimal).

RIHEN command examples:

1. HIMEM Displays the current DOS high memory address.
2. HIMEM,498pp Set DOS's high memory value to 49¢8p (PBF68H).
2.26, JEL Send the current contents of the display to the printer.

JKL has no parameters. This command uses the same routine used by the ‘'JKL'
triple key function {see section 4,5). JKL simply dumps the display contents
to the printer. If system option AK=Y, hex codes >= 8fH (which includes the
graphics) will be transmitted unchanged; otherwise a period will be substituted
for them. Hex codes < 2fH will be displayed as periods. Pressing BREAK during
JKL print will terminate the JKL function.

2=-27 DOS LIBRARY COMMANDS

JKL — KILL

JKL's main use will be either via CMD"JKL" from BASIC or via DOS-CALL from a
user program. ' :

2.27. KIll delete a file,

This command deletes a file from a diskette. The file is no longer accessible
by normal methods and is no longer known to POS.

KILL,filespecl

~ The file filespecl is deleted from the current diskette mounted on the speci-
fied drive. If a drive number was not specified, then all mounted diskettes
are searched, starting with the diskette on drive @, and the delete is done on
the 1st file found having the specified name and name extension.

KILL actioh is as follows:

1. - If the file was allocated file space on the diskette, the space is
‘released, and becomes available for subsequent assignment to other files.
The file's data, if any, on the diskette is not altered by the KILL, - This
data, though no longer accessible, is not written over until the assoc—
iated file space is reassigned to another file and those sectors actually
written to.

2. The file's FPDE and any owned FXDEs are freed by zeroing bit & of the .
1st byte of each and by zeroing the associated HIT sector byte for each.

Except for that bit 4, none of the associated FPDE and FXDEs are altered

by normal DOS operation until that FDE is reassigned to another file by

Dos.

If the user has inadvertently killed a file that shouldn't have been, since
neither the associated FDE's or the diskette space used by the file is changed
by DOS until DOS has a need to, it is possible to reconstruct the FPDE and
FXDEs and reallocate the space. To do this, you must be extremely familiar
with the workings of the directories; do not call Apparat as this is a ma jor
undertaking and not something that can be quickly taught. If you don't know
how to do it, forget it!

If you have more than a few files to delete at one time from a diskette, use
the PURGE command. '

-KILL command examples:

1. RILL XXX/BAS:1 The file XXX/BAS on the diskette mounted on drive
l is killed. :

2. KILL YYY Starting with drive §, mounted diskettes are
searched until file YYY is found on one of them. That file is then _
killed. If other mounted diskettes also contain a YYY file, the other YYY

files are not killed. _ .

DOS LIBRARY COMMANDS 2-28

LC - LCDVR

2.28. IC Set keyboard a - z toggle switch to the épécified state.
1¢[,yn]
1LC or IC,Y sets the keyboard lower case a - z toggle switch to accept

a — z without change.

LC,KN sets the keyboard lower.case a - z toggle switch to change lower
case a - z to upper case A - Z.

For the Model I, the LC command has no effect unless the lower case driver is
active (see LCDVR command).

2.29. LCDVR (Model I only) Lower case driver.
LCDVR[,x[,8]] -

In NEWDOS/88 version 1, the lower case driver that processed keyboard lower
case alphabetics and which sent lower case displayed characters to the display
was a separate program that executed from high memory. In version 2, the lower
case driver is an integral part of the Model I NEWDOS/S8f.

If x = Y, the lower case driver routine is activated, and if x = N, the routine
- is deactivated. When the lower case driver routine is active:

1. Keyboard input a - z characters are processed according to the a ~ z
toggle switch.

2. ASCII codes 96 - 127 (6fH - 7FH) are displayed as their proper charac-—
ters and are not changed to 64 - 95 (4@H - 5FH) by the ROM display routine.

The second parameter is meaningful only when x = Y, performs the same as the
first parameter of LC command, initially setting the a - z toggle switch to
accept a - z (if s = Y) or convert & — z to A — Z (if 8 = N}..

Once the lower case driver is activated, pressing shift § will switch the dri-
ver back and forth between accepting lower case letters and converting lower

case letters to upper case. Further, DOS command LC may be used to explicitly
set one or the other of those states.

To use the lower case driver, NEWDOS/8§'s keyboard and display intercept
routines must be enabled. Other routines (excluding ROUTE) that disable these
NEWDOS/8f functions will also disable the lower case driver (one example is
using the circular buffer in the spooler).

If no parsmeters are specified, the command is assumed to be LCDVR,Y,N,

This lower case driver operates somewhat differently than the LCDVR program
- supplied with Version 1. In Version 1, if lower case a - z was being converted
to upper case A - Z, then upper case A - Z was also being converted to lower
cage a - z. Version Z does not convert upper case A — Z to lower case a - z;
instead a true capital letter lock is done. :

2-29 . DOS LIBRARY COMMANDS

LCDVR - LIB

LCDVR command examples:

1, 1LCDVR The lower case driver routine is activated and the .
-lower case switch is set to convert lower case a — z to upper case A - Z.

2. LCDVR,Y.Y The lower case driver routine is activated, and the
lower case switch is set to accept lower case a — 2z without modification.

3. LCDVR,N The lower case driver routine is deactivated.

2.3p. LIB Display NEWDOS/8§ library commands.

LIB requires no parameters. It displays the library commands of NEWDOS/8§.
Commands FORMAT, COPY and APPEND execute in memory 52¢fE and up, and, along
with CHAIN, cannot be executed in MINI-D0S. The other commands execute from
the DOS overlay area, 4DPPH-51FFH, and, except . for CHAIN, can be executed under
MINI-DOS.

2.31. LIST List a text file on the display.

LIST,filespecl[,start~line[,line-count]] .

This command sends the contents of file fllespecl to the display. Though file
filespecl need not be a text file, if it is not, the resulting display will not
be very meaningful. Examples of text files are BASIC programs saved with the A
option, BASIC files written using PRINT, assembler, FORTRAN and COBOL source
text files, SCRIPSIT files saved with the A option and Electric Penc11 flles.
To list a2 non-text file, use SUPERZAP.

No check is made on the character representations except to modulate characters
whose hexadecimal values are between B8@H and FFH into the range $#H to 7FH and
to replace with a period all characters whose hexadecimal value is less than

28H or greater than the high ASCII character value specified by the SYSTEM op-
tion AX.

If start-line (decimal value 1 = 65535) is specified, listing will start with
that line where a line is considered to end with the ENTER or EOL character
QDH.

If line-count is specified, then the number of lines displayed is limited to
either line-count or the number of lines in the file from the start point,

vhichever is less. If line~count is specified, start-line must also be ‘speci-
fied.

Pressing right arrow will cause a display pause when hex char #DH is encount-
ered or after 256 bytes have been displayed, whichever comes first. Pressing

ENTER will continue the displaying. Pressing up—arrow will termipate LIST. _ .

Aside from just listing a file, LIST is useful where text files maintain a

DOS LIBRARY COMMANDS 2-~30

LIST ~ LOAD - MDBORT

date/time stamp near the beginning. If the user has multiple copies of a text

flle, it may be necessary to look at the file beginning to determine which copy
- is the most recent.

LIST command examples:

1. 1LIST,BASEPROG/BAS displays the entire contentes of file
BASEPROG/BAS.

2. LIST,XXX,1,6 displays the first 6 lines of file XXX.

3. LIST,YYY:1,28p displays the contents of file YYY from the

20fth line to the end of the file.

2.32. 10AD - Load a Z2-8p machine language file into RAM.

LOAD,filespecl

This command loads the Z-8f machine language file filespecl into RAM, and
stores its entry address into the two bytes at 44@3H (17411 decimal). The file
must be in proper loader format, such as created by DUMP or EDTASM. The load
proceeds using control data from the file. If the file loads over any part of
the resident DOS (4PPPH - 4CFFH) or its overlay area (4DPPH - S51FFH), serious
and maybe file damaging trouble will ocecur; with luck, the system will hang.

LOAD is used when a program or data is to be loaded into RAM for later use by
other programs. An example is loading programs which will be invoked via
BASIC's USR function, Remember, the entry address is stored in the two bytes
at 44P3H (17411 decimal); this is not done in TRSDOS.

LOAD command examples:

1. LOAD,OVERLAY/OBJ:1 The object code module OVERLAY/OBJ is loaded
into mair memory from the diskette mounted on drive 1. The load control
information within file OVERLAY/OBJ determines what is to be loaded and
where in main memory it is to be loaded.

2, Suppose that BASIC does not use all of high memory and that a BASIC
program wishes to load the program USR3PGM/OBJ into high memory and later
execute it as the BASIC USR3 function. Executing the BASIC statements:

CMD"LOAD, USR3PGM/OBJ" :
DEFUSR3 = (PEEK(17411) + 256 * PEEK(17412) - 65536

will set this up.

2.33. MDBORT - Terminate MINI-DOS and go to DOS READY.

MDBORT has no parameters. It should only be executed when NEWDOS/8f is in
MINI-DOS state. MINI-DOS state is terminated, the pre-MINI-DOS state purged
and the system goes to DOS READY.

2-31 DOS LIBRARY COMMARDS

MDBORT — MDCOPY - MDRET

The purpose'of MDBORT is to provide for the situation where the operator does
not want to continue the main program which was interrupted by the simultaneous
depression of the D, F and G keys {which invoked MINI-DOS).

2.34. MDCOPY Copy a file while under MINI-DOS.
MDCOPY, filespecl[,T0],filespec2

The regular COPY command cannot be executed under MINI-DOS. MDCOPY gives the
user a restricted and quite slow form of file copy which does execute under
MINI-DOS.

MDCOPY copies the contents of file filespecl to the new or existing file file-
spec2. File filespecl is not altered, and the previous contents of file file~

spec2, if any, are lost. Filespec? may not be foreshortened as is allowed for
COPY.

MDCOPY command example:
MDCOPY XXX/DAT:f YYY/DAT:1

The contents of file XXX/DAT on the diskette currently mounted on drive @
is copied as file YYY/DAT onto the diskette currently mounted on drive 1.

2.35. MDRET Exit from MINI-DOS and return to main program.

MDRET has no paremeters. The system exits MINI-DOS state and continues the
main program at the point where it was interrupted by the invocation of MINI-
DOS (simultaneous depression of the D, F and € keys). If the cursor was dis-
played before 'DFG', it will be redisplayed. If the 'DFG' interruption occur-—
ed while the key input buffer contained a partial input record, that partial
record is still there even though it is no longer displayed. The user should
continue keying exactly where he/she left off.

If the invocation of MINI-DOS occured during the timer interrupt rather than
the key intercept, one or more of D, F or G may appear as spurious input keys
after MDRET is executed. The user should backspace over them. The user and
DOS have no control over these spurious input chars; therefore DFG should not
be pressed when a program is in text overwrite mode, such as SCRIPSIT or
Electric Pencil; instead go into command mode where the spurious characters can
be backspaced over without damage to the text.

DOS LIBRARY COMMANDS 2-32

PADSE ~ PDRIVE

2,36. PAUSE Display message and pause waiting on ENTER.

. PAUSE,msg

The message msg is not redisplayed if the PAUSE command itself was displayed.
If the PAUSE command was not displayed, as occurs if it is executed under
DOS-CALL, the message msg is displayed. In any event, the message PRESS
"ENTER" WHEN READY TC CONTINUE is displayed on the next line. DOS then waits
for the user to press the ENTER key. The PAUSE command is ome of the four
ways of causing a pause in chaining, and can also be used when a series of
commands in main memory are being executed by a series of DOS~CALLs.

PAUSE command examplé:
PAUSE,MOUNT DISKETTE LABELED "PRIMARY" ON DRIVE 1.

This message will appear on the display and will be followed on the next
display line by the message PRESS "ENTER" WHEN READY TO CONTINUE. DOS
waits for the user to press ENTER which presumably he/she will do after
the proper diskette has been mounted in drive 1. DOS doesn't check to see

if the user has done what was requested; all DOS does is wait for the
ENTER.

2.37. PDRIVE Asgign default attributes to a physical drive.

. PDRIVE(,passwordl:ldnl,[dn2{=dn3]]1[,TI=typel}[,TID=type2][,TC=tcl]
[,SPT=scl}[,TSR=xrcl][,6PL=gc2][,DDSL=1nl]{,DDGA=gcl]],A]

NEWDOS/8¢ has limited capabilities for operating with a mixture of 5 inch disk
drives and to a lesser extent 8 inch disk drives. PDRIVE is the command method
used to inform NEWDOS/8@ of a particular physical drive's characteristics.

Each PDRIVE command lists the resulting specifications for 1§ drives even
though the actual number of drives eligible for I/0 is limited by the SYSTEM
option AL and in no case exceeds 4. Those drives within the range of SYSTEM
option AL are flagged on the PDRIVE display by an asterisk suffixed to the
drive number. The specifications for the 1§ drives is maintained on the system
diekette mounted on drive dnl. For efficiency reasons, DOS normally uses drive
specifications from a table it has in main memory. This main memory PDRIVE
table contains specifications for 1 to 4 drives, depending upon the SYSTEM op-
tion AL value, and is automatically reloaded from the drive # diskette at power
on and reset if and only if the specifications for all 1§ drives are error free
(otherwise the reset hangs). This table is also immediately reloaded by a
PDRIVE command specifying the A parameter (see below).

Drive dnl is the drive containing the system diskette whose control information
(in the 3rd sector) is being vpdated. Drive dn2 indicates which physical drive
of the 1§ represented in the control information sector on.drive dnl is having
its control information updated.

y 3 For example, if the PDRIVE command is PDRIVE,l,4,TC=8) then the diskette
on drive 1 is read to obtain the PDRIVE control information and is updated

2-33 DOS LIBRARY COMMANDS

PDRIVE

to contain the new drive 4 specification. Drive 1's PDRIVE control infor-
mation contains the specifications for ten drives, dn2 values # through 9,
and it is the fifth drive's information (for dn2 = 4) that is changed.

The specifications for the other nine drives are not changed.

If passwords are emabled, them passwordl must be specified and be the master
password for the diskette on drive dnl. Otherwise passwordl may be left out of
the command.

Control data is changed only for the parameters specified; parameters not
specified are not changed. If any errors are displayed, the dnl diskette must
NOT be used as the system diskette during a reset/power—on until the errors are
corrected.

PDRIVE,dnl will list the 1 PDRIVE specifications contained in the control
data on the system diskette mounted on drive dnl. :

dn2 must be specified if any other optional parameters except A are
specified. If dn2 is specified, it must be the lst parameter following dnl.

dn2=dn3 causes drive dn? to assume the PDRIVE specificatioms of drive dn3.
This is done before any other optional parameters are 1nterpreted._

Ti=typel specifies the type of disk drive interface. typel consists of one

or more alphabetic letter flags chosen from the list below. For the Model I,

one and only one of flags A, B, C or E must be chosen. For the Model III, one
and only one of flags A or D must be chosen. The other flags are optional

depending upon the interface. Certain [lags are inter-drive mutually exclusive.

meaning that for a given drive drnl, if one dn2 drive specifies a flag that is

interdrive mutually exclusive with another flag, then another dn2 drive may not

specify the excluded flag. For now, flags B, C and E are interdrive mutually
exclusive for the Model I.

Flag ‘A means the standard disk interface is to be used for diskette I/O
for this drive. For the Model I this interface supports drive types A and
C. For the Model III this interface supports drive types A, C, E and G.

Flag B (Model I only) means that an OMIKRON mapper type interface is
installed and is to be used for I/0 for this drive. This interface sup-
ports drive types A, B, C and D.

Flag C {(Model I only) means that a PERCOM doubler type interface is in-
stalled and is to be used for I/0 for this drive. This interface supports
drive types A, C, E and G.

Flag D (Model III only) means that an Apparat disk controller type in-
terface is installed and is to be used for I/O for this drive. This in-
terface supports drive types A through H (drive types F and H require a
Model IIT speed up modification).

Flag E {(Model I only) means that an LNW type interface is installed and
is to be used for If0 for this drive. This interface supports drive types
A through H,

- DOS LIBRARY COMMANDS 2=-34

PDRIVE

Flag B means head settle delay is to be done whenever DOS changes from
another drive to this drive. For Model I and Model II1 5 inch drives, the
heads for all 5 inch drives are loaded when the motors go om, and this
extra time delay is NOT needed. Flag H is needed for 8" drives.

Flag I means the lowest numbered sector on each track is sector 1. This
is the normal state for Model III TRSDOS diskettes. If flag I is not
specified, the lowest numbered sector on each track is assumed to be #.
which is the state for the Model I and for NEWDOS/88 on the Model IiI.

Flag J means the track numbers start from 1. If flag J is not speci-
fied, track numbers are assumed to start from @, which is the standard
state for the Model I and the Model III.

Flag K means track f# is formatted (or is to be formatted) in density
opposite to that of the diskette's other tracks. This makes track # un-
available for normal I/0. Flag J is implicitly set by flag K. The pur-
pose of formatting track f# in opposite density is to allow a double den—
sity (Model I) or single demsity (Model II1} SYSTEM diskette to be booted
up. The Model 1 ROM must be able to read the boot sector im single den-
sity, and the Model III ROM must be able to read the boot sector in double
density. Setting flag X causes FORMAT and COPY with format to format
track § in the opposite density and to store the required boot sector onto
that track for the ROMs to use. With flag X set, normal DOS I/O to track
actually goes to track 1, 1 to 2, etc. Flag K must be specified for a
drive that is to read a double density diskette created by the PERCOM type
doubler interface under NEWDOS/8¢ version 1 or any other DOS except
NEWDOS/ 8@ version 2 or higher. TFor NEWDOS/8f version 2 Model I, double
density data diskettes do nmot have to reserve track § for opposite density
if those diskettes will never be used on a drive @ whose PDRIVE specifies
double density. Flag K must NOT be specified for standard Model III
diskettes, unless for some reason the user wants a single density system
diskette on the Model III or is making a double demnsity diskette to be
read on the Model I that does not have KEWDOS/8f version 2. When flag K
is specified, then TC must specify one less track than would be specified
if flag were not specified. Further, due to the differing sequence in
which consecutive sectors are stored on the diskettes, double sided,
double density diskettes created under the patched NEWDOS/8§ version 1 are
not readable under NEWDOS/8@ version 2. To transfer files on those disk-
ettes to Version 2, they must first be moved (using Version 1} to either
single sided (either density) or double sided, single density diskettes.

Flag L means two step pulses between tracks. This allows a 35 or 4f
track diskette to be read on an 8§ track drive. Writing can also be done
in this manner, but the 35 or 4P track drives have trouble reading some of
the sectors so writing is not recommended.

Flag M means the diskettes are standard TRSDOS Model III diskettes.
Flag M implies flag I. The COPY DOS command is the only function within
NEWDOS/ 8@ that will honor or even notice a TRSDOS Model III diskette as
distinct from a BEWDOS/8¢ diskette, and even this will not occur unless
flag M is set.

Flags F through G and N through Z are reserved for future definition.

2-35 DOS LIBRARY COMMANDS

PDRIVE

ID is the Type of Drive specification. The definitions are:

1. TD=A 5 inch, single density, single sided drive.
2, TD=B 8 inch, single demsity, single sided drive.
3. TD=C 5 inch, single density, double sided drive.
4. TD=D 8 inch, single density, double sided drive.
5. TP=E 5 inch, double density, single sided drive.-
6., TD=F 8 inch, double demsity, single sided drive,
7. TD=G 5 inch, double density, double sided drive.
8., TD=H 8 inch, double density, double sided drive.

If a CPU speed up module is installed in the computer that reverts to
normal CPU during disk I/0, this reversion must not slow the CPU speed to
less than the original rated CPU speed for that model. NEWDOS/8f's disk
I/0 loops, especially for the Model 1 for drive types B, D, E and G, can-
not tolerate any reduced CPU speed below the original speed. In limited
testing and with SYSTEM option BJ properly set, NEWDOS/8f Version 2 has
run disk I/0 successfully without the need to turn off the CPU speed;
however, Apparat does not guarantee such performance.

TD=F and TD=H require a CPU speed up module installed in the'computer
which at least doubles the CPU's speed during disk I/GC.

For drive types C, D, G and H, the current NEWDOS/8f interfaces (TI flags
A, B, C, D or E) consider a double sided diskette as a single volume
(i.e., only one directory) with each track having its lower numbered sec-—
tors on the first side and the higher numbered sectors on the second side.
Pin 32 is used to select the 2nd side (special cables required), and any
drive on the cable that shunts pin 32 over as a drive 3 select must have
that shunt wire cut to prevent that drive from being selected when another
drive's 2nd side is being selected. Double sided, double density 49 and
8¢ track drives have been used on the Models I and III under NEWDOS/8p
Version 2.

One of the reasons Apparat never supported double density in Version I was
that most drives did not work reliably in double denmsity. Whether this
was the fault of the drives, the diskettes, the data separator or the
controller was never really ascertained. Over the last nine months things
have improved somewhat, but double density is still not as reliasble as
single density and probably never will be. Apparat was informed that the
two byte pattern 6DB6 is a much better "worst case” double density pattern
than the E5's used in single density, and indeed the 6DB6 pattern is such.
In fact, it is such a good "worst case” condition that a good percentage
of certified double sided, double density diskettes will fail format. To
many users, this will prove intolerable and they will want to‘apply the
ZAP that goes back to the E5 pattern, if it is not already applied. How-
ever, using the E5 pattern in double density means that the user will in-
crease the probability that a diskette that formats successfully will at
some future time fail. : '

TC=tcl specifies the number of tracks on the disk, exéluding track § if TI
flag K is set. If flag K is not set, TC=35 for a 35 track drive, TC=4f for a

49 track, etec., If flag K is set, then TC=34 for a 35 track drive, TC=39 for a - 9
49 track, etc. ‘ _ .

DOS LIBRARY COMMANDS 2-36

PDRIVE

SPT=scl specifies the number of sectors per track. For double sided, single
. volume diskettes (TD = C, D, G or H), scl must be twice what it would be if.
‘ single sided diskettes. scl may be any value from ! to the maximum number of
256 bytes sectors the track can physically hold. For each of the above speci-

fied drive types, the maximum number of sectors per track is: A=l§, B=17,
=20, D=34, E=18, F=26, G=36 and H=52.

TSR=rcl specifies the track stepping pulse time code the controller uses for
this drive. rcl is a value from @ to 3 and becomes part of the SEEK, STEP and
RESTORE commands sent to the controller. For the Model I and III standard
controllers, TSR=p gives 5 ms stepping, TSKR=1 gives 1Pms stepping, TSR=2 gives
2fms stepping and TSR=3 gives 4ffms stepping. TSR=3 was the original standard
for the Model I, with some users using TSR=2 or TSR=] for certain drives. The
Model III appears to use TSR=@ as standard. If you are having drive trouble,
the safest setting is TSR=3 (fastest stepping rate for the Model I is 12ms).

GPL=gc2 specifies the number of granules per lump where gc2 is a value between
2 and 8. In TRSDOS for the Model I and III and the older versions of NEWDOS,
disk space allocation was done via granules (5 sectors per granule on the Model
I and 3 per granule on the Model III) and tracks (2 granules per track on the
Model 1 and 6 granules per track on the Model III), In NEWDOS/8f versiom 2,
for both the Models I and III, there are still 5 sectors per granule, and 2 to
8 granules per lump (not track). Wherever a track number appeared in the
directory (in the GAT sector and in the FDE two byte extent elements), it has
been replaced with a lump number. Doing sc allows a granule te start in one
track and end in another and allows double density and 8 inch diskettes to
maximize the number of sectors per track while keeping the same directory
format. GPL~2 maintains compatibility with the old 35 track single density

. diskettes, as the directories will be exactly the same and transferable back
and forth between the Model I TRSDOS and NEWDOS versions before NEWDOS/&¢
version 2. However, by going to GPL=8 the directory can now accommodate 192 x
8 x5 = 768§ sectors or 1,966,009 bytes.

DDS1~1nl 1is the logical equivalent of and replacement for the DDST parameter
used in NEWDOS/8Q version l. 1Inl specifies the number of the lump at whose
first sector is to contain the directory's lst sector. This value is stored in
the boot sector 3rd byte during diskette format and is used when necessary to
find the directory. It is also used during diskette format to determine where
to put the directory. In the older systems, the 3rd byte of the boot sector
contained the track number in whose 1st sector the directory started. Since
tracks are not used in space allocation and control in NEWDOS/88 version 2, the
3rd byte of the boot now contains the number of the lump in whose lst sector
the directory starts. To determine the relative sector number of the direc-
tory's lst sector (the GAT sector), access the boot sector's 3rd byte and mul-
tiply that value by 5 times CPL. DDSL=17 maintains compatibility with the
standard 35 track, single sided, single density diskettes. DDSL should be set
to the value used for the DDST parameter in NEWDOS/8¢ version 1.

DDGA=gcl specifies the default number of granules to be allocated to the
directory when it is created during format, where gcl is a value between 2 and
6. DDGA=2 should be specified for standard 35 track, single density, single
sided compatibility. gcl > 2 allows the user to have more than 62 files on a
data diskette with the maximum being 222 files.

. A specifies that if and only if no errors wers found during the checking of

i

2-37 S DOS LIBRARY COMMANDS

PDRIVE

the specifications for all the drives, then the specifications for SYSTEM

option AL number of drives is loaded into the main memory PDRIVE table to
 immediately become the controlling data for those drives; this eliminates the
need for a reset, If parameter A is specified, dnl must = §.

PDRIVE is executeable under MINI-DOS.
PDRIVE command examples:

1. PDRIVE,dnl,dn2,TI=A,TD=A,TC=35,SPT=1§,TSR=3 ,GPL=2,DDSL=17 ,DDGA=2

is the PDRIVE specification for a standard 5 inch, 35 track, single den-
sity, single sided diskette used for communication in the Model I world.
This specification can also be used on the Model III to read the diskette
providing the directory addrese marks are correct (see SYSTEM option AN).

o 5 5
2. PDRIVE,dnl,dn2,TI=A,TD=E,TG=4§,SPT=18, TSR3} GPL=2,DDSL=17 ,DDGA=2
is the Model III specification (Model I, use Ti=C) for a standard 5 inch,
4) track, double density, single sided diskette used for communication
through out the NEWDOS/88 Model III world. Using this specification, this
diskette can also be read on the Model I in a drive other than ¢ if a dou—
ble density modification is installed in the expansion interface.

3. PDRIVE,dnl,dn2,TI=AM,TD=E,TC=4§,SPT=18,TSR=3,GPL=6 ,DDSL=17 , DDGA=2
is the Model III specification (Model I, use TI=CM or EM) for reading or
writing to a TRSDOS Model III standard 5 inch, double density, single
sided diskette. A 4§ track, double density, single sided 5 inch diskette
is the only type TRSDOS Model III diskette that NEWDOS/8f can handle.
GPL=6 is mandatory. Since a TRSDOS Model III diskette cannot be formatted
by NEWDOS/8¢, DDSL and DDGA are meaningless. In NEWDOS/B8@ (double density
mod must be installed for Model I), only the COPY DOS command can be used
with TRSDOS Model IIY diskettes excepting that diskette sectors can be

- read/written via SUPERZAP by using the DD, DM, DTS, VDS, CDS, CDD, etc.
functions that do not refer to files (i.e., don't use DFS).

4., PDRIVE,dnl,dn2,TI=A,TD=C,TC=8§,5PT=2¢, TSR=2,GPL=8 ,DDSL=2§), DDGA=6

is the specification for a 5 inch, 8§ track, single density, double sided,
single volume diskette with 2fims stepping, 8 granules per lump, with the
directory positioned at the diskette halfway point and maximum size direc~
tory. For the Model III, the single density drive @ restriction applies.

5. PDRIVE,dnl,dn2,TI=A,TD=G,TC=8f ,5PT=36 ,TSR=2,GPL=8,DDSL=35, DDGA=6

is the Model III specification (Model I, use TI=C or E) for a 5 inch, 8@
track, double density, double sided, single volume diskette to use 2Pms
stepping, 8 granules per lump, maximum size directory positioned at the
diskette halfway point. For the Model I, the double density drive §
restriction applies. :

6. PDRIVE,dnl,dn2,TI=CK,TD=E,TC=39,5PT=18,TSR=3,GPL=2,DDSL=17 ,DDGA=2

is the Model I specification (Model III, use TI=AK) for 5 inch, 4§ track,
double density, single sided diskette that has track f formatted in single
density, hence only 39 tracks available for regular use. This specifica~-
tion will handle double density diskettes formated by TRSDOS and NEWDOS/80
version 1 running under the PERCOM doubler. This specification will also
be uvsed when generating a double density diskette to be the system disk-
ette in drive § for the Model I. For LNW Model I interface, use TI=EK,

DOS LIBRARY COMMANDS 2-38

PDRIVE - PRINY

7. PDRIVE,dnl,an,TI=CK,TD=G,TC=79,SPT=36,TSR=3,GPL=8,DDSL=35,DDGA=6

is the Model I specification (Model III, use TI=AK) for a 5 inch, 8@
track, double density, double sided, single volume diskette that has track
§ formatted single density. For the LNW Model I interface, use TI=EK.

Warning!!! Double sided, double demsity diskettes used on the patched
NEWDOS/8§, version 1 are not usable on Version 2 (see TI flag K
discussion).

8. PDRIVE,dnl,dn2,TI=AL,TD=A,TC=35,SPT=1#,TSR=3,GPL=2,DDSL=17 ,DDGA=2

is the specification for a 5 inch, 35 track, single sided, single density
diskette that is to be read on an 88 track drive. The 8 track drives
step only half as far as the 35 and 4fs for each data track; setting flag
L causes 2 steps to be taken for each data track stepped.

9. PDRIVE,dnl,dn2,TI=BH,TD=B,TC=77,SPT=17,TSR=3,GPL=3,DDSL=17 ,DDGA=6

is the Model I specification for am 8 inch, 77 track, single sided, single
density diskette. Note, NEWDOS/8P version 1 used SPT=1l5 and an implied
GPL=3, and to read those diskettes, SPT=15 and GPL=3 must be used. It is
recommended that a COPY be done to convert those diskettes to SPT=17, thus
gaining 12%Z more diskette space. Flag H causes head load settle delay to
be used, required for most 8 inch drives. '

1#. PDRIVE,dnl,dn2,TI=BH,TD=D,TC=77,5PT=34, TSR=3 ,GPL=8,DDSL=17 , DDGA=6
‘is the Model I specification for an 8 inch, 77 track, single demsity,
double sided, single volume diskette with head load settle delay required.

11. PDRIVE,dnl,dn2=dn3 is the specification to cause drive dn2 to
receive as its specifications those of drive dn3.

12, PDRIVE,dnl,dn2=dn3,TC=4§,TSR=2 is the specification to cause drive

dn2 to receive as its specifications those of ‘drive dn3 and then to apply
new values for TC and TSR.

13, PDRIVE,§,A causes the PDRIVE data for SYSTEM option AL number of
drives to be loaded into the main memory PDRIVE table if and only if the
full display of the specifications shows no error.

14. PDRIVE,$,dn2=dn3,A changes drive #'s specifications for dn2 to be
those of dn3, and then performs as in the above example.

2,38. PRIRT " List a text file on the printer.
PRINT,filespecl|,start-1linel,line-countl]
PRINT executes identical to LIST, excepting the listing goes to the printer

instead of the display. Refer to DOS command LIST for specifications and
examples.

2-39 | DOS LIBRARY COMMANDS

PROT

2,39, PROT Alter some diskette control data.

PROT, [passwordl: dnl{ ,NAME=namel } [,DATE=um/dd/yy][,RUF]
[,PW=password2][,LOCK][,UNLOCK]

At least ome optional parameter must be specified. The target diskette is
mounted on drive dnl. If passwords are enabled, passwordl must be specified
and must equal the diskette's master password.

RAME=~namel The diskette is given the name namel.
DATR=nm/dd/yy The diskette is given the date mm/dd/yy.

RUF Reset Udated Flags. This option turns off the updated flags for all
files on the diskette. If a user backs up only those files having the updated
flag on (see UPD option of COPY) off, executing PROT with the RUF option after
the copying is completed turns off the updated flags so the files will not be
eligible for a subsequent backup until the file is subsequently updated.,

Simply writing or rewriting one sector of the file, whether or not anything was
actu- ally changed, causes DOS to turn on a file's updated flag.

Pu=password2 Password2 must conform to the rules for passwords, with null
set as all blanks. The diskette receives password2 as its password.

LOCK All files of the diskette, except system and invisible files, are

given the diskette master password as both their access and update passwords.

If password2 specified, it is used. This feature used to be the only way a p
user, in a password enabled system, could get to a file whose password(s) he/ .
she had forgotten, if the user did know the diskette master password. It has

the unfortunate drawback ir that it changes the passwords for all, except sys-

tem and invisible, files on the diskette; thus causing the user to reassign

passwords to all the others as well as to the file whose passwords he/she for-

got. An easier way is available if the user knows the password of at least one
NEWDOS/8f system diskette or better still, has a NEWDOS/8f system diskette with
passwords disabled (system option AA = N)., With passwords disabled, the user

can use ATTRIB to directly reassign new passwords to the file whose passwords

are forgotten without having to affect other user files on the diskette. Then
passwords can be reenabled.

UNLOCK The access and update passwords of all of the diskette's files,

except system and invisible files, are set to all blanks, meaning no passwords
for those files.

PROT command examples:

1. PROT,2,RUF The updated flag is cleared for each file om the
diskette currently mounted on drive 2.

2, PROT,OLDPSWD:1,NAME=AAB3 ,DATE=@$7/15/81 ,PW=NEWPSWD

In this example, passwords are enabled; therefore the diskette's master
password OLDPSWD was required. The diskette control information for the
diskette mounted on drive 1 is changed such that its name is AAB3, its
date is July 15, 1981 and its new master password is NEWPSWD.

DOS LIBRARY COMMANDS 2-40

PURGE — R

2.4, PURGE Selectively kill files from a diskette.
PURGE, [passwordl:]dnl{,/ext][,USR]

The diskette mounted on drive dnl is used for this command. If passwords are

enabled, passwordl must be specified and must be equal to the diskette's master
password. :

For each file, except BOOT/SYS and DIR/SYS, on the diskette, DOS asks the
operator if the file is to be killed. If the file is to be killed, respond Y;
the file will be immediately killed, as if a KILL command has been issued. If

the file is NOT to be killed, respoud N. Respond @ if you wish to quit the
PURGE function.

lext If this option is specified, the purge queries are limited to only
those files having name extension ext where ext is § to 3 characters.

USR If this option is specified, system and invisible files are nmot in-
cluded in the PURGE function.

PURGE command examples:

1., PURGE,l For each file, except BOOT/SYS and DIR/SYS, on the
digkette currently mounted on drive l, DOS asks if the file is to be
killed. TIf the response is Y, the file is killed.

2. PURGE,$,/DAT For each file on the diskette currently mounted on
drive § that has name extenmsion DAT, DOS asks if the file is to be killed
and does so0 if the responmse is Y.

3. PURGE,$,USR For each non-system, non-invisible file on the

diskette currently mounted on drive $, DOS asks if the file is to be
killed and does so if the response is Y.

2.41. R Repeat the previous DOS command,

This command causes the re-execution of the previous DOS command, excluding the
command R. Example:

DIR 1 followed by:
R :

will execute the same as if the two DOS commands had Been:

DIR 1
bIR 1

The R command can not be executed from BASIC via CMD"doscmd"™ as that function
requires that the command, excluding ENTER, must be 2 or more characters long.

2-41 DOS LIBRARY COMMANDS

R — REEAME - ROUTE

The R command has no parameters and must be keyed exactly as R followed by

ENTER. If more than 2 characters are keyed into the buffer and then backspaced

so that DOS only sees the R and the ENTER, the previous DOS command that wae .
residing in the command buffer will still have been altered and the R command

will eitber fail or in rare circumstances, execute something different than

what the operator expected,

If the previous DOS command is no longer intact in the DOS command buffer, the
results of the R command are unpredictable.

If SYSTEM option BE = N, the R command does not execute - the previous DOS com—
mand but instead simply returns to DOS READY.

2,42, RENAME Rename a file.
RENAME, filespecl([,T0],filespec?

The file filespecl is remamed to filespec2, where filespec2 consists of only a
name and optionally a name extension. If filespecl does not specify a drive
number, then all mounted diskettes are searched, and the first file encountered
matching filespecl's name and name extension is renamed. RENAME chauge only
the file's name and name extension; nothing else is changed.

RENAME command example:

1, RENAME XXX/DAT:1 YYY/OBJ The file XXX/DAT on the diskette .
currently mounted on drive 1 has its name changed to YYY and its extension
changed to OBJ.

2,43, ROUTE

1. ROUTE
.2. ROUTE,CLEAR
3. ROUTE,devl[,dev2]],dev3]....

The purpose of the ROUTE command is to allow some flexibility from where the
keyboard and/or RS-232 input is received and to where display, printer and
R5-232 output is sent,

At the conclusion of a ROUTE command, any existing routes are displayed; if
none, nothing is displayed. ROUTE with no parameters does nothing except dis-
play the existing routes.

ROUTE,CLEAR clears all routes.

devl specifies the device being routed. dev2, dev3, etc. specify the device(s) i
being routed to (the routed-to devices) when devl ie an output device or routed .
from (the routed~from devices) when devl is an input device. For the Model I,

'DOS LIBRARY COMMANDS 2-42

the device codes are KB for the keyboard, DO for the display, PR for the
printer and NL for null (meaning nothing is transferred). For the Model III,
RI for the RS-232 input and RO for the RS-232 output are added to the above 3
codes. An input device (KB or RI) may not be routed to an output device (DO,
PR or RO), and an output device may not be routed to an input device.

Whenever devl is specified, ROUTE initially clears any previously existing
routes for that device and then establishes the routes specified by dev?, dev3,
etc., if any. ' '

Any of the devices dev2, dev3, etc. may also be of the form MM~addr where
addr specifies the main memory location of a user routipe to which devl is to
be routed. The first 12 bytes of the routine are reserved for use by DOS and
must mot be altered by the user. Upon routing, the user routine is entered via
a CALL at the 13th byte, and it is the user's responsibility to save and re-
store all registers, except AF, used by the routine and routines it calls. If
devl is an input device, the routine returns the new byte in register A with a
zero. indicating there is no new input byte from that routine. If devl is an
output device, upon entry to the routine, register C contains the byte being
outputted. '

If devl is an output device, the output byte is sent to all routed-to devices
in the order given in the ROUTE command.

If devl is an input device, each routed-from device is queried in the order
given in the ROUTE command. If that device supplies a non-zero byte, the
queries stop and the byte is used as the input byte for the devl. If no
routed-from device has an input byte, a zero is comsidered devl's current byte.

The maximum number of routes—to and routes—from, excluding MM=addr types, in
existence at one time is four for the Model I and six for the Model III.

WARNING!!! No editing of input or output characters is done during routing.
This may cause problems (i.e., display control characters causing the printers
to do unpredictable things). '

ROUTE command examples:

1. ROUTE,PR,DO Printer output does not go to the priﬁter but
instead goes to the display.

2. ROUTE,DO,DO,PR Display output goes to both the display and the
printer.

3. RDUTE,PR,DO,PR Printer output goes to both the display and the

printer. If the routes of both example 2 and 3 are active, the routing is
equivalent to the Model III TRSDOS functiom DUAL.

4. ROUTE,KB,RI (Model III only) Keyboard input characters come
from the RS-232 input device and not from the keyboard.

5. ROUTE,DO,RO (Model III only) Display output is sent to the
RS-232 output device and not to the display. : :

6. ROUTE,PR,MM~§FESGH Printer output is sent to the routine at main

2-43 DOS LIBRARY COMMANDS

ROUTE - SETCOM

memory location PFES8PH (the routine's actual entry point is PFESCH).
7. ROUTE,KB,KB,MM=@F8fHH Keyboard input comes from either the

keyboard or the routine at main memory location $F8#PH. Input from the
keyboard has precedence.

8, ROUTE,PR,NL Printer output is discarded.

9. ROUTE,PR All rtouting for the printer is dissolved. Printer
output goes to the printer.

1#. ROUTE,CLEAR All routes are dissolved, and all.devices are
returned to their normal paths.

2.44. SETCOM (Model IIT only) Set R5-232 interface parameters.
SETCOM{ ,0FF][,WORD=w1][,BAUD=br][,STOP=3b][,PARITY=pp][,WAIT][,NOWAIT]

The SETCOM command optiopally changes the state of the RS-232 interface and
always displays the state. For R5-232 discussion, see chapter 8 of the Model
IIX Operation and BASIC Language Reference Manual. The SETCOM command affects
only the standard RS-232 control blocks and routines.

If OFF is specified, the RS-232 interface is turned off. No other optional
parameters may be specified.

If any of WORD, BAUD, STOP or PARITY is not specified, the state for that key~-
word is not changed.

WOBD=w1 specifies the number of bits per transmission byte. wl must be one of
5, 6, 7 or 8.

BAUD=br specifies the tranemission rate (the baud rate) for both sending and
receiving. The 16 allowable values for br are 5§, 75, 116, 134, 159, 360, 69P,

ST0P=sh spec1fles the number of stop bits to be used for each byte transmit—
ted. sb is either 1 or 2. :

PARITY=pp specifies the parity to be used in the transmission where 1 = odd
parity, 2 = even parity and 3 = no parity.

WAIT or ROWAIT are mutually exclusive and spec1fy whether or not the RS-232

1nput routine is to wait until an input byte is received and the output routine

is to wait until the current byte has been sent. If neither WAIT nor NOWAIT is
specified, the previous wait or no wait state remains.

SETCOM command examples:

1. SETCOM,WORD=8,BAUD=3§¢,STOP=1 ,PARTITY=1,WAIT Activates the RS=232"

DOS LIBRARY COMMANDS 2-44

SETCOM ~ STMT - SYSTEM

interface, if not already active, and sets the interface for 8 bit bytes,
36P baud rate, one stop bit, odd parity and forces the RS~232 routines,

. when called, to wait until an input byte is ready or until the RS-232
output device will accept an output byte.

2., SETCOM,NOWAIT,PARITY=3,WORD=7 Activates the RS~232 interface, if
not already active, and sets the interface for 7 bit bytes, no parity and
causes the R5-232 routines not to wait until an input byte is ready or the
RS=232 output device will accept an output byte. The TRS-8f interrupt
routines will handle the actual byte input or output with the RS-232

device. The other parameters not mentioned in the command are not
changed., '

3. SETCOM,OQFF The RS~232 interface is deactivated. The current
interface specification is remembered. '

2.45., STMT Display specified message.
STMT ,msg

8ince normal DOS commands are always displayed, this command normally has
nothing to do since its function, to display the message msg, hae already been
done. However, if this command was invoked via DOS-CALL (which does not dis-
play the DOS command), the message meg is displayed.

. STMT is one of 3 ways in chaining to display a message without a pause. This
allows multiple line instructions to be displayed, with the last line being a
PAUSE and the others being STMTs,

STMT command examples:

1. SIMT PHASE ONE COMPLETED Thie is simply an amrnouncement to the
terminal operator that phase one (whatever that was) has been completed.
DOS does not pause.

2. BSTMT DISMOUNT AND STORE AWAY DISKETTE XXX
PAUSE “AND MOUNT DISKETTE YYY ON DRIVE 2.

This example illustrates the combined use of the STMT and PAUSE commands
to give instructions and wait until they are carried out.

2.46, SYSTEM Change system options.

SYSTEM, [passwordl:jdnl[,AA=yn][,AB=yn][,AC=yn][,AD=yn][,AE=yn]

[,AF=yn][,AG=yn][,AI=yn][,AJ=yn][,AL=al]{,AM=am][,AN=an]

[,A0=a0][,AP=ap]],AQ=yn][,AR=yn][,AS=yn][,AT=yn]{,AU=yn]

. [,AV=av][,AW=aw][,AX=ax}[,AY=yn][,AZ=yn][,BA=yn][,BB=yn]

. [,BC=yn][,BD=yn][,BE=yn][,BF=yn][,BG=yn][,BH=yn][,BI=bil
[,BJ=bj][,BK=yn][,BM=yn][,BN=yn]

2-45 DOS LIBRARY COMMANDS

SYSTEM

The NEWDOS/8§ system diskette whose control information is being updated/

displayed by this command is mounted on drive dml. If passwords are enabled, .
passwordl must be specified and be equal to the diskette's master password. If - |
no optional parameters are specified, then only a display of existing options

is given. The optional parameters may be specified in any order, and only

those parameters specified have their values changed in the diskette's control

data (3rd sector on the diskette). Parameters not specified are not changed.

If many options are being changed, it may be necessary to perform multiple
SYSTEM commands as the DOS buffer is limited to 79 characters per command.

It is anticipated that additional options will be specified as time proceeds.

Changes to a system diskette's system 6ptions do not affect the computer
operations until that system diekette is mounted on drive § and a reset done.

AA=ym If AA=Y, passwords are emabled. If AA=N, passwords are disabled.

AB=yn If AB=Y, the system is to operate in RUN-ONLY mode. SYSTEM options
AD=N, AE=N and AF=N are forced at reset time, and the pressing of ENTER to
override the auto command is disallowed. The user must have a proper auto
command (see AUTO, section 2.4) that will either invoke a user program or exe-
cute a CHAIN file that will eventually invoke a user program. In RUN-QNLY
mode, if the system finds itself at normal DOS READY or MINI-DOS READY, it will
go into an endless loop after displaying 'RUN ONLY STOPPED!! PRESS 'R' FOR
RESET'. Upon receiving R, the DOS command BOOT (see section 2.7) will be exe~
cuted. BASIC honors RUN~ONLY by disabling BREAK, treating LOAD without R or V
as an error, and by not allowing any direct statements. If AB=N, the system is
in normal command mode.

AC=yn (Model T only) If AC=Y and if SYSTEM option AJ=Y, the NEWDOS/8f's
debounce routine is used. If AC=N or SYSTEM option AJ=N, the NEWDOS/8#'s de-
bounce routine is bypassed.

Ab=yn If AD=Y, 'JKL' is enabled, and if AD=N, 'JKL' is disabled.

A¥=yn If AE=Y, '123' is enabled as the method to invoke DEBUG (see section
4.1). If AE=N, '123' is disabled.

AP=yn If AF=Y, 'DFG' is enabled as the method of invoking MINI-DOS (see
section 4.2). If AF=N, 'DFG' is disabled.

AG=yn If AG=Y, BREAK is considered a normal input key with code = @#1. If
AG=N, the BREAK key is not considered a normal input key and its occurrence is
changed to the null key code §#. The state of the BREAK key is set according
to option AG at reset and then again everytime the system returms to normal DOS
READY. DOS command BREAKR may be used to enable or disable the BREAK key until
the next normal DOS READY. Also, programs may enable the BREAK key by storing
a PCI9H byte in Model I location 4312HE (Model III location 4478H) or disable
the BREAK key by storing a @C3H byte in that location.

Al=yn Not defined in NEWDOS/8@, version 2. Formerly, this dealt with de-)
laying the disabling of timer interrupts during disk I/0 to gain better clock
accuracy. This is no longer done.

DOS LIBRARY COMMANDS 2~46

SYSTEM

ATl=yn (Model I only) If A=Y, lower case modificstion has beem installed
in the computer and AI=N if it is not. User programs may test for bit & of
436CH for this state, 1 if AI=Y and § if AI=N. Currently, DEBUG and SUPERZAP
use this flag to decide whether memory displays can display lower case,

A)=yn If AJ=Y, NEWDOS/88's keyboard intercept routine is active. Thie
routine contains repeat key function, 'debounce’ (Model I only) and one of the
methods used to spot 'JKL', '123' and 'DFG' (the other being off the timer
interrupts). If AJ=N, NEWDOSIBG does not 1utercept the keyboard two byte
address vector at 4¢163 and

l. The repeat key function for the Model I is not active regardless of
the SYSTEM option AU. The Model III reverte to the ROM repeat key
function.

2. 'debounce' (Model I only) is not active regardless of SYSTEH option AC
setting.,

3. '"JKL', '123' and 'DFG' can only be triggered via the 1nterrupts,
resulting in many more spurlous key input characters.

If the up-arrow key is depressed all during the reset/power-on sequence,'AJ = N

" is forced; this is necessary for those programs that eventually overlay the DOS
in main memory.

AK=yn, Not defined in NEWDOS/8f, version 2. Formerly, this option dealt
with allowing "JKL' to pass graphic characters to the printer. This has been
incorporated into SYSTEM option AX.

Al~al al (value 1 - 4) specifies the number of physicai drives in the sys-—
tem. If your system only has one drive, setting al = 1 will limit the system

to only checking for that one drive. Though al can be set to 255, it should
never exceed 4, -

AM=am am (value § - 255 where § = 256) is the number of tries allowed for a
disk I/0 before it is declared in error. The original DOSs used a value of 19.

Al=an an = the default drive number for the DIR command.

Al=ao When creating a file and when the user lets the system choose the
diskette to contain the file by not specifying a drive number in the filespec,
the system will first search all the drives for an existing copy of the file.
If it does not find an existing copy, the system will start searching at drive
ao, and will search that and higher numbered drives until a free FDE is found.
It will not search a drive whose number is less than ao..

APxap ap is a memory address, which if other than # and is within the range
of existing memory, is stored as DOS's HIMEM address value in the two bytes at
Model I location 4@949H (Model ITI location 4411H)

AQp=yn If AQ=Y, the CLEAR key isa enabled, and if AQ=N, the CLEAR is disabled
if SYSTEM option AJ=Y.

AR=yn 1f AR=Y, COPY, formats 5 and 6, are allowed without diskette password

checking even though passwords are enabled. If AR=N, passwords are required if
passwords enabled.

2=47 DOS LIBRARY COMMARDS

SYSTEM

AS=yn (Model I only) 1If AS=Y, BASIC will convert input text character

strings from lower to upper case. This is useful when lower case hardware is A

not installed or when lower case drivers are mot used as it is very poseible to '
input lower case characters (using the shift key) and have BASIC display them

‘a8 upper case even though they are really lower case. The user can stare for- |
ever at a compare that looke equal on the display, but BASIC computes as un-— '
equal. If as = N, BASIC will leave the text character strings alone. This

option does not affect string characters input as data rather than as part of
text. ’

ATeym AT=N puts chaining into record mode, meaning that only requests for

full records come from the chain file; single char key input request are hon-

ored from the keyboard. -AT=Y puts chaining in single character mode meaning
that all requests for an input key come from the chain file.

AP=yn AU=Y turns on the clock driven repeat key function. The first repeat
will delay option AV number of 25 ms intervals. Subsequent repeats will enter
as fast as the program asks for them but not more than 12 per second. AU=N
turns off the repeat key function, eliminating repeat keys on the Model I and
shifting to the ROM repeat key function on the Model III.

AV=gw AV is used when AU=Y. av is the number of 25 ms intervals to pass
between the key depression and the acceptance of the lst repeat of that char-
acter. Bubsequent repeats are as fast as the program wants them but not more
than 12 per second.

AW=aw is the number of write-with~verify disk I/O tries allowed. This I/0O

retry ccunt works in conjunction with option AM=am with each retry under AW A
taking place only after the sector verify read has failed am number of times.

Formerly, if sector write encountered no error and the verify read did result

in an error, it was left to the user to retry the write. Now, if aw is greater

than 1, the write will automatically be retried in the cases where the write

was apparently good but the verify read failed. ' '

AX=ax This is ASCII code of the highest printable character for the printer.
It is used by system routines to determine when to substitute blanke or per-
iods in place of ASCII codes higher than this value. This value must not ex-
ceed 255, This high ASCII code is stored in the one byte at Model I location
43791 (Model III location 429¢H).

AY=yn is used only during resets wherein DOS senses that it was not active
immediately prior to the reset (i.e., reset after power-on or after execution
of non-disk BASIC). AY=Y causes the operator to be asked for date and time.
AY=N bypasses this query and causes date and time to be set to zeroes.

AZ=yn is used only during resets wherein DOS senses that it was active
immediately prior to the reset. AZ=Y causes the operator to asked for date and
time, AZ=N causes date and time to be left as they were prior to the reset.

BA=yn BA=Y causes a reset to activate 'ROUTE,DO,NL', thus causing all dis-
play output, including the DOS and BASIC banners, to be lost until the operator
Or a user program executes either 'ROUTE,CLEAR' or 'ROUTE,DO'. BA=N disables
this reset action.

BB=yn (Model III only) BB=N informs the system that the clock interrupts .

DOS LIBRARY COMMANDS 2-48

SYSTEM

occur 6§ times a second. BB=Y informe the system that the clock interrupts
occur 5@ times a second. This option does not set the c¢loek to perform as
such, but only acknowledges that it does.

BC=yn BC=Y means the operator can manually pause or cancel chaining. BC=N

means the operator is not allowed to manually pause or cancel chaining. RUN
ONL.Y forces BC=N.

BD=yn BD=Y means the operator can override the AUTO command at reset by
holding down the ENTER key. BD=N means he/she can't. RUN ONLY forces BD=N.

BE=yn . BE=Y enables the DOS command R to repeat the previous DOS command
(see section 2.41). BE=N causes the R command to simply return to DOS READY,

BF=yn (Model I only) BF=Y performs at reset/power—on time the equivalent
of the DOS command LCDVR,Y (see section 2.29). BF=N performs the equivalent
of LCDVR,N. However, if DOS senses that the lower case hardware is either not
installed or is not operating, BF=N is forced.

BG=yn BG=Y performs at reset/power4on time the equivalent of the DOS com-
mand LC,Y (see section 2.28)., BG=N performs the equivalent of LC,N .
BH=yn At reset/power-on time BH=Y enables cursor blinking, and BH=N in-
hibits it.

BI=bi At reset/power-on time, the numeric value bi is set as the cursor

character's valve, excepting that if bi = P, then the standard cursor character
value is used (95 for the Model T and 176 for the Model III),

BJ=bj Option BJ provides a minimal control for NEWDOS/80 when a CPU speed
up modification is installed that is to continue operation during disk opera=~
tions. This option multiplies (roughly) by bj the number of Z-89 instructions
executed during certain timing loops used internal to NEWDOS/88. bj must be an
integer greater than P and equals the number of times the CPU has been speeded
up. Set bj =1 if the loops are not to be lengthened. If the loops are to ba
lengthened bj must always be rounded up in the cases where the new CPU speed
is not an even multiple of the original Model I or Model III speed. Option BJ
does NOT perform the actual CPU speed switching.

BEK=yn BR=Y allows the DOS command WRDIRP and the W and C functions of

DIRCHECK to be executed. BK=N causes these functions to be rejected with
'DISK ACCESS DENIED'.

BM=yn BM=Y causes diskette formatting to verify read sectors in a separate
VERIFYING phase after all tracks have beern formatted. This verify read is in
addition to the verify read done on a track's sectors immediately after the in-
dividual track was formatted., BM=N bypasses this VERIFYING phase, deeming as
sufficient the verify sector read done when the individual track was formatted.

BE=yn (Model I only) BN=N causes the write of single density diskette
directory sectors to use the address mark readable by Model I TRSDOS., BN=Y
causes the write of single density diskette sectors to use the address mark
readable by Model III NEWDOS/8f. BN=Y should only be used whexre it is required
that single density diskettes be NEWDOS/8f version 2 exchangeable between the
Model I and the Model III.

2-49 DOS LIBRARY COMMANDS

SYSTEM — TIME

Though the information contained in the directories used by Model I

' TRSDOS, Model I NEWDOS/8f and Model ITI NEWDOS/8f is the same (except for .
some additions by NEWDOS/8f), the address mark byte (part of the magaetic
format and identification bytes that surround each 256 bytes of user data
on the soft sectored diskettes) used to indicate the directory sectors are
‘protected’ is different on the Model III than it is on the Model I for
single density diskettes.

The changing of SYSTEM option BN does not in itself change the address
mark of any directory sectors. All this does is set the protected sector
write routine im DOS to write the specified address mark whenever a pro-
tected sector is written or rewritten to disk. To set all sectors of a
single density diskette directory to the proper address mark, use either
DOS command WRDIRP or DIRCHECK with the W option. Warning!!! If a single
density diskette has been used on the Model III or has been used on the
Model I where BR=Y and the diskette must now be used with Model I TRSDOS,
the user must set BN=N and rewrite the directory sector address marks
using WRDIRP or DIRCHECK with option W. This must be done even though,
with BN=N, SUPERZAP under NEWDOS/8f on the Model I shows the directory
sectors protected; this is because Model I NEWD0S/8f accepte either
address mark value as 'protected' though it only writes the one value
specified by option BN.

System option codes BO and up are reserved for future definition.

SYSTEM command examples:

1. SYSTEM,@,AL=4,AA=Y,AU=Y,AV=2§ AT=Y The SYSTEM control parameters
AL, AA, AU, AV and AT are changed on the current system diskette mounted
on drive $#. All the other SYSTEM parameters are left unchanged. The full
SYSTEM specification is then displayed. These changes are not used to
control NEWDOS/8@ until the next reset/power-on.

2. ©SYSTEM,2,AP=@FFPPH, AN=1 AX=126 The SYSTEM control parameters AP,
AN and AX are changed in the control sector of the diskette currently
mounted on drive 2. No other SYSTEM parameters are changed. The full
system specification contained on that diskette is then displayed. For
the SYSTEM parameters contained on that diskette to control NEWDOS/86,
that diskette must be a NEWDOS/8@ version 2 system diskette, must be dis-—
mounted from drive 2 and remounted on drive §, and a reset/power-on must
be done.

2.47., TIME _ Set the real time clock.

TIME[,bh:nm:ss]

If no parameters are specified, the current times is displayed in hh:mm:ss
format.

If hh:mm:ss is specified, the clock is set to time hh:mm:ss where hh is a 2
digit hour value, P9 - 23, mm is a two digit minute and ss is a two digit

DOS LIBRARY COMMANDS 2-50

TIME - VERIFY

seconds value. No check is made on the validity of the values. Each of the

three values is converted to a single byte value and stored into its byte of
- the clock. The clock three bytes start at model I location 4P41H (model IIL
location 4217H) and are in seconds, minutes, hours order.

At reset/power-on the clock is set according to SYSTEM option AY or AZ. The
clock is updated once a second. The user should not rely upon the clock for am
accurate value as diek I/0 frequently and interrupt routines infrequently run
80 long with interrupts disabled that one or more timer interrupts will be
misged, causing the clock to rum slow. The real time clock is not a hardware

clock, but instead is maintained by software that is not aware of the lost
timer interrupts. '

TIME command examples:

1. TIME,15:23:9¢ The clock is set to 3:23 PM,
2. TIME The current time is displayed.

2.48, VERIFY Require verify read after every disk write.
VERIFY{,yn]

NEWDOS/88 performe verify read after all of its directory writes and after all
sector writes when logical record or single byte I/O is used. It does not per-
form verify reads when full sector writes are dome via the 4439H vector.

VERIFY or VERIFY,Y Diskette writes done via the 4439H vector are verify
read., A verify read means the sector is read after it is written. If the sec~
tor was written illegible or with bad parity, an error will be triggered. A
byte for byte data compare is not done. BHowever, if the verify read detects an
error and SYSTEM option AW is not equal to 1, the write and verify read will be
done again since the system still hae access to the data that should have been
placed into the diskette sector. '

VERIFY,N Diskette full sector writes dome via the 4439H vector are not
verify read.

COPY, EDTASM and BASIC SAVE's write the file completely without validity read,
but then read back the entire file as a verify read. All BASIC digk data
writes to print/input files, marked item files, fixed item files or field item
files (where record length is not 256) perform verify read due to the fact that-
byte rather than sector I/O is used. Field item files with record length 256
use sector I/0 and are not verify read unless VERIFY is on.

2-51 ' DOS LIBRARY COMMANDS

WRDIRP

2.49. WRDIRP Write directory sectors protected.

-WRDIRP,dnl

WRDIRP causes the directory sectors for the diskette in drive dnl to be read
and rewritten in the currently defined protected state for the current computer
(see SYSTEM options BN and BK).

This command is used where single density diskettes are to be exchanged under
NEWDOS/ 89 version 2 betweemn the model I and III,

This command enables the user to set the directory to the proper read protect
state while under MINI-DOS, since it is most likely he/she will find out about
the problem when in the middle of doing something else (and thus can't get to
DIRCHECK). CAUTION!{!! This command uses the directory starting granule number
from the 3rd byte of the boot sector to find the directory. It then checks to
see if the FPDE's for BOOT/SYS and DIR/SYS are present. If these checks pass,
it then changes what it thinks are the directory sectors all to protected
status, Do NOT use this command unless you are sure the only problem is the
different protection status between the model I and model III; if you have
doubts, use the W function of DIRCHECK.

If SYSTEM option BK = N, the DOS command WRDIRP is disabled.

WBDIRP command example:

1. WRDIRP,I] For the diskette mounted on drive 1, the directory
address marks are set for the current computer and, if Model I, for the
geetting specified by SYSTEM option BN.

DOS LIBRARY COMMANDS 2-52

3. DOS ROUTINES.

3.1. This chapter specifies the DOS routines that are available for use by
machine language programs. If you are peither a Z-8§ programmer nor
interested in 2-8f machine code, you should bypass this chapter. Readers of

this chapter are assumed to be knowledgeable of Z-Bf machine code and at least
one assembly language for the Z-8f.

These DOS routines have entry and exit conditions, and rather than repeat them
in each routine's specification, some of the conditions are defined here with
the using routine's specification simply refering to the condition's code.

A. Only register AF is altered by the routine. Any other registers used
by the routine are saved on entry and restored on exit. :

B. On exit, Z state is set if no error is encountered during the
routine's execution. NZ state is set if a DOS error is encountered, and
register A contains a DOS5 error code. The setting of Z and NZ takes
precedence over the setting of other flags such as C and NC.

€. On entry, DE points to ar open FCB.

There are incompatibilities with TRSDOS in the use of some of these youtines..
They are discussed briefly in the routines where they occur, so study them
carefully. The reader should alsc be aware of the differences in the way the
FCB fields NEXT and EOF are maintained (see FCB specification, section 5.9).

The discussion of each routine gives its entry address (the address to be used
in the CALL or JP Z~-8p instruction), then its title (if one is appropriate),
and then its specification.

Unless otherwise specified, the DOS routine uses the invoker's stack. Unless
specified as a dead end routine, the DOS routine exits to the caller.

Many of these routines use a FCB (see section 5.9). NEWDOS/8f on both the
Models I and ITI and Model I TRSDOS all use a 32 byte FCB while Model III
TRSDOS uses a 5@ byte FCB. NEWD0OS/8f will run with user programs having the 5§
bytes FCB but will only use the first 32 bytes of those FCBs. Programs using a
32 byte FCB with Model III TRSDOS will have problems.

The routines listed below are not necessarily in ascending numeric order.

3.2. AP2DH. Ro—Error Exit. Dead end routine. Programs concluding
with no error jump to 4@2DH. DOS checks its own state in the following order.

If either MINI-DOS or DOS—CALL, the stack pointer is set to where it was

before the last DOS command; otherwise it is set to DOS's stack area and
the BREAK key is enabled/disabled according to system option AG.

3-1 DOS ROUTINES

If DOS—CALL and if either not chaining or chaining is not to be continued
at the current DOS level, all registers except AF are restored to as they
existed on DOS~CALL entry, Z state is set, and a return is made to the

DOS-CALL invoker. If this was the outermost DOS~CALL level, DOS is taken
out of DOS-CALL state.

If RUN-ONLY and if chaining is not active, the mesdage 'RUN ONLY STOPPED!!
KEY 'R' FOR RESET.' is displayed, DOS loops waiting on the reply, and then
executes DOS command BOOT (see section 2.7).:

If DOS-CALL and if chaining is to continue at the current DOS-CALL level,
DOS waits for the next command from the chain file.

If MINI-DOS, then MINI-NEWDOS/8# READY is displayed, and DOS waits for the
next command.

If chaining is active, DOS waits for the next command from the chain file.

NEWDOS/8¢ READY is displayed and DOS waits for the next input command,

3.3. 403m Error-already-displayed DOS Error Exit. Dead end routime.
Programs concluding with an error that is either already displayed or not to be
displayed jump to 4@3fH. DOS action is the same as for 4§2DH except as
follows:

If CHAINING, chaining is aborted.

If DOS-CALL, the current DOS-CALL level is exited in the same manner as
for 4P2DH, except that C state is set.

3.4. ALpPH Performs identical to 4P2DH.

3.5. A4f51 Enter DOS and execute a command., Dead-end routine. DOS is

entered, and the stack pointer is set to DOS's own area. HL points to a com—
mand, terminated by a PDH byte, that DOS is to use as its next command. DOS

moves this command to its own 8§ byte command buffer and then executes it.

3.6, A4p9H D0S Error Exit. Dead end routine if bit 7 of register A
equals f, Programs terminating with a DOS error jump to 44#9H with the DOS
error code in register A and bit 7 of register A equal $. Depending upon DOS's
state, the following actions occur:

If CHAINING, chaining is aborted.

DOS ROUTINES 3-2

if DOS~CALL, the current DOS-CALL level is exited in the same manner as
for 492DH egit, except NZ and NC state is set and the DOS error code is in
register A, The error msg is not displayed.

Otherwise the DOS error message is displayed, and an exit is taken to
4§ 2DH, - '

A program may CALL 44@9H to display an error msg.by placing the error code
in A and setting bit 7 of register A equal to 1., The appropriate DOS error
message will be displayed. On return, only the F register has been altered.

The Model I TRSDOS will print diagnostics if bit 6 of register A equals $. The
Model III TRSDOS displays only the error number if that bit equals # and the
error message if that bit equals 1. NEWDOS/8@ ignores the value of that bit,

Debugging hint. By setting the 4 bytes at 4409H equal to CD §D 44 C9, the er~

ror display routine can be made to invoke DEBUG instead of displaying the error
message.

3.7. 44fDH Enter DEBUG. User programs have two methods of entering the
DEBUG facility: (1) by use of Z-8f instructionm RST 3fH and (2) by the Z-8§ in-
struction CALL 44@$DH. When done with the DEBUG facility, DEBUG command G will
return to the instruction following the RST 3fH or the CALL, provided the PC
register was not changed.

3.8. 44198 (44780 in Model III) Enqueue a user timer interrupt routine.
Registers AF, BC, DE and HL are altered by this routine. On entry, DE points
to the user interrupt routine which must conform to the following format:

1st 2 bytes. Used by DOS as a forward chain pointer. On entry, the two
bytes can be any value. : :

3rd byte. The number of 25ms intervals to pass between invocations of the
user's routine. FExample, if the routine is to be invoked every second,
the 3rd byte must be set = 4§ (28H). DOS does not alter this byte.

4th byte., Count down value to the next invocation. On entry, this byte
should be properly initialized to & value greater than § but less than or
equal to the value in the 3rd byte. Every 25ms interrupt, DOS decrements

" this value. TIf the result is non-zero, this routine is bypassed for this
25ms interrupt. If the result = @, the value from the 3rd byte is moved
into the fourth byte, registers HL, DE, BC and AF are saved, and the user
routine is called at its 5th byte. Any other registers used by the
routine must be saved/restored by it. Interrupts are disabled, and the
user routine must not re—enable them.

While a user interrupt routine is in the interrupt chain, it must not be al-

3-3 DOS ROUTINES

tered in any way except by a routine that rung with 1nterrupts disabled; the
first two bytes must never be altered.

Model I TRSDOS uses the 4 vectors, 4410H, 4413H, 4416H and 4419H, for its user .
interrupt routine handling. NEWDOS/8§ uses only 441fH and 44138 for non-

compatible handling of these routines. Any program using a 25ms interrupt user .
routine in TRSDOS must be modified to work under NEWDOSIBﬂ. This is a major
incompatibility between the two Mocdel 1 systems. '

Model III TRSDOS has not yet made any provision for user timer routines, uslng
44198 - 441BH for other purposes, including HIMEM, :

Model IIT NEWDOS/8f continues with the user timer interrupt routine mechanism
used on the the Model I, except that 447BH is the routine enqueue vector
instead of 441¢¥H, and in order to continue with 25 ms counting where the Model
II1 clock actually counts in either 3fiths or 25ths of a second, a second pass
through the user routine check and invocation sequence is done when necessary
to bring 25ms counting up with the real clock. If a user routine is being in-
voked every 25 ms, the routine must be prepared to accept two invocations
within the same timer interrupt.

3.9. 44130 Dequene 3 user timer interrupt routine. Registers AF, BC,
DE and HL are altered. The user interrupt routine (as described in section
3.7) pointed to by register DE is taken out of the 25ms interrupt chain, if it
" is in the chain. The routine no longer participates in the interrupts and may :
now he altered at will by the user, .

See section 3.8 for TRSDOS incompatibility.

3.1, 4Al6E Xeep drives rotating. If the disk drives are rotating,
reselect the current drive, thereby keeping the drives rotating for approxi-
mately 2.4 seconds more. Register AF is altered.

This routine does not exist in TRSDOS; see section 3.8 for incompatibility.

3.11. 4419H DOS—CALL. Execute a DOS command and returm. This routine
is DOS-CALL, DOS does not shift to its own stack arxea, but instead remains
with the user's stack. All registers except AF are saved in the stack and will
be restored on return. The command to be executed is pointed to by HL, must be
legs than 8¢ characters, must terminate with byte PDH, and can be anything
legal for the current state DOS is in. DOS sets DOS-CALL state, if not already
set, saves the current stack pointer, and executes the command. The command
can be the invocation of a user program.

DOS-CALL is now legal under CHAINING where it was not in NEWDOS/8f Version 1. .

DOS ROUTINES 3~4

DOS~-CALL is the way BASIC executes the DOS command contained within the BASIC
statement CMD"xx" where xx is the DOS command.

The DOS-CALL caller is responsible for assuring that memory conflicts do not
arise and that sufficient stack space is available.

Nested calls to DOS~CALL may be executed. Upon exiting from a DOS~CALL level,

the return is made to the next outer level. When the outermost level is exit-
ed, DOS leaves DOS~CALL state. : '

If the DOS command invokes a program, that program may use its own stack area,
and it must exit using one of the three exits: 4&4@2DH, 4$30H or 44@9H., On
exiting, the program may store a 2 byte parameter in &44@3H, 4484H (17411, 17412
decimal) for use by the caller.

The 4419H vector is used differently in TRSDOS; see section 3.8 for incompati-
bility. .

See section 4.4 for further discussion of DOS—~CALL.

3.12. 441cH Extract a filespec. From the text pointed to by HL, ex-
tract a filespec, place it in the area pointed to by DE and termimate it with
the byte $3H. Registers AF, BC and HL are altered.

If the first text character is A - Z or § — 9, or if the first text character _
is * and the next character is A - Z or § - 9, text is moved from the HL area
to the DE area until a character that is not /, ., :, A=~ 2, or § - 9 is en-
countered or until 32 bytes have been transferred., If less than 32 bytes, a
#3H byte is placed after the last byte in the DE area to indicate end of file-
spec, and a return is made with Z state set. If the filespec is more than 31
characters it is considered improper as discussed in the following paragraph.

If the first character was improper, or if the first character was * but the
2nd was improper, a return is made with N2 state set.

On exit, if the terminator/improper byte equals $3 or @DH, ther HL points to
that byte; otherwise EL points to the mext byte.

The user will notice that NEWDOS/ 8§ doesn't check for an exact filespec; it
-leaves this to be done by the OPEN routines, 4420H and 4424H,

3.13. 4&42¢m Open a FCB to a new or existing disk file. Conditions
3.1.A and B hold. The entry requirements are the same as for 4424H, which is
executed immediately ‘as a subroutine to this routine. If 4424H is successful
in opening an existing file, no further action is required here, and an exit is
taken with Z and NC states set. If the file was not found, this routine pro-
ceeds to create the file.

If the filespec in the FCB pointed to by register DE specifies an explicit

3-5 ' " DOS ROUTINES

drive number and the diskette mounted on that drive has a free FDE, the file
is created on that diskette whether or not the diskette actually has any free
space. If the filespec did not specify a drive number, the system starts
gearching mounted diskettes, starting with the drive number gpecified by
SYSTEM option A0 and preceding through higher numbered drives until a diskette
with a free FDE is found. If a free FDE is not available, the file cannot be
created, and the error exit is taken,

Creating a file consists of converting a free FDE to a FPDE. This entails in-
serting the name and name extension (if any), encoding the password (if amy)
as both the update and access passwords, storing the LRECL (f means 256) from
register B, setting the EOF equal to #, setting access level as FULL, and

"marking the file non-system, non-invisible. No diskette file space is
assigned to the file at this time; in fact, DOS doesn't even look to see if
the diskette has any free space. Note, though the LRECL is stored in the FPDE
during file creation, it is never used. Each subsequent open of the file uses
the LRECL provided in register B. '

After the file is created, the DOS routine at 4424H is called to perform the
OPEN, On exit after a successful file create and oper, Z and C states are
set.

3.14. 4424R OPEN a FCB to an existing file. Conditions 3.]l.A and B
hold. On entry, register DE points to a FCB containing the filespec for the
file to be opened, HL points to a 256 byte buffer to be used during disk
sector reads and writes for this FCB, and B contains the LRECL (§ = 256). 1If
an explicit drive number was specified in the filespec, the search for the
file is limited to that drive; otherwise the search starts with drive P and
proceeds to higher drives until a file with the specified name and name
extension is found. 1If no file is found, the error exit is taken.

If passwords are enabled and the file has non-null passwords, then an error
exit is taken if the filespec does not contain either the update or the access
password. If passwords are disabled or the file has no passwords or the
update password is specified, the FCB's access level is set to FULL; otherwise
the access level from the FPDE is placed into the FCB to limit the type of
access for this file.

The FCB is converted from containing the filespec to containing information
about the file, which will be used while the FCB is open to reduce the amount
of directory I/0 which would othexwise be required. The conversion entails
copying the EOF and the lst 4 extents from the FPDE, storing the LRECL from
register B, setting bit 7 of the FCB's 2nd byte equal to 1 if LRECL is not
equal to § (to indicate logical record processing), setting NEXT equal to @,
storing the drive number and the FPDE's DEC code, storing the 256 byte buffer
pointer from register HL, setting the access level, setting bit 5 of the FCB's
2nd byte equal to 1 to indicate that the buffer does not contain the current,
sector and gsetting bit 7 of the FCB's lst byte equal to 1 to indicate that the
FCB is open. .

DOS ROUTINES 3-6

3.15. 4428R CLOSE a FCB. Conditions 3.1.A, B and € hold. This routine
dissolves the connection between the FCB and the file. If bit & of the FCB's
2nd byte equals 1, the FCB's buffer is written to disk like a 4439H call. If
the FCB's EOF is different from that in the FPDE, the FPDE is updated for the
new EOF, If the file has excess granules beyond EOF and if automatic space
deallocation is allowed, the excess granules are released. The FCB is then
converted back to contain a filespec consisting of the file name, name exten-
sion (if non~blank) and the drive number. This filespec can be used later to
re-open the file, provided a password is not required.

3.16. &42cH Kill the FCB's associated file. Conditions 3.1.4, B and C
bold. The file associated with the FCB is killed in the same manner as for DOS
library command KILL (see section 2.27). The FCB is set to all zeroes.

3.17. 443pH Load a program file. Conditions 3.1.A and B hold except the
registers AF, BC and HL are altered and on exit HL (and 44@3H - 44048 (17411 -
17412 decimal}) contain the program's entry address. On entry, register DE
peints to a FCB containing the program file's filespec. The load is done the
same as for DOS library command LOAD {(see section 2.32),

3.18. 44331 load and commence execution of a program file. Dead end
routine. On entry, DE points to a FCB containing the program file's fileéspec.
Registers AF and BC are altered; all other registers are passed on unchanged to
the program when its execution begins., The file open, load and commence exe-
cution are done the same as when DOS executes a command that is not a library
command, excepting that there is no default name extension. If an error occurs
during the open or load, DOS exits to 44@9H. If DEBUG is active (see section
2.17), DEBUG is entered just before the program commences execution.

3.19. A4361H READ a disk sector or move a logical record from the FCB's
buffer to the caller's buffer. Conditions 3.1.A, B and C hold.

If bit 7 of the FCB's 2nd byte equals f, the sector represented by the high two
bytes of the NEXT field is read into the FCB's buffer and, if no error or if
error code 6 (sector read protected), the NEXT field is advanced 256 bytes. If
an error other than code 6 occurs, the NEXT field is not advanced, meaning the
user can retry to read the same sector.

If bit 7 of the FCB's 2nd byte equals 1, then a logical record of length equal
to the FCB's LRECL (where § means 256) is moved from the FCB's buffer to the
buffer pointed to by register HL on entry. As each byte is moved, the NEXT
field is incremented. When the FCB's buffer is empty, the mext file sector is
automatically read into it and byte movement continues. If an error occurs,

3-7 - ' DOS ROUTINES

including error code 6, the logical record move terminates, leaving NEXT
advanced for the number of bytes moved.

If bit 1 of the FCB's lst byte equals 1, the NEXT and EOF fields are comsidered
RBA's within the diskette rather than within a file, thus giving the user the
capability to read a diskette, rather than a file. The use of bit § of the
FCB's first byte is defined in section 3,2¢ below. DOS routines PPI3H, @$P1BH,
44398, 443CH and other routines that indirectly read or write sectors also
operate as such if any of these two bits are on., The use of these 2 bits is
incompatible with TRSDOS.

One incompatibility between NEWDOS and TRSDOS occurs when the program reads the
EQF from the FCB to determine the number of bytes in the file. However, in
many cases the user does not have to know what the EQOF is. Instead, for both
TRSDOS and NEWDOS, the user can read the file sector by sector, waiting for
either of the two EOF errors. If the error code is 1CH (END OF FILE
ENCOUNTERED), then the file ends on a sector boundary and the last sector read
successfully was the file's last. If the error code was 1DH (PAST END OF
FILE), then the last sector successfully read was also the file's last, but was
only a partial sector with the value in FCB+8 equaling the number of bytes in
that sector belonging to the file. Remember, this is true for both TRSDOS and
NEWDOS; thus the same code can work for both.

3.2¢. 4439H WRITE without verify a sector to disk or move a logical record
from the caller's buffer to the FCB's buffer. Conditions 3.1.A, B and C hold.

IF bit 7 of the FCB's 2nd byte equale P, the disk sector as defined by the NEXT
field is written with the contents of the FCB's buffer. TUnless VERIFY is on
(see section 2.48), verify read is not dome. If no error, and if the lower
order byte of NEXT equals §, the NEXT field is advanced 256 bytes, Whether or
not NEXT was advanced, if NEXT now exceeds EQF or if bit 6 of the FCB's 2nd
byte equals @, EOF is set equal to NEXT. If an error occurred, NEXT is not
altered, thus allowing the user to retry'to write the same sector.

If bit 7 of the FCB's 2nd byte eyuals 1, a logical record of length equal to
the FCB's LRECL (f means 256) is moved from the caller's buffer, pointed to by
register HL on entry, to the FCB's buffer. With each byte's move, NEXT is in-
cremented, and if NEXT now exceeds EOF or if bit 6 of the FCB's 2nd byte equals
#, EOF is set equal to NEXT. When the FCB's buffer fills, the buffer is writ-
ten to the appropriate disk sector with verify read and then the logical record
move continues, filling in the FCB's buffer for the next file sector. Whenever
an error occurs, the logical record move terminates, leaving NEXT advanced for
the number of bytes moved.

Bit 1 of the FCB's lst byte functions as described in section 3,19, 1If bit @
of that byte equals 1, then sectors are written protected {error code 6 on
sector read). ' '

If a verify read is done after the write of a protected sector, error code 6 is
not returned to the caller as an error.

A significant incompatibility with TRSDOS lies in the fact that whem a sector

DOS ROUTINES 3-8

‘

ie written to disk in NEWDOS/8f and the low order byte of NEXT is non-zero,
NEXT is not advanced by 256 bytes. In this case, NEWDOS/8¢ assumes that the
caller is writing the last sector of the file (though it need not be) that is
only partially full, and that NEXT already is the proper RBA value for EOF (if
EOF is to be updated by the write).

One incompatibility between NEWDOS and TRSDOS is in setting the final EOF for a
file that is written sector by sector but usually does not end on a sector
boundary. However, if the program knows when it is about to write the last
sector, whether partial or full, and can store the desired low EOF byte value
in FCB+5 just before writing that last sector, both TRSDOS and NEWDOS will exit
from that write with the same EOF. Thus, in this instance, the same program
code will work for both TRSDOS and NEWDOS, and no incompatibility exists.

3.21. 4&43CH This routine is identical to 4439H, except that a verify read
is always done after a sector write.

3.22, 4&443FR Pogition FPCB to start of file. Conditions 3.1.A, B and C
hold. TIf the FCB has a sector awaiting write (bit 4 of FCB 2nd byte = 1), it
is written as a 4439H call, The FCB NEXT field is set = §. Bit 5 of FCB 2nd
byte is set = § to indicate the buffer does not contain the current sector.

3.23. 4&442H Position FCB to a specified file record. Conditions 3.1.A,
B and C hold. The NEXT field is set to the RBA of the logical record whose
relative record pumber (§ = the first record) is in register BC upon entry. If
the new NEXT is in the same sector as the old NEXT, the status of the current
sector is not changed (i.e., the sector is not written to disk if bit 4 of the
FCB 2nd byte equals 1). If the new NEXT is not in the same sector as the old
NEXT, then (1) if bit 4 of the FCB 2nd byte equals 1, the old sector is written
back to disk, and (2} bit 5 of the FCB 2nd byte is set to 1 to imdicate that
new sector has not yet been read into the buffer.

3.24, 44451 Poesition FCB back one record. Conditions and performance
are the same as 4442H except that the KEXT field is reduced by the LRECL.

3.25. A4448H Pogition FCB to EOF. Conditions and performance are the
same as 4442H except that the NEXT field is set equal to the EQOF field.

3-9 DOS ROUTINES

3.26. 444BH Allocate file space. Conditione 3.1.A, B and C hold., If

the file sector represented by the two high order bytes of the FCB's NEXT field 5
is not already allocated to the file, the granule containing it is allocated .
along with the granules for any lower sectors for the file that are not yet

allocated., This allows the programmer to allocate file space before it is

actually needed, and is especially valuable when it is necessary to know that a

sector can be written before any data is placed in the buffer. If a file's

size can be predetermined before being written (such as is done in COPY),
pre~allocating the necessary granules saves considerable time over allocating

the granules as the file write proceeds.

This address is defined differently in TRSDOS.

3.27 4A4EH Position FCB to the specified EBA, Conditions and performance
are the same as for the 4442H call except the new NEXT position value is taken
from the registers H, L and C where H contains the high order and C the low
order values.

This address is defined differently in TRSDOS.

3.28 44518 VWrite the EOF value from the FCB to the directory. Conditions
3.1.A, B and C hold. If the EOF value in the FCB differs from that in the .
file's FPDE, the FCB's EQF wvalue is written into the FPDE on disk. :

This addrese is defined differently in TRSDOS.

3.29. 445BH Select and power up the specified drive. Conditions 3.1.A and
B hold. On eniry, register A contains a drive number. That drive becomes the
current drive, is selected and, if necessary, powered up.

3.36. &45EN Test for mounted diskette. Conditions and performances is the
same as for 445BH excepting that, in addition, the drive is tested to deter—
mine if a diskette is mounted and is rotating. If this rotation test fails,
error code $8, DEVICE NOT AVAILABLE, is returned. '

3.31. 44611 *name routine enquewe. Register HL points to a user routine
in main memory to be chained in the chain of user logical routines., The first
12 bytes of the routine are defined as follows:

4 bytes reserved for use by DOS only. : .

DOS ROUTINES 3-10

8 byte logical routine name field containing the 1 - 8 character name of
the routine, padded on the right with blanks.

If a routine with the same name already exists in the queue, FILE ALREADY
EXISTS error code is returned with NZ set. Otherwise the routine is enqueued,
and exit taken with Z state set. HL, DE, BC and AF are altered by this func-
~tion. This function is new with NEWDOS/80.

Subsequently, whenever a DOS command of the form ¥*namel or *namel,parameters
is executed, DOS searches its queue for a routine named namel, sets HL point-
ing to the parameters, if any, and jumps to the routine's 13th byte. When the
routine concludes, it should exit via 4P2DH, 44@9H, or 4P3PH. The routine may
uge all registers, and can use the two bytes at 44P3H - 4494H to receive or
pass back a parameter. If the logical routine namel does not exist in the
queue, FILE NOT IN DIRECTORY error code ie returned with N2 set.

3.32. &4464R *name routine dequeve. HL points to a logical routine as
defined in section 3.31., If the routine ie not in DOS's logical routine queue,
this function exits with FILE NOT IN DIRECTORY error code in register A and
with NZ set. Otherwise, the routine is dequeued, meaning that subsequent
*namel commands naming it will abort, displaying FILE NOT IN DIRECTORY.
Registers HL, DE, BC and AF are altered by this function. This function is new
with NEWDOS/SO

3.33. 44671 Send message to the display. Condition 3.1.A holds. The
message bytes pointed to by HL up to and including a @DH byte (EOL) or up to
but not including a @3H byte (EOM) are sent to the display.

3.34. 446AN Send message to the printer. The same as 4467H except the
message is sent to the printer.

3.35. 446DH Convert clock time to HH:MM:SS character format. The current
clock value at Model I locations 4§4lH - 4P43H (Model III locations 4217H ~
4219H) is converted to HH:MM:SS character format and stored in the 8 bytes
pointed to by HL. Registers AF, BC, DE and HL are altered. On exit, HL points
to the mext byte after the HH:MM:5S field.

3.36. &4T9H Convert the date to MM/DD/YY character format. This routine
is the same as 446DH, except the date value at Model I locations 4f44H - 4P46H
(Model III locations 421AH - 421CH) is converted to MM/DD/YY format.

3-11 - DOS ROUTIKES

3.37. 44731 Insert default name extemsiom into filespec, If the file-
spec pointed to by register DE has no name extension, insert the 3 characters

pointed to by HL as its name extepsion. The resulting filespec canmot exceed

31 characters. Registers AF and HL are altered.

3.38, 9P13H Read a byte from a disk file. This is DOS's single byte read
routine even though it starts in ROM., Conditions 3.l1.A, B and C hold. If the
disk sector containipg the NEXT byte of the file is not in the FCB's buffer, it

is read into there. The byte is then placed into register A for use by the:
caller. The FCB's NEXT field is incremented.

3.39. @91BR Write a byte to a disk file. This is DOS's single byte write
routine, even though it starts in ROM. Conditions 3.1.A, B and C hold. If the
disk sector corresponding to the FCB's NEXT position is not in the FCB's buf-
fer, it ie read into the buffer, unless NEXT is on a sector boundary and is
equal to EQOF. The byte in register A on entry is placed into the buffer, and
NEXT is incremented, If the buffer is now full, the sector is written to disk
as if a 443CH call.

3.40. AATBH TFor Model III only, performs the same function as call 441¢H ‘

does for the Model I (see section 3.8). For the Model III, 441PH must not be
used,

DOS ROUTINES 3-12

4, DOS FEATURES.

This chapter discusses DEBUG, MINI-DOS, CHAINING, DOS-CALL, JKL and asyrchro—
nous execution. DEBUG, DOS~CALL and asynchronous execution are primarily of
interest to machine language programmers and those interested in Z-89 code.
Other users should make a quick reading of DEBUG and DOS-CALL as they are fre-
quently referred to elsewhere in the manual. MINI-DOS and JKL can be used im-
mediately by everyone. CHAINING can be very complex; novice users will want to
test out the chaining concept by using the BASIC program CHAINBLD/BAS to first

inspect the sample chain file CHAINTST/JCL and then to create some elementary
chain files.

4.1. DEBUG Facility.

As an aid primarily for the machine language programmer but also for use by
higher level language programmers, NEWDOS/88 has the DEBUG facility for inter-
rupting current execution, inspecting memory, altering memory, inspecting disk,
altering disk, single step execution, etc.

DEBUG can be entered in three ways:

1. Simultaneously depressing the three keyboard keys l, 2 and 3. 1In
order for this 123 action to work the follow conditions must be met.

1. SYSTEM option AB = N.

2, SYSTEM option AE = Y.

3. Either (1) interrupts are emabled or (2) the main program is
awaiting keyboard input via the standard keyboard input routine and
SYSTEM option AJ = N.

4. DOS must not be currently using its overlay area (main memory
locations 4D@PH - 51FFH,

5. DOS must not have its overlay inhibit emabled.

2. FExecuting either a RST 3PH or a JP 44§DH or a CALL 44¢DH 2-8f
instruction, ' '

3. Automatically at, but before, a machine code program commences execu-
tion if DEBUG has been turned on via DOS command DEBUG (see section 2.17).

Upon entry, the DEBUG facility will (1) save all registers in the interrupted
program's stack, (2) use the next stack locations for its own operations, (3)
disable any stops that may have been set on its last exit, (4) display memory
using mode and locations as remembered from its last exit, and (5) display the
cursor in the lower right hand corner of the display to indicate that the DEBUG
facility is awaiting an input command. '

All commands, even the single character commands, to the DEBUG facility must
terminate with ENTER. If an error is made in keying in a command but before _
ENTER is depressed, simply backspace over the incorrect characters and type in
the correct ones. If desired, the command may be purged before ENTER by keying

4-1 DOS FEATURES

shift left arrow.

Both the X and § displays display memory 16 bytes per display line, both in
hexadecimal and in character format. If SYSTEM option AT = Y, character for-
mats will include lower case letters. '

When DEBUG encounters an error conditiom, it dieplays 'ERROR' and waits for the

user to acknowledge the error which is done by pressing ENTER to clear the
error state,

The DEBUG facility commands are as follows. Wherever numeric values are used,

they are always hexadecimal values without the suffixed H unless otherwise
specified,

X The DEBUG facility shifts to X display mode, if not already there.
The X display contains 15 lines. The lst through 4th lines contain the
1st 64 byte memory area display. The 5th line displays the interrupted/
replaced contents of Z-8§ registers AF, BC, DE and HL. The 6th through
9th lines contain the 2nd 64 byte memory area display. The 1$th line
contains the interrupted/replaced contents of Z-8f registers AF', BG', DE'
and HL'. The ll1th through l4th lines contain the 3rd 64 byte memory area
display. The 15th line contains the interrupted/replaced contents of Z-8¢
registers PC, SP, IX and IY. The displays for registers AF and AF' also
include 2 bit mask for the associated F register, with an alphabetic
character if the bit equals 1 (state set) and & ~ if the bit equals §
(state not set). The meanings of the bite (7 ~ @#) are:

7. 8 = minus sign

6. 2Z = zero

5. 1 = unused bit

4. H = half-carry

3. 1 = unused bit

2, P = even parity or overflow
1. N = gubtraction

g. ¢Cc= carry

Using the X display allows the user to track the registers and three sep—
arate memory areas at one time.

S The DEBUG facility shifts to S display mode, if not already there,
using X display's lst memory area's base address rounded down to a 256 _
byte page boundary as the S display's base address. The § display dis~
plays 256 bytes of memory, using 16 display lines.

[nlDaddrl If in S display mode, the 256 byte block containing addrl is
displayed; if n is specified, the base address of the the specified area
is changed, but the display won't change since DEBUG is in the § display
mode. If in the X display mode, addrl becomes the base address for the
specified area: 1 if n not specified, 2 if n equals 2, and 3 if n equals
3. Examples: '

1. D798p displays the contents of locations 7@P@H ~ 79FFH if
DEBUG is in S display mode. If in X display mode, display area 1
will display the contents of locations 7#8#H — 7§BFH,

DOS FEATURES 4-2

2. 3DFFC§ 1If DEBUG is in X display mode, display area 3 will display the
contents of locations FFCHH ~ FFFFH, If in S mode, the new area 3 address is
remembered, but the display is not changed.

[n]; If in 8 display wode and n not specified, the S display is ad-
vanced to the next 256 byte block. If in X display mode, the specified 64
byte display area is advanced 64 bytes: area 1 if n not specified, area 2
if n equals 2, and area 3 if n equals 3.

[n]- If in 8 display mode and n not specified, the 8 display is re~
tarded to the next lower 256 byte block. If in X display mode, the spec-
ified 64 byte display area is retarded 64 bytes: area 1 if not specified,
area 2 if n equals 2 and area 3 if n equals 3.

Maddrl The DEBUG facility shifts to S display mode, if not already
there, displays the 256 byte block containing addrl, enters modify mode
and displays a blinking cursor over the hex digit next to be changed.
Pressing a key § - 9 or A - F causes that hex digit to be replaced in
memory and the curser advamnced one position. Pressing right arrow or
space advances the cursor ome position without memory chamge. Pressing
left arrow retards the cursor one position without memory change. Pres-
sing shift left arrow retards the cursor 4 hex digits without memory
change, and pressing shift right arrow advances the cursor 4 hex digits
without memory change. Pressing up arrow moves the cursor up one digplay
line without memory change, and pressing down arrow moves the cursor down
one line without memory change. The cursor cannot be advanced or retarded
outside the current 256 byte page. Pressing ENTER terminates modifiy

. mode. Any other key terminates modify mode and raises ERROR state.
Example:

M6314 DEBUG is shifted to S mode, if not already there. The con-
tents of 63Pf#H ~ 63FFH are displayed, and a blinking cursor is dis-

played over the first hexadecimal digit of byte 6314H. The operator
may now key in replacement hexadecimal digits and/or move the cursor
around within the displayed 256 byte page.

Fladdrl1[,bhbl][,bb2]1[,hb3]],hb4] Starting at main memory location
addrl, find an occurrence of the specified series of hexadecimal bytes.
hbl, hb2, hb3 and hb4 are each 2 hex digits representing a hexadecimal
byte. If any of hbl, hb2, hb3 or hb4 are specified, addrl must also be
specified. If none of hbl, bb2, hb3 or hb4 is specified, then the series
of hexadecimal bytes last used by an F command is used. If addrl is not
specified, then the memory location +1 of the last F command match is
used, thus allowing the user to find successive cccurrences of the initi-
ally specified byte string. Main memory is searched for an occurrence of
the search string of bytes. If found, the address of the first of the
matching bytes less 2fE is made the X display's lst area's base address.
This causes the matching byte string to appear at the start of line 3 of
the X display. If not found, X display's let area's base address is set =
§FFEPH. Example:

F5204,CD, 24,44 will start at main memory location 52fPH and
. search for the first occurrence of the three bytes mentioned. Subse-
. quently, the command F will search for the nmext occurrence of the
same three bytes. '

4-3 DOS FEATURES

If a match takes places in the current stack area, it is possible that the
matching bytes will be gone from the stack before they can be displayed,)
thus causing the user to think DEBUG has stopped erroneously. Further, .
DEBUG stores the comparison copy of the bytes in the 51xxH region of mem—

ory; so if that area is searched, & match will be found upon the compare

bytes themselves.

I Execute the interrupted program's current instructiom and then
re-enter the DEBUG facility. This allows the user to single step execute
the interrupted program. The user may then observe the changes (or havoc)
wrought by each instruction. Single stepping has some pitfalls however:

1. A full timer interrupt sequence may also execute during the sirngle
step.

2. Single stepping is not allowed if the instruction location is less
than 528fH or jumps to or returns to a location less than S52¢#H.

3. The DEBUG facility uses the 2-8§ instruction RST 3#H to trap for
the return to DEBUG after the single imstruction has been executed.
Therefore, the single stepped instruction should not branch upon
itself and should not refer to the next byte following itself as the
source or destination of data.

¢ Performs identical to I except that if the single stepped instruc-
tion is a CALL, the entire called routine is executed during the soc called
single step.

Rdreg,valuel Replaces the interrupted contents of double register dreg
with the value valuel. Examples:

RDE, CHpP replaces the previous contents of register DE with the
hexadecimal value CAfd.

RHL',7169§ replaces the previous contents of register HL' with the
hexadecimal value 71§4.

Ldnl ,drsl Relative sector drsl of the diskette mounted on drive dnl is
read into DOS's system sector buffer (Model I locations 42@PH - 42FFH;
Model III locations 439PH-43FFH). DEBUG then shifts into S8 mode and dis-
plays the sector's contents in that buffer. drsl is a decimal (yes, dec~
imal) value. The user is responsible for providing correct values for dnl
and drsl as DEBUG makes no checks. Once the sector's contents are in the
buffer, the user may treat those bytes as normal main memory, may search
them using the ¥ command and may alter them by using the M command. How-
ever, altering the sector in the buffer does not alter it on the diskette;
the WR command must be executed to store the sector back onto the disk-
ette. Since almost all NEWDOS/8f system programs use the system sector
buffer for their diskette reads and writes, the user should not use the L
or WR commands if the interrupt took place in DOS (in this case the inter=—
rupt address is usually below 52¢fH but be careful of COPY, FORMAT, etc.)
and he/she intends to comtinue the interrupted program's execution.
Warning !!! 1If passwords are enabled, commands L and WR will be rejected
and ERROR state entered. FExample: . '

L1,15¢ loads the 151lst sector of the diskette currently mounted

DOS FEATURES 4—b

on drive 1 into the system sector buffer.

WRdnl ,drsl The contents of the system sector buffer (4208H-42FFH on the
Model I; 43pPH-43FFH on the Model III) are written to relative sector drsl
of the diskette mounted on drive dnl. The parameter definitione and
restrictions in the use of command L also apply to command WR. If the
specified diskette sector is read protected, it is written read protected.
Warping!!! If you specify the wrong values for dnl and drs!, you will
vrite the buffer's data to the wrong sector and create for yourself a lot
of trouble. Be sure you know what you are doing!!! Example:

WR1,15¢ writes the current contents of the gystem sector buffer
to the 1518t sector of the diskette currently mounted on drive 1.

Q Exit DEBUG to DOS READY. The previous program is forgotten. If
.the system was in DOS-CALL or MINI-DOS, that state is purged.

Gladdrl][,addr2][,addr3] Restore the registers and resume program
execution. If addrl is specified, execution resumes at that location;
otherwise it resumes at the memory address specified in the PC register.
If addr? is specified, a breakpoint is set for that location by replacing
the byte at that location with the single byte Z-8# inetruction RST 3§H
vhich wher executed will cause the DEBUG facility to be reentered. The
replaced byte is not lost (it is restored upon DEBUG re-entry), but it is
unavailable during the period from DEBUG exit until DEBUG entry. Addr3 is
~a 2nd breakpoint address. When addr2 is specified, it is not required

that addr]l be specified. Addr2 and addr3 must not be less than 5208H.
Examples:

G70p9, 8499 ,8425 will set a breakpoint at main memory locations

84@PH and 8425H, and will restore the registers and commence program
execution at main memory location 7PHgH.

G will restore the registers and commence program execution at
the main memory location saved in the PC register. If the inter-
rupted program was awaiting input {(such as DOS READY or BASIC READY)
at the time of interrupt, it is still awaiting input. BEven though no
cursor is re—displayed (as DEBUG does not remember the cursor state),
the user may proceed witk key input.

4.2. MINI-DOS.

There are many times when, during the execution of a main program, the operator
would like to interrupt the main program, execute one or more of the DOS lib-
rary commands and then resume main program execution without any change having
occurred to the main program's state during the interruption. NEWDOS/8¢ pro-
vides such a facility, called MINI-DOS. : :

In order to use MINI-DOS the following conditions must be met:

4-5 DOS FEATURES

1. SYSTEM option AB = N, '
2, SYSTEM option AF = Y, 3
3. Either (1) interrupts are enabled or (2) the main program is awaiting .

keyboard input via the standard keyboard input routine and SYSTEM option
AJ = Y,

With these conditions satisfied, the simultaneous depression of the keys D, F
and G will cause the main program to be interrupted, its register state saved,
and MINI-DOS state to be entered. MINI-NEWDOS/8@ READY will be displayed.
CAUTION, pressing DFG ie not recommended while disk I/0 is in progress as a

fatal error to the diskette 1s possible; if exit from MINI-DOS is via HDBORT,
then there's no problem.

From MINI-DOS state, the operator may execute any of the DOS library commands
except APPEND, CHAIN, COPY and FORMAT. Non-library commands or programs may
not be executed under MINI-DOS.

When ready to return to the main program, enter the DOS library command MDRET.
If the cursor was displayed before DFG, it will be redisplayed. The main pro-
gram's register state is restored, and the main program resumes its execution.
If the main program was awaiting keyboard record input and a partial record was
already inputted, that partial record is still in the buffer even though it is
not displayed. If the main program was awaiting keyboard input, whether or not
any characters had been entered, upon exit from MINI~DOS, the main program is
still waiting. Don't be timid; start keying. If the main program was not
awaiting keyboard input, it will go on about its business.

If the main program is not to be resumed, entering the DOS library command .
MDBORT will terminate both MINI-DOS and the main program, with the system going
to normal DOS READY.

Though COPY may not be used under MINI-DOS, simple file copies can be done
uging DOS 1library command MDCOPY.

NEWDOS/8¢ is unable to eliminate all cases where the triple key depression
results in one or more of the keys being transmitted as input to the main pro—
gram, This is especially so when system option AJ = N, These spurious keys
usually show up on exit from MINI-DOS. The user should back space over them,

and should not use triple key depression when the main program is in text
overwrite mode.

As an example of MINI-DOS use, start at DOS READY and execute the following:

BASIC
1§ PRINT "HELLO": GOTO 1§
RUN

The BASIC program is now in an endless loop printing the word HELLO on the
display., Simultaneously press the D, F and G keys. The BASIC program's
execution is interrupted, and the message MINI-NEWDOS/8f READY appears on
the display. Now execute the following D0OS commands:

DOS FEATURES 4=6

DIR ¢
FREE
CLOCK
CLOCK, N
LIB
SYSTEM,§
PDRIVE, §
MDRET

The MDRET command caused the exit from MINI~DOS, and the BASIC program
continued execution where it was interrupted. Now, while we have a test
program executing, let's try out the entry to DEBUG. Simultaneously
depress the 1, 2 and 3 keys. Once again, the BASIC program's execution is
interrupted. The DEBUG routine is now active, and the display is loaded
with either the X or the S DEBUG display format. Now type in G followed
by ENTER. DEBUG is exited, and the BASIC program continues execution.
Now, press DFG again to get back into MINI-DPOS. Once there, execute DOS
command MDBORT. This causes DOS to forget about the interrupted program,
to exit MINI-DOS and go to normal DOS READY.

4.3. CHAINIRG.

The DOS commands CHAIN and DO are simply different spellings of the same com-
mand; therefore, in this section, only the command word CHAIN will be used
where in reality either one can be used.

For most TRS~8f users there are functions which use the same series of DOS
commands and/or program responses, and for each of these functions it would
save a lot of key stroking, operator time and errors if this keyboard character
sequence could be saved in a disk file to be called upon when the operator
wishes to execute a specific function.

For example, suppose that each time a reset/power-on is done, the operator
keye in the following commands and program responses:

HIMEM, PEBGPH Execute DOS command HIMEM

PROGRAM1 Execute program named PRGGRAMI

Y Response to PROGRAML's 1st query.

5¢ Response to PROGRAM1's 2nd query.

PROGRAM2 Upon PROGRAM1'S completion, execute program
PROGRAMZ

1 _ Response to PROGRAM2's lst query

WORKF1 Response to PROGRAM2's 2nd query

WORKF2 Response to PROGRAM2's 3rd query

BASIC,RUN"BASPGM] /BAS" Upon PROGRAM2's completion, enter BASIC
and run BASIC program BASPGML.

Y Response to BASPGMl's lst query.

Subsequent input to BASPGMl is assumed to vary from run to run, is there~
fore not part of the standard sequence and of no concern here. What is of

concern is that thls same sequence of keyboard input must be keyed in each
time,

47 DOS FEATURES

However, if this keyboard character sequence was placed in a disk file

named, for example, XXX/JCL, then this keyboard input sequence can be
triggered to occur by executing the DOS command: .

CHAIN,XXX/JCL

The execution of this CHAIN command (see section 2.9) causes keyboard
input to come from the file XXX/JCL, starting at the file begimning and
transmitting characters as keyboard input when requested by DOS or the
executing program. The charactere are transmitted upon request until the
end of the file is reached, at which time keyboard input is switched back
to the normal keyboard. Thus, having keyed in the CHAINK command, the
operator may sit back and wait until after BASPGM] has received its first

response instead of having to key in the various commands and responses as
needed.

Further, since this keyboard sequence is to be invoked at reset/power-on,

the operator may avoid even the keying in of the CHAIN command by setting

that command up beforehand as the AUTO command (see section 2.4). This is
done by executing the DOS command:

AUTO , CHAIN,XXX/JCL

Now, when reset/power-on is done, the CHAIN command is automatically

executed, and the operator has nothing to do until after program BASPGM1
has received its first response.

Both this process of causing keyboard input to be taken from a disk file and
the associated operational mode that NEWDOS/8f is in during that time is called

chaining. The files that contain the keyboard character sequences are called
chain files.

NEWD0S/8¢ is not concerned with the creation of chain files; NEWDOS/8f# only
uges them in response to a CHAIN command (see section 2.9). It is up to the
user to decide what keyboard character sequence is to be contained in a chain
file, and it is left to the user to build the chain files he/she needs.
Probably the simplest way is to use either SCRIPSIT or PENCIL and store the
resulting file in ASCII mode. For users that do not have either SCRIPSIT or
PENCIL, a BASIC program named CHAINBLD/BAS has been included on the NEWDOS/8P
diskette to create and edit simple chain files. To build chain files having

other than printable keyboard characters, some other chain file build program
must be used.

Chain file creators must remember that, except for amy /./ type chaining
control records {discussed below), the chain file must contain exactly the
keyboard character sequence that DOS or the current executing program expects.
Chaining does not guess for you.

During the processing of a chain file, NEWDOS/8f operates in one of two modes,
depending upon the setting of SYSTEM option AT.

If SYSTEM option AT = Y, then all requests for keyboard input via the
standard keyboard routine are honored from the chain file. This applies -
to both a request for a record (such as INPUT or LINEINPUT in BASIC) and .

DOS FEATURES 48

for a sinple character (such as INKEYS in BASIC).

If SYSTEM option AT = N, then only requests for full recorda (such as

INPUT or LINEINKPUT in BASIC) via the mtandard keyboard routine at ROM

location #P4PH are honored froem the chain file. Requests for a single
byte (such as INKEYY in BASIC) ere honored from the keyboard.

On the NEWDCS/8P Version 2 diskette the user has been provided with {1) the
BASIC program CHAINBLD/BAS with which the user can bvild simple chain files and
(2) a sample chain file named CHAINTST/JCL. The instructions for using
CHAINBLD/BAS are given in section 6,6. Here, all we want to do is use
CHAINBLD/BAS to look at the chain file CHAINTST/JCL. With computer .at DOS
EFEADY, enter the follow responses: -

BASIC RUN "CHAINBLD/BAS:@" start CHAINBLD/BAS executing

2 chooges file load optiom
CHAINTST/ JCL:§ filespec of file to be loaded into memory
L ; list firet page of chain file

list next page of file
returns to edit menu
return to main menu
exit from the program

N e

At each step, study carefully what is displayed. This chain file contains
a good example of ¢commands, program responses, and chaining contrel re—
cords. Don't be alarmed at CHAINBID'a 1§ mecond initialization time.
Once you have carefully studied the chain file, exit back te D05 and exe—
cute the chain file using the DOS command:

CRAIN,CHAINTST:p

Since most chain character sequences are short, usually less than 1#@ char-
acters, it is 2 shame to allocate a full granule of 128§ bytes for each such
sequence. Therefore, NEWDOS/8P allows 2 chain file to be divided into sectiome
with the keyboard charscter sequence making up each section preceded by a sec-
tion identification record {see /.fP discuseion below) excepting that the first
section of a chain file need not have a2 sectiom ID record. Tf the chain file
section that is to be accessed by a CHATN command is preceded by a section ID
record, the CHAIN command must specify the sectionm ID az well as the file.

During chaining, when either end of file or end of section is encountered,
NEWDOS/8¢ terminates chaiming without notification and sets keyboard. input back
to the normal keybosrd routine. This alse happens if either DOS command CHNON,N
or the chaining /./5K function (see /./ below) 1s executed. If the current
program wag awaiting input, the operator will have ne indication of this change
except that ell activity will atop. Usually, the operator knows what will be
the first display after chaining terminates; so hefehe iz ready for it.

If a2 DOS recognized error occurs during chaining, chaining will be terminated
with the mesgage CHAINING ABORT displayed to inform the operator.

If rhe DOS command CHAIN is executed while chaining, chaining simply forgeta
the previous file and starts chaining within the mew file, which may well be
the pame file and section as the previons one, CHAIN cormands sre pot nested,
and there iz no RETURN funetior in chaining.

4o . DOS FEATURES

DOS-CALL is legal during chaining.

During chaining, there are five waye to alter the sequence of keyboard .
characters. :

1. The current executing program may decide to execute a CHAIR or CENON
command via DOS-CALL (CMD"doscmd™ in BASIC).

2. A CHAIFR command itself may be part of the chain file. However, for
the command to be executed, either DOS must be aweiting ite next command
or the current program executing must be clever epough to detect the CHAIN

command record in its normal record proceasing and execunte the CHAIN
command via DOS~CALL {CMP"doscmd" in BASIC). ' '

3. An easjer method is by having the chain file contain & /./4 type
chaining control record (discussed below) at the point where the change of
sequence is to occur. Using the f./ allows the chaining eequence to be
changed regardless of whether DDS or a user program is in control end the
gequence change takes place without notificetiIon on the display. The

limitation of this type of sequence changes is that chaining carnet shift
te a different file.

4, The D05 command CHNON (zee section 2.1§)) may be part of & chain file.
Remember, D0S wuet be awalting ita next command. If CHNON,N is specified,
chaining is deactivated {though the chain file is not clesed and file
position is remembered for a subsequent CHNON,Y or CEKON,D command), end
keyboard input next comee from the keyboard. If CHNONW,Y ie gpecified and
DOS-CALL is active, chaining continues but the current DOS-CALL level is

exited, .

5. A f.f5 type chaining control record (defined below) may be ueed in the
chain file inatead of D0S command CHNON. The f.f5 record function is exe-
cited even if DOS is not awelting its next command.

If the CHATN command is executed wia DOS—-CALL (CMD"doscemd"™ in BASIC), the pro—
grammer must remember that DOS remaine in DOS-CALL executing DOS commands from
the CHAIN file until either end of file, end of section, command CHRON,N or
compand CHNON,Y (pee section 2,18} is encountered. Thus, if a program wishes
toactivate chaining but wants to process subseguent chain input itself, then
the first characters of that chain file or chain file sectiom muat be either
mﬂﬁ .,Y or C.E-HDH,Hs

Chaining has six control records that may be placed within a chain file. Each

of these records must start with aither a one character or a 4 character iden—

tification sequence and must end with the EOL (ENTER) character. In NEWDOS/E&@

Version 1, only the one character record identification wes used; in Version 1,
it ie recommended that the four character record identification be used, as the
four charecters are all printable and thua wisible during chain file create or

gdit., The recerd ID characters are not dizplayed during cheining. These con-

trol records cause chaining to perform the action deseribed for each. For each
epecial record defined below, the four character recoerd ID is given firet fol-

lowed by the slternative one character ID value.

1. f/./® or one byte = 128 (8@ hex}. Thia identified a section ID .

DOS FEATURES 4~10

record, which must be the first record of a chain section, unless the
first section within a file is to be unnamed. 7The rest of the record is
the section's ID which is used to match apainat a CHATN command’s section
ID, if it specifies ome, or against the section ID specified in a /./4&
¢hain control record. Subsequent file characters umtil EOF or until but

not including the next section ID record are all considered part of thia
new section. Fxample:

. 1 BXEXXXX identifies subsequent charactera as belonging to
chain section XXXXXX. .

2. f.l1 or one byte = 129 {81 hex). This causes the reet of the
record to be displayed, and then the system waite for the user ta press
ENTER before continuing. This ie a built in pause function. Example:

f«/1MDUNT WORE DISEETTE The meseage MOUNT WORK DISKETIE is

displayed followed by PRESS5 "ENTER™ WHEN READT TO CONTINUE. DOS
then waits for the ENTER.

3. f./2 or one byte = 139 (B2 hex). The rest of the record is
bypagsed without further action. This allows the chsin file creator!
maintainer to place comment records in the file for documentation without
them being displayed.

4, f./3 or one byte = 131 {83 hex). The rest of the record is
displayed, but no pause is done. This allows the creator/maintainer to
display to the operator what is happening. Example:

{./3PHASE TWG COMPLETED The message PHASK TWO COMPLETED is

displayed. DOS does not wait bur instezd continues processing chain
file input.

5. [f./4 or one byte = 132 (84 hex). The rest of the record is a chain
file section ID of 31 characters or less. The current chain file is
searched for a chein section whose section ID matches that specified in
the f./4 record. When found, chaining continues with the firet character
of that section. If the section is not fourd, END OF FILE ENCQUNTERED
errcr is displayed and chaining is aborted. Exzample:

f o f ATHINY Sequential chain character processing shifts
within the current chain file to the chaln section named XAXHXIY {see
{./p example above).

B, f.f3 or the one byte = 133 (85 hex). The rest of the record is
eithar the character ¥, W or D. Using thie one character parameter, a
CHRON function is performed. The advantage of using the /./5 function
rather than an zctuzl CHNO® commeud is that DOS dves not have to be wait-
ing for -its next command. The disadvantage is that the chaining state

change ie more subtle. The f./5 function is not for the novice.
Fxanples;

1. f.f5W chaining is deactivated though the file is not
closed.
2. f.i5Y cheining remains acekive but the current DHMS-CALL

level, if any, is exited,

4-11 . D05 FEATURES

The novice chain file creator will find it eesiest to use none of the chaiging .
control records described above. As experience ie gained, try ueing the /./3 .
record to display a comment and the ./l record to diaplay a meesage and wait

for ENTER, Next, try uwsing f./# records to divide & chain file into sections

end then the /./4 record to cause chaining to branch arcund within a chain
file.

The chain file c¢reator/mainteiner is responeible for asguring that chaining
does not create impossible situations for the system or user programa,

During chaining and if SYSTEM option BC = Y, the operator may terminzate
chaining by holding down the up arrow key, ox the operator may force a chaining

pause by holding the right arrow key, and may resume chaining by preesing
ENTER.

4.5 DOS-GALL,

HEWDOS/6¢ allows any machine language program to call the DOS routine at 4419H
(see section 3.11) to execute a DOS command or user program, This capability
ie called DOS-CALL. BASIC uses DOS-CALL to execute the CMD"doeemd" functiom.

The ¢alling program builds a DOS command in 2 buffer and terminates it with a
fDH byte. With EL pointing to the commend, the DOS routine at 44198 {sce
gection 3.11) is called to caunse DOS to execute the command after moviog it to s
its own buffer and converting lower case to upper. .

If the DOS-CALL is executing a user program, DOS does not check for comflict
between the calling program and the celled program. It ie the respeonsibility
of both programs to avoid conflicte, An example of a uaer program executing
under DOS-CALL is the execution of SUPERZAP under BASIC through the
CHD"SUPERZAP" function.

Furthermore;, the registers cannot be used to pass paraneters back and forth
between the calling and the called programs. Om entry to the called program,
however, register HL does point to the command parameters., Also, the twe bytes
at 44035 - 44f4H mey be used to pass a 2 byte parameter back and forth.

A user program activated under DOS-CALL may itself use DOS-CALL (be carefnl not
to overflow the stack). DO5—CALLs can be nested, with each call activating a
new DOS-CALL level. '

Opon return from a DPOS-CALL, the calling progrem must check for three states.
If Carry ie set, sn error has occurred that has already been displayed. If the
program is to continue execution, then it must decide what to do. ILf the pro-
gram is to terminate, it should exit via a jump to 4f3$#E in case this program
was itself iovoked by DOS-CALL, which will cause an exit to the next hipher
callipg program with C state set.

However, if the returned state is HZ and NG, a DOS8 error has occurred that hacs
not yet been displayed and the error code is in the right & bits of register A .
{bits 6 and 7 equal @), 1If the calling program is to continue cperetiom, it

D05 FEATURES 4-12

can have the error message displayed by calling 44898 with bit 7 of register A
= 1; otherwige it should exit vis a jump to 44f9H with bit 7 of register 4 = §.
Th1s latter action will cause the error message to be displaved and the system
goes to DO5S BEADY unless the calling program was itself invoked by DOS-CALL, in
which case the error meg will not be displeyed and an exit will be taken to the
next higher Falling program with registexr A unchanged and RC and MZ states set,

If the returned state.is NC and Z, then the called function completed normally.
Since all registers except AF are saved at DOS-CALL entry and reetored at DOS-
CALL exit, the only way a parameter may be pazsed back is by using the two
bytes at-44P3H and 4484E (17411 and 17412 decimai). Actually, the higher
unused bytes of the D05 command buffer, 4318H - 4367H, can be unsed for com-
munication each way in DOS-CALL, but the programmer must understand that DOS
moves all commands into that buffer before ezecuting them.

*‘. 5 - .m.

NEWDOS/B# has a small routine for dumping the contents of the dieplay screen to
the printer. This feature allows the operator to print information that would
otherwise be lost as soon as the display is used for scmething else,

In order to use JKL, the following cenditione must be met.

l. Svstem option AD = Y.

2. FEither (1) interrupts are enabled or (2) the main program is awaiting
keyboard input via the standard keyboard imput routine and system optionm
AJ = Y.

3. DOS must not be currently using ite overlay area {main memory locations
4DPPE - 51FFH). :

4. DOS must not heve its overlay inhibit enabled.

With these conditions met, the simultaneous depression of the keye J, K and L
will cause the main program to be interrupted, its stete saved, and the con-
tents of the display dumped to the printer without any editing except that
implied by SYSTEM option AX. If the pricpter is not ready or drops ready, the
eystem will loop waiting for it and no wmessage will be dlsplayed to the
vperator.

JKL will substitute & period for each display character that is non-printable
as defined by SYSTEM option AX,

Preseing the BREAK key will terminate the JKL functiom, excepf if the CEU ia
hung waiting on the printer.

When the dump is completed, the interrupted program is resumed. The problem of
spuricus input characters discussed in sBection 4.2 exists here as well.

In earlier versions of NEWDOS, the JKL routine was slways resident in main
nemory. In Version 2, the JKL routine was very reluctantly moved inte a system
overlay progras, thus making it unusable in certain circumstances where it was
usable before. For example, JKL can not be invoked from DEBUG.

4-13 DOS FEATURES

4.6. Asynchrowous Execution.

NEWDOS B¢, like TREDOS, allows for a4 very limited form of asynchronougs exe- .
cution. This ie accomplished by inserting s user interrupt routinme into DOS's:

25ms interrupt chain. The DOS routine {see section 3.8) at Model T location

44180 (Model IXI lecation 447BH) must be used to insert the routine inteo the

chain, and the DOS routine 4#413E {sse section 3.9) must be used to take the

routine out of the chain. Refer to these two sectiome for the required format

af the uwser ivterrupt routine and bhow it iz iovoked.

Again, the user ie reminded that the use of user interrupt routines wmder
HEWDOS/ 8¢ is incompatible with that under TRSDGS.

5 FEATURES d-14

5. DOS MODULES, DATA STRUCYURES, AND HISCELLAIEDUS INFORMATION.

This chapter gives information about the modules on the NEWDOS/89 diskette,
about diskette directories and about File Control Blocks. The novice user
should read sections 5.1 and 5.4 and leave the other sections for another time.

5.1. Files required on each diskette used with NEWDOS/8(.

DIR/SYS 2 - 6 granules. Diskette directory. This file is required
on every diskette used with NEWD0OS/8¢ as it contains the control informa-—
tion about all files on the diskette. FORMAT or the format part of COPY
creates this file automatically, and DOS updates this file as necessary to
add, alter, or delete control information about files on that diskette.
The structure of the directory is given in section 5.6. Also see section
5.6.2 for correction to HIT sector code for DIR/SYS.

BOOT/SYS 1 granule. Must occupy the first granule of every diskette.
On data diskettes this file serves only to reject an attempt to boot using
this diskette in drive f. On system diskettes, the first sector contains
the machine code for loading the DOS system from the drive § diskette when
4 power on, reset or jump to location @ occurs. On NEWDOS/8P system disk-
ettes, the 2nd sector is a duplicate of the first (required for booting on
the Model III), and the 3rd sector contains system control information set
up by the DOS commands SYSTEM and PDRIVE. FORMAT or the format part of
COPY creates this file automatically.

5.2. NKEWDOS/8} DOS System Modules.

The DOS system consists of 14 program modules which execute from three areas.
The resident module 8YS9/S8YS resides in all the non-data areas from 48f0E to
4CFFH. The modules SYS1/SYS through SYS5/8YS, SYS7/SYS through SYS9/SYS and
SYS14/SYS through SYS17/SYS all share the DOS overlay area 4D@PH - S1FFH (only
one module at a2 time can be in that area). SY$6/5YS executes from both the
overlay area and the 528fH - 6FFFH area.

SYS#/sYs 3 granules. DOS's resident module loaded by the bootstrap
routine and remains permanently in main memory, except for the DOS ini-
tialization routines in the overlay area which are overlaid when no longer
needed. SYS@/SYS handles DOS imitialization, disk I/0, clock interrupts,
load of other system modules, keyboard intercept, etc.

SYS1/SYS 1 granule. Interrogates DOS commands.
8YS2/SYS 1 granule. Creates files, opens FCBs, allobates file space,

allocates FDEs, encodes passwords and loads users programs to be rum,
Executor for library commands RENAME and LOAD, '

5-1 DOS MODULES

8YS3/5Y8 1 granule. Closes FCBs, kills files, insert/deletes entries
from 25ms chain. Executor for library commands BLINK, BREAR, CLOCK
DEBUG, JKL, LCDVR, LC, VERIFY and most of PURGE. .

SYS4/SYS 1 granule. Displays DOS error messages.

5Y55/5Y8 1 granule. DEBUG facility.

5YS6/SYS 7 granules., Executes in 4D@PH - 6FFFH, Executor for library
commands FORMAT, COPY and APPEND.

SYS7/SYS 1l granule. Executor for library commands TIME, DATE, AUTO,
ATTRIB, PROT, DUMP, HIMEM and the lst part of PURGE, SYSTEM and PDRIVE.
SYSB/SYS 1 granule., Executor for library commands DIR and FREE.
SYS9/SYS 1 granule. Executor for library commands BASIC2, BOOT,

CHAIN, CHNON, MDCOPY, PAUSE and STMI. Enqueues and dequeues user logical
routines and routes each invocation {see DOS routines 4461H and 4464H in
chapter 3).

SYS14/SYS l granule. Executor for CLEAR, CREATE, ERROR, LIST, PRINT
- and ROUTE.

5YS815/8Ys 1 granule. Executor for FORMS and SETCOM.
SYS16/SYS 1 granule. Executor for most of PDRIVE,

SYS17/SYS 1l granule. Executor for WRDIRP and most of SYSTEM, .

5.3. NEWDOS/8) BASIC Modules.

NEWDOS/88's Disk BASIC enhancements to the TRS-8@'s ROM BASIC consists of a
main resident module and 8 overlay modules. The modules SYS1$/SYS through
8YS13/8YS and SYS21/SYS execute from DOS's overlay area, 4DPPH - 51FFH, The
modules SYS18/SYS through SYS2P/SYS execute from BASIC's overlay area, 52ffH -
56FFH. All of BASIC'e modules, except BASIC/CMD, are loaded as needed and must
be on the system diskette when needed.

BASIC/CMD 4 granules. Resident module residing in 57¢PH and up. Exe-
7 cutes Disk BASIC's functions. This module need not reside on the system
diskette as it may be invoked from a data diskette (like any other pro-—

gram), and once invoked, it is not needed again until BASIC is next
invoked.

SYS13/SYS 1 granule. Displays BASIC's error messages and executes lst
part of RENUM. Must be on the system diskette whenever BASIC is active.

SYS12/SYS 1 granule. Executes BASIC direct command REF, Must be on the
system diskette if REF will be executed. : .

P08 MODULES 5-2

5.4.

SYS11/SYS 1 granule. Executes BASIC direct command RENUH Must be on
the system diskette if RENUM will be executed.

SYS1#/SYS 1 granule. FExecutes BASIC statement's GET and PUT, and nust
be on the system diskette if either statement is to be executed.

SYS18/SYS 1 granule. BASIC direct statement executor. Must be on the
system diskette whenever BASIC is active. '

SYS19/SYS 1 granule. Executor for BASIC statements'LOAD, RUN, MERGE,

SAVE and CMD"F"DELETE. Must be on the system diskette whenever BASIC is
active. .

SYS20/SYS 1 granule. Executor for a number of disk BASIC statements and
usually is the module resident when BASIC is executing a program. Must be
on the system diskette whenever BASIC is active.

SYS521/SYS 1 granule. Executor for CMD"0" and must be on the system
diskette if CMD"0" will be executed.

Other Modules on the REWDOS/8J diskette.

DIRCHECK/CMD A program that checks the directory for errors amnd list or
pPrints the directory contents. See section 6.4.

EDTASM/ OMD An editor/assembler for Z-8f code-source and object code
from/to disk or tape. See section 6.5.

DISASSEM/CMD A program that disassembles Z-8f machine code. See
section 6.2,

LMOFFSET/ CMD A program that reads load modules from disk or tape and
writes them to disk or tape. The program optionally (1) assigns new load
addresses, (2) appends a pre—execution move~program-to—execution-location

appendage and (3) prepares the program to run without DOS. See section
6.3-)

SUPERZAP/CMD A program that allows inspection and modification of
either disk or mairn memory. Disk operations are diskette or file
oriented. See section 6.1.

CHAINTST/JCL A sample chain file created by CHAINBLD/BAS.
CHATNRLD/BAS A BASIC program that creates and edits esimple record
oriented chain files for subsequent use via the DOS commands CHAIN or DO.

See secticn 6.6.

ASPOOL/MAS H. 8. Gentry's automatic spooler program as modified by
Apparat for NEWDOS/8f. See section 6.7.

5-3 DOS MODULES

5.5. Reduced Sixed Systels.

full NEWDOS/8@ diskette onto a new diskette and then KILLING the unwanted
files. A minimum system to handle open's and close's will consist of 1§ gran-
ules (BOOT, DIR, SYS@-SYS4). If the DEBUG facility is to be used (including
BASIC's CMD"D"), add SYS5. Section 5.2 indicates which additional modules must
be added for the various DOS library commands. If BASIC is to be used, section
5.3 indicates which BASIC modules must be added, and section 5.2 indicates
which DOS modules must be added if DOS library commands are to be executed via
BASIC's CMD"xx" statement.

Reduced sized systems can be created, if passwords are disabled, by COPYING the .

If the system module loader finds the module's directory entry inactive or
encounters an error during loading, then one of the following occurs:

If SYS4 is an active module in the system, then SYSTEM PROGRAM NOT
FOUND error will be displayed via a jump to 44#9H,

1f the jump to SYS54 via 44$9H finds SYS4 not in the system, then the
Z-8@ HALT instruction is executed which on the Model I causes reset
and on the Model III stops the computer {the operator must manually
press reset). :

Modules included in this category are SYS1/SYS thru 8Y821/8YS. If any of
BASIC overlay modules fail load, the user must carefully execute BASIC *
to get back the basic program text.

CAUTION!!! Once a system file has been killed from a system diskette, it can- .
not be restored by simply copying it from another system diskette. The DOS .
system loader requires that system file FPDEs be in specific FDE slots in the

directory and that all of a system file's space be accounted for im the first

extent element. TFurther, SYSP/SYS must occupy the same granules as it did

before kill, and it is recommended for efficient system cperation that zll

other system files also occupy the same granules. Once the FPDE has be pro-

perly reconstructed, DOS command COPY can then be used to copy the file's

contents. '

5.6. Diskette Directory Structure.

For the Model I, NEWDOS/8@ and TRSDOS diskettes are interchangeable provided
the NEWDOS/8f diskette's directory comsists of only 2 granules (see DDGA
parameter of FORMAT, section 2.22, and COPY, section 2.14}, and is set up for
1¢ sectors/track, 2 granules/lump and 5 sectors/granule operations (5 sectors
per granule is standard for NEWDOS/8@). The files on the diskettes may not be
operationally interchangeable between the two systems; system modules, BASIC,
ELECTRIC PENCIL, SCRIPSIT, etc., definitely are not though the files they
manipulate are.

For the Model III, the directories of NEWDOS/8@ and TRSDOS diskettes are NOT

compatible; a TRSDOS Model III diskette may mot be used directly with NEWDOS/8p
and NEWDOS/8P diskettes may not be used directly with TRSDOS Model III. If the o
NEWDOS/ 8¢ single demsity diskette has a directory of Model I standard position .

DOS MODULES 5-4

and size, the Model TII TRSDOS has a conversion program to copy the data to a
Model III diskette. The COPY function of NEWDOS/8f, Version 2, also has a way
of copying one, some or all files of a Model III TRSDOS Version 1.3 or higher
diskette to or from a NEWDOS/8P diskette (see sections 12.1 and 2.14).

NEWDOS/8@ makes all FDE's of a diskette, except those for BOOT/SYS and DIR/SYS,
available for use; thus, a 2 granule directory on a newly formatted data disk-
ette has 62 FDEs available., NEWDOS/8f allows the directory to be allocated
with up to 6 granules during diskette formatting (see DDGA parameter of PDRIVE,
FORMAT and COPY), thereby providing for a maximum of 222 available FDEs.

A diskette's directory always starts on a lump boundary and contains the GAT
sector followed by the HIT sector followed by 8, 13, 18, 23 or 28 FDE sectors,
depending upon the number of 5 sector granules allocated to the directory (see
the DDGA parameter of PDRIVE, FORMAT and COPY), The user is encouraged to
study the directory structure by use of program SUPERZAP (see section 6.1).
The starting lump number of the directory is always contained as a hexadecimal

value in the 3rd byte of each diskette's lst sector; this value is used by DOs
to find the directory.

5.6.1. The GAT (Granule Allocation Table) Sector.

The GAT sector is the first sector in the directory and contains the
following information:

Granule freefallocated table. Each of relative bytes #ffH — SFH
corresponds to a lump and contains the freefallocate status bits for
ell of that lump's granules. The pumber of granules per lump is
specified by the GPL parameter of PDRIVE and is a value between 2 and
8. The lump's lst granule's bit is bit @ (counting from the right),
the 2Znd granule's bit is bit 1, and so on up to the 8th granule. If
the bit equals #, the granule is free. If the bit equals 1, the
granule is allocated or non-existent.

Granule existence table. Relative bytes 6fH ~ BFH correspond to
relative bytes #9 ~ 5FH. If a bit within a byte equals @, then the
corresponding granule for that lump exists and is usable. If the bit
equals 1, the corresponding granule does not exist, must not be used
and the corresponding bit in P - 5FH must equal 1. Actually, though
NEWDOS/8f creates these existence bytes during format, it does so
only for compatibility with the old style TRSDOS diskettes (where- in
these bytes were known as lockout bytes). Actually, NEWDOS/8f never
sets a granule non-existent. When necessary, the granule exis— tence
table is discarded altogetber to make additional GAT sector bytes
available to the granule freefallocated table.

In order to maximize the amount of diskette space controlled by the
GAT sector, NEWDOS/8(Version 2 allows the freefallocated section of
the GAT to extend through, and thereby replace, the existence (or’
tockout) portion of the GAT. In this case, the free/allocated status
bytes are GAT relative bytes $PH through BFH instead of $PH through
5FH as discussed above. This extension is automatically dome during
format if the number of lumps for the diskette exceeds 6@#H (96
decimal).

5-5 \ DOS MODULES

The diskette's encoded password is in relative bytes CEH - CFH.
The diskette name is in relative bytes DPH - D7H,
The diskette date is in relative bytes DSH - DFH,

If a system diskette, the AUTD command to be used at reset is
contained in relative bytes E§H ~ FFH. If the first byte of this
area is @DH (EOL), then no AUTO command exists for this system
diskette.

5.6.2. The HIT (Hash code Index Table) Sector.

The HIT sector is the 2nd sector in the directory. It serves as an index
into the FPDEs for the diskette's files and also serves to indicate which
FDEs are free and which are in use. If a HIT sector byte equals §, the
corresponding FDE either doesn't exist or is free. If a HIT sector byte
is non-zero, the corresponding FDE is in use, and if in use as & FPDE, the
HIT sector byte's value is a hash code formed from the contents of the
FPDE's 6th through 16th bytes (the name and name extension). Thus, when
it is necessary to look up a file in the directory, the hash code is
computed and the HIT sector searched for a match. If a match is found,
the corresponding FDE sector is read and the corresponding FPDE tested for
matching name and name extension. If this match fails, the HIT sector
search is continued.

The relative position of the HIT byte within the HIT sector is exactly
equal to the corresponding FDE's DEC code; for it is by using the DEC code
as an index into the HIT sector that the system knows which HIT byte to
set non-zero when a FDE is allocated and to set to zero when a FDE is
freed.

The HIT sector's 32nd byte is used differently in NEWDOS/8# than all the
other HIT sector bytes. This byte contains the count of extra FDE sectors
allocated to the directory; the legal values are #, 5, 19, 15 and 2§.

This value is set up when the diskette is formatted. .

On old Model I diskettes the value of the HIT sector byte for DIR/SYS {(2nd
byte of the HIT sector) was 2CH which is not the correct value. This
incorrect value causes FILE NOT IN DIRECTORY error to appear when the
directory file itself is being accessed. For such diskettes, use SUPERZAP
to put the correct value of C4H into the HIT sector Ind byte.

5.6.3. The FDE (File Directory Entry) Sectors.

The rest of the directory's sectors are FDE sectors, with each 256 byte
sector containing eight 32 byte FDEs. A FDE is free if bit 4 of its lst
byte equals § and in use if the bit equals 1. An in-use FDE is a FPDE if
bit 7 of its lst byte equals § and a FXDE if the bit equals 1. When an
FDE is freed, only the 4th bit of the lst byte is zeroed and the corres-
ponding HIT sector byte is zeroed. Nothing else is changed. However, the
user may zero the entire 32 bytes of each unused FDE by using the C func-
tion of DIRCHECK, thus obtaining a cleaner looking directory.

DOS MODULES ' 5-6

5.7. FPBE“' File Primary Directory Entry. Each file, when created, is
._ assigned a directory entry somewhere in the FDE sectors. This entry contains:

lst byte::

Bit 7 = @. Indicates FPDE, vice FXDE.
Bit 6 = 1, If a system file.
Bit 5 = @. Undefined. :
Bit 4 = 1. Indicates FDE allocated to a file.
Bit 3 = 1. If the file has the invisible attribute.
" Bits 2 - §. Access level code (see PROT parameter of ATTRIB,
section 2.3). ' '

2 byte:

Bit 7 = §. The file may be allocated more space when necessary.
Bit 7 = 1 prohibits this. DIR, ATTRIB, CREATE and the DOS file space
allocation routine use this bit.

Bit 6 = §. The DOS file close function may deallocate any excess
granules above the EOF (i.e., apparently not being used by the file).

. Bit 6 = 1 prohibits this. DIR, ATTRIB, CREATE and DOS file close use
this bit.

Bit 5 = 1. At least one sector of the file has been written to,
either new data or updated data, since the last time this bit was set
to §. DIR, ATTRIB, CREATE, PROT, COPY and the DOS sector write
routine use this bit. '

. Bits 4 to §. Undefined and reserved for future definition.

3rd byte = §. Currently undefined and reserved for future definition.

4th byte. The lower order byte of the file's EOF, This value is the EOF
position within the EOF sector. See FCB 2fith byte below.

Sth byte. The logical record length (LRECL) (# = 256) in bytes. When a
file is created via a 442fH vector call, the value from register B is
stored here. When an existing file is opened, even as a new output file,
this value is not updated. This value is never used in NEWDOS/B8f. The

value stored in FCB+9 at open time is that from register B, not from the
FPDE. .

6th-13th bytes. The file name, padded on right with blanks if necessary.

14th~16th bytes. The file name extension, padded on right with blanks as
necessary.)

17th~18th bytes. The encode of the update password.
19th-2fth bytes. The encode of the access password.
21st byte. The middle order byte of the EOF.

. 22nd byte. The high order byte of the EOF. The 4th, 2lst and 22nd

5-17 ' - DOS MODULES

bytes are a 3 byte EOF value. This EOF value, instead of being in RBA
format as are the EOF and NEXT fields of the FCB, is maintained in the old
TRSPOS format which has the following rules:

1f the lower order byte of the EQOF equals §, the EOF is in RBA
format. ’

If the lower order EQOF byte is not $#, then the EOF value in the
FPDE is equal to the actual RBA value plus 256 (the high two
byte value of the EOF is incremented by 1).

NEWDOS/ 8¢ maintains the directory FPDE EOF field in this manner in
order to maintain compatibility with the old Model 1 TRSDOS 2.3
diskettes (see section 12.1)., New EOF values for a file are placed
into the FPDE only during file-create, write—EQOF and DOS close.
Thus, if the system fails requiring reset, the user can expect that
any file open for output at the time of failure will contain the new
data but usually not the new EQF,

See section 12,1 for EOF and NEXT incompatibility with other DOSs.
23-3fth bytes. Four 2 byte pairs {extent elemente), each specifying a
contiguous area of the diskette assigned to this file. The format of an
extent element is:

lat byte:

255 (@FFH) means the end of the extent elements for this file.

254 (PFEH) means the next byte contains the DEC for the first or .
next FXDE assigned to this file.

$ - 253 (§ ~ OFDH) equals the number of the diskette's lump in
which the area starts. Other consideratione including the
number of lumps the GAT sector cam handle limit this value to
the range # — 191. This value is also the relative location
within the GAT sector of the byte associated with this lump.

2nd byte (when the lst byte is less than 254)

left 3 bits equals the number of granules (#-7) from the start
of the lump to the start of the area.

right 5 bits equals the number less one of contiguoué granules
assigned to this area.

31-32nd bytes. An extent element whose lst byte is either 255 or 254.

POS MODULES | ' 5-8

5.8. FXDE File Extended Directory Entry.

When a file has more than & space areas assigned, the additional extent

elements are contained in FXDE's assigned to the file. The format of a FXDE
is:

lst byte, Bits 7 and 4 are both 1 to indicate a FXDE; all other bits
of the byte equal §.

2nd byte. The DEC for previous FXDE or FPDE of this file. This is a

backward chain. The previcus entry's 3lst byte will be 254, and the 32nd
byte will contain the DEC of this FXDE.

Bytes 3-22. Unused and should equal §.

Bytes 23-32. Are as defined for the FPDE.

5.9. FCR File Control Block. Also known as a DCB (Data Control Block)
or an I0B (input/output block).

In order that file information be read from or written to a diskette, a link
must be created between that file and the user program. The link is created by
the DOS open function (see sections 3.13 and 3.14) and dissolved by the DOS
close function (see section 3.15). During the time the link is in existence,
the control information for that link is maintained in a 32 byte area of main
memory known as a File Comtrol Block. At open time, the user specifies where
in user memory this FCB is to be. While this link is in existence, the FCB's
area of main memory must not be used for any other purpose. DOS does not re~
member where the FCBs are. The user informs DOS of which FCB to use for each
function that is to use a FCB. Thus, the link is effectively dissolved by
simply never using the FCB again in a function call or by using the FCB in the
open of a new link. Remember though, if writing to-a file where the EQF is
being changed, either a a DOS close or DOS write-EOF (see section 3.28) fune-
tion must be dome to assure the EOF is properly placed in the FPDE,

At open time (a call to DOS 442fH or 4424H), the caller provides in register DE
the address of a 32 byte main memory area for use by the system as a FCB while

the file 1s open. The user must have placed the filespec (terminated by a $DH

or @3H byte) for the desired file into the FCB's lst bytes, and the DOS close

function will attempt to put it back there when done. NEWDOS/8f will accept
the Model III TRSDOS 5@ bytes area but only uses the first 32 bytes. While the
FCB 1s open, the format for the 32 byte FCB is: '

Ist byte:

Bit 7 = 1. The link is in existence (i.e., an open has been done).

Bit 7 = . The link is not in existence {i.e., either an open has
not been done or a close has beer subsequently done).

Bits 6-2 = . Undefined.

5-9 : DOS MODULES

Bit 1 = 1. The value in the FCB's NEXT and EOF fields are RBAs with-
in the diskette, rather than the file. This allows the user to I/0 .
directly to diskette sectors, bypassing the file concept altogether.

This bit should never be 1 during byte I/0 via the PP13H or @p1BH
calls.

Bit § = 1. Sectors written to the file are written read protected in
the same manner as DOS writes directory sectors. This bit should
never be 1 during byte I/0 via the @#13H or @PIBH calls.

2nd byte:

Bit 7 = 1. Either single byte operations or logical record opera-
tions (record length in FCB's lfith byte) are being done via this FCE.
NEXT value is maintained at the next byte to be read or written.

This bit is set to 1 at opern time if register B is not #. It is also
set to 1 whenever byte 1/0 is done via the PP13H or @#P1BH ROM calls..

Bit 7 = . Read and write operations are by full 256 byte sectors
with the FCB's NEXT value incremented 256 bytes upon the completion
of each successful I/0.

Bit 6 = §. The FCB's EOF value is to be set equal to the FCB's
resulting NEXT value on every successful write operationm.

Bit 6 = 1. The FCB's EOF value is to be set equal to the FCB's
resulting NEXT value only for those successful write operations
resulting in the NEXT value exceeding the current EQOF value. .

Bit 5 = §. The FCB's buffer contains the current file sector's data.
If bit 5 = 1, the buffer does not contain the current file sector's
data; if needed, that sector's data must be read into the buffer.

Bit 4 = f. The FCB's buffer does not contain updated data not yet
sent to the file. If bit 4 = 1, the buffer does contain updated data
not yet sent to the file. During DOS close, if this bit is 1, the
sector data im the buffer is automatically written to disk. This
updated data is also written on every 443FH and 4451H call and on
every 44420, 4445H, 4448H and 444EH call that p051t10ns the file
within a different sector. :

Bit 3 = 1, This FCB is in the NEWDOS/8¢ Version 2 format for the
18th - 32nd bytes. This bit is set to 1 by -DOS open. If bit 3 = @,
the FCB is in the old format and is illegal in NEWDOS/8# Version 2.

Bits 2 ~ #. Access level code (see PROT parameter of ATTRIB, section
2.3). ’

3rd byte:

Bits 7 ~ 5. These bits are defined the same as those in the FPDE 2nd
byte (see section 5.7). If bit 5 equals P, the DOS sector write

routine sets the bit to 1 in both the FCB and the FPDE just before it -
actually writes the current sector to disk. .

DOS MODULES ' 5=-10

Bits 4 - #. Undefined and reserved for future definition.

4-5th bytes. The main memory address of the FCB's buffer. The user
determines where the buffer is to be and puts this address into register
HL before the call to the DOS open routine. Sectors are read from disk
‘into this buffer and written to disk from this buffer.

6th byte. The low order byte of the FCB's NEXT field. This is the rela-
tive position within sector value. See discuseion for FCB 12th byte
below.

7th byte. The relative number of the drive containing the diskette con-
taining the file.

8th byte. The DEC code of file's FPDE. After the FCB is opened, this DEC
code is the link between the open FCB and the file's directory information
as the FCB itself no longer contains the filespec.

9th byte. The low order byte of EOF. This is the relative position
within the EOF sector. See discussion of FCB l4th byte below.

1pth byte. The logical record length (LRECL) (# = 256) for records of
this file. This value is supplied in register B by the caller at open
time. If not ® at open time, bit 7 of the FCB's 2nd byte is set to l, and
subsequent DOS sector read or write calls must contain, in register HL,
the address of the logical record to be moved to the FCB's buffer {write)
or filled from the FCB's buffer (read).

11th byte. Middle order byte of the NEXT field.

12th byte. High order byte of the NEXT field. The 12th, llth and 5th
bytes form a 3 byte RBA within the file of the next byte to be processed,
either input or output.

For single byte and logical record I/0, DOS wmaintains the FCB NEXT
field in exact RBA formsat.

For full sector 1/0, DOS also maintains the NEXT field as an exact
RBA, but there are subtle actions by DOS that can give trouble if the
user is not aware of them. DOS does not change the lower order byte
of the NEXT field during full sector I/0. Normally, this byte is
zero, and that's fine. However, the user can set this byte non-zero
or if the previocus I/0 done was in single byte or logical record mode
the lower order byte will probably be non-zero. The user must be
aware of the following rules:

During full sector reads, all three bytes of NEXT participate
the EOF check just as for single byte and logical record reads.

During full sector write, when the low order byte of the NEXT
field is non-zero, the KEXT field is not advanced 256 bytes

upon the successful completion of the write and EOF, if it is
updated, assumes that non-advanced NEXT value. The rationale
here is that if the NEXT field's lower order byte is zero, the
valvue of NEXT after the successful write is to be at the first

a4

5-11 ' DOS MODULES

byte of the next sector, but if the NEXT field's lower. order
byte is non-zero, the value of NEXT after the successful write _
is to remain within the sector just written. _ .

See section 12.1 for discussion of NEXT and EOF field incompatibility
with other DOSs.

13th byte. Middle byte of the EQF field.

14th byte. The l4th, 13th and 8th bytes form 3 byte RBA within the file
of the end-of-file (the lst byte beyond the file's last data byte). This
value is initialized from the FPDE at open time, and is updated at sector,
logical record or byte write time under contrel of the FCB 2nd byte, bit
6. See section 12.1 for discussion of NEXT and EOF field incompatibility
with other DOSs.

15-22th bytes. Identical to 23-3fth bytes of FPDE.

23-24th bytes. For the curreat FXDE whose 4 extent elements are in the
FCB 25th - 32nd bytes, the number in this field represents the relative
granule number of that FXDE's lst extent's lst granule. If that value
equals PFFFFH, then no FXDE is represented in the 25th-32th bytes.

25-32nd bytes. Identical to 23-3fth bytes of the current FXDE, if any.
Discussion of FCB bytes 17-32:

The definition for FCB bytes 17 to 32 has changed from what it was in
NEWD0OS/ 8¢ Version 1 and Model I TRSDOS. It was assumed that very few
user programs ever referred to these bytes as they serve only to re-
duce the number of directory accesses done by the resident DOS. How-
ever, some users (such as the old SUPERZAP coded in BASIC)} have made
use of the old definitions to get around having to open a file when
diskette, rather than file, I/0 was wanted. NEWDOS/8@ Versions 1 and
2 have provided a diskette, as opposed to file, I/O method (gee FCB
lst byte, bit 1 definition); that method should be used and those old
pseudo FCB methods MUST be discarded to run with NEWDOS/8§ Version 2.
Failure to do so could be catastrophic, NEWDQS/8¢ Version 2 has
activated bit 3 of FCB 2nd byte in an attempt to head off these bad
pseudo FCBs.

This change to the FCB 17-32nd bytes allows the FCB to contain all of
a file's extent information for any file having 8 or less extents
(DIR with the A option will display how many extents a file has). If
the file occupies contiguous diskette space, 8 extents is enough for
approximately 309,080 bytes (or 279,089 bytes if the directory is
spanned by the file's space).

If the file has more than 8 extents, meaning that more than one dir-
ectory FXDE is assigned to the file, then the FCB contains space
information for the file's lst 4 extents and the 1 to 4 extents of
the FXDE last having a sector read or written. It is quite possible
for large randomly accesssed files to require a lot more dlrectory
accesses than was done under NEWDOS/8f, Versiom 1. ‘

DOS MODULES 5-12

6. ADDITIONAL PROGRAMS SUPPLIED ON NEWDOS/8) DISKETTE.

6.1. SUPERZAP.

Program SUPERZAP/CMD provides the user with the means to read and write stand~
ard 256 byte diskette sectors or any part of main memory, except writing to
ROM. Learning to use SUPERZAP is strongly recommended for all NEWDOS/BP
owners. If corrections (known as zaps or patches) are to be made to your
NEWDOS/8P, Apparat will distribute them in written form for application using
SUPERZAP. You must know how to us DFS and MODxx. In learning to use SUPERZAP,
do your learning on a diskette having data that you can afford to losel!ll!

Certain diskettes are written in non-standard sector formats and are thus inac-
cessible to SUPERZAP. There exist other programs that read anything that is on
a diskette, but do not have some of the other SUPERZAP features. The user, at

some time, will probably want to buy one of these other programs from the ven-—
dors that sell them.

SUPERZAP operétes in both upper and lower case.

Where numeric values are inputted and unless otherwise specified, SUPERZAP

assumes DECIMAL unless the value is suffixed with the character H to indicate
hexadecimal.

6.1.1. Function Modes. The menu displays the functions available. The
user keys in the selected function's characters and then presses ENTER. The
SUPERZAP functions are as follows:

pD Display a Disk sector. SUPERZAP will ask for the drive number and
the number of the relative sector within the diskette, read the sector and
display it.

DM Display a 256 byte page of main memory. SUPERZAP will ask for a
memory address, truncate it to a 256 byte boundary and display the page.

DFS Display a File's Sector. SUPERZAP will ask for the file's file-
spec. Next, SUPERZAP will ask for the relative sector number within the
~ file and will display that sector.

1S Display track's sector. SUPERZAP will ask for the drive number,
track number and the number of the relative sector on the track. It will
then read the sector and display it.

DMDB Display Memory Dump Block. SUPERZAP will ask for the filespec of
the memory dump file (created by DUMP, see sectiom 2.28)., It will display
the dump's base address. Next it will ask for a main memory address with-
in the range of the dump, truncate it to a 256 byte boundary and display
the memory page. . '

VD5 Verify Disk Sectors. SUPERZAP will ask if the operator wants a

pause when a read protected sector is encountered. Next, SUPERZAP will
ask for the drive number and the number of the relative sector om the

61 ADDITIONAL PROGRAMS

diskette of the lst sector to be verified. Lastly, it will ask for the

number of sectors to be verified. It will then proceed with the verify

which consists simply of reading each sector within the range specified.

When a protected sector is encountered and if s pause was requested, .
SUPERZAP will display the sector's location and wait for the operator to

press ENTER before continuing. VDS is a fast way of finding bad sectors

on a diskette that the user suspects have gone bad. While verifying is

being done, VDS may be cancelled by pressing up-arrow.

ZDs Zero Disk Sectors. SUPERZAP will ask for. the drive number and the
number of 'the relative sector on the diskette of the first sector Lo be
zeroed., Next, it asks for the number of sectors to be zeroed. The zero~

ing is then done. The read protection status of each sector is not
changed.

cDs Copy Disk Sectors. SUPERZAP will ask for the drive number and the
number of the relative sector on the diskette of the source (where the
data ie coming from) range's lst sector. Next, it will ask for the same
data for the destination (where the data is going to) range's lst sector.
Lastly, it will ask the number of sectors to be copied. The copy is then
done. Destination sectors are each assigned the read protection status of
the corresponding source sector.

CDbD Copy Disk Data. This function differs from CDS in that any string
of diskette bytes may be copied., SUPERZAP will ask for the drive number
and the number of the relative sector on the diskette of the sector con-
taining the source range's lst byte and then ask for that byte's offset
within the sector., It will ask for the same informatiom for the destina-
tion range's lst byte., Lastly, it will ask for the number of bytes (65535
is the maximum allowed) to be copied. The copy is them done. The read
protection status of the destination sectors is mot changed.

. DIWE Display PassWord Encode. SUPERZAP will ask for the password, en-
code it and display the resulting encode in hexadecimal as it would appear
in a directory FPDE.

DRTH Display Name/Type hashcode. SUPERZAP will ask first for the file-
name and next for the type (name extension). It will then hash them and
display the resulting hashcode in hexadecimal as it would appear in the
directory HIT sector.

EXIT End SUPERZAP and exit to 44@DH (DOS READY)

Since ZDS, CDS and CDD change diskette data, the user is first asked if he/she
is sure this function is wanted, just in case the wrong function was keyed.

For CDS and CDD, the copy normally proceeds in ascending byte order for both
the source and destination. However, if the highest source byte is within the
destination range, the copy is in descending byte order to avoid destructive
overlap.

All disk I/0's are done through the normal DOS sector I/0 routines. Thus, if
an error occurs, system option AM and AW I1/0 try counts are im effect.

For VDS, ZDS, CDS and CDD, if a disk I/0 error results, the operator will be .

ADDITIONAL PROGRAMS 6=-2

offered the choice of retrying, skipping the sector or terminating the func-
tion. In many cases, repeated retrying will eventually work. If the error
sector was a source sector, skip will cause the associated destination bytes to
receive whatever happens to be in the source's buffer; this should be no
problem as the user is faced with a reclaim job anyway. '

When SUPERZAP is waiting for a numeric value, keying an X as the value will
cause SUPERZAP to terminate the function and return to the menu., If SUPERZAF
is waiting for a filespec, a null parameter will terminate the function.

When any. of DD, DM, DFS, DTS or DMDB is suffixed with ',P', the sectors or
memory pages will be printed as well as displayed. For bop,P, DFS,P or DIS,P,
the user will be asked for the number of sectors te be printed. For DM,P or
DMDB,P the user will be asked for the number of bytes. If the printer is not
ready or drops ready, SUPERZAP will loop waiting on it without operator notifi-
fication. Pressing the P key will cause printing to pause; press ENTER to con~
tinue. Pressing the H key will terminate printing.

6.1.2. Display Mode. For DD, DM, DFS, DTS and DMDB, while a sector or
memory page is displayed, SUPERZAP is in the display mode and waits for a dis-
play mode command. Except for the F and L commands, the keyed command bytes
are not displayed and do not require termination with ENTER; the command is
executed as soon as all characters of a display mode command have been keyed.
The display mode commands are:

X The current function is terminated and SUPERZAP returns to the menu.

) 4 Redisplay the same sector or memory page.
+ or ; Display the next higher sector or memory page.

- Display the next lower sector or memory page.
J Restart the same function.
K Restart the same functiom, retaining the lst parameter unchanged.

SCOPY DD and DTS omnly. The current eector is to be copied to a speci-
fied sectox. SUPERZAP will-ask for the destimation sector's drive number
and relative sector number. The destination sector may be the same as the
source sector. SUPERZAP will read the destination sector and report its
status. Then the source sector's contents are written to the destination
sector. S8COPY is useful when a sector is found to have bad parity but,
with the exception of a few bytes, is intact; by SCOPYing upon itself, new
parity will be generated, and the sector can then be repaired. It is also
useful for altering a sector's read protect status.

When SUPERZAP is in the display mode, it has a digkette, file, main memory
or memory dump file search capability. The match is on 1 to & hexadecimal
bytes (without the suffixed H) which are represented by aa,bb,cec,dd. When
the search finds a match, the sector or memory bleeck containing the first
byte of the match is displayed with 2 thin vertical blinking cursor to
wark its position. That cursor will disappear as soon as a key is depres~

6-3 ADDITIONAL PROGRAMS

sed; however, the associated 'find' position is remembered in case the
- search is to be continued. When SUPERZAP is in display mode, the fol-
lowing commands to perform searching may be keyed in, terminated by ENTER.

¥,aa,bb,cc,dd The 1 to 4 hexadecimal match bytes are stored, and
the search starts at the first byte of the diskette (if DD or DTS
mode) or file (if DFS or DMDB mode) or main memory (if DM mode).

F, The same as above except the previously established match
bytes are used.

Fxx,aa,bb,cc,dd The 1 to 4 hexadecimal match bytes are stored,
and the search starte within the current sector or block at the xxth
relative byte where xx is a 2 digit hexadecimal number without the
suffixed H.

Fxx or Fxx, The same as above except the previously estab-
liehed match bytes are used,

F The search continues at the first byte following the position
of the first byte of the last match, and the search uses the previ-
-ously established match bytes.

L,asa,bb,cc,dd This command is to be used instead of ¥,as,bb,cc,dd
when, in DFS mode, the file being searched is standard load module
(i.e., SUPERZAP/CMD, LMOFFSET/CMD, etc.) and the user wants SUPERZAFP
to purge out all except actual object code bytes from the seaxch.
This allows a load module file search for two or more bytes without
the imbedded loader control information interfering with the match.
The resulting display will still contain the loader control informa-
tion; the user must be prepared to occasionally see this control in-
formation imbedded within the matching bytes. Usually, but not al-
ways, this control information is &4 bytes long with the first byte
being 2 hexadecimal $1. Except for purging this control information
from the match, L,aa,bb,cc,dd works the same as F,aa,bb,cc,dd. The
F command may be used to continue an L type search.

L, The same as above except the previously established match
bytes are used.

MDODxx DD, DM, DFS and DTS only., SUPERZAP enters modify mode and posi-
tions the cursor to the first hex digit of relative byte xx (value @#fH -
FFH) of the current page or sector.

EXTY End SUPERZAP and exit to 4@2DH (DOS READY).
If an error occurs during the keying in of a display mode command, the partial

command is ignored and the sector or block is redisplayed again.

6.1.3. Modify Mode. SUPERZAP enters modify mode upon execution of the dis-
play mode command MODxx. This mode allows the changing of individual bytes

within the current disk sector or memory page. Responses while in modify mode
are defined as follows: :

ADDITIONAL PROGRAMS 6~4

Hexadecimal digit character § — 9 or A - F. The hex digit at the cur-
rent cursor position is replaced by the new hex digit, and the cursor is
advanced one position. If the cursor wraps around, an error will occur if
the next character inputted is a hex digit character. Replacements in a
main memory page are for real while replacements in a sector are buffered
until the sector is written or a 'Q' command cancels the pending update.

Space or right arrow. The cursor is advanced one position,
Left arrow. The cursor is retarded ome position,
Shift right arrow. ' The curseor is advanced 4 positioms.
Shift left arrow. The cursor is retarded 4 ﬁositions.
Down arrow. The cursor is advanced ome display line.
Up arrow. The cursor is retarded cme display line.
2TXx This sequence is displayed vertically in display column 7 and

must termimate with ENTER, All hex digits from and including the cursor
position to and including the 2nd hex digit of relative byte xx are
zerced. The cursor is left positioned to the lst hex digit following

relative byte xx, and if wrap around occurs, the next input char may not
be a hex digit.

BRTxx,jk This command is similar to ZTxx except that each byte's lst digit
is replaced with the hex digit j, and each byte's 2nd digit is replaced
with the hex digit k.

Q For sector operations only. Modify mode is terminated, any
changes in the buffer are discarded, and SUPERZAP returns to display mode.

ENTER For memory page operations, modify mode is terminated, and
SUPERZAFP returns to display mode. For sector operations, the operator is
asked if he/she really wants to update the sector now. If not, SUPERZAP
continues in modify mode. If so, the sector (with any changes) is written
back to disk, modify mode is terminated, and SUPERZAP rxeturns to display
mnode. '

When modify mode encounters an error, it will display 'INVALID MODIFICATION
MODE CHAR. REPLY '*' TO CONTINUE'. Upon receiving * , SUPERZAP returns to
nodify mode. ' '

6.2. DISASSEM.

Program DISASSEM/CMD disassembles Z-8f object code from a standard TRS-8§ load
medule or from main memory. The disassembled code is sent to the display or to
the printer. Generated source text may be sent to disk and a location cross
reference may be produced.

6-5 ' ADDITIONAL PROGRAMS

Responses to the query 'OBJECT FROM MAIN MEMORY OR DISK?' (M OR D):
l. nyll or D Object is a disk load module. .

1. Respond to the query 'FILESPEC?' with the filespec of the load
module to be disassembled.

2, Respond to the query 'OFFSET OBJECT VIRTUAL ADDRESSES BY? (HEX)'
with either null (meaning P) or a 1 to 4 digit hexadecimal number
{without suffixed H) which when added to the load addresses within
the load module will give the proper address where the instructions
being disassembled would be during normal execution of that code.
This parameter is needed when an object module loads to one place in
main memory, but actually executes from another. Wraparound is al-
lowed. Example:

If the object module loads into C@@fPH — FFFFH but is to execute
in 7P$PH ~ AFFFH, applying an offset of B@fif will cause the
disassembler to disassemble as if the load was actually done to
79¢0H ~ AFFFH.

3. Respond to the query 'VIRTUAL RESTART LOCATION? (HEX)' with
either null (meaning start at the file begimning) or a 1 to & digit
hexadecimal number (without the suffixed H) which is the liasted loc-—
ation of any instruction of the disassembly. This allows restart of
a large disassembly within the instruction print portion of the
listing, and the location chosen is usually the location value for o
the first instruction on the page where printing was interrupted. .

2. M The object code is in main memory.

1. Respond to the query "OBJECT VIRTUAL BASE ADDRESS? (HEX)' with
the 1 to 4 digit bexadecimal location value (without suffixed H)} '
where the object code is considered to execute from, whether or not
it is actually there now. In the listing, this value will be the
first instruction's printed location value.

2, Respond to the query 'OBJECT REAL BASE ADDRESS (HEX}?' with null
(meaning the real and virtual locations axe the same) or with the 1

4 digit hexadecimal main memory location (without suffixed H) where

the disassembler will actually find the object code.

Responses to the query "ANY OPTIONS?':

1. noull No more optione to be specified.
2. PIR . The output is sent to the printer instead of the display.
3. BFSP Bypass Full Screen Pauses. In norwal operation the disas—

sembler pauses whenever the display screen is full or whenever a break
occurs in the sequential locations of the disassembled file., The disas-
sembler waits for (1) ENTER to continue, (2} X to terminate the disassem-
"bly or (3) V (object from main memory only) to restart the disassembly at -

& new location. The BFSP option bypasses this pausing, causing display to .
occur as fast as the disassembly can proceed. This option is automati-

cally invoked if option PTR is specified.

ADDITIONAL PROGRAMS 6-6

The remainder of the'options are legal only when the object code is from disk:

4, NCR- The location reference table is not to be built and no
display or listing done of it.

5. NIP Do not print or display the disassembled instructions.

6. STD : Source Tb Disk The disassembled code 18 to be sent teo
disk in the format of an EDTASM source text file. See discussion below.

1. -FGR=xxx First Generated Name xxx is the 3 alphabetic character
name of the first name to be assigned during the STP action described
below. The default name is AAA,

8. EID The location reference table is to be stored onto disk.

- After the reference table is built, the program will ask for the

"REFERENCE TABLE FILESPEC?'. Respond with the filespec of the file to
contain the reference table. Reference table files can be used (by a
user-created program) to merge the reference tables of two or more
programs. See below for file format.

9. REA Enable listing of all types of references; this is the
default. :
14. RE& Enable list of the specified reference type where '&' is

cne of L, P, R, §, T, U, V, W or X, Reference types are defined at the
beginning of each location table listing.

1l. RIA Disable list of all types of references.

12. RI& Disable listing of the specified reference type where '&'!
is one of L, P, R, 8, T, U, V, W or X.

The disassembler operates through four phases:

l. If object code from disk and option NCR not specified, DISASSEM dis-
plays 'BUILDING CROSS REFERENCE TABLE' and passes through the object code
building the location reference table. For a large disassembly this will

take some time. If insufficient main memory for the table, the disassemb-
ly will terminate.

2. If RTD option specified, this phase writes the location reference
table to disk.

3. Llist disassembled instructions to display or printer. If STD speci-
fied, the resulting text ies also written to disk. On the disassembled
instruction print lines, column 1 indicates the number of references to
bytes of the imstruction; the value is hexadecimal with blank meaning f#
and F mearing 15 or more references. Column 2 indicates which bytes of
the instruction have been referenced. If blank and column } non-blank,
then only the instruction's lst byte is referenced; otherwise the hex

digit represents a 4 bit binary mask of which bytes, from the left, are
referenced. '

6-7 ADDITIONAL PROGRAMS

4, T1f object is from disk and NCR is not specified, the location refer-
ence table is displayed or printed. The definitions of the reference type
codes are given first. Then, in ascending numeric order, every referenced .
location is listed with the location of every referencing instructionm. '
Suffixed to each referencing location value is the reference type code for
the Z-88 instruction making the reference.

If the disassembler finds something wromg with the object module, either 'DISK
OBJECT FILE FORMAT NOT AS EXPECTED' or 'PAST END OF FILE' will be displayed and
the disassembly will terminate.

While the disassembled inastructions are being displayed or printed, holding
down P will cause a pause; press ENTER to continue. Holding down X will term—
inate the disassembly. At most other times when DISASSEM is awaiting a user

response, the disassembly may be terminated by holding down up-arrow and pres-—
sing ENTER.

For main memory disassemblies, the operator may shift the disassembly point at
will, When the disassembly is paused, keying V will display the query 'VIRTUAL
RESTART LOCATION? (HEX)'. The operator responds a 1 to 4 hexadecimal digit
value which is the main memory location where the disassembly is to restart.

If the PTR option is specified and after all options have been specified, the
following occurs:

Respond to the query '# LINES PER PAGE, EXCLUDING TOP AND BOTTOM MARGINS?
(1-255)' with the number of printable lines per page.

Respond to the query '# LINES EACH FOR TOP AND BOTTOM MARGIN? {(#-1$)' ‘
with the number of lines the disassembler is to skip at both the top and

bottom of each page. If §, the disassembler does no paging action. What

the disasesembler does for top and bottom margins is completely independent

and in addition to anything a printer driver may be doing.

Respond ENTER to the query 'REPLY "ENTER" WHEN PRINTER AT TOP OF PAGE'
when the printer is on and at top of page.

Regpond to the query 'HIGH ASCII CODE FOR PRINTER? (5A — 7F)}' with the 2
hexadecimal digit value (between 5AH and 7FH) for the highest printer code
for your printer.

The STD option causes the disassembled code to be converted into EDTASM type
source text code. The resulting STD output (if not too large) cam be loaded

and assembled by EDTASM, The outputing of source text via the STD option works
as follows: '

After the cross reference table build phase and the RTD phase, respond to
the query 'ASSEMBLER SOURCE TEXT QUTPUT FILESPEC?' with the filespec of
the file to contain this generated source code. The file will be opened,
and the generated text sent to it during the main disassembly phase.

All pumeric values within the disassembled code are replaced with a 3

character alphabetic name unique to that value. The names are assigned
arbitrarily in ascending alphabetic order with .the first name assigned 4
either AAA or the name specified by the FGN option.

ADDITIONAL PROGRAMS 6-8

If a numeric value does correspond to a disassembled location, the name
assigned to that value is placed in the location name field of that
location's instruction when it is sent to disk and displayed or printed.

If a numeric value does not correspond to a'disaésembled location, an EQU
statement is generated at the end of the source text to equate the name
with the value. '

ORG statements are generated as necessary, and the END statement is
generated as the last text statement.

The format of the reference table file created by the RID option is:

l. 1 byte = CfH. Backward EOF. Ignore it.
2. 1 or more entries of the form:

1. 2 byte memory location value, lst byte = low value, 2nd = high.
2. Control byte, bits 7 = § (7 is left most):

7-6 = 11. Dummy last entry in table. Ignore all other bits and
bytes of the entry.

7-6 = P§l. Referencee entry. Bits 5§ = §. The location is
referenced by one or more of the subsequent referencer entries.

7-6 = §Pp. Referencor entry. The instruction at this location
referenced the location of the previous reference entry. Bits
5-9 contain the referencer imstruction type: $# =5, 1 =T, 2 =
Uy 3=V, 4=W,5=X,8=P, 9=1L, and 1¢ = R. See a
reference listing for definitioms.

6.3. LMOFFSET.

Program LMOFFSET/CMD reads a tape or disk load module, displays its load infor-
mation, optionally changes the program's load srea, optionally attaches an ap-—
pendage enabling the program at execution time to move itself from its load
area to its execution area, optionally prepares the module to run under non~
disk BASIC via SYSTEM, and stores the module onto disk or tape with a new name.

IMOFFSET functiomns as follows:

1. Reads either a tape-type assembly load module from tape or a disk-type
assembly load module from disk.

1f from disk, LMOFFSET asks for the source filespec.

When reading from tape, a single * will be displayed when LMOFFSET is
ready for the tape. Do rewind (if necessary) fast forward position-
ing (if necessary) and press PLAY. #¥% appears when tape read
synchronization has completed. The character C will be displayed

6-9 ADDITIORAL PROGRAMS

when a bad checksum is encountered. The character P will be dis-
played if leading extraneous data bytes encountered. The character
I will be displayed if imbedded extraneous bytes are encountered.

2. Displays (1) the area into which the module will load, (2) possible
conflicts with system storage and (3) the module entry point. If an
appendage is scheduled to be applied, the entry point will be into the
appendage.

3. Aeks for a nmew load point. Reply either with a new load point or
simply reply ENTER if satisfied with the current load point. If the user
is simply transferring the load module without change, respond ENTER to
the first request for a new load point and LMOFFSEY will go directly to
step 7 below.

4. If a new load point specified, LMOFFSET asks if the appendage is to be
suppressed.

If the appendage is to be suppressed, the resulting module can only
be used via the DOS library command LOAD as there is no. appendage to
move the program to its execution area and the entry point is forced
equal to §. The resulting output load module can be used via LOAD
where two or more load modules are loaded into main memory and then
stored as one load module via DOS library command DUMP,

If the appendage is not to be suppressed, then LMOFFSET will append
to the user program either a DOS enabled appendage or a DOS disabled
appendage, depending on whether DOS ig to be disabled or not. .

5. If a new load point was specified, LMOFFSET goes back to 3 above to
display the resulting load information and ask for a new load point. If
another load point is given, it cancels the one specified earlier,
including its scheduled appendage, if any.

6. Finally, when the response to 3 above is a null, then if a new load
point was specified and the appendage is not suppressed, LMOFFSET asks if
DOS is to be disabled. If so, the DOS disabled appendage is selected; if
not, the DOS enabled appendage is selected.

7. LMOFFSET next asks if the destination is disk or tape.

If the destipation is disk, LMOFFSET asks for the filespec of the
load module file to be created. .

If the destination is to tape, LMOFFSET asks for the tape module name
and then which tape speed (L or H). Next it asks for ENTER when the
tape is positioned and in record mede.

8. The resulting load module is then written to disk or tape. If a new
load point was specified, (1) the load address for each object code record
is altered, (2) if the appendage was not suppressed, an extra object code
record (the appendage) is inserted before the entry point record and the
entry point is set to the appendage's lst byte, and (3) the entry point is

set to #PPP if a new load address was specified and the appendage was .
suppressed.

ADDITIONAL PROGRAMS : 6-10

9. When the destination file write is completed or if an error or other

type of termination occurs during step 7 or 8 above, IMOFFSET asks if the
same module is to be written to another file (which may be the same file).
If so, steps 7 and 8 above are repeated.

1. When all done or if an error or other type of termination occurs while
not in steps 7 or 8, ILMOFFSET asks if another source load module is to be
processed. If so, execution returns to step 1 above; if not, LMOFFSET
exits back to DOS.

The up-arrow key may be used at any time to terminate the current LMOFFSET
function. If ILMOFFSET is waiting for a response, hold down the up-arrow key
and press ENTER,

A module can end up with multiple appendages if the output from ome LMOFFSET
run is made the input to another, but doing this is strongly discouraged; in
the case where one appendage is a DOS disable appendage, it must never be done.
LMOFFSET knows nothing of a previouely existing appendage appended by a revious
. execution of LMOFFSET. .

LMOFFSET does not perform any object code relocation!!!! It only assigns code
to new load locations so that DOS can load the module from disk without damage
to DOS.

If the source program loads into the display area (3CPPH - 3FFFH) without
overflowing it, those object code records will not have their load addresses
modified,

The appendage added to a module by LMOFFSET starts with 64 bytes of zerces.
This area is available to users to patch in special code. The load address of
this patch area is the same as the module's resulting entry address, providing
there is only one appendage. Z-8¢ code patched into this area will be the
first executed when that program commences execution. Thie will be done before
the program is moved to its execution locations and before DOS is disabled, if
DOS is to be disabled.
When a program is to run in any part of the DOS area, a DOS disabling appendage
mnust be specified. The DOS disabling appendage causes the user program to exe—
cute as if it was loaded from tape under the non-disk BASIC SYSTEM function.
When the resulting user program module is executed, the action is as follows:
For a DOS enabled appendage:
l. Executes any user supplied code in the 64 byte patch areas.
2. Moves the main program to its execution locations.
3. Commences execution of the main program.
For a DOS disable appendage:

1. Executes any user supplied code in the 64 byte patch area.

2. Moves the display screen contents to high memory.

6-11 ADDITIONAL PROGRAMS

3. Displays the following:
RECORD AND THEN PERFORM THE FOLLOWING IHSTRUCTIONS

1. HOLD DOWN BREAK KEY AND PRESS RESET TO ACTIVAIE NON-DISK
BASIC. :

2, RELEASE BREAK KEY AND ENTER BASIC INITIALIZAIIOH RESPONSES.
3. ENTER "SYSTEM".

4., ENTER ","

3. Vhen the operator has done the above, the appendage continues
execution,

4., Restores the screen contents from high memory.
5. Moves the main program to its execution locationms.

6. Commences execution of the main program.

6.4. DIRCHECK.

The DIRCHECK/CMD module tests and lists the target diskette's directory. If
errors are found in checking the directory, they are listed before the direc-
“tory listimg. DIRCHECK also allows the option of cleaning up (not repairing)
the directory, and, as an aid to moving single density diskettes back and forth
between the Models I and III under NEWDOS/8$, allows the optzon of wrltlng the
directory protected. .

L

To the query 'OUTPUT TO PRINTER'; reply Y if output to go to prlnter and N if
to go to the display.

To the query 'WHICH DRIVE CONTAINS TARGET DISKETTE', reply the target drive
.number, in decimal. :

DIRCHECK reads the BOOT sector (the diskette's lst sector), and teSts that the
first 2 bytes are @PH and FEH respectively. If they are, DIRCHECK uses the 3rd
. byte as the number of the lump at whose first sector the directory starts. If
the first 2 bytes are not correct, DIRCHECK displays '¥%%%%* DISKETTE 1ST SECTOR
NOT "BOOT", ASSUMING DIRECTORY STARTS ON LUMP 17 DECIMAL.'.

DIRCHECK proceeds to read the directory. In previous NEWDOS versions, DIRCERECK
refused to process a directory that was not write protected. Because of the
problem of moving single density diskettes between the Model I and Model III
under NEWDOS/8§, an unprotected directory will now be accepted, with two error
messages displayed, one at this time and one after the files have been listed.
The error message is '#*%#%¥%* AT LEAST ONE DIRECTORY SECTOR UNPROTECTED'. 1If
this message appears along with many other errors, the user can assume that
DIRCHECK has not found the directory and should NOT execute the W function de~
scrlbed later. :

DIRCHECK uses .the drive's PDRIVE (see section 2.37) data to determine the

ADDITIONAL PROGRAMS 6-12

number of lumps and granules accounted for by the directory. If the PDRIVE
data is not correct for the diskette, it is very probable DIRCHECK will list
errors that are not actually present.

Complaints, if any, about the directory are next listed. If a number is given,
it ie in hexadecimal for use in directory repair via SUPERZAP. Do not try to
repair a bad directory unless you know what you are doing!!!!!!!{ The next best
thing is to try to extract valued files via COPY and then re—format the disk-
ette having the bad directory.

If the complaint is about a directory entry for a file, either the primary or
an extended entry, the hexadecimal code is the DEC for the file's FPDE. When
the complaint deals with a file extended directory entry but does not specify
the file name/type, the hexadecimal code is the DEC for the FXDE itself. When
the complaint deals with a HIT sector byte, the hexadecimal code is the rela-
tive location of that byte in the HIT sector. When the complaint deals with a
GAT sector byte, the hexadecimal code is the relative location of that byte in
the GAT sector. When the complaint deals with a granule, the hexadecimal value
is expressed in bb,r format where bb is both the lump number and the relative
byte location of the lump's byte within the GAT sector and x is both the rela-
tive granule within the lump and the bit number, counting from zero from the
right, within that GAT byte.

The diskette's name and dhte are next listed.

The files are next listed, with numeric values in decimal and the following
definitions:

5 System file.
I File has invisible attribute.
P=nnn File has access level mmn, and both update and access

passwords are non-blank.

EOF=sss/tbb End Of File value. 888 = the relative sector within the
file, bbb = the relative byte within the sector.

nnn EXTS nnn is the number of extent elements, maximum of four per
FDE, used to account for this file's disk space. :

nnn SECTORS The number of sectors allocated to this file.
Lastly, the number of free gramules and locked out granules for the diskette
are displayed. If the diskette contains more than 6@H (96 decimal) lumps or if
GAT relative byte 6fH equals @FFH, DIRCHECK assumes that there is no lock-out
(existence) table. Note, NEWDOS/8@ does not mark granules as locked out; the
lockout table is maintained only for compatibility with Model I TRSDOS.

If at least one directory sector is unprotected, another error message indi-
cating such is displayed.

'FUNCTION COMPLETED' message is displayed followed by the query:

6-13 ; ADDITIONAL PROGRAMS

RE
N TO EXIT PROGRAM

Y IF ANOTHER DISKETTE FOR SAME SPECS

I FOR PROGRAM RE~INITIALIZATION

W TO WRITE DIRECTORY SECTORS PROTECTED

C T0 CLEAN UP (NOT REPAIR) THE DIRECTORY

Reply with one of the following:
N Program exits to DOS at 4@§2DH.

Y Another diskette to be checked but with same response to the printer
query.

I Another diskette to be checked but with different response to the
printer query.

W The directory sectors are read and re-written in protected state,
Refer to specifications for DOS command WBDIRP (section 2,49) and option
SYSTEM option BN (section 2.46). This function is only meaningful for

single density diskettes that are going from Model I to Hodel III or vice
verga or used interchangeably,

H All unused FDEs within the directory are zeroed. This is a cosmetic
function only that clears out residual information from no longer used
FDEs. Normally, when DOS releases FDEs via KILL or automatic space deal-
location, it only zeroces bit 4 of the first byte of the FDE, leaving the
rest of the information for the remote possibility that the sophisticated

uvger will attempt to reclaim the file or the sectors it used to own. .
During display or printing, pressing:

BREAK - processing will pause at end of current line or line group.

ENTER - continues processing.

UP-ARROW - terminates displaying or printing.

6.5. EDTASM Disk Oriented Editor/Assembler.

35 months ago Apparat converted the TRS-8f's tape oriented editor/assembler to:

1. Read text from disk as well as cassette.

2. Write text and/or object to disk as well as cassette. Disk files are
validity read after all sectors written.

3. Allow down-arrow scrolling to display up to 15 text lines.

4, Prevent the confusing printer output associated with DEFH Only the
lst byte of associated obJect code is listed.

5. List symbolg in alphabet1ca1 order with reference list.

ADDITIONAL PROGRAMS 6-14

6. Accept and convert lower case alpha to upper.

It was anticipated that Radio Shack would soon come out with a disk oriented
editor/assembler that would eliminate any need for the Apparat enbancements.
To a degree that has come to pass, but not sufficiently to bury the Apparat

~ enhanced version. Since the Apparat enhanced version is based on the copy-

righted tape editor/assembler, Apparat has always required and still requires,
ap a pre—condition of use of its enhanced version, that the user purchase a
copy of the TRS-8f tape editor/assembler and thereby pay the royalty due. In
an effort to enforce this, Apparat has always refused, and will continue to
refuse, to supply any documentation for the editor/assembler beyond that deal-
ing explicitly with Apparat's enhancements.

This EDTASM is essentially the same as that offered with NEWDOS/2l and
NEWDOS/8¢ Version 1 except:

1. EDTASM will now display, as part of the 'A' CMD, after the TOTAL
ERRORS display, the number of bytes left in the text area so the user can
judge his approach to aymbol table overflow or text buffer overflow.

2. (Model III only) Object code cannot be outputted to tape. The user

nmust output the object code to disk and then use LMOFFSET to copy it to
tape.

Supplemental instructions for the editor-assembler.

l. To load a text module into the text buffer, enter ome of the f0110w1ng
commandst

1. L D=filespecl if text from disk
2. L T=nnnnnn if text from cassette

where filespecl is the filespec for the assembler text module to be
loaded into the text buffer from disk and nupnnn is the name of the

assembler text module to be loaded into the text buffer from tape.
Fxamples:

1. 1 D=0LDTEXT/SRC:l loads the assembler text file

OLDTEXT/SRC into the text buffer from the diskette currently
mounted on drive l.

2. L T=QLDTXT loads the assembler text file QLDTXT into
the text buffer from tape.

If the text buffer already contains text, the query 'TEXT IN BUFFER.
ARE YOU CONCATENATING???7' appears. If you are not concatenating, re-
ply N; the buffer is marked empty before loading the specified text
module. If you are concatenating, reply Y to cause the new text to
be appended onto the end of the old. No concern is shown for over-
lapping sequence numbers; therefore you should execute a N EDTASM
command upon completion of the load to assure a valid set of ascend-
ing sequence numbers.

2. To store a text module:

6-15 ADDPITIONAL PROGRAMS

l. W D=filespec2 if text going to disk
2. W T=nnnnnn if text going to cassette

where filespec 2 is the filespec of the disk file to receive the _ .
asgembler text from the buffer and nnnnnn is the ome to six character
name given to the text file written to tape. Examples:

l. W D=NEWTEXT/SRC:l The assembler text (not the object
code) currently in the text buffer is written to file
NEWTEXT/SRC on the current diskette mounted on drive 1.

2, W T=NEWIXT The assembler text currently in the text
buffer is written to tape and named NEWTXT,

3. For A commands with NO option mot specified, respond to the query
YOBJECT FILE TO DISK OR TAPE? REPLY D OR T?':

1. T (Model I only) Object code going to cassette. The program
name will come from the A command,

2. D Object code going to disk. BRespond to the query 'OBJECT
FILESPEC?' with the nnonnonn/ttt.pppppppp:d filespec of the object
module. The file will be opened immediately, but not writtem until
end of assembly listing. The name in the A command is ignored.

4, When an output text or object disk file is opened, one of the
following is displayed:

1. 'FILE ALREADY EXISTS. USE IT?7?%?%?'., Reply Y if this is your
intention., Otherwise reply BREAK to terminate the W or A command.,

2, (Vkkkkikickkkikik FILE NON-EXISTENT. REPLY 'C' TO CREATE IT'.
Reply C if this is your intention. Otherwise reply BREAK to
terminate the W or A command.

5. Due to an error in the original DOS, EDTASM runs with interrupts
disabled (except when re~enabled by disk I/0) in order that use of BREAK
will function properly.

6. This EDTASM can execute in a regular TRSDOS Model I enviromment.

7. This EDTASM uses the standard keyboard, diéplay and printer routines
and control blocks. Users altering the system bewarel!!!

6.6. CHAINBLD.

The BASIC program CHAINBLD/BAS ie a simple program to allow users to create and
modify chain files (chaining is discussed in section 4.3).

CHAINBLD operates in record mode, requiring that an EOL character (ENTER char—
acter) appear in the file at least every 240 bytes, and it treats each occur- i
ence of the EOL character as both the end of a BASIC input line and the end of

ADDITIONAL PROGRAMS 6-16

a record within a chbain file. All inserts, deletions, replacements, moves and
copies are done in terms of records.

Furthermore, CHAINBLD makes no provision (except for the old Version 1 hex
codes 8¢ — 83) for the file to contain special non-printable characters. The
rtule is that if the string resulting from the BASIC statement LINEIRPUT C$
does not contain a given character, then that character cannot become part of
the chain file. The exception is the EOL character which is automatically
supplied by CHAINBLD. If the user needs special characters in his/her chain
file, some other program must be used to build the chain file. As a last
resort, there is always SUPERZAP.

The CHAINBLD program starts off with a 16 second initialization period while it
allocates maximum space to the string area. Users are warned that if BREAK is
used to interrupt or terminate the CHAINBLD program, they must remember that
all available space has been assigned to the string area and that due to this
lack of space, some functions will not work. If a CLEAR is done to free up
some space, be sure to specify a etring area size.

After initialization, the main menu is displayed (not to be confused with the
edit menu). The choices are: '

1. DELETE ALL TEXT LINES All the text limes in the string area are
deleted and the edit menu is displayed. When CHAINBLD starts execution,
there are no text lines in the string area.

2. LOAD EXISTING TEXT FROM DISK Use this option to edit an existing
chain file. If the string area already contains text lines, CHAINELD will
ask 1f those lines are to be deleted. If not, CHAINBLD returns to the
‘main menu as it assumes the user wants to do more with the previous text.
Otherwise the old text lines are deleted.

CHAINBLD will then ask for the existing chain file's filespec. If the
filespec does not contain a name extension, the name extension JCL is
assumed. The file is then loaded into the string area. The file cannot
exceed the string area capacity and cannot have more than 1fPf lines. The
file must be segmented into records as discussed above. After the load,
CHAINBLD displays the edit menu,

3. BSAVE TEXT TO DISK The user has completed the creation and/or edit-

- ing of the chain file text and now wants to write it to disk. If there
are no text lines, the CHAINBLD will ask if a null file is to be written;
if not, CHAINBLD goes back to the main menu.

Next, CHAINBLD asks if the file is to be written so that it can be pro-
cessed by NEWDOS/8f Version 1. If so, any /./# through /./3 chain control
records are changed as they are outputted by substituting the corres—
ponding single byte control code (8fH - 83H) in place of the /[./x
character sequence. The text in the string area is not changed.

CHAINBLD then asks for the output file filespec. If the filespec does not
contain a name extension, the name extension JCL is used. The file is
then written to disk. When done, CHAINBLD goes back to the main menu.

4, EDIT TEXT This option does nothing except display the edit menu.

6-17 ' ADDITIONAL PROGRAMS

When

5, EXIT PROGRAM If the string area contains text that has nmot yet been
written to disk, CHAINBLD asks if the user really wants to exit the pro- -
gram; if not, CHAINBLD goes back to the main menu. Otherwise CHAINBLD de- .
létes all text lines and releases all string space exzcept 5§ bytes. The

program then ends in the normal manner.

the edit menu is displayed the user has a number of choices:

l. List text lines. The text lines are implicitly numbered in sequential
order regardless of the changes that take place in the text. Line numbers
do not belong to individual text lines. Instead 2 line number imndicates
the line's position at the cuxrent time within the file. This means that
insert, delete, copy and move all change the line numbers of some or all
of the text lines, The L and ; edit commands allow the user to dis-
play the text lines. L; displays the first line. L/ displays the last.
L52 displays the 52nd line. In each case, if any text lines follow the
target line in the text, they are also displayed. The ; edit command
allows forward text paging. '

2. The I edit command allows for a one or more text lines to be inser-
ted in the text after the specified line. I does inserting at the start
of the text. I/ does inserting at the end of the text., I23 does in-
serting after line 23. Lines are inserted into the text until, but not
including, a line containing the /.// character sequence is encountered.
That character sequence terminates the line insert mode.

3. The R edit command allows a new line to replace an old line. RA43

causes text line 43 to be replaced with the new line that CHAINBLD will -
ask for. ‘

4, The D edit command allows one or more text lines to be deleted. D34
deletes text line 34. D 20 41 deletes text lines 2§ through 41,

5. The X edit command allows the specified text line to be added onto.
Note that CHAINBLD does not actually allow a line to be edited. The edit
mode really refers to editing the entire text.

6. The C edit command allows the specified lines to be duplicated to
another part of the text. C 20 3P 5 causes a copy of text lines 2§
through 3§ to be inserted after text line 5. Please note that the old
lines 2§ through 4P will now have line numbers 31 through 42,

7. The M edit command allows the specified lines to be moved to another
position in the text. M 2§ 3§ 5 causes the text lines 2§ through 3¢ to
be deleted from the text and reinserted after text line 5.

B. The U edit command redisplays the edit menu.

9. The Q edit command redisplays the wmain menu.:

The best way to learn CHAINBLD is to use it., The NEWDOS/8f distribution
diskette comes with a sample chain file named CHAINTST/JCL. Load it in and

look

do not store it back out as CHAINTST/JCL; use some other name.

at it. Once in the string area, you may modify the text as desired, but

ADDITIONAL PROGRAMS 6-18

6.7. ASPOOL.

1. The object module ASPOOL contained on the NEWDOS/8@ diskette is H. 8.
Gentry's automatic Spooler Program, modified by Apparat to operate with

- NEWDOS/8§ and to self-relocate. This program will automatically direct your

‘printer output to the disk, and then automatically print it on the printer.
This spooler program will print in the background while your foreground main
program is executing provided the main program every second or so either sends
a byte to be spooled or checks the keyboard for a new input character.

This spooler program is included on the NEWDOS/8¢ diskette as a free program to
NEWDOS/8¢ owners. It is NOT a fully supported part of NEWDOS/8p.

The basic operation of NEWDOS/8¢ DOS assumes that output that DOS sends to the
printer will not involve disk I/O enroute to the printer. Therefore, the
spooler discards all printer output it senses coming from DOS (such as PRINT,

JKL, DIR with P option) with the warning message CAN'T SPOOL FROM DOS being
displayed once for each spooled file.

This spooler program does NOT allow a spool file te be printed multiple times;
once printed, the file EOF is set to § and the file closed to reclaim the file
space. This spooler program does NOT remember spocl contents from one spool
activation to the next (this includes a reset). The user is warned that while
the spooler is active, do NOT use reset or DOS library command BOOT to get to
DOS ready. Instead, if another way is not available, use DFG to get to MINI-
DOS and then DOS library command MDBORT to get to DOS READY or use '123' to get
to the DEBUG facility and then use DEBUG command Q to get to DOS READY.

2. INITIAL SETUP. Cxreate a working spool module. '

Before the spool system can be used, working program module copy(s) of ASPOOL
must be set up. You should set up a working program module for each different
configuration you intend to use. When making a working program module, the
input module 'filespecl’ must ALWAYS be ASPOOL/MAS or a copy of it, and the
output module 'filespec2' must NEVER be ASPOOL/MAS. To create a working spool
program module (as opposed to the master), enter the DOS command filespecl,I

(example: ASPOOL/MAS:$,I). The program will then ask for parameter specifi-
cations:

The program asks if the software printer driver whose address in is 4&26H
- 4P27H at the time of spooler activation is to be used to drive the

printer. Reply Y for yes or N for no (the spooler will drive the
printer). If N, then:

The program asks if the pfinter is parallel or serial. Answer P for
" parallel or § for serial. If serial, then:

The program asks if the printer is an Hl4 type. Respond Y for
yes and N for no. :

The program asks if the printer output is to be formed into pages with a
form feed between pages. Reply Y for yes and N for no. If Y, then:

6-19 ADDITIONAL PROGRAMS

The user will be asked for the number of print lines per page. Enter
a number between 1§ and 99.

The program asks if the printer uses a sofi or hard form feed. A soft .
form feed is done by counting the number of lines printed and then print-

ing carriage returns (PDH) (with or without line feeds {PAH)) until the

end of the page is reached. A hard form feed is a single control char-

acter that causes a form feed function. If your printer will recognize a

hard form feed answer H, otherwise answer 5. If soft form, then:

The program asks for the total number of lines per page. Answer with
a number between 1§ and 99.

The program asks if a form feed is to be done at the end of each print
file. Reply Y for yes and N for no.

The next question concerns automatic linefeed on each carriage return.
Some printers linefeed on carriage returns and the computer should not
output linefeeds. If your printer is of this type (Radio Shack standard)
answer the question with N. If you want the software to gemerate line-
feeds then answer with Y.

The program asks for the number of the disk drive that will be used to
spool the print data. Answer with a number from § to 3. :

The program asks for the number of seconds to transpire after the last
keyboard key inputted until the spool program can start printing again.
Respond with a 2 digit value #§ - 59. The purpose of a non-zero delay is e
to allow the keyboard to have primacy over the printer. When a keyboard .
key is depressed and if the spool program is printing a file, printer

action will pause while keys are being inputted and until the required

number of seconds have passed since the last key,

The program asks if the printer is to be driven by the timer interrupts
(every 25ms on the Model I} every 33 or 25ms on the Model IIIL) as well as
via keyboard input and spooler output. Reply Y for yes if the interrupts
are to be used; reply N for no. Allowing the interrupts to be used en-

- ables the spooler program to print while a foreground program is executing
that does mot frequently check the keyboard or send output to the spooler.
The disadvantage of using the interrupts is that for a buffered printer,
interrupts are disabled during the entire outputting of a line to the
printer. However, the time delay will probably be no worse than that
associated with disk I/0. If the interrupts are ‘used, printing will
nevertheless stop if the foreground program never sends anything to the
spooler or tests the keyboard for input. This is because the disk I/0 to
read the next sector is done only during keyboard checking or main program
output to the spooler. See circular buffer discussion for an additiomal
disadvantage when the interrupts are used.

The program asks if the circular buffer is to be used to buffer keyboard

input characters. Reply Y if yes; N if no. The circular buffer helps

prevent lost keyboard input. If the 25ms interrupt is emabled to drive

the printer (see above option), the circular buffer uges the ROM keyboard

character input routine and therefore disables any drivers {such as .

ADDITIONAL PROGRAMS 6-20

NEWDOS/8@'s keyboard imtercept routine, lower case driver, etc.) activated
before the spooler is activated. TIf the 25ms interrupt is not used to
send spooled output to the primter, then that does not frequently check
the keyboard or send output to the spooler. The disadvantage of using the
interrupts is that, for a buffered printer, interrupts are disabled during
the entire outputting of a line to the printer. However, the time delay
will probably be noc worse than that associated with disk I/0. If the
interrupts are used, printing will nevertheless stop if the foreground
pregram never sends anything to the spooler or tests the keyboard for
input. This is because the disk I/C to read the next sector is done only -
during keyboard checking or main program output to the spooler. See cir~

cular buffer discussion for an additional disadvantage when the interrupts
are used.

The program asks if the circular buffer is to be used to buffer keyboard
input characters. Reply Y if yes; K if no. The circular buffer helps
prevent lost keyboard input. If the 25ms interrupt is enabled to drive
the printer (see above option), the circular buffer uses the ROM keyboard
character input routine and therefore disables any drivers (such as
NEWDOS/8fi's keyboard intercept routine, lower case driver, etc.) activated
before the spooler is activated. If the 25ms interrupt is not used to
send spooled output to the printer, then the regular keyboard routine(s)
(as existed in the 4P16H - 4@17H vector at spool activation) is used.
This latter also holds if the circular buffer 1s not used, regardless of
whether or not the 25ms interrupt is used.

Now that the spooler has all the initialization parameters, the in-main-memory
program is altered. The program then asks for the filespec of the working
program module to be stored on disk. Respond with the filespec you will use in
the filespec2,A DOS command discussed below; do NOT respond ASPOOL/MAS!!I!I]

The working program module will be writtem to disk, and the spool program exits
to DOS wvia 4@2DH.

3. ACTIVATE SPOOLING.

When spooling is to be used, enter the DOS command "filespec2,A" (example:
SPOOLER,A) where filespecZ is the filespec of one of the working spool program
modules you have created. filespecZ must NEVER be ASPOOL/MAS. If the spooler
is already active, 'FILE ALREADY EXISTS' error message is displayed.

The module will load into the 52¢fH - 5FFFH region, relocate itself to HIMEM-
areagsizel+l, and sets HIMEM = HIMEM-areasizel where HIMEM is the DOS high mem~
ory address contained in Model I locations 4@49H ~ 4P4AH (Model III locations
4411H - 4412H) and areasizel is the amount of memory required by the spooler.
Then the keyboard vector at 4fl6H - 4B17H and the printer vector at 4§26H -
4@27H are intercepted to vector to the spooler. If interrupts are to be used,
a routine is entered into NEWDOS/80's 25ms interrupt chain of user interrupt
routines. 'SPOOLER ACTIVE' is displayed, and the 4@2DH exit is taken to DOS.

The spooler is now active. All data intended for the printer will be directed
to one of five disk files (POOL1, POOL2, POOL3, POOL4, POOL5). Why five files
you may ask? Well, when you have "printed" as much data as you wish and would
like that data to be actually printed on the real printer, you send an end-of-
file to ASPOOL. This is done either via DOS command *ASP,W (CMD"*ASP,W" from
BASIC) or by outputting to the spooler a #3 byte in the normal print stream

6-21 ADDITYIONAL PROGRAMS

(LPRINT CER$(3) from BASIC). The file that was spooling will be closed and
scheduled for printing. You may now spool to another file by just “printing"
more data. The data will be placed on the disk while the first data file is .
being printed. This procedure may be repeated five times. If you try to spool
a sixth file before the first has been printed on the real printer, the system
will display 'SPOOL FULL. WAITING ON PRINTER' and will hang until a file is
printed. All data is printed on the real printer in the background while the
current or another main main task is executing or simply while the system is
waiting for the user to tell it what to do next. Whenever %*ASP,W is executed
or a §3 byte is seen in the output to the spooler, the spocler program con-
siders this an end of file (performing top~of-form if specified) even though
you may be sectioning your spooled output for ome report to keep the printer
going and avoid running out of space. :

Warning!!! The Model III ROM routine, normally used by the spooler, will dis-
card the current character being sent to the printer if it senses the printer
is not ready (including busy) and the BREAK key is pressed. Since the execut-
ing foreground program may be using the BREAK key while the spooler is printing
in the background, there will be times when printer characters will be lost,
unknown to the spooler. This can serious limit the usefulness of any spooler
on the Model III that uses the ROM printer driver routine.

You may bring the spool system down gracefully at any time by the DOS command
*ASP,S (CMD"*ASP,S" from BASIC) or by sending a @4 byte in the normal output
to the spooler (LPRINT CHR$(4) from BASIC). This procedure will purge the
current spool file, will prevent any new files from being created, and will
display 'SPOOL STOPPING'. Main program execution then continues, any charac-
ters sent to the spooler will be ignored and the spooler continues to print any ,
filea that have been scheduled. When all files have been printed, the *ASP,?P .
function is performed. NOTE, if the spooler appears to hang, it is probably

waiting for the main program to check the keyboard. If the main program can't

do this, try DFG, but wait till the drives stop.

You may bring the spool system down abruptly at any time by emntering DOS com-
mand *ASP,P (CMD"#ASP,P" from BASIC). All remaining spooled data is lost. If
an interrupt routine was active, it is purged. The keyboard and printer _
vectors are restored to what values they were when the spocler activated., If
DOS's HIMEM value is the same as that set by the spooler when activated, HIMEM
1s set back to what it was before the spooler was activated, thus reclaiming
the spooler's main memory. However, it the HIMEM is not the same, HIMEM is not
changed, and the spooler memory remains lost to subsequent main programs.
'SPOOLER PURGED' is displayed, and the DOS 4#2DH exit taken to DOS.

You may flush the print queue at any time by entering DOS command *ASP,C
(CMD"*ASP,C" from BASIC). The spooler will respond with "CLEAR BACKLOG OR
PRINT (B/P)?". Respond with a B and Enter if you wish to clear the backlog, or
4 P and Enter to stop printing the current print file. Clearing the backlog
does not purge the current print file, and clearing the current print file does
not purge the backlog. '

The status of the spool system may be determined at any time by entering the
DOS command %*ASP (CMD'*ASP" from BASIC). The system will print a list of all
files waiting to be printed (BACKLOG) and any file that is open for printing or
spooling. If the system has been stopped but not yet purged, "SPOOL STOPPING"
will be displayed. If the spooler has been purged or not activated, 'FILE NOT
IN DIRECTORY' is displayed.

ADDITIONAL PROGRAMS 6-22

7. PISK BASIC, NONQIIO ENHANCEMENTS .

7.1. For NEWDOS/8) most, but by no means all, of the interface specifications
between BASIC and the BASIC programmer remzin the same as for DISK BASIC under
TRSDOS 2.3 on the Model I and for TRSDOS 1.3 on the Model III. The NEWDOS/8@
BASIC user is expected to have and be knowledgeable of both the non disk BASIC
manual and the disk BASIC portions of the TRSDOS manual for whichever of the
two TR5-8f models is being used, The current and next chapters of this
NEWDOS/8f version 2 documentation discuss only the differences from the TRS
versiong. Both the Tandy manuals are excellent; if they didn't come with your
TRS~8¢ when you bought it, buy them!!!! Apparat does not, in this manusal,
duplicate their contents.

7.2. General Comments

1. When a BASIC syntax error occurs, BASIC does not automatically enter
EDIT on the offending text line, but it does set that line as the current
line. If the operator wishes to edit the line, press comma. This change
ig to make it more difficult for the operator to inadvertently clear vari-
ables that he/she would otherwise want to see to assist in debugging.

2. BASIC programs may disable the BREAK key via CMD"BREAK,R", and reen-
able it by CMD"BREAK,Y".

3. Because CLOAD does a NEW function between consecutive bytes from tape,
it will lose synchronization if BASIC is running with more than 3 file
areas.

4, When a DOS error is encountered by BASIC and if no ON~ERROR routine ie
active, both the DOS error message and the BASIC error message are dis-
Plaved.

5. BASIC now has a total of 8 overlays that it uses. The user will
notice that disk I/0 occurs whenever RUN is executed and whenever exe~
cution is interrupted (STOP, error or BREAK) or terminated (END); this is
~done to bring in BASIC routines needed for the current or anticipated next
function.

6. NEWDOS/8¢ DISK BASIC does NOT allow text line deletion to be done by
simply typing in the line number. The explicit delete command, DELETE or
D, must be used. ' '

7-1 _ : " DISK BASIC NON-I/0

7.3. DISK BASIC is activated by keying in one of the.following-commauds to
DOS:

1. BASIC

2. BASIC *
3. BASIC n
4. BASIC m

5. BASIC cmd

6. BASIC n,m,cemd
7. BASIC m,n,cmd
8. BASIC n,m

9. BASIC m,n
1. BASIC n,cmd
11. BASIC m,cnd

where:

* means the user wants BASIC to reinstitute the program in the text
buffer, using the same values for m and n as appear to exist in main
memory. This allows the user to recover from an unwanted 'reset' or to
get back to the same program after a CMD"S", If BASIC is able to accom-
plish this, it forces "LIST' ae its first command. If BASIC is unable to
reinstitute the program, it exits to DOS READY. BASIC * will not work if
n wag less than 2 or if the program was less than 3 lines.,

n = the number of fileareas that BASIC is to allocate, default = 3, max-
imum = 15. This is the highest fan (filearea number) that will be used in
any statement during this invocation of BASIC. 1If the BASIC program is to
use field item files with standard record lemgth not equal to 256, then n

must be specified and must be suffixed with the character V (see example &
below).

m = memory size. The value m mipus 1 is the hlghest memory location that
BASIC is allowed to use. If m is not specified, the current DOS HIMEM
valye is used. All memory m and above is not used by BASIC and can be

used for other routines such as printer drivers, special code USR
routines, etc.

cmd = one line of BASIC text, consisting of onme or more BASIC statements.
This text line is considered direct keyboard 1nput and will be executed as
soon as initialization is completed.

Remember, the DOS cowmand activating BASIC is limited by DOS to a maximum of 8§
characters, including ENTER, and it is further limited to 32 characters, in-
¢luding ENTER if invoked via 'AUTO'.

Any error encountered during initialization causes a return to DOS.

If DOS is in RUN-ONLY state, the DOS command activating BASIC must contain a
RUN or a LOAD (option R) statement.

Examples:

1, BASIC Brings up BASIC with 3 file areds, high memory set to the
current value for HIMEM in DOS and displays 'READY', waiting for the
operator's command.

DISK BASIC NON-I/O 7-2

‘

2. BASIC,RUN"XXX/BAS" Brings up BASIC with 3 file areas, high memory
set to the current DOS HIMEM value, loads BASIC program XXX/BAS into the
. text area and starts its execution.

3. BASIC,9, 48152 s LOAD"XXX/BAS" Brings up BASIC with 9 file areas, high
memory set to 48151 (1 less than 48152), loads BASIC program XXX/BAS into
the text area and displays 'READY', waiting for the operator 8 command.

4, BASIC,3V This works the same as example 1 above, except that each
of the 3 files areas is assigned an extra 256 byte buffer. This extra
buffer per filearea is needed if the program will be using field item
files with a record length other than 256.

" 5. BASIC,CLEAR3P@P:A=1:RUN"XXX",V Brings up BASIC with 3 fileareas,
sets its high memory value to DOS's current HIMEM value, performs CLEAR
reserving 3PPP bytes for the string area, sets numeric variable A equal to
1, loads BASIC program XXX and commences its execution without clearing
the variables, thus leaving variable A intact for the program to inspect.

7.4. NEWDOS/8) DISK BASIC allows the following 'direct' commands:

. (period) LIST the current text line.
dovn—-arrow LIST the next text line. If there is no next text line,
. performs as /[.
' up—arrow LIST the text linme before the current line. If none,

performs as ; .
3 or shift-up-arrow LIST the first text line.
!/ or shift-down-arrow LIST the last line in text. Users having the

newer ROM will find that shift-down-arrow ie no longer a usable key; hence
the need for /[.

: S8croll one display page toward the start of the text. When domne, the
previous current text line is mow at the bottom of the display excepting
that if the previous command was : or @ , the previous display’s top

line is now the new display's bottom line. The new current text line is
the bottom line on the new display. '

@ - Scroll one display page toward the end of text. When done, the pre-
vious current text line is now the at the top of the display, and the new
current text line is the bottom text line on the new display.
s (comma) EDIT the current text line.

Only 1 such command per direct statement line, and the command, to be seen,

must be the first character of the input line (no line number or backspacing
allowed).

7-3 DISK BASIC NOR-I/0

7.5 NEWDOS/8$ DISK BASIC allows the truncation of the commands AUTO, DELETE,

EDIT and LIST to 4, D, E and L respectively when the following conditions are
met:

1, 1st character of the input line.
2. Followed by either a period or a decimal digit.
3. The input line does not contain an =,

7.6. DI and DU Two additional BASIC text editing functions are implemented
using the following forms of direct command:

1. DI aaaaa,bbbbb
2. DI .,bbbbdb
3. DU aaaa2,bbbbdb
4. DU .,bbbbb

where:

aaaaa is the line number of the text line to be moved or duplicated, and
bbbbb is the line number to be given the moved text line or the duplicate
of the text line.

DI means to delete the line at aaaaa and insert it at bbbbb.

DU means insert at bbbbb & duplicate of the text line at aaaaa, but do
not delete the line at aaaaa.

Text referring to aaaaza is not altered to refer to bbbbb. If this is
- desirable, then use RENUM to move the text line.

The use of a period in place of aaaaa causes azaaa to default to the last
line listed, edited or deleted.

7.7. BUN and LOAD may now optionmally retain all variables and open fileareas
by using the V option in the following formats:

RUN"filespecl",V
LOAD"filespecl®,V

where filespecl is the filespec of the program file being executed. The LOAD
with the V option executes exactly the same as the RUN with V option. The RUN
with V option preserves all the variables, excepting DEFFN variables, during
the execution of RUN; thus the variables existing before the RUN statement can

be used after the RUN statement. Any fileareas open prior to the RUN are left
~ open for use after the RUN statement. IXIf the V option is specified, the R
option may not be. See example 5 in section 7.3.

DISK BASIC NOK-I/0 7-4

7.8. The MERGE statement has been expanded:
MERGE will merge either an ASCII or a packed text file.
MERGE may be executed as a direct statement or as a prograﬁ Btatement.

If MERGE is executed as a program statement, the MERGE statement must not
be part of a DEFFN statement, a subroutine or a FOR-NEXT loop (as a POPS
function is implicitly performed), must be the last statement of the text
line, must be followed by the text line where execution will continue-
after the MERGE, and the merge file must not contain a line whose number
is the same as the number of a text line existing at the start of the
execution of the merge (use CMD"F",DELETE to delete conflicting text lines
before executing the MERGE). The merge protects all variables. The user
must assure enough main memory space is available for the merge as error
recovery is not possible if the merge fails once actual merging commences.

Example:
100 MERGE"XXX/BAS"
110 X=1 execution continues here after the MERGE is completed
7.9. RERNUM Renumber the Current BASIC Program.
RENUM ssses,iiiii,ppppp,4qqqql,U][,X]
RENUM , :
RENUM U
RENUM X
RENUM U, X

The current BASIC program or a part of it may be renumbered while it resides in
the text area. Via the U option, the RENUM does not actually perform renumber
but only does its text error checking, thus allowing the undefined line numbers
and some, but not all, syntax errors to be found. The user may, by proper
choice of the new line number values, move a portion of the program to a dif=-
ferent place in the program with all references to any of the moved lines
changed to the new lines numbers. Lastly, via the X option, RENUM will not
declare as an error any undefined line number if that line number lies outside
of the range of lines being renumbered, thus allowing a program to have ref-
erences within it to lines that are intentionally not part of the program.

The basic renumber command causes all text lines whose line numbers are greater
than or equal to ppppp and less than or equal to qqqqq to be assigned new lirpe
numbers. essss is the first new line number assigned with subsequent numbers

generated by adding iiiii to the line number of the previous text line. sssss
and iiiii must be in the range ! — 65529 and have default value 18. ppppp must
be in the range 1 - 65529, has default value §. qqqqq must be in the range 1 -
65529, greater than or equal to sssss, and has default value 65529. The range
of newly generated line numbers must not encompass any old text lines that are
not part of the resequenced range ppppp - 44qqq inclusive. Bo long as this -
rule is observed, the newly generated line number range may be placed anywhere
in the text with the renumbered text moved to the proper new text loeation,

7-5 DISK BASIC NON-I/0

At least one parameter must be specified. If the user wants to specify all
defaults and neither X nor U, then use a comma as the only parameter.

use the default values, then commas must appear in the proper place to indicate
which of the 4 values a given line npumber is for. See example 4 below.

If the U option is specified, the text is not altered in any way and RENUM
simply searches text for undefined line numbers and for some errors associated
with BASIC statements that use line numbers. These errors are displayed in the
folliowing format: '

ssess/U =~ there is no text line &ssss.
ssgss/X =~ text line sssss has syntax error.
s88s8/S - text line sssss has a bad line number.

If the X option is specified, references to non—existent text lines are not
displayed as errors if that line number is also outside of the ppppp to qqqqq
range. The X option is intended as aid to programmers who use a base program
and overlay programs which refer to text lines in each other.

If any error is encountered before text is altered, the command reverts to
performing as if the U option had been specified and displays all the errors it
can find., If an error is encountered after text alteration begins, 'FATAL
ERROR. TEXT NOW BAD' is displayed and the 4@3fH exit taken to DOS. The BASIC
text must mot be reclaimed (don't use BASIC ¥%).

If either SYS11/SYS or 5YS13/SYS are not in the system when RENUM is executed,
the system will exit to DOS READY (see sectiom 5.5).

RENUM will refuse to renumber a program whose first text line's number equals
. Use '"DI' to assign the line a number other thar §. Examples:

i. BENUM U The BASIC text is checked for undefined line numbers and
other errors that would normally be encountered in an actual renuvmber.
The BASIC text is not altered.

2. RERUM , The entire BASIC text ie renumbered ﬁsing an increment of
1#. The first text line is assigned line number 1§, the 2nd assigned line
number 26, and so on.

3. RENUM 144,10 The entire BASIC text is renumbered using an incre- -

ment of 1f#. The first text line is assigned line number 1§f, the 2nd is
assigned 2P, and so on.

4, RENUM 2059,,2850,3168 All text lines from and including any line
numbered 2$5@ to and including any line numbered 3168 are renumbered using
an increment of 1$. The first renumbered line is assigned line number
2f5@, the second is assigned 2§68, and so on. :

5. RENUM 3$¢#8,5,15365,18112 All text lines from and including any
line numbered 15365 to and including any line numbered 18112 are renumber-
ed uging an increment of 5. The first renumbered line is assigned line
number 3@6Pf, the 2nd is assigned 39#P5, and so on. The renumbered text
lines are moved to the new positions in the text.

DISK BASIC NON-I/O 7-6

7.18. REF The BASIC statement REF allows the BASIC programmer to find all
X Places in the program where a line number, an integer, a variable, a string, a
. function code, a packed sequence of characters or an unpacked sequence of
characters is referenced. REF has the following formats:

1. BREF* Display full reference list for all line numbers, inte—
gers and variables,

2. REFS$ Print on the printer a full reference list for all line
numbers, integers and variables.

3. REFnn Display all references to the variable(s) named nn. If mn
is only 1 character, a blank is assumed for the second. nn may not be
more than 2 chars and must not have a type suffix. '

4. REFsssss Display all references to the line number and/or integer
sss58 where ssgss is a 1-5 decimal digit number between § and 99999,
Hexadecimal or octal references within the text are not listed.

5. REFnn
6. REF$nn
7. REF*ssgss

8. REFSsssss

. 9. REF Display the next text line containing at least one refer-
. ence to the variable or number specified by the last REFnn or REFsases
statement executed. If there are no more referencing text linmes, !TEXT
END' will be displayed. If 'REF' entered again, the first referencing
text line will be listed. Remembrance of the search variable name or
number and the current search line number within the text is usually (but
not always) lost when any command involving DOS is executed.

1#. REF=xxx The character sequence xxx is packed by the standard BASIC
text packing routine. The BASIC text is then searched for a match on the
packed xxx value and the line numbers listed for all lines containing the
packed xxx value. If the packed value xxx is more than 16 bytes long,
only the first 16 packed bytes participate in the compare. This format of
REF is to used when the user wants to know where in the text a BASIC fun-
ction code (i.e., PRINT, LPRINT, GOTO, etc) is used. The text lines con-
tairing xxx can be displayed one at a time by repeated issuance of the
format 9 REF command.

11. REF"xxx This format operates similar to format 1§ except that xxx
is not packed. =xxx is considered a string unless xxx itself contains a “.
This format allows xxx to be found in strings and comments.

12. REF@sssss This statement is similar to format 9 except that the
search will start with lst text line whose line number is greater than or
equal to sasss.

. ' Press BREAK to pause, ENTER to continue, and up~arrow to terminate the REF
function. Formats 5-8 are the same as 1 and 2, except listing/printing starts

7-7 ' DISK BASIC NON-I/O

‘with the specified variable name or decimal number, if it exists, or the next
higher existing name or number, if not. .

1f 8YS12/5YS is not in the system when the REF statement is executed, the
system will exit to DOS (see section 5.5).

7.11. Text String Lower Case Suppression (Model I only) Users who do not
have the hardware lower case modification or those that do but don't use a
lower case driver to bypass the ROM display routine will occasionally be
Puzzled why some string compares fail and syntax errors appear in perfect
appearing statements. This is due to the acceptance of lower case letters into
strings which display as upper, and the acceptance of lower case @ into text
statements. Remember the ROM swaps lower case to upper and vice versa before
BASIC sees the characters. In the case of data, there is nothing that can be
done about this problem except to remember that if it appears equal on the
display, there still may be a lower case/upper case mismatch in memory, For
text input, if system option AS = Y, text string lower case letters, but not
lower case @, will be forced to upper case, eliminating many of these problems.

7.12., BDR-ONLY For DISK BASIC there are two ways BASIC can be forced to run
in RUN-OKLY mode: (1) if system option AB = Y, and (2) if the BASIC program
file is password protected, passwords are enabled, the access password spec-
ified in the RUN or LOAD (option R) statement and the access level = EXEC.

If system option AB = Y, the DOS command activating BASIC must contain the
necessary RUN or LOAD (option R) statement to start a program executing as the
operator is not allowed to input any direct command statements.

In RUN-ONLY, the BREAK key is disabled and BASIC is inhibited from accepting
direct statements (data is OK) from the operator. The program has full con-
trol, and must exercise it. A menu program can issue RUN.or LOAD (option R)
statements for other BASIC programs, and those programs can do the same to
return to the MENU program or go on to the next program of a sequence. Op~—
tionally, a base program may remain in memory at all times, and via CMD"F™,
DELETE and MERGE, bring in overlay programs as necessary. Programmers should
carefully study available options under RUN, MERGE, LOAD, and CMD"F functions.

. 7.13. Comparisons in the use of the function CMD between NEWDOS/80 snd TRSDOS.
1. CMD"A™ |Not implemented; use CMD"S",

2., CMD"B™ Not used on the Model I by NEWDOS/80 nor TRSDOS. TRSDOS!'
Model III use is not implemented in NEWDOS/80; use CMD"BREAK,Y/N"

3. CMD"C"™ This command (1) compresses out all spaces from the program .
text, excepting for those within strings, and (2) deletes all remarks from

DISK BASIC NON-I/0 7-8

the text, including entirely those linees which are entirely remarks. The
statement CMD"C",5 compresses out all mpaces from the program cext, ex-
cepting theose within strings and remarks. 7The statement CMD"C",R dele~
tee all remarks from the text, including deleting entirely those lines
which were entirely remarks.

In eome cases, GOTD, GOSUB, etc. refer to & text line that is entire—
ly remarks and the deletion of remerks from the text will cause these
. teferenced lines to disappear. The programe should be altered to have
these GUTOS and GOSUBs refer tc text lines that &re not entirely re-
marks. After remsrke have been deleted from a program, execute
RENUM U to determine i1f there are any wndefined line numbers result-
:Lng .

Though BASIC is designed to ignore spaces that are not in text
remarks or character stringe, the removal of opaces from text can
til]l cauae confusing sitvations. For example, compressing

16 FIELD 1, 26 A8 3

2§ IF F OR D THEN 1§
to

1§ FIELD1,2@ASCS

2¢ IFFORDTHEN]$

will cause syntax errors to cccur for both lines during execution
after either {1} the program hae been stored in ASCII and ther read
baek in or (2Z) the lines have been edited. To avoid these problens
that may exist for weeks or months before either of the above two
conditions occur, the CMD"C" function aAutomatically unpacks each
compressed text line, packs it again and compares the new packing
with the old that existed before the epaces were compressed cut. For
any text line where the two packings are different in any way, the
gpaces are restored into that text lire (remarks, if deleted, remain
deleted} and the line's number is listed on the display. The user
may then irspect these lines and remove spaces that won't affect the
program. For any given program, there should be very few lines
rejected by CHD"CY,

4. CMD"D™ TRSDOS' meaning is not implemented on the Model IIT under
NEWDOS/88: use CHMD"doscmd", On the Model I, CMP"DM still invokes DEBUG
though 123 is the preferable metheod.

5. CMD"E™ Displays the DUS error mess&ged asgociated the latest DOS
error encountered by BASTL,

6. CMD™F™ HNot used In TESDDS. Tn NEWDOS/BE, there zre two formars:

l. CMD"F",fc used when the funetion code fe must be findable by
REF, REMUM and athers.

2. CMD"F=fc" used when the function code fc is not to been seen by
REF, RENUM, etc. or where the specially defined function cede cauld

be cvnfuaed by the mormal text packing routinme.

Thege CMD"F funectione are specified in sections 7.15. thru 7.20.

7-9 DISK BASIC NOR-I/0

7. MD™I™ Not used on the Model I by either NEWDOS/80 or TRSDOS.
TR3DOS' Model ILI use is not implemented in REWDOS/8§; uase QMD"dos-cmd".

8. CMD"I" Calender Date Conversion.
CMD"JI",detel ,date2

coenverts the expresgiom datel to the appropriate format and stores
the result in the string variable date2. If datel ie in mm/ddfyy
format, datel is stored in ddd format and if datel is in —yy/ddd
format, date? is stored ir mm/dd/yy format where:

mn is a two digit month value between §1 and 12.

dd iz a two digit day-of-the-month value between Bl and 31.

ddd is & three digit day-of-the-vear value between $91 and 366.

¥y is8 a two digit relative year-within-century value between #P and

89, For leap yvear converslons, yy is assumed to be in the 2¢th
centuyry, i.e., from 1999 to 1999, :

9. (MD"L" TRSDOS Model IIT meaning not implemented in NEWDOS/B@; use
CHD"LOAD, filespec”. This function is not used on the Model I.

14. ©MD™0™ Array Sort; see discuesion below (section 7.21.) for CMD"GY.
11. CMD“P" FNot used on the Model I. TRSDOS' Model IYI meaning is not

inplemerted in WEWDOS/8¢: wse PEEK(&H37ES) to obtain the § - 255 value for
the currene printer status.

12, CMD™R"™ TRSDOS' Model IIT meaning is not implemented in NEWDOS/8§;
use CMDVCLOCE,Y". On the Model I, CMD™R" still reenables the interrupts
as before.

13, (MD"S™ Exit BASIC and return to DOS READY state. However, if the
command is of the form CMD"S=dosemd", then the Following occur:

1. The DOS command dosemd is moved inte the DOS cowmand buffar.
2. BASIC exited.

3. The D03 command placed inte the DOS buffer is executed jmme~
dizately without am intervening DCS READY.

4. When that command ié completed, control returne to DOS READY and
not to BASIC.

14. CMD™T™ TRSDOS8' Model III meaning is not implemented in WEWDOS/S8P:
use CHMD"CLOCE,K". On the Model I, CMDI™ still disables the interrupts as
before. :

15. CMD*X™ Kot used on the Model I by NEWDOS/Bf. TRSDOS' Model IIT
meaning it not implemented; use the REF command.

meaning is not implemented; use CMD"BRODIE,...".

16, CMD™Z" Kot used on the Model I by NEWDOS/8fi. TRSDOS' Model III .

BISK BASIC NON-I/Q =114

7.14 QD"doscmd™

1f the string expression aseociated with the CMD function hes two or more char-
acters and does not start with either "8=" or "F=", then the string is assumed
to be a command to be executed by DOS, BASIC moves the command to DOS' command
buffer, sets DOS to MINI-DOS mode, and calls DOS to execute the command via
44190, DOS—CALL. Upon return, BASIC turns off DOS® MINI-POS mode. If DOS has
rejected the command because it was not legal inder MINI-BOS, BASIC then at-
tempts to reissue the command to DOS under normal mode by deoing the following:

1f spproximately B,88P bytesz are not available between the bkop of BASIC's
array areas and the bottom of BASIC's stack {which is immediately below
the string area), BASTIC declares OM {'CGUT OF MEMORY') error and terminates
the current statement. If the space is available, BASIC moves all of mem-
ory from 52PPB to 7IFFH to that free area, sets itself to use stack area
TAPPE-71FFH and computes a checksum over the region from 71B#H to the top
of BASIC's memory (takes about 2 seconds), Then it calls DOS to execute
the DOS command., Upom return from DOS, BASIC moves the saved region back
to S2O0H~7RFFE and recomputes the checksum (again, another 2 paconde). TIf
the check faile, this means that the P05 command executed hes altered some

- of BASIC's bytes; BASIC cannot comtinue and exits to DOS with 'BAD MEMORY'
error.

Whichever way the command was executed, BASIC now checks the return eode from
DO5. If an ertror occurred and the error message has already been displaved,
BASIC terminates the CMD"doscmd" statement with 'FREVIOUSLY DISPLAYED ERROR’
error etate. JTf a DOS error occurred, BASIC calls 4449H to display the DOS
error meseage and terminates rhe CMD"doscemd" statement with 'DOS ERROR™ error
gtate. If no error occcurred, BASIC continues with normal processing.

Any DOE library command or assembly language program (that will execute using
only the 52ffH — 6FFFH region and/or a non-BASIC, non-DOS region of main mem—
ory) can be executed in this fashion. SUPERZAP and DIRCHECK are two programs
that may be executed through CMD"dosemd". FORMAT and most forms of COPY can be
deme; however, single drive, two diskette copies canmot be done as they require
the maxinum awount of memory. Aleso, don't specify the UBB parameter in COPY.

Remenber, DOS commands are limited to 8@ characters, including the ENTER char-

acter rhat BASIC will append to the dosemd etring when moved to the DOS command
buffer.

User programs are warned to leave the Model I memory area 4PS@H -41FFH (Model
I11 area 4Q8QF - 41F2H) alone except where alteration is in conformance with
BABIC’s current uses,

CMD"BASIC" should never be executed. If for some reason the programmer wants
to exit BASIC and return, uge C[MDMS=RBASICY,

Almost all DOS commands may be executed via (MD"doscwd". Examples:

1. cCup"DIR L" list a direectory

2. CHMD"COPY XXX:§ YYY:1" copy a file

3, CHD"COPY § I H7/19/8] FMT" full diskette copy, with format

4, CMD"SUFERZAP" executes program SUPERZAP and return to BASIC
3. {MD"B{ CHAINFIL" perform chain file functions and return

7-11 DISK BASIC NOR-I/0

7.15 OCD"P=POPSY, (HD“F=-POPR™ and CMD™F=POPN":

If the statement is CMD"F=POPS", then all returns and FOR-nexzt controles are .
purged, leaving BASIC with no outétanding returnms or nexts. When done, execu~

tion continues with the next statement. The purpose of this statement iz to

allew the programmer to 'bail-out' of complex coding and return to BASIC's

first level., Thie avoids leaving residual information in BASIC's contrpl etack

which on recursive returns te the high level without CMD"F=POPS" will
eventuzlly cause program failure,

If the statement was CMD"F=POPR", then the current GOSUB level is purged along

with any outstanding FOR-NEXTs for that level. This is the same az return ex-—

cept control does not pass to the astatement following the associated GOSUB, but
instead passes to the statement following the (MD"F<POPR" statement.

If the statement is CMD"F=POPN", then the most recently eatablished FOR-NEXT's
contrel data is purged, This is the same as "NEXT' where the loop limit is
exceeded. Fxecuntion comtinues with the statement following the CMD"F=POPK"
etatement,

If the statement is CHMD"F=POPN" vin where vo is a variable name, the FOR-NEXT
loop asspciated with von is purged along with any other FOR-NEXT loops estab-
liehed while von's loop wae outstanding. Ezecution is the same as for "NEXT wvn'
when the loep is to end. Execution continues with the statement following the
(MD"F=POPN" vun atstement. The purpose of CMD"F=POPK" is to allow breaking out
of a loop while not leaving residual loop control information that cen confuse

the programmer if he/she subsequentially uses FOR-NEXT verisbles in reverse
order.

7.16, CHD™F=3ASZ™ Change BASIC's atring area size without affecting or
clearing the variables.

CMD"F=8A5Z", axpl

allows the string area size to be changed without clearing the variables. expl
muet be a value large encugh allow the string area to contain the strings that
it contzins when the statement is executed. An error will be gemerated if expl

is too small or is too large (i.e., will cause overlap with the text, scalar
and array areas). Example:

CMD"F=SASZ", 4BPP

7.17. CHMD"F=ERASE™ and CMD"F=EEEP" Selective clearing of BASIC wvarisbles.

CHMD"F=ERASE"™ vl ,vn2 ,vn3... allows the specified varisbles to be
cleared, If a specified variable is within an array, the entire array is
cleared. The size of the string area is not changed. Thie statement

should be used whew an array is oo longer needed or the user wishes to
redimension it by a subsequent DIM statement., Thie atatement may be

DISK BASIC NOR-I/0 7-12

multi-text lines as described for CHD"F=KEEPY below.

MD"F=EEEP" , vnl ,vn2,vn3... causes all wvariables to be cleared except
those specified and except specially defined wvariables euch as those de- fined
by a DEFFMN statement, The size ¢f the string area ie not changed. If no
variable names are specified, all variables are cleared, except the special
ones. If a specified variable name is within an array, the entire array is
exempted from the clear. The statement may specify as many var- iable names as
desired with overflow from one text line to the next non~ comment text line
taking place whenaver the last variable name of a text line is followed by a
commz, Example:

CHMD"F=-KEEP" ,A45,B2,C,D¥, ’'statement First line

E!,F,GS, 'gtatement 2nd line
REM this line is bypassed

H!,I 'statement last line

7.18, CMD"“¥",DELETE Dynamic deletion of text limes:

CMD"F" , DELETE lnl-1n2

This statement allows the text lines from and including any line numbered 1lnl
to and including any line numbered in2 to be deleted during program execution,
All variables are retsined, ezcepting that DEFFN wvariables for DEFFN statementa
in the delete range are cleared. The string area size is not chaoged. Any
string variable whose currest string was actually in the deleted. text area has
that string wmoved to the string area. CMD"F",DELETE must not be executed ae a
direct statement, must not be contained in a DEFFN statement, a8 subroutine or a
FOR-NEXT loop (az a POPS functicom is implicitly performed), must be the last
-statement on its text line and must be followed by the text line where execu-
tion will continue after the delete, Example:

18¢ CMD"F",DELETE 1p549-15008
11p %=1 execution continues here after the DELETE ie completed

7.19, CHD"F=SWAPH Swapping of variable contents:

CMO"EF=EWAP",wnl ,vn2
This function swaps the value of wvariable wnl with that of wariable wn2., Beth
variables must be of the same type, i.e., both strings, both single precision

floating point, ete. Example:

CMP"F=SWAP" ,AS,BS

7-13 . DISK BASIC NON~1/0

7.2, CHO"F=§5" BASIC single stepping:

1. CHMD"F=§g" turnt on single etepping
z, CHD"F=85",1nl single stepping etarts at lime 1nl,
3. CHD"F=88".N turn off single atepping.

The BASIC programmer wmay now single step through program execution. Using
either format 1 or 2 above sets BASIC junto single step mode, though feor format
Z, actval single stepping does not start uetil text line 1nl is the next line
to be executed. A single BASIC text line is executed for each etep, and be-
tween ateps the line pumber for the next line to be executed is displayed in
'@nnonn' format in the display upper right ecorner te indicste that EASIC is
waiting for the operator to respond. Responding ENTER causes line nnomm to be
executed and then BASIC waite for user response again. Responding BREAK cavses
execution to be broken in the normal mamner though it should be noted that the
line number the BREAK shows is for the line just execnted or being executed
while the '@nnono' display is for the next line to be executed. If the user
does not change text during BREAK, the program may be continued wis CONT; in
this case, the "@onnnn' display will immediately reappear without execution of
2 line. Pressing ENTER will then execute the line. While in BEEAK, the oper-
ator may turn single stepping on or off as desired without affecting the abil-
ity to CONT. 1If the BREAK occurs before RUN or LOAD,R executes one Eext line,
CONT will not work, :

Single stepping or the scheduling of the single stepping to start whem a par—
ticular text line is encountered remains ip effect until either CHMD"F=58" N is
executed to turn it off or umtil a2 format 2 type stepping commend is executed,
wherein atepping goes off umtil the specified line is encountered. _The execu=-
tion of RUN, LOAD, WEW, etc. does affect single stepping state.

7.21. CMD™O"™ . The main memery BASIC array sort has 2 formsts:

1. CMD"OM",n,avi[,avZ,ue.s] {direct sort)
2, MD"0",n,%iavl,av2|,av3,...] {indireet sort) .

In explaining this sort, the rerm REN ig used and is defined to wmean a Relative
Element Number identifying an array element. The elements within any BASTC
array, regardless of dimensicn, are integer numbered from §§ up. If an array
has only one dimengion, then an element's EEN is simply the value of its sub-
acript and if you use only single dimensioned arraya, you can ignore the rest
of thia paragraph. However, if you uae multi-dimensional arrays, then you
should lknow which method to use to increment arzray subscript valuee in order to
extract elements in the sorted order. CMD"O" does not care what dimension the
arrays have; it simply counts off the axray elementes in the order BASIC stores
them in wain memory. Youn, the programmer, do care as you muat use subscripts
in order tov access the array elements. For multi-dimensioned arrays, the rule
for computing the REN is complex and can best be illustrated by a three dimen~
Bion array example uaing two statements:

DIM A(R1,R2,R3)
Y = A(X1,%2,X3)

DISE B4SIC NON-I/0 Frld

where the REN of this element is computed as XI+X2%(R1+1)+X3%(B1+] }*(R2+1), 1If
the array bad only two dimensions, then the REN would be X1+X2%(R1+1}, and, of
. courge, if the array had only one dimension, the REN would simply be Xl.

Tf the CMD"G" statement specifies more than cme array, exzcluding iavl, them the
BENg for the first sort item im each array, emcluding iavl, must be equal.

The serting order used has one level for each array specified, excluding the
iavl array, with highest to lowest level in the order, left teo right, of the
array varisbles in the CMD statement, Within ezch level, the normal sort order
is ascending ASCII (actually hexadecimal) numeric value for character string
arrays and most negative to most positive walue for numerie arrays. However,
if the arrxay variable in the CMD scatement is prefixed with z minus sign
{example: -A#{(®}), then the order of sort within that level is descending
ASCIT (actually hexadecimal) numeric value for character strimg arrays and most
positive to most negative value for numeric arrays. A null compare string
character is comsidered to have a numerie value less than @.

¥ormally in character compares, the entire string is used in the compare.
Bowever, 1f the array variable in the CMD statement is suffixed with a field of
the form (x,y} (Example: A$(1){(5,4)), then the compare starts with the xth
character of the stripg and compares using only ¥ characters.

p is the number of elements in cach of the arrays participating im the sort.
Only n elements from each arrxey participate in the sort. Elements of an array
below or above the n elements specified do not participate. If n is a zero
value, then for the sort, m is set to the number of elements in first array

epecified from and including the element specified through and including the
last element of the array.

Tf the onuwber of elements in any array from snd including the specified element
to and ineluding the array's last element is leas than n, FU error iz declared.

A maximum of 2 arrays may be specified. All array varisble subscripts, except
for the indirect array if epecified, must evaluate to the same REN value.

Format 1 is a direc¢t sort mweaping that the elements of all 1 to 9 arrays are
moved arcund to conform te the desired sort order.

#vl muat be specified; av? and up are optional.

The resulting order of the n elements in each array is the same for each
array {i.e.,, the arrays are vot sorted independently). Thus, if the jith
element of array 1 ig sorted into the kth element slot, then for each of
the other arrays, if any, the jth element is also placed into the kth
element slot.

Format 1 is compatible with TRSDOS ¥odel ITI BASIC CMD"0" if and only if

only cme array variable is specified, it is for a strimg array and n is an
integer variable.

are altered; the other arrays are not changed in any way. The intent of format

Format 2 is an indireet sort. 1Im this sort, only the n elements of array iavl
. 2 is to allow a sorted sequence t¢ be determined without actually changing the

7-15 DISK BASIC WNON-IJfO

arrays supplying the sort values, A user may bave a group of date records
spread across & number of arrays such that a record consists of one alement
from each array, with the REN of each of those elements making up the record
equaliing the record number. By using format 2 with the indirect array, the
vaer may effectively sort the records using a subset of the items as the sort

criteria and without actually rearranging the order of the records, thus leav~
ing them in record number order.

Format 2, as oppoted to format 1, is indiecated by specifying the iavl
array varisble, prefized by an % .,

iavl must be an integer array variable.
ay2l mist be ppecified; avd and up are optiomal.

The n consecutive elements starting at iavl are initialized with the RENs
correaponding te the n comsecutive elements of array av? {which also
correspond to the RENe for the other arraye, if anyJ.

During sorting only array iavl is altered; , arraya av2 and up are not
altered.

Upon completion, the n elements of array iavl are in the desired sorted
order such that by using successive valunes out of array iavl as sub-
scripts, the user may access elements from any of the other arrays (that
are single dimensioned) in that sorted order. Acceseing multi-dimensioned

arrays i1s more complex and is left as an exercise for the more advanced
UEET.

Ezample program uwsing 4 oumber of sorce:

15 DIM Eﬁsizﬁﬂ}, AMEQIBB), INSCIEP), TXZ(18B),. ZCI(56), L3(59)
30 X=15

‘!'E m.mllu"’xams;(ﬂ}

69 CMDV0M, X, -NM4{25)

?ﬁ m"ﬂ",ﬂ,méﬁ!(l},m$(l](5,3)

89 CMD"O'. 189, *TX%($),ZC1{1) .L8(1)

At line 49 the first 159 elements of array HM$ {elements HMS(A) to
HM5{149)) are sorted in ascending order., If any of the strings are null,
they will appear first in the resulting array. The last 51 elementa of
array WM§ (elements WM${(158) to KM$(28p)) do not participate in the sort
and are left unchanged.

At line 6§ elements NM$(25) through NM${174) are sorted into descending
order, with oull strings, if any, appearing as the end elements of those
15 elements. The first 25 and the last 26 glements of the array do not
participate in the sort. '

At line 7§ the AMI and LM$§ arrays are both sorted, both in the same order
which is first by descending order of AM! array values and then, where AM!
array values are equal, by ascending order of LN§ array values where only
the 5th, 6th and 7th characters of the LN srray elements participate im
the sort determination, If a LN$ array element has less than 5 charace-
ers, it is considered a null for sert determination purposes. AM!{(#) and

DISK BASIC NOKW-I/0 7-l6

®

NEWDOS /80, Version 2, Model I ZAPS . D&f13/82

CAREFULLY STUDY chapter 11 of NEWDCS/80 documentation for imstructions on how
to apply zaps.

Gome modules have multiple versions with the zaps different in each versiom.
Use the verify to determine which version you have and apply the appropriate
zap(s). If vou bave a version different from any listed (i.e., the verify(s)
do not match, contact the program's distributor or Apparat). Apparat iz trying
to get the program creatorfmaintsiner/distributor to create and distribute the
necessary zape to run with NEWDOS/B0, Version ?, but where thiz does not occur
end for widely used programs, Apparat will generate any necessary zapa. If
Apparat decides to generate the zaps and does not have your particular versionm,
you will be asked to send the version you have on a diskette (as a gift to
Apparat, see chapter 11) to Apparat so¢ that Apparat may determine the appro-
priate zapa; Apparat will net seek out your version from another scurce, and
will not create a zap from a paper listing.

Tikkkkik ZAP Q01 *kwkkwkw (0870481 whikikak YIM] *xwihkkd

Mandatory zaps to Microsoft's EDIT/CMD to ensble it to rum with NEWDOS/80. You
must maintain gseparate copies of this module for cach of TRSDOS and WEWDOS ae
the module for one system is incompatible with the that for other though the
files they manipulate are compatible. These changes are due to the FUB's NEKT
and EOF fields being defimed io WEWDOS differently than in TRSDOS,

EDIT/CMD,38 ,EB change
7E E6 7F 7E 2} FE FF CA 58 78 EE 80 87 DA 5D 78 to
7E 60 49 D6 01 30 01 2B 29 07 30 0! 23 18 Q4 7R

EDIT/CHD,32 ,A2 change
78 E6 7F C2 28 72 7B EE to 78 D6 Ol 30 D8 18 04 EE

fekkkkhkk AR (07 kkwkkkdk QB[4S] ddkkadkir YIM] dkkdorkkk

Mandatory zap for PENCIL/CMD to disable the alreration of a DOS loecation by
PENCIL. This alteration of DOS by PENCIL ig not needed in githe; HEHDﬂBfBﬂ=n{
NEWDOS/ 21,

PENCIL/CMD,00 ,AF change F3 32 SB 406 C3 to F3 00 Q0 o0 C3

Apparat has been advised that the following two zaps to PENCIL/CMD will (1)
allow PENCIL/CMD to read the directory properly and {(2) enable the use of
HWINI-DOS under PENCIL/CMD.

PENCIL/CMD,05,60 change 58 23 22 to - 58 00 I2

PENRCIL/CMD,00,61 change 54 22 16 40 21 to 54 00 00 00 21
Thie latter zap prevents PENCIL/CMD from using its own keyboard rcutine,

13-1 ~ ZAPS (PATCHES)

thereby defaulting back to NEWDOS/80's wherein ‘'DFG' invoking MINI-DOS can be
ppotted, _

skkthkdk ZAP D03 Sekkkkkdk (8/04f81 Fwkkakix YIM]L dkkikkx

Mandatory zap to Radio Shack's programs SCRIPSIT/UC apd SCRIPSIT/LC to run
under NEWDOS/80 (and FEWDOS/21). - The user should maintain separate copies for
NEWDOS and for TRSDOS as the programs for each system are incompatible with the
other system even though the files they manipulate are compatible. The firet 3
changes are necessary because of the different way the FCR'a NEXT and EOF
fields are maintained. If you are running NEWDOS and files appear to load
gshort one sector, check to make sure these zaps are in. The 4th zap causes
poS' HIMEM address value in 4049H - 404AH to be used as BCRIPSIT's high memory.
The 5th zap re—ensbles the interrupta sc MINI-DOS can be invoked from SCRIEFSIT.

SCRIPSIT/UC,11,75 and SCRIPSIT/LC,11,75
change &7 00 CD 6E 7A 4F te 47 00 34 B9 7C-4F

SCRIPSIT/UC,11,FB and SCRIPSIT/LC,l1,FB
change BV C4 EF 5D 79 te B7 32 B 7C C4

SCRIPSIT/UC,12,00 and SCRIPSIT/LC,12,00
change 32 B9 7C 11 to FEF 5D 00 11

SCRTPSIT/UC,00,63 and SCRIPSIT/LC,00,63 change
7¢ 21 FF 00 25 7E 2F 77 AE 20 ¥9 22 to
7C 2A 49 40 00 DO 08 00 00 00 00 22

SCRIPSIT/UC,00,C3 and SCRIPSIT/LC,00,C3
change 57 F3 ED to 57 00 ED

RhERAERE ZAD DOL& WhERkEkk 05704781 Frxdkawk YIML kkkrkiki

Opticnal zap to increase drive power on delay to the full one second used in
older DOSs. MHEWDOS/B0 waits only 1/2 second fer the the drives to attain
rotational speed during power on select. If you feel the drives would perform
better with the longer delay, apply this zap.

5YS0/8Y5,04,C3 change 06 80 ¢B to 06 FF (B

RhkkREAE ZAD 005 tkkakkkd 08704/ 8] *hrdwkkr YIM] kkrdikks

Mandatory zap for APL8O/CMD to enable it to run with NEWDOS/80. APLSD/CMD
raferences & routine internal to DOS that is in a different locationm in
HEHDGBIEG than it wass for TBRSDCOS and HEWDDS/ Z1.

APLBO/CMD, 12,74 change 21 A2 48 to 21 B4 4B

APLBO/CMD,14,52 change 21 A2 4B to 21 B4 4B

ZAPS {PAYCHES) 13-1

Thkikirk ZAD (06 *kdkdkikk DB/04/8] Fhkdkuwwk YIM] Eiokddrkik

Optional zap to EDTASM/CMD to disable the lower case to upper case conversion
done by EDTASM's keyboard input routine, Moet functions within EDTASM will
still require upper case, but comments and gperandas enclosed in single quotes .
{(for DEFM and DEFB)} will accept lower case.

EDTASM/CMD,28 ,F1 change FE 61 DB to FE 80 D&

dkhkkkkr TAP (07 dkkkdkwdk D5/047 81 Fekidieki FIM1 wdkkkkkkk
This is information rather than an actual zap.

1. Where possible, the HEWDOS/80 modules have reserved zap areas. Apparat
purpesely did not mention them in 1ts documentaztion as it did not want to draw
attention te them. Users are hereby warned that Apparatr will preempt these
areas without preliminary notice znd in its zap verifies will expect these
areas to contain zeroee. Users who apply non—-Apparat zaps into these areas
should carefully maintain loge of what they have done te compare sgainst future
REWDOS/ 80 zaps for area conflicts.

2. The D08 commend ATTRIE {see section 2.3) has an additional optional parkmr
eter, LRL=xxx, not specified in that section. IRL=xxx specifies the new log-

“ical tecord length of records in the file where xxx is ap integer between 1 and

256, This record length iz used now only by DIR, but if user processing
assumes a file has a given record length, some uaers may want the DIR display
te reflect it. ' ' '

3. MINI-DOS (see section 4.2} is 1llegal under DOS-CALL (see section 4.4). If
the DFG keys are depressed while DOS is under DOS—CALL, the triple key
depreseien will be ignored.

4. DO5 command ROUTE (see section 2Z.43} has been altered such that existing
routea are displeyed only if the ROUTE command has no parameters.

5, DOS command COPY {mee section 2,14), format & (CBF) has a new optional
parameter DFQ (Destination Files Oaly). If DFQ is specified, then file
¢ontents are copled if and only if the file previouely existed on both the
destination and source diskettes. DFQ is mutually exclusive with FMT.

6. DOS command FORMAT (see section 2.22} has a new optionasl parameter RWF (RaW
Format). If RWF ia specified, all errors are ignored and each track is '
formatted once, whether or not the format actually takes. BWF is used when the
user wishes to obliterate the information on a dameged diskette and doeen't
have a magnet. RWF is mutually exclusive with KDK, EDD, DDSL, DDGA and PFST.

*hkFRRAS TAP QOB whkwiondwkdw (B[481 whdrsdenk YIM] dekkdeikrk

Mandatory zap to PROFILE's module IRIT to correct for a different error code
returned by NEWDOS/80 and to allow for NZ error state to take precedence over C
or HC state on return from 4420H call. With this change, the zapped mcdule

13-3 ZAPS (PATCHES)

will 8till run under TRSDOS., This zap is for 3 different versions of the same
medula. :

INIT,00,54 change
44 38 09 2B OF FE 1A 28 13 €3 3F 52 CD to
&4 20 19 00 00 00 00 0O 00 QD 230 08 CD

If the above doean't werify, then try one or the other locations below.

INIT,00,63 or INIT,Q0,64 change
44 38 11 23 07 FE 1A 28 13 C3 47 52 CD to
44 20 19 00 00 00 00 OO 0O 00 38 GE8 CD

For those interested and for some PROFILE modulee, the following optiomal zap
will reenable the interrupts so '123' and 'DFG' can be used under FPROFILE and
NEWDOS/80. -

PROFILE/CMD,11,45 change TF3 CD te 00 CD

whwwkkk ZAP 000 wkkdkwdkk DRS4S Bl Kwkwkrihkh YIYL skkwnikd

Mandatory zap to Racet's Infimite Bssic IBLOAB/CMD module to enable it to run
under NEWDOS/80 es well as TRSDOS.

IBLOAD/ CMDfCMD, 08,15 change
15 21 B6 79 11 ¥4 79 CD 36 44 28 to 15 11 F4 79 CD 13 00 32 B6 79 28

***wﬁtt* ZAP DI Fdkdedededonk D&/ 04781 wrwkkkkkk YIM] wkirkwkk

Mandatory zap to Racet's DSM module DSMB/CMD to adjust for REWDOS/B('s require~
ment that & filespec's type have a waximm of 3 chars and that & fileepec end
with a terminator. This corrects only for the filespec DSMC/CMDPATCHPATCHPATCH
.guch that if a ueser patches in a different filespec, hefshe will have to apply
the 03 byte at the end of that filespec.

DSMB/CMD,03,C2 change 44 50 41 to 44 03 41

ke ZAP 011 #kkhddkd G804 81 wakkdkdk YIM] dkdktitd

Mandatory zap to allow VISICALC to operate with MEWDOS/80. -The resulting zap-
ped module will not run with TRSDOS or MEWDDS21l; g0 maintain 2 different
versione. This zap deals with the different handling by NEWDOS/80 of the user
25ms interrupt routines (see sections 3.8 and 3.9). -

YC/CMD,03,2B change ' -
00 3E 00 21 20 03 22 51 9¥ C9% 79 to Q09 18 BB 00 00 08 08 C3 EF 9B 79

vC/CMD, 75,15 change 11 28 9C 22 to 11 1E 55 22

' . ZAPS (PATCHES) 13t

YO/ OMD, 15,74 change
C9 3K 03 C3 13 44 CDh 4E 53 F> CD 16 9C 28 OE 3E to
CO 11 1E 53 €3 13 44 Cp 4E 53 CD 16 9C C8 00 3E '

Mandatory zap to VISICALC te adjust for NEWDOS/80's difference from TRSDOS on a
returned error code causing YISICALC's directory search to hang if any of the &
drives are not present or have no diskette mounted. This zap ie net
incompatible with TRSDGS. '

VC/CMD, 73,08 change C9 FE 18 20 to C9 37 C9 20

dekkkwkwk FAP (12 wkkwkurk DE047 81 whkwkkik YIM] kkkkddik

Optional zap to increase or decrease the sensitivity of double density diskette
formatting. One of three byte patterns can be chosen, depending on the relia-
bility of your interface, drive and diskettes. The more sensitive the byte-
pattern, the greater the probabiliry a marginal diskette will fail format and
the lesscr the prebability that having formatted euccessfully, the diskette
will fail later (under normal careful handling). The less senzitive the byte
pattern, the lesaer the probability a marginal diskette will fail format snd
the greater the probability that having formetted successfully, the diskette
will fail later. The byte patterne are:

1. E3 K3 = Jleast sensitive during formatting. This was and is the
single density standard pattern. :

2. 5B 5B = intermediate sensitivity during formatting. This is the
TRSDOE Model III pattern. '

3. 6D B6 = most semsitive during formetting, This pattern straine the
disk formatting and if the interface, drives and diskstres are not in
firet class conditiom, 30% or more of the diskettes will fail formatting.

Depending upon the frequency of format failures te diskette failures at other
times, the user chooses which of the three 2 byte patterns o use and inserts
them in the following locationa, firat checking that one of the three patterns
is already at those lpcatione. Each location réceives both bytea, and as a
check on each location, the preceding byte iz F5.

SYS&/5Y5,31,D9

5YS6H/5YS,31,F3

kekdekkkkk ZAR ()13 wakkkwkwd 8703/ Bl Fhkdkkkww YIM) khwkikdrer

Optional zap to allow the COPY function to use Medel TII diskettes in the
TREDOS 1.2 or earlier directory format insetead of the TRSDOS 1.3 format the
COPY command is prepared to handle. The zap must be backed off when the user
wants Lo re—enable COPY to handle TRSDOS 1.3 format Model ITT diskettes.

13-5 : - ZAPS {(PATCHES}

[

8YS6/5Y5,14,75 change 01 00 78 to 01 01 7B

8Y56/58YS,14,C8 change 01 00 40 4E 01 13 00 to 01 13 40 4E 01 0O 09 : .

5YS6/5YS,20,84A change 61 C8 5E to 61 C9 SE

dkkhkidk ZAP (14 #kkrkndk QR/OBSB] drdkkkkhkk YIM] KEtrRExkk

Mandatory zap to correct an error in BASIC that waa causing SYNTAX error to
cccur when the short editing codesa A, I', E and L were being used. Thie error
wag introduced intc BASIC just before Versiom 2 release in the correction of
appther but more trivial error.

8¥Yg18/5Y¥5,02,31 change _
2¢ D7 28 06 FE 3D 20 F9 18 23 El to 2C CD CF &5 Z8 27 FE 0D 20 F7 Bl

BASIC/CMD,14,D8 chenge - 00 00 OC 00 00 to 23 VE FE 3D (9

fkkkeirkkd FAP (]5 domidkkdk 057 FB7 Bl wdhhkdokd YIM] drkwinksonk

Mandatory zap to correct error in format 5 COPY where the BOOT pector was not
receiving the correct directory starting lump avmber if this differed from the
PDRIVE specification. The error would manifest iteelf by directory tead error
in DIR.

8Y86/5¥8,05,96 change 64 01 00 01 18 to 64 €D 80 5C 18
SYS6/5Y8,15,46 change '

0O 00 00 00 OC 00 0O Q0 00 00 00 OO0 0O 00 to
01 006 01 B7 CO 13 13 1A 32 BC 64 1B 1B C9

P ZAF 016 #%wwkkkkk BBfL5S8]1 F*kdkikak yIM] dededddkck

Correct error in PDRIVE causing SYSTEM PROGEAM WOT FOUND error when the second
drive number is specified wronmgly as greater than 9.

8YS16/6YS,00,64 chapge €3 1A5Z GB to C3 4B 50 CB

Wikdwkik ZAP (17 ktbikhkx (87 18/ 8] wktwkikks YIM] khakkkks B

Mandatary zap to correct error in COPY and FORMAT where DDEL parameter was
being erroneously rejected,

8Y86/5Y8,01,FA change CB 70 20 to CB 52 20

"ZAPS (PATCHES) 13-6

EhEEARER TAP (15 wkikdhds gg;ﬁ5f31 Hhkdk ik YIM] - Whvekdoddk

Mandateory zap to SUFPERZAP to correct an error where the DM,P funct1ons was not
gending the correct memory contents to the pr1nter.

SUPERZAF/CMD,D0 ,04 change
00 00 Q0 00 G0 G0 00 00 00 00 00 00 00 co
A4 91 54 CB S5F CO 24 B4 54 22 495 54 C9

SUPERZAP/ CMIY, 03,43 change 34 34 91 54 CB to 54 (D 00 52 CB

kkddkkkiE FAP 019 whkikdimd QB 25fB] Fadwkudk YIM] whiwdkink

Mandatory zap to correct next-without—-for error occuring when CHAINBLD is
Baving a file in version 1 format and the last line starts with a /./ sequence.

Add to the end of line 126 of CHAINBLD/BAS rhe following eight characters:
:G0TO130

*kkkkdh FAP Q20 *ddhadnr RIS B1 dkwkwdwn TIM] ******tw

Handatury zap to DOS to allow ROUTE of the display to cause the BASIC PRINT of
& numeric value to net output the value twice,

8Y30/5Y5,07 ,E6 change 2B 39 CD te 28 5D CD

SYS0/5YS5,08,1F change

c9
23 7E 23 66 6F 7C BS C8 7E BB 23 20 02 7E BA 23
20 EE E5 D5 €5 7E A0 23 23 23 SE 23 56 D5 DD El
JA B3 04 D4 03 C1L D1 Bl CP 40 28 D4 BY 28 DL C%
()] :

to

cY
7E BB 23 20 02 FE BA 23 30 14 E5 DS C5 7E A0 23
23 23 RE 23 56 D5 DD El CD D4 03 £1 D1 El CB 40
28 02 BT CO 23 FE 23 66 6F FC B5 20 D3 C3 F8 4C
Ch :

5Y50/5Y¥5,10,08 change _ _
€9 00 00 00 00 00 00 OCG 0O to C9 CB 40 CO 79 C2 A4 4B 0CG

5Y514/8Y5,02,74 change 43 00 00 43 .tD 43 FC &C 43

*EkrHERE FAP ugln******** 0B/ 28/ Bl #kwkikks YIM] dhkkidik

Mandatory zap to BASIC to correct error during marked item and fixed item file
proceesing causing strings preater than 127 characters te be written errone—
‘ously and IGEL expressions of the. form (len)# end (len}$ to malfunccionm,

13-7 ' ZAPS (PATCHES)

BASIC/(MD,11,18 change CI*El 6} 79 DD to €D D4 65 0D DD

BASIC/CMD,14 ,DD change
00 DO 00 00 00 00 00 to C5 CD E1 61 79 C1 C9

dkkhkdkn ZAP (122 dk¥kkrkxk (8728/81 R—— VIM] #kwkkhkh

Mandatery zap to EDTASM to cause the cursor display to be feorced every time the
* prompt is displayved, waiting for the next command. This allowe the cursor to
be turned back on after & return from the DEBUG 123 fumctiom, which turms it
off.

EDTASM/ CMD,05,12 change €D 39 59 DE te CD 00 57 OF

EDTASH/CMD,0(3,14 change
40 7D E6 3IF CD 11 CO FF 1% C% to 40 €D 39 59 3E OFE ©3 39 5% C9

dkhkkkkin TAP (23 Fkkkkkik DR 2Bf81 *ikidkdk PIH] Fhiekidk

Mandatory zap to DOS to ease agme of the problems caused by the fact that
NEWDOS/B0 Version 1 alwsys used a granule lockout table in the directery GAT
sector whereas Version 2 many times doea not, leaving that part of the GAT
gector for use by the extension for the freefallpcated table. Farly in the
development of Version 2, the rule was that if the PDRIVE specification for GPL
vag greater than 2, then the lockout table was not used. Later on, the rule
was changed to be if the number of limps ia greater than 60H (%6 decimal) or if
relative byte 60H of the GAT sector = OFFH, then the lockeut table ia mot used.
Some code in 5YS6 was not changed to reflect this rule change, cauaing either a
lock out table to not be created or to not be properly extended when the
destination diskette has more granules than the source diskette. This change
corrects this. However, users are warned that diekettes with GPL greater than
2 (such as 8 inch or double sided, single density 5 inch diskettes coming from
Version 1) converted previcus to this zap may have trouble with DIRCHECK, on
either Yersion 1 or 2, complaining that one or more granules are locked ocut but
free or locked out but allocated to a file. The diskettes can still be used as
it ie .only DIRCEECK that has the problem, but socner or lster the diskettes
should be re—copyied using CBF with FMT so this lockout table confliet will be
etraightened put and DIRCHECE will stop complaining.

8Y56/58Y5,10,04 change
JACAS9Y PE 02 CO 7D te 3A C6 59 FE 61 DO 7D

Fkxkkdkh TAP (04 whdiokwkd D873 H] whakkddkw YIM] skdrkderd

Mandatory zap to DOS to:
1, Correct error in format 5 and & COPY where destination verify error
wad causing erronecus ERD OF FILE ENCOUMTERED or IKPUT PAST ENPR error to
be triggered for the next sector.

* ZAPS (PATCHES) ' 13-8

4, When the COPY command completes succeshfullg and the system has
returned to KREWDOS/ 80 READY, mount the destination diskette on drive 0 and

press RESET., The NEWDROS/80 system on that double density, single sided
diskette is now the system.

3. Perform a DIR 0 command to ascertain the extra grapules are avail-
able. Then execute PDRIVE,0 to observe that the specificatioms for
drive (0 are noew single sided, double density with track 0 reserved for
oppesite density. Please note that the specifications for drives 1
through 9 have not been changed. If they are te be changed, you must da
it, studying carefully the PDRIVE command, see sectiom 2.37

2. To make a doubie sided, single demsity NEWDOS/80 Versiom 2 system diskette.

1. Make a copy of the NEWDDS/80 Verzion 2 master diskette, When done,
mount thabt copy of the NEWDCS/B0 Version I asyatem in drive 0 and press
RESET. '

2. Execute the following POS command:
PDRIVE,0,6,TI=A,T=C,TC=40 ,5PT=3{

This changes the specificatjons for drive 6 to be 5 inch, single sided,

gingle demsity, 40 tracks. If you wieh other than &0 tracks, change the
TC parameter above to the desired track count,

3. Plzce a write protect tab on the system diekette you have just
changed.

4. Execute the following comnand
COPY,0,0, ,PSD,FMT,DPDR=5

The source and system diskettes are the same and are the one with the
write protect tab. The deatination diskette is the one to contain the
double sided, single density NEWDOS/30 Version 2 system. If you have two
drives available, you may use COPY,0,l,,USD,FMT,DPDR=6 instead. The
destination must be on drive 1 if it is to have more than &} tracks (when
the COPY is finished, that drive can be made drive 0},

%, When the COPY command has completed successfully and returns to
MEWDOSf 80 READY, mount the destination diskette in drive 0 and press RESET
to bring up the double sided, single density system. Perform DIR Q. and
PDRIVE,0 as discussed above to observe the chanpged system., Proceed with
additional PDRIVE re—specifications, if necessary.

3. To make a double sided, double density NEWDOSf80 Version 2 system diskette, -

l. You must have an excellent working Percom or LNW double density
interface in your expansion interface,

2. Proceed as for single sided, single demsity discuseed above excepting.
that the PBRIVE command i3

13~11 : ZAPS (PATCHES)

PDRIVE,0,6 ,TI=CK,TD=G,TC=39,5PT=36 ,CPL=2 , DDGA=2

Thie is for a 40 track drive, for 35 use TC=34, for 80 use TC=79.

Further: '

1. For a destination drive more than &) tracks use GPL=8 and you
will probably want an expanded directory, say DDGA=6 for maximum
size, giving 2124 directory entries. However, if any of GPL, DDSL or
DDGA are different between the source and destination drives during
COPY or if the nuwber of sectora, granulea or tracks for the destita-
tion diskette ip lese than the source diskette, the CBF {Copy By
File) parameter must be specified in the COPY coumand (example:
COPY,0,0, ,USD,FMT,DPDN=6,CRBF }. S0, in the case here for drives
over &0 tracksa, since the GPL is different {(the source's GPL is 2 and
the destinstion's GPL is now 8}, you must use the CBF parameter.
Actually, you could have used the CBF option in any of the COPY's
mentioned above in this zap, but CBF runs slower and should only be
ueed where necessary.

2. For LNW interface, you can specify TI flag E instead of flag C
{example, TI=EE instead of TI=CK)(if any 8 inch drives are to be uaed
with the LNW, E must be specified instead of C). However, remenmber,
flaga E and C are interdrive mutually exclusive; so if you change ome
of the 10 drive apece from using flag C to using flsg E, you must
change any of the othera that use flag B or C (eee next section).

4, Usere setting up their systems to use the 8 inch drives through the OMIKROH
interface (TI=BH) are experiencing trouble with the PDRIVE error code Weé¥% TIx
SPEC BETWEEN DRIVES IRCOMPATIELE, Please refer to the last two sentences of .
the TI=typel paragraph in the middle of page 2-34. 1If any drive's TI epeci-

-fiep flag B, then no cther can specify either flag © or B. You must change the

PDRIVE specificationa for drives 4, 6, B and 9 as they conflict with flag B.

To do this, eimply execute the DOS commands

PDRIVE,Q ,4=0
PDRIVE,D ,6=0
PDRIVE,D ,8=0
PDRIVE,D ,9w=0

Remember, you sbould not make any PDRIVE changes to the NEWDOS/8} Versiom 2
master diskette; perform the changes om werking copies of it,

kkkkhdkk FAP (30 dkkkkkdk GOGF0278] weRkRkak YIM] krdiokkks
Inforeation only.

1. Chapter 12 failed to make it clear that though diskettes are content

interchangeable under NEWDOS/80 Version 2 between the Model I and Medel IIT,

there is a2 problem dealing with a format control byte for directory sectors of

single density diskettes. Carefully read SYSTEM options. BK and BN (even though

you have only Model ITI} on page 2-49, WRDIRY command on page 2-52 and the W _
function of DIRCHECE on page 6-l4. .

ZAPS (PATCHES) 13-12

1. For Model III NEWDOS/SO Version 2 users, single density diskettes
coming from the model I can be processed on the Model III by setting
SYSTFM option BK=Y, setting up the proper single density PDRIVE and then

for each such diskette, execute once either the DOS command WRDIRP or the

W function of DIRCHECK. After this is done, the diskette can be used as
any other diskette under Model III NEWDOS/80 Version 2. Subsequently,

this diskette can not be processed by the Model I TRSDOS 2.3, but it can
be processed by the Model I NEWDOS/80 Version 1 provided the format of the

diskette is not changed to one of the variety of formats available on

Version 2 but not available on Version 1). However, once this diskette is

used back on the Model I NEWDOS/80 Version 1 and a directory sector is

updated, the diskette cannot be reused on the Model IIT without performing

again the WRDIRP or DIRCHECK function on that diskette on the Model IIT
(remember, NEWDOS/80 Version 1 does not have either of these two
functions). '

9. For users that have NEWDOS/80 Versiom 2 for both the Model I and III
.and wish to use single demsity 5 inch diskettes interchangesbly between

_the model I and model III, set SYSTEM options BK=Y and BN=Y on the Model I
and BK=Y on the Model IIXI., Then, for each such single density diskette,

execute once either WRDIRP or the W function of DIRCHECK. This can be

done on either the Model I or III and all such diskettes do not have to be
done at the same session. Each such diskette can now be used interchange-

ably between the Model I and Model III under NEWDOS/80 Versiom 2 (don't
forget the proper PDRIVE specifications), but the diskette cannot be
processed by TRSDOS 2.3 ' '

2. TFor BASIC function RENUM (see section 7.9 on page 7-5) the 4th and 5th

formats listed (RENUM X and RENUM U,X) are not valid and should be deleted

from the middle of page 7-5. If the X parameter is to be used, it must be

done via the lst format listed as X is meaningless unless specific values for

ppppp and/or qqqqq are also specified.

3. Some users have asked for more distinctions between full diskette COPY
(format 5) or Copy By File COPY (format 6), both specified in section 2.14.

1. Format 5 copies a full diskette sector by sector and is generally.
faster than format 6, which copies files individually. However, if the
source diskette is relatively empty, format 6 may be faster. '

2. In format 5 the source directory becomes the destination directory,
including the same size and relative sector position on the diskette,
while in format 6, the two directories are considered separate just as in
a format 1 through format 4 COPY. :

3. Generally, if format 5 is used, both the source and destination PDRiVE
specifications for GPL, DDSL and DDGA must be the gsame (though only the ~

restriction on GPL is enforced, but not if BDU is specified); the other

PDRIVE parameters may be different provided the destination diskette is to

have atleast as many sectors as the source diskette (though the format 5

specifications say that sectors pe¢ track must be the same; this is not so

in Version 2 where it was in Version 1).

13-13 zAPS (PATCHES)

4, Format 5 with the BDU option allows some alien diskettes to be copied
that otherwise could not be copied.

5. Format 6 allows a diskette's contents to be copied between diskettes
having a different number of granules per lump (GPL), the directories
positioned differently on the diskettes, the directories of different
sizes, or the destination diskette having less sectors than the source.

6. Format 6 copies all of a source diskette's files or a selected subset
of those files.

7. Both format 5 and 6 allow the option of formatting the destinatjon
diskette (FMT) or not (NFMT). Formatting s diskette magnetically init-
inlizes the entire diskette including the inter—sector comntrol bytes used
only by the drives and the controller. Many users prefer to do this
everytime a back up is done. Of course, formatting a diskette destroys
the previous contents.

8. If format 6 is being used to copy a NEWDOS/B80 Versxon 2 system disk-
ette, the FMT option must be specified. Thie assures the correct BOOT,
SYSTEM and PDRIVE control informat is stored on the destination diskette,
and the correct positioning of SYSTEM files which, excepting for BOOT/SYS
and SYSO/SYS, are all positioned on the destination diskette in same posi-
tion relative to the directory that they are on the source diskette.

9, In format 6 where RFMT is specified, system files are NOT copied to
the destination diskette if they are not azlready existing in the
destination directory. This is because system files usually use specific
FDEs in the directory, and only FMT can assure that these FDEs are
available.

10. Format 5 without BDU and format 6 with FMT both assume the possi-
bility of the destination diskette being used later as the system diskette
and the destination drive or one like it being used later ae drive 0;
therefore both initialize the BOOT/SYS file to contain the proper BOOT
code and drive () PDRIVE specifications.

khkikhkk ZAP 031 wdddaiokx 09706/ 81 dikkhkikk V2M] dkhkikkn ,
Mandatory zap to DOS to allow files to be copied from and to diskettes used by
Model I TRSDOS 2.3B and higher as well as from and to diskettes used by Model
IIT TRSDOS 1.3 or higher. After applying the documentation changes given

below, see section 12.5.1 on page 12-7, the 'flag M' paragraph on page 2-35
and the bottom half of page 2-15.

This enhancement expands the definition of PDRIVE TI flag M (see page 2-35).
When the M flag is specified and the TD field specifies double density (i.e.,
TD=E), the PDRIVE specification is assumed for a Model III TRSDOS diskette and
TI flag I is implied (see example 3 on page 2-38). When the M flag is
apecified and the TD field specifies single density (i.e., TD=A), the PDRIVE
specification is assumed for Model I TRSDOS 2.3B or higher diskette, and TI

'~ flag I is not implied and must not be epecified (see example 1 om page 2-38
with TI=AM).

ZAPS (PATCHES) 13-14

Radic Shack has started distributing certain new programs {(i.e., COBOL) with or
on Model I TRSDOS 2.3B or higher diskettes with that system being somewhat
different than Model I TRSDOS 2.3, including the use of RBAs as discussed in
section 12.1 for the Model III. These diskettes are NOT compatible with
NEWD0S/80 diskettes, and, as with Model II1 TRSDOS diskettes, COPY is the omly
function of NEWDOS/80 that can be used with the Model I TRSDOS 2.3B diskettes
(though FREE and DIR (except EOF and special flags)} appear to work).

Files on either Model III TRSDOS or Model I TRSDOS 2.3B diskettes that are to
be used either by NEWDOS/80 or user programs executing with NEWDOS/80 must be.
copied to NEWDOS/80 diskettes. FORMAT or COPY with FMT option cannot be used
to format a diskette in either the Model III TRSDOS or the Model I TRSDOS 2.3B
format; however, format 5 COPY with the BDU option can be used to make copies

. of those diskettes.

ZAP 013 must NOT be installed in a NEWDOS/80 to be used to copy Model I TRSDOS
2,38 files. ZAP 013 must be used for Model III TRSDOS l.l & 1.2 diskettes.

Insert the following notes in the outside margin of the specified paragraph:

1. Page 2~9, next to last paragraph: "Fof Model III TRSDOS and Model 1
TRSDOS 2,.3B diskettes, see ZAP 031."

2. Page 2-15, "The COPY command" paragraph: "This section applies also
to standard 35 track, single sided, single density diskettes for Model I
TRSDOS 2,3B or higher."

3. Page 2-15, "The user must" para: "See examples 1 and 3, gection 2.37",

4. Page 2-35, "Flag M" paragraph: '"Expanded to include Model I TRSDOS
2.3B or higher diskettes. See ZAP 031

5. Page 2-38, example }: '"For Model I TRSDOS 2.3B diskettes, use TI=AM
(see ZAP 031)." Also in this same paragraph, change the last two words to
read "option BN" 1nstead of AN. .

6. Page 12-7, paragraph 12.5.1: "See ZAP 031."
$YS6/8Y5,00,7D ~ change CD B3 63 21 to CD 96 5C 21

5Y86/8Y5,15,5C change

00 00 00 00
00 00 00 00 00 00 00 00 0G 00 Q0 Q0 00 00 00 GO
00 00 00 00 00 00 OGO 00 00 00 Q0 00 00 00 0D 00
00 00 00 00 00 00 Q0 00 ¢O 00 00 00 00 00 00 00
00 00 00 00 00 00 00 0O GO0 00 0C 00 00 00 00 00
00 00 00 00 00 GO 00 00 GO 00

to :)

: CD B3 63 3A
BE 59 47 3A B9 59 4F 3A CC 59 57 3A C7 59 5F 79
‘A3 CB 6F 28 06 78 AA OF DA 47 67 78 CB 69 20 04
CB 6B CB 74 OF D8 21 5B 5B 22 F7 55 21 Bl 5B 22
5D 5B 21 00 5C 22 61 5B AF 32 7F 61 67 6F 22 BF
61 22 B5S 58 3E 18 32 2p 61 C9

13-15 - . ZAPS (PATCHES)

S8Y56/5Y5,22,6B change CD B3 63 CD to CD 96 5C CD

SYS16/5YS,01,F8 change 05 28 02 3E 03 CD te 05 00 C4 8D 51 CD ‘

8YS16/5YS,02,AF change
CBEIDD7EQO5 FE(C6 CO to CB 43 3E 06 C4 87 51 CO .

SYS16/SYS,04,94 change
00 00 00 00 00 00 00 00 00 00 0OC 00 00 00 00 |, to
00 CB E3 DD BE 05 C9 DD CB OF 56 C8 3E 03 C9

fdkkdkdk ZAD (32 kkkwkkkk (19/10/ 81 dkdkdkhr Y2M] dhkdkkdkkd

Mandatory zap to DOS to:
1. prevent COPY from setting file update flag on in Model I TRSDOS 2.,3B
and Model III TRSDOS diskettes when that bit is used differently in those
systems,

2. enable /ext type CBF file selection when the source is a Model I TRSdos
2.3B or Model III TRSDOS diskette.

SYS6/5Y$,10,83 change €3 39 44 DD to C3 E4 5C DD
8YS6/8YS,15,A4 change

00 00 00 00 00 00 Q1 00 EA 5C 00 00 00 00 00 00 00 00 to
3A 0C 43 CB 6F 28 01 00 EA 5C 04 DD CB 02 EE C3 39 44

5YS6/8Y5,16,F0 change 61 20 OD 3A 9% 59 CB to 61 3A 96 59 20 0A CB

r— TV . 09/10/81 **kkkiokk YIM] ik

Mandatory zap to correct error in SUPERZAP during the DM function and during
the F, find functien. '

SUPERZAP/CMD, 00,11 change
00 00 00 00 00 00 GO to 6B 63 4B 22 C3 54 €9

SUPERZAP/CMD,05,0B change 00 6B 63 48 CB to 00 CD 0D 52 CB

*kkkkkkk ZAP (34 dkkkkkdi (39/11/81 wkdkkkdok YIM] o ——

Mandatory zap to the Ryan-McFarland Corp's COBOL version 1.3B distributed by
Radio Shack to allow it to run with NEWD0S/80 Version 2 for the Model I and
Model IITI. This zapped version will not run under TRSDOS. Users must copy the
COBOL multiple files onto NEWD0S/80 diskettes (eee zap 031). '

RSCOBOL/CMD,99,7D change 44 24 3E 40 49 to 44 82 27 44 49

ZAPS (PATCHES) _ 13-16

RSCOBOL/ CMD, 99 ,CF change 44 13 IF 44 to 44 82 27 44

RUNCOBOL/CMD,115,82 change
44 3E 40 49 40 24 17 to 44 27 44 49 40 82 17

RUNCOBOL/CMD,115,99 change
02 1F 44 11 44 13 0A to 02 27 44 11 44 82 0A -

*dekdkokkd ZAP (35 wkwkkkdk (09713781 *hkkikidk YIM] Fhkkkikk

Mandatory zap to DOS to correct a directory clobbering error that occurs when .
either CLOSE or KILL frees up & FPDE or FXDE that occupies the first FDE slot
in a directory sector. This error was missed during BETA testing as it was
caused by a late adjustment to handle the TRSDOS Model I1II diskettes, A few
persons were complaining about directories being clobbered, but omly on
September 12Zth was an error report made that lead to the discovery. Though the
problem would appear to affect many users, apparently to date it has not.

8Y53/8Ys,01,¢CC change
00 7D D6 17 BB 30 1D to 00 7B C6 16 BD 38 1D

Rhkkddkk ZAP (36 %kkddkrk 09/13/ 8L *kkkkwsk YIM1 Kkdkkkkw
Information zap.

l. Documentation correction for EDTASM, Tape I/0 is NOT available for the
Model III. If it is attempted, BAD PARAMETER(S) error will be given.

1. Place in the outside margin of the "2. L T=nnnnnn" paragraph of page-
- 6-15 the following restriction: "Model I only"

2. Place in the outside margin of the 2nd line of page 6—16 of page 6-16-
the following restriction: "Model I only"

2. Correct the "A list of all" paragraph on page 1-3 to read "NWD80V2/ILF and
NWDBOV2/XLF" instead of "NWD82V2/ILF and NWD82V2/XLF". - .

3. Delete the words "sectors per track, " from the "Format 5 is a full"-
paragraph of page 2-11. '

4., The MM=addrl function of ROUTE requires the main memory location addrl to
be greater than 51FFH. In the "Any of the devices" paragraph of page 2-43,
1nsert the words "greater than 51FFH" after the word "location” in the phrase
"memory location of a user",

13-17 . ZAPS (PATCHES)

*hkxkkxk ZAP (37 ddkwakak 09/14/81 kdwkkkix yIML Fkdkkdokk

Mandatory zap to BIONIC BASIC to make it compatible with NEWD0OS/B0 Version 2
for the Model I. These zaps were provided to Apparat and have not been checked
out by Apparat. One or more of the zaps may already be installed in your
modules, When these zaps are applied, the BIONIC BASIC must not be used with
any other version of NEWD0S/80.

FIREU?/CHD 02,51 change 3A 31 0D to 3A 30 OD
,04,90 change 21 86 63 22 to 21 FC 61 22
" ,05 3c change 40 09 5801 to 40 FF 57 01
" ,05,40 change 05 28 65 to 05 86 65
" 505,4E change 05 30 5F to 05 8E 5F
" ,05,55 change 05 60 5F to 05 BE 5F
" ,05,5C change 05 CF 64 21 to 0S5 2b 65 21
" ,05,63 change 05 BE 64 21 to 05 1C 65 21
" »05,6A change 05 95 64 to 05 F3 64
INSTALL/CMD,01,0D change 3A 31 0D to 3A 30 0D
H ,01,4F change 44 CB FE to 44 C9 FE
REMOVE/CMD,01,12 change 3A 31 0D to 3A 30 0D

"o ,01,54 change 44 C8 FE to 44 C9 FE

Akkkkkx ZAP 038 hkkkkdik 09/14/8] wkdkidnk YIMD dkkhhkak

Optional zap to Model I SCRIPSIT to eliminate the 'hang' occuring when the END
function is executed and the last disk I/0 was to a double demsity drive.
SCRIPTSIT executes the END function by jumping to location 0, causing a
software but not a hardware RESET. The double demsity modifications to the
expansion interface require a hardware RESET to reset them to the single
density disk I/0 assumed by the software RESET in the ROM. SCRIPSIT uses the
RESET to restore the keyboard, display, printer and other interfaces it has
changed. If the 2-80 HALT instruction is executed instead of a jump to
location 0, the Model I (this does not hold for the Model III) hardware RESET
is triggered which in turn triggers the software RESET. In both cases, either
the jump to 0 or the HALT, the red lights om the disk drives must be off. The
zap ie applicable under TRSDOS as well as all versions of NEWDOS.

SCRIPSIT/LC,19,E3 and SCRIPSIT/UC,19,E3
change 6F C3 00 to 6F 76 00

kdkkhdkhk ZAP (039 Rhwkkkkk (0/24/8] dkkkkkkk YIM] dkdkikix

Mandatory zap to PENCIL to enable it to run with NEWDOS/80, version 2. This
zap is an extension of zaps 002 and 026. We apologize for the large number of

zaps to PENCIL, but Apparat doen't use PENCIL and so must rely upon the users
to find the discrepancies.

. PENCIL/CMD,03,25 change 53 36 A0 Cl to 53 CB FE Cl’

ZAPS (PATCHES) ' 13-18

*hkdkkdkk ZAP 040 *dwkkkkk 09729781 Fkkickkkk YIM1 *hkhkkkx

Mandatory zap to DOS to correct rare occuring error that could, if the same HIT
code is used more than 31 times in a2 directory, cause file open to not find a
file and to put two files with the same name/ext on the diskette.

8Ys2/sYs,01,CB change FE CD 28 te FE CC 28

*kkkkktk FTAP 041 kkkkikkik 09/29/81 kkkhkhkik .VZH}_ kdkkk ik
Information and manual corrections.

i, A number of users have had trouble with tape I/0 under NEWDOS/B80 Version 2.
Some of the early copies of NEWDOS/80 Version 2 had errors due to undetected
RAM errors during duplication and in maybe as many as 20 cases this affected
the EDTASM or ILMOFFSET module. However, if these modules were bad, they
usually also had problems with disk I/0 as well as cassette 1/0 and so if disk
1/0 works fine, we assume it is not a bad copy of NEWD0S/80. Tape I/O has long
hietory of trouble, varying from computer to computer and especially from tape.
unit to tape unit such that any particular tape will fail on somebody’s '
cassette unit. This has always been an exasperating problem and the main
reason why cassettes are not used at Apparat (though we do act as a retailer/=~
distributor for products distributed on cassettes produced by others). Because
cassettes are not used at Apparat, NEWDOS receives very little testing with
cassettes, and in the future we are considering withdrawing all support (i.e.,
IMOFFSET and EDTASM) from cassettes. Cassette support for EDTASM for the Modél
ITT has already been withdrawn and will probably soon be withdrawn for the
Model I (since the purpose of our EDTASM was to give disk support, not cass-
ette). For now though, we will restrict our error study to those problems
presented to us on a diskette containing the actual NEWDOS system used., If the
user presents us with a cassette along with the diskette we will test that as
well; otherwise we will test with simple programs from disk in-house. Neither .
the diskette nor the cassette will be returned to the user. Lastly, if you can
avoid use of cassettes, DO!JI!1 :

2. The specifications for ROUTE using the MM=addrl operand are in error im the
manual. .
1. Page 2-43, 3rd paragraph, 3rd line, change "12" to "16".
?. Same paragraph, 5th line, change "13th" to "17th".
3. Page 2-44, top line, change "OFEBCH" to “OFEYOH".

3. A number of users has asked why Automatic Density Recognltlon (ADR) was not
used in NEWDOS/80 Version 2. We wanted to included ADR but found it
impractical unless we limited or expanded other capabilities made available by
PDRIVE. Since we were already two months late in releasing Version 2, we
decided to release without it. Part of the problem is in providing a second
SPT parameter and an extra indicator for track 0 useage (remember, Version 2
operates with double density diskettes that may or may not have track 0
reserved for single density). We also felt that if we included ADR, we should

13-19 . ZAPS (PATCHES)

also include ASR (automatic side recognition). For now, we will remain without
ADR and ASK, but will not rule it out for a subsequent NEWDOS/80 version.

4. For BASIC CMD "0" and multi~dimensional arraye, a few users have asked for
clarification of term REN used in the documentation for on pages 7-14 through
7-17. CMD"Q" does not care whether an array is single or multi-dimensional as
CMD"0" only concerns itself with the relative positioning in main memory
between array elements and not with the actual subscripts for a given element,
éxcept for determining the main memory position of the first element
participating in the sort as specified in the CMD "0" statement. As an aide to
the programmer to understand the sort order, a formula was given for two and
three dimensional arrays to determine the REN of any array element given its
subscripts. The following working BASIC program demonstrates the relationship
between REN and subscripts for a three dimensional array, using Ri, R2, R3, X1,
X2 and X3 to correspond with the useage at the bottom of page 7-14 and top of
page 7-15. ' '

10 R1=3; R2=4: R3=2: DIM A(R1,R2,R3)

20 REN=0: FOR X3=0TOR3: FOR X2=0TOR2: FOR X1=0TORl ‘'CREATE ARRAY IN REN
ORDER

30 IF REN <> X1+X2%(R1+1}+X3*(R1+1)%(R2+1) THEN PRINT"ERROR": STOP

35 ' THE ABOVE ASSURES THE FORMULA COMPUTES TO THE CURRENT REN NUMBER

40 A(X1,X2,X3)=REN: REN=REN+1: NEXT X1,X2,X3 'STORE THE REN NUMBER IN THAT
ELEMENT _ :
50 CMD"0",0,A(0,0,0) 'SORT ARRAY IN ASCENDING NUMERIC ORDER

60 ' THE ARRAY ORDER SHOULD NOT HBAVE BEEN CHANGED.

70 FOR X3=0TOR3: FOR X2=0TOR2: FOR X1=0TORl 'LIST ARRAY IN SAME ORDER
STORED

80 PRINT A(X1,X2,X3);: NEXT X1,X2,X3 'AND THIS SHOULD BE ALSO THE SORTED
ORDER

Elements with one or more zero subscripts do participate in the sort if that
element is within the main memory range of elements sorted, i.e., has a REN
greater than or equal to the REN of the 1st sort element and less than or equal
to the REN of the last sort element. ' '

3. Correct the last paragraph of page 2-27 by deleting the 3rd sentence and
changing the 4th sentence to read "Hex codes less than 20H or greater than the
SYSTEM option AX value will be displayed as periods.”.

6. A number of users having CPU speed up modificatioms in their computers and
setting the slow-down-during~I1/0 switch have complained that NEWDOS/80
continuously toggles the fast/normal CPU speed state {in many cases a light
flickers on/off or red/green). Indeed this is true. In the original TRSDOS,
there were 8 interrupts, 0 - 7, of which only 6 and 7 were used. Interrupt 6
only read the disk controller status register; so NEWD0S/80, to save resident
DOS space which is critical, combined interrupt 6's function with interrupt 7,
reading the controller status register every 25 ms interrupt. Though the
fast/normal CPU toggling is interested only in the controller command register,
the hardware connection actually toggles on both the read of the status
register and the write of the command register. Normal disk I/0 cannot operate - .
without the status register read when the controller has interrupt status; so

we cannot eliminate the interrupt 7's read of the status register without .

- ZAPS (PATCHES) 13-20 .

re—enabling interrupt 6 and we don't have the patch space for that. Therefore,
users mugt turn off the switch on their computers that allows the fast/normal
toggling to take place, and simply use the fast speed all the time (be sure.
SYSTEM option BJ. is set correct1y¥. There is no guarantee that your computer
will actually work at the faster speeds. Doubling the CPU speéd seems OK; _
tripling appears NOT. The LNW computer at 2.5 times the TRS-80's normal speed
ie reported by INW to work fine.

Fadkikdk ZAP (42 *kkkkskn (09[30/81 wkwkdkkdksk YIM] hdkickkgk

Mandatory zap to correct error in BASIC's RENUM function giving SEQ # OVERFLOW
when large programs, say over 26,000 bytes of text, are renumbered. Though a
number of users .called on this problem, it wasn't until a user sent us a
written error report with the problem program on a syatem diskette that we
finally had enough to go on,

SYSll/SYS,OB,BB - change OF ED 42 DF 38 to .OF CD 9D 51 38

SYS11/SY$,04,A5 change 00 00 00 00 00 to ED 42 D8 DF C9

Fhkkkkkk ZAP 043 *#****** 10/07/8] *%kkkiks YIM] Skkkkksk

Mandatory zap to DOS to correct omision from ZAP 020 (ROUTE) whlch caused
SYSTEM optiom BA to cause hang on reset.

SYS0/SYS,00,BF change FF 00 00 00 to FF FC 4C 00

khkkdkkkk ZAP (44 hkkktkkk 10/07/81 kkkkkkik VZMII********'

Mandatory zap to DOS to disable SYSTEM option BM. SYSTEM option BM=N caused
the full diskette verify to be bypassed when the user felt the track verify
that occurred immediately after a track was formatted was sufficient. However,
if the user is formatting more tracks that the drive can physically handle, _
FORMAT with SYSTEM option BM=N will not detect the error whereéas it will with
SYSTEM option BM=Y. Therefore, SYSTEM option BM isg dropped, and the full -
diskette verify will always be done.

On the outside margin of the BM=yn paragraph of page 2-49, write the f0110w1ng'
"eliminated by ZAP 044",

SYSﬁlSYS,10,35 change _
El 3A 6D 43 CB 5F C8 3E to E1 00 00 00 00 00 00 3E

SY517/5Y5,02,55 change FE 31 7A to FE FE 7A

13-21 - ZAPS (PATCHES)

khkkkkkk ZAP 045 *kkdkkdk 10/07/81 *kdkkkkk y2Ml ********)

Mandatory zap to correct BASIC function REF§ to (1) avoid occasional misses of -
printer line advance and (2) disable printer operations after the function. ‘

SYS12/8Y5,04,BA change FE 38 30 to FE 35 30
SYS18/8Ys,03,57 change D2 B5 57 3D to D2 59 55 3D

SYS18/5Y5,03,69 change 00 00 00 00 00 to 11 45 64 D5 EF

Fhkkkkik ZAP Q46 *xkkkskx 10/09/81 *¥dkdwdkhs YIM] kkkkkkik

Optional zap to DOS to allow 'JKL' to print graphics on the EPSOM printers that
use graphic codee CAOH - ODFH. This is donme by converting hex codes 80H
through OBFH to OAOH through ODFH.

SYS3/5YS5,04,BF change 30 02 3 to 30 07 3E

$YS3/SYS,04,C8 change
00 00 00 00 00 00 00 00 to FE 80 38 F7 C6 20 18 F3

Use next zap if OBFH rather than SYSTEM option AX is to govern as high ASCII
for JKL. _
8Y83/5YS,04,89 change 47 3A 70 43 B8 to 47 00 3E BF B8

dkkdkdkk ZAD (47 *kxkddkk 10/21/ 8] dhdkddiok YIM] ks

Mandatory zap to correct DOS handling of 8 inch, double density, single or
double sided, single volume drives (PDRIVE TD=H)} where the computer hardware is
modified to handle double CPU speed and 8 inch, double density, single or
double sided, single volume operations. The PDRIVE SPT maximum values are 30
for single sided and 60 for double sided. The PDRIVE GPL must be atleast 3 for
single sided and atleast 5 for double sided; however 8 is recommended in both
cases. This zap does NOT mean that your particular computer can handle this
type of drive., However, LNW reports the LNDOUBLER 5/8 (CPU speed up
modification required) and the LNW80 computer systems both support 8 inch
double density under NEWDOS/80, Version 2 (also see zap 04l part 6).

SYS6/SYS,27,BD change E6 41 DD to E6 Cl DD

5YS6/5Y8,31 F5 change :
34 0A 26 0A 86 01 9C 27 44 00 to 13 0A 14 QA 53 01 BA 27 26 00

SYS16/SYS,04,2D change 12 1A 24 34 82 to 12 1E 24 3C 82

ZAPS (PATCHES) ' 13-22

Fhkkkkkk ZAP 048 ®xkxkikk 10/21/81 AP—— VIM] ®kdekdddk

Mandatory zap to EDTASM to correct error occurring when shift-left-arrow is
used to erase a filespec response. . :

EDTASM/CMD, 31,00 change :
58 C5 CD 2F 59 E1 E5 3A AA 53 F5 OE Ol CD 47 5B F1 32 AA to
58 D5 C5 CD 2F ‘59 E1 06 1F CD 40 00 DA D7 58 D1 7E C9_AA

dkdkkkikk ZAP 049 *hkkkikk 11/09/81 %hikswik YIM] *hkkkkkk

Mandatory zap to DOS to correct error in DIR $§ or DIR $0 command where DOS .
hangs if any response other than ENTER is given to the diskette mount requests,

SYS8/5YS,02,B8 change 20 FC ¢ to 20 FS C9

kkkkkkkk ZAD (050 fokkikkkk 11/09/8] dkswkikk YIM] khkikkik

Optional zap to DOS to allow the DOS PRINT and LIST. commands to accept all
 control characters in the hexidecimal range 00 to 1F instead of just OD (end of
line). 1If this zap is used, users must assure that files used with PRINT and
LIST do not contain control characters the display or printer cannot handle,
Remember, the high bit of all characters is zeroed, thus display graphic
characters 80 ~ 9F will be transmitted as 00 - lF. :

SYS14/8Y5,04,5A change 20 DO FE to 20 C9 FE

dkkkkkkk ZAP (5] *wkddhkk 1]1/09/8] kkdhhkin YIM] kkwkkiik
Information zap.

1. Users must remember that the Model I TRSDOS 2.3B or higher and Model III
IRSDOS 1.3 or higher, amongst other things, both went to using RBAs in the NEXT
and EOF fields of the FCB, thus intentionally or unintentionally restablishing
compatibility with NEWDOS21 and NEWDOS/80 in the use of those two fields (which
many user programs use), even though the EOF fields in the directories (which
most user programs don't use) are now incompatible. Though files from those

systems must be copied to NEWDOS diskettes, assembly language programs upgra@ed-ﬂ'z

to run with those TRSDOS systems are more like to rum with NEWDOS without -
change then they were before. For example, on the Model III, SCRIPSIT Versiom
3.2 has been found to work as-is. S§o, before calling Apparat to see if zaps
exist for a given program, try it out, giving special attention to the file
1/0.. : '

2. The manual failed to explain that when SYSTEM option AJ=N or when the
up-arrow key is held down during reset/power-om, DOS loses the ability use the
lower case driver (Model I only) or to actually input keyboard ¢hagacters from
the chain file during chaining as these functions depend upon DO8's keyboard
_intercept routine being enabled. SYSTEM options AU=N and BF=N' {Model I only)

13-23 - “2APS -(PATCHES)

and are also forced. DOS will think it is activating chaining, but actually
the input characters will continue to come from the keyboard; the DOS READY
prompte will not be seen as DOS thinks it is chaining. For LCDVR (Model I
only), the command will execute but the key input functions for lower case
drive will not be done. Imsert the note "see ZAP 051, part 2" in the ocutside
margin at the following places in the manual.

1., Page 2-7, the "CHAINING is discussed" paragraph.

2. Page 2-29, the "In NEWDOS/80" paragraph.
3, Page 2-47, the "AJ=yn" paragraph.
4, Page 4-9, the "If a DOS recognized" paragraph.

3. Chain files must always have a name-extension. When creating a CHAIN file,
you must always specify a name—-extemsion in the filespec, excepting that
CHAINBLD/BAS will assume name extension /JCL if you don't give one. If the
filespec given in a DO or CHAIN command does not specify a name—extension, then
/JCL is assumed; therefore it is recommended that the name~extension /JCL be
used on chain files when created. Place the note "See ZAP 051, part 3" in the
outside margin in the following places in the manual.

1, Page 2-7, the "When the system" paragraph.

2. Page 4~8, the "Chain file creators" paragraph.

4. For Model I SCRIPSIT where the user wishee to use tape I/0, the user must
back off the last zap of ZAP 003 (the SCRIPSIT/xx,00,C3 zap) in order that
interrupts will remain disabled, a requirement for Model I tape I/0. This
means the user cannot invoke MINI-DOS from SCRIPSIT.

wkkiokddek ZAP (52 kkkkkkkk 11709781 dkkdkdkdk YIM] ddkiokkhdk

Mandatory zap to BASIC to correct CLOSE without explicit fan(s) where filearea
2 and up was not being closed if filearea 1 was not open and the V parameter
was specified in the BASIC invocation sequence.

BASIC/CMD,08,C8 change 66 11 2D 01 7E to 66 CD DB 65 7E

BASIC/CMD,14,E4 change 00 00 00 00 00 to ED 5B C5 64 C9

*hkkkkkt ZAP 053 Ftekdk Rk 11/09/81 *idkkihks YIM] *hkkkickk

Part mandatory and part optional zap to MICROSOFT's BASIC compilier Versiom
5.23 (the release Version for a long time){the first line a /LST file created
by the compilier gives the compilier version number) to allow it to run with
NEWDOS/80. This zap has been provided to Apparat by MICROSOFT and if there are
questions with this zap, please contact MICROSOFT. Once these zaps are '
applied, this compilier and the compiled programs camnot be used with TRSDOS!I!
Future enhancements to the compilier may require the optional changes below to
be backed off; therefore users should maintain copies of the compilier (1) as .
it existed before the mandatory changes below were applied, (2) after the

'ZAPS (PATCHES) 13-24

mandatory changes but before the optional chenges below are applxed and (3) the
final result. Also, remember, the BASIC compilier's LSOICHD 18 not for use
with FORTRAN assembler, etc., but only with BASIC.,

The production of this zap required a large amount of research and testing by
" MICROSOFT, and APPARAT sincerely thanke MICROSOFT for this extensive effort to
make the BASIC compilier operate with NEWDOS/80, Versiom 2.

*kkkhk Mandatory section
BRUN/CMD,10,1D change 46 0B 70 to 46 00 70
wkkikkd Optional section

The following optional zaps are for:
1. The LOF function is changed to work like NEHDOSISO, rounding up the
returned value if EOF is not integer divisible by the logical record

length used in the OPEN statement. Further, if the result exceeds 32767,
BAD RECORD NUMBER error results.

2. PUT and GET without explicit record number works correctiyf

3. LOC functions correctly for the logical record length in the OPEN
statement,

DIR/SYS,xx,yy Search the directory for BRUN/CMD's directory entry, the

associated line on the SUPERZAP display should look something like this:
1020 0062 0042 52 55 4E20 2020 2043 4D44 ...b,BRUN....CMD

change the 62 (the 4th) byte to F6.

BRUN/CMD,40,4A . change
21 GC 00 09 5E 23 56 EB D1 Cl C9 CD to
DD 21 6E 8A CB 23 DD 19 C3 2E 8A CD

BRUN/ CMD, 40,63 change 00 C3 AD 79 El to 00 C3 37 8A El

BRUN/CMD, 40 ,B3 change C5 21 0C 00 09 to C5 C3 00 8A 09

BRUN/ CMD, 40 , CE change 1B 42 4B to CD 11 8A

BRUN/CMD,42,7F change CD 17 58 to CD 1B 8A

.BRUN/CﬁD,56,S4 change 02 02 00 52 {the rest is immateri#l)
to

: 016D 008A CB23 DD21 6E8S8A DD19
DD5SE 00DD 5601 €317 7ADD 7300 DD72 0118
424B C9C5 CB21 DD21 6E8A DDOY DD70 00DD
7001 Cl1C3 1758 DD6E 00DD 6601 DI1Cl C9C5
DDE1 DD6E QADD 660E DDSE OFDD 4E0QB AFBY
281D AF06 18ED 6ACB 1317 9130 0181 3Fl0
FAED 6AB7 2801 23D1 CICB 7CC8 C39A.7D6C
6318 F402 0200 52

L80/CMD,00,74A change 00 8A 22 to 00 8B 22

13-25 o - ZAPS (PATCHES)

Note, the above zap to L80/CMD changes the default data address for compilied
BASIC programs from 8AOOH to 8BOOH to allow an extra 256 bytes for BASIC system
use. If the -R switch is issued during the linking process, the -D switch must
be reset to BB0O0 1nstead of 8A00 as mentioned in the comp111er manual.

AkkkkAxk ZAP (54 Rkkkkakk []/]10/8] *hFkkkhd YIML Sokdikdnk

Mandatory 2ap to EDTASM correct error in object code write to-taﬁe where
checksums were being computed wrong. The NEWDOS/80 author apologizes to the
ten or so persons who complained of this error over the last 4 months.

EDTASM/CMD, 27,30 ~change CD A9 70 03 to CD 8B 72 03
EDTASM/CMD,31,12 "change AA 53 36 00 E1 7E to FS5 CD A9 70 Fl C9

dekkkdkkk ZAP (055 dkkkkkkk [1/19/8] dkkkkxkk yIML Sk

Optional zap to DOS to allow the PATCH LC keyboard modification to work with
NEWDOS/ 80 Version 2.

8YS0/8Y5,02,34 " change
_ 2E 36 01 01 38 16 FF QA SF AE 73 A3
20 OD 7A C6 08 57 2C CB 01 F2 4A 45 AF 18 QF 5F
to
_ 2E 35 01 80 38 16 F7 7A C6 (8 57 2C
CB 01 OA 5F AF CB 79 20 15 7B AE 73 A3 28 EC 5F

*i****g* ZAP (56 *¥ikkikk 11729781 wkdkkkdkic YIM] #Hxdkkadkk

- Mandatory zap to DOS to allow COPY with CBF option ﬁo'allpcate space on Model
IIT TRSDOS diskettes beyond track 23.

SYS6/5YS,25,F0 change CD B2 4C DD to CD F2 5C DD

Y6/5Y$,15,BC change
00 00 00 00 00 0G 00 G0 00 00 0C 00 00 Q0 00 00 00 00 - to
DD CB 02 6E 28 04 DD CB 07 46 CA B2 4C 3E 03 C3 B4 4C

*kkkkkhk ZAP (157 wkwkkwkdk 11/2G9/81 TkFRRRTE YIM] Rkdikkok

Mandatory zap to DOS to correct directory errors created during format 5 COPY
when copying to a destination diskette that is to contain more granules than
the source diskette and when the source diskette has less than 61H (97 decimal)
lumps and the destination diskette is to have more than 60H (96 decimal) lumps.
- In NEWDOS/80 Version 2, in order to allow a maximum of COH (192 decimal) lumps
in the granule allocation table, that table (normally in 00 -SF of the GAT
sector) expands into and supercedes the granule lockout table (normally in 60
-BF of the GAT sector. This error was leaving the GAT granule lockout table in

" ZAPS {PATCHES) : 13-26

existence in the destination directory (remember, it is transferred over from
the source diskette in format 5 COPY) when it should have been done away with
to make room for the expanded granule allocation table. The error is
immediately detectable by DIRCHECK after the format 5 COPY by the presence of
one or more BAD "GAT" SECTOR BYTE errors. Otherwise, the error is not seen
until TRACK # TOO HIGH error occurs vwhen writing to the diskette and a granule
beyond those allowed for the d1skette is erroneously allocated; the file)
getting the error will NOT have had its EOF increased to include the erroneous
sector. DIRCHECK will, in addition to the GAD "GAT" SECTOR BYTE errors, them
display EXTENT SPACE OVERFLOWS DISKETTE for that file, but since EOF does not
include that bad granule, single file COPY or format 6 COPY will still be able
to copy the file. Therefore, any bad diskettes should be recoverable by using
a format 6 COPY with FMT option to copy the contents of the bad diskette onto.
another diskette. You can then use either format 5 or 6§ COPY with FMT option
to copy it back. ’ B

This zap is large as part of SYS6/5YS is being moved to SYSl?ISYS to make more
patch area available in SY56/SYS. '

8YS56/5Y8,07,79 change 52 CD 35 55 EB to 52 C3 1C 50 ED -
8¥56/8Ys,21,85 change 3E E6 28 to 3E F3 28
SYS17/SY5,00,0C change 2A C2 81 4E 78 to 24 CO 00 00 78
$¥517/5Y¥5,03,2C through 9E was all zeroes, change to

_ CD 35 55 ED

5B C} 59 CD 84 57 ED 4B 94 59 CB 49 20 5E CD F9

56 1E 61 3A C6 59 BB 38 OE 3A BB 59 BB 30 08 1D

6B 36 FF 1D 23 20 FA CB 68 28 06 2A Bl 59 22 CE

42 79 E6 0C 01 10 00 11 DO 42 21 83 59 20 07 21
88 59 1E D8 QE 08 ED BO 2A D1 59 ED 5B €3 59 B7

ED 52 EB 38 11 28 OF 2A C3 59 3A BC 59 CD B4 4C
26 42 4F CD 62 57 CD 1F 49 C2 CB 54 C3 2D 55

dkkkkkik ZAP (58 kkkdkkik 12/01/8]1 *hkdkwkkk YIM] dkkikikk

Mandatory zap to IMOFFSET to correct error occuring when a'object'code block's
load point is in the range 3¥00 to 3FFFH. :

IMOFFSET/CMD,01,36 ~ change 78 05 85 to 78 3D 85

dkkkikkhk ZAP 059 kdkkkikk 12/28/8]1 hwkkdkkk YIM] ededekdek ok
Mandatory zap to.correct 3 bytes wrong in ZAP 054 (EDTASM), if not already
corrected. The entire correct zap is given here. The corrections are to

change to two occurrences of EB in the lst part to 03 and the occurrence of 30
in the 2nd part to 31.

EDTASM/CMD,27,30 change CD A9 70 03 to CD 8B 72 03

EDTASM/CMD,31,12 change AA 53 36 00 EL 7E to F5 CD A9 70 FL G9

13-27 - ZAPS (PATCHES)

*kkdkkkk ZAP (60 *hkkkkkdk 12/28J 81 Fkddkkikk yIM1 ********

Mandatory zap to DOS to eliminate disk status register read for all interrupts
except the disk 1/0 {taking NEWDOS/80 back to the original TRSDOS way).
NEWDOS/80 read the status on every interrupt in order to eliminate some code in
the eternal quest to make more space available in SYS0. This worked fine until.
CPU speed up hardware modificatione were devised that shift the CPU to slow
gpeed for 2 number of milliseconds each time the status register was accessed.
With NEWDOS/80 reading the status register every 25 ms, the CPU was spending
most of its time at the slow speed if the user was using high speed and had set
the switch enabling low speed to be temporarily switched. Most users just let
the computer run always at the'high speed and there was no p:oblem;,however,
the SMHZ speed is very marginal in supporting I/0 thus requiring the slowdown.
This zap does not eliminate other status reads done by NEWDOS/80 (such as to
keep drives rotating if they are already rotating). Thie zap should eliminate
most of the CPU slowdowns that were occuring. This zap was long delayed as it
uges 7 of the last 10 zap bytes available in SYSO.

SYS0/8Ys,00,33 change
00 00 00 00 00 00 00 to F5 07 DC E8 47 Fl C9

SYS0/SYS,02,E7 change
3A EC 37 3A EO 37 Ol 00 FC 45 07 DC to
34 EO 37 07 CD 53 01 00 FC 45 40 DC

Cdkkkkkkkk ZAP 061 Fhkwkwwk 12/28/8] Fkkkkakk YIM] hhkkkAkk

Optlonal zap to DOS to cause DIR to actually read ENTER and BREAK from the
keyboard rather than just look at the keyboard matrix. This zap allows BRFAK
- to work for that fumetion only if the BREAK key is enabled. This zap allows
remote terminal operators of NEWDOS/80 to perform the DIR function when more

- than one display page will be involved. NEWDOS/80 was not designed to be run
from remote terminals and at many places in its code looks directly at the
keyboard matrix rather than actually accepting an input key when looking for

. BREAK, ENTER, UP or RIGHT ARROW. This zap changes only one of these
sltuat1ons, but a number of users have said they would be happy with that.

SYSB/SYS,02,94 change 0OA 16 OF CD 6B 50 CB to 0A CD 6B 50 16 OF CB
8Y58/5Y5,03,84 change

50 3A 40 38 E6 05 28 F9 OF D2 2D 40 3E to
50 CD 49 00 3D CA 2D 40 FE QC 20 F5 3E

dheofede e s e el ZAP 062 *kkkdidkk (1712782 Fikkkikk YIML dhickkkhk

Mandatory zap to DOS force the 4445H call to DOS (back up one record) to set
bit 6 of the FCB 2nd byte (disables EOF truncatlon)

8YsS0/8Ys8,08,77 change 38 31 2B 18 1D CD to 38 10 2B 18 OD CD

" ZAPS (PATCHES) 13-28

kkkkkkkk ZAP (63 hhkkkkkdr 01/18/82 *kkmumdnx YIML PE—

Information zap.

1. NEWDOS/80 V2 BASIC functions LOAD, RUN and MERGE implicitly require that
the text file being read be already in ascending sorted line number order

' whereas NEWDOS/80 Version 1, NEWDOS/21, TRSDOS, VTOS, LDOS, DOSPLUS and the

other DOS's do not. Normally, the BASIC program files are in sorted line
number order; so this difference was not noticed for some time into Version 2's
release. Some users prefer to create text files in random line number order,
relying on the implicit sort {mot in NEWDOS/BO V2) done during LOAD, MERGE or
RUN to sort the lines. These users must find some way of pre-sorting the text
filea, and since leading zeroes are suppressed from line numbers (causing line
5000 to sort before line 51), normal sorts won't work. The following sort
program (known as CODESORT/BAS) will perform the sort, sortxng the input text
file into a different output text file,

10 CLEAR 2000: DEFINT ArZ NR=0
20 PRINT"FILESPEC OF BASIC PROGRAM T0O BE SORTED?": LINEINPUT FS$
30 OPEN"I",1,FS$: BC!=LOC(1)%
40 TF EOF(I)-O THEN NR=NR+l: LINEINPUT #1 LAS: GOTO 40
50 A%$="": CLOSE
60 DIM CD$(NR), IX(NR), SN(NR): CMD"F=SASZ",BC!-NR+200
70 OPEN"I",1,FS$: X=1: K=l
80 IF X>NR THEN 170 _ o
90 LINEINPUT #1,CD$(X): Y=LEN(CDS(X)): Z=1: w=0: SN1=0: K=K+l
100 IFY=0 THEN 160 _ ' _ -
110 IF zZ>Y THEN 130 ELSE J=ASC(MID$(CD$(X),2,1)): Z=Z+l: IF J=32 THEN 110
120 IF J>=48 AND J<58 THEN W=W+l: SNI=10*SN1+J-48: GOTO 110
130 IF W>0 AND SN1<65530 THEN SN(X)=SN!-32768: X=X+l: GOTO 80
‘140 PRINT K;"TH LINE HAS BAD OR MISSING LINE NUMBER. BYPASS IT? (Y/N) ",
145 INPUT A$ o
150 IF A$="N" THEN END ELSE IF A$<>"Y" THEN INPUT"BAD REPLY";A$: GOTO 150
- 160 NR=NR-1: GOTO 80 _
. 170 CLOSE: IF NR=(0 THEN PRINT"NO RECORDS TO SORT": END
180 CMB"0",NR,*IX(1),SN(1)
190 PRINT"SORTED OUTPUT FILESPEC? ";: LINEINPUT FS$
200 OPEN"O",1,FS5 _
210 FOR X=1 TO NR: PRINT #1,CD5(IX(X)): NEXT
220 CLOSE: PRINT"DONE":END

2. In BASIC, RENUM does not renumber the CMD"F" ,DELETE statement properly. No
zap will be issued to correct this.

3. The manual failed to inform programmers building programs to be executed
that the command keyword or program name (filespec) is the first parameter of
each DOS command and that, on entry to that program or DOS command functlon,
register HL pointe to the parameters following the program name (leespec) in
the DOS command statement that invoked the program. Examples:

1. XKKXXX This DOS command causes user program XXXXXX/CMD to be
loaded from whichever drive it is foumnd on intec memory and program

13=-29 . " ZAPS (PATCHES)

execution commenced at its entry location., At that time, register HL
peints to the EOL character (0DH) since there are mo parameters following
the program's filespec. Note, in absence of a name—extension for the
fllespec XXXXXX, /CMD was substituted. Also, since no drive number was
given, the drlves were searched, starting with the drive 0, looking for -
the firet occurremnce of XXXXXX/CMD.

2. YYYY/0BJ:1,5,JJJ:1 This DOS command causes user program YYYY/OBJ:1 .
to be loaded into main memory from drive 1 and program execution commences
at its entry location. At this time, register HL points the character 5
- in the above command, as this is the first character of the first
parameter following the program filespec. The user program may
interrogate the parameter(s) with the EOL character (0DH) indicating the
end of parameters.

3. Z2Z,Y,N,MYFILE This DOS command causes user program ZZZ/CMD to be
loaded into main memory and execution started at its entry location with
HL pointing to the character Y . : '

3. A number of users have asked why NEWDOS/80 Version 2 lacks features that
other DOS's have. For the most part and for obscure reasons, we just elected
to exclude them, but in many cases the main problem is that sufficient resident
main memory space or overlay main memory space or both is not available.

1. 1In the DOS.main memory region, 4000H thru SIFFH, NEWDOS/80 has 256
bytes less resident (always in memory) code/data than other DOS's have as
it uses this 256 bytes to make the DOS overlay programs (i.e., SYSIISYS)
bigger,

2. Some DOS'e have taken part of their resident code/data intec high

memory in order to gain more resident memory for DOS. For NEWDOS/80

Version 2, it was decided to remain out of high main memory, with the
exception of the spooler, which was already there.

3. NEWDOS/80 has MINI-DOS which most other DOS's do not. This means that
most of the DOS commands (DIR, FREE, LOAD, etc.) that execute in the 5200K
thru 6FFFH region of main memory (and may call overlay routines that
execute in the 4E00H thru 51FFH region) in other DOS's must execute in
NEWDOS/80 entirely within the 4D00-51FFH DOS overlay region. This
complicates the effort toc extend the capabilities of any given DOS
command,

4. A number of users have asked why SETCOM and FORMS were not included in
Version 2 for the Model I like they were for the Model III. The author's
excuses, weak as they are, are as follows: :

1. For FORMS, of the two parameters, only LINES could have been

accommodated as that is all the Model I ROM printer routine (used by

NEWD0S/80) allows for. Most users that had to change the lines-per—page

value at 4018H (16424 decimal) were already doing. so, either via the POKE
- function of BASIC or the M function of DEBUG.

2. For SETCOH, this command changes the parameters in 3 control blocks
for the RS-232C interface. NEWDOS/80 V1 and V2 for the Model 1 have no .

ZAPS (PATCHES) 13-30

main memory allocated for these three control blocks, and the Model I ROM
does not have some of the routines used to change these control blocks,
whereas the Model III does. Lastly, many excellent widely used RS-232C
programs were already in existence handling the interface quite well
without NEWDOS/80, . . .

5. A number of users have asked why DIRECTORY READ ERROR or DIRECTORY*WRITE
ERROR appear as the DOS error message when an error occurs with a directory
sector. Why not display the regular error code? We did this in order that
normal file processing, the user would know that the directory, rather than
his/her file, was the source of the error. At the time the error code
substitution takes place, the system does not know whether or not the directory
1/0 was subsidiary to file I/0. We do apologize for the confusion created when
the directory I/0 was the main I/0 (i.e., in DIR, FREE, etc.). The user can go
‘to SUPERZAP and step through the directory (via DD, DTS or DFS (om DIR/SYS) to
determine which sector is bad and what is the actual complaint. VDS mode can -
also be used. :

6. LNW-80 users should be aware that that computer does not use the Z-80 _
instruction HALT to trigger the computers RESET line as does the TRS-80 Model
1. Therefore, the BOOT DOS command and any other program that uses the Z-80
HALT instruction to RESET the computer will simply stop execution, which is
what the normal Z-80 HALT instruction does. The user will have to actually
press the RESET keys.,

kkkdkkkk ZAP (64 *%kkkakk (2/15/82 *kkkkikk YIM] kkkkkkkk

Mandatory zap to DOS to cause the /./5Y function of chaining (see page 4-11) to
properly exit the current DOS—-CALL level, if any, under certain circumstances
where it was not. This problem can also be avoided by using CHNON,Y instead of
/./5Y if DOS is awaiting its next command at that DOS level.

8YS9/SY$,01,97 change 43 B7 20 06 CB to 43 CD 3A 51 CB

SYS9/5Y5,04,4E chang
00 00 00 00 00 00 00 00 00 00 00 00 00 to
B7 C2 99 4E 78 E6 50 FE 40 CA 2D 40 C9

HRNRANIN ZAP 065 *hkkrdkxk (2/15/82 dkkkkidk YIM] skkhkkik
Information zap.

1. When COPY format 6 (CBF) is used to copy a system diskette and the system
files are to be copied, the FMT parameter MUST be specified!!!! Ou page 2-l14,
last paragraph, is stated "If NFMT is specified, system files are not
copied unless already existent in the destination file directory.". This is -
uot true; if NFMT is specified or implied, the files are copied, but (1)}
SY80/5YS will usually be in the wrong position causing BOOT to fail and (2) -

other system files may be in the wrong directory slots, eventually causing even
worse trouble. o :

13-31 | ' ZAPS (PATCHES)

copy a system diskette. The system files SYS1/SYS through SYS21/SYS om a
system diskette are positioned near the directory, some file above and some
below, to enhance system efficienecy. During the CBF COPY, the each system file
is assigned space on the destination diskette in the same position relative to
the directéry as on the source diskette, and if that position is beyond either
end of the diskette, GAT OVERFLOW error occurs. The scolution to the problem is
to cause the directory to be positioned nearer the center of the diskette. Two
of the destination diskette's PDRIVE parameters are involved in the directory
positioning: GPL and DDSL. Compute the number of lumps on the diskette and
compare against DDSL to determine which end of the diskette the directory is
too close to., You can take one of three actions to cause the directory to move
closer to the diskette center: (1) change the DDSL value, (2) decrease the GPL
value if the directory was too near the end of the diskette, or (3) increase
the GPL value if the directory was too near track G.

2. Some users have had GAT OVERFLOW error occur when using CBF with FMT to ‘

3. A number of users have complained that the LIST and PRINT commands do not

~allow for graphic characters. This was done so purposely as the intent with

both LIST and PRINT was to provide a rudimentary, emergency method of listing

~or printing regular text files (files whose printable characters are between

208 and 7FH ASCII or that modulate to those values). These two commands were

seldom used in NEWDOS+ or NEWDOS/80 Version 1, and we have been surprised by

the increased useage in Version 2. For a subsequent release of NEWDOS80, we

will try to add more capabllltles to allow for graphics, but for now we 51mp1y

apologize that the capab111ty is mot there. . .

4., For Model I users hav1ng CPU speed up modification installed that find that
NEWDOS/80 Vereion 2 fails in double denSLty I1/0 (or single density 8") where
NEWDOS/80 Version 1 (using someone else's double density patches) worked, the
user should ask the purveyor whether the speed up modification, when set to
normal speed, actually causes the CPU to run slower than the standard Model I
speed of 1.772 MHZ, Some of the earlier speed up mods did, and NEWDOSISO
Version 2 cannot tolerate any slowdown below 1.772 MHZ.

kkkkkxgkk ZAP 066 ********-03/16/82 Tkkkkkhk YIM] kkkddkir

Handatory zap to BASIC to correct error in dynamlc MERGE occuring when the old
text has lines within the range of the merging text (though not wmatching line
numbers, which is not allowed). This is an unusual condition but nevertheless
legal. This error was causing string variables whose strings are in the text
area to not be properly repointed into the reaulting text.

$YS19/5Y5,00,DA change €5 21 3E 54 22 to C5 CD 20 56 22
SYS1 9ISYs,0-2;9D change Cl DI El1 €% 24 to Cl C3 24 56 24
SYS19/5YS,02,E2 change CD F2 54°CD to CD 38 56 CD :
$Y519/5YS,03,76 change |

C0 ED 52 38 2E 21 00 00 ED 52 30 27 AF . to

ZAPS (PATCHES) 13-32

00 00 CD 41 56 21 00 00 09 CD 49 56 AF

5Y319/8Y8,04,34 change
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 000C
@000 0000 00
: to

2100 0022 4256 213E 54C9 2A42
56ED 5B7A 5519 2242 56D1 E1C9 474F ED43
4256 C3F2 5401 0000 O9ED 5218 O3ED 523F
DOF1 C399 55 :

Rkkkkhhk TAP 067 *kkkiwkdk (3]25/82 dkdkkkkkk YIM] ****i***

Mandatory zap to allow the TRSDOS 1.2 Model III VISICALC Versiom VC-150Y0-T83
to operate with Model I NEWDOS/80 Version 2. The lst zap disables VISICALC's
directory search feature. The 2nd and 3rd zaps insert the Model I HIMEM value.
" The 4th and 5th zaps disable the disabling of the Model III abort-on-BREAK
R§-232 function which is not available on the Model I. The 6th zap performs a
Model I check for the BREAK key. The 7th, 8th and 9th zaps disable VISICALC's
direct printer interface (command /PR) with the RS-232 serial port which is not
available on the Model I (the user may still use his/her own driver that takes
/PP parallel printer output to the RS-232), : ' :

The directory search capability of VISICALC is disabled as NEWDOS/ 80 does not
have the RAMDIR facility that Model IIT TRSDOS does. However, it is possible.
to use MINI-DOS to search the directory by (1) typing in the /SL command, (2)
pressing DFG to enter MINI-DOS, (3) perform the MINI-DOS functions, (4) clear
the dieplay, (5) exit from MINI-DOS, (6) back in VISICALG, press three or more
CLEARs to clear the command state, (7) execution one of the /T commands to
restore the VISICALC display. -

VC/CMD, 86,CA change E5 CD 90 42 FD to ES 3E 08 B7 FD
VC/CMD,00,1E change 2A 11 4 7D to 2A 49 40 7D

VC/CMD, 00, AA change 2A 11 44 11 to 24 49 40 1l

VC/CMD,84,CB chenge €9 32 03 42 CD to C9 00 00 00 €D
VC/CMD,85,25 . change C9 32 03 42 CD to C9 00 00 00 CD
v¢/oeMp, 83,90 change

F5 C5 DS E5 CD 8D 02 28 OA CD 2D A4 E1 Pl Cl F1 to
FS 3A 40 38 E6 04 CC 35 A4 C4 2D A4 28 0B 00 Fl

vC/CcMD, 84,C2 change E5 CD 5A 00 to E5 00 00 00
VC/CMD, 85,05 change ES CD 55 00 to ES5 00 00 00
VC/CMD, 84 ,BB change FF 32 FA 41 DD ~ to ~FF 00 00 00 DD

13-33 ' ZAPS (PATCHES)

doldckkkkk ZAP Q6B kikkkkak 04]13]82 kikdkkkk YIM] dhdkkikik

Mandatory zap to DOS to correct an error in CREATE whereby the old file's (not .
the new) EOF was not being set = 0 when REC=0 parameter spec'ed or defaulted
to. E

8YS14/5YS,02,FE change 28 47 _to 28 4l

Fkkkkkkk ZAP 069 Hddkdkdik 04/13132 wkkkkkks YIM] *é*t****

Mandatory zap to DOS to correct error in the DMDB function of SUPERZAP where
the F, function was not displaying the correct dump location.

SUPERZAP/CMD,05,12 change 03 2A B2 54 CD .to 03 CD 14 52 CD

SUPERZAP/CMD,00,18 change 00 00 00 00 00 00 to 3A B3 54 67 18 F6

dokdhkdkdkk ZAD (070 *®kkkkkk 04/ 2382 kkkdkkkk YOM] dhdkhkkkk

- Mandatory zap to BASIC to correct an error in CMD"0" sort of floating point
values and, to a much lesser degreee, of character strings. It is astonishing '
that this error was finally reported 8 months after Version 2 release; we .

simply refused to believe it as this meant virtually no one is using the
floating point sort feature. The reporting user was persistent, however,
sending in a very detailed problem report even so far as providing the zap!

Well donet!! We thank this user and all others that persist in proving their
point. '

SY$21/8YS,03,1E change 18 29 B7 to 18 2B B7

dkdkkkkk ZAP (7] *khkkkkk 0570487 dkkdkikik yYIM] whkokkkokk

Mandatory zap to VISICALC Veraion VC-160Y0-T83 for Model III TRSDOS 1.3 to
operate with Model I NEWDOS/80 Version 2. Refer to ZAP 067 as this zap
performs the same functions as that zap did for the TRSDOS 1.2 version.

VC/CMD, 86 ,EB change E5 CD 90 42 FD to ES5 3E 08 B7 FD

VC/CMD, 00, 1E change 2A 11 44 7D to 2A 49 40 7D

VC/CMD, 00, B5 change 24 11 44 11 to 2A 49 40 11
'VC/CMD, 84 , EF ‘change €9 32 03 42 CD to C9 00 G0 00 CD
VC/CMD, 85,46 change €9 32 03 Az CO to C9 00 00 00 CD

13-34

vC/CcMD,83,BB change ' _ .
F5 C5 D5 E5 CD 8D 02 28 QA CD 4B A4 E1 D1 Cl1 Fl to
F5 3A 40 38 E6 04 CC 53 A4 C4 4B A4 28 0B 00 Fl

VC/CMD,84,E6 = change E5 CD 54 00 to E5 00 00 00
vC/CcMD, 85,26 change E5 CD 55 00 to E5 00 00 00
VC/CMD, 84 ,DF change FF 32 FA 41 DD to FF 00 00 00 DD

kkdkkdckdk ZAP (72 kkwkddkdk (5/04/82 dkkkkkwk YIM] dkkickhiok

Information zap on Model IIT TRSDOS diskettes.

Despite explicit and implicit statements in the manual and the zaps, users
continue to think that Model III TRSDOS type diskettes are directly useable
with NEWDOS/80 Version 2. NEWDOS/80 Version 2, with two exceptioms, CANNOT,
repeat, CANNOT operate with TRSDOS Model III system or data diskettes. Please
believe us; this is solll! DO NOT ATTEMPT to use Model III type diskettes
(data or system) with NEWDOS/80 except for the special conditions of COPY and
SUPERZAP wherein PDRIVE TI flag M is used!!!1!] If you must use the DIR
command to determine what is on a Model III TRSDOS type dxskette, do so under
TRSDOS, not NEWDOS.

The directory for Model III TRSDOS system and data diskettes is markedly
different from the directory used on Model I TRSDOS 2.3 and all NEWDOS

diskettes. For NEWDOS/80 Version 2 on the Model III, Apparat elected to remain

.with the old style directory so that data diskettes (once the address mark had
been adjusted; see WRDIRP command and SYSTEM option BN) could be used

. interchangeably between the Model I and Model III under NEHDOS/GO Version 2 on
both computers.

Realizing that data files and some program files must be transferable between
TRSDOS Model III type diskettes and NEWDOS/80 Versionm 2 type diskettes,
NEWDOS/80's COPY command, formats 1 - 4 and 6, allow, via special PDRIVE
conditions, files to be copied from a Model III TRSDOS type diskette to a
NEWDOS/80 Version 2 type diskette and from a NEWDOS/80 Version 2 type dlskette
~to a Model III TRSDOS type diskette (note, COPY formats 1 and 2 filespecs for
Model III TRSDOS files must have an explicit drive number). The special PDRIVE
~state is given in PDRIVE, example 3, page 2-38, and provides only for Model III
TRSDOS type diskettes that are 81ngle sided, double demsity, 40 track. On your
master Model IIT NEWD0OS/80 system diskette, PDRIVE display slot ¥ 4 was :
initialized to the correct value to use with these Model III TRSDOS 1.3 type
diskettes (see zap 013 for TRSDOS 1.2 or 1.1 diskettes; see zap 031 for Model I
TRSDOS 2,3B diskettes}. For the remainder of this discussion, we will assume

- PDRIVE specification 4 contains the following values:

TI=xM,TD= E TC=40,5PT=18,TSR= 3,GPL=6 ,DDSL=17 ,DDGA=2
where x is C for PERCOM type double density 1nterface and E for LNH
type interface.

There aré_many variations available for popy1ng to/from Model III TRSDOS
diskettes which the more experienced NEWDOS user will adapt for his/her own

13-35

uses. The following examples are to get the novice through the first anxious
moments. In each example, drive 0 is assumed a double density drive.

1. To copy file XXX/DAT from a Model III TRSDOS type diskette to a .
preformated NEWDOS/80 Version 2 diskette, the following command will work:
COPY ,XXX/DAT:0 ,XXX/DAT:1,SPDN=4
NEWDOS/80 will ask for the mount of the source diskette (the Model III
TRSDOS type diskette) and the system diskette (the KEWDOS/80 system
diskette) on drive 0 as necessary.

2. To copy multiple files from a Model III TRSDOS type diskette to a

previously formatted NEWDOS/80 type dlskette, the following command will
work:

COPY,0,1, ,NFMT,CBF, CFWO , SPDN=4
NEWDOS/80 will ask for the mount of the source diskette (the Model III
TRSDOS type diskette) and the system diskette (the NEWDOS/80 system
diskette} on drive 0 as necessary. The user will be asked, one file at a
time, which files are to be copied, except that files marked as system
files are excluded automatically from the copy. To copy a system file,
use the single file copy example above. :

3. To copy file XXX/DAT from a NEWDOS/80 Version 2 diskette to Hodel 111

TREDOS diskette, the following command will work:
COPY,XXX/DAT:1,XXX/DAT:0,DPDN=4

NEWDOS/80 will ask for the mount of the destination diskette (the Model

II1 TRSDOS type diskette) and the system diskette (the NEWDOS/80 system

diskette) on drive 0 as necessary.

4. To copy multiple files from a NEWDOS/80 type diskette to a previously .
formatted (under TRSDOS) Model ITI TRSDOS type diskette, the following
command will work:
COPY, 1,0, ,NFMT ,CBF , CFWO ,DPDN=4
NEWDOS/80 will ask for the mount of the destination diskette {the Model
III TRSDOS type diskette} and the system diskette (the NEWDOS/80 system
diskette) on drive { as necessary. The operator will be asked, one file
at a time, to select which files are to be copied, excepting that any
files marked as system files are automatically excluded from the copy. To
copy a system file, use the single file copy example given above.

NEWD0S/80 Version 2 does not provide a method of copying to/from DOS's other
than itself and TRSDOS, It is our intention that the TRSDOS diskette remain
the common media for moving data between non-TRSDOS DO0S's which is why we took
the extra trouble to be able to copy TO a Model III TRSDOS diskette.

For the experienced user, SUPERZAP modes DD and DTS can be used to inspect

- Model 111 TRSDOS type diskettes provided the PDRIVE speclflcatlons are set

correctly. The command

PDRIVE,0,1=4,A
will activate the drlve #4 specifications as drive #1's spec1f1catxons, thus
allowing SUPERZAP to inspect a Model III TRSDOS type diskette on drive 1. When
done, don't forget to change the PDRIVE specifications for drive ! back. The
Model III TRBDOS directory is 18 sectors lomg, starting at relative sector 306;
remember, the directory format is different than that for NEWDOS/80.

13-36

‘

| kkkkkdkkx ZAP (073 Sekkkkwak 0570482 wkkdckikk YIM] wkgikkik

Information zap on Model I TRSDOS 2.3B and higher diskettes. Refer also ﬁo-ZAP

031. '

Some time ago Radio Shack announced a double density modification to the Model
I TRSDOS. To date, this modification is not available and Apparat does not
know what zaps will have to be issued to operate with the new Model I TRSDOS
2.3B or higher double density diskettes. We assume that the new Model I TRSDOS .
will continve with the implementation of RBA format in the FCBs and the
directories {(which make the new TRSDOS diskettes incompatible with the old

_TRSDOS and with NEWDOS diskettes), and that like Model III TRSDOS diskettes,

the new Model I TRSD0S diskettes will useable with NEWDOS/80 Version 2 only

~with COPY and SUPERZAF (see above zap) when the PDRIVE setting includes TI flag

M. However, for now, use of flag M does not allow access to Model I TRSDOS
double density diskettes as a TD code for double density implies Model III.

dkkdkkkx ZAP (74 kkdkkkdk (05/12/82 *kwkkiik vzui kkkkhkiok

Mandatory zap. to CHAINBLD/BAS to eliminate an unintended and non~displayed
CLEAR character that causes trouble during PRINT of an ASCII copy of the
program. This character is non-displayed but is the character jin text
immediately following the GOSUB36 of line 92. Load the program under BASIC,
delete the character, and SAVE the CHAINBLD/BAS file back. Line 92 should
display exactly the same after the character delete as before.

Fdkdekhdk ZAP (75 dekwikdk (5/12/82 dkkkkkak YIMl dhkhkdkdi

Mandatory zap to BASIC to correct memory~wipe—out error caused in certain .
circumstances by a REF= statement containing a ' character. The actual error
is at 1A8B - 90 in the ROM and can be triggered in non-disk BASIC by keying in
twice the direct command sss' where sss is three spaces. By making a change to
NEWDOS/80'es BASIC, the problem with REF is avoided.

SYS18/5Y5,02,1A change
36 20 23 DF 38 FA 2B 36 FF 18 39 EB to
36 FF 23 DF 30 3E 36 20 23 18 F8 EB

' ********'zﬂf 076 kkkkdkhkkk 06/18/82 whkkkikk YIM] wkkdikkk

Mandatory zap to DOS to allow NEWDOS/B0 to run with the Radio Shack double

- dengity modification. This zap does NOT enable NEWDOS/80 to operate with Model

I TRSDOS 2.7DD double density diskettes (see ZAP 078), PDRIVE TI flag D is
hereby activated (please note this in the margin on page 2-34) for the Model I

- 13-37

to mean the Radio Shack double density interface, and all PDRIVE specifications
for this interface must use TI flag A or D for single density diskettes and TI
flag D for double density diskettes. If drive 0 is to be double density, TI=DK
must be specified (with TC reduced by 1 (i.e., 34, 40, 76 or 79)). The Percom,
1EW and Omikron double density interfaces for the Model I do not use write
precompensation as does the Radio Shack interface. Since there 1s not enough
resident DOS patch area to patch in precompensation and still retain system
diskette interchangeability with other interfaces, it has been left out of this
mandatory zap, but has been included as optional zap 077 below wherein the
zapped NEWDOS/80 system diskette must only be run with an unmodified interface
or with the Radio Shack DD interface.

*kkkikk% Creating a system diskette to operate with a different I/0 interface
(i.e., the R. S. doubler) requires that the system diskette be created by
format 5 or 6 COPY with FMT parameter gpecified.

*kkkkhkkx TI flag D is interdrive mutually exclusive with flags B, C and E
meaning that if D is specified in any drive's specification, then no other
drive's specification may contain TI flags B, C or E. "TI= SPEC BETWEEN DRIVES
INCOMPATIBLE" error will be given if this interdrive mutual exclusion is
violated, requesting that you alter the various PDRIVE specs until atmost ome
of TI flags B, C, D or E is represented in the various PDRIVE specifications.

*ikkhkkxk NEVER, NEVER, NEVER reset or boot the computer with PDRIVE showing an
‘error. If this is done, the initialization routines will simply refuse to
boot.

8YS6/SYS,07,7D change
_ ED 5BCl
S9CD 8457 ED4B 9459 CB49 2047 CDF9 56CB
6828 062A 8159 22CE 42
to

DD 5604
DD4E 06DD 7E02 E61C FE0O8 C079 EE20 DD77
06C9 DD71 06DD 7307 C9

SYs6/s8Ys,27,C1 change 07 DD 56 04 DD to 07 CD P7 54 DD
SYSGISYS,Z?,CD change

0L ¢D 59 69 20 03 CD AA 67 D1 DD B3 F5 DD 73 07 DD to
01 C5 CD 59 69 CC AA 67 C1 D1 DD E3 F5 CD EC 54 DD

SYS16/5Ys,00,D6 change 05 7B 07 F6 FC 57 DD to 05 16 80 cn.95 51 DD
SYSIGISYS,02,56 change E6 68 C0 to E6 60 CO
5YS16/8YS,02,6A change 20 1D CB to 20 10 CB

 5YS16/5YS,04,A9 change 00 00 00 00 00 00 to CB 43 CO 16 A0 C9

13-38

fkkdkkk ZAP (77 *kkkkkkk (6)18/82 kikhkikdk VIM] Akkdfhik

Optional zap to ﬁOS to enable the Radio Shack douhle:density ﬁrite

precompensation logic. When this zap is applied, the system diskette must only_f*'

be used with either an expansion interface that has not been modified for disk .
double density or 8 inch drives or has been modified for the Radio Shack double
density disk I/O. Once the diskette is modified, 1ndlcate on its label that
this zap is installed.: :

8YS0/SsYS,01,40 change :

EF 00 00 00 3E 2A 18 AE C3 to EF 32 EE 37 C3 67 47 00 C3
$YS0/5YS,01,62 change : ' :
"EF 00 OO0 OO0 OO0 00 00 18 D9 AF to EF 3E CO 30 DA 3E R) 18 D6 AF
SYS0/SYS,03,9A change CD 67 47 to = CD B3 47
SYS0/SYS,04,A9 change

5E F3 3A-'11 43 F6 FE 77 36 DO FB 23 to
5E 18 08 3A OD 43 OF BA C3 76 44 23

S$YS6/SY8,29,5F change CD 67 47 to CD B3 47

*kkkkkkk ZAP 078 *kkkkikk 06/18/82 *kkkibikkk YIM] dkkkitik

Optional zap to allow COPY formate 1, 2, 3, 4 and 6 to copy files from or to
Model I TRSDOS 2.7DD double density diskettes when the PDRIVE for that diskette
is: '
TI=xM,TD=E,TC=t¢,SPT=18,TSR=3 ,GPL=6 ,DDSL=dt ,DDGA=2
- where: '
x = C for Percom type double density modification, D for Radio Shack type
modification and E for LNW type modification.
"te = diskette track count, 35, 40 or whatever. This trackncount includes B
the single density track 0. . '
dt = the directory track number (the atandard is 17). NEWDOS/80 must be
-given the correct value as it does not obtain the value from the
diskette's boot sector in the sxngle density track 0. :
See example 3, page 2-38. If ZAP 013 is applied to the diskette receiving thxa
" zap, ZAP 013 must be taken out before this zap is applied.. Once this zap has
been applied, the zapped diskette cannot be used to copy to/from Model III
TRSDOS diskettes or to/from Model I TRSDOS 2.3B diskettes; this zap should only
be applied to a special NEWDOS/80 system diskette whose sole function is to be
" used when copying files tof/from Model I TRSDOS 2.7DD double densxty diskettes.

A Model I TRSDOS 2.7DD double demsity diskette cannot be formatted by
NEWDOS/80, and it cannot be format 5 copied by NEWDOS/80, not even via the BDU
option. Further, remember, format 6 (CBF) COPY does not copy system files

: to/from TRSDOS diskettes; formats 1 through 4 do, however.

Users must be aware that Model I TRSDOS 2.7DD double densltj diskettes.aré

13-39

written with track 0 in single density and all other tracks in ddﬁble density}
the directory information assumes track 0 is in double density and counts its

information from track 0's lst sector.

Note, that track 0 is allocated om all

_ diskettes to BOOT, a file that contains 10 sectors, not 18.

SYS6/8YS,14,25
00 3D 46 01 A8
00 A5 48 01 3E
- 8YS6/8YS,14,67
5Ys6/8YS,14,76

8YS6/5YS,14,82
00 61 50 03 3E

SYS6/SYS,14,8E
5¢ 12 S1 01 1A

8YS6/5YS,14,A2
SYS6/S8Y5,14,B1
5B 18 EF 4E 02
5B 28 EF 4E 02

SYS6/8YsS,14,D0
00 FB C1 20 0A

SYS6/8YS,14,E9
SYS6/5Y5,14,FB

§YS6/8Y8,15,21

SYS6/8Y5,20,11 |

8YS6/5YS,20,97

change

41 46 01 A9 37 47 03 C3 0B 5C 37 48 01 0D 77 48 03 C3

to

EE 48 01 00 F3 48 07 ED 5B 99 43 CD 0B 5C 8A 5B 00 C3

change
change

change

1A B7 D6 to

change

55 51 04 21 EF 5C C9

change

change

35 56 DA 4E 01 2F 8B 4E 01 18 72

0l 50 DO to

00 7B 4F 01 1A
00 67 50 03

to

00 61 4E 01 OD

01 80 DO

AF to 00 38 50 01 C9 AF
36 80 23 D6

5C OE 51 01 00 55 51 04 21 CD 40 €9

6C to 00 8F 4E 01 80 6C

to

35 56 E9 4F 02 36 00 00 5C 00 72

change
JA C4 46 E6

change
change
change
change

change

to 00 21 ©¢8
3E 05 CD to
3E 30 C to
06 50 7E to
01 EF 5C 23
3E 50 20 to

00 19 7E 12 €9 E6
3E 08 CD
3E 20 CD
06 80 7E
01 €D 40 23

to

3E 80 20

FekkickhkEk ZAP (79 kkkkikkk (06]27)82 dkkdkikk YIML dkkdkdkii

Mandatory zap to DOS to correct error occurring when a file with EOF = 0 is
‘copied (via single file COPY) to a NEWDOS/80 diskette from TRSDOS diskette
other than the old TRSDOS 2.3 {or as now being called TRSDOS 2.3A) diskettes.

SYS$6/5Y5,05,C5

52 3A 14 53 B7 C8 €D 35 55 2A

change

to 52 CD

13-40

35 55 3A 14 53 B7 C8 2A

| dekkkkkdk ZAP (80 Akkdkkkk (7/1G/82 kkkkkkkk YIM] wddkddkk

Mandatory zap to NEWDOS/80's ASPOOL program to correct error in the *ASP,S

function where the computer is forced to DOS READY after the remaining spooled’

print completee printing. Instead, the delayed completion of the function

should simply comtinue the interrupted program. To make room for this

correction, the SPOOL PURGED message is no longer displayed. To determine that -

the spooler is gone, simply execute the *ASP command asking for spooleér status.
If the response is FILE NOT IN DIRECTORY, the spooler is gone.

ASPOOL/MAS,02,E8 change

44°C2 09 44 2] 8B 58 CD 67 44 C3 2D 40 01 to
44 Cl 21 08 44 B7 ED 42 C8 €3 15 55 00 0l

iekhkddk ZAP 081 Sk itk 03/17/32 wkikhihkk YIM] Fhdhkikx

Mandatory zap to LMOFFSET to correct error where the first program is stored
with a disable-DOS appendage and the second program is stored with an appendage

.that does not disable DOS. This error causes the 2nd stored progrsm to have a

bad appendage.

. LMOFFSET/CMD, 00,34 change 53 21 3E5ACD to 53 €D 15 5D CD

LHOFFSET]CMD,OQ,BF change
00 00 00 00 00 00 00 0C 00 to 3E 50 32 €3 58 21 3E 5A G9

wkkdkhkik ZAP (82 kkkkkkkk 08/31/82 *dckdkdkk YIMI dwdkkkdrk

Information zap to allow BASIC and assembler programs to set the lower case
state with the Model I NEWDOS/80 Version 2 DOS resident code. To execute the
equivalent of the DOS command LC,N without causing disk I/0, BASIC programs
execute POKE 17844,0 and asaembler programs store 00 into 45B4H. To execute
the equivalent of DOS command LC,Y withou causing disk I/0, BASIC programs do
POKE 17844,201 and assembler language programs store 0C9H into 45B4K.

Remember, the lower case driver (see DOS command LCDVR) must be active for
these POKEs to work.

Yekkktkikk WARNING!!!!] This 17844 (45B4H) location is NEWDOS/ 80 Version 2

‘dependent and definitely will be different in any subsequent NEWDOS/80 release.

Users should mark this carefully in their programs. This is why we were so

‘reluctant to release this information.

Fhkkawkk ZAP (83 kakkkkkkx (9/02/82 Fkkkkhik YIM] dhkikndk

Mandatory zap to Radio Shack's Model I SuperSCRIPSIT for TRSDOS 2.3 {not 2 33 '

_ or 2.7DD) to enable it to run with the Model I NEWDOS/B0 Version 2:

13-41

1. Allow the Main Menu Directory fumction to work. An actual NEWDOS/S80)
directory is executed via DOS-CALL; so the display will look different .
from that for TRSDOS., NOTE, the main menu display for the Model I does '

not show the "<D> Digplay disk directory" option as it does for the Model

111, but a response of D will trigger it.

2. Allow the program to determine the number of 1024 byte page units of
diskette space are available on the target drive. To do this, the DOS
command DIR x,/Q9Q (where x is the drive #) is executed via DOS-CALL as
NEWD0S/80 does not have the RAMDIR function. This causes an extra
directory display to appear for during Main Memory function O that opens a
document (appears after you have adjusted the document control data).

This extra directory display may also appear at other times.

This zapped SuperSCRIPSIT must only be used with NEWDOS/80 Version 2 for the
Model I.

With SuperSCRIPSIT, users may use DOS functions DFG (MINI-DOS} and 123 (DEBUG),
but they must be very careful when pressing the three keys as SuperSCRIPSIT is
likely to receive one or more of them. When a page of text is displayed, using
the control-H command (HELP) puts the users where DFG or 123 may be pressed.
Upon executing DOS command MDRET (to exit Mini~DOS back to SuperSCRIPT) or
DEBUG command G (to exit DEBUG back to SuperSCRIPT), press BREAK to return to
the page. If HELP was not available, you will additionally have to press
control-T followed by BREAK to get back the full display. From the main menu,
use option D to display a directory; then while the program is awaiting BREAK,
you can press DFG or 123. WARNING!!!! Do not exit directly to DOS from
Mini-DOS or DEBUG without giving SuperSCRIPSIT its chance to write data from
memory and close its files; this can be disastorous to your document file.

SCRIPSIT/CMD,09,06 change
-AB4F CDF(0 4ACC 2100 4DO1
2300 CBIE 3801 0O4CB 1E38 0104 QD23 20F2

' 0405 2801 0102 005B 0521 0500 CD71 6606

04CD S166 7D32 227E AFC9 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000
to :

' ABC6 3032 225B 211E 5BCD
1944 C006 0411 333C 21DC AClA 7713 D630
FEOA 3001 0102 005B 2310 F436 84CD B268
0605 CP71 6606 04CD 5166 7D24 2528 023E

_ FF32 227E AFC9 4449 5220 302C 2F51 3951

0D00

SCR17/CTL,02,3A change ' S
69 FE 30 38 F9 FE 34 30 F5 CD E5 75 OE 00 32 71 42 CD 19 44 3E OF CD 33 00 21

.69 32 .70 8D 21 6C 8D CD 19 44 28 05 F6 CO CD 09 44 18 06 44 49 52 20 30 OD 21.

SCR17/CTL,04 ,AF change 8E 00 4E to 8E 44 4E

13-42

dekckkndkhk ZAP OBL *hkkkkkk (09/17/82 whkkkdkne yY2M] *hkdkdik

Information zap.

1. Most users are still puzzled about using multi-dimension arrays with
BASIC'e CMD"0". Please refer to section 7.21 in the manual and ZAP 41.4.
CMD"0" was intended for single dimension arrays only, but it was found that a
multi-dimension array could also be sorted if the user understands that the
arrays items sorted (directly or indirectly) actually occupy consecutive memory
locations (as assigned by BASIC during execution of the associated DIM
statement) starting with the element specified in the CMD "0" statement. For
single dimension arrays, this is the same order as ascending order of
subseript, but for multi-dimension arrays, the order of elements used in the
sort is COMPLEX s#nd is given by the REN formulas. If you are going to sort a
multi-dimension array, it is highly recommend that the sort start with the
array's first element {(i.e., the array's item specified in the CMD"0" statement
should have all zero subscripts (i.e., A(0,0,0) for a 3 dimemsion array)).

If you use anything other than zero subscripts for the sort of a
multi-dimension array, you must be very clever to figure out which elements
actually participate in the sort.

The REN formulas given on pages 7-14 and 7-15 show how to compute the REN for a
given element in the array. Following are the formulas for computing the
element subscripts corresponding to a given REN value (remember, the first REN-
value is zero).

1. For a single d1mens1on array whose DIM statement is DIM A(Rl) and
for array element A(X1):

X1 = REN

2. For a two dimension array whose DIM statement 15 DIM A(R1l,R2) and
for array element A(X1,X2):

REN/(R1+l) gives a quotient that is X2 and a remainder that is Xl.

3. For a three dimension array whose DIM statement ie DIM A(Rl,R2,R3)
and for array element A(X1,X2,X3): .

REN/((R1+1)*(R2+1}) gives a quotient that is X3 and remainder M2
such that M2/(Rl+l) gives a quotient that is X2 and a remainder
that is Xl.

For an n dimension array (where n is not 1) the calculation involves REN
heing divided by product of all the ranges (a range is 1 greater than the
value given in the DIM statement) except the nth, giving a2 quotient that
is the nth subscript and 2 remainder that can be used as the REN value for
caleulating n-lth subscript ss if the array had only n—l dlmenszons.
Continue thie loop until n is reduced to 1.

13-43

2. Manual correction for ATTRIB, section 2-3, page 2-4., Place a note there to
indicate that parameter LRL=lenl exists, allowing the user to alter the
Logical Record Length of the file to the value leml (1 to 256). This value,
kept in the file's FPDE in the directory, is hardly ever used except by DIR,
but some people want DIR to show the correct value. Remember, in NEWDOS/ 80
OPENgs of a file, the LRL value is taken from register B rather than from the
directory (in BASIC, it comes explicitly or impliecitly from the OPEN
statement).

ddekkkdhdk ZAP (85 whikkkwk 11/20/82 wkxiekkik YIML U

Mandatory zap to DOS to correct error that was allowing a format 5 COPY to
occur when both diskettes had the same number of sectors but different GPL
values. '

§YS6/8YS,22,36 change 5A 28 OECB to 5A 00 00 CB

Hkkkhkkk ZAP (86 dhkkkkdk [2/17/82 Fiekkkddk YIML dkiiokidkk

Mandatory zap to EDTASM to correct error where an error flag was not being
reset after failure of a file open, thus causing the next file operation to

fail to CLOSE a file properly. _ .

EDTASM/CMD, 30,61 change CA F8 01 ¢CD to CA 08 57 CD

EDTASM/CMD,03,23 change C9 3A 28 52 F6 08 32 to AF 32 2E 76 C3 F8 0l

RkdhkRAK ZAP (87 Fkkkkadk 12721 /82 dhhkkkik VIML hdksckkik

Mandatory zap to BASIC to correct error in CMD"0" direct sort where an array is
specified twice in the command sequence {i.e., two parts of a string supply
independent sorting criteria.

SYS21/8Ys,01,14 change 04 DD 77 04 D7 to 04 CD EO 65 D7
SY$21/8Y5,01,7F change DF C2 4A 1EF1 to DF CD E5 65 Fl
8YS21/SYS,01 ,8E change 01 32 02 4F F1 to 01 CD 17 66 Fl
§Y521/8%5,02,88 change DD 7E 04 B7 28 to DD CB 04 7E 28
$YS21/SYS,03,EE change C9 DD SE 13 DD to C9 CD 20 66 DD
§Y521/5YS,04,2C change 1419 10 FD C9 to 14 C3 2B 66 o

13-44

S$YS21/SYS,04,B5 change
OC 28 05 2B 1B ED B8 13 DD 73 0% DD 72 CA DD to
0C EB B7 ED 42 DD 75 09 CD 34 66 20.22 00 DD

BASIC/CMD,14,E9 change '
00 0000 0000 0000

0006 0000 0000 0000 0000 0000 G000 0000
to :

DD CBOA FECY9 C24A

lE3A 0251 B7FD 2100 4228 O4FD 2117 42E5

BASIC/CMD,15,00 change
0000 0000 0000 0000 0000 0000 0000 0000
- 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 GO0
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
Q0

. to :
DD6E 050D 6606 FDSE 05FD 5606 DF20 04DD
CBO4 F6ll 1700 FD19 FDJE QOB9 38E8 E1CY
DDCB 0476 €032 024F C9DD 5E13 DDCB 0476
C8F1 09C9 DDCB 0476 C019 10FD C9DD 740A
QYER DDCB 0476 CO78 B128 042B 1BED BBAF
Cc9 :

13-45

% * * NEWDOS/80 Version 2.0 Model I ZAP Index * * *.
(Index listed in order of Filename)

Type Area Program Reference
Mandatory User APLB0/CMD APL80/CMD
Mandatory Utility ASPOOL/MAS *ASP,S function
Mandatory BASIC BASIC/CMD Basic Editing '
.Mandatory BASIC BASIC/CMD Marked & Fixed Item File Processing
Mandatory BASIC BASIC/CMD CLOSE command
Mandatory BASIC BASIC/CMD CMD"0" function
Mandatory User BRUN/ CMD Microsoft BASIC COMPILER v 5 23
Mandatory Utility CHAINBLD/BAS Version 1 Format
Mandatory Utility CHAINBLD/BAS Non-Displayed Character
Optional User DIR/SYS Microsoft BASIC COMPILER v 5.23
Mandatory Utility DISASSEM/CMD RTD Option _
Mandatory User DSMB/ CMD Racet's DSM module DSMB/CMD
Mandstory User EDIT/CMD Microsoft's EDIT/CMD
Optional Utility EDTASM/CMD Disable LC to UC Converslon
Mandatory Utility EDTASM/CMD Cursor Display
Information Utility EDTASM/CMD Documentation erxors
Information Utility EDTASM/CMD Tape I/0 for Mod III disabled
Mandatory Utility EDTASM/CMD Filespec Response & <Sh~Lf-Arrow>
Mandatory Utility EDTASM/CMD Object Code to Cassette
Mandatory Utility EDTASM/CMD Correct & Restate ZAP #54
Mandatory Utility EDTASM/CMD File Close Froblem
Mandatory User FIREUP/CMD RIONIC BASIC
Mandatory User IBLOAD/CMD Racet's INFINITE BASIC
Mandatory User INIT Radioc Shack's Model I PROFILE
Mandatory User INSTALL/CMD BIONIC BASIC
Optional User L80/CMD Microsoft BASIC COMPILER v 5. 23
Mandatory Utility LMOFFSET/CMD Object Code Block Load
Mandatory Utility LMOFFSET/CMD Appendage
Mandatory User PENCIL/CMD ELECTRIC PENCIL
Mandatory User PENCIL/CMD ELECTRIC PENCIL
Mandatory User PENCIL/CMD ELECTRIC PENCIL
Optional User PROFILE/CMD Reenable Interrupts
Mandatory User REMOVE/CMD BIONIC BASIC
Mandatory User RSCOBOL/CMD Ryan-McFarland Corp COBOL v 1.3B
Mandatory User RUNCOBOL/ CMD Ryan—-McFarland Corp COBOL v 1.3B
Mandatory User SCR17/CTL Radio Shack's Model I SUPERSCRIPSIT
Information User SCRIPSIT Model I Cassette I/O
Mandatory User SCRIPSIT/CMD Radio Shack's Model I SUPERSCRIPSIT
Mandatory User SCRIPSIT/LC Radio Shack's Model I SCRIPSIT
Optional User SCRIPSIT/LC Double Density & END command
Mandatory User SCRIPSIT/UC Radioc Shack's Model I SCRIPSIT
Optional User SCRIPSIT/UC Double Density & END command
Mandatory Utility SUPERZAP/CMD DM,P functions
Mandatory Utility SUPERZAP/CMD DM & F functions
Mandatory Utility SUPERZAP/CMD DMDB function

13-46

20

55
60
62
77

35
46

12

13
15
17
23
24
28
31
32

44

47
56
57
76
77

78,

79
85
49
61
64
42
45
20

50

68

16 -

31
47
76
44
57
14
45
75
66
70
87
11
25
67
71

Optional
Mandatory
Mandatory
Optional
Mandatory

Mandatory

Optional
Mandatory
Mandatory
Optional
Optional
Optional
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory

. Mandatory

Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Optional

Optional

Mandatory
Mandatory
Mandatory
Optional

Mandatory

"Mandatory

Mandatory
Mandatory
Optional

Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory
Mandatory

DOS
DOS
DOSs
DOs
DOS
DOs
Dos
DOS
DOS

‘DOS,

DOS
Dos
DOS
DOS
DOS
DOS
DOS
Dos
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
DOS
BASIC

BASIC

DOS
DOS

. DOS

DOoS
DOs
DOs
Dos
pos
DOS
BASIC
BASIC

- BASIC

BASIC
BASIC

‘BASIC

User
Usger
User
User

§YS0/SYS
SYS0/5YS
SYS0/SYS
SYS0/SYS
SYS0/SYS
S$YS0/5YS
SYS0/SYS
8YS2/SYS
8YS3/8YS
8YS3/8YS
SYS6/SYS
SYS6/5YS
8YS6/SYS
SYS6/5YS
SYS6/SYS

- 8YS6/5YS

8YS6/SYS
8YS6/SYS
SYS6/SYS
SYS6/SYS
SYS6/SYS
85YS6/5YS
SYS6/5YS
8YS6/SYS
8YS6/SYS
$YS6/SYS
8YS6/SYS
8YS6/SYS
§YS8/8YS
8YS8/SYS
8YS9/8YS
5YSll/sYs
8YSi2/SYS
SYS14/SYS
$YS14/8YS
8YSl4/8YS
$YS16/SYS
$YS16/SYS
§YS16/SYS
8YS16/5YS
8YS17/8YS
8YS17/8Ys
$YS18/sYS
8$YS518/5YS

5YS18/S8YS

SYS19/SYS

$YS21/SYS

8Y821/8YS
VC/CMD
vc/cMp
vC/CMD
VC/CMD

Increase Drive Pover—On Delay

ROUTE command

ROUTE command

Patch LC Keyboard Modlflcatzon
Disk Status Register Reads

44450 call te DOS

Double Density Write Precomp Logxc
Directory Entries

CLOSE & KILL commands

'JKL': Graphics to Epson Printers
Double Density Format Semsitivity
To allow COPY of TRSDOS 1.2 {Mod 3)
COPY Format 5

COPY & FORMAT: DDSL parameter
Granule Lockout Table in Directory
FORMAT & COPY commands

FORMAT: PFST parameter

TRSDOS 2.3B (I) or TRSDOS 1.3 (111)
TRSDOS 2.3B (I) or TRSDOS for Mod 3

SYSTEM: BM parameter disabled
PDRIVE: 8 Inch, Double Density
COPY: CBF param & Hodel III TRSDOS

COPY command

Radio Shack's Double Density Board
Double Density Write Precomp Logic
Model I TRSDOS Z.7DD Diskettes
COPY: TRSDOS 2.3B or ngher

COPY Format 5

DIR § or DIR $0 _
DIR: Remote Terminal Operators
Chaining: /./5Y function

RENUM function

REF$ functiom

ROUTE command

PRINT & LIST: Control Characters
CREATE: 01d File's EOF

PDRIVE error .
TRSDOS 2.3B (I) or TRSDOS 1.3 (IIX)
PDRIVE: B8 Inch, Double Density
Radio Shack's Double Density Board
SYSTEM: BM parameter dlaabled
COPY command

Bagic Editing

REF$ function

REF= statement

Dynamic MERGE

CMD"0" functiom -

CMD"0" function

Radio Shack’'s Model I VISICALC
Radio Shack's Model I VISICALC
Model III VISICALC v VC-150Y0-T83
Model III VISICALC v VC-160Y0-T83

13-47

e B e |

29
30
30
36
41
41
4l
4]
51
63
63
65
65
65
72
73
82
B4
63
63
63

41
51
51
41
63
65

30

Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Informatieon
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information
Information

BOS
DOS
DOS
DOs
DOs
Dos
DOS
DOS
DOS
Dos
Dos
BASIC
Dos
DOS
Dos
User
DCS
DOos
Dos
Bos
Dos
Dos
BASIC
BASIC
pos
DOS
DOS
Dos
DOS
Dos
Dos
DOS
DOS
DOS
BASIC

Coumand
Command
Command
Command
Command
Command
Command

" Command

Command
Command
Command
Command
Command
Command
Command
Command
Conmand
Command
Command
Command
Command
Command
Command
Commands
Commands
Features
General
General
General
General
Hardware
Hardware
Hardware
Mini—dos
Utility

ATTRIB:

LRlL=xxx Parameter
ROUTE: display of routes
COPY: DFO parameterx
FORMAT: BRWF parameter
PDRIVE & COPY: Double Density -
PDRIVE: OMIKRON & 8 Inch Drives

Model I & Model IITI Data Exchange
COPY: Formats 5 & 6 dlscussed
Documentation Correction

ROUTE: Documentation Correctlon
Automatic Density Recognztlon

CMD"0": explanation
SYSTEM: AX parameter correction
SYSTEM: AJ=N explanation expanded

DIR & FREE Error Messages

Program Parameters

COPY: Format 6

GAT Overflow & CBF with FMT COPY
LIST & PRINT: no graphics
Accessing files on Model III TRSDOS
Accessing Model I TRSDOS 2.3B & Up
LC,Y & LC,N without Disk I/O
CMD"0" & Multi-Dimension Arrays
LOAD, RUN, MERGE & RENUM

FORMS & SETCOM omission in Model I
Main Memory, High Memory, MINI-DOS
Reserved ZAP Areas in NEWDOS/80
Cassette 1/0

TRSDOS 2.3B (1) & TRSPOS 1.3 (IIX)
Chain Filename & /JCL entension
CPU Speed Up Modificatioms

LNW-80 Computer Users

CPU Speed Up Modifications

Illegal under DOS-CALL

RENUM usage

13-48

APPENDIX A

Understanding and learning to use the marked item and fixed item files speci-
fied in chapter 8 has proved difficult to the normal NEWDOS/8$ user; therefore
appendices A and B have been included to provide examples and more explanation
in an effort to ease this difficulty. Nothing in appendix A or B is to be
construed as overriding the specifications provided in chapter 8; the two
appendices are provided simply and exclusively for examples and elaboration.

Appendix ‘A was written by a user tryimg to cope with chapter 8 and is b331cally
hie understanding of marked item and fixed item files.

Appendix B is the NEWDOS/8f author's attempt to provide example programs of the
5 file sub—types: MF, MU, MI, FF and FI.

File Positioning

File Position (fp) is an operand in all NEWDOS/8¢ GETs and PUTs, and is speci-
fied in section 8.4.1. When omitted, a null operand is assumed. The fp oper-
and otherwise commonly consists of a special character, occasiomally followed
by other special characters and/or expressions. One form of the fp operand
consists of nothing more than a numeric expressiom. In the forms which follow,
special characters are to be used as shown. In those forms showing a prefixing
special character adjoining some other character string, the special character
does not necessarily have to be contiguous with the rest of the expression; it
may be separated from it by a blank or space.

fp Value Meaning

(null) '

If the file is an MU, MF or FF type file, and the REMRA is valid, the file
is advanced to the next sequential record; in any other case, the current
file position is not changed and processing continues from the position
left at the termination of data transfer of the previous GET/PUT. Open
leaves REMRA marked invalid for all file types, and sets current file
position equal to # (except for mode "E", which causes current file
position to be set equal to the FPDE's EOF value). The first sequential
access for record segmented files always starts at current file positionm.

The current file positiom is not changed. This specification allows the
continuation of processing of s particular record by a GET or PUT. It is
primarily used to continue processing a record already partially read or
written. For MU, MF and FF type files, it cannot be used to advance the
file to the next sequential record, even though the file is actually
already positioned at that record, having exhausted the bytes of the

current record. To sequentially advance tc the next record, use fp =
(null). '

A-1 - APPENDIX A

again; an error condition is raised if the REMRA is invalid. For MU, MF
and FF type files, this specification allows the reprocessing of the re-
cord currently being processed, from the beginning, perhaps with different
variable names or expressions in the IGELs., For MI and FI type files, it
allows the reprocessing of the same data item group as was processed by
the immediately preceeding GET/PUT. :

If the REMRA is valid, the file is positioned to process that record . '

If the REMBA is valid, the file is positioned to begin processing at again
it the point where the previous GET or PUT was at the end of its file
positioning phase; an error condition is raised if the REMBA is invalid.
This specification allows the reprocessing of a particular group of data
by a GET/PUT, and is prlmarlly used to reposition a file for partial-
record I/0. It functions in the same fashion for all NEWDOS/8f file
types.

This specification performs a "psendo FIELD" operation. No data transfer
takes place; the filearea FCB is not changed; the file does not have to be
cpen when this fp is ueed. It is used with FF and FI files to allocate
user dats strings of fixed sizes from the BASIC string storage area in
high memory.

This specification is used only with PUTs, and has no effect on file
positioning. It does however cause the current contents of a filearea
buffer to be written to the diskette. It should be used whenever the data

in the buffer is particularly sensitive. It may be used specifying the
FAN of a PRINT file.

&&
This specification is similar to &, except that in addition the file's EQOF
is updated from the FCB to the FPDE. PUT fan,&& allows the programmer to
force the EQF update to the FPDE without having to do a CLOSE.

Irba
Using this form of fp specification causes GET/PUT processing to begin at
the specified location in the file where rba is a BASIC expression
evaluating to a RBA value. For MU, MF and FF type files, the system
checks to make sure that a record begins at the specified location. 1In
the case of a MJ file, the RBA value must point to an SOR item., This form
of fp 9pec151cst10n demands the greatest amount of care and premeditation
on the programmer's part, as if it is used 1ncorrect1y, especially with FF
and FI type files, it can be most disastrous. It is just about the only .
way to randomly access data stored in MI, MU and FI type files.

12
This specification is basically the same as the !rba form except that the
current EOF value is used as the RBA. . It is commonly used to position a
file for extension - that is, to add records/data to the end of the file.
To extend a2 file it must be opened with mode "R"; mode "D" will yield an

error if extension is attempted. : .

APPENDIX A A-2

1$rba :

1$2

This specification allows the programmer to position the file for the next
data transfer for that particular filearea, without regard to the specific
access technique or verb used for the transfer; no data transfer to user
data areas occurs with this specificationm. No IGEL may be referred to or
included in the GET/PUT using this specification. The positioring
resulting from the use of this specification doesn't become effective
until the next INPUT/PRINT or GET/PUT, and then only if no additional
positioming is specified. It can be used to position a file for random
access in a program which uses a subroutine contaiming a single GET/PUT
having a (null) fp to do all file access; such a program could process
sequential groups of records randomly distributed throughout a file.

The basic function of this specification is identical to 1§rba, except
that it uses the current EOF value as the RBA. The GET/PUT using this
specification must not refer to or include an IGEL. Again, the file
position resulting from this specification doesn't take effect until the
next INPUT/PRINT operatiom, or the mext GET/PUT (if snother fp isn't
specified). '

1#rba

Used only with PUT, this specification sets the filearea's EOF value equal
te the value rba. For the real EOF value of the file to be altered, that
is, the one in the FPDE, the filearea must either be closed or a PUT &&
statement executed. The EOF value provided must be rational for the file
type involved. For MF and FF files it must be an integral multiple of the
file's standard record length.

™ {(Record Number)

This specification is the same as the one supported by TRSDOS; rn is a
numeric BASIC expression which evaluates to an integer value from 1 to
32767, inclusive. The specified record number is converted to an RBA

which is then used in the same functional manner as Irba.

As mentioned above, certain forms for fp change REMBA, REMRA or EOF. For your
convenience, the fp forms and their effects on these fields are summarized in
the following decision table.

fp REMBA REMRA EOF
(null) 1 1 6
" 1 Z 6
3 4 6
$ 4 4 6
Z 4 4 4
& 4 4 4
&& 4. 4 4
IRBA 1 1 6
¥4 1 1 6
! SRBA 5 5 4
182 5 5 4
1#RBA 4 4 1
RN 1 1 6

A-3 APPENDIX A

Meanings of codes in the matrix:

l =~ The field is set to the ERBA resulting from that fp value.

"2 —~ If REMRA is invalid at the beginning of the statements execution, or
it is an MI or FI file, the field is set to the RBA resulting from the fp
value. In other words, it is set if the current file position is at the
beginning of a record, otherwise it is unchanged.

3 — The field‘is set equal to REMRA.

4 —

The field is not changed.

5 ~— The field is set to an invalid value.

6 —— For output/update files, the field is changed if a PUT extends the
file.

Altogether, there are four areas in an FCB relevant to file positioning. These
are: _

Current File Position
This single field can be looked at as being 3 different values,
depending upon where the GET/PUT ig in its processing:

GPP1
The file position at the start of GET/PUT execution. Unless the .

file has been closed and re-opened, it is the same value left as
GPP3 £from the last GET/PUT for that filearea.

GPP2 . :
The resulting RBA value after positioning has been dome, and
prior to any data transfer. GPP2Z is the value saved as REMBA
and REMRA whenever these values are set.

GPP3

The RBA value after the last byte of data tranafer, if any, resl
or byassed, has been accomplished.

REMRA | |
For MU, MF, FF and field item type files, it contains the RBA value
of the beginning of the record in process. For MI, FI and
INPUT/PRINT files, it is equal to REMBA. See GPP2 above.

REMEA
The BBA value where the previous data-transferring GET/PUT began its
data transfer., If the file is record-segmented, and REMBA is at the
start of a record, REMRA is set equal to REMBA, See GPPZ above,

EQF
The RBA value of the last byte of data in the file, plus 1. For MU,
MF, FF and field item type files, it effectively points to the next
sequential record to be written to the file. For Mi, FI and

APPENDIX A A-4

