
Acorn
Software Products, Inc.
634 North Carolina Ave.,S.E.,Washington,D.C., 20003 • (202) 544 -4259

STRUCTURED BASIC TRANSLATOR

by

Gene Bellinger

Published by Acorn Software Products, Inc.

Copyright 1979 by Gene Bellinger

SBT - STRUCTURED BASIC TRANSLATOR	 PAGE 2

TABLE OF CONTENTS

INTRODUCTIN 	 3
CONVENTIONS 	 4
THE STRUCTURES

PROCEDURE, CALL 	 5
CASE-CALL 	 5
LOOP STRUCTURES

WHILE STRUCTURE 	 7
UNTIL STRUCTURE 	 7

IF-THEN-ELSE STRUCTURES 	 8
NESTING OF STRUCTURES 	 10

ERROR HANDLING ROUTINES 	 10

PROCEDURE ENVIRONMENT 	 11
MAIN PROGRAM FILE 	 11
EXTERNAL PROCEDURES AND FILES 	 11

NOT TO WORRY 	 12

UNPLANNED BNUS 	 12

VERSION INFORMATIN 	 12

NE WORD OF CAUTIN 	 12

RUNNING THE PROGRAM 	 13

TEXT EDITOR 	 13

ANOTHER WORD OF CAUTION 	 13

SBT - STRUCTURED BASIC TRANSLATOR	 PAGE 3

INTRODUCTION

Down on the BASIC idea? Tired of attempting to make progran
modifications without being foiled by line numbers and GOTO's?
Have you managed to forget how portions of your programs work
because you left out the REMARK statements to conserve memory and
speed up execution? If these and other drawbacks of BASIC keep
you from getting this done, then SBT can provide sane relief!

SBT is not a programming language; it is simply a utility which
allows you to write structured prograns using PROCEDURES, CALLS,
CASE-CALLS, IF-THEN-ELSE, WHILE and UNTIL structures with no line
numbers and no GOTO's. A structured program is written using an
editor (one provided) and placed in a disk file, or files, which
SBT will convert into an executable BASIC program with line
numbers and GOTO's as necessary.

SBT is relatively small, i.e. less than 20K including BASIC in
its original version, and fast; i.e. SBT will translate its own
source code in less than 4 minutes. SBT is fast so you would not
hesitate to alter or modify the source code because it took
forever to retranslate it.

SBT - STRUCTURED BASIC TRANSLATOR 	 PAGE 4

CONVENTIONS

SBT is a line-oriented translator that understands only three
types of lines: STRUCTURE ELEMENTS; COMMENTS; and VALID BASIC
STATEMENTS, in that order. Lines may be indented or offset using
spaces or tabs which will be removed before the line is processed
by SBT. Thus any further reference to the word 'LINE' is meant to
imply a character string with the offset characters removed.

STRUCTURE ELEMENTS

All structure elements begin with a '%' character. These lines
alone are processed by SBT. The type checking performed on the
characters following the '%' is just sufficient to determine
uniqueness of the structure element but the full name should be
used:

%PROC	 %ELSE
%CALL	 %ELSEIF
%WHILE	 %END
%UNTIL	 %N
% IF

The structure elements %PROC, %CALL, %WHILE, %UNTIL, %IF, %ELSEIF
and %ON all have arguments (to be explained shortly) which must
be separated from the structure element by one or more spaces.

COMMENTS

Any line beginning with a non-alphabetic character other than a
'%' character is a comment line. These lines are not processed.
This allows you a wide variety of comment conventions as desired.
These comments serve to document the 'SOURCE' code for later
references and have no effect on the final executable BASIC
program. There is an exception: a line beginning with 'REM' will
be treated as a legal BASIC statement and end up as a REMark
statement in the final BASIC program; however, the abbreviation '
will be considered a SBT remark statement and will not be
processed.

BASIC STATEMENTS

Any line which is not a structure element and not a comment is
assumed to be a valid BASIC statement and is passed to the
resultant BASIC program. Note that SBT assumes validity of these
statements with no checking performed; it simply assigns a line
number as required and outputs the statement.

SBT - STRUCTURED BASIC TRANSLATOR 	 PAGE 5

THE STRUCTURES

PROCEDURE STRUCTURES

A program is composed of one or more procedures, each of which
performs a function or some portion of a function. A procedure
structure begins with a procedure statement of the form '%PROC'
followed by a procedure name of 1 to 8 alpha-numeric characters,
with the first being alphabetic. Remember also that one or more
spaces must follow '%PROC'.

A procedure ends with a '%END' statement, and all lines from the
procedure statement to the end statement are considered to be in
the procedure. Since procedures cannot be nested and all other
structures also terminate with '%END' statements, a good
convention to use is to end the procedure with a '%END-PROC' or
'%END-PROC-NAME'. Since '%END' is the extend of the type checking
performed by SBT, any helpful information may be included.

Procedures are invoked or executed by using a '%CALL NAME'
statement, where 'NAME' is the name of the procedure to be
executed, e.g. %CALL TEST1. Although procedures cannot be nested,
they may be recursive, i.e. you can %CALL a procedure from within
itself without any resulting confusion (to the program).

CASE-CALL STRUCTURE

The CASE-CALL is a one line pseudo-structure which performs a
conditional call of one of several procedures depending on the
value of its argument. The CASE-CALL is of the form:

%ON (ARGUMENT) CALL PROC1,PROC2,...,PROCn

where PROC1, PROC2, PROCn are the actual procedure names
desired, and (argument) is some numeric expression. The CASE-CALL
translates to:

ON (argument) GOSUB N1,N2,..,Nn

where the Ni's are the actual line numbers where the desired
procedures begin as determined by SBT.

/* SAMPLE FOR PROC, CALL, CASE-CALL
PRINT "IN MAIN CALLING TEST"
%CALL TEST
PRINT "RETURN FROM TEST"
/* GENERATE A RANDOM CALL TO ONE OR TWO
I=INT(2*RND(1))+1
%ON (I) CALL ONE,TWO
PRINT "END SAMPLE"
/* AN END FOR THE MAIN PROGRAM
END

SBT - STRUCTURED BASIC TRANSLATOR	 PAGE 6

%PROC TEST
PRINT "IN TEST"
IF A=2 THEN RETURN
A=A+1
/* A RECURSIVE CALL
%CALL TEST
/* AN END FOR TEST, NO RETURN NEEDED

%END-PROC TEST

%PROC ONE
PRINT "IN ONE"
%CALL TWO

%END-PROC ONE

%PROC TWO
PRINT "IN TWO"

%END-PROC TWO

The above sample program translates to produce:

1 PRINT "IN MAIN CALLING TEST"
2 GOSUB 500
3 PRINT "RETURN FROM TEST"
4 I=INT(2*RND(1))+1
5 ON (I) GOSUB 1000,1500
6 PRINT "END SAMPLE"
7 END
500 PRINT "IN TEST"
501 IF A=2 THEN RETURN
502 A=A+1
503 GOSUB 500
504 RETURN
1000 PRINT "IN ONE"
1001 GOSUB 1500
1002 RETURN
1500 PRINT "IN TWO"
1501 RETURN

SBT - STRUCTURED BASIC TRANSLATOR 	 PAGE 7

LOOP STRUCTURES

SBT supports two repeat or loop structures %WHILE and %UNTIL.
WHILE loops test at the beginning of the loop and %UNTIL loops
test at the end of the loop. The FOR-NEXT construct may be used
for loop control as desired as it is passed to basic as any other
valid basic statement with no processing performed on it.

WHILE STRUCTURE

The %WHILE structure is of the form:

%WHILE conditional-statement
sequence-of-statements

%END-WHILE

where the conditional-statement is some test to be performed,
e.g. 1<4 , B=A, etc. The conditional is evaluated at the beginning
of the loop and the loop repeats "WHILE" the conditional is true.
Thus the sequence-of-statements may be executed zero (0) times.
Note, the '%END-WHILE' need only be a '%END', but is used in this
form as a programmer aid to remember what this particular %END is
terminating.

/* WHILE EXAMPLE
/* REMOVE SPACES FROM FRONT OF STRING

WHILE LEFT$(S$,1)=" "
S$=MID$(S$,2)

%END-WHILE

which translates to produce:

1 IF NOT (LEFT$(S$,1)=" ") THEN 4
2 S$=MID$(S$,2)
3 GOTO 1
4

UNTIL STRUCTURE

The %UNTIL structure is of the form:

%UNTIL conditional-statement
sequence-of-statements

%END-UNTIL

The conditional-statement is evaluated at the end of the loop and
the loop repeats "UNTIL" the condition is true. Thus the
sequence-of-statements of a %UNTIL structure must be executed at
least once.

SBT - STRUCTURED BASIC TRANSLATOR 	 PAGE 8

/* UNTIL EXAMPLE

S=0:C=0
%UNTIL S>1

C=C+1
S=S+RND(1)

%END-UNTIL

which translates to produce:

1 S=0:C=0
2 C=C+1
3 S=S+RND(1)
4 IF NOT (S>1) THEN 2
5

IF-THEN-ELSE STRUCTURE

This structure is a combination of the IF, IF-ELSE, and CASE
structures of other languages all rolled into one neat package
with a multitude of forms as follows:

%IF conditional-statement
sequence-of-statements

%END-IF

%IF conditional-statement
sequence-of-statements-1

%ELSE
sequence-of-statements-2

%END-IF

%IF conditional-statement-1
sequence-of-statements-1

%ELSEIF conditional-statement-2
sequence-of-statements-2

%ELSEIF conditional-statement-3
sequence-of-statements-3

%ELSE
sequence-of-statements-4

%END-IF

The following . points should be noted carefully. The sequence of
statements are mutually exclusive in all forms, i.e. only one of
the many will be executed. There may be as many %ELSEIF
constructs as desired in a single structure, but if the %ELSE
construct is used it may only appear once, but it need not appear
at all. The following form is valid:

%IF conditional-statement-1
sequence-of-statements-1

%ELSEIF conditional-statement-2
sequence-of-statements-2

PAGE 9SBT - STRUCTURED BASIC TRANSLATOR

%END-IF

/* IF-THEN-ELSE EXAMPLE

%IF A>0
B=10

%ELSEIF A<0
B=20

%ELSE
B=30

%END-IF

which translates to produce:

1 IF NOT (A>0) THEN 4
2 B=10
3 GOTO 8
4 IF NOT (A<0) THEN 7
5 B=20
6 GOTO 8
7 B=30
8

SBT - STRUCTURED BASIC TRANSLATOR	 PAGE 10

NESTING OF IF, WHILE, AND UNTIL STRUCTURES

These structures may appear inside one another as desired to some
indeterminant level of nesting. Since SBT doesn't keep track of
level nesting as such, it is difficult to define a maximum limit.
If you should encounter a stack overflow on S$(), i.e. S>50, then
increase the dimensions of S$(E) and S$(E,1) to something greater
than its initial setting of 50 and the problem should go away.

ERROR HANDLING ROUTINES

In the TRS-80 environment, control is given to the programmer to
capture and handle errors when they occur. It will be noted by
those who use these routines that SBT will not handle these
routines since the statement must read 'N ERROR GOTO'. Since
SBT 'SOURCE' has no line numbers, this instruction has nowhere to
go. Therefore, it cannot be used.

SBT implements another version of the %N routine, and that is:
%N ERROR
sequence-of-statements

%END-ERROR

Care must be taken in coding this block. Since BASIC wants to see
this statement early in the program, usually at the beginning, be
careful not to use a %CALL statement in the
sequence-of-statements block if the first %PROC has not been
encountered or, if done this way, issue a %CALL to the main PROC
after the %END-ERROR statement followed by a BASIC END. One other
reminder - a CLEAR XXXX statement will reset the "N ERROR GOTO"
to 0!!

/* N ERROR EXAMPLE

%PROC MAIN
%CALL INITIALIZE
%CALL MAJOR
%CALL END-IT
END

%END-PROC

%PROC INITIALIZE
%ON ERROR

%IF ERR/2+1=53
PRINT "FILE ";F$;"NOT FOUND "
RESUME

% ELSE
N ERROR GOTO 0

%END-IF
%END-ERROR

%END-PROC

SBT - STRUCTURED BASIC TRANSLATOR	 PAGE 11

PROCEDURE ENVIRONMENT

This is probably by far the most difficult concept of the entire
operation.

MAIN PROGRAM FILE

The program that SBT translates may reside in one or more disk
files. When SBT is run it initiates a prompt and the user inputs
the initial or first program file name. The file must be saved
with extension '/SBS', but as instructed by the prompt the file
name is entered without the extension. If you use the editor
supplied with this program, files will automatically be saved
with the correct extension saving typing. Anyway, SBT reads and
translates this file, the first part of which must be the main
program. (The main program may or may not be a procedure, as the
user desires).

As the main program file is being translated, SBT stores all
encountered procedure names in a table. Procedure names may be
encountered in %CALL or %ON statements before the procedures are
actually encountered for translation. SBT assumes that a
procedure will be translated into a sequence of line numbers
beginning at 500*name indes in procedure table, so GOSUB line
numbers are generated accordingly. If a procedure is encountered
during the translation of the main program file, it is
translated with a sequence of line numbers as dictated by the
procedure table. Also a key is set so SBT may later know that
this procedure has been found and translated.

EXTERNAL PROCEDURES AND FILES

Upon completion of translating the main program file SBT selects
the first procedure name in the table that has not been found and
translated and assumes it to be in a disk file with the same name
and an extension '/SBS'. SBT then opens this file and begins
translation. This file must contain a procedure with the same
name as the file name, but it may also contain other procedures,
which will be translated as encountered. The procedures in this
file need not be in any specific order but, it is good practice
to have the first procedure the same as the file name.

Upon completion of processing this file, SBT again looks in the
procedure table for the next unresolved procedure name and
repeats the preceding process.

At present SBT is limited to 50 procedures but can be expanded by
increasing the dimensions of P$() and P(). The maximum value that
may be used is 130 because of the scheme SBT uses for the
generation of line numbers where procedures begin. The method

SBT - STRUCTURED BASIC TRANSLATOR 	 PAGE 12

used also limits procedures to a maximum of 500 executable lines,
but this is not considered to be restrictive.

NOT TO WORRY

SBT creates a BASIC program file with the main program file name
and the extension '/BAS'. If you do a DOS list of this file
before loading it into BASIC, you will find that the line numbers
are out of order. SBT was written using one of the supposedly
trivial features of BASIC, that when it loads an ASCII copy of a
program, it checks line numbers and puts them in ascending order.
This feature allowed SBT to be written as a one-pass translator
and is also responsible for the flexibility of procedure
placement in source files.

THE UNPLANNED BONUS

The BASIC program created by SBT is anything but structured. It
makes an attempt to optimize the generated code by not generating
any GOTO's which transfer to other GOTO's or RETURN's. A GOTO
that would transfer control to a RETURN is substituted by a
RETURN and a GOTO which would transfer control to another GOTO
substitutes the line number of the second GOTO into the first.
This feature significantly decreases the execution time of the
result code.

VERSION INFORMATION

SBT has been implemented on a number of systems. Currently these
include the HEATHKIT H8 under HEATH EXTENDED BASIC and MICROSOFT
BASIC; TRS-80; OSI; and MEMORITE. Version #3.0 identified the
first release for the TRS-80 and updates will be provided to
registered users.

ONE WORD OF CAUTION

If you are using a program that requires the clearing of string
space the CLEAR XXXX statement must appear as the first statement
in the program. This should be coded before any other statement.
If you inadvertently place a clear statement inside a subroutine,
the program will terminate on an error when the RETURN is
encountered.

SBT - STRUCTURED BASIC TRANSLATOR
	

PAGE 13

RUNNING THE PROGRAM

From BASIC run "SBT". A file will be asked for that contains the
program to be translated. Enter the required file name. The
program will supply information to the user as to the file being
used and the PROC being translated.

If you want to try SBT, use the text for SBT itself or the text
for the editor. The resultant '/BAS' file will not destroy any
functional programs.

After a program has been translated load the '/BAS' file. This
will orient the line numbers correctly. Now save the program
using a different file name. To conserve disk space, the '
/BAS' file may be killed.

TEXT EDITOR

The supplied text editor is written in SBT. It is designed to be
used in conjunction with the SET program since all files arc
saved with the required extension VMS'. Therefore, if used for
other purposes, the extension must be changed or the user must
remember it is there.

Line editing is limited to the replacement of a line, but
additional changes could be implemented with simple routines by
the users. The program is self documenting and very easy to run.

ANOTHER WORD OF CAUTION

In all TRS-80 programs which use string space, TRS-80 BASIC will
occasionally need to consolidate unused string space. This will
appear as a "FREEZE UP" of the equipment for as long as a minute
or more. There is nothing wrong with your machine and nothing
can be done to remedy the situation except be patient.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

