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Abstract

A mean field theory of polymer blends [17] has been extended to treat systems of

neat diblock copolymers. We have derived a set of self-consistent equations describing the

probability distribution functions, and devised and implemented convergent numerical

techniques to solve this system of equations for a wide range of physical parameters.

The primary numerical work was a study of the equilibrium morphology of these

systems. Applying the self-consistent theory to a model system, we constructed a phase

diagram which exhibits the equilibrium morphology as a function of the effective degree

of polymerization, rC , the volume fractions of the two blocks, fA and fB ≡ 1−fA, and the

Flory interaction parameter, χAB. In a second investigation, the numerical techniques

were used to calculate the lattice parameter R for specific morphologies and values of

fA, as a function of χAB and rC . The results were expressed in terms of a power law,

R ∝ χp
ABr

q
C .

This work unifies the results of earlier calculations, which represent limiting cases

of the present work, and provides satisfactory agreement with experiment. Through an

analytic treatment, we were able to show that, in general, the equilibrium morphology is

a function of fA, the product χABrC , and ε where the latter parameter is characteristic of

the two blocks. A similar generalisation revealed the exponents of the lattice parameter

power law to be related by q = p+ 1/2.

Finally, we outline analytic extensions to our approach which encompass systems

other than those discussed here. These include copolymer/homopolymer and copoly-

mer/solvent blends as well as molecules of more complex architectures.
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Chapter 1

Introduction

Polymers are of great interest both theoretically for their fascinating properties and

experimentally for their practical value in science and industry. [6] Virtually all synthetics

such as plastics, rubber, and styrofoam are made from polymer material. Polymers are

also found in living systems in the form of starch, cellulose, glycogen and other molecules.

This has made for a widespread demand for research in the fields of polymer chemistry

and engineering.

In this respect, it is desirable to form theoretical models of these chemical systems,

both to facilitate the understanding of the inherent chemical and physical properties and

to predict the outcome of potentially time-consuming and expensive experiments. Such

systems are ideally suited for treatment using the techniques of statistical mechanics,

and thus become problems of physics.

In its most basic form, a polymer is a macromolecule consisting of a chain built

from simpler chemical units, termed monomers. [6] Examples of these monomers in-

clude styrene, isoprene, or butadiene. In these cases, a terminating hydrogen molecule

is removed from each monomer to create a bonding site for another monomer. Poly-

mer molecules constructed entirely from monomers of a single species are termed ho-

mopolymers. For the monomers given above, the corresponding homopolymer would

be polystyrene (PS), polyisoprene (PI), or polybutadiene (PBD) respectively. In many

cases, these are linear chains. However, one can also form graft polymers in which there

can be several branches.

1



Chapter 1. Introduction 2

A diblock copolymer is formed when two distinct linear homopolymers are bonded

together at one end. Each homopolymer constituent becomes a “block” of the copoly-

mer molecule. In standard notation, a copolymer molecule comprised of polystyrene

and polyisoprene is designated PS-b-PI. Similarly, a polystyrene-polybutadiene diblock

copolymer would be PS-b-PBD. As before, more complicated structures are possible. For

example, one can attach another homopolymer to one end to form a triblock copolymer.

Alternately, one could intersperse two or more monomer species in the chain to form

both random and alternating copolymers.

An interesting effect arises in copolymer systems. As the blocks of a diblock copoly-

mer are distinct, they will have unique chemical properties. This usually results in a net

repulsive interaction between unlike monomers within the copolymer, which is charac-

terised by an interaction energy found experimentally to have the form AT + B where

A and B are constants. This repulsion may be attributed to distinct polarizabilities, in-

compatible molecular geometries, entropic contributions and other factors. We define a

dimensionless parameter χAB, known as the Flory interaction parameter, [9] which is the

interaction energy divided by kBT . It is therefore roughly correlated with temperature

by the relation

χAB ≈ A′ +
B′

T
, (1.1)

If the repulsive strength χAB is strong enough, the molecules will attempt to reduce

the contact between unlike monomers. For a system of distinct homopolymers, this

may be sufficient to cause macrophase separation where the components separate into

segregated domains much the same as is observed with oil and water. For copolymers,

macrophase separation would require total dissociation of the copolymer into its ho-

mopolymer block components. Under normal circumstances, however, the two blocks of
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the copolymer cannot break their chemical bonds. Thus, copolymer segregation is accom-

plished through an alignment of the molecules, resulting in a periodic ordered structure.

This tendency is opposed by the reduction in entropy associated with ordering. This

ordering phenomenon is known as microphase separation as the chemical bonds between

the two blocks of a single copolymer molecule prevent the periodicity of this structure

from being more than a few hundred angstroms in size. The transition to this ordered

structure is known as the microphase separation transition, or MST.

In the body of this thesis, we present a new statistical mechanical model for the sim-

plest polymer molecules in which this ordering occurs, a system of neat diblock copoly-

mers. The term “neat” indicates that the chemical system is comprised entirely of diblock

copolymers; no solvent or other distinct molecule is present. We further assume that the

system is monodisperse. That is, all copolymer molecules are assumed to be identical.

The study of this type of polymer is far from simply pedagogical, however. Extensive

experimental data are available for comparison.

To treat this system, we must first establish some basic terminology and notation.

Recalling that this molecule is comprised of two blocks, a relevant experimental parameter

is the number of monomers in each block. These are the block degrees of polymerization.

In our analysis, we will be considering two generic monomers, rather than specific species

such as styrene or isoprene. We shall designate these monomers and their associated

blocks as type A and B. Throughout this thesis, we shall use κ to represent either one of

these monomer species. Thus, the degree of polymerization of species κ will be denoted

as Zκ. That is, the number of monomers per copolymer molecule of type A is ZA and

the number of type B is ZB. We further define Z ≡ ZA + ZB as the total degree of

polymerization of the copolymer.

Another important characteristic of each species which we denote ρ0κ is the number

of monomers per unit volume for a bulk system composed entirely of species κ. The
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mean effective volume per monomer is thus 1/ρ0κ. Therefore, the total volume occupied

by block κ for each copolymer molecule will be Zκ/ρ0κ. For convenience, we measure this

volume with respect to a reference volume 1/ρref , where the density ρref is used in the

definition of χAB (see Section 2.2). Each reduced block volume is thus

rκ = Zκ
ρref
ρ0κ

. (1.2)

In terms of this reference volume, the total volume of the copolymer molecule is

rC = rA + rB. (1.3)

This is known as the effective degree of polymerization of the copolymer.

A final quantity which we will find of use is the volume fraction of each species κ.

This is the fraction of the copolymer volume which is comprised of species κ, written as

fκ =
rκ
rC
, (1.4)

where we recognise that fA + fB = 1. For neat copolymers, this is the same as the

total volume fraction, φ̄κ, which denotes the fraction of the system’s volume occupied by

species κ. If other molecules were present, as discussed in Section 3.4 and Appendix B.3,

we would have φ̄κ < fκ. Since the primary focus of our investigation was neat diblock

copolymers, these quantities will be considered equivalent throughout this thesis unless

otherwise noted.

Having established our notation, we turn to the problem of interest. As mentioned

above, for sufficiently high values of χAB, ordered structures are observed. In the case

of diblock copolymers, four such structures are known. [30] The type of structure that

forms is determined primarily by fA (or equivalently fB = 1− fA), and to a lesser extent

by χAB, and rC . Figure 1.1 identifies idealised extremes of three of these structures.

One possible morphology, indicated in Figure 1.1(a), is the lamellar structure, which we
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(a) L structure (b) C structure

(c) S structure

Figure 1.1: Common ordered morphologies of diblock copolymers. (a) Lamellar with
repeat distance d, (b) cylinders on a hexagonal lattice, (c) spheres on a bcc lattice. The
black and white regions represent areas where one of the two monomer species dominate.
The white area will be the majority component of the copolymer. These are idealised
strong segregation cases. Intermixing is possible at the boundaries between regions.
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designate L. In this example, the copolymer molecules arrange themselves in periodic

layered structures such that the bonds between the A and B blocks lie in interfacial

planar-like regions. The A blocks then extend to one side of these planes while the B

block extends to the other.

We define a local volume fraction, φκ(r) which specifies the fraction of the volume

at r occupied by monomers of species κ. In the extreme of Figure 1.1(a), this would

be a step function, being either 0 or 1 depending on the subdomain. In practice, there

is intermixing in the interphase region which will tend to round off this function in the

region between subdomains. Systems in which appreciable intermixing occurs, especially

over the entire domain, are said to be weakly segregated. Those in which well defined

subdomains form, having step-like local volume fractions, are strongly segregated. The

morphologies indicated in Figure 1.1 are idealisations of the strong segregation limit.

Another possible structure, indicated in Figure 1.1(b), is a hexagonal lattice of cylin-

drical subdomains. Here, each A-B bond is located on the surface of a cylinder with one

block inside the cylinder and the other one the outside. The block inside the cylinder is

the minority component, having the smaller fκ. These cylindrical domains are arranged

on a hexagonal lattice. A third possibility, Figure 1.1(c), is a spherical domain arranged

on a body-centred cubic (bcc) lattice. Again, the species in the core of the spherical

subdomain is the minority component.

A fourth structure not shown in Figure 1.1 and not considered in this thesis is the

“Ordered Bicontinuous Double-Diamond” structure. [25, 26] If we were to visualise

two interlaced diamond structures, the minority component would be centred on the

tetrapedal segments of the lattice, with the other component permeating the surrounding

medium. In the case of the C and S structure, we are able to reduce the unit cell to a

one-dimensional problem using the Wigner-Seitz method of approximating the primitive

unit cell as a cylinder or sphere respectively. This is important as, in our approach, we
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must solve a diffusion equation for the structure. There is no readily apparent dimension-

reducing symmetry in the OBDD structure and so, to model it, we would have to solve,

numerically, a partial differential equation in three dimensions. The computation time

and storage requirements for even a modest three-dimensional grid are of a magnitude

unsuitable for a project of this nature. (See Section 2.3 for details.) As such, the

modelling of this structure is left to future investigation.

Experimental evidence of this ordering behaviour has primarily been obtained for

strongly segregated systems. [14] An important result is that, in almost all observed

cases, the transitions between two ordered microphases were virtually independent of

temperature and rC . In the strong segregation regime, it is found that the lamellar

structure occurs in polymers of relatively low asymmetry, specifically in the range of

0.35<∼fA
<
∼0.65. For 0.2<∼fA

<
∼0.35 or 0.65<∼fA0.8, a cylidrical structure is observed. Oth-

erwise, when fA<∼0.2 or fA>∼0.8, the spherical domains on the bcc lattice are observed.

In addition, the OBDD structure is observed in PS-b-PI systems for PI volume fractions

between 0.27 and 0.38. [26] In the weak segregation regime, the position of the MST

was found to be determined by χAB, rC and fA. [15] However, one recent experiment

[4] has found that the morphology in weakly segregated systems is determined not only

by fA but also by the temperature, and thus χAB. Experiments on ordering in the weak

segregation limit are sparse, however.

Prior theoretical investigations into this ordering phenomenon have employed as-

sumptions about the details of the structure. Helfand and Wasserman assumed large

rC and χAB leading to strongly segregated systems. [16] This is known as the narrow

interphase approximation (NIA), referring to the relatively small amount of intermixing

between subdomains as indicated for the morphologies in Figure 1.1. This theory pre-

dicts reasonable locations for the phase boundaries in strong segregation for PS-b-PBD,

where the morphology is found to be dependent only on fA. However, the NIA does not
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apply near the MST, at least for nearly symmetric copolymers, as this is in the weak

segregation regime. Furthermore, the NIA predicts no temperature dependent changes

in morphology such as those observed recently in the weak segregation limit. [4]

Complementary to this is Leibler’s treatment [20] which assumes that the difference

between the local volume fractions of each component is small and is approximated by a

Fourier series of the form

φκ(r) =
∑

k

Ake
ik·r, (1.5)

where the sum was restricted to include only the wavevectors k which correspond to

the fundamental reciprocal lattice vectors of the one-dimensional, two-dimensional hex,

and three-dimensional bcc lattices as appropriate. Higher-order Fourier components were

neglected. In addition, the free energy of the system was evaluated only to fourth order.

These conditions were assumed to apply the weak segregation regime, in which the low

amplitude of variations in the local volume fractions implied appreciable intermixing.

Leibler’s theory has been widely used for locating the MST. However, the predicted

microphase boundaries for transitions between two ordered structures differ dramatically

from NIA. Here, instead of the morphology being determined almost exclusively by fA,

there was a strong temperature dependence through χAB. Decreasing the temperature,

the first structure to form after the MST for an asymmetric copolymer was predicted

to be the bcc spherical structure. The morphology then changed to cylinders and layers

as temperature decreased. For symmetric copolymer, layers were always predicted upon

ordering, consistent with experiment. There were large discrepancies in other predictions,

however. In particular, the spherical structure was restricted to a very narrow region in

the weak segregation regime near MST, in clear disagreement with observation. The

cylindrical structure also occurred exclusively at high asymmetries with the lamellar

structure occurring for a much wider range of parameters than was observed in practice.
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Both of these theories utilised the mean field approximation, in which the system

configuration of highest Boltzmann probability was assumed to be the equilibrium state.

Fredrickson and Helfand extended Leibler’s approach to include fluctuations about the

mean field. [11] The MST was modified by this approach such that direct transitions

from a homogeneous disordered state to the L or C structure were possible. However, it

also resulted in an even more restricted range of parameters for which the S structure was

predicted. Overall, the inclusion of fluctuations did not significantly improve agreement

with experiment. This failure may be attributed to the fact that, despite the inclusion

of fluctuations, the weak segregation assumption of equation (1.5) and the fourth-order

expansion of the free energy were still employed.

Small angle X-ray and neutron scattering are often used in the analysis of experi-

mental systems. [13] Due to the low contrast between the species involved, both being

hydrocarbon compounds, it is not possible to determine the density variations, but only

the morphology type and fundamental lattice parameters. If we can successfully predict

these properties, then this would lend credence to our theory, and perhaps provide insight

into experimentally undetectable aspects of this behaviour.

In our approach, we do not use any assumptions on the nature of the density varia-

tions. Instead, we derive a set of self-consistent equations which are solved numerically

to predict the correct equilibrium morphology, its density profiles and associated charac-

teristics. This approach follows an analogous formalism to that of Hong and Noolandi,

[17] who developed a self-consistent theory of polymer/solvent blends which they initially

applied to determine interface characteristics in macrophase separation. This approach

has already been successfully applied to systems involving diblock copolymers in a sol-

vent. [2, 3, 18, 28, 29] The absence of solvent in our present case requires us to construct

a modified approach. By adapting this theory for microphase separation in neat diblock

copolymer systems, we have predicted the equilibrium morphological behaviour over the
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entire range of system parameters which is consistent with experiment. We have chosen

to study the model system ρref = ρ0A = ρ0B and bA = bB, where bκ is the mean effective

separation between monomers, known as the Kuhn statistical bond length. The results

unify those of the NIA and Leibler’s weak segregation theory in their respective domains,

providing a more general and experimentally consistent picture of copolymer systems.

We find that the MST and equilibrium morphologies for our model system are, in

the self-consistent mean field theory, entirely determined by the parameter fA and the

product χABrC . Furthermore, we derive analytically in Section 3.3 that the system is,

in the most general sense of mean field theory, determined by these two quantities and a

third parameter ε = ρ0Bb
2
B/ρ0Ab

2
A.

The remainder of this thesis is organised as follows: Chapter 2 outlines the full deriva-

tion of our theory from first principles. Section 2.3 details the numerical implementation

and computational procedure utilised in this investigation. In Chapter 3 we present our

results for a morphological study of the model diblock copolymer system. This is given

in the form of a phase diagram where the three structures of Figure 1.1 and the disor-

dered phase are identified in terms of the system parameters χABrC and fA. The density

profiles for several representative cases are also given. The generalisation to other sys-

tems, including those with solvent, is then discussed. Chapter 4 details the relationship

between the lattice dimensions of the various morphologies and the parameters χAB and

rC for the model system in terms of a power law. The free energy density dependence is

also illustrated, with analytic generalisations given for both. In Chapter 5 we summarise

our investigation, the numerical results of which are tabulated in Appendix A. Finally,

Appendix B illustrates how the theory can be extended to systems more complicated

than the linear diblock case given here.



Chapter 2

Formalism

2.1 The Functional Integral Representation

We begin the construction of the model for our chemical system with the mathematical

representation of a polymer chain. Addressing two adjacent monomer units within a

chain, the bond lengths are assumed to have a Gaussian distribution [8] with the rms

bond length, known as the Kuhn statistical bond length, given by b. The probability, ψ,

of a bond being of length r is thus given by

ψ(r) = [
3

2πb2
]3/2 exp[−

3r2

2b2
], (2.1)

which satisfies our Gaussian criteria. For a chain of Z monomers with their positions

given by the set of vectors {Rn}, the associated probability of the configuration will

become

Ψ({Rn}) =
Z−1
∏

n=1

ψ(|Rn+1 −Rn|)

= [
3

2πb2
]3(Z−1)/2 exp[−

Z−1
∑

n=1

3|Rn+1 −Rn|
2

2b2
]. (2.2)

In our treatment we consider chains of high degree of polymerization. Thus, it is

reasonable to consider the continuous limit of equation (2.2): [12]

P ∝ exp[−
3

2b2

∫ Z

0
dτ ṙ2(τ)], (2.3)

where the polymer chain is represented by an arbitrary space-curve, r(τ), parameterised

by the monomer position along the chain, τ . Equation (2.3) is known as the Wiener

measure.

11
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With equation 2.3 as our underlying assumption, we construct the partition function

applying the general approach of the Hong and Noolandi formalism. [17] Considering a

system of ÑC copolymer chains, we identify the two distinct chemical species of the chain

as blocks A and B. Each block has associated with it a distinct Kuhn length, bA or bB.

We also require the bulk number densities of each species, ρ0A and ρ0B. The partition

function Z is thus given by a functional integral [12] over all possible configurations for

each Gaussian chain, weighted by the appropriate probabilities.

Z =
ZÑC

C

ÑC !

∫ ÑC
∏

i=1

δrAi(·)δrBi(·)×

PA[rAi(·)]PB[rBi(·)]×

δ[rAi(ZA)− rBi(ZB)]×

∏

r
δ[1−

ρ̂A(r)

ρ0A
−
ρ̂B(r)

ρ0B
]×

exp[−βV̂ (·)], (2.4)

where ZC is the contribution to the partition function from the kinetic energy of the

copolymer molecule. Each block κ of each polymer chain i is parameterised by a space-

curve rκi(·), where the dot denotes the fact that the curve is a function of the configura-

tion. Note that δrκi(·) represents a functional integration over all configurations of the

space-curve, while δ[· · ·] represents the Dirac delta functional. Equation (2.4) is in fact

a simplified version of the partition function derived for the case of copolymer/solvent

blends, [27] where the kinetic energy and configurational probabilities of the solvent are

absent.

As we are concerned with copolymer molecules, where each block of species A is

bonded to a complementary block of species B, this must be reflected in the permitted

states in the partition function. This is accomplished by the δ function which appears in

the third line of equation (2.4). Physically this factor requires that space-curves of the
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A and B blocks terminate at a common coordinate.

The δ functional in the fourth line of the partition function represents the assumed

incompressibility of the system. As this condition must be maintained at every spatial

position, a δ functional factor must be included for each position r. This is denoted

by the
∏

r notation. The Hong and Noolandi partition function does not include this

term. Instead they introduce incompressibility as a minimisation constraint in the saddle-

function approximation (see Section 2.2). Following the approaches of Banaszak, [2]

and Ohta and Kawasaki, [21] the variation used here is preferred in that all physical

characteristics of the system are explicitly contained in the initial construction of the

partition function, rather than being introduced later.

Considering the monomers to have no internal structure, the number densities ap-

pearing in this function are

ρ̂κ(r) = ρ̂κ(r, {rκi})

=
ÑC
∑

i=1

∫ Zκ

0
dτ δ[r − rκi(τ)]. (2.5)

The functional integral that defines Z is weighted by a Wiener distribution for each

chain and by a Boltzmann factor corresponding to the potential energy V̂ (·) of the system

at a temperature T = 1/kBβ. This potential is due to the interaction between monomers

and is a function of the monomer distributions ρ̂κ(·).

Equation (2.5) essentially represents a piecewise definition of the density distribution

in terms of the individual pointlike monomers. We may replace this piecewise function

with a continuous function, ρκ(·), through the identity,

∏

r
δ[1−

ρ̂A(r)

ρ0A
−
ρ̂B(r)

ρ0B
]e−βV̂ [{ρ̂κ(·)}] =

∫ B
∏

κ=A

δρκ(·) δ[ρκ(·)− ρ̂κ(·)]×

∏

r
δ[1−

ρA(r)

ρ0A
−
ρB(r)

ρ0B
]e−βV [{ρκ(·)}]. (2.6)
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In order to apply the saddle-function approximation, as is our goal in the mean field

approach, we express the partition function in terms of a free energy. To this end, we

express the δ functionals in terms of their Fourier transforms to obtain

δ[ρκ(·)− ρ̂κ(·)] = N1

∫

δωκ(·) exp
{
∫

d3r ωκ(r)[ρκ(r)− ρ̂κ(r)]
}

, (2.7)

and

∏

r
δ[1−

ρA(r)

ρ0A
−
ρB(r)

ρ0B
] = N2

∫

δη(·)×

exp
{
∫

d3r η(r)[1−
ρA(r)

ρ0A
−
ρB(r)

ρ0B
]
}

, (2.8)

where the limits of integration on ωκ(r) and η(r) are ±i∞. All integrals of the form

d3r are over the volume of the system with N1 and N2 as normalisation constants.

Substituting these identities into equation (2.4), the partition function becomes,

Z = N
ZÑC

C

ÑC !
×

∫

δρA(·)δρB(·)δωA(·)δωB(·)δη(·)×

exp
{
∫

d3r η(r)[1−
ρA(r)

ρ0A
−
ρB(r)

ρ0B
]
}

×

exp
{
∫

d3r [ωA(r)ρA(r) + ωB(r)ρB(r)]
}

×

QÑC

C e−βV [{ρκ(·)}], (2.9)

where

QÑC

C =
∫ ÑC
∏

i=1

δrAi(·)δrBi(·)PA[rAi(·)]PB[rBi(·)]×

δ[rAi(ZA)− rBi(ZB)]×

exp
{

−
∫

d3r [ωA(r)ρ̂A(r) + ωB(r)ρ̂B(r)]
}

. (2.10)

The normalisations of equations (2.7) and (2.8) are contained in N . By substituting
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equation (2.5) into the expression for QC above, we can simplify as follows:

QÑC

C =
∫ ÑC
∏

i=1

δrAi(·)δrBi(·)PA[rAi(·)]PB[rBi(·)]×

δ[rAi(ZA)− rBi(ZB)]×

exp
{

−
ÑC
∑

i=1

{
∫ ZA

0
dτ ωA[rAi(τ)] +

∫ ZB

0
dτ ωB[rBi(τ)]

}}

. (2.11)

In this form, one can explicitly see that the right-hand side of equation (2.11) can be

expressed as the product of ÑC identical factors, each given by

QC =
∫

δrA(·)δrB(·)PA[rA(·)]PB[rB(·)]×

δ[rA(ZA)− rB(ZB)]×

exp
{

−
∫ ZA

0
dτ ωA[rA(τ)]−

∫ ZB

0
dτ ωB[rB(τ)]

}

. (2.12)

This reflects the indistinguishability of the copolymer molecules, as was already implied

by the chosen form of the kinetic energy term in the partition function.

Using traditional notation, this QC can be expressed in terms of a “propagator”

function, [12] defined for each species κ as

Qκ(R, τ |R′) =
∫

δrκ(·) δ[rκ(τ)−R]δ[rκ(0)−R′]×

exp
{

−
∫ τ

0
dτ ′

{

3

2b2κ
ṙ2(τ ′) + ωκ[rκ(τ ′)]

}}

. (2.13)

Note that the constant of proportionality for the Wiener measure appearing in this expres-

sion is contained implicitly within the δrκ(·) factor. [12] This function has the property,

Qκ(R, τ |R′) = Qκ(R′, τ |R). (2.14)

Conceptually, the propagator Qκ(R, τ |R′) is an integration over all configurations of

a block’s space-curve which originate at r(0) = R′ and terminate at r(τ) = R. The

integrand is weighted by the probability of each configuration. Physically then, the
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propagator may be interpreted as being proportional to the probability that a block

starting at R′ will arrive at R after τ monomer steps. This function can be shown to

satisfy the diffusion equation, [12]

[
b2κ
6
∇2 − ωκ(r)]Qκ(r, τ |r′) =

∂

∂τ
Qκ(r, τ |r′), (2.15)

with the initial condition,

Qκ(r, 0|r′) = δ(r − r′), (2.16)

obtained from the definition. From equation (2.13), it follows directly that

QC =
∫

d3R1d
3R2d

3R3d
3R4 ×

QA(R2, ZA|R1)δ(R2 −R4)QB(R4, ZB|R3)

=
∫

d3R1d
3R2d

3R3 QA(R2, ZA|R1)QB(R2, ZB|R3). (2.17)

The appearance of the diffusion equation can be understood through physical argu-

ments. Referring back to the definition (2.2), the mean-squared separation of the initial

and final monomers in the chain, R1 and RZ , can be shown to be (Z − 1)b2κ. [8] This

is the same result as for a random walk of step length bκ. The Wiener measure is, in

fact, a well-known representation of the probability distribution in Brownian motion, a

random walk process. [8] The diffusion equation represents the continuous limit of a

time-evolving random walk. [23] Thus, the propagator provides an accurate visualisation

of a copolymer as a diffusive random walk process where the time variable is replaced by

the monomer position along a polymer chain, τ , with the diffusion coefficient identified as

b2κ. We have assumed that the polymers interact, which biases this random walk. From

(2.15), we recognise ωκ(r) as the biasing potential for a species κ.

We now return to the partition function, which can be expressed as an integral of a

free energy functional. That is, equation (2.9) may be rewritten as

Z = N
∫

δρA(·)δρB(·)δωA(·)δωB(·)δη(·)×
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exp
{

−F [{ρκ(·)}, {ωκ(·)}, η(·)]
}

, (2.18)

where the reduced free energy (expressed in units of kBT ) is given by

F [{ρκ(·)}, {ωκ(·)}, η(·)] = −ÑC lnZC + ln ÑC !− ÑC lnQC −
∫

d3r η(r)[1−
ρA(r)

ρ0A
−
ρB(r)

ρ0B
]−

∫

d3r [ωA(r)ρA(r) + ωB(r)ρB(r)] +

βV [{ρκ(·)]. (2.19)

Applying Stirling’s approximation [23] to ln ÑC ! for a large numbers of copolymers, and

combining all of the logarithmic terms, this becomes

F [{ρκ(·)}, {ωκ(·)}, η(·)] = ÑC(ln
ÑC

ZCQC

− 1)−

∫

d3r η(r)[1−
ρA(r)

ρ0A
−
ρB(r)

ρ0B
]−

∫

d3r [ωA(r)ρA(r) + ωB(r)ρB(r)] +

βV [{ρκ(·)}]. (2.20)

Thus, the copolymer system is now described by a partition function comprised of a

functional integral over all configurations, weighted by the associated Boltzmann proba-

bility for the reduced free energy F .
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2.2 The Mean Field Approximation

Analogous to the saddle-point approximation, the saddle-function approximation is

based on the supposition that there is a sharp maximum in the Boltzmann distribution

exp[−F ] associated with a certain field configuration of ρκ(r), ωκ(r) and η(r). This cor-

responds to a minimum in the free energy functional. This minimum can be located using

the functional analysis equivalent to Lagrange multipliers, where we have a constraint

reflecting the conservation of particle number for each species κ given by

∫

d3r ρκ(r) = Nκ. (2.21)

The functional Lagrange multiplier method identifies the minimum of F with respect

to a field configuration ψ(r) as

δF

δψ(r)
= λA

δCA
δψ(r)

+ λB
δCB
δψ(r)

, (2.22)

where Cκ is the constraint surface, identified as the left-hand side of equation (2.21).

Each λκ is a Lagrange multiplier. Thus, minimising equation (2.20) with respect to

ρκ(r), ωκ(r), and η(r) subject to the constraints, we obtain the relations

η(r)

ρ0κ
− ωκ(r) +

δ

δρκ(r)
βV [{ρκ(·)}] = λκ, (2.23)

−ρκ(r)−
ÑC

QC

δQC

δωκ(r)
= 0, (2.24)

1−
ρA(r)

ρ0A
−
ρB(r)

ρ0B
= 0. (2.25)

The first two of these are equations which can be solved for ωκ(r) and ρκ(r) and the last

equation simply recovers the incompressibility condition.

Note that, via equation (2.12), QC is a function only of the fields ωκ(r). Likewise

the potential energy, V , is a function of only ρκ(r). These conditions are reflected in the

absence of δV/δη(r) and similar terms from the above expressions.
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Thus, in principle, we have a system of equations defining the most probable con-

figuration of the copolymer system. We can show that, in the limit that exp[−F ] is

sharply peaked, ρκ(r) will correspond to the thermally averaged density distribution.

This thermal average, 〈ρ̂κ(r)〉, is most generally defined by a functional integral over all

density configurations weighted by the appropriate probabilities. Referring to the initial

definition of the partition function, equation (2.4), the normalisation of this probability

is given by Z ÑC

C /ZÑC !. Thus we have

〈ρ̂κ(r)〉 = (
1

Z

ZÑC

C

ÑC !
)
∫ ÑC
∏

i=1

δrAi(·)δrBi(·)ρ̂κ(·)×

PA[rAi(·)]PB[rBi(·)]×

δ[rAi(ZA)− rBi(ZB)]×

∏

r
δ[1−

ρ̂A(r)

ρ0A
−
ρ̂B(r)

ρ0B
]×

exp
{

− βV̂ [{ρκ(·)}]
}

. (2.26)

Applying the same steps used to transform the partition function into the form (2.18),

the thermally averaged density can be written as

〈ρ̂κ(r)〉 =
N

Z

∫

δρA(·)δρB(·)δωA(·)δωB(·)δη(·)×

ρκ(·) exp
{

−F [{ρκ′(·)}, {ωκ′(·)}, η(·)]
}

(2.27)

As this integral is weighted by the same Boltzmann factor, the dominant contribution

to the thermal average must occur at the saddle-function. Thus, the thermal average

density is approximated by the density distributions ρκ(r) which define the minimum in

the free energy functional, specified by equation (2.24).

Physically, the saddle-function represents the mean field of the system. From equa-

tions (2.23) through (2.25), we are now able to derive a set of self-consistent integrodif-

ferential equations which can be solved to describe the physical system.



Chapter 2. Formalism 20

Before proceeding, however, we introduce an explicit form for the interaction potential

energy, V , making two basic assumptions. First, we assume that only two-body inter-

actions need be considered, as is conventionally the case. Explicitly, the total potential

energy may be expressed in terms of this interaction as [17]

βV [{ρκ(·)}] =
1

2

B
∑

κ=A

B
∑

κ′=A

∫

d3rd3r′ ρκ(r)Wκκ′(|r − r′|)ρκ′(r′), (2.28)

where Wκκ′(r) defines the potential acting on a monomer of species κ due to a monomer

of species κ′ at distance r. It is useful to define functions Uκκ′(r) in terms of these

interaction potentials as [17]

Uκκ′(r) = Wκκ′(r)−
1

2

ρ0κ
ρ0κ′

Wκκ(r)−
1

2

ρ0κ′

ρ0κ
Wκ′κ′(r). (2.29)

For like monomers, where κ = κ′, this function reduces to

Uκκ(r) = 0. (2.30)

Substituting equation (2.29) into (2.28), we obtain

V [{ρκ(·)}] =
∫

d3rd3r′ ρA(r)UAB(|r − r′|)ρB(r′) +

1

4

B
∑

κ=A

B
∑

κ′=A

∫

d3rd3r′ρκ(r)[
ρ0κ
ρ0κ′

Wκκ(|r − r′|)]ρκ′(r′) +

1

4

B
∑

κ=A

B
∑

κ′=A

∫

d3rd3r′ρκ(r)[
ρ0κ′

ρ0κ
Wκ′κ′(|r − r′|)]ρκ′(r′). (2.31)

By exchanging κ and κ′, one can readily see that the second and third terms in this

expression are identical. Turning our attention to the evaluation of the second term in

this equation,

B
∑

κ=A

B
∑

κ′=A

∫

d3rd3r′ρκ(r)[
ρ0κ
ρ0κ′

Wκκ(|r − r′|)]ρκ′(r′)

=
B
∑

κ=A

∫

d3rd3r′ρκ(r)ρ0κWκκ(|r − r′|)[
ρA(r′)

ρ0A
+
ρB(r′)

ρ0B
]. (2.32)
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Applying the incompressibility condition (2.25), this simplifies to

B
∑

κ=A

ρ0κ

∫

d3rd3r′′ρκ(r)Wκκ(r′′). (2.33)

Neglecting edge effects, this becomes

ρ0ANAWAA + ρ0BNBWBB, (2.34)

where

Wκκ =
∫

d3r Wκκ(r). (2.35)

Thus, assuming two-body interactions, the potential energy becomes

βV [{ρκ(·)}] =
∫

d3rd3r′ ρA(r)UAB(|r − r′|)ρB(r′) +

1

2
ρ0ANAWAA +

1

2
ρ0BNBWBB, (2.36)

If we assume that these monomer interactions are short-range on the scale of the

system, we can approximate the potential energy functional by the first two non-zero

terms of the gradient expansion, [17]

∫

d3rd3r′ ρA(r)UAB(|r − r′|)ρB(r′) = U
(1)
AB

∫

d3r ρA(r)ρB(r)−

1

6
U
(2)
AB

∫

d3r ∇ρA(r) · ∇ρB(r) +

· · · (2.37)

where U
(n)
AB are expansion coefficients. Substituting this into the potential energy expres-

sion yields

βV [{ρκ(·)}] =
ρrefχAB

ρ0Aρ0B

[
∫

d3r ρA(r)ρB(r)−
σ2

6

∫

d3r ∇ρA(r) · ∇ρB(r)
]

+

1

2
ρ0ANAWAA +

1

2
ρ0BNBWBB, (2.38)
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where, by convention, [2] we have defined

χAB ≡
ρ0Aρ0B
ρref

U
(1)
AB, (2.39)

and

σ2 ≡
U
(2)
AB

U
(1)
AB

. (2.40)

Here, χAB is the Flory interaction parameter and σ is designated the “effective range of

the potential”. It should be noted that σ2 need not necessarily be positive.

We now apply the mean-field equation (2.23) to the potential energy expression (2.38)

to obtain expressions for the fields ωκ(r):

ωA(r) =
ρref
ρ0A

{

χAB

ρ0B
[ρB(r) +

σ2

6
∇2ρB(r)] +

η(r)

ρref

}

− λA, (2.41)

and

ωB(r) =
ρref
ρ0B

{

χAB

ρ0A
[ρA(r) +

σ2

6
∇2ρA(r)] +

η(r)

ρref

}

− λB. (2.42)

It now remains to obtain the density distributions from equation (2.24). We calculate

these in terms of the normalised local volume fractions,

φκ(r) ≡
ρκ(r)

ρ0κ
, (2.43)

which leads to the restatement of the incompressibility condition (2.25) as φA(r) +

φB(r) = 1.

In terms of the local volume fraction, then, we combine equations (2.17), (2.24), and

(2.43) to arrive at

φκ(r) = −
ÑC

ρ0κQC

∫

d3R1d
3R2d

3R3 ×

δ

δωκ(r)
[QA(R2, ZA|R1)QB(R2, ZB|R3)]. (2.44)
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From (2.13) it is clear that Qκ(r, τ |r′) will be a function only of the corresponding ωκ(r).

Taking as an example, κ = A,

QA(R2, ZA|R1) =
∫

δrA(·) δ[rA(0)−R1]δ[rA(ZA)−R2]×

exp
{

−
∫ ZA

0
dτ ′

{

3

2b2A
ṙ2A(τ ′) + ωA[rA(τ ′)]

}}

=
∫

δrA(·) δ[rA(0)−R1]δ[rA(ZA)−R2]×

exp
{

−
∫ ZA

0
dτ ′

{

3

2b2A
ṙ2A(τ ′) +

∫

d3r ωA(r)δ[rA(τ ′)− r]
}}

. (2.45)

Thus, calculating the functional derivative,

δQA

δωA(r)
= −

∫ ZA

0
dτ
∫

δrA(·)δ[rA(τ)− r]δ[R1 − rA(0)]δ[R2 − rA(ZA)]×

exp
{

−
∫ ZA

0
dτ ′

{

3

2b2A
ṙ2A(τ ′) + ωA[rA(τ ′)]

}}

. (2.46)

We separate this into two separate functional integrals, coupled by the Dirac delta func-

tion δ[rA(τ)−R′], where R′ is integrated over all space:

δQA

δωA(r)
= −

∫ ZA

0
dτ
∫

d3R′ δ(r −R′)×

{
∫

δrA(·) δ[rA(τ)− r]δ[R1 − rA(0)]×

exp
{

−
∫ τ

0
dτ ′

{

3

2b2A
ṙ2A(τ ′) + ωA[rA(τ ′)]

}}}

×

{
∫

δrA(·) δ[rA(τ)−R′]δ[R2 − rA(ZA)]×

exp
{

−
∫ ZA

τ
dτ ′

{

3

2b2A
ṙ2A(τ ′) + ωA[rA(τ ′)]

}}}

. (2.47)

The equivalence to equation (2.46) can be seen by noting that the only permitted con-

tributions are those where r(τ) in each functional integral corresponds to the same R′.

This is integrated over all space R′ and all monomers τ to establish a correspondence

between the entire space-curve in each integral. In this form, the factor forming the
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second and third lines of this expression can be recognised as QA(r, τ |R1). The fourth

and fifth lines are also analogous to the definition of the propagator, being proportional

to the probability of monomer τ in the chain being located at R′ with monomer ZA being

located at R2. Since the monomers are indistinguishable within the block, any interval

spanning the same number of monomers should give the same probability. Choosing an

interval starting at monomer 0 and ending at ZA−τ , we see that this factor is equivalent

to QA(R2, ZA − τ |R′), or QA(R′, ZA − τ |R2) by the symmetry relation (2.14). Thus,

equation (2.47) reduces to

δQA

δωA(r)
= −

∫ ZA

0
dτ

∫

d3R′ δ(r −R′)QA(r, τ |R1)QA(R′, ZA − τ |R2)

= −
∫ ZA

0
dτ QA(r, τ |R1)QA(r, ZA − τ |R2). (2.48)

Substituting this into equation (2.44), we obtain

φA(r) =
φ̄A

ZA

Ω

QC

∫ ZA

0
dτ
∫

d3R1d
3R2d

3R3 QA(r, τ |R1)×

QA(r, ZA − τ |R2)QB(R2, ZB|R3), (2.49)

where we have used the relation

Zκ

ρ0κ
=

Ωφ̄κ

ÑC

, (2.50)

for a system of volume Ω to eliminate ÑC . Equation (2.50) simply equates two expressions

for the volume of a single block κ. An entirely analogous derivation provides us with the

expression for φB(r),

φB(r) =
φ̄B

ZB

Ω

QC

∫ ZB

0
dτ
∫

d3R1d
3R2d

3R3 QB(r, τ |R1)×

QB(r, ZA − τ |R2)QA(R2, ZB|R3). (2.51)

We now have, in principle, a complete set of self-consistent equations. All quantities
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appearing in them have a clear physical interpretation except for λκ. It is fairly straight-

forward, however, to demonstrate that the λκ terms do not affect the solution for the

density distributions.

Referring to the diffusion equation (2.15), one can readily show that, if Qκ(r, τ |r′)

is the solution corresponding to a given ωκ(r), then adding a constant cκ to the po-

tential will give a new solution Q′
κ(r, τ |r′) = e−cκτQκ(r, τ |r′). This gives a new Q′

C =

e−cAZA−cBZBQC . Using Q′
C and Q′

κ(r, τ |r′) in equations (2.49) and (2.51), we see that

the resultant φκ(r) is unchanged. Thus, the density distributions are unchanged for any

arbitrary additive constant in either potential.

Taking advantage of this property, we add λκ − χABφ̄κρref/ρ0κ to each potential to

obtain,

ωA(r) =
ρref
ρ0A

{

χAB[φB(r)− φ̄B +
σ2

6
∇2φB(r)] +

η(r)

ρref

}

, (2.52)

and

ωB(r) =
ρref
ρ0B

{

χAB[φA(r)− φ̄A +
σ2

6
∇2φA(r)] +

η(r)

ρref

}

. (2.53)

This constant is chosen so that ωκ(r) will reduce to zero for the case of homogeneous

volume fraction distributions (i.e., φκ(r) = φ̄κ). The choice of η(r) is similarly arbitrary

to within an additive constant, permitting its contribution to be zero in this case of

homogeneous distribution.

It should be noted that, in the prior treatment of copolymer/solvent blends, [3, 28, 29]

the function η(r) had an explicit form in terms of the solvent density, φ̄S(r) ≡ 1−φ̄A(r)−

φ̄B(r). [27] Specifically, in that case it was found that η(r) = ln[φ̄S/φS(r)]. Though the

initial partition function in our present case is conceptually simpler, the absence of such an

explicit expression in this formalism adds a new degree of complexity to the problem. In

both this and the prior treatment, η(r) is determined by the incompressibility condition.

Thus, in our current problem, η(r) must be implicitly specified by φA(r) + φB(r) = 1.
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In our investigation, we examine and compare the three morphologies shown in Figure

1.1. To predict the equilibrium structure for a given system, we must calculate its free

energy density. The morphology with the lowest free energy will correspond to this

equilibrium structure.

The expression for this free energy density is obtained by substituting equation (2.38)

for the potential energy and equation (2.25) for the incompressibility into the expression

(2.20):

f

kBT
≡

F

Ω

=
ÑC

Ω
(ln

ÑC

ZCQC

− 1) +

1

Ω

∫

d3r
{

ρrefχAB[φA(r)φB(r)−
σ2

6
∇φA(r) · ∇φB(r)]−

ρ0AωA(r)φA(r)− ρ0BωB(r)φB(r)
}

. (2.54)

It is convenient to express this free energy relative to some reference configuration. Choos-

ing the homogeneous phase as this reference, the free energy density of this state is

fhom
kBT

=
ÑC

Ω
(ln

ÑC

ZCΩ
− 1) +

1

Ω

∫

d3r ρrefχABφ̄Aφ̄B, (2.55)

where we recognise that ωκ(r) = 0 for this state leads, through the solution of the

diffusion equation and equation (2.17), to the conclusion that QC = Ω. Thus, defining a

free energy density relative to the homogeneous distribution, ∆f = f − fhom, we have

∆f

ρrefkBT
=

f − fhom
ρrefkBT

=
1

Ω

∫

d3r
{

χAB[φA(r)φB(r)− φ̄Aφ̄B −
σ2

6
∇φA(r) · ∇φB(r)]−

ρ0A
ρref

ωA(r)φA(r)−
ρ0B
ρref

ωB(r)φB(r)
}

−
1

rC
ln
QC

Ω
, (2.56)
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where 1/rC can be identified as ÑC/ρrefΩ.

In summary, we have arrived at a set of self-consistent equations describing our system

through the use of the following assumptions:

1. The bond length between adjacent monomers in the copolymer chain are assumed

to have a Gaussian distribution, with blocks A and B having Kuhn statistical bond

lengths of bA and bB respectively.

2. The degrees of polymerization of each block, ZA and ZB, are assumed to be large

so that the chain may be approximated as a continuous space-curve.

3. The system is assumed to be incompressible.

4. The number of copolymers in the system, ÑC , is assumed to be large leading to

the Stirling approximation of ln ÑC !

5. The thermally averaged density distributions of the monomer species are approx-

imated by the system configuration of highest probability. This is the mean field

approximation.

6. The potential energy of the system has been restricted to include only contributions

from two-body interactions.

7. The two-body interaction is assumed to act over a finite range, being negligible for

large monomer separations.

In this model, the copolymer system is entirely represented by the parameters ZA, ZB,

χAB, bA, bB, ρ0A, ρ0B, and σ. The parameters φ̄A and φ̄B do not represent independent

variables as they are simply functions of those above through (1.4). From these parame-

ters, equations (2.15), (2.16), (2.17), (2.25), (2.49), (2.51), (2.52), and (2.53) represent a
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closed set of self-consistent equations which, when solved, describe the approximate ther-

mal average distributions of each monomer type. The associated free energy (2.56), which

we calculate from the converged solutions, allows us to compare the various solutions of

this system and predict the equilibrium structure.



Chapter 2. Formalism 29

2.3 Method of Numerical Solution

In principle, the set of equations describing the system should be solvable numerically

using the relaxation method of self-consistent iteration. [22] A major source of difficulty

arises, however, due to the presence of a singularity in the form of the initial conditions

for the diffusion equation, the delta function (2.16). We can circumvent this, however,

by defining four new functions,

qκ(r, τ) =
∫

d3r′ Qκ(r, τ |r′), (2.57)

and

q′A(r, τ) =
∫

d3r′ QA(r, τ |r′)qB(r′, ZB), (2.58)

q′B(r, τ) =
∫

d3r′ QB(r, τ |r′)qA(r′, ZA). (2.59)

In terms of these functions, QC and φκ(r) become, through direct substitution,

QC =
∫

d3r qA(r, ZA)qB(r, ZB), (2.60)

and

φκ(r) =
φ̄κ

Zκ

Ω

QC

∫ Zκ

0
dτ qκ(r, τ)q′κ(r, Zκ − τ). (2.61)

In both qκ(r, τ) and q′κ(r, τ), a dependence on r and τ appears only in a single Qκ(r, τ |r′)

factor. Thus, qκ(r, τ) and q′κ(r, τ) satisfy the same diffusion equation as the propaga-

tor for species κ. The initial conditions for these equations are easily determined by

substituting the delta function (2.16) into the definitions above. Doing this, we obtain

qκ(r, 0) = 1, (2.62)

and

q′A(r, 0) = qB(r, ZB), (2.63)

q′B(r, 0) = qA(r, ZA). (2.64)
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The diffusion equations for these functions contain no singularities and are readily solv-

able using numerical methods.

Physically, one can interpret qκ(r, τ), from equation (2.57) as being proportional to

the probability of finding a monomer τ steps from the free end of the block at a position r.

Likewise, q′κ(r, τ) is the probability of finding a monomer, τ steps from the join between

the two blocks, at r. Consistent with the requirement that, for a copolymer, one must

arrive at the same position for a given monomer regardless of the direction of approach

along the chain, the expression for each density profile contains a product of these two

probabilities, and includes an integration over all monomers in the block. Thus, QC

represents the normalisation of this probability.

As we have already discussed, the field η(r) appears because of the incompressibility

condition φA(r) + φB(r) = 1. However, no explicit expression for η(r) has yet been

derived. This is necessary, however, in order to devise an iteration procedure and obtain

converged solutions. By adding equations (2.52) and (2.53) and applying the incompress-

ibility condition, we can solve for η(r) to obtain

η(r) =
1

2
[ρ0AωA(r) + ρ0BωB(r)]. (2.65)

This equation is only satisfied when the incompressibility condition is maintained. We

now have the required number of independent equations to obtain a closed solution for

the associated fields.

The solution of the diffusion equation in multiple dimensions is a formidable task.

Therefore, we approximated the Wigner-Seitz unit cell of the hexagonal and bcc lattices

by a cylinder or sphere respectively. [19] The resulting symmetry gives a solution which

depends only on the radial coordinate and τ . The layered structure already has this

property, and so, for all morphologies, the problem is reduced to one dimension. All
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Structure m αm(r)
Layers 1 1
Cylinders 2 2πr
Spheres 3 4πr2

Table 2.1: Weight function for an integral of m dimensions.

integrals of some arbitrary function ψ(r, τ) reduce to

∫

dmr ψ(r, τ) =
∫ R

0
αm(r)dr ψ(r, τ), (2.66)

where each αm(r) is the appropriate weighting function for a structure of m dimensions,

as listed in Table 2.1. In the case of cylinders or spheres, R designates the radius of the

approximated unit cell. For layers it is equivalent to the repeat distance d as illustrated

in Figure 1.1(a). In terms of this effective lattice parameter, R, the volume of an m-

dimensional cell is given by

Ω = Rαm(R)/m. (2.67)

The angular dependence of the diffusion equation disappears in this symmetry leaving

[

b2κ
6

(

∂2

∂r2
+
m− 1

r

∂

∂r

)

− ωκ(r)
]

qκ(r, τ) =
∂

∂τ
qκ(r, τ), (2.68)

with an identical form for q′κ(r, τ).

To perform the actual numerical computation, the integrals, as well as the diffusion

equation, must be discretised. For this investigation, we have discretised the distance

variable r into Nr = 100 intervals, and monomer step variable τκ into Nτ = 400 intervals.

The width of each interval is thus ∆r = R/Nr and ∆τκ = Zκ/Nτ . Integrals were

approximated to fourth order by Simpson’s Rule as [22]
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∫ R

0
αm(r)dr ψ(r, τ) = ∆r

{

17

48
αm(0)ψ0j +

59

48
αm(∆r)ψ1j +

43

48
αm(2∆r)ψ2j +

49

48
αm(3∆r)ψ3j +

Nr−4
∑

i=4

αm(i∆r)ψij +

49

48
αm[(Nr − 3)∆r]ψNr−3j +

43

48
αm[(Nr − 2)∆r]ψNr−2j +

59

48
αm[(Nr − 1)∆r]ψNr−1j +

17

48
αm(Nr∆r)ψNrj

}

, (2.69)

and

∫ Zκ

0
dτ ψ(r, τ) = ∆τκ

[

17

48
ψi0 +

59

48
ψi1 +

43

48
ψi2 +

49

48
ψi3 +

Nτ−4
∑

j=4

ψij +

49

48
ψi(Nr−3) +

43

48
ψi(Nr−2) +

59

48
ψi(Nr−1) +

17

48
ψiNr

]

. (2.70)

where ψij = ψ(i∆r, j∆τκ).

The diffusion equation was discretised, using the Crank-Nicholson method, [10] as

b2κ
6

[
1

2
(
ψi+1j+1 − 2ψij+1 + ψi−1j+1

(∆r)2
+
ψi+1j − 2ψij + ψi−1j

(∆r)2
) +

m

i∆r

1

2
(
ψi+1j+1 − ψi−1j+1

2∆r
+
ψi+1j − ψi−1j

2∆r
)]− ωi

ψij+1 + ψij

2

=
ψij+1 − ψij

∆τ
. (2.71)

Collecting ψ terms of like subscripts, this can be rewritten as

ψi−1j+1[F −Gi] + ψij+1[−1− 2F −
1

2
ωi∆τ ] + ψi+1j+1[F +Gi] +

ψi−1j[−F +Gi] + ψij[−1 + 2F +
1

2
ωi∆τ ] + ψi+1j[−F −Gi]

= 0, (2.72)

where

F =
b2κ∆τ

12(∆r)2
, (2.73)
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and

Gi =
b2κm∆τ

24(∆r)2i
for i 6= 0. (2.74)

To enforce continuity, ∂ψ/∂r must vanish at r = 0 for all structures. It therefore follows

that G0 = 0. This defines a series of linear equations which can be solved to give ψij+1

in terms of ψij for all i. The corresponding matrix for this system is represented by

B0ψ0j+1 + (A0 + C0)ψ1j+1 = D0j (2.75)

Aiψi−1j+1 +Biψij+1 + Ciψi+1j+1 = Dij for 0 < i < Nr, (2.76)

(ANr
+ CNr

)ψNr−1j+1 +BNr
ψNrj+1 = DNrj (2.77)

where

Ai = F −Gi, (2.78)

Bi = −1− 2F −
1

2
ωi∆τ, (2.79)

Ci = F +Gi, (2.80)

and

Dij = ψi−1j[−F +Gi] + ψij[−1 + 2F +
1

2
ωi∆τ ] + ψi+1j[−F −Gi]. (2.81)

This is a tridiagonal form and is known to have a simple method of solution which can

be implemented computationally. [22] Note that equations (2.78) and (2.80) establish

“mirrored” boundary conditions which guarantee continuity of ψ and ∂ψ/∂r on the

boundaries between cells as ∆r goes to zero.

Having established the numerical discretisation for our system of equations, we briefly

outline the iterative process of solution: [28]

1. Given a specific set of system parameters χAB, ZA, ZB, bA, bB, ρ0A, ρ0B, and σ to

solve for a structure of dimension m, we choose some arbitrary initial value for R.



Chapter 2. Formalism 34

2. As a first approximation, we set η(0)(r) = 0 and choose a trial φ(0)κ (r) with a

hyperbolic tangent profile. This is in qualitative agreement with Figure 1.1 where

we have allowed for a limited degree of intermixing. It should be stressed that this

is not an assumption on the form of φκ(r), as it is merely a starting point which is

revised and refined through successive iterations.

3. From these functions, we construct the two trial potentials ω(0)κ (r) via equations

(2.52) and (2.53).

4. Using the potentials ω(n)κ (r) we solve the diffusion equations for q(n+1)κ (r, τ) and

q′(n+1)κ (r, τ). These solutions are then used to construct new volume fraction distri-

butions, φ(n+1)κ (r) via equation (2.61).

5. The potentials ω(n)κ (r) are also used to construct a new η(n+1)(r) field via equation

(2.65).

6. Potentials ω′
κ(r) are constructed using φ(n+1)κ (r) and η(n+1)(r).

7. New potentials ω(n+1)κ (r) are calculated using linear combinations of the previous

ω(i)κ (r) solutions and the new solution ω′
κ(r).

8. If, for some preselected convergence parameter, δ, the condition

|ω(n+1)κ (r)− ω(n)κ (r)| < δ

is violated for any r, we return to step 4 and iterate. When this is satisfied for all

r, the fields have converged to a self-consistent solution. For our calculations, we

have chosen δ = 10−7.

9. Having obtained the φκ(r) and ωκ(r) fields associated with our chosen parameters,

we evaluate the free energy density. We then increment R by some suitable step,
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after which the process is repeated starting with step 2, until the R that minimises

the free energy density is found.

Figure 2.1 illustrates this process for a sample system with parameters bA = bB,

ρ0A = ρ0B = ρref , ZA = 314, ZB = 186, and χAB = 0.04. In it, the free energy

density, ∆f , has been plotted as a function of repeat distance, with a minimum evident

at d/b = 36.4 where b is the Kuhn length. Each point on this free energy curve represents

a converged solution obtained after several thousand iterations of steps 1 through 8. In

this example, the free energy density was sampled over the range of d/b = 34.6 to 36.6, in

increments of 0.02, as described in step 9. For all systems investigated, only one minimum

was found and so the lattice parameter was uniquely determined for each system.

The numerical methods discuss here are, in fact, a revision to the original approach.

In previous work, [28] the boundary conditions specified that the functions qκ(r, τ) and

q′κ(r, τ) be constant within a distance of ∆r of the cell boundaries in order to enforce

continuity. This assumption was found to give results which were inconsistent with

previous limits [16, 20] for asymmetric copolymers. Thus, the “mirrored” boundary

conditions were chosen here as a suitable alternative with associated modifications to the

evaluation of the free energy. Similarly, Riemann sums for numerical integration were

replaced by Simpson’s Rule, thereby attaining three additional orders of accuracy. The

iterative procedure was also automated as much as possible due to the magnitude of the

calculations performed.
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Figure 2.1: Minimisation of the free energy density with respect to lamellar repeat dis-
tance, d. The system parameters are bA = bB, ρ0A = ρ0B = ρref , ZA = 314, ZB = 186,
and χAB = 0.04, where Z in the diagram has been defined as ZA +ZB. The step in d for
free energy sampling was taken to be 0.2 Kuhn lengths.
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The Phase Diagram and Density Distributions

3.1 Introduction

We wish to predict the dependence of the equilibrium morphology on system param-

eters. We chose to investigate systems in which ρ0A = ρ0B = ρref and bA = bB as was

done in previous treatments, [2, 20, 28, 29] so that we can compare our results with these.

Thus, it is only necessary to calculate the phase diagram for fA ≥ 0.5 since values of fA

below 0.5 would correspond to fB ≥ 0.5. In such a case, our results could be applied by

interchanging A and B. As σ was, in previous treatments, [2, 29] found to have negligible

effect, it was chosen to be zero in this investigation. We have verified that the results

were negligibly affected for changes of σ = 0 to σ = b for several representative systems,

with the density profiles and free energies unchanged to one part in 103.

The equilibrium structure is identified by choosing a combination of ZA, ZB, and

χAB and solving the self-consistent problem for the lattice parameter, free energy, and

density profiles of each morphology (corresponding to m = 1, 2, and 3). The associated

free energy densities, ∆f , were then compared, the lowest being identified as the one

belonging to the equilibrium structure. In the case where all three free energies were

positive, it was concluded that no microstructure formed and the homogeneous melt

was the equilibrium state, since equation (2.56) is measured relative to the homogeneous

state.

Leibler’s work, [20] as well as that of Helfand and Wasserman, [16] suggested that

37



Chapter 3. The Phase Diagram and Density Distributions 38

χAB Z
0.022 to 0.160 500
0.055 to 0.400 200

0.1 110 to 800

Table 3.1: Parameter ranges for the three investigated phase diagrams.

the phase diagram in such systems would be parameterised by two quantities: fA and

the product χABZ. For our investigation, we constructed three phase diagrams. In two

of these, Z was fixed and the equilibrium structure was located in terms of χAB and fA.

For the remaining diagram, χAB was fixed and Z and fA were varied. Table 3.1 indicates

the chosen parameters.

Determining the equilibrium structure for all possible combinations of these parame-

ters required locating the phase boundaries between morphologies. Using prior approxi-

mations as a guide, a single point on a phase boundary was located by fixing the values

of both Z and χAB, and incrementing fA in small steps. For each fA, the free energy

was found through self-consistent calculations for each morphology. A plot of free energy

versus fA for the structures was then constructed (cf. Figure 3.1). By fitting fourth

order polynomials to each free energy curve, we located the point at which two free en-

ergy curves intersected. This would be a point on the phase boundary for the chosen

Z and χAB. Figure 3.1 illustrates this method in which, for χAB = 0.04 and Z = 500,

the structure was found to change from lamellar to cylindrical for fA>∼0.632. Except

near the order-disorder transition, the estimated uncertainty in the free energy was less

than one part in 104. In all cases, the difference in energy between morphologies and the

change in free energy due to increments in fA were both at least 100 times larger than

this uncertainty.

Plots as shown in Figure 3.1 were constructed for each transition at a fixed χAB and
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Figure 3.1: Determination of the equilibrium structure for χAB = 0.04, Z = 500. The free
energy densities of the layers and cylinders, minimised with respect to d or R respectively,
were calculated for seven values of fA, given in Table A.1 of Appendix A. The data have
been fit to a fourth order polynomial to determine the point of intersection. The lowest
free energy is associated with layers for fA < 0.632 and cylinders above this point.
Spheres had a significantly higher free energy for these parameters and are not shown.
The arrow indicates the system identified in Figure 2.1.
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Z. This entire process was then repeated for a different χAB or Z as appropriate to the

phase diagram. Figure 3.2 summarises this investigation. The numerical values for each

of the three phase diagrams described in Table 3.1 are given in Tables A.2 through A.4 of

Appendix A respectively, and the mean value of fA for the phase boundary as a function

of χABZ, along with standard deviations, are given in Table A.5.
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3.2 Results and Discussion

We found that, if we plotted the phase boundaries as functions of χABZ and fA, then

all corresponding phase boundaries on the three phase diagrams coincided for a particular

value of χABZ to within an uncertainty of ∆fA = ±0.003. Thus, Leibler’s implication

that the phase diagram depends solely on χABZ and fA near the MST has been verified,

in the cases investigated here, to apply to the entire phase diagram to within numerical

accuracy. Figure 3.2 is a composite diagram of three cases in Table 3.1, where each phase

boundary is determined by the mean value of fA on the boundary associated with each

tested χABZ. As a matter of scale, if the three individual phase diagrams were instead

plotted on these axes, the deviation between corresponding phase boundaries would be

less than the width of each line.

In fact, the uncertainty of ∆fA = ±0.003 occurs on the sphere-homogeneous (S-H)

transition boundary at χABZ = 12. On a plot of χABZ versus fA as in Figure 3.2,

the phase boundary is nearly horizontal here, and so, this uncertainty should not be

considered significant. For χABZ ≥ 13 where the slopes become steeper, the largest

uncertainty reduces to ∆fA = ±0.001.

As can be seen in the figure, all of the boundaries appeared to converge to fA = 0.5 as

χABZ approached 10.5. The exact point of convergence was, in fact, determined through

a slightly different method than that used for the other points. In this case, fA was

fixed and the free energy for each structure was calculated as a function of χAB or Z as

appropriate to the graph. In all three cases of Table 3.1, two significant features were

observed for this symmetric case of fA = fB = 0.5. First, the free energy for the lamellar

structure was always the lowest of the three ordered morphologies, becoming equal to

that of the homogeneous structure as χABZ → 10.504± 0.004. Secondly, the amplitudes

of the density profiles were found to decay smoothly to zero as we approached this limit.
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Figure 3.2: Composite phase diagram for the three investigations. The equilibrium
morphology — layers (L), cylinders (C), or spheres (S) — is identified as a function
of χABZ and fA. The disordered homogeneous phase is designated here by H. In all
three cases in Table 3.1, the same phase diagram was obtained to within the numerical
uncertainty.
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This indicates a direct second-order phase transition from layers (L) to homogeneous (H)

at fA = 0.5, χABZ = 10.504± 0.004.

In contrast, for any point on the phase diagram such that fA 6= 0.5, there is no direct

transition from the homogeneous to lamellar state. The homogeneous state is instead

bounded by a transition to the spherical morphology as found in Leibler’s investigation.

Also, unlike the symmetric case, this phase transition is observed to be first-order as

there is a discontinuous change in the amplitude of the density variations crossing this

boundary. This discontinuity increases in magnitude as fA moves further away from 0.5,

or equivalently, as χABZ increases.

Figures 3.3 through 3.5 illustrate typical density profiles obtained for various mor-

phologies and system parameters. These represent the equilibrium solutions for the

functions φκ(r) for the identified equilibrium morphology and correspond to the density

variations within a single unit cell for the structures illustrated in Figure 1.1. These

profiles have been calculated to a self-consistent uncertainty of less than ±10−5. Figure

3.3 indicates two typical extremes of the lamellar structure, both at fA = 0.5. In Figure

3.3(a), χABZ = 11, which is very close to the order-disorder transition. At this location,

the system is weakly segregated with appreciable intermixing. The density profiles are

very cosine-like as expected by Leibler, but, even this close to MST, their amplitudes are

nearly half of their average values. In contrast, Figure 3.3(b) is also for fA = 0.5, but

at χABZ = 80. In this strongly segregated limit, the density profiles have a qualitative

hyperbolic tangent shape. There are large subdomains occupied exclusively by either

species A or B, with intermixing occurring in less than 20% of the unit cell.

Similar results were obtained for the cylindrical morphology. Figure 3.4 illustrates

two systems at fA = 0.7 where cylinders are the equilibrium structure. In 3.4(a), χABZ =

15.5 which corresponds to a point on the phase diagram virtually on the C-S transition

boundary (cf. Figure 3.2). Again, this profile is qualitatively cosine-like in shape, but
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(a)

(b)

Figure 3.3: Sample density profiles for the lamellar structure. (a) Weak-segregation limit
with χABZ = 11, fA = 0.5. (b) Strong-segregation limit with χABZ = 80, fA = 0.5. The
position within the unit cell, x, has been normalised to the repeat distance d. The profile
from x/d = 0.5 to x/d = 1 is the mirror image of this.
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(a)

(b)

Figure 3.4: Sample density profiles for the cylindrical structure. (a) Weak-segregation
limit with χABZ = 15.5, fA = 0.7, lying virtually on the C-S boundary of Figure 3.2. (b)
Strong-segregation limit with χABZ = 80, fA = 0.7. The radial coordinate within the
unit cell, r, has been normalised to the cell radius R.
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with a slightly higher amplitude than the weakly-segregated lamellar structure. In Figure

3.4(b), we also see the hyperbolic-tangent-like strong segregation for χABZ = 80 at the

same fA.

In the case of the spherical morphology, Figure 3.5(a) represents a system lying virtu-

ally on the S-H transition boundary, with fA = 0.636 and χABZ = 12. Despite this close

proximity to the homogeneous phase (the transition is at fA = 0.640 for χABZ = 12),

there is still an appreciable variation in the local volume fraction — from 0.25 to 0.75.

This demonstrates the first-order nature of the phase transition for asymmetrical copoly-

mers. The profiles themselves, however, are still cosine-like. For χABZ = 80, fA = 0.9,

the density distribution has, again, a more hyperbolic-tangent quality.

This last pair of density profiles, Figure 3.5(b), exhibit a significant qualitative result.

It is for a large value of χABZ, but it is also near the order-disorder transition which

occurs at fA = 0.934 for χABZ = 80. As such, it shares qualities of the two extremes

— a hyperbolic-tangent shape, and significant intermixing. Despite this close proximity

to the S-H boundary, however, the density variations have reached full amplitude, again

indicating a first-order transition. This was in fact verified as converged solutions of

significant amplitude were obtained for the spherical morphology at χABZ = 80 for

values of fA as high as 0.935, where the free energy is in fact positive relative to the

homogeneous phase. Effectively, we have found a density profile normally associated

with strong segregation for a system which is actually near the MST. Such a result

contradicts the assumption of both Leibler, [20] and Fredrickson and Helfand. [11]

These results can be compared with prior investigations in their respective limits.

In Leibler’s theory, [20] the phase boundaries were found to converge at χABZ ≈ 10.5

and fA = 0.5 where a second-order L-H transition was located. Also, for fA 6= 0.5 the

only order-disorder transition was a first-order S-H phase change. The density profiles

in Figures 3.3(a), 3.4(a) and 3.5(a) were also found to be cosine-like. All of this is
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(a)

(b)

Figure 3.5: Sample density profiles for the spherical structure. (a) Weak-segregation
limit with χABZ = 12, fA = 0.636, lying virtually on the S-H boundary of Figure 3.2.
(b) Strong-segregation limit with χABZ = 80, fA = 0.9. The radial coordinate within
the unit cell, r, has been normalised to the cell radius R.
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consistent with Leibler’s approximation. However, we find that for χABZ>∼14, the phase

boundaries depart from Leibler’s result. His phase diagram had qualitatively parabolic

phase boundaries, with a very narrow region for the spherical structure: fA ≈ 0.87 to

fA ≈ 0.88 for χABZ = 50. In our diagram, above χABZ>∼14, the slope of the L-C and C-S

boundaries rapidly become nearly vertical with a much wider spherical region: fA ≈ 0.84

to fA ≈ 0.90 for χABZ = 50. Also, the S-H order-disorder line has moved out from the

Leibler result for fA 6= 0.5 such that ordered structures are stable for more asymmetric

values of fA than predicted by Leibler.

This correlates with the evolution of the density profiles from a cosine-like function

to a hyperbolic-tangent-like function as χABZ is increased. The density profile of Figure

3.5(b) indicates that this is not simply a consequence of moving away from the order-

disorder line, and so, one may conclude that the Leibler approximation is valid only for

a limited range of χABZ<∼14.

The other limit, that of the strong segregation regime, includes systems which have

a high degree of polymerization (i.e., large Z). This is the domain of Helfand and

Wasserman’s NIA theory, [16] which predicts that the phase boundaries depend on only

the volume fraction, fA. We can in fact see this trend in our phase diagram, as, even

with χABZ at a modest 80, the boundaries are becoming vertical. As it is conceivable

that Z could exceed 104, with a typical χAB ≈ 0.2, it is reasonable to conclude that for

such a domain, variations in χAB or Z of an order of magnitude would have little effect

on the location of the phase boundaries with respect to fA. Though in the NIA a system

of PS-b-PBD was investigated, the location of the phase boundaries at weight fractions

of 0.3 and 0.65 (L-C) and 0.1 and 0.85 (C-S) is in reasonable agreement with the strong

segregation limit of Figure 3.2. The NIA also predicted a qualitatively similar variation

of the MST boundary with fA. The asymmetry between fA ≥ 0.5 and fA ≤ 0.5 in their
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result can be attributed to the differences in monomer densities and Kuhn lengths for

that system.

Our results are also consistent with our previous investigation of copolymer/neutral

solvent blends. [29] A result of that work was that the phase diagrams for systems of

equal bulk monomer densities and Kuhn lengths were approximately determined by two

quantities, as here. The quantities in that case, however, were χeffZ and fA where,

for a solvent occupying fraction φ̄S of the total system volume, we define χeff ≡ (1 −

φ̄S)χAB. This is known as the dilution approximation. If we use φ̄S = 0 for the current

investigation, Figure 3.2 maps onto the phase diagram for copolymer/solvent blends with

a discrepancy between boundaries of |∆fA| ≤ 0.01 for corresponding values of χeffZ. The

dilution approximation is discussed in further detail in Section 3.4.

It is found in experiment that the equilibrium structure is determined by fA for

strongly-segregated systems, with the L-C transition at 0.65 and the C-S transition at

0.8. [14] The order-disorder line is variable, with a homogeneous solution guaranteed

for sufficiently small Z or high temperature (i.e., χABZ ≈ 10.5 for the symmetric case).

In addition, the Ordered Bicontinuous Double-Diamond structure is observed in certain

PS-b-PI systems for fA between 0.27 and 0.38. [26] This is in good qualitative agreement

with our strong segregation regime for the L, C, and S structures, and with the symmetric

L-H transition as well as the predicted MST.

Experimental comparison in the weak segregation regime is sparse, however. Temper-

ature induced changes in morphology have only recently been observed in experiment. [4]

In that investigation, for fA = 0.65, the lamellar structure of poly(ethylene-propylene)-

poly(ethylethylene), or PEP-PEE, was observed at the lowest temperature. As the tem-

perature was increased, the equilibrium morphology changed to the OBDD and cylin-

drical phases before reaching MST. This phenomenon is predicted in our theory by the

bending of the phase boundaries towards smaller fA in the weak segregation of Figure
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3.2, making more than one morphology accessible by varying χAB for a fixed rC and

fA. The sparsity of data on this phenomenon can be attributed to several factors. Most

obvious is the fact that this region exists over a very small domain of 10.5<∼χABZ<∼14.

It is likely that it might be difficult to obtain systems precisely in this narrow range.

Also, there is the consideration of metastability. A chemical system would be specified

by a particular fixed rC and fA with χAB being varied through its temperature depen-

dence. Thus, descending the phase diagram along a constant fA contour of, for example,

0.7, one would make a transition from cylinders to spheres and then the homogeneous

state. Between χABZ = 15.5 and 14, the spherical structure would have the absolute

minimum in free energy. However, there will be a local minimum in the free energy func-

tional about the cylindrical structure. This is essentially the definition of metastability.

As such, the system would be stable to small thermal fluctuations and may remain in the

cylindrical structure even after entering this regime. It is quite conceivable that thermal

fluctuations would not be sufficient to overcome this local minimum until the system

is appreciably into the domain of homogeneous stability. A full understanding of these

thermal fluctuations must, however, go beyond the mean field approximation by its very

nature.

In relation to this, Fredrickson and Helfand considered the effect of fluctuations on

the free energy functional of Leibler theory. [16] There, it was found that “windows”

opened in the lower χABZ regions of the phase diagram where C-H and L-H transitions

were possible for fA 6= 0.5. [11] It is likely that this might also occur, perhaps to a lesser

extent, in our fully self-consistent theory.

Another experimental property which may serve to hamper a simple theoretical treat-

ment is that of polydispersity. It is a practical impossibility to obtain a system comprised

entirely of identical copolymers. The parameters Z and fA will in fact have a distribution

centered around the desired and most probable values. For the purposes of argument, one
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might think of this distribution as being Gaussian. If this distribution had an effective

width such that χAB∆Z>∼3.5, this might be sufficient to obscure these narrow regions

of low asymmetry cylinders and spheres. Since χABZ ≈ 12 in this region, we have can

restate this bound on polydispersity as ∆Z/Z>∼0.3, which is of experimental magnitude.

As a final note, there have been limited attempts to predict the Ordered Bicontinuous

Double-Diamond equilibrium microphase from theory, none of which have been successful.

[1] This structure is in fact a recent discovery, having been first reported in 1986. [25, 26]

In our approach, it was necessary to solve the diffusion equation for qκ(r, τ) and q′κ(r, τ).

This was done by discretising space into 100 equal intervals. As the OBDD is a three

dimensional structure with no simple dimension-reducing symmetry, even a 50× 50× 50

grid would represent a 3750-fold increase in computation time. Such an undertaking is

beyond the scope of this project. Ideally, it would be desirable to reduce such a system

to a one-dimensional problem. In principle, one could parameterise this system in terms

of contour surfaces of constant φκ(r) which should be dependent only on the symmetry.

The family of surfaces would then have a single independent parameter, however the

exact shape of these surfaces and, more important, the forms of the associated Laplacian

and normal gradients in this symmetry are unknown.
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3.3 Generalisation of the Phase Diagram

The phase boundaries on the microphase diagrams for our three model systems are

nearly exactly superimposed when plotted using χABZ and fA as the axes. This im-

plies some generalisation of the system in terms of these variables, as found in earlier

approximations. In this section, we show this to be an intrinsic property of the mean

field theory.

We begin by restating our equations in terms of a reduced distance r/R → r and a

reduced monomer step τ/Zκ → τ . In this scale, the diffusion equation becomes

[
b2κ

6R2
∇2 − ωκ(r)]qκ(r, τ) =

1

Zκ

∂

∂τ
qκ(r, τ), (3.1)

where the interval of both r and τ become [0, 1]. The same can be done for q ′κ(r, τ) where

the initial conditions become

q′A(r, 0) = qB(r, 1), (3.2)

q′B(r, 0) = qA(r, 1). (3.3)

In terms of these new fields, the potentials ωκ(r) remain as defined in equations (2.52)

and (2.53). However, the expressions for the density profiles φκ(r) become

φκ(r) =
αm(1)

m

φ̄κ

Q′
C

∫ 1

0
dτ qκ(r, τ)q′κ(r, 1− τ), (3.4)

with

Q′
C =

∫ 1

0
αm(r)dr qA(r, 1)qB(r, 1), (3.5)

where we recognise that the rescaled distance reduces Ω to αm(1)/m via equation (2.67).

Multiplying the diffusion equation by rCρ0κ/ρref , and using the definition of fκ in

(1.4), we obtain

[εκβ∇
2 − ω′

κ(r)]qκ(r, τ) =
1

fκ

∂

∂τ
qκ(r, τ), (3.6)
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where

β ≡
rCρ0Ab

2
A

6ρrefR2
, (3.7)

εκ ≡
ρ0κb

2
κ

ρ0Ab2A
, (3.8)

and

ω′
A(r) = χABrC [φB(r)− φ̄B +

σ2

6
∇2φB(r)] + η′(r), (3.9)

ω′
B(r) = χABrC [φA(r)− φ̄A +

σ2

6
∇2φA(r)] + η′(r). (3.10)

The function η′(r) is defined as η(r)/ρref and is given by

η′(r) =
ω′
A(r) + ω′

B(r)

2
. (3.11)

Equations (3.4) through (3.11) form a rescaled version of our self-consistent system

of equations. We recognise that εA = 1 and fB = 1 − fA, so only five independent

parameters are present: β, fA, ε ≡ εB, σ, and the product χABrC . Of these, we have

found σ to have negligible effect and have set it to zero.

The fields φκ(r) remain unchanged by the transformation. Thus, in the most general

sense, each distinct solution to our system of equations, and by extension each distinct

physical microstructure, is parameterised solely by these four remaining parameters. Fur-

thermore, we shall shortly see that one of these variables can be eliminated through the

requirement that the free energy be minimised with respect to R for an equilibrium

structure.

Consider a rescaled free energy density rC∆f ,

rC∆f

ρrefkBT
=

m

αm(1)

∫ 1

0
αm(r)dr ×

{

χABrC [φA(r)φB(r)− φ̄Aφ̄B −
σ2

6
∇φA(r) · ∇φB(r)]−

ω′
A(r)φA(r)− ω′

B(r)φB(r)
}

− ln
mQ′

C

αm(1)
. (3.12)
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Under the original system of equations, this minimisation requires ∂∆f/∂R = 0. In the

transformed system of equations, R is implicitly contained within the variable β. Thus,

∆f can equivalently be minimised with respect to β. Since R and rC , or equivalently, β

and rC are independent variables, it follows that

∂

∂β
rC∆f = rC

∂∆f

∂β

= 0, (3.13)

at equilibrium. From equation (3.12), rC∆f is dependent on the same four parameters

as the self-consistent solutions — explicitly on χABrC , and implicitly on β, ε, and fA

through the field solutions ωκ(r) and φκ(r). Thus, equation (3.13) represents a holonomic

constraint which serves to reduce the number of independent variables in the system by

one. [24] In other words, since the derivative ∂(rC∆f)/∂β is a function of these four

parameters, equation (3.13) can in principle be solved for one of these parameters in

terms of the other three.

Since χABrC , fA, and ε are known quantities which characterise the system, we solve

this constraint for β as βeq(χABrC , fA, ε). Thus, the equilibrium properties of any given

system are controlled entirely by the three remaining independent variables. Conse-

quently, the overall phase behaviour of all diblock copolymers can be constructed as

a three dimensional phase diagram with axes χABrC , fA and ε. The bounds on these

parameters are given by

0 ≤ fA ≤ 1, (3.14)

0 < ε ≤ 1. (3.15)

In principle, the parameter χAB can be positive or negative (the latter corresponding to a

net attraction between unlike monomers, where no microphase separation would occur).

However, it is almost always found to be positive as the net A-B interaction is normally
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repulsive. [7] Thus, χABrC is also generally positive.

Though the upper bound on ε may not be immediately obvious, it is clear that

our theory, to this point, has made no distinction between the two species. We obtain

equivalent results when A and B are reversed. Thus, in a case where ε is greater than 1,

this must correspond to the solution for ε′ = 1/ε where A and B have been interchanged.

The lack of dependence on rC and χAB individually should not be surprising, as

these parameters vary with ρref via their definitions (1.3) and (2.39) respectively. The

properties of the system should be independent of our choice of reference density. Thus,

no physical dependence on rC or χAB alone is possible. The dependence on ρref cancels

in the product χABrC and so this is indeed a valid physical parameter.

Our investigation considered a model system of ρ0A = ρ0B = ρref and bA = bB.

From equation (3.8), ε = 1 in all such cases. Furthermore, for a system of equal bulk

densities, we see that rC = Z from the definition (1.3). Our model phase diagram

may thus equally be parameterised by fA and χABZ, or fA and χABrC . Thus, Figure 3.2

represents a planar cross-section of the generalised 3-D phase diagram. Due to the amount

of computational time required for this project alone – approximately 9000 computer-

hours – the construction of the full 3-D phase diagram remains a task for the future.

As a final remark, we note that this proof includes the supposition that the mi-

crostructure is lamellar, cylindrical, or spherical in order that r may be replaced by r

and Ω by αm(R)R/m. In fact, this generalisation may be extended to any system where

the volume of the unit cell is parameterised by any single scalar quantity, X. For ex-

ample, the Ordered Bicontinuous Double-Diamond structure has a cubic unit cell, [26]

and so the volume is given by ΩOBDD = X3. In this case, distances would again be

normalised to X, parameterising the system in terms of the same four quantities. The

holonomic constraint is again applied to reduce the independent parameters to χABrC ,

fA, and ε for the equilibrium case (assuming σ to be negligible).
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Thus, we may conclude that this parameterisation is independent of the approxi-

mation of the Wigner-Seitz unit cells as cylinders or spheres. The observed hexagonal

and body-centred cubic lattices have a single independent lattice parameter, and so this

generalisation will still be applicable. It is noteworthy, however, that Fredrickson and

Helfand’s fluctuation theory [11] includes an independent contribution from the param-

eter Z, and so our generalisation is restricted to the mean field theory.
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3.4 The Dilution Approximation

In Section 3.2 we made reference to the dilution approximation, in which the phase

diagram for copolymer/solvent blends was found to be equivalent to our present neat

copolymer system with the substitution of χeff ≡ (1 − φ̄S)χAB for χAB. [29] In this

section, we show that this would follow exactly if the solvent were uniformly and homo-

geneously distributed throughout the blend. This is an assumption that has particular

relevance to experiment.

A rigorous analysis of the connection between these two properties would be espe-

cially lengthy, but it is fairly straightforward to make the connection between these two

statements through some basic arguments. If we look at the partition function for a

copolymer/solvent blend: [2, 27]

Z =
ZÑC

C

ÑC !

ZÑS

S

ÑS!

∫ ÑC
∏

i=1

δrAi(·)δrBi(·)
ÑS
∏

j=1

d3rSj ×

PA[rAi(·)]PB[rBi(·)]×

δ[rAi(ZA)− rBi(ZB)]×

∏

r
δ[1−

ρ̂A(r)

ρ0A
−
ρ̂B(r)

ρ0B
−
ρ̂S(r)

ρ0S
]×

exp[−βV̂ (·)], (3.16)

we see additional terms for the solvent kinetic energy, ZS, and the solvent distribution,

ρ̂S(r). Here, ÑS is the number of solvent molecules and rSj is the position of the j-th

solvent molecule. As with the copolymer components, ρ̂S(r) will be a function of rSj.

Let us assume that only the sets of rSj which correspond to a uniform distribution

of solvent make a significant contribution to the partition function. In that case, we can

replace ρ̂S(r) in equation (3.16) by φ̄Sρ0S where φ̄S is the total solvent volume fraction.
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Within this approximation, the partition function reduces to

Z =
ZÑC

C

ÑC !

ZÑS

S

ÑS!

∫ ÑC
∏

i=1

δrAi(·)δrBi(·)×

PA[rAi(·)]PB[rBi(·)]×

δ[rAi(ZA)− rBi(ZB)]×

∏

r
δ[1−

ρ̂A(r)

ρ0A
−
ρ̂B(r)

ρ0B
− φ̄S]×

exp[−βV̂ (·)]. (3.17)

Assuming a neutral solvent-copolymer interaction, this is equivalent to the partition

function (2.4) for the neat copolymer problem. Only the incompressibility term has been

changed and an additional multiplicative constant included. The solvent contributions

to the potential energy V̂ (·) can be included in the homogeneous term of the free energy,

fhom. Thus, for a neutral solvent, except for the incompressibility relation, the equations

will be the same as for the pure copolymer system derived in Section 2.2. Furthermore,

we can apply the methods of Section 3.3 to reduce the number of controlling parameters.

There is a distinction here, however. Before, we had fκ = φ̄κ, but fκ is the fraction of

the molecule’s volume of type κ while φ̄κ is the fraction of the system’s volume of type

κ. Since some of the system’s volume is occupied by the solvent, these quantities will no

longer be the equivalent. For convenience, we define the total copolymer volume fraction,

φ̄C ≡ 1− φ̄S which is guaranteed by our new incompressibility condition φA(r)+φB(r)+

φ̄S = 1. Then, for a solvent occupying a volume fraction φ̄S of the system volume, the

relation between fκ and φ̄κ will become φ̄κ = φ̄Cfκ.

In Section 3.3, both fκ and φ̄κ were present in the final solution. Thus, in this form, φ̄C

would be an additional parameter. However, we can eliminate this problem by defining

a new function,

Φκ(r) =
αm(1)

m

fκ
Q′

C

∫ 1

0
dτ qκ(r, τ)q′κ(r, 1− τ). (3.18)
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This is a rescaling of equation (3.4). In terms of this function, φκ(r) = φ̄CΦκ(r) and the

original incompressibility condition,

ΦA(r) + ΦB(r) = 1, (3.19)

is recovered. The potentials (3.9) and (3.10) become

ω′
A(r) = φ̄CχABrC [ΦB(r)− fB +

σ2

6
∇2ΦB(r)] + η′(r), (3.20)

ω′
B(r) = φ̄CχABrC [ΦA(r)− fA +

σ2

6
∇2ΦA(r)] + η′(r). (3.21)

Similarly, we can define a new rescaled free energy as rC∆f/φ̄C to obtain

rC
φ̄C

∆f

ρrefkBT
=

m

αm(1)

∫ 1

0
αm(r)dr ×

{

φ̄CχABrC [ΦA(r)ΦB(r)− fAfB −
σ2

6
∇ΦA(r) · ∇ΦB(r)]−

ω′
A(r)ΦA(r)− ω′

B(r)ΦB(r)
}

− ln
mQ′

C

αm(1)
. (3.22)

Note that in the case of copolymer/solvent blends, there was an additional φ̄C factor on

the final lnQC/Ω term of ∆f . [28] As before, we can minimise this function with respect

to β to obtain our holonomic constraint that eliminates β as an independent variable.

This new system of equations is now exactly the same as for the neat copolymer

system with Φκ(r) being substituted for φκ(r) and φ̄CχABrC being substituted for χABrC .

In analogy then, a copolymer/neutral solvent blend in the dilution approximation is

entirely parameterised by fA, ε, and φ̄CχABrC . In terms of our definition of χeff , this

last parameter becomes χeffrC . Thus, to the extent that the dilution approximation is

correct, the phase diagrams correspond exactly with the substitution of χeff into the neat

copolymer solutions. The density profiles φκ(r), potentials ωκ(r), and the free energy ∆f

are all simply rescaled from the corresponding neat copolymer solution by a multiplicative

factor of φ̄C .
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In the previous work on copolymer/neutral solvent blends, the dilution approxima-

tion was not assumed, and a small shift in the phase boundaries was observed between

diagrams of different φ̄C . [29] Through the arguments in this section, one concludes that

this shifting, being an order of magnitude higher than the uncertainty in fA, was entirely

due to inhomogeneities in the solvent distribution. As the dilution approximation is often

used in experiment, this comparison provides a theoretical basis for its validity.



Chapter 4

Equilibrium Domain Sizes

4.1 Introduction

To this point, we have discussed which microstructures can arise in copolymer systems,

but little has been said of the details of the structures themselves. We now address one of

the more significant quantities associated with the unit cell, namely the lattice parameter,

and its dependence on system parameters. As stated earlier, for the lamellar structure,

the lattice parameter R is the repeat distance d, and for the cylindrical and spherical

structures, it is the radius of the unit cell.

It has been observed in experiment that the lattice parameter R follows a rough power

law relation of the form [15]

R ∝ rqCT
r, (4.1)

where T is the temperature of the system and q and r are slowly varying exponents. Our

model does not include the temperature explicitly, though its effect is included in the

parameter χAB through the relation (1.1). Thus, we expect a rough relation of the form

R ∝ χp
ABr

q
C , (4.2)

where, to first approximation, q ≈ −r. The validity of this approximation is related to

the details of the χAB temperature dependence. Though the C and S structures have

been approximated by the Wigner-Seitz cell, the true hex and bcc lattice parameters

should be equal to the radius R multiplied by some geometric factor. Thus, the lattice

parameter should obey the same power law relation as R.

61
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To investigate equation (4.2), we chose a representative value of fA for each structure.

Referring to the phase diagram (Figure 3.2), layers clearly form for fA = 0.5, while

fA = 0.7 and fA = 0.9 fall roughly in the middle of the C and S regions respectively.

These values were thus chosen as typical of their respective structures. Again, we use the

model system ρref = ρ0A = ρ0B and bA = bB giving us rc = Z. Then, choosing a variety

of values for χAB and Z for each structure, we solved the self-consistent equations and

determined the lattice parameter which minimised the free energy.

Figures 4.1 through 4.5 summarise this investigation, with the numerical results tab-

ulated in Tables A.6 through A.8 of Appendix A.
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4.2 Results and Discussion

The converged solutions had an uncertainty in the equilibrium free energy comparable

with that discussed for the phase diagram in Section 3.1. For the layers and cylinders,

this allowed us to locate the equilibrium repeat distance, d, or cell radius, R, to an

accuracy of ±0.1 Kuhn lengths. In the case of the spherical morphology at fA = 0.9, the

dependence of free energy on cell radius was considerably weaker, and so the maximum

uncertainty in the equilibrium cell radius increased to ±0.5 Kuhn lengths.

In order to determine whether equation (4.2) was a good approximation of the be-

haviour of the lattice parameter, we plotted the lattice parameter as a function of χAB

and separately as a function of Z for each morphology. These graphs are presented here

as Figures 4.1 through 4.3. In each, a log-log scale has been used and so, if (4.2) were

exact, then we should obtain straight lines in this representation. In fact, what we found

were nearly straight lines, indicating that the proposed scaling relation is indeed a good

approximation. The slopes of these lines, which are the exponents p and q, were found

to vary slowly, consistent with our hypothesis.

Turning our attention to the lamellar structure at fA = 0.5, the scaling of the repeat

distance is given in Figure 4.1. In 4.1(a), we see that for large values of Z, the repeat

distance goes roughly as χ0.2AB. In this regime the log-log plot produces a virtually straight

line. As we descend through smaller values of Z, we approach the homogeneous phase.

As this happens, the slope of the log-log dependence increases. The line for Z = 200 is

terminated at a higher value of χAB than those above it as χAB = 0.0525 corresponds

to χABZ = 10.5 for that line. Accurate determination of the equilibrium repeat distance

approaching this limit is difficult, and so the last point on the solid line corresponds to

χABZ = 11. Here, the repeat distance goes roughly as χ0.4AB.

The self-consistent calculations could not determine the equilibrium repeat distance
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(a)

(b)

Figure 4.1: Dependence of the repeat distance d on χAB and Z for layers at fA = 0.5.
(a) The repeat distance is given as a function of χAB for a selection of fixed Z. (b) d as a
function of Z for a selection of fixed χAB. A log-log scale has been used. The calculated
points are given in Table A.6. The dotted lines represent an extrapolation to the MST
using Leibler theory, [20] as discussed in relation to equation (4.3).
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in the limit of χABZ → 10.5 as the amplitudes of the density profiles diminish below the

numerical accuracy. However, for this case of fA = 0.5, the density variations approach

those assumed by Leibler as both theories must agree at the MST. Using his results for

this limit, [20] the repeat distance is given by d/b = 2πq∗ where b = bA = bB and q∗ is the

magnitude of the wavevector which minimises the second-order term in the free energy.

Numerically, this is found to give

d

b
= 2π(

Z

22.7
)1/2. (4.3)

Returning to Figure 4.1, we extended the Z = 200 line to this limit and found that the

scaling for χAB becomes χ
1/2
AB in the limit of the MST. Thus, q varies continuously from

0.7 in strongly segregated systems to 1/2 approaching MST for the symmetric lamellar

case.

We found a similar behaviour for the repeat distance as a function of Z in the lamellar

structure. In Figure 4.1(b), there is a near linear relation between the logarithms of d

and Z. For strongly segregated systems where χAB is large, the repeat distance goes as

Z0.7. Again extrapolating to the MST using equation (4.3), we find that this dependence

strengthens and the repeat distance goes as Z1.0 in this limit.

Figure 4.2 illustrates the corresponding power law relation for cylinders at fA =

0.7. Again, in the strong segregation regime, we find that the lattice parameter, this

time the cell radius R, scales as χ0.2ABZ
0.7. Descending along fA = 0.7 on the phase

diagram, we observe in Figure 3.2 that there is a transition from the cylindrical to

spherical morphology before reaching the MST. Approaching this limit, we find that the

scaling becomes χ0.4ABZ
0.9. This is the lower extent of the solid lines on these graphs.

Below the C-S transition on the phase diagram, there is a small region where the free

energies satisfy the inequality ∆fS < ∆fC < 0. This occurs between χABZ = 15.5 and

χABZ = 14. In this range, the cylinders are metastable and their radii are indicated
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(a)

(b)

Figure 4.2: Dependence of the cell radius R on χAB and Z for cylinders at fA = 0.7.
(a) The cell radius is given as a function of χAB for a selection of fixed Z. (b) R as a
function of Z for a selection of fixed χAB. A log-log scale has been used. The calculated
points are given in Table A.7. The dashed lines represent solutions for which spheres are
the equilibrium structure and cylinders are metastable, with higher free energy.
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in Figure 4.2 by dashed lines. For this metastable structure, the scaling increases to

roughly χ0.45AB Z
0.95 before reaching MST. We could not use the Leibler relation (4.3) to

extrapolate to MST in this case since the transition became first order and that approach

could no longer strictly be applied. However, this same fact allowed us to perform the

self-consistent calculations down to the MST. We thus conclude that these exponents do

not reach the respective 1/2 and 1 limits of MST for the lamellar structure.

The case of spheres at fA = 0.9 is illustrated in Figure 4.3. Over this entire range, we

found that the cell radius scaled in accordance with the strong segregation limit of the

previous cases, namely χ0.2ABZ
0.7. Though we must note that the increased uncertainty

in cell radius limits our accuracy, there was no detectable variation in exponents from

near MST at χABZ = 52 up to χABZ = 180. The high asymmetry of these copolymers

made it difficult to obtain fully converged solutions. This, combined with the increased

uncertainty, made it impossible to determine the lattice parameter as we approached

MST at χABZ ≈ 49. However, the calculations were sufficiently accurate that we expect

little variation in these exponents in this regime.

Recalling the density profiles presented in Section 3.2, we see that the values of the

exponents p and q appear to be related to the amplitude of these profiles. In the limit of

full-amplitude, hyperbolic-tangent-like profiles, the exponents are 0.2 and 0.7 for χAB and

Z respectively. As these amplitudes approached zero, the exponents change to p = 1/2

and q = 1. Since it is only possible to reach zero amplitude for an ordered structure in

the case of the second-order L-H transition at fA = 0.5, we find the exponents p = 1/2

and q = 1 occurred only in this limit. The amplitudes at the MST increase as fA moves

away from 0.5. Correspondingly, the upper bounds on p and q decrease for increasingly

asymmetric copolymer. For fA = 0.9 we found that both the amplitudes and these

exponents vary little between MST and the strong segregation limit.

An interesting relation can be noted for these exponents. In all cases, the exponents
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(a)

(b)

Figure 4.3: Dependence of the cell radius R on χAB and Z for spheres at fA = 0.9. (a)
The cell radius is given as a function of χAB for a selection of fixed Z. (b) R as a function
of Z for a selection of fixed χAB. A log-log scale has been used. The calculated points
are given in Table A.8.
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p and q of equation (4.2) were related via

q = p+
1

2
. (4.4)

It is very straightforward to demonstrate this as an intrinsic property of the mean field

theory. To the extent that the power law relation (4.2) is correct, we can substitute this

relation into the expression for β, equation (3.7), to obtain

β ∝
rCρ0Ab

2
A

6ρrefχ
2p
ABr

2q
C

∝
ρ0Ab

2
A

6ρref
(χABrC)−2pr2p−2q+1C . (4.5)

The arguments of Section 3.3 showed that, at equilibrium, β = βeq can depend on only

χABrC , fA, and ε. It must not vary independently with rC . Thus, the exponent 2p−2q+1

must be zero. This, in turn implies that equation (4.4) is satisfied.

We find, in fact, that the power law relations of prior theories are also consistent with

our results. Helfand and Wasserman’s NIA theory predicted p = 1/7 and q = 9/14. [16]

For χABZ → 180, we have p = 0.2 and q = 0.7. It is reasonable to assume that as χABZ

goes to infinity, where the NIA approach would be exact, the self-consistent approach

would yield results consistent with the NIA.

We can also demonstrate our results to be consistent with that of Leibler’s MST limit,

equation (4.3). Taking advantage of equation (4.4), we restate the scaling relation (4.2)

as

R ∝ (χABrC)pr
1/2
C . (4.6)

The MST is specified for a particular value of fA by a fixed value of χABrC . Thus, at the

MST limit, the constant (χABrC)p is absorbed into the proportionality giving R ∝ r
1/2
C .

For our system, we have rC = Z, giving the MST relation predicted by Leibler. However,
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it must be noted that, for fA 6= 0.5, the precise value of χABrC at the MST disagrees with

Leibler’s result, and so the constant of proportionality for fA 6= 0.5 may also disagree.

Banaszak and Whitmore’s analysis of symmetric copolymer/selective solvent blends

in the lamellar structure also gave entirely equivalent results to the neat copolymer

system, with p = 0.2 and q = 0.7 in the strong segregation and p = 1/2 and q = 1

in the weak segregation limit. [3] We can, in fact, generalise our results to the case of

copolymer/solvent blends. Considering the dilution approximation, the scaling relation

would contain χeff ≡ φ̄CχAB instead of χAB and so the lattice parameter should scale

identically with φ̄C and χAB. This was in fact found for Banaszak and Whitmore’s

selective solvent study. Also, Whitmore and Noolandi’s copolymer/neutral solvent study

of the symmetric lamellar structure gave exponents of ∼ 0.2 and ∼ 0.22 for χAB and

φ̄C respectively in the strong segregation and 1/3 and 0.4 in the weak segregation. [28]

The slight disagreement between these values may be attributed to the fact that the

weak and strong segregation limits for each exponent did not correspond to the same

value of χeffZ. An additional effect from small inhomogeneities in the solvent density

distribution may also be responsible for this discrepancy.

Taking advantage of the generality of equation (4.6), we replot in Figure 4.4 the lattice

parameters of the three structures for χABZ ≤ 180. Here, the three morphologies are

plotted on a single graph of RZ−1/2 versus χABZ where the scaling for a fixed structure

and fA all fall on a single curve. The variation of the exponent q from weak to strong

segregation is readily evident.

In experiment, it was found that, for PS-b-PI and various solvents, the lattice param-

eters scale roughly as [15]

R ∝ (φ̄C/T )1/3Z2/3. (4.7)

This is in rough agreement with our strong segregation limit on Z. As already mentioned,
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Figure 4.4: Generalised power law relation for layers, cylinders and spheres. The rescaled
lattice parameter RZ−1/2 is given as a function of χABZ. The dotted and dashed lines
are as described in Figures 4.1 and 4.2.
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however, proper comparison of the T and χAB exponents would require a thorough study

of the dependence of χAB on temperature.

In the course of this investigation, the equilibrium free energy density associated with

each lattice parameter was obtained. Figure 4.5 illustrates this for the selected morpholo-

gies and values of fA used in this chapter. In accordance with equation (3.12), we expect

that Z∆f should be dependent on only χABZ for a fixed fA and ε, as here. To the de-

gree that the curves in this figure are straight, we find that, as for the copolymer/neutral

solvent case, [28] the free energy density obeys the relation

∆f

ρrefkBT
∝ −

1

χABZ2
(χABZ − α)2, (4.8)

where α depends on the structure and fA. This relation is illustrated in the figure. The

slight curvature can be attributed to higher order terms of the form (χABZ−α)n/χABZ
2.

The exact value of α is given by the MST value of χABZ for the L-H transition at fA = 0.5

and the S-H transition at fA = 0.9 for layers and cylinders respectively. Since there is

no direct C-H transition at fA = 0.7, α is simply the value at which the metastable

cylinders’ free energy goes to zero in that case.
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Figure 4.5: Rescaled free energy density as a function of χABZ for the three selected
morphologies and associated fA values.



Chapter 5

Summary and Conclusions

The primary focus of this study has been the determination of the equilibrium mi-

crostructures of systems of neat diblock copolymers. In this regard, we have determined

through the arguments in Section 3.3, that, in the limit of mean field theory, the system is

entirely parameterised by the quantities fA (the molecular volume fraction of species A),

χABrC (the product of the Flory interaction parameter and the effective degree of poly-

merization), and ε = ρ0Bb
2
B/ρ0Ab

2
A (the ratio of the bulk monomer densities multiplied

by the square of their associated Kuhn statistical bond lengths).

Our calculated phase diagram, Figure 3.2, is a central result of this work. In it

we predict the phase transitions between the homogeneous phase and the three ordered

morphologies L, C, and S as illustrated in Figure 1.1 for the case where the bulk monomer

densities and the Kuhn statistical lengths of the two species A and B are equal. We have

not attempted to model the recently-discovered OBDD structure due to the complexity

associated with solving the diffusion equation (2.15) in three dimensions. No dimension-

reducing symmetry analogous to the Wigner-Seitz approximation [19] was known for this

structure.

In the case studied, ε = 1 and so equation (1.3) gives rC = Z for our calculated phase

diagram. For the symmetric copolymer case of fA = fB = 0.5, the lamellar morphology

is always the equilibrium microstructure. Here, we obtain a second-order microphase sep-

aration transition with the amplitude of the density variations decreasing continuously

74
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to zero as χABZ → 10.504 ± 0.004. For fA 6= 0.5, the first ordered morphology encoun-

tered while ascending the graph to larger values of χABZ is the spherical structure, and

the transition is first order with a discontinuous change in the amplitude of the density

variations crossing this boundary. The MST occurs for increasingly higher χABZ as we

move away from fA = 0.5.

These results are in qualitative agreement with Leibler’s weak segregation theory in

the limit of χABZ<∼14. In this region the variations in the densities of the two species

are roughly cosine-like. Above this limit, the density profiles begin to flatten, taking

on a hyperbolic-tangent quality. In such a regime, Leibler’s theory is inadequate. We

find as we move to large values of χABZ, the phase boundaries between the ordered

structures become nearly vertical and thus dependent primarily on fA. In this limit, the

L-C transition occurs at fA ≈ 0.67, the C-S transition at fA ≈ 0.86. For χABZ = 80,

the the S-H transition occurs at fA ≈ 0.93. As the slope of the S-H phase boundary is

not yet vertical at χABZ = 80, however, this transition will move to higher fA as χABZ

increases further. Overall, the phase diagram is in good agreement with experimental

observation [14] as well as Helfand and Wasserman’s NIA theory. [16]

The order-disorder transition is well documented and is also in good agreement with

our results. However, to date, there is only one known experimental study which iden-

tifies the bending of the L-C and C-S boundaries towards fA = 0.5 in the weak segre-

gation limit. [4] This investigation probed the weak segregation regime of PEP-PEE at

fA = 0.65 and discovered temperature dependent transitions from layers to OBDD and

OBDD to cylinders before the MST. This was qualitatively consistent with our phase

diagram. We have a layers-cylinders transition due to the presence of the L-C bound-

ary at χABZ ≈ 28 for fA = 0.65. Our theory also predicts a C-S transition, however,

which was not observed. This discrepancy can be attributed to a number of factors in-

cluding polydispersity, metastability, and thermal fluctuations. Furthermore, common
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experimental systems such as PS-b-PI and PS-b-PBD typically involve species such that

ε ≈ 0.6. Figure 3.2 is a single planar cross-section of the generalised 3-D phase diagram

at ε = 1. Though the construction of the full diagram is beyond the scope of this project,

it would be interesting to investigate the phase diagram for ε 6= 1 and determine whether

these C-H and L-H “windows” for fA 6= 0.5 are predicted. Concentrated experimenta-

tion in the weak segregation regime may help to clarify this behaviour and determine the

adequacy of present theoretical predictions.

In our second investigation, we found that the lattice parameter for all three structures

obeyed a rough power law relation R ∝ (χABrC)pr
1/2
C where p was a slowly varying

quantity. For our ε = 1 system we found that p ranged from 0.2 in the strong segregation

limit to 1/2 at the MST for symmetric copolymers. The value of p was predominantly

determined by the shape of the density profiles, and, in turn, on the value of χABZ. In

the case of high asymmetry in fA, the MST occurred at large values of χABZ, and p did

not depart significantly from 0.2 over the entire range. These results again agreed with

prior treatments in their respective limits, and to an reasonable extent with experiment.

Through the dilution approximation, we demonstrated that our results can be gener-

alised to the case where a solvent is introduced. If we assume the solvent to be uniformly

distributed, our phase diagram for the neat diblock copolymer system is entirely equiv-

alent through the substitution of χeff ≡ φ̄CχAB for χAB where 1 − φ̄C is the fraction

of the system’s volume occupied by the solvent. The power law relations are similarly

determined, with the density profiles, potentials and free energies all simply rescaled by

a factor of φ̄C . [3, 28, 29]

The mean field self-consistent theory applies to the full range of system parameters,

and thus can be used as a guide by which we can determine the range of validity of these

previous approximations and their respective assumptions. Its usefulness is established

by comparison with experiment, and its ability to predict generalised properties not
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previously known.

However, it should be emphasised that the project presented here constitutes a proto-

typical study of the fully self-consistent mean field theory. As such, this work establishes

a grounding through which numerous opportunities for further study present themselves.

The system studied in this thesis used model parameters. Systems of PS-b-PI and PS-

b-PBD, two commonly studied diblock copolymers, are such that ε ≈ 0.6. One could

conceivably construct a phase diagram analogous to Figure 3.2 in terms of χABrC and

fA for this ε. A study of the domain sizes, analogous to that of Chapter 4, would also

be possible. Since both systems have roughly the same value of ε, such studies would be

applicable to both.

In addition to an interest in systems for which ε 6= 1, other relevant copolymer systems

are possible. There have been theoretical treatments involving copolymer/homopolymer

blends [2] and linear multiblock copolymers [18] (i.e., single copolymer chains with more

than two species of monomers). The first of these references involve approximations

similar to that of Leibler, carried to higher order; the second used only the lowest-order

expansion of free energy and densities.

In addition, advances in polymerization have led to the development of “star diblock

copolymers”. [5] These molecules consist of a number of diblock copolymers joined

together in a pinwheel pattern at one end. One reason that this architecture is of interest

is that, in addition to linear diblock PS-b-PI, star PS-PI is another relatively well studied

system in which the Ordered Bicontinuous Double-Diamond structure has been observed.

[25] The failure of theoretical attempts to predict this structure to date make for an

especially enticing test of the self-consistent mean field theory. The major barrier at

present is the required computational power.
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To illustrate the extension of our approach to the treatment of other systems, Ap-

pendix B outlines the derivation of a self-consistent representation for these three molec-

ular configurations. Through an analogous derivation to that of Chapter 2, we obtained

the set of fully self-consistent equations for each of these systems. This has the advantage

of being able to model the system for a full range of experimental parameters, without

any a priori assumptions which restrict us to an undetermined range in the weak segre-

gation regime. This advantage should be extremely useful in experimental comparison

where the majority of data available are for strongly segregated systems.

Though self-consistent mean field theory can be applied to such a vast array of prob-

lems, it is not the last word in copolymer theory. Ideally, one would ultimately like to

include thermal fluctuations for a more complete picture. In an extension of Leibler’s

theory, Fredrickson and Helfand included such fluctuation terms. [11] In that work, it

was found that the C-H and L-H “windows” described above did indeed occur. However,

the spherical region of the phase diagram was unrealistically diminished and, in some

cases, entirely absent. It should be emphasised, however, that this was still a weak segre-

gation theory. Perhaps, a fully self-consistent theory with fluctuation effects would also

generate these C-H and L-H windows, but tempered such that the spherical morphology

remained realistic in strong segregation, where fluctuations would be negligible.

Further improvements to our theory are also possible. There are many subtleties to

chemical interactions which have been bypassed. In particular, the energetic contribu-

tion of the various bond orientations may warrant the inclusion of the detailed molecular

structure of the monomers themselves. Certainly, such a treatment would shed a great

deal of light on the details of the χAB interaction parameter, its dependence on temper-

ature, and more generally the form of the interaction potential V̂ itself. The detail to

which this could be carried out is primarily restricted by available computational power.

Ultimately, we hope that others will find that this treatment shows promise for a new
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approach to copolymer modelling, and may lead to further improvements in copolymer

theory.
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Appendix A

Tables of Numerical Results

∆f (in 10−3ρrefkBT )
fA Layers Cylinders

0.626 -1.45701±0.00008 -1.44448±0.00010
0.628 -1.43913±0.00013 -1.43113±0.00009
0.630 -1.42100±0.00011 -1.41723±0.00009
0.632 -1.40263±0.00011 -1.40311±0.00008
0.634 -1.38401±0.00015 -1.38873±0.00010
0.636 -1.36516±0.00016 -1.37416±0.00007
0.638 -1.34606±0.00010 -1.35933±0.00008

Table A.1: Free energy comparison between layers and cylinders for χAB = 0.04, Z = 500,
fA = 0.626 to 0.638. This relation is plotted in Figure 3.1.
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χABZ L-C transition C-S transition S-H transition
10.498 0.5 0.5 0.5
11 0.5416 0.5750 0.5848
12 0.5684 0.6216 0.6414
13 0.5842 0.6536 0.6766
14 0.5956 0.6760 0.7042
15 0.6046 0.6934 0.7246
16 0.6118 0.7078 0.7416
17 0.6178 0.7204 0.7566
18 0.6232 0.7312 0.7702
20 0.6318 0.7492 0.7898
25 0.6460 0.7794 0.8280
30 0.6544 0.7994 0.8524
40 0.6634 0.8268 0.8846
50 0.6680 0.8424 0.9026
60 0.6708 0.8516 0.9168
70 0.6726 0.8584 0.9264
80 0.6738 0.8622 0.9344

Table A.2: Phase transition boundaries for Z = 500. The value of fA at the transition is
given at the associated value of χABZ. Each point in this table required calculations as
outlined in Table A.1 and Figure 3.1.
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χABZ L-C transition C-S transition S-H transition
10.504 0.5 0.5 0.5
11 0.5415 0.5760 0.5850
12 0.5685 0.6230 0.6425
13 0.5840 0.6545 0.6775
14 0.5955 0.6755 0.7045
15 0.6045 0.6930 0.7255
16 0.6120 0.7070 0.7420
17 0.6180 0.7205 0.7570
18 0.6230 0.7320 0.7695
20 0.6320 0.7480 0.7900
25 0.6460 0.7790 0.8280
30 0.6545 0.8010 0.8535
40 0.6635 0.8265 0.8845
50 0.6680 0.8425 0.9035
60 0.6710 0.8510 0.9165
70 0.6725 0.8575 0.9265
80 0.6740 0.8630 0.9345

Table A.3: Phase transition boundaries for Z = 200.
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χABZ L-C transition C-S transition S-H transition
10.503 0.5 0.5 0.5
11 0.5418 0.5718 0.5836
12 0.5683 0.6225 0.6367
13 0.5838 0.6538 0.6777
14 0.5957 0.6736 0.7057
15 0.6047 0.6913 0.7253
16 0.6119 0.7081 0.7419
17 0.6182 0.7200 0.7565
18 0.6228 0.7311 0.7694
20 0.6320 0.7480 0.7900
25 0.6460 0.7792 0.8280
30 0.6543 0.8013 0.8523
40 0.6635 0.8275 0.8853
50 0.6680 0.8424 0.9026
60 0.6708 0.8528 0.9167
70 0.6726 0.8581 0.9267
80 0.6739 0.8634 0.9341

Table A.4: Phase transition boundaries for χAB = 0.1.
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χABZ L-C transition C-S transition S-H transition
10.502±0.004 0.5 0.5 0.5
11 0.5416±0.0002 0.5743±0.0022 0.5845±0.0008
12 0.5684±0.0001 0.6224±0.0007 0.6402±0.0031
13 0.5840±0.0002 0.6540±0.0005 0.6773±0.0006
14 0.5956±0.0001 0.6750±0.0013 0.7048±0.0008
15 0.6046±0.0001 0.6926±0.0011 0.7251±0.0005
16 0.6119±0.0001 0.7076±0.0006 0.7418±0.0002
17 0.6180±0.0002 0.7203±0.0003 0.7567±0.0003
18 0.6230±0.0002 0.7314±0.0005 0.7697±0.0004
20 0.6319±0.0001 0.7484±0.0007 0.7899±0.0001
25 0.6460±0.0000 0.7792±0.0002 0.8280±0.0000
30 0.6545±0.0001 0.8006±0.0010 0.8527±0.0007
40 0.6635±0.0001 0.8269±0.0005 0.8848±0.0004
50 0.6680±0.0000 0.8424±0.0001 0.9029±0.0005
60 0.6709±0.0001 0.8518±0.0009 0.9167±0.0002
70 0.6726±0.0001 0.8580±0.0005 0.9265±0.0002
80 0.6739±0.0001 0.8629±0.0006 0.9343±0.0002

Table A.5: Mean phase boundaries of Z = 500, Z = 200, and χAB = 0.1 diagrams. These
have been used to construct the composite phase diagram, Figure 3.2.
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χAB Z d ∆f (in ρrefkBT )
0.100 120 15.4 (−3.98272± 0.00231)× 10−4

0.150 120 17.6 (−5.95597± 0.00012)× 10−3

0.200 120 19.0 (−1.39508± 0.00001)× 10−2

0.300 120 20.8 (−3.25495± 0.00001)× 10−2

0.100 140 17.6 (−1.51185± 0.00035)× 10−3

0.075 150 16.6 (−8.77101± 0.03134)× 10−5

0.075 160 17.4 (−2.98680± 0.00207)× 10−4

0.100 160 19.6 (−2.76512± 0.00014)× 10−3

0.075 180 19.6 (−9.05660± 0.00213)× 10−4

0.100 180 21.6 (−3.97050± 0.00015)× 10−3

0.060 200 19.8 (−2.39052± 0.00261)× 10−4

0.065 200 20.4 (−5.94953± 0.00170)× 10−4

0.070 200 21.0 (−1.05837± 0.00018)× 10−3

0.075 200 21.4 (−1.60337± 0.00022)× 10−3

0.100 200 23.4 (−5.07682± 0.00012)× 10−3

0.150 200 25.8 (−1.37733± 0.00001)× 10−2

0.200 200 27.6 (−2.35047± 0.00001)× 10−2

0.300 200 30.0 (−4.44075± 0.00001)× 10−2

0.050 220 20.0 (−2.76530± 0.01310)× 10−5

0.050 250 22.4 (−3.21147± 0.00198)× 10−4

0.050 280 24.8 (−7.67004± 0.00212)× 10−4

0.050 310 27.0 (−1.22623± 0.00014)× 10−3

0.050 340 29.0 (−1.68934± 0.00010)× 10−3

0.050 370 31.0 (−2.12860± 0.00016)× 10−3

0.050 400 33.0 (−2.53843± 0.00011)× 10−3

0.075 400 36.6 (−6.88666± 0.00009)× 10−3

0.100 400 39.0 (−1.17524± 0.00001)× 10−2

0.150 400 42.4 (−2.22038± 0.00001)× 10−2

(continued)

Table A.6: Dependence of repeat distance, d (given in units of the Kuhn length), on χAB

and Z for lamellar structure, fA = 0.5. The dependences of repeat distance on χAB and
Z for these parameters are given in Figure 4.1.
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χAB Z d ∆f (in ρrefkBT )
(continued)

0.200 400 44.8 (−3.31639± 0.00001)× 10−2

0.300 400 48.4 (−5.58612± 0.00001)× 10−2

0.050 600 44.8 (−4.59111± 0.00007)× 10−3

0.075 600 49.0 (−9.53032± 0.00010)× 10−3

0.100 600 52.0 (−1.48025± 0.00001)× 10−2

0.150 600 56.2 (−2.58405± 0.00001)× 10−2

0.200 600 59.2 (−3.72408± 0.00001)× 10−2

0.300 600 63.8 (−6.06283± 0.00003)× 10−2

0.050 800 55.2 (−5.87618± 0.00006)× 10−3

0.075 800 60.0 (−1.11019± 0.00001)× 10−2

0.100 800 63.4 (−1.65819± 0.00001)× 10−2

0.150 800 68.4 (−2.79306± 0.00001)× 10−2

0.200 800 72.2 (−3.96575± 0.00001)× 10−2

0.050 1000 64.6 (−6.75648± 0.00009)× 10−3

0.075 1000 70.0 (−1.21564± 0.00001)× 10−2

0.100 1000 74.0 (−1.77661± 0.00001)× 10−2

0.150 1000 79.8 (−2.93150± 0.00001)× 10−2

0.200 1000 84.0 (−4.11256± 0.00002)× 10−2

0.300 1000 90.8 (−6.52492± 0.00100)× 10−2

0.050 1200 73.4 (−7.40125± 0.00009)× 10−3

0.075 1200 79.4 (−1.29203± 0.00001)× 10−2

0.100 1200 83.8 (−1.86204± 0.00001)× 10−2

0.150 1200 90.4 (−3.03142± 0.00001)× 10−2

0.200 1200 95.2 (−4.22536± 0.00001)× 10−2

0.050 2000 104.6 (−8.88307± 0.00003)× 10−3

0.075 2000 112.8 (−1.46575± 0.00001)× 10−2

0.100 2000 119.0 (−2.05628± 0.00001)× 10−2

0.150 2000 127.8 (−3.26244± 0.00005)× 10−2
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χAB Z R ∆f (in ρrefkBT )
∗0.075 190 11.3 (−1.19380± 0.09049)× 10−5

0.100 190 12.0 (−1.60405± 0.00205)× 10−3

0.150 190 13.5 (−7.62447± 0.00088)× 10−3

0.200 190 14.5 (−1.50889± 0.00004)× 10−2

0.300 190 15.9 (−3.17155± 0.00001)× 10−2

0.078 200 11.7 (−2.43102± 0.01363)× 10−4

0.085 200 12.0 (−7.00308± 0.00430)× 10−4

0.093 200 12.3 (−1.29899± 0.00161)× 10−3

0.100 200 12.6 (−2.00624± 0.00130)× 10−3

0.150 200 14.1 (−8.30272± 0.00085)× 10−3

0.200 200 15.1 (−1.59182± 0.00003)× 10−2

0.300 200 16.5 (−3.27387± 0.00001)× 10−2

0.075 280 15.2 (−1.80514± 0.00091)× 10−3
∗0.050 290 13.9 (−3.23277± 0.13725)× 10−5

0.050 310 14.7 (−1.57412± 0.00775)× 10−4

0.050 340 15.7 (−4.13404± 0.00840)× 10−4

0.075 350 18.0 (−3.26468± 0.00040)× 10−3

0.050 370 16.7 (−7.02241± 0.00738)× 10−4
∗0.036 400 15.7 (−1.71191± 0.08419)× 10−5

0.039 400 16.3 (−1.22841± 0.00391)× 10−4

0.040 400 16.6 (−1.89127± 0.00085)× 10−4

0.045 400 17.3 (−5.42946± 0.00540)× 10−4

0.050 400 17.9 (−1.00335± 0.00161)× 10−3

0.075 400 19.9 (−4.15133± 0.00023)× 10−3

0.100 400 21.3 (−7.95909± 0.00013)× 10−3

0.150 400 23.3 (−1.63694± 0.00001)× 10−2

0.200 400 24.6 (−2.53112± 0.00001)× 10−2

0.300 400 26.6 (−4.39824± 0.00001)× 10−2

(continued)

Table A.7: Dependence of cell radius, R (given in Kuhn lengths), on χAB and Z for
cylindrical structure at fA = 0.7. The asterisks indicate metastable structures where the
spheres have lower free energy for the same χAB and Z. The dependences of cell radius
on χAB and Z for these parameters are given in Figure 4.2.
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χAB Z R ∆f (in ρrefkBT )
(continued)

0.036 600 22.5 (−9.51640± 0.00311)× 10−4

0.050 600 24.4 (−2.76756± 0.00017)× 10−3

0.075 600 26.8 (−6.65815± 0.00007)× 10−3

0.100 600 28.5 (−1.09129± 0.00001)× 10−3

0.150 600 30.9 (−1.99342± 0.00001)× 10−2

0.200 600 32.6 (−2.93216± 0.00001)× 10−2

0.300 600 35.1 (−4.86695± 0.00001)× 10−2

0.036 800 27.9 (−1.86323± 0.00017)× 10−3

0.050 800 30.2 (−3.97954± 0.00007)× 10−3

0.075 800 32.9 (−8.18471± 0.00006)× 10−3

0.100 800 34.8 (−1.26556± 0.00001)× 10−2

0.150 800 37.6 (−2.19912± 0.00001)× 10−2

0.200 800 39.7 (−3.16182± 0.00001)× 10−2

0.050 1000 35.4 (−4.82880± 0.00006)× 10−3

0.075 1000 38.5 (−9.21688± 0.00006)× 10−3

0.100 1000 40.6 (−1.38198± 0.00001)× 10−2

0.150 1000 43.8 (−2.33536± 0.00001)× 10−2

0.036 1200 37.6 (−3.08328± 0.00006)× 10−3

0.050 1200 40.3 (−5.45647± 0.00006)× 10−3

0.075 1200 43.6 (−9.96710± 0.00004)× 10−3

0.100 1200 46.1 (−1.46608± 0.00001)× 10−2

0.036 2000 54.0 (−4.33808± 0.00004)× 10−3

0.050 2000 57.5 (−6.90991± 0.00002)× 10−3

0.075 2000 62.0 (−1.16768± 0.00001)× 10−2
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χAB Z R ∆f (in ρrefkBT )
0.300 180 11.3 (−8.00590± 0.05256)× 10−4

0.300 190 11.7 (−1.31606± 0.00233)× 10−3

0.030 200 12.1 (−1.84661± 0.00969)× 10−3

0.300 250 14.0 (−4.57432± 0.00523)× 10−3

0.200 260 13.4 (−3.27635± 0.05612)× 10−4

0.300 260 14.4 (−5.07325± 0.00149)× 10−3

0.200 330 15.7 (−1.97460± 0.00179)× 10−3

0.150 400 17.0 (−9.27576± 0.01733)× 10−4

0.200 400 18.0 (−3.60280± 0.00064)× 10−3

0.300 400 19.6 (−1.03598± 0.00017)× 10−2

0.100 600 20.9 (−6.17806± 0.00944)× 10−4

0.150 600 22.6 (−3.45302± 0.00071)× 10−3

0.075 800 24.2 (−4.64754± 0.00696)× 10−4

0.150 800 27.8 (−5.18109± 0.00202)× 10−3

0.200 800 29.3 (−8.88927± 0.00170)× 10−3

0.075 1000 28.0 (−1.14217± 0.00165)× 10−3

0.100 1000 29.9 (−2.74224± 0.00213)× 10−3

0.150 1000 32.6 (−6.35503± 0.00013)× 10−3

0.050 1200 29.3 (−3.08714± 0.00378)× 10−4

0.100 1200 34.1 (−3.45165± 0.00002)× 10−3

0.150 1200 37.1 (−7.20442± 0.00064)× 10−3

Table A.8: Dependence of cell radius, R (given in Kuhn lengths), on χAB and Z for
spherical structure at fA = 0.9. The dependences of cell radius on χAB and Z for these
parameters are given in Figure 4.3.
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Extensions to Other Architectures and Blends

B.1 Linear Multiblock Copolymers

In this section, we outline the method by which the theory can be extended to linear

block copolymers containing three or more species. Here, we denote the blocks numeri-

cally (i.e., κ = 1, 2, 3, etc.). Connecting the τ = Zκ monomer in block κ to the τ = 0

monomer in block κ+ 1, the partition function is written as

Z =
ZÑC

C

ÑC !

∫ ÑC
∏

i=1

{ N
∏

κ=1

δrκi(·)Pκ[rκi(·)]
}

×

{N−1
∏

κ=1

δ[rκi(Zκ)− rκ+1i(0)]
}

×

∏

r
δ[1−

N
∑

κ=1

ρ̂κ(r)

ρ0κ
] exp[−βV̂ (·)], (B.1)

where N is the number of blocks. By an analogous transform that gave us equation

(2.17) for diblock copolymers, we get [18]

QC =
∫

Ω
d3R1 · · · d

3RN+1 Q1(R2, Z1|R1) · · ·QN(RN+1, ZN |RN). (B.2)

Expressing the mean field equation (2.24) in terms of the volume fraction, we have

φκ(r) = −
φ̄κ

Zκ

Ω

QC

δQC

δωκ(r)
. (B.3)

Thus,

φκ(r) =
φ̄κ

Zκ

Ω

QC

∫ Zκ

0
dτ
∫

d3R1 · · · d
3RN+1 ×

94
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Q1(R2, Z1|R1) · · ·Qκ−1(Rκ, Zκ−1|Rκ−1)×

Qκ(r, τ |Rκ)Qκ(Rκ+1, Zκ − τ |r)×

Qκ+1(Rκ+2, Zκ+1|Rκ+1) · · ·QN(RN+1, ZN |RN). (B.4)

Note that this is the volume fraction due to block κ. In the case where several blocks

are of the same species, as in an ABA-type triblock copolymer, [30] we may obtain the

species volume fraction via the restricted sum

φspecies(r) =
species
∑

κ

φκ(r), (B.5)

where the summation includes all blocks of the species in question.

Defining the functions

qκ(r, τ) ≡
∫

Ω
d3R1 · · · d

3Rκ ×

Q1(R2, Z1|R1) · · ·Qκ−1(Rκ, Zκ−1|Rκ−1)Qκ(r, τ |Rκ), (B.6)

q′κ(r, τ) ≡
∫

Ω
d3Rκ+1 · · · d

3RN+1 Qκ(Rκ+1, τ |r)×

Qκ+1(Rκ+2, Zκ+1|Rκ+1) · · ·QN(RN+1, ZN |RN), (B.7)

we find that φκ(r) now satisfies (2.61) as before. The functions qκ(r, τ) and q′κ(r, τ) are

easily shown to satisfy the diffusion equation, with initial conditions obtained via (2.16)

as

q1(r, 0) = 1, (B.8)

q′N(r, 0) = 1, (B.9)

qκ+1(r, 0) = qκ(r, Zκ) for 1 ≤ κ < N, (B.10)

q′κ−1(r, 0) = q′κ(r, Zκ) for 1 < κ ≤ N. (B.11)

In terms of these functions, QC is

QC =
∫

Ω
d3r qN(r, ZN ) (B.12)
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=
∫

Ω
d3r q′1(r, Z1). (B.13)

The potentials and free energy density are easily obtained as

ωκ(r) =
ρref
ρ0κ

{ N
∑

κ′ 6=κ

χκκ′ [φκ(r)− φ̄κ +
σ2κκ′

6
∇2φκ(r)] +

η(r)

ρref

}

, (B.14)

∆f

ρrefkBT
=

1

Ω

∫

Ω
d3r

{

1

2

N
∑

κ=1

N
∑

κ′ 6=κ

χκκ′ [φκ(r)φκ′(r)− φ̄κφ̄κ′ −

σ2κκ′

6
∇φκ(r) · ∇φκ′(r)]−

N
∑

κ=1

ρ0κ
ρref

ωκ(r)φκ(r)
}

−
1

rC
ln
QC

Ω
, (B.15)

with the incompressibility condition given by

N
∑

κ=1

φκ(r) = 1. (B.16)

Here, rC ≡
∑N

κ=1 rκ. The expressions are equivalent if we sum over species instead

of blocks. This formulation reduces to the diblock copolymer case for N = 2 where

qA(r, τ) ≡ q1(r, τ), qB(r, τ) ≡ q′2(r, τ), q′A(r, τ) ≡ q′1(r, τ), and q′B(r, τ) ≡ q2(r, τ).
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B.2 Star Diblock Copolymers

AnN -armed star diblock copolymer consists ofN linear diblock copolymers connected

at one end to form a pinwheel pattern. If we designate species B as the hub of this

molecule and species A as the limbs, we have a partition function in the form

Z =
ZÑC

C

ÑC !

∫ ÑC
∏

i=1

d3Ri

N
∏

j=1

δrAij(·)δrBij(·)×

PA[rAij(·)]PB[rBij(·)×

δ[rAij(ZAj)− rBij(ZBj)]δ[rBij(0)−Ri]×

∏

r
δ[1−

ρ̂A(r)

ρ0A
−
ρ̂B(r)

ρ0B
] exp[−βV̂ (·)]. (B.17)

The additional vector Ri indicates the position of the hub of molecule i. An additional

subscript j distinguishes the arms of the pinwheel. The associated QC will be

QC =
∫

Ω
d3R

N
∏

j=1

d3Rjd
3R′

j QAj(R
′
j, ZAj|Rj)QBj(Rj, ZBj|R). (B.18)

From (B.3), we have

φAj(r) =
φ̄Aj

ZAj

Ω

QC

∫ ZAj

0
dτ
∫

Ω
d3Rd3R1 · · · d

3RNd3R′
1 · · · d

3R′
N ×

QA1(R
′
1, ZA1|R1) · · ·QAj−1(R

′
j−1, ZAj−1|Rj−1)×

QAj(R
′
j, τ |r)QAj(r, ZAj − τ |Rj)×

QAj+1(R
′
j+1, ZAj+1|Rj+1) · · ·QAN(R′

N , ZAN |RN)×

QB1(R1, ZB1|R) · · ·QBN(RN , ZBN |R), (B.19)

φBj(r) =
φ̄Bj

ZBj

Ω

QC

∫ ZBj

0
dτ
∫

Ω
d3Rd3R1 · · · d

3RNd3R′
1 · · · d

3R′
N ×

QA1(R
′
1, ZA1|R1) · · ·QAN(R′

N , ZAN |RN)×

QB1(R1, ZB1|R) · · ·QBj−1(Rj−1, ZBj−1|R)×

QBj(Rj, τ |r)QBj(r, ZBj − τ |R)×

QBj+1(Rj+1, ZBj+1|R) · · ·QBN(RN , ZBN |R). (B.20)
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Here, φκj(r) is the volume fraction of arm j of species κ. The total volume fraction for

species κ would be

φκ(r) =
N
∑

j=1

φκj(r). (B.21)

We define the convolutions

qAj(r, τ) ≡
∫

Ω
d3r′ QAj(r, τ |r

′), (B.22)

q′Bj(r, τ) ≡
∫

Ω
d3r′ qAj(r

′, ZAj)QBj(r, τ |r
′), (B.23)

qBj(r, τ) ≡
∫

Ω
d3r′ QBj(r, τ |r

′)
N
∏

i6=j

q′Bi(r
′, ZBi), (B.24)

q′Aj(r, τ) ≡
∫

Ω
d3r′ QAj(r, τ |r

′)qBj(r, ZBj). (B.25)

These functions satisfy the diffusion equation with initial conditions

qAj(r, 0) = 1, (B.26)

q′Bj(r, 0) = qAj(r, ZAj), (B.27)

qBj(r, 0) =
N
∏

i6=j

q′Bi(r, ZBi), (B.28)

q′Aj(r, 0) = qBj(r, ZBj). (B.29)

In the case where all arms are identical, we may drop the j subscripts, giving

qA(r, 0) = 1, (B.30)

q′B(r, 0) = qA(r, ZA), (B.31)

qB(r, 0) = [q′B(r, ZB)]N−1, (B.32)

q′A(r, 0) = qB(r, ZB). (B.33)

In this form, φ̄κ = Nφ̄κj and so we obtain the species densities φκ(r) from equation

(2.61) and QC from (2.60). The expressions for the potentials, incompressibility, and free

energies are exactly as for the linear diblock case. The only distinction is in the initial

conditions, which are recovered when N = 1.
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B.3 Copolymer/Homopolymer Blends

In the previous examples, QC described the structure of the molecule in terms of the

propagators. For a linear multiblock (B.2), block 1 starts at R1 and ends at R2, block 2

starts at R2 and ends at R3 and so on. In the case of the star block copolymer, equation

(B.18) specifies N blocks of species B starting at R and ending at Rj. The j-th A block

then starts at Rj and ends at R′
j.

When more than one type of molecule is present, we have a separate function analo-

gous to QC for each architecture. This is illustrated fully in reference [2]. In that work,

the density variations in the blend were approximated by a finite number of their Fourier

components and the free energy evaluated to fourth order. Here we outline how the same

systems can be studied numerically through the fully self-consistent mean field theory.

Taking the example of a system consisting of both diblock copolymers and homopoly-

mers (i.e., single species polymers), we will have a QC for the copolymer as found in

Chapter 2. We also have a QH describing the homopolymer: [17]

QH =
∫

Ω
d3rd3r′ QH(r, ZH |r

′). (B.34)

Applying equation (B.3), we have the homopolymer volume fraction as

φH(r) =
φ̄H

ZH

Ω

QC

∫ ZH

0
dτ qH(r, τ)qH(r, ZH − τ), (B.35)

where

qH(r, τ) ≡
∫

Ω
d3r′ QH(r, τ |r′), (B.36)

satisfies the diffusion equation with initial condition

qH(r, 0) = 1. (B.37)

The diffusion equations for each molecule are solved separately.
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The potentials are analogous to that of the generalised expression given in equation

(B.14) where κ, here, corresponds to one of the two copolymer blocks A or B, or the

homopolymer component H. That is,

ωA(r) =
ρref
ρ0A

{

χAB[φB(r)− φ̄B +
σ2AB

6
∇2φB(r)] +

χAH [φH(r)− φ̄H +
σ2AH

6
∇2φH(r)] +

η(r)

ρref

}

, (B.38)

with similar expressions for ωB(r) and ωH(r) obtained by exchanging the appearances of

A and B or A and H respectively. The free energy density is also as for equation (B.15),

except that the substitution

−
1

rC
ln
QC

Ω
→ −

φ̄C

rC
ln
QC

Ω
−
φ̄H

rH
ln
QH

Ω
, (B.39)

must be made. This corresponds to the presence of the QÑH

H term in the partition

function. A similar term must be added for each molecular architecture present.

The numerical solution for all three systems described in this appendix would follow

exactly the same discretisation and iteration methods as described in Section 2.3 for

the diblock copolymer case. One may further generalise this to any blend, where the

diffusion equations would be solved for each molecule individually, with the interactions

carried through the potentials and free energy density. As well, more exotic molecular

architectures can also be considered.


