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Abstract

The mean field theory of neat copolymers [1] has been extended to consider binary

copolymer-homopolymer blends. A set of self-consistent equations was derived describing

the most-probable configuration of the system for a given set of parameters. Numerical

techniques yielded the density distributions of the copolymer blocks and homopolymer.

The lamellar microphase-separated state of the copolymer-homopolymer blend was

probed over a wide range of system parameters. For blends in which the ratio of ho-

mopolymer molecular volume to copolymer molecular volume, fH , was negligible, the

system was found to mimic a copolymer-solvent blend, [2] with a reduction in the do-

main thickness analogous to that seen in the dilution approximation of neutral solvents.

When fH ' 0.5, the homopolymer was found to reside preferentially at the centre

of the copolymer’s subdomain of like-species. This localisation enlarged the subdomain

appropriately for the homopolymer volume and, as a by-product, enlarged the total

domain thickness of the lamellar unit cell relative to the neat case.

At intermediate fH , a balance was struck in which the domain thickness was largely

unaffected by the addition of homopolymer. Unlike the prior fourth-order Many-Wave

Approximation (MWA) result, [3] this effect seemed to manifest after an initial stabilising

quantity of homopolymer localised at the interphase. The value of fH at which the

domain thickness was most stable was roughly 4.50(χrC)
−1.36, where χrC is the product

of the Flory parameter and the copolymer molecular volume in appropriate dimensionless

units. As expected, the MWA and the current result’s weak-segregation limit were in

agreement.

Our results suggest that an experimental investigation into homopolymer localisation

is warranted.
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Chapter 1

Introduction

Polymer dynamics has been a rich source of both experimental and theoretical study

within the field of condensed matter physics. This interest is driven by the ubiquitous

industrial and commercial applications of polymer materials. As advances in amalgams

fulfilled a demand for metals of unique properties, so too do advances in polymers satisfy

a demand for specialised synthetic materials.

A polymer itself is termed a macromolecule. It is essentially a composite molecule

constructed from several repeated monomer building blocks, strung together into one or

more chains. Complex extended molecular structures can result from polymerisation.

The monomers may be connected into a single linear chain (a “linear polymer”), several

chains connected to a common hub (a “star polymer”) or chains with sporadic forking

(“graft polymers”).

Typically there can be several hundred to several thousand monomer units in a poly-

mer. The number of monomer units which make up a polymer chain is called the degree

of polymerisation, which we denote here by the symbol Z. These long chains tend to

be fairly flexible at the monomer joints. In absence of interactions, these chains would

distribute throughout a system according to a collection of discrete randoms walk of Z

steps.

When the monomers that build a chain are all of the same chemical structure or

“species”, the polymer is termed a homopolymer. When one bonds together two or more

homopolymers of different species, the result is called a copolymer.

1
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In our current investigation, we will be considering two types of polymer molecules:

a linear diblock copolymer, and a homopolymer. A linear diblock copolymer is a polymer

constructed by attaching one end of a linear homopolymer of one species to the end

of another linear homopolymer of a distinct species creating a longer but still linear

molecule. Symbolically, this is written as an A-b-B copolymer where A and B denote

the distinct species. If one species were polystyrene (PS) and the other polyisoprene (PI),

this would then be written PS-b-PI. The portion of the chain which is of species A is

referred to as the A block, and likewise the portion of the chain which is of species B is

referred to as the B block. Hence, diblock copolymer refers to a copolymer comprised of

two blocks of distinct species.

Ensembles of diblock copolymers exhibit some well-known and interesting thermody-

namic behaviour. [4] Typically, when one has two distinct species of monomer, there exists

a net repulsive interaction between the monomers. That is, their dissimilar molecular

properties result in an immisicibility, in analogy to oil and water.

This repulsive interaction is traditionally quantified by the Flory parameter, χ. [5]

To first order, this energy is independent of T. However, the free energy of the system

is generally expressed as a dimensionless free energy, F/kBT , and so, to first order, this

energy behaves as H/T where H is a constant. Experimentally, χ is found to behave as

χ ' K +
H

T
. (1.1)

K is a corrective term which contains entropic effects that are not included in the Flory-

Huggins entropy of mixing. The temperature dependence in χ gives experimentalists a

way to vary χ dynamically, and thus a way to probe the impact the magnitude of χ has

on the system.

So, with a diblock copolymer, one has a molecule in which the monomers in block

A will be repulsed by the monomers in block B. The chemical bonds in the polymer
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are sufficiently strong that the molecule will not break up and dissociate. However, the

flexibility of the molecule is such that the repulsion between A and B blocks will bias the

molecule’s random walk so as to minimise contact between dissimilar species.

In a system of many copolymer molecules, copolymer molecules will also attempt to

orient so as to minimise the contact between their block A and their neighbours’ block

B, and vice versa. When this tendency is strong enough to overcome natural entropy and

diffusion effects in the system, this drive toward alignment induces a spontaneous order-

ing of the system. Just as free-spinning magnets might orient along a common axis to

eliminate contact between like poles, copolymers can align along a common axis to elim-

inate contact between dissimilar blocks. This ordering is called microphase separation.

Several ordered structures are possible which minimise exposure of dissimilar blocks to

each other. The most common of these are the lamellar, cylindrical, and spherical mor-

phologies.

In the lamellar structure, the copolymers tend to orient so that block A lies to one

side of a dividing plane while block B lies to the other. The dividing plane is called the

interphase. The chemical joint between block A and block B typically lies roughly within

this dividing plane. Symbolically, one might write this as A|B with A indicating a region

dominated by species A, B a region dominated by species B, and | the interphase where

the A-B joints would reside. In a typical three-dimensional system, this layering would

repeat several times in the mirroring pattern A|BB|AA|BB|A. . . .

The space between two consecutive interphase planes is called a subdomain. Each

subdomain is either dominated by species A or species B. (N.B. blocks enter the sub-

domain from both bounding interphase planes.) The perpendicular distance between

two interphase planes is called the subdomain thickness. The thickness of species A’s

subdomain may be different than that of species B, depending on the relative sizes of the

A and B blocks in the copolymer as well as other geometric factors. The total domain
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thickness is the sum of the A and B subdomain thicknesses.

The cylindrical and spherical morphologies are similar in concept, except that instead

of the interphase being a plane, the A-B junction centres on a cylindrical or spherical

surface – with block A penetrating inside and block B extending outside, or vice versa.

(The smaller block will be the species on the inside of the cylinder or sphere. [1]) As with

the lamellar case, in an extended three-dimensional system several such domains will

form. In the case of cylinders, they will organise on a hexagonal lattice. In the spherical

case, the spherical domains will repeat on a body-centred cubic lattice. [4] Other, more

exotic structures are also possible such as the gyroid. [6]

Extensive experimental and theoretical study has been aimed toward quantifying

these various morphologies and also determining the circumstances under which they

occur. In order to reduce the complexity of the system for the purposes of modelling,

early theory made certain assumptions about the distribution of species A and B. In their

“narrow-interphase approximation”, [7] Helfand and Wasserman considered the situation

where the interphase thickness – the transitional region between A-dominance and B-

dominance – was negligible. When there is little overlap between block A and block B,

this is known as “strong segregation”. Experimentally, this is known to occur for large

χ and/or degree of polymerisation, Z. From this assumption, they were able to draw

conclusions about the strong segregation limit.

Complementary to this was the work of Leibler, [8] who probed the weak segregation

regime. The weak segregation regime is accepted to be roughly as

10.5<∼χZ<∼14, (1.2)

where χ is the aforementioned Flory interaction parameter and Z is the total degree

of polymerisation of the copolymer molecule. [1] In weak segregation, there is much

intermixing between the A and B blocks, and so the variations in species density can
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be approximated as sine waves. In such a situation, the smooth transition between A

subdomain and B subdomain would result in an extended interphase. This model was

successful in making key predictions in the weak-segregation limit, such as the fact that

ideal copolymers – ones in which the A monomers and B monomers had the same size

and step length – would not microphase separate below the lower bound on χZ in Eq. 1.2.

However, this first-order approximation had a very limited range of validity, and quickly

diverged from expectations above χZ ' 14. [1]

The two extremal approximations were required to reduce the formalism to something

manageable at the time of investigation. With the advent of economic high-powered

computing, it became possible to obtain numerical solutions from the more complex “self-

consistent mean field” formalism where such approximations were absent. The efforts of

Whitmore and Noolandi in this direction considered a copolymer system diluted by a

neutral solvent (i.e. one that interacted equally with species A and B), and then the

limit as solvent density ρS → 0 was considered. [2] This formalism was later refined to

consider the full spectrum of segregation (i.e. full range of χZ), covering all common

morphologies both with and without the presence of solvent. [1, 9, 10]

Further refinement to the self-consistent formalism was achieved by Matsen and

Schick, [11] when they disposed of the “unit cell approximation” (UCA) that was still

inherent in the formalism of Refs. [1, 2, 9, 10]. In the UCA, the hexagonal and bcc lattices

were probed using a cylindrical or spherical unit cell rather than the proper Wigner-Seitz

unit cell. [12] The UCA had been employed to effect symmetries which would reduce the

variations in density to purely radial ones, thus effectively reducing the problem to one

dimension. Having the system of equations in 1-D was necessary for realistic efforts at

numerical solution in these works. [1]

For the present investigation, we considered a parallel effort in copolymer theory.

Namely, we considered systems of binary copolymer-homopolymer blends. Such a blend
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consists of taking a system comprised solely of copolymers (a “neat copolymer system”)

and introducing homopolymers to the system. The homopolymers in our case are also of

species A, the same species as block A of the copolymer, but of different length. Since

A and B are simply non-specific labels, we are considering a blend of copolymers and

homopolymers where the homopolymer is of the same species as one of the copolymer

blocks.

Works in copolymer-homopolymer blend formalism have largely been an extension of

the work of Leibler. In Banaszak and Whitmore’s “Many-Wave Approximation” (MWA),

[3] the density distributions are represented as a fundamental sine wave plus several

integral harmonics, and the free energy is represented by a fourth-order expansion in these

fields. Effectively, the MWA considers the Fourier transform of the density distribution,

truncated to some finite order. While the inclusion of higher-order terms than that of the

Leibler formalism does extend its range of applicability, there is still cause for concern

regarding its validity out of the weak segregation regime.

More recent advances such as the work of Matsen consider solutions with a very large

number of harmonic terms in the density variations, and without any approximation on

free energy. [13] These investigations have thus been far limited in the scope and mainly

have considered the phase diagram of competing equilibrium morphologies.

In our present investigation, we have extended the self-consistent mean field for-

malism of Refs. [1] and [14] to the case of copolymer-homopolymer blends, and have

used this formalism to probe blend morphologies and behaviour in both the weak and

strong segregation regime. By concentrating exclusively on the lamellar morphology, the

shortcomings of the unit-cell approximation used in the early self-consistent efforts were

avoided while maintaining a manageable numerical task.

The results of Banaszak and Whitmore’s MWA formalism were compared and con-

trasted with the current effort, and new insight into cell and sub-cell properties was
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gained.

Chapter 2 covers the underlying formalism of the blend-extended self-consistent mean

field theory. Chapter 3 provides a systematic study of domain and subdomain thickness

dependencies on common system parameters. Chapter 4 provides a brief foray into phase

behaviour, both in the microphase context and elsewhere. Chapter 5 provides insight into

experimentally-discernible inhomogeneities in the distribution of homopolymer within the

lamellar unit cell. Finally, in Chapter 6 we summarise the key insights drawn from these

various investigations. For reference, the C-based computer program used to implement

the formalism from Chapter 2 is included in Appendix A.



Chapter 2

Theory

2.1 Formalism

The goal is to construct a model of a copolymer-homopolymer system from which its

thermodynamic properties can be studied. The traditional starting point for describing

a thermodynamic system is the construction of a partition function. [15] In a partition

function we have to sum over all possible configurations of the system, weighted by the

probability of each configuration. In order to describe the configuration of an ensem-

ble of NC copolymers and NH homopolymers, we must first construct a mathematical

description of a polymer chain.

A polymer chain consists of a number of chemically-bonded, repeating monomer units.

The separation between consecutive monomers – the bond length – is generally approx-

imated as a Gaussian distribution. [16] And so, the probability of separation r is given

by

ψ(r) = [
3

2πb2
]
3

2 exp[−3|r|2
2b2

], (2.1)

where b is a characteristic length parameter called the statistical segment length, repre-

senting the most-probable separation. There is no bias in the orientation of this bond,

and so no angular variation of probability.

By extension, for a chain consisting of Z monomers with each monomer’s location

given by Ri where i = {1, 2, . . . , Z}, the probability of a configuration would be the

8
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product of the probabilities for each individual bond length given by Eq. 2.1

Ψ({Ri}) =
Z−1
∏

i=1

ψ(|Ri+1 −Ri|)

= [
3

2πb2
]3(Z−1)/2 exp[−

Z−1
∑

i=1

3|Ri+1 −Ri|2
2b2

]. (2.2)

Typical polymer chains have a relatively large degree of polymerisation, Z, and so in the

typical formalism we replace Eq. 2.2 with its continuous equivalent [17]

P [r(·)] ∝ exp[− 3

2b2

∫ Z

0
dτ ṙ2(τ)], (2.3)

where the polymer chain is represented by an arbitrary space-curve, r(τ), parameterised

by the monomer position along the chain, τ . Here we have defined ṙ(τ) as dr/dτ . The

standard notation, r(·), expresses the fact that P [r(·)] is a functional evaluating the

probability of the entire space-curve’s configuration, rather than just the probability of

one point along the curve, e.g., being at some specific r(τ). Eq. 2.3 is known as the

Wiener measure.

With the probability for a given configuration of a polymer chain known, we can

now construct our partition function. For a copolymer-homopolymer blend, we want all

configurations of NC copolymers and NH homopolymers weighted by their probability. A

copolymer is the concatenation of two polymer chains or “blocks” of dissimilar physical

characteristics. As such, it should be represented by two separate polymer chains, each

with a probability given by Eq. 2.3, but with different Z and b. These two blocks will

be designated block A and block B. Only configurations where block A and block B are

joined should be considered, so the partition function will be restricted to include only

those cases.

An additional restriction on configurations is the incompressibility condition. Mono-

mers occupy fixed volumes and so the partition function must exclude configurations

where monomers overlap or where vacuum is left in the system.
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Finally, in addition to being weighted by the probabilities given by the Wiener mea-

sure, each polymer chain is subject to net interactions with other chains. This results in

it being less probable that two dissimilar species be close together than far apart. And so

this interaction potential must be introduced as a Boltzmann factor for the configuration.

Combining all of these contributions, we have a partition function of the form

Z =
ZNC

H

NC !

ZNH

H

NH !
×

∫ NC
∏

i=1

NH
∏

j=1

δrAi(·)δrBi(·)δrHj(·)×

PA[rAi(·)]PB[rBi(·)]PH [rHj(·)]×

δ[rAi(ZA)− rBi(ZB)]×

δ[[1− ρ̂A(·)
ρ0A

− ρ̂B(·)
ρ0B

− ρ̂H(·)
ρ0H

]×

exp[−V̂ (·)/kBT ]. (2.4)

The ZC and ZH terms are the kinetic contributions to the partition function. The

integral is a functional integral evaluated over all continuous space curves rAi(·) and

rBi(·) representing blocks A and B of each of the NC copolymer molecules, and over all

space curves rHj(·) representing each of theNH homopolymer molecules. The third line of

Eq. 2.4 provides the Wiener measure weighting for the probability of each polymer chain’s

configuration. The fourth line is a second delta functional that restricts the functional

integral to only those configurations where rAi(·) and rBi(·) meet end-to-end, creating a

copolymer molecule. The fifth line is a delta functional representing the incompressibility

of the system. Here, ρ̂κ(r) represents the total number density of monomers of type κ =A,

B, or H passing through r. The constant ρ0κ is the bulk monomer density for that type.

That is, 1/ρ0κ would be the exclusion volume of a single monomer of species κ. The final

line is a Boltzmann distribution weighing the configuration by a factor due to interactions

among all components of the system.
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The goal is to transform this partition function into a functional integration over all

configurations weighted only by a free energy. The mathematic procedure to accomplish

this is quite involved, however. The process ultimately leads to the self-consistent field

(SCF) equations utilised in Section 2.4. What follows in the remainder of this section and

Section 2.2 is a rigourous derivation of the SCF equations. For those wishing to consider

only the final form of the equations defining the system, one may skip to Section 2.3.

The first stage in this derivation requires eliminating all delta functionals from the

partition function and collecting all probabilities into a single exp[−F ] free energy term.

To do this, we first define ρ̂κ(r). The monomer density ρ̂κ(r) is a count of the number

of monomers of species κ which pass through r. This may be obtained by enumerating

the number of space curves rκi(τ) passing through r, via

ρ̂κ(r) =
Nκ
∑

i=1

∫ Zκ

0
dτ δ[r − rκi(τ)]. (2.5)

The monomer density ρ̂κ(r) is effectively a piecewise definition of a continuous func-

tion, ρκ(r). We can replace occurrences of ρ̂κ(r) in Eq. 2.4 with its continuous equivalent

by invoking the identity

δ[1− ρ̂A(·)
ρ0A

− ρ̂B(·)
ρ0B

− ρ̂H(·)
ρ0H

]e−V̂ [{ρ̂κ(·)}]/kBT =
∫

∏

κ

δρκ(·) δ[ρκ(·)− ρ̂κ(·)]×

δ[1− ρA(·)
ρ0A

− ρB(·)
ρ0B

− ρH(·)
ρ0H

]×

e−V [{ρκ(·)}]/kBT . (2.6)

Like the delta function, the delta functionals in Eq. 2.6 may be expressed as a func-

tional integral of the form

δ[ρκ(·)− ρ̂κ(·)] ∝
∫

δωκ(·) exp
{
∫

dr ωκ(r)[ρκ(r)− ρ̂κ(r)]
}

, (2.7)

and

δ[1− ρA(·)
ρ0A

− ρB(·)
ρ0B

− ρH(·)
ρ0H

] ∝
∫

δη(·) exp
{
∫

dr η(r)×
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[1− ρA(r)

ρ0A

− ρB(r)

ρ0B

− ρH(r)

ρ0H

]
}

, (2.8)

where the bounds on integration of ωκ(r) and η(r) are ±i∞. Though ωκ(r) and η(r)

appear here as dummy integrations, they do take on a physical significance which will

become apparent later.

Substituting these identities into the partition function, it becomes

Z ∝ ZNC

H

NC !

ZNH

H

NH !
×

∫

∏

κ

δρκ(·)δωκ(·)δη(·)×

exp
{
∫

dr η(r)[1− ρA(r)

ρ0A

− ρB(r)

ρ0B

− ρH(r)

ρ0H

]
}

×

exp
{
∫

dr [ωA(r)ρA(r) + ωB(r)ρB(r) + ωH(r)ρH(r)]
}

×

QNC

C QNH

H exp[−V [{ρκ(·)}]/kBT ], (2.9)

where

QNC

C =
∫ NC
∏

i=1

δrAi(·)δrBi(·)PA[rAi(·)]PB[rBi(·)]δ[rAi(ZA)− rBi(ZB)]×

exp
{

−
∫

dr [ωA(r)ρ̂A(r) + ωB(r)ρ̂B(r)]
}

, (2.10)

and

QNH

H =
∫ NH
∏

i=1

δrHi(·)PH [rHi(·)] exp[−
∫

dr ωH(r)ρ̂H(r)]. (2.11)

Substituting Eq. 2.5 into Eq. 2.10 and 2.11 we find that they can be reduced to

QC =
∫

δrA(·)δrB(·)PA[rA(·)]PB[rB(·)]δ[rA(ZA)− rB(ZB)]×

exp
{

−
∫ ZA

0
dτ ωA[rA(τ)]−

∫ ZB

0
dτ ωB[rB(τ)]

}

, (2.12)

and

QH =
∫

δrH(·)PH [rA(·)] exp
{

−
∫ ZH

0
dτ ωH [rH(τ)]

}

. (2.13)
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QC and QH now contain all the discrete structure of the polymers, with the partition

function in Eq. 2.9 now being evaluated over all possible density distributions rather than

all possible configurations of NC discrete copolymers and NH discrete homopolymers.

Using traditional notation, QC and QH can be expressed in terms of a “propagator”

function, [17] defined for each species κ as

Qκ(R, τ |R′) =
∫

δrκ(·) δ[rκ(τ)−R]δ[rκ(0)−R′]×

exp
{

−
∫ τ

0
dτ ′

{

3

2b2κ
ṙ2(τ ′) + ωκ[rκ(τ

′)]
}}

. (2.14)

Conceptually, the propagator Qκ(R, τ |R′) is an integration over all configurations of a

block’s space-curve which originate at r(0) = R′ and terminate at r(τ) = R. The

integrand is weighted by the probability of each configuration. The propagator may be

interpreted as being proportional to the probability that a block starting at R′ will arrive

at R after τ monomer steps. Both mathematically and conceptually, then, it follows that

Eq. 2.14 satisfies

Qκ(R, τ |R′) = Qκ(R
′, τ |R). (2.15)

Furthermore, it can be shown that Qκ(R, τ |R′) satisfies the diffusion equation, [17]

[

b2κ
6
∇2 − ωκ(r)

]

Qκ(r, τ |r′) =
∂

∂τ
Qκ(r, τ |r′), (2.16)

with the initial condition,

Qκ(r, 0|r′) = δ(r − r′). (2.17)

Since our polymer chains are represented by the continuous limit of a random walk, it

is natural that we should find that the propagation is subject to the diffusion process.

And so, Eqs. 2.16 and 2.17 could be accepted intuitively. Note that in 2.16 the ωκ(r)’s

are playing the role of a potential, biasing the random walk. It will be shown that ωκ(r)

is related to the interaction potential, V , from Eq. 2.4.
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Using the definition in Eq. 2.14, Eqs. 2.12 and 2.13 can be restated as

QC =
∫

dR1dR2dR3dR4 ×

QA(R2, ZA|R1)δ(R2 −R4)QB(R4, ZB|R3)

=
∫

dR1dR2dR3 QA(R2, ZA|R1)QB(R2, ZB|R3), (2.18)

and

QH =
∫

dR1dR2 QH(R2, ZH |R1). (2.19)

We now have that QC and QH can be obtained exclusively from the potentials ωκ(r)

and so we are ready to state the partition function as

Z ∝
∫

∏

κ

δρκ(·)δωκ(·)δη(·) exp
{

−F [{ρκ(·)}, {ωκ(·)}, η(·)]
}

, (2.20)

where

F [{ρκ(·)}, {ωκ(·)}, η(·)] = −NC lnZC + lnNC !−NC lnQC −

−NH lnZH + lnNH !−NH lnQH −
∫

dr η(r)[1− ρA(r)

ρ0A

− ρB(r)

ρ0B

− ρH(r)

ρ0H

]−
∫

dr [ωA(r)ρA(r) + ωB(r)ρB(r) + ωH(r)ρH(r)] +

V [{ρκ(·)]/kBT. (2.21)

Applying Stirling’s approximation [15] to lnNκ! for a large numbers of copolymers,

and combining all of the logarithmic terms, this becomes

F [{ρκ(·)}, {ωκ(·)}, η(·)] = NC(ln
NC

ZCQC

− 1) +NH(ln
NH

ZHQH

− 1)−
∫

dr η(r)[1− ρA(r)

ρ0A

− ρB(r)

ρ0B

− ρH(r)

ρ0H

]−
∫

dr [ωA(r)ρA(r) + ωB(r)ρB(r) + ωH(r)ρH(r)] +

V [{ρκ(·)}]/kBT. (2.22)
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We now have the partition function in the desired form, with a configuration’s prob-

ability given by a single Boltzmann-weighted probability which depends on the configu-

ration of the fields ρκ(r), ωκ(r), and η(r).
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2.2 The Mean Field Approximation

To find the most probable density distributions ρκ(r) for a system, one would employ

the saddle-function approximation. The minimum value of F would correspond to the

most probable configuration according to the exp[−F ] weighting in Eq. 2.20. To find this

minimum, we employ the functional equivalent to Lagrange multipliers, where we have

∫

dr ρκ(r) = Nκ, (2.23)

with NA ≡ NB ≡ NC . (i.e. The number of A blocks and number of B blocks in the

system are each equal to the number of copolymers, since there is one A block and one

B block per copolymer.) Eq. 2.23 represents a conservation of number.

The functional Lagrange multiplier method identifies the minimum of F from Eq. 2.22

with respect to some field configuration ξ(r) as

δF
δξ(r)

= λA
δCA
δξ(r)

+ λB
δCB
δξ(r)

+ λH
δCH
δξ(r)

, (2.24)

where Cκ is the constraint surface given by Eq. 2.23. Evaluating Eq. 2.24 with respect to

the configurations of the fields ρκ(r), ωκ(r), and η(r) produces the relations

η(r)

ρ0κ

− ωκ(r) +
δ

δρκ(r)
V [{ρκ(·)}]/kBT = λκ, (2.25)

−ρκ(r)−
Nκ

Qκ

δQκ

δωκ(r)
= 0, (2.26)

1− ρA(r)

ρ0A

− ρB(r)

ρ0B

− ρH(r)

ρ0H

= 0, (2.27)

where QA ≡ QB ≡ QC . As promised, these equations give solutions for the most probable

configurations of the fields.

Of course, to consider the mean field solution of ρκ(r) one should evaluate

< ρ̂κ(r) > =
∫

∏

κ′

δρκ′(·)δωκ′(·)δη(·) ρκ(r)×

exp
{

−F [{ρκ′(·)}, {ωκ′(·)}, η(·)]
}

. (2.28)
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To the extent that F is sharply peaked about the most probable configuration, we will

have < ρ̂κ(r) > equal to the most probable configuration of ρκ(r). This is the mean field

approximation.

To the extent that mean field approximation is valid, we would also have that Eq. 2.20

reduces to

Z ∝ exp−F . (2.29)

And so, in the mean field approximation, F represents the free energy of the system.

A chief source of ambiguity remains in the definition of the potential V [{ρκ(·)}].

As it happens, a very simple relation is sufficient to provide a meaningful definition of

V [{ρκ(·)}]. Many preceding studies [2, 9, 18] have found that long-range repulsive inter-

actions between monomers have a negligible effect on the system. Thus, for a monomer

of species κ at r it suffices to consider only point-wise interactions. In these terms, a

valid form for the interaction potential V [{ρκ(·)}] would be

V [{ρκ(·)}]/kBT =
∑

κκ′

∫

dr ρκ(r)Wκκ′ρκ′(r), (2.30)

where Wκκ′ represents the strength of the repulsive interaction between species κ and

κ′. The sum notation over κ and κ′ here represent the six unique combinations of two

species chosen from A, B, or H.

It is useful to define coefficients

Uκκ′ =Wκκ′ − 1
2

ρ0κ

ρ0κ′
Wκκ′ − 1

2

ρ0κ′

ρ0κ

Wκ′κ′ . (2.31)

For like monomers, where κ = κ′, this relation reduces to

Uκκ = 0. (2.32)

Substituting Eq. 2.31 into Eq. 2.30 and taking advantage of the relations in Eqs. 2.23
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and 2.27 yields

V [{ρκ(·)}]/kBT =
∑

κκ′

∫

dr ρκ(r)Uκκ′ρκ′(r) +
∑

κ

ρ0κNκWκκ. (2.33)

The final sum term is an additive constant to the free energy which may be neglected

as it will not affect the minimum in F . It represents the contribution to the free energy

from a species interacting with itself.

By convention, the Uκκ′ coefficient is expressed in terms of the Flory interaction

parameter, χκκ′ , defined as [19]

χκκ′ ≡
ρ0κρ0κ′

ρref
Uκκ′ . (2.34)

As can be seen, the Flory interaction parameter is defined with respect to a reference

number density, ρref . Furthermore, χκκ, the Flory parameter for the interaction between

species κ and itself, is 0.

Applying the definitions in Eqs. 2.33 and 2.34 to Eq. 2.25, we obtain an explicit

expression for the potentials ωκ(r),

ωκ(r) =
ρref
ρ0κ

{

∑

κ′ 6=κ

χκκ′

ρ0κ′
ρκ(r) +

η(r)

ρref

}

− λκ. (2.35)

It remains to obtain the density distributions from Eq. 2.26. We calculate these in

terms of the normalised local volume fractions,

φκ(r) ≡
ρκ(r)

ρ0κ

, (2.36)

which leads to the incompressibility condition Eq. 2.27 restated as

φA(r) + φB(r) + φH(r) = 1. (2.37)

In order to evaluate Eq. 2.26, we need to know how to evaluate the functional deriva-

tive δQκ/δωκ(r). Using the relation

ωκ[rκ(τ
′)] =

∫

dr ωκ(r)δ[rκ(τ
′)− r], (2.38)
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we find that

δ

δωκ(r)
ωκ[rκ(τ

′)] = δ[rκ(τ
′)− r]. (2.39)

Using the functional equivalent of the chain rule, we can use Eq. 2.39 to evaluate the

functional derivative of Eq. 2.14, yielding

δQκ

δωκ(r)
= −

∫ Zκ

0
dτ
∫

δrκ(·)δ[rκ(τ)− r]δ[R1 − rκ(0)]δ[R2 − rκ(Zκ)]×

exp
{

−
∫ Zκ

0
dτ ′

{

3

2b2κ
ṙ2
κ(τ

′) + ωκ[rκ(τ
′)]
}}

.

= −
∫ Zκ

0
dτ Qκ(r, τ |R)Qκ(r, Zκ − τ |R′). (2.40)

Evaluating Eq. 2.26 requires the evaluation of the functional derivatives of QC and

QH which, by Eqs. 2.18 and 2.19, can be expressed in terms of the functional derivatives

of Qκ(R, τ |R′). Thus, by use of Eqs. 2.26 and 2.36 we have

φH(r) ∝
∫ ZH

0
dτ

∫

dRdR′ QH(r, τ |R)QH(r, ZH − τ |R′). (2.41)

By requiring that

1

Ω

∫

dr φH(r) = φH , (2.42)

where Ω is the system volume, we have a prefactor on Eq. 2.41 of φHΩ/ZHQH .

We can obtain an expression for φH by recalling that 1/ρ0H is the volume of a

monomer. Thus the homopolymer has volume ZH/ρ0H , and NH homopolymers would oc-

cupy a volume NHZH/ρ0H . This is a volume fraction NHZH/ρ0HΩ of the system volume

Ω. The quantity φH represents the system-averaged volume fraction of homopolymer, and

so these two quantities should be equal. This relation also holds for the two copolymer

blocks and so we have, in general,

φ̄κ =
NκZκ

ρ0κΩ
. (2.43)
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Going through a parallel process to that which derived Eq. 2.41 for the homopolymer,

we find for the copolymer blocks A and B that

φκ(r) =
φ̄κ

Zκ

Ω

QC

∫ Zκ

0
dτ
∫

dRdR′dR′′ Qκ(r, τ |R)×

Qκ(r, Zκ − τ |R′)Qκ′(R
′, Zκ′ |R′′), (2.44)

where, here, κ =A or B and κ′ is the opposite block of the copolymer, B or A respectively.

One last step of simplification remains in the expressions of φκ(r) which will aid in

the numerical solution of these equations. We note that φκ(r) can be re-expressed as

φκ(r) =
φ̄κ

Zκ

Ω

Qκ

∫ Zκ

0
dτ qκ(r, τ)q

′
κ(r, Zκ − τ), (2.45)

where

qκ(r, τ) =
∫

dr′ Qκ(r, τ |r′), (2.46)

q′
κ(r, τ) =



























∫

dr′dr′′ QA(r, τ |r′)QB(r
′, ZB|r′′) if κ =A

∫

dr′dr′′ QB(r, τ |r′)QA(r
′, ZA|r′′) if κ =B

∫

dr′ QH(r, τ |r′) if κ =H

(2.47)

These functions qκ(r, τ) and q′
κ(r, τ) also satisfy the diffusion equation, Eq. 2.16,

except with the initial conditions

qκ(r, 0) = 1, (2.48)

q′
κ(r, 0) =



























qB(r, ZB) if κ =A

qA(r, ZA) if κ =B

1 if κ =H

(2.49)

In terms of these new functions, QC and QH are

QC =
∫

dr qA(r, ZA)qB(r, ZB), (2.50)
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and

QH =
∫

dr qH(r, ZH). (2.51)

Closing off the system of equations, the potentials ωκ(r) can be expressed in terms

of the local volume fractions φκ(r) as

ωκ(r) =
ρref
ρ0κ

{

∑

κ′ 6=κ

χκκ′φκ(r) +
η(r)

ρref

}

− λκ. (2.52)

Taking advantage of the fact that the diffusion equation 2.16 will obtain the same result

regardless of any additive constant applied to ωκ(r), we choose the convention

ωκ(r) =
ρref
ρ0κ

{

∑

κ′ 6=κ

χκκ′ [φκ(r)− φ̄κ] +
η(r)

ρref

}

. (2.53)

We now have the core of a self-consistent set of equations which determine the most

probable configuration of the system: Eq. 2.16 applied to qκ(r, τ) and q
′
κ(r, τ) with initial

conditions from Eqs. 2.48 and 2.49 give these propagators in terms of the potentials

ωκ(r). Eq. 2.45 gives the volume fractions φκ(r) – the normalised equivalent of ρκ(r)

– in terms of these propagators. Eq. 2.53 gives the potentials ωκ(r) in terms of these

volume fractions. The remaining field, η(r), represents the contribution to the potential

due to incompressibility, and is determined implicitly, chosen so that Eq. 2.27 will be

satisfied.

From here, we may move forward to define a numerical process whereby these self-

consistent field (SCF) equations may be solved.



Chapter 2. Theory 22

2.3 Dimensionless Self-Consistent Field Equations

We are interested in obtaining the solution to the SCF equations in which the normalised

density distributions, φκ(r) reflect a lamellar morphology. In this symmetry, φκ(r) varies

only along one axis, and exhibits a periodic variation built from symmetric unit cells,

symbolically represented by A|BB|A. Thus, φκ(r) can be reduced to a function of only

one co-ordinate, x, and be periodic.

The remaining fields that have to be evaluated in the SCF equations will have the

same symmetry. Since η(r) enforces incompressibility on φκ(r) it will be constant along

axes along which φκ(r) is constant. The potentials, ωκ(r), are a direct function of φκ(r)

and η(r). The qκ(r, τ) and q′
κ(r, τ) functions have initial conditions which satisfy the

symmetry and are subject to the potentials ωκ(r) which also satisfy the symmetry, and

so can easily be shown to be one-dimensional as well.

Furthermore, the periodicity of these functions mean that we need only evaluate them

over a single period or unit cell. The free energy can also be determined using only one

period. In a periodic system, the free energy density of the system, F/Ω is equivalent to

the free energy density over one unit cell. In fact, we need only evaluate the fields over

half the unit cell since the second half of the cell is the mirror image of the first.

Let us define R to be this half-period of the cell. We have that R = d/2 where d

is the domain thickness defined in Chapter 1. To solve the SCF equations, we enforce

mirrored boundary conditions on the diffusion equation, Eq. 2.16, at x = 0 and x = R

(i.e. at the centre of each subdomain). One would determine the equilibrium value of R

by solving the SCF equations in this symmetry for a range of candidate R’s and finding

the one which minimises the free energy.

To do this, we need a practical form for the free energy. Substituting Eqs. 2.27 and
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2.33 into Eq. 2.22, the free energy density becomes

f

kBT
≡ F

Ω

=
NC

Ω
(ln

NC

ZCQC

− 1) +
NH

Ω
(ln

NH

ZHQH

− 1)−
1

Ω

∫

dr
∑

κ

ρ0κωκ(r)φκ(r) +

1

Ω

∫

dr
∑

κκ′

ρref χκκ′φκ(r)φκ′(r). (2.54)

To evaluate the minimum in Eq. 2.54, it is convenient to consider its relative value,

∆f , compared to that of a homogeneous system where φκ(r) = φ̄κ. This reference

energy will be independent of R and so only provides a constant offset to Eq. 2.54. Thus,

a minimum in ∆f vs. R will correspond to a minimum in f vs. R. The condition for

homogeneity requires that the potentials ωκ(r) be zero. Thus, evaluating Eq. 2.54 in this

trivial case we have

fhom
kBT

=
NC

Ω
(ln

NC

ZCΩ
− 1) +

NH

Ω
(ln

NH

ZHΩ
− 1) +

1

Ω

∫

dr
∑

κκ′
ρref χκκ′φ̄κφ̄

′
κ. (2.55)

And so, the relative free energy density, ∆f , is

∆f

ρref kBT
=

f − fhom
ρref kBT

=
1

Ω

∫

dr

{

∑

κκ′
χκκ′ [φκ(r)φκ′(r)− φ̄κφ̄κ′ ]−

∑

κ

ρ0κ

ρref

ωκ(r)φκ(r)
}

− NC

ρrefΩ
ln
QC

Ω
− NH

ρref Ω
ln
QH

Ω
. (2.56)

In considering a single unit cell, then, one can make the substitution (1/Ω)
∫

dr . . .→

(1/R)
∫ R
0 dx . . .. From Eqs. 2.50 and 2.51, one can see that QC and QH are extrinsic

quantities (i.e. measured over the system volume Ω). Yet, in the equation above and in the

expression in Eq. 2.45 for φκ(r) we only ever require the intrinsic quantity Qκ ≡ Qκ/Ω.

Qκ also has the form (1/Ω)
∫

dr . . . and so the same reduction can be applied.
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Quantities such as Nκ/Ω represent the average number density of chains of type κ in

the system. From Eq. 2.43 this is simply φκρ0κ/Zκ.

Thus we have eliminated all occurrences of Ω in the SCF equations and the free energy

density, and are now free to evaluate the equations over a single unit cell.

In Ref. [1], it was found most useful to do further remapping of system parameters

so as to make the distance scales and polymer sizes dimensionless. Note that our spacial

integrals now consider (1/R)
∫ R
0 dx. Similarly, our monomer step τ in Eq. 2.45 considers

(1/Zκ)
∫ Zκ
0 dτ . This invites the remapping of x and τ via x → x/R and τ → τ/Zκ.

The only occurrences of x and τ which are not in this integral form are in the diffusion

equation, Eq. 2.16. To compensate for these new dimensionless scales, then, we recast

the diffusion equation as

[

b2κ
6R2
∇2 − ωκ(r)

]

qκ(r, τ) =
1

Zκ

∂

∂τ
qκ(r, τ), (2.57)

with an equivalent diffusion equation for q′
κ(r, τ).

A useful quantity in the next step of the remapping is rκ, which is the dimensionless

volume of a polymer chain of species κ. It is the volume of a polymer chain defined

with respect to a reference volume, 1/ρref , where ρref is the reference density used in the

definition of the Flory parameter, χ. (See Eq. 2.34.) Since the volume of a polymer chain

is given by the number of monomers, Zκ, multiplied by the size of a monomer, 1/ρ0κ, we

have

rκ ≡ ρref

Zκ

ρ0κ

=
ρref

φ̄κ

Nκ

Ω
. (2.58)

Additionally, we define the size of the copolymer molecule which is simply the sum of

the dimensionless volumes of the molecule’s A and B blocks, i.e.

rC = rA + rB. (2.59)
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For convenience, we also define the quantity φC which is equal to φA+φB and equivalent

to 1− φH by the incompressibility condition.

With these quantities considered, the final stage of the remapping is to rescale ωκ(r)

in Eq. 2.53 by a factor of rCρ0κ/ρref , and place compensating factors in the SCF equations

wherever ωκ(r) is referenced. In a similar manner, the incompressibility field η(r) is also

rescaled by a factor of 1/ρref .

We can now restate the SCF equations. The recast potential from 2.53 becomes

ωκ(x) =
∑

κ′ 6=κ

χκκ′rC [φκ(x)− φ̄κ] + η(x). (2.60)

The diffusion equation becomes

[

rCρ0κb
2
κ

6ρrefR2

∂2

∂x2
− ωκ(x)

]

qκ(x, τ) =
rC
rκ

∂

∂τ
qκ(x, τ), (2.61)

with initial conditions for qκ(x, τ) still as given in Eq. 2.48 but q′
κ(x, τ)’s parameters

rescaled from Eq. 2.49 so that

q′
κ(x, 0) =



























qB(x, 1) if κ =A

qA(x, 1) if κ =B

1 if κ =H

(2.62)

The local volume fractions, φκ(r), from Eq. 2.45 become

φκ(x) =
φ̄κ

Qκ

∫ 1

0
dτ qκ(x, τ)q

′
κ(x, 1− τ), (2.63)

and the free energy becomes

rC∆f

kBT
=

∫ 1

0
dx
{

∑

κκ′
χκκ′rC [φκ(x)φκ′(x)− φ̄κφ̄κ′ ]

−
∑

κ

ωκ(x)φκ(x)
}

− φC lnQC − φH

rC
rH

lnQH . (2.64)
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We have several parameters in this set of equations. The coefficient preceding the

spacial derivative in Eq. 2.61 can be written as βεκ where

β ≡ rCρ0Hb
2
H

6ρrefR2
, (2.65)

and

εκ ≡
ρ0κb

2
κ

ρ0Hb2H
. (2.66)

The εκ parameter is a generalisation of the asymmetry parameter defined for neat copoly-

mers. [1, 20] Here, it is defined with respect to the homopolymer, and so εH = 1 by

definition.

As it stands, we have a β parameter, two non-trivial εκ parameters, three species

giving three φ̄κ parameters and three unique χκκ′rC parameters (χAHrC , χBHrC and

χABrC), and the ratio rH/rC for a daunting total of 10 parameters for our copolymer-

homopolymer blend.

We can eliminate one parameter by defining fκ via

fκ ≡
rκ
rC
. (2.67)

Physically, fA is the fraction of the copolymer molecule’s volume which is of species A,

while fB is the complement – the fraction that is of species B. From this definition,

trivially we have fA + fB = 1. From Eqs. 2.43 and 2.58 we have φA = fAφC and

φB = fBφC . We also have by incompressibility that φH = 1 − φC . Thus, all φ̄κ are

expressible in terms of two parameters, fA and φC .

The parameter fH does not have the same interpretation. It is the ratio rH/rC , which

has already been identified as a parameter in the SCF equations. Thus, fH defines the

ratio of a homopolymer’s molecular volume to a copolymer’s molecular volume.

From Eq. 2.65, we see that the parameter β contains the lamellar structure’s half-

period, R. R is not an external parameter, but rather one that is determined by locating
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the value which minimises the relative free energy, ∆f . By extension, then, β is deter-

mined by minimising ∆f and should not be regarded as an external parameter.

Thus, the total number of independent external parameters needed to describe a

copolymer-homopolymer blend has been identified as eight – εA, εB, χABrC , χAHrC ,

χBHrC , fA, φC , and fH . The reference density, ρref , does not represent an external

parameter as it is cancelled out in all occurrences, including the product χκκ′rC . As

such, it is convenient to define the reference density as ρref ≡ ρ0H .

This conclusion that a binary blend can be characterised by eight parameters does not

rely on the system exhibiting a lamellar symmetry. The reduction to eight parameters

is valid so long as the morphology can be characterised by a single lattice parameter, as

would also be the case in the spherical, cylindrical, or gyroidal morphologies. [18]

For the present theoretical investigation, we have chosen to trim down the number

of system parameters considered to a more respectable number. As the characteristic

parameters that go into the definition of εκ in Eq. 2.66 are in dispute for even the

more commonly studied polymers and are never very dissimilar, [20] for the bulk of our

theoretical investigation – specifically, when not comparing against experiment – we chose

εA = εB = 1.

Further, we chose to investigate systems wherein the species of monomer in the ho-

mopolymer was the same as the species in one of the two blocks in the copolymer. We

chose block A to represent the like species. As such, χAH = 0 and χAB = χBH ≡ χ.

This condition is of particular importance as it gives us a method wherein an explicit

expression for η(x) may be obtained. In particular, the potentials reduce to

ωA(x) = ωH(x)

= χrC [φB(x)− φB] + η(x), (2.68)
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and

ωB(x) = χrC [φA(x) + φH(x)− φA − φH ] + η(x). (2.69)

Adding Eqs. 2.68 and 2.69 and taking advantage of the incompressibility condition in

Eq. 2.27, we have

η(x) =
ωA(x) + ωB(x)

2
. (2.70)

As will be seen in Section 2.4, an explicit SCF equation for η(x) is crucial to the numerical

solution of this system of equations.

Finally, we chose to restrict the investigation to symmetric copolymers with fA =

fB. These are typical of copolymer-homopolymer blend experiments and are helpful in

optimising the likelihood that a lamellar structure will form. [1]

So, the systems investigated encompass fA = fB = 1
2
, εA = εB = 1, χAH = 0, and

χAB = χBH = χ for a selection of χrC , fH , and φC except when comparisons were made

with experiment, wherein the correct εκ and fκ values were used to the extent that they

were known.
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2.4 Iterative Solution and Numerical Methods

The SCF equations are represented by Eqs. 2.61, 2.63, 2.68, 2.69 and 2.70. Each of these

equations gives one of the fields, φκ(x), ωκ(x), etc. in terms of the others. There is no

evident means by which they may be decoupled, and no analytic solution presents itself.

What one may do, however, is attempt an iterative “trial and error” approach. For

our investigation we started with the following zeroth order approximation for φκ(x) and

η(x):

φA(x) = φA(1 + cos πx), (2.71)

φB(x) = φB(1− cos πx), (2.72)

φH(x) = φH , (2.73)

η(x) = 0. (2.74)

This initial trial was motivated by the fact that weakly-segregated neat copolymer sys-

tems and copolymer-homopolymer blends have a cosine-like variation in their density

distributions, [3, 8] and that homopolymer, to the extent that it resembles selective sol-

vent, [10] would distribute fairly evenly throughout the system. The incompressibility

field, η(x), was chosen to be zero for lack of guiding evidence otherwise.

Eqs. 2.68 and 2.69 were then employed to generate an initial trial solution for ωκ(x).

It was from here that the iterative process began. The process was as follows:

1. Using the trial ωκ(x)’s, the diffusion equation, Eq. 2.61, was solved for each of the

initial conditions in Eqs. 2.48 and 2.62.

2. The solutions from Step 1 were used to generate new Qκ ≡ Qκ/Ω via Eqs. 2.18 and

2.19.

3. Using the results of these two steps new φκ(x)’s were generated using Eq. 2.63.
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4. A new η(x) was generated via Eq. 2.70.

5. New potentials, ωκ(x), were generated from the results of steps 3 and 4 using

Eqs. 2.68 and 2.69.

6. If, for some preselected convergence parameter, δ, the condition

|ω(n)
κ (x)− ω(n−1)

κ (x)| < δ

was satisfied for all x, we had a converged solution and stopped iterating here.

7. If the condition in step 6 was violated, we selected a new potential

ω(n+1)
κ = sω(n)

κ (x) + (1− s)ω(n−1)
κ (x)

and returned to step 1.

8. Iteration ceased when the solution satisfied the condition in Step 6, or else when a

preset maximum number of iterations was reached.

Typically, the convergence parameter, δ, was on the order of 10−7, the ratio s was typi-

cally 1/10, and the maximum number of iterations attempted before giving up was 104,

although these parameters were sometimes varied when convergence proved difficult.

The above iterative process has a physical analogy. It is essentially the dynamic

evolution of a system to equilibrium. The initial conditions on φκ(x) and η(x) represented

the initial state of a system out of equilibrium. This state produced a potential due to

the repulsive interactions between monomers. Taking a snapshot of that potential, we

then calculated a new configuration of the polymer chains in that potential. We then

allowed the system to evolve, partially, to that state. The degree to which the system

evolved to the new state was controlled by s.
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If the iteration was successful, when the system was “released” (i.e. when the iterations

were started) it would spring out of the initial state and oscillate toward an equilibrium.

Convergence was not guaranteed, of course, and if s was chosen to be too large, the

system would persistently overshoot equilibrium. A selection of too small an s would

slow the system’s progress toward equilibrium. (N.B. a small value of s would not give

a false sense of stability as the stability condition was tested in Step 6 before the ratio s

came into play.)

The numerical self-consistent field (NSCF) equations were very straightforward to

evaluate. The diffusion equation, Eq. 2.61 was solved using the Crank-Nicholson method,

[21] with a discretised grid of ∆x = 1/100 and ∆τ = 1/400, where both x and τ ranged

from 0 to 1. These values were found quite adequate for the bulk of the investigation.

Only when φκ(x) was extremely step-like in the strong-segregation limit did convergence

problems become apparent.

Integrals, including those found in φκ(x) and the evaluation of the relative free energy,

∆f , were carried out using Simpson’s Rule, which gives fourth-order accuracy. [22] For

the integrals, steps of ∆x = 1/100 and ∆τ = 1/40 were used.

Utilising Eq. 2.65, a natural distance scale exists for R. If we define a new R′ such

that

β =
1

6(R′)2
, (2.75)

then we have a simple definition of β and a dimensionless definition of R in units of

√
rCbH . To minimise ∆f with respect to R, we selected a trial value guided by the

results for neat copolymer systems, [1] typically found in the range 0.7 to 1.2. Then R

was stepped up and down from the original selected value in increments of 0.1, solving

the NSCF equations each time to obtain a free energy, until a minimum was found.

From that minimum, we then stepped in increments of 0.01 to pin-point the minimum
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with refined accuracy. The process was repeated for increments of 0.001 and 0.0001,

ultimately locating the R yielding the minimum ∆f to as much as five significant figures.

The dimensionless domain thickness, d, was then simply given by d = 2R.

Appendix A includes the program listing in C which implemented the numerical

solution of the above iterative algorithm.
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Domain and Subdomain Sizes

3.1 Comparison of Initial Results

Systems of copolymer-homopolymer blends have previously been studied in the so-

called weak-segregation and near-weak-segregation regime using the mean field formal-

ism. [3, 23, 24]. In these prior investigations, the density distributions φκ(r), potential

distributions ωκ(r), and incompressibility field η(r) were expanded in terms of their

Fourier components, and the system’s free energy evaluated only to the fourth order in

these fields.

Early investigations considered only the single dominate term of this expansion – the

“one-wave approximation”. [23, 24] This was found to have a very restricted range of

applicability and neglected one of the more notable characteristics of the behaviour of

the lamellar morphology in blends. [3] Namely, it is found in experiment [25, 26] that

the domain thickness of the lamellar structure may either increase or decrease with the

addition of homopolymer, depending on the value of fH . The one-wave approximation

failed to reproduce this result.

A refined “Many-Wave Approximation” (MWA), [3] which used several terms in the

Fourier expansion, was successful in qualitatively reproducing this phenomenon. Figures

3 and 4 of Ref. [3] represent the domain thickness, d, for an ideal system wherein χrC = 12,

fH = 0.0025, 0.1, 0.2, and 0.3, φC = 0.8, 0.85, 0.9, 0.95, and 1, fA = 0.5, and ε = 1.

In Figures 3.1 and 3.2, we redo these calculations for these systems using the full

33
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(a)

(b)

(c)

Figure 3.1: Reduced domain and subdomain thicknesses as a function of φC using NSCF,
for comparison with “Many-Wave Approximation’s” ideal test case. These graphs can be
compared with the calculations in Banaszak and Whitmore’s [3] Figure 3 for (a) domain
thickness d vs. copolymer volume fraction φC , (b) the thickness of subdomain A, dA,
vs. φC , and (c) the thickness of subdomain B, dB vs. φC . All thicknesses are expressed

in units of bHrC
1
2 . To convert to the units of Ref. [3], multiply by rC

1
2=20.



Chapter 3. Domain and Subdomain Sizes 35

Figure 3.2: Reduced domain thickness as a function of fH using NSCF, for comparison
with “Many-Wave Approximation’s” ideal test case. This graph can be compared directly
with the calculations in Banaszak andWhitmore’s [3] Figure 4. Units are as for our Figure
3.1.
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NSCF formalism. In considering Figure 3.1 first, the φC = 1 limit corresponds to a

system composed entirely of neat copolymer. In absence of homopolymer, the parameter

fH , which expresses a characteristic of the homopolymer, has no effect on the result.

Hence, all curves converge to the same domain and subdomain thicknesses at φC = 1.

As homopolymer is added (i.e. as φC decreases), the effects of the various homopolymers

develop.

As with the MWA, NSCF predicts that for the relatively large homopolymer molecules

(e.g. fH = 0.3) the domain thickness, d, increases with the addition of homopolymer

(i.e. as φC decreases). Similarly, with the addition of small homopolymer molecules

(e.g. fH → 0), domain thickness decreases. A similar effect may be witnessed on the

thickness of subdomain A, dA. For subdomain B, the thickness dB decreases for all

considered cases of fH . All of these results are qualitatively consistent with the MWA.

Differences, however, appear in the details. At the basic level, it is found that the

domain thickness, d0, in the neat copolymer limit (where φC = 1) differs between the

results of MWA and our NSCF study. Ref. [3] gives d0/(bHrC
1
2 ) ≈ 1.45. Our study gives

the value to be approximately 1.40, which is, to precision, in agreement with the quan-

titative result of the earlier NSCF investigation of neat copolymer systems. [18] These

values represent a mere 4% discrepancy between MWA and NSCF, which may be con-

sidered a respectable discrepancy for a truncated approximation of density distributions

and a fourth-order free energy as in the MWA.

More striking differences exist, however. First, in considering Figure 3.1(a), one

notices that the fH = 0.2 line experiences a more linear ascent with decreasing φC ;

whereas in Banaszak and Whitmore’s MWA investigation, there is a mild non-linear

downward curve with decreasing φC . Also of particular note is the fact that the fH → 0

line has a slope of 0.4 in our graph while it has a slope of 1.0 in the MWA result.

Similarly, in Figure 3.1(b), the fH = 0.1 line increases as φC decreases, with a clear
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upwards curvature. The equivalent line in Ref. [3] has a clear downward curvature in the

neighbourhood of φC = 0.8.

In the case of Figure 3.1(c), there is again a quantitative difference with our result

having a more modest slope as fH → 0 and again, like Figure 3.1(b), the fH = 0.1 case

having a more pronounced downward curvature in the neighbourhood of φC = 0.8.

To begin understanding these discrepancies, one may first wish to establish some

confidence in the newer NSCF result in situations where it disagrees with the MWA. An

ideal place to start is in the consideration of the slope of d vs. φC for the fH → 0 limit

in Figure 3.1(a). This limit represents the situation where the homopolymer molecule is

“very small” with respect to the size of the copolymer molecule. For our case of ε = 1, this

is the limit where ZH ¿ ZC . That is, the degree of polymerisation of the homopolymer

is negligible on the scale of the copolymer. A molecule with negligible polymerisation

is effectively a monomer – a simple molecule. In fact, in the situation Banaszak and

Whitmore consider, they explicitly have ZH = 1 and ZC À 1.

So, in the limit of fH → 0 we are considering a system of neat copolymers diluted by

the introduction of simple monomers of species A. This is precisely the selective solvent

case. [10] In the limit of large ZC , good solvents – whether selective or neutral [2, 9] –

tend to distribute evenly throughout the system. Even though a selective solvent such

as ours should preferentially gather in the A subdomain, the relatively low value of χrH

makes the repulsion insufficient to overcome entropy considerations. Selective solvents

are generally expected to be good solvents when χrH ¿ 0.5. [27] (N.B. for a solvent

molecule of ZH = 1 and using the convention ρref = ρ0H , we have rH = 1, reducing the

condition to χ¿ 0.5.) This limit of homogeneously distributed homopolymer resembles

the dilution approximation in neutral solvents. [2, 9, 18]

In the dilution approximation, a system may be represented by an equivalent neat
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copolymer system (i.e. one without solvent) via the substitution of χ with

χeff = φCχ. (3.1)

It is known from the study of neat copolymer systems that domain thickness scales

roughly as [1]

d = (χrC)
prC

1
2 . (3.2)

Considering that rC is fixed in this exercise, in the dilution approximation we thus have

d/d0 = (χeff/χ)
p

= φC

p

= (1− φH)
p. (3.3)

Using the binomial expansion for small φH , this becomes roughly

d/d0 ≈ 1− pφH , (3.4)

illustrating a roughly linear scaling of d in the limit of small φH , with the slope given

by p. In the weak-segregation regime where χrC = 12, Figure 4(b) of Ref. [1] gives that

p ≈ 0.4. Thus, we would expect that d vs. φC in the fH → 0 case would have a rough

linear dependence with slope of 0.4, which is, in fact, the value obtained here. And so,

we have independent evidence that in the comparison of NSCF vs. MFA approaches to

copolymer-homopolymer blends, the NSCF result is the more realistic one in this case.

On the matter of other differences, they may be better illuminated by looking at

the NSCF’s results for the d vs. fH dependence for these systems, reproduced here in

Figure 3.2. Like Figure 4 of Banaszak and Whitmore’s MWA paper, [3] there is a rough

linear dependence present in d vs. fH for the various values of φC considered. Like the

MWA result, these d vs. fH plots all cross d = d0 at roughly the same value of fH .
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This fH is called the “threshold” value. Banaszak and Whitmore found this value to

be roughly 1/5. Here, its value in the NSCF result is roughly 0.16, or 1/6. In Section

3.3, we find that this threshold is not a fixed value but instead has an effective χrC

dependence plus a weaker φC dependence. In the limit of χrC = 10.5 and φC → 1, we

also obtain a threshold of 1/5, implying MWA is most successful in this extreme. The cut-

off χrC>∼10.5 represents the microphase separation transition (MST) boundary in neat

copolymer systems, above which ordering first starts to occur – i.e. the extreme weak

segregation. The implication here is that in the detailed balance between energy and

entropy which determines whether the domain thickness grows or shrinks with addition

of homopolymer, the MWA’s applicability may be confined to systems very near the MST

limit.

As further groundwork in establishing the NSCF formalism, we consider the predicted

results of NSCF in comparison with several experimental cases also considered to test

the validity of the MWA. [3]

Figure 3.3 illustrates the comparison between the NSCF results and the experimen-

tal systems considered by Winey et al. [25] In these experiments, systems of PS-b-PI

(polystyrene-polyisoprene) copolymer blended with several sizes of PS homopolymers

were considered. The copolymer utilised corresponded roughly to χrC = 32, fA = 0.51.

One may evaluate εPI for such a system by referring to the experimental values for the

statistical segment length and bulk monomer density of polystyrene and polyisoprene.

Unfortunately, these numbers are not precisely known but, following Ref. [20], we have

chosen a realistic value of 1.3.

The dependence of domain thickness on the volume fraction of copolymer present in

the system, φC , was plotted for the four PS-b-PI/PS blends in question. In each system,

the PS-b-PI characteristics were fixed, and only the homopolymer size was varied. The

four homopolymers were designated 2.6hPS, 6hPS, 14hPS, and 37hPS. The molecular
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Figure 3.3: Theoretical domain thicknesses vs. Winey et al’s experimental results. [25]
Four PS-b-PI/PS blends are shown of common χrC = 32 and fH = 0.0504, 0.1210,
0.2722, and 0.7158 – designated 2.6hPS, 6hPS, 14hPS, and 37hPS respectively. Dashed
lines with markers indicate experiment. Solid lines indicate NSCF predictions. Domain
thicknesses are expressed relative to the neat case.



Chapter 3. Domain and Subdomain Sizes 41

weights for these molecules given in Ref. [25] correspond to fH values of 0.0504, 0.1210,

0.2722, and 0.7158 respectively.

In Figure 3.3 one can see that the NSCF theory does indeed predict the trends of

d/d0, at least on a qualitative level. The remaining discrepancy is likely attributed to

the uncertainty in εPI , or a non-trivial relation between χ and changes in the physical

properties of the polymers, as well as experimental uncertainties which would seem to

be implied by the sporadic, non-trivial displacements of some of the experimental data

points.

Nonetheless, the results in Figure 3.3 do represent an improved agreement between

the NSCF theory and Winey et al, when compared to the earlier MWA effort. [3] In

particular, the NSCF theory seems to have greater success in predicting the sign and

magnitude of the domain thickness vs. φC slope than the former MWA effort, with the

6hPS slope have the correct sign, and the φC
<∼0.8 experimental data points more closely

matching the corresponding NSCF predictions.

A similar comparison to the experimental effort of Hashimoto et al [26] indicates a

similar qualitative agreement in trends of the NSCF results and experiment. Again the

agreement, though somewhat lacking in precision, has greater success than the former

MWA comparison. [3] (N.B. The scale in our Figure 3.4 is finer than that of Ref. [3], and

so our plot emphasises discrepancies more than in the former work.)

It would seem that the NSCF is a step in the right direction toward practical predic-

tion of experiment, but uncertainties in the precise determination of the conformational

asymmetry parameter, ε, and uncertainties in the experimental procedure may ham-

per high-precision comparison. Nonetheless, these comparisons do justify an optimism

in the NSCF’s capacity to predict experimentally-measurable qualitative and crudely-

quantitative trends.
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(a)

(b)

(c)

Figure 3.4: Comparison of NSCF results with Hashimoto et al’s experimental results. [26]
Two PS-b-PI/PS blends are shown of common χrC = 13.5 and fH = 0.3096 and 0.4954
– designated S10 and S17 respectively. Dashed lines with markers indicate experiment.
Solid lines indicate NSCF predictions. Plotted are (a) domain thickness, (b) PS subdo-
main thickness, and (c) PI subdomain thickness, all relative to the neat case.
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3.2 Domain Thickness vs. Relative Size of Homopolymer

As defined Chapter 2, fH defines the ratio of the total molecular volume of a homopoly-

mer molecule to the total molecular volume of a copolymer molecule. The definition of

fH is the more rigourous measure of relative homopolymer size within the mean field

theory than the conventional ratio of homopolymer to copolymer degree of polymerisa-

tion, ZH/ZC . [3, 25, 26] The conventional definitions of Zκ contain some ambiguity. For

example, one might define a new “effective monomer” which is comprised of n adjoined

monomers from the original definition. In this remapping, one would have

Z ′
κ =

Zκ

n
, (3.5)

ρ′
0κ = nρ0κ, (3.6)

Z ′
κ(b

′
κ)

2 = Zκb
2
κ. (3.7)

This relation holds for non-integral values of n. Since the polymer is being represented as

a random walk, Eq. 3.7 represents a constant quantity which is the statistical end-to-end

separation of the polymer. Thankfully, in this remapping, our fundamental parameters of

the dimensionless self-consistent field equations in Section 2.3 remain invariant. Often,

in practice, one considers an effective Z where the remapping above is done so that

ρ0A = ρ0B = ρ0H . In this casting of parameters, Zκ and rκ would be equivalent according

to Eq. 2.58 and we would have fH ≡ ZH/ZC from the definition, Eq. 2.67.

For the purposes of this investigation, we shall consider copolymer-homopolymer

blends where εκ = 1. Since we can define ρ0A = ρ0B = ρ0H via the remapping above,

the εκ = 1 condition represents the additional specification that bA = bB = bH . As

most experimental systems investigated tend to have modest asymmetry (i.e. εκ ' 1)

and asymmetry effects do not dominate except for extreme values of εκ, [20] it is reason-

able to consider such εκ = 1 systems to be representative of many realistic experimental
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Variable Value

χrC 10, 20, 30, 40, 50

φC 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1
fH 0*, 0.0008, 0.002, 0.005, 0.0075, 0.01, 0.015, 0.02,

0.0225, 0.025, 0.03, 0.05, 0.075, 0.1, 0.25, 0.5

Table 3.1: Parameters for investigated hypothetical systems. Systems investigated de-
rived from all combinations of the tabulated parameters, with the additional choices that
fA = fB and εκ = 1. The fH = 0 case actually represents an evaluation of the dilution ap-
proximation wherein a neat copolymer system with χeffrC = φCχrC is considered. [9, 18]

systems.

A wide variety of systems was investigated for various values of χrC , φC , and fH ,

all considering exclusively the case where fA = fB = 1
2
(i.e. configurationally symmetric

copolymer) and εA = εB = 1 (i.e. conformationally symmetric copolymer). Table 3.1

summarises the various choices of χrC , φC , and fH .

Figures 3.5 through 3.9 illustrate the dependence of the lamellar repeat distance,

d, on the ratio fH for increasing values of χrC . Only values of φC ≥ 0.3 have been

plotted, as the NSCF calculations for φC = 0.1 and 0.2 did not achieve a satisfactory

convergence, and the resultant numerical noise in the free energy inhibited obtaining

reliable equilibrium domain thicknesses.

Several characteristics are common among these results. In the limit of small fH ,

the smallest homopolymer considered was fH = 0.0008. In this range, the addition of

homopolymer resulted in a reduction in the domain thickness.

To understand this, we must recognise that we are considering a limit in which ho-

mopolymer molecules are over three orders of magnitude smaller than the copolymer

molecules in the system. As discussed in Section 3.1, on such an extremal scale the

extended geometry of the homopolymer molecule can be neglected, effectively reducing
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Figure 3.5: Domain thickness as a function of fH for χrC = 15. d0 represents the domain
thickness for the neat copolymer system wherein χrC = 15. φC = 0.4, 0.5, 0.6, 0.7, 0.8,
0.85, 0.9, 0.95, and 0.99 are shown.
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Figure 3.6: Domain thickness as a function of fH for χrC = 20. d0 represents the domain
thickness for the neat copolymer system wherein χrC = 20. φC = 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.85, 0.9, 0.95, and 0.99 are shown.
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Figure 3.7: Domain thickness as a function of fH for χrC = 30. d0 represents the domain
thickness for the neat copolymer system wherein χrC = 30. φC = 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.85, 0.9, 0.95, and 0.99 are shown.
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Figure 3.8: Domain thickness as a function of fH for χrC = 40. d0 represents the domain
thickness for the neat copolymer system wherein χrC = 40. φC = 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.85, 0.9, 0.95, and 0.99 are shown.
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Figure 3.9: Domain thickness as a function of fH for χrC = 50. d0 represents the domain
thickness for the neat copolymer system wherein χrC = 50. φC = 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.85, 0.9, 0.95, and 0.99 are shown.
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the homopolymer to the role of a simple solvent molecule.

Intuitively, as outlined in Section 3.1, this limit may be understood as a ZH → 1 limit

for large ZC resulting in fH being negligibly small. In this limit we are considering a

blend of copolymer with simply monomers of species A – the selective solvent case. [10]

Analytically, this result can also be obtained by considering the diffusion equation,

Eq. 2.61. When fH → 0, τ dominates the evolution of qH(r, τ) and the spacial compo-

nent, β∇2 may be neglected. Eq. 2.61 thus reduces to

−ωH(r)qH(r, τ) =
1

fH

∂

∂τ
qH(r, τ). (3.8)

Solving for qH(r, τ) subject to the restriction of Eq. 2.48 gives

qH(r, τ) = e−fHωH(r)τ . (3.9)

Substituting this result into the NSCF formalism recovers the formalism for the selective

solvent as found in Ref. [10].

In a typical low-fH system such as that shown in Figure 3.10, the homopolymer den-

sity distribution φH(x) was found to be nearly homogeneous, as would be the case in a

comparable copolymer-solvent blend. [10] The explanation for why homopolymer would

be found in the B subdomain despite the repulsive interaction between the homopoly-

mer/solvent and the B block of the copolymer would seem to be rooted in the entropy

considerations. Explicitly, for the fH = 0.0008 case, the homopolymer is over three orders

of magnitude smaller than the copolymer.

From Eq. 2.61, polymer molecules may be regarded as random walks, perturbed by a

repulsive interaction which biases them so that the blocks end up preferentially separated.

The incompressibility condition demands that there be no “empty space”, however. In

the low-fH scenario, the homopolymer molecules are several orders of magnitude smaller

than the copolymer. Though the copolymer A block and the homopolymer are both
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Figure 3.10: Density profile for a typical copolymer-homopolymer blend for very small fH .
In the investigation of neutral solvents, inhomogeneities in the solvent distribution were
found to be larger when φC ≈ 0.5 and χrC was large. In consideration of this limit, the
most-likely system to exhibit inhomogeneities from those investigated would be χrC = 50,
φC = 0.5. Despite this optimal selection, the χrC = 50, φC = 0.5, fH = 0.0008 system
illustrated here exhibited less than a 1% variance in the local homopolymer volume
fraction throughout the entire cell. All other systems with fH = 0.0008 had equal or
better homogeneity in their homopolymer distributions. This indicates that, in the “good
solvent” limit of small fH , there is a strong analogy with the dilution approximation in
copolymer-neutral solvent blends.
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repulsed by the B subdomain, the distribution of the homopolymer is controlled by

entropy. With insufficient repulsion (χrH ¿ 0.5), the homopolymer acts as a good solvent

and uniformly distributes throughout the system. Though the homopolymer perturbs the

B block’s potential, it does so homogeneously, so the B block’s random walk is not biased

by the presence of the uniformly-distributed homopolymer. However, the presence of

homopolymer reduces the A and B blocks’ monomer concentrations via incompressibility

condition, Eq. 2.27. Such a reduction is entirely analogous to the dilution approximation

in neutral solvents. [2, 9, 18]

So, the presence of homopolymer will dilute the repulsion between the A and B blocks

of the copolymer. With a weaker effective χ, the copolymer does not extend itself so much

to minimise contact between species A and B. Since the extension of the copolymer is

the primary contributor to determining the domain thickness, the presence of a low-fH

homopolymer leads to a lower value of d than would be obtained in an unscreened system

of neat copolymers.

The idealised limit of this effect occurs when the homopolymer/solvent’s density dis-

tribution is perfectly homogeneous throughout the system. Based on the observation

that the homopolymer becomes more homogeneously-distributed as fH decreases, we hy-

pothesised that the dilution approximation was a valid analogue for the fH → 0 limit for

the system, where one would have an ideally good solvent (since χrH → 0). The NSCF

equations were solved for systems representing the dilution approximation limit for all

values of χrC and φC in Table 3.1. These systems, included in the Figures 3.5 through

3.9, did indeed fall in line as valid extrapolations of the d vs. fH curves to the fH → 0

limit.

Thus, based on trends in the domain thickness and distribution of homopolymer in

the low-fH systems, the dilution approximation appears to be a valid representation of

the fH → 0 limit.



Chapter 3. Domain and Subdomain Sizes 53

Away from the low-fH limit, the behaviour is somewhat different. As fH increases for

any fixed values of χrC and φC , the domain thickness first increases in an approximately-

linear fashion. At some intermediate value of fH , it passes d0, the thickness for a corre-

sponding neat system of the same χrC value. (This transition value for fH , the so-called

“threshold value”, will be discussed in more detail in Section 3.3.) As fH further in-

creases, the domain thickness continues to increase, though less rapidly. For fH on the

order of the size of the copolymer blocks (i.e. fH = 0.5), we see that in most cases the d

vs. fH dependence has begun to plateau.

One must ask why there is such a plateauing effect as fH grows large. In the small

fH limit, the addition of homopolymer tends to dilute the system, distributing homo-

geneously, effectively screening the normally repulsive interaction quantified by the χrC

segregation parameter. For larger values of fH , the situation is reversed; the addition of

homopolymer increases the domain thickness. And, more interestingly, beyond fH ' 0.5,

the specific value of fH no longer has a strong role to play.

To illuminate the mechanism involved in the high-fH behaviour, one may again turn

to the density profiles. Figure 3.11 illustrates what is happening inside the unit cell in a

case typical of the high-fH range. It is a very different picture than the one represented

in Figure 3.10. The most distinguishing feature is that the homopolymer, represented

by φH(x), has been nearly-completely expelled from the B subdomain. That is, to the

right of the interphase where the B subdomain lies, φH(x) is essentially zero. In fact, the

homopolymer has so strongly segregated from the B species that it has localised in the

middle of the A subdomain (i.e. the left of the figure).

To understand this, we again think of the polymers in terms of a perturbed random

walk, except now, in the large-fH limit, the extended nature of the homopolymer also

comes into play. The homopolymer’s random walk is biased by the repulsive interaction

with species B. The longer the homopolymer, the greater the number of steps in this
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Figure 3.11: Density profile for a typical copolymer-homopolymer blend in the high-fH
limit. In this example, we have χrC = 30, φC = 0.8, and fH = 0.5. The system considered
here is believed not to be one in which macrophase separation would occur. (See Section
4.2 for more details on macrophase separation.)
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random walk within a biased field, and so the greater the probability that a monomer in

the homopolymer (particularly in the “tail end” of the walk) will end up farther away

from the B subdomain and the interphase. With the homopolymer out of the crucial

interphase region, there is nothing to screen the copolymer’s A block from its B block,

and nowhere for the homopolymer to go except to enlarge the A subdomain to make

room for itself there. This creates three zones of dominance:

1. the centre of the A subdomain which is dominated by homopolymer,

2. the A block of the copolymer wedged between the homopolymer and the interphase,

facing an entropic deficit if it extends into the homopolymer-dominated region to

its left and an energy deficit if it interacts with the immiscible B block to its right;

and,

3. the B block of the copolymer, repelled primarily by the A block at the edge of its

subdomain.

As the interphase interaction is primarily one between the A block and B block, one

would expect its behaviour to be substantially similar to the neat copolymer case. What

remains in the A subdomain is an entropic struggle between the A block of the copolymer

and the like-species monomers in the homopolymer. This influence appears to be weak

in comparison to the repulsive interaction. Essentially, then, once the homopolymer is

out-of-play in the interactions of the interphase, the unit cell is largely unaffected by

further changes to fH .

The entropic contribution does continue to have some influence, of course. Increasing

the value of fH increases the length of the homopolymer. The longer the homopoly-

mer, the farther it will end up away from subdomain B due to the biased random walk

represented by Eq. 2.61. The more “tightly curled up” the homopolymer ends in the
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centre of subdomain A, and the more it expels block A of the copolymer. When the

entropic deficit of localising the homopolymer becomes too great, it ultimately leads to

“macrophase separation”, [3] wherein the homopolymer isolates itself completely from the

copolymer within the system instead of finding itself sandwiched in between each con-

secutive layer of the unit cell. The phenomenon of macrophase separation is considered

in more detail in Section 4.2.

The plateauing of domain thickness is indeed very persistent once fH is sufficiently

large. For one test case (χrC = 15, φC = 0.9) the value of fH was taken as high as 10 and

still the domain thickness increased by only 4% over its value at fH = 0.5. Admittedly,

fH = 10 is a fairly unrealistic system; it is a very likely candidate for macrophase

separation. However, the projection of theory into this range does demonstrate how

the driving force that changes the domain thickness in binary blends is the intrusion of

homopolymer A into the interphase and immiscible species B’s subdomain.
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3.3 Domain Thickness vs. Copolymer Volume Fraction

Section 3.2 outlined the variance of domain thickness with copolymer size. While this

relation is of key interest in studying the behaviour of copolymer-homopolymer blends, it

is not a quality that can be varied dynamically within a given system. That is, copolymers

and homopolymers are synthesised to be a particular size, prior to the experimental

investigation of the blends and their characteristics. At best, a small, discrete selection

of unique homopolymer sizes are synthesised which are then blended with a common

copolymer. [25, 26] Consequently, behaviours may be investigated at only a few fH values

in a single experimental investigation. It is beyond the realm of experiment to investigate

the variation of characteristics as a result of the continuous variation of fH .

By contrast, continuous variations with φC are more readily accomplished. In exper-

iment, one need simply introduce the homopolymer into the blend in discrete steps as

small as desired. Of course, special care may still be required to ensure that the system

attains a globally stable equilibrium.

As presented in the previous section, the chief characteristics of the dependence of

the domain thickness on φC are that:

1. for small fH , the homopolymer acts as a good solvent, distributing homogeneously

in analogy to the dilution approximation for neutral solvents, and the presence of

homopolymer reduces the interaction between the A and B blocks of the copolymer

and thus reduces the domain size,

2. for larger fH (approaching 0.5), the addition of homopolymer (and corresponding

decrease in φC) increases the domain thickness; and,

3. at some intermediate fH , the addition of homopolymer has a minimal effect on

the domain thickness. For the weak-segregation case investigated in Ref. [3], this
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“threshold” fH was found to be approximately 1/5.

The first case – that of fH → 0 – is the easiest to consider. As stated in the previous

section, the good solvent analogy with the dilution approximation grows increasingly

applicable as fH decreases. For all practical purposes then, we already know all we need

to know about this limit from the neat copolymer studies [1] and Eq. 3.3. Namely, from

the derivation of Eq. 3.3, we have

d/d0 ∝ φC

p
, (3.10)

where p is weakly dependent on χeffrC .

Figure 3.12(a) presents the scaling relation between relative domain thickness, d/d0,

and copolymer volume fraction φC in the fH → 0 limit for select values of χrC . In Figure

3.12(b) we see that these results may be plotted on a single graph by instead considering

the dependence of d/d0 on φCχrC .

As seen in Figure 3.12(a), the scaling relation of Eq. 3.10 is a relatively good one. In

the lowest χrC considered, χrC = 15, the d vs. φC dependence goes roughly as Eq. 3.10

with p varying from 0.3 at φC = 1 to 0.5 at the lower cut-off where χeffrC = 10.5. In

the high-end χrC = 50 case, the scaling relation is again obeyed with p varying from 0.2

at φC = 1 to 0.3 for the lower considered-values of φC .

Next, we consider the domain thickness vs. φC relation in the high-fH limit, as plotted

in Figure 3.13. There is a clear inverse dependence on φC evident. Again, it is a scaling

relation of the form given in Eq. 3.10 even in this high-fH limit. However, p, here, for

small additions of homopolymer (i.e. where φC → 1), starts out at − 2
3
. It quickly shifts

to a simple inverse relation, however, with p = −1 as more homopolymer is added.

As suggested in Section 3.2, when fH is large the localisation of the homopolymer in

the middle of the A subdomain – away from the interactions of the interphase – effectively

splits the system into a zone of homopolymer and a zone of segregated neat copolymer.
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(a)

(b)

Figure 3.12: Scaling of domain thickness with copolymer volume fraction, φC , in the
limit of fH → 0. (a) Relative domain thickness has been plotted on a log-log scale
against φC for each of the investigated values of χrC tabulated in Table 3.1. (b) Here the
relative domain thicknesses have been collected into a single plot as a function of φCχrC ,
illustrating the analogy between a good solvent and the dilution approximation in this
context.



Chapter 3. Domain and Subdomain Sizes 60

Figure 3.13: Scaling of domain thickness with copolymer volume fraction, φC , in high-fH
limit.
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The impact of the addition of homopolymer on domain thickness should become a simple

matter of geometry. As such, the inverse relation between d/d0 and φC is a simple one to

justify physically. Consider a unit cell similar to that represented in Figure 3.11, without

significant intermixing between the homopolymer and the B block of the copolymer. The

thickness of subdomain B would remain the same as dB,0, the B subdomain thickness

for the neat case. Block B represents a volume fraction of φB of the system volume.

Hence, the domain thickness d would be given by dB,0/φB. Using the geometric relations

dB,0 = fBd0 and φB = fBφC , we obtain d = d0/φC as hoped.

Conversely, then, the φC

− 2

3 behaviour as φC → 1 represents a situation where a greater

degree of intermixing occurs between the homopolymer and subdomain B – enough to

lessen the effect on domain thickness, but not so homogeneously intermixed that it causes

a reduction in domain thickness as it would due to the screening effect in the dilution

limit.

And so, with the two extremal cases considered it remains only to examine the

“threshold” value of fH where domain thickness remains unchanged by the introduc-

tion of homopolymer. Based on the extremal cases described above, this threshold fH

would represent a balance between the thickness-reducing effects of dilution and the

thickness-enhancing effects of homopolymer localisation in the A subdomain.

From Figures 3.5 through 3.9, it seems that for a fixed χrC the threshold varies

only weakly with φC , if at all. By taking each curve in these figures and using a spline

interpolation, we are able to determine the value of fH at which d = d0. The results of

this intercept calculation for each value of χrC are shown in Figure 3.14.

We find that this threshold fH,thresh obeys a simple relation. For a given φC , the

threshold fH,thresh has an inverse dependence on χrC ; and so, χrCfH,thresh is indepen-

dent of χrC leaving only a φC dependence. Recall that fH is the ratio of the dimen-

sionless homopolymer and copolymer volumes, respectively termed rH and rC . Thus,
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(a)

(b)

Figure 3.14: Threshold value of fH below which domain thickness increases with φC and
above which it decreases with φC . (a) The threshold value of fH , where d was found equal
to d0, is plotted against φC for each χrC value. These values were obtained by spline
interpolation of Figures 3.5 through 3.9 and additional equivalent data for χrC = 120.
(b) The same threshold values are multiplied by χrC and again plotted against φC . In
this representation, we find the threshold is given by χrH,thresh = 1.3φC +0.75 where, by
definition, fH = (χrH)/(χrC).
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χrCH,thresh = χrH,thresh. What we are left with from Figure 3.14 is a single plot of

χrH,thresh vs. φC , giving the d = d0 threshold as

χrH,thresh = 1.3φC + 0.75. (3.11)

What Eq. 3.11 says is that the balance required to obtain d = d0 is governed by two

effective parameters: the product of the Flory interaction parameter and the size of the

homopolymer, χrH , and the copolymer volume fraction of the blend, φC . With the results

we have found to date, the dependence on these three parameters is not surprising. The

χ and rH parameters both influence the “biased random walk” of the homopolymer in

Eq. 2.61. This biasing of the homopolymer must be just right – too great and too much

homopolymer is expelled from the interphase resulting in an increase in domain thickness,

not enough and the homopolymer reduces the thickness by diluting the interphase and

thus the segregation of the copolymer blocks. As for the φC dependence, we do find even

from the high-fH result that there is a weaker variation in behaviour due to φC .

How does this result compare to the fH ' 1/5 result obtained from the Many-Wave

Approximation? Initially, one might speculate “not well”. However, to look at the weak-

segregation limit of Eq. 3.11 we consider φC → 1 and χrC = 10.5, representing the

extreme of weak segregation. Re-expressing Eq. 3.11 as

fH,thresh =
1

χrC
(1.3φC + 0.75), (3.12)

we see that these values would yield a fH,thresh of 0.19 – very much in agreement with

the MWA result.

This may suggest that the MWA combined with the fourth-order energy approxima-

tion is still restricted to the weak-segregation limit and that the dependencies on φC

and χrC are due to higher order effects, or perhaps it simply suggests that the MWA

investigation did not probe a wide enough range of φC and χrC values to expose these

dependencies.
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When referring back to Figures 3.5 through 3.9, one might be sceptical about the

strength of the threshold’s dependence on φC as implied by Eq. 3.11. Certainly, in these

figures the lines seem more tightly “pinched” at a specific fH , particularly in Figure 3.5,

than Eq. 3.11 would suggest. The explanation for this is simple: the fH at which the

tightest overlap of the various d/d0 vs. fH lines occurs does not correspond to d/d0 = 1,

but rather a d/d0 which is marginally less than 1. As the lines in Figure 3.5 ascend across

the d/d0 = 1 horizontal, they have already “fanned out” from the pinch, resulting in a

spread of intercepts such as clearly seen in Eq. 3.11.

It is interesting that the closest crossing of the d/d0 vs. fH curves of Figures 3.5

through 3.9 should occur at a d marginally small than d0. By definition, this closest

crossing is where the domain thickness is least influenced by variations in φC . If it were

the case that d/d0 were independent of φC altogether, then d/d0 should be 1 since it

is so at φC = 1. However, its marginal offset of d to slightly less than d0 implies that

the interphase is slightly diluted before d becomes independent of further additions of

homopolymer. Initially, perhaps the first fraction of homopolymer introduced to the

system does distribute so as to screen the system marginally. From there, additional

homopolymer of this special fH value has no further effect on the domain thickness.

The notion that the initial fraction of homopolymer introduced should have a different

effect than the subsequent addition of homopolymer has already been seen in Figure 3.13.

There, the first homopolymer also appeared to relieve the interphase’s A-B interaction

marginally, retarding the increase of domain thickness from what it would be if the

homopolymer were fully segregated as the high-fH trend tells us to expect. Here, we

seem to be seeing a similar effect.

Table 3.2 enumerates the nearest-crossing of the d/d0 vs. fH lines in Figures 3.5

through 3.9. The relation between this nearest-crossing value of fH and χrC is not as
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χrC fHat crossing d/d0 at crossing

15 0.117 0.999
20 0.075 0.993
30 0.045 0.990
40 0.029 0.970
50 0.023 0.960

Table 3.2: Values of fH at which domain thickness exhibited the least dependence on φC .

simple as in Eq. 3.11. The best fit to the results in Table 3.2 was the scaling relation

fH,cross = 4.50(χrC)
−1.36. (3.13)

For comparison with the MWA, in the χrC = 10.5 MST limit we note that fH,cross

would be approximately 0.18, which is again in good agreement with the simpler MWA

prediction of a threshold of fH ' 1/5. The agreement between fH,cross and fH,thresh

would seem to wane, however, as χrC increases. This can be attributed to the fact that

the crossing point as shown in Table 3.2 occurs further and further away from the d = d0

horizontal as χrC increases. Physically, it would seem then that the screening influence

due to the initial introduction of small amounts of homopolymer is more profound as

χrC increases.

Ultimately, then, NSCF appears to reveal more complex dependencies around the

threshold value of fH where d ' d0. However, it is reassuring that the more basic results

of the earlier MWA threshold investigation can be recovered in the MST limit.
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3.4 Subdomain Thickness

In Ref. [3], Banaszak andWhitmore considered the individual variations of the thicknesses

of both subdomains, dA and dB, in addition to the total domain thickness, d. There, the

subdomain boundary was defined as the offset within the cell, xbound, such that φA(xbound)

was an inflection point. [28] We use an analogous criterion in the present investigation.

In the case of more than one inflection point, e.g. as seen in Figure 3.11, we use the

inflection point closest to the centre of the B subdomain.

The physical significance of this inflection point is that the local volume fraction

φA(x) has reached its steepest descent, with the B species beginning to dominate. This

would mark a meaningful termination of the A subdomain, as φA(x) to the right of this

boundary will have a positive curvature – a decay-like shape – signifying the decaying

penetration of species A into subdomain B, as may happen in weak segregation. As

documented in Chapter 5 we found that for εκ = 1 this point of inflection also coincides

with the most-probable location of the copolymer joints. Thus, this should serve as a

satisfying definition of the A-B subdomain boundary.

With this definition, we are now clear to consider trends in subdomain thickness. As

mentioned above, Ref. [3] chose to focus on dA and dB. These results were calculated in

the NSCF formalism in panels (b) and (c) of Figure 3.1. Both Ref. [3] and our present

Figure 3.1 fail to exhibit intuitive trends, particularly in dB. This is likely due to the

complex interplay of effects on dA and dB including:

1. As is well-known d0 has a scaling dependence on χrC . [1, 2, 9, 10]

2. As seen in Sections 3.2 and 3.3, d/d0 has a dependence on both fH and φC , increas-

ing or decreasing with φC according to the choice of fH .

3. The relative position of the subdomain boundary within the unit cell, given by
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dA/d, has a yet-unspecified dependence on system parameters.

Since dA is a result of these three factors and dB is given by dB = d − dA, it is easy to

understand why the subdomains’ behaviours may be more complex.

Furthermore, items 2 and 3 above seem intimately intertwined. We have observed that

whether d/d0 increases or decreases with φC depends on fH . The proposed mechanism

for this dependence is the degree to which a specific choice of fH allows the homopolymer

to penetrate the B subdomain (or, conversely, the degree to which it results in the ho-

mopolymer localising in the middle of the A subdomain). When homopolymer is localised

in the A subdomain as in Figure 3.11, it will tend to shift the relative boundary dA/d

to the right, enlarging dA. When the homopolymer penetrates the A and B subdomains

more equally, as in Figure 3.10, there is no such bias and so the dA/d boundary remains

in largely the same location as it would be in the neat copolymer case.

From this perspective it seems logical to consider how the relative boundary position,

dA/d, varies alone with system parameters as this dependence is likely to be simpler

than dA’s dependence. With a clear understanding of this relation, we can combine our

prior understanding of d0 and d/d0’s dependence on system parameters, to determine the

behaviour of dA and dB.

This investigation was undertaken for 683 successfully-converged NSCF calculations

which yielded microphase-separated results, including all the converged, inhomogeneous

results from those systems tabulated in Table 3.1. It was found that, like the fH thresh-

olds discussed in Section 3.3, dA/d effectively depended on only two parameters: χrH

and φC . Figure 3.15 plots the results of this investigation.

The results in Figure 3.15 follow a very systematic progression. At χrH = 0, we

have fH → 0 which is the now-familiar good solvent limit. Since we are considering only

systems where fA = fB and εκ = 1, a neat system with such parameters is perfectly
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(a)

(b)

Figure 3.15: Relative thickness of subdomain A as a function of system parameters. (a)
683 data points have been plotted including all converged, inhomogeneous solutions for
systems enumerated in Table 3.1. For comparison, the d = d0 threshold range of χrH
given by Eq. 3.11 has been marked, with the left-hand dashed vertical line at χrH = 1.3
corresponding to the threshold in the φC → 0 limit and the right-hand line at χrH = 2.1
indicating the φC → 1 threshold limit. (b) shows a magnification of the results below
χrH = 1, where the dA/d dependence on χrH is well-represented by a linear fit.
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symmetric and so it should follow that dA = dB giving dA/d = 0.5. For a good solvent,

homopolymer is distributed homogeneously in the system, adding to both subdomains in

equal measure. Thus, in the fH → 0 limit, we should expect that dA/d = 0.5 irrespective

of the choice of φC .

Moving away from fH → 0 and considering small values of χrH (e.g. less than 1),

dA/d exhibits a nearly-linear dependence on χrH , and so obeys the relation

dA/d = 0.5 + bχrH if χrH<∼1, (3.14)

where b is a constant of proportionality that increases monotonically with φC .

In the large χrH limit, dA/d plateaus to

dA/d ' 1− φC/2 if χrH>∼2. (3.15)

This later result is exactly what one would expect for a system where the homopolymer

had been completely expelled from the B subdomain. Given that block B accounts for

φB of the total volume of the cell, if all of block B were concentrated into a discrete,

exclusive volume within the cell, then that volume would have width dB = φBd. The

complementary volume dA is then 1− φBd, but φB is by definition simply φCfB. In our

investigation, fB = 1
2
leading precisely to Eq. 3.15.

Interestingly, the intermediate values of χrH wherein the transition from Eq. 3.14

to 3.15 occurs are the same values at which the d = d0 threshold can be found. It is

this transitionary state that likely causes the balance necessary to achieve the non-trivial

d = d0 condition for blends. As this transition occurs very roughly in the 1<∼χrH<∼2

range independent of φC , the constant of proportionality, b, in Eq. 3.14 would appear

simply to be the one that brings dA/d vs. χrH sufficiently close to the asymptotic limit

of Eq. 3.15 by the time χrH reaches the transition range. (Aside from its monotonic

increase with φH , the equation for b given in Figure 3.15 is not quantitatively significant

as it represents a fit to the data with an artificial cut-off of χrH ≤ 1.)
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In summary, then, we find that Figure 3.15 illustrates precisely the shift hypothesised

in Section 3.2, with homopolymer starting out homogeneously distributed in small fH

limits and ending up localised in the middle of the A subdomain in the high fH limit.

This figure also provides a clear systematic way to understand the dependence of dA on

system parameters.



Chapter 4

Phase Behaviour

4.1 Microphase Separation Transition

The microphase separation transition (MST) defines a bound on system parameters out-

side of which no ordered structures such as lamellae, cylinders, spheres, etc. are ob-

served. The absence of these structures physically is due to them not being energetically

favourable. In the numerical results, this will happen when the NSCF equations in an

ordered symmetry produces solutions with positive relative free energy. A positive ∆f

would indicate that the ordering is a higher energy state than the disordered homoge-

neous state of the system. If the disordered state has the lowest free energy, then it will

be the stable equilibrium state of the system.

When a variation of a system parameter causes the relative free energy of an ordered

solution of the NSCF equations to go positive, then we have a “first-order transition”.

A first-order transition is so-called because the first-order derivative of the free energy

at the transition is non-zero when evaluated with respect to the system parameter being

varied.

In neat copolymer systems, a first-order transition happens whenever we make the

transition from order to disorder by lowering χrC when fA 6= fB. [1]

Another way to achieve the transition to a disordered phase is if the free energy goes

smoothly to zero. This would be the case if altering a system parameter resulted in

the amplitude of the variations in φA(r) and φB(r) decaying smoothly to zero. In this
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smooth decay to zero, there would be no positive ∆f solution of the NSCF equations.

Rather, ∆f would go smoothly to zero as well. Thus, ∆f ’s first-order derivative with

respect to the varied system parameter would be zero. Naturally, then, this is termed a

second-order transition.

In neat copolymer systems in the mean field theory, crossing the MST by lowering

χrC when fA = fB is a second order transition. [1] That is, lowering χrC on a symmetric

copolymer will cause the density variations φA(r) and φB(r) to decay smoothly to zero.

In a copolymer-homopolymer blend, the notion of first-order and second-order tran-

sitions is the same, only now φH(r) must also be considered in the decay to homogeneity.

For the present data set as summarised in Table 3.1, we have three ways to cross

the MST boundary: by varying χrC , by varying fH , and by varying φC . We know from

neat copolymer investigations that decreasing χrC in a symmetric copolymer induces a

smooth second-order transition to homogeneity. The parameter fH is not one that can

be varied dynamically. This leaves only φC of remaining interest in considering the MST

in copolymer-homopolymer blends.

For each chosen combination of χrC and fH in our data set, we have considered

∆f vs. φC . The intent is to extrapolate this curve to locate the value of φC such that

∆fχrC,fH (φC) = 0.

Using the 0.1 steps in φC from the original data set is far too crude a step to obtain

a reliable extrapolation. However, by using the crude extrapolation from this method

(where a third-order polynomial is fitted to the lower four or five values of φC that yielded

non-trivial ∆f ’s) we can find a coarse value for φC at the MST which can then be used

to guide further NSCF calculations, now using 0.01 steps in φC to approach the MST

boundary. Repeating the extrapolation method for the last few 0.01-stepped values of

φC before the MST, we obtained a satisfactory extrapolation of φC at MST.

The first and most striking feature of these results was that, to numerical precision,
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all approaches to MST appeared to be second-order. The first, coarse 0.1-stepped initial

plot of ∆f vs. φC sometimes gave a curve of positive curvature which, when extrapolated,

had a very significant slope as it crossed ∆f = 0. One might have easily concluded the

transitions were first order. However, the finer 0.01-stepped result revealed that ∆f

quickly reversed curvature to meet ∆f = 0 smoothly – within expected numerical error

– as MST was approached.

This observation is reinforced by the fact that at no time in any NSCF calculation

was a lamellar solution obtained that had positive free energy. Such an occurrence would

have been indicative of a first-order transition. However, in the nearly 1500 data sets

investigated – both for those tabulated in Table 3.1 and as supplemental explorations –

this was never observed.

Consquently, it can be stated that for all systems investigated, the φC-induced MST

is a second-order transition. The specific results for MST are tabulated in Figure 4.1.

In potential opposition to this result, the work of Fredrickson and Leibler suggests

that the MST transition in a blend of copolymer and neutral solvent may be very weakly

first-order for the fA = fB = 1
2
case. [29] To the extent that our homopolymer is a good

solvent, one may expect a comparable result here. However, the contribution which makes

the transition first-order is of order 1/rC , meaning that it would disappear as fH → 0.

Away from fH → 0, we are no longer considering a good solvent, and so Fredrickson and

Leibler’s formalism would not apply. Specifically, their formalism uses a finite truncation

of free energy and so its validity would be called into question for high-fH profiles such as

Figure 3.11. Our numerical results indicate that such profiles are not well-represented by

a many-wave approximation even as MST is approached. Nonetheless, it is not possible

to rule out a weak first-order transition strictly from our numerical results.

Returning to Figure 4.1, the χrC = 50 boundary could not be calculated as it was not

possible to coarse-step near enough to the MST to get a meaningful extrapolation. When
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Figure 4.1: Microphase separation transition boundaries for various χrC . The dashed
lines indicate extrapolated boundaries. The χrC=50 boundary could not be calculated
as it was not possible to get the NSCF calculations to converge for φC < 0.2.
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φC descended below 0.2 for χrC , many times the density profiles were extremely strongly

segregated as a result of an overwhelming tendency for the homopolymer to localise in

the middle of the A subdomain. The B subdomain was thus quite minute with dB < 0.1d

as expected by Eq. 3.15. The small width and step-like behaviour of φB(r) could not be

suitably resolved by the numerical methods employed.

However, with the 15 ≤ χrC ≤ 40 boundaries, we do see a clear trend. Increasing

χrC naturally tends the system to stronger segregation, and so, if hoping to reach the

MST by the addition of homopolymer to the blend, one must add more homopolymer to

compensate as χrC increases, or else use smaller homopolymer molecules to increase its

effectiveness as a good solvent wherein it will dilute the copolymer and thus reduce its

effective interaction, χrC .

The fH → 0 intercept of the MST boundary falls in line with the results of the previous

copolymer-solvent blend investigations. [9, 10] To the extent that fH → 0 represents a

good solvent, the fH → 0 MST results are also analogous to the dilution approximation.

By extension, it would seem that the perturbations in the MST found in Ref. [9] were

a consequence of the finite size of the solvent molecule (i.e. fH was small but non-zero).

Ref. [9] indicated that the perturbation of the MST was more prevalent as the size of the

copolymer decreased. This is consistent with the present result, as even for rH ¿ rC ,

as the copolymer decreases in size, the approximation that fH = rH/rC ' 0 becomes

less accurate. So, to map real solvents into the copolymer-homopolymer formalism, one

should select a small but non-zero fH to represent the true ratio of the solvent and

copolymer molecule sizes.
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4.2 Macrophase Separation

Macrophase separation can occur when it is more energetically favourable that a copoly-

mer-homopolymer blend exist as two distinct systems rather than as a single blend.

The most simplistic example of macrophase separation is where it is more energetically

favourable that the homopolymer and copolymer remain entirely unmixed. Macrophase

separation can occur when it is energetically favourable for a system to evolve into a

separated state.

How might a system evolve into a separated system? Consider a system of volume

V containing a copolymer-homopolymer blend with a copolymer volume fraction of φC .

Cut this volume artificially into two sub-volumes, V1 and V2. V1 and V2 will have indis-

tinguishable content. However, consider if some small volume of copolymer molecules,

say ∆v, were to migrate from V1 to V2. Homopolymer would also have to pass from V2

to V1 to conserve volume. The new volume fraction of copolymer in volumes V1 and V2

respectively would be

φC,1 = φC −∆v/V1, (4.1)

and

φC,2 = φC +∆v/V2. (4.2)

This new state will be stable relative to the original state if

V f(φC) > V1f(φC,1) + V2f(φC,2). (4.3)

Here, f represents the free energy density of a system of the specified copolymer volume

fraction with constant, implicit values of χrC , εκ, and fH . The left-hand side of Eq. 4.3

represents the total free energy of the combined system before the migration, and the

right-hand side represents the sum of the free energy contributions from the volumes
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V1 and V2 respectively after the migration. If the new state is of lower free energy

for infinitesimally small ∆v, then we have an avenue wherein the system macrophase

separates.

By induction, for finite ∆v we can have an avenue for macrophase separation if Eq. 4.3

holds true for all φC such that φC,1 < φC < φC,2. This does leave ambiguity in that V1

and V2 are unknown. However, with some algebra it is possible to obtain a practical

numerical test for macrophase separation. One begins by noting that, by definition,

V1 = V − V2. Substituting this into Eq. 4.3 and collecting V terms to the left and V2

terms to the right, we have

V [f(φC)− f(φC,1)] > V2[f(φC,2)− f(φC,1)]. (4.4)

Further, Eqs. 4.1 and 4.2 may be rearranged to give

V1 =
∆v

φC − φC,1

, (4.5)

and

V2 =
∆v

φC,2 − φC

. (4.6)

By multiplying both sides of Eq. 4.4 by V/V1 and substituting the above expressions for

V1 and V2, we ultimately obtain

f(φC)− f(φC,1)

φC − φC,1

>
f(φC,2)− f(φC,1)

φC,2 − φC,1

. (4.7)

Both the left-hand and right-hand sides of this inequality are slopes of chords on f vs. φC .

The left-hand side represents a chord from φC,1 to φC and the right-hand side represents

a chord from φC,1 to φC,2. This inequality requires that slope of the line joining f(φC,1)

and f(φC,2) on the f vs. φC graph be less than the slope of a line joining f(φC,1) to any

intermediate point between φC,1 and φC,2. Such a condition is satisfied when f(φC) for

all intermediate points lie above the chord between φC,1 and φC,2.
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Thus, macrophase separation can proceed to the most extreme values of φC,1 and φC,2

which satisfy this condition. These extreme values are obtained by finding the tangent

to the curve f vs. φC which touches at φC,1 and φC,2 where φC,1 < φC < φC,2. This

defines the binodal and is the binary blend equivalent of the condition stated in Ref. [19]

for ternary blends.

The bottom line of this derivation is that it is not possible to determine whether

macrophase separation will occur by doing a single NSCF calculation for the target

system’s parameters. Instead, we must know what the f vs. φC dependence is around

the target system.

The free energy density, f , may be regarded to have three components. In Section

2.3 we resolved the free energy into a homogeneous component, fhom and a relative

component ∆f . The homogeneous component may be further resolved into a free energy

of mixing, fmixing and a demixed component fdemixed. The demixed component is the

free energy of a system which has had the homopolymer completely separated from the

copolymer. As such, it may be regarded as two homogeneous systems – one of volume

Ω′ = φCΩ and φC
′
= 1 and the other with volume Ω′ = φHΩ and φC

′
= 0. The free

energy of mixing, then, would be given by the difference between fhom for the blend, and

f ′
hom for the two separated systems. Explicitly, using Eq. 2.55 this comes out to be

fmixing = fhom(Ω, φC)− fhom(φCΩ, 1)− fhom(φHΩ, 0),

=
kBT

rC

{

φC lnφC +
φH

fH
lnφH +

∑

κκ′

χκκ′rC φ̄κφ̄κ′

}

, (4.8)

where various relations such as Eqs. 2.58 and 2.67 have been used to simplify the ex-

pression. And so, for a given set of χκκ′rC ’s and fκ’s, we have an analytic expression for

fmixing vs. φC .

It is the sum of fmixing and ∆f that we must consider in evaluating Eq. 4.7. Unfortu-

nately, each NSCF calculation obtains the energy of microphase separation, ∆f , for only
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a single value of φC (in combination with specific choices for the other system parame-

ters). To do a sufficiently detailed ∆f vs. φC plot, one needs in the neighbourhood of 100

points. As this would need to be done for each selected value of χrC and fH tabulated

in Table 3.1, we would ultimately have to consider 7500 NSCF calculations – likely more

if the 0.1 < fH < 0.5 range requires further detailing – which is a prohibitively large

number for this investigation.

For the current results, however, it is possible to get something of a qualitative glimpse

of the macrophase separation behaviour, leaving the more intense quantitative study for

later investigation should it be warranted. The results in Table 4.1 were obtained by

generating a 3rd-order polynomial fit to each of the 75 candidate ∆f vs. φC curves. The

3rd-order fit proved largely sufficient for the coarse-stepping of φC noted in Table 3.1.

For each given fH and χrC , an approximate f vs. φC relation was obtained as

f(φC) = fmixing(φC) + a3φC
3
+ a2φC

2
+ a1φC + a0, (4.9)

where ai represent the coefficients of the polynomial fit to ∆f(φC). (N.B. this fit differs

from that used in Section 4.1 as it is over the full range of φC , and so the coefficients

here are not suitable for resolving a precise MST.) A small iterative program was then

developed which stepped through all values of φC,1 and φC,2 (in steps of ∆φC = 0.001)

in an attempt to find the most extremal values which satisfied Eq. 4.7. In many cases,

no binodal was found. Those that were found are summarised in Table 4.1.

Though precision finer than 0.1 is likely not quantitatively meaningful, some features

were still apparent:

1. Macrophase separation is more common as fH increases.

2. As χrC increases, the minimum value of fH at which macrophase separation occurs,

decreases.
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χrC = 15 χrC = 20 χrC = 30 χrC = 40 χrC = 50
fH φC,1 φC,2 φC,1 φC,2 φC,1 φC,2 φC,1 φC,2 φC,1 φC,2

0.075 0.077 0.329 0.059 0.384
0.100 0.103 0.321 0.060 0.428 0.029 0.521
0.250 0.204 0.334 0.124 0.469 0.110 0.538 0.111 0.571 0.059 0.659
0.500 0.180 0.553 0.171 0.597 0.174 0.645 0.179 0.675 * *

Table 4.1: Binodals of macrophase separation. No binodals were found for fH ≤ 0.05.
A binodal is believed to exist for χrC = 50, fH = 0.5, however the polynomial fit was
believed inadequate for interpolation. Due to the lack of sufficient data points, there may
be considerable uncertainty in these boundaries.

3. For a given fH , the width of the binodal, φC,2 − φC,1, increases with χrC .

4. The upper endpoint of the binodal, φC,2, seems more significantly impacted by an

increase in χrC than the lower endpoint.

All four of these phenomena appear consistent with the results of Ref. [30].

It is not surprising that the phenomenon of macrophase separation should occur at

larger values of fH , and more easily as χrC increases. As described in Section 3.2, as

fH increases, the homopolymer becomes completely expelled from the B subdomain (see

Figure 3.11). There is a “strain” on the A copolymer as it is forced to curl up closer to

the interphase as a result of the homopolymer crowding the centre of the A subdomain.

This causes both an entropic deficit and also an increase in the interaction energy. It

is not surprising that when this phenomenon becomes sufficiently extreme, macrophase

separation will occur.

It is also not surprising that increasing χrC should decrease the minimum fH re-

quired to induce macrophase separation. The increased values of χrC would increase

the forces that expel the homopolymer from subdomain B. This increases the bias of

the random walk in Eq. 2.61 (discussed further in Section 3.2), and so the homopolymer
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could reach deeper into the centre of the A subdomain in fewer steps – i.e. with a smaller

homopolymer, which means a smaller fH .

It is interesting to note how the upper endpoint of the binodal appears more impacted

by increase in χrC than the lower endpoint. One might hypothesise that the upper

endpoint, representing a smaller fraction of homopolymer in the system, has greater

flexibility in the distribution of homopolymer than the system represented by the lower

φC endpoint which has a higher φH . The greater flexibility allows for lower homopolymer

content to migrate more easily to the middle of the A subdomain.

Of particular note is the fact that Banaszak and Whitmore’s MWA predicted that

macrophase separation in binary blends can only occur above χrH>∼2. [30] De Gennes

derived the result that phase separation will also occur in symmetric homopolymer-

homopolymer blends when χrH>∼2. [27] From Section 3.4, we found that this is the

same condition under which expulsion of the homopolymer from the B subdomain in a

copolymer-homopolymer blend is roughly complete. This cut-off is consistent with the

results in Table 4.1 and would appear quite robust.

Overall, it does appear that the migration of homopolymer to the A subdomain is

the precursor to macrophase separation, and that it occurs primarily due to the resulting

energy and entropy impact of the coiling of the copolymer’s A block toward the interphase

and the repulsive B subdomain.
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4.3 A Note on Other Morphologies

While in neat copolymer systems, fA = fB guarantees that the microphase will exhibit a

lamellar morphology, [1, 7, 8] such an assumption cannot be counted upon in the present

case of copolymer-homopolymer blends. In fact, it has been verified experimentally that

even for copolymers wherein fA ' fB, the cylindrical morphology is possible. [26]

The numerical methodology of this investigation does not have the stamina to re-

solve the full 3-D form of the NSCF equations given in the conclusion of Section 2.2

with the requisite degree of precision. Previous investigations employed the “unit-cell

approximation” (UCA) to probe cylindrical and spherical morphologies. [1, 20] In this

approximation, instead of the hexagonal unit cell that accomplishes close-packing in the

cylindrical morphology, a cylindrical cell is considered. Like the proper Wigner-Seitz cell,

this UCA cell will have mirrored boundary conditions (e.g. φA(R+ r) = φA(R− r)). By

enforcing a higher symmetry, only the radial variation in the NSCF equations need be

considered, which effectively reduces the exercise to a 1-D problem.

A similar replacement of the body-centred-cubic cell for the spherical morphology

with a mirror-bounded spherical cell is used to reduce the spherical morphology to 1-D.

The equilibrium morphology is determined by solving the NSCF equations in these

three different symmetries and comparing the resulting free energy density. The lowest

free energy density is considered the equilibrium morphology.

While the mirrored boundary conditions are expected, the deformation of the unit

cell from hexagon to cylinder or bcc to sphere is known to cause some discrepancy in

the results. [31] However, the UCA is still a good first approximation which can help to

distinguish the equilibrium morphologies.

In our present data set, there is cause to believe morphologies other than lamellae

may result. In the more strongly segregated systems where both χrC and fH are high,
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the ratio of the B subdomain to the whole domain thickness is effectively φCfB. (See,

for example, Figure 3.11.) In neat copolymer systems, when there is high asymmetry

between the thickness of subdomain A and thickness of subdomain B, cylinders and

spheres are likely morphologies.

We thus looked at two representative “strong segregation” cases within our current

data set and used the UCA to solve the NSCF equations in the cylindrical symmetry.

In the system χrC = 40, φC = 0.3, fH = 0.5, the lamellar solution was still stable with

respect to the cylindrical solution.

In the system χrC = 50, φC = 0.3, fH = 0.25, the cylindrical solution was energeti-

cally preferable to the lamellar solution.

While this is hardly a definitive study, the two systems in question were among the

more extremely segregated from those in the investigated data set. Yet, in the χrC = 40

case lamellae maintained their dominance over cylinders, and only in the extremes of

high-fH in the χrC = 50 case did cylinders begin to appear.

This should alleviate some concern about the applicability of the range of parameters

chosen for this investigation of lamellar behaviour, though one must remember that this

result is specific to the fA = fB = 1
2
, εA = εB = 1 case considered here. The persistence

of the lamellar phase will not be so robust in systems which do not have this special

symmetry. [13]
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Homopolymer Localisation at the Copolymer Interphase

5.1 Fluorescence Decay Experiments

Experimentalists such as Winnik et al [32, 33, 34] have utilised fluorescence decay as a

method of probing the details of structure within lamellar unit cells. The process involves

the grafting of fluorescent dye molecules onto the copolymer and homopolymer chains.

There are two species of tags: a donor and an acceptor. When an excited donor tag

comes within proximity of an acceptor molecule, an energy transfer occurs between the

donor and acceptor, causing a fluorescent emission – analogous to an electric spark. The

rate depends on separation as r−6 and so decreases very rapidly with donor-acceptor

separation, becoming virtually non-existent at ranges more than a couple nanometres.

Utilising this tool, Winnik et al conducted experiments which probed the amount of

homopolymer localisation at the copolymer interphase. [32] They tagged the copolymer

joints with an acceptor molecule and tagged each homopolymer randomly along its en-

tire length with donor molecules. By observing the integrated intensity of fluorescent

emissions, they intended to determine the degree to which homopolymer localised at the

interphase.

Since the energy transfer is such a short-range effect, high values for this integrated

intensity (referred to as the “quantum efficiency”) will indicate close proximity between

the copolymer joints and the homopolymer. Not surprisingly, the copolymer joints are

expected to reside primarily at the interphase. And so, fluorescence decay experiments

84
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provide a method to measure homopolymer localisation at the interphase.

Preliminary experiments showed a significant non-linear increase in quantum effi-

ciency as φC → 1. [32] The inference initially drawn was that the first quantity of

homopolymer introduced to the system localised very preferentially at the interphase.

This proposition is similar to the inferences drawn in Section 3.3, but to a much greater

extreme. Unfortunately, it was later found that these results contained a significant sys-

tematic error, in that the polystyrene in the copolymer was contributing to the energy

transfer, causing spurious emissions from the donors. When this source of error was iden-

tified, the experiments were repeated. At the time of this writing, preliminary results

yielded quantum efficiencies much more in line with expected homopolymer distributions

where there was little, if any, localisation at the interphase.

Nonetheless, these experiments do raise some interesting questions, and are the driv-

ing force behind the investigation covered in this chapter. In particular, one wishes to

have an idealised theoretical model on which to base experimental expectations. If the

model is successful in predicting experiment, then it will breed confidence in the model’s

usefulness as a tool in probing details of configuration within the unit cell.

The formalism for fluorescence decay requires continuous distributions of homopoly-

mer and copolymer [33] as would be obtained from the NSCF calculations. So, if a

continuous function can be obtained from the NSCF calculations for local joint concen-

tration, we will have all of the aspects of the model necessary to predict the quantum

efficiency for a given experimental system.

Recall from the NSCF derivation in Chapter 2 that, given a monomer of species κ

in a polymer chain at location r, the probability of finding a monomer τ steps further

down the chain at r′ will be given by the propagator Qκ(r
′, τ |r). In the NSCF equation

for φκ(r), Eq. 2.63, we have then that the probability of finding monomer τ in chain κ
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at r to be

Pκ(r, τ) ∝ qκ(r, τ)q
′
κ(r, 1− τ), (5.1)

where τ is now rescaled to be between 0 and 1 representing both extremes of the chain

and qκ and q′
κ are the solutions to the diffusion equation, Eq. 2.61, subject to the initial

conditions given by Eqs. 2.48 and 2.62. The probability, then, of finding an A-B block

joint at r is simply J(r) ≡ Pκ(r, 1). Using Eq. 2.62 we find, then, that [28]

J(r) ∝ qA(r, 1)qB(r, 1), (5.2)

regardless of whether we evaluate Eq. 5.1 using κ = A or κ = B. This is reassuring as

the probability of a joint being at r should be independent of whether we approached it

from the A block or the B block.

Integrating Eq. 5.2 over r, it is trivial to see that the constant of proportionality

should be 1/QC , where QC is given by Eq. 2.12. Thus we have an expression for the

probability of finding a joint at some position r within a system. Multiplying this by the

concentration of joints in the system (which is one per copolymer volume, or equivalently

ρref /rC) gives the local concentration of joints in the system, which is the concentration

required by the fluorescence decay formalism.

A more rigourous derivation of J(r) from first-principles is also possible by calculating

< J(r) >. This would be done in the same manner as < ρ̂κ(r) > in Eq. 2.28. One would

consider an integral over all possible configurations of the system and then introduce a

delta-functional to restrict consideration to only those configurations where a joint passes

through r. After much tedious derivation analogous to the procedure in Chapter 2, one

would eventually arrive at the same conclusion as the more intuitive approach above.

For the homopolymer distribution, it is much more straight-forward. We already have

the volume fraction φH(r). The concentration is thus just the average monomer concen-

tration for homopolymer, ρ0H , multiplied by the local homopolymer volume fraction,
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φH(r). (There may be need of an additional pre-factor of 1/n if there is only one donor

tag per n homopolymer monomers, since it is actually donor concentration we need.)

In principle, this is all we need to calculate the precise fluorescence intensity decay

curve which is integrated to get the quantum efficiency. [33] Practically speaking, though,

this is a very difficult calculation to perform using numerical data for concentrations,

as many nested integrals and exponentiations abound. The risk for amplification of

numerical error is great.

Without reproducing the fluorescence decay formalism of Yekta et al in Ref. [33] here

in its full detail, at the core of the problem is the Klafter-Blumen equation

ϕ(z0, t) = exp
{

−
∫

V
{1− exp[−tw(r)]}CA(z0 + z)dV

}

. (5.3)

Eq. 5.3 defines the survival probability as a function of time, t, of an excited donor

located at z0 in a system with an acceptor concentration of CA(z). V represents the

system volume, with an integral over all three spacial co-ordinates, x, y, and z. Due to

the lamellar symmetry of the system, concentration is expressed as a function only of the

z co-ordinate (equivalent to our x co-ordinate). The function w(r) contains the variation

of rate with distance and is proportional to r−6 where r2 = x2 + y2 + z2.

If one makes the supposition that CA(z) is slowly varying on the scale at which there

is significant energy transfer (i.e. a nanometre or two), then one could say CA(z0 + z) '

CA(z0) over the effective range of r, and thus take CA(z0) outside the integral. (N.B. a

more robust approximation might be to consider the average CA(z) over a sphere of

radius Rmax centred on the point z0. In such case, substitute this new sphere-averaged

C̄A(z) in the expressions that follow.)

If one assumes the above approximation, one can follow the Yekta et al formalism

through its machinations and ultimately obtain an intensity decay curve which gives a
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quantum efficiency, ΦET , of

ΦET = 1−
∫

ID(t)dt
∫

I0
D(t)dt

=
√
π
∫

dz
CD(z)

C̄D

NA(z) exp[NA(z)
2] erfc NA(z), (5.4)

where

NA(z) =
2

3
π

3

2R3
0CA(z), (5.5)

and CD(z) is the concentration of donors at z, with a system-wide average concentration

of C̄D. Here, the new parameter R0 is the “Förster radius” – a characteristic scale

parameter found in the definition of w(r) which gives the fluorescence its effective ∼ 2 nm

cut-off.

What is interesting is if we further assume that CA(z) is much less than 1/R3
0 –

that is, if the concentration of acceptors within the effective radius of a donor is small

– then we will have NA(z) ¿ 1. This is a reasonable assumption given that CA(z)

represents the number density of copolymer joints in our system, and a typical copoly-

mer volume is several hundred cubic nanometres. With this condition, we have that

exp[NA(z)
2]erfc NA(z) ' 1, and Eq. 5.4 reduces to the very convenient form

ΦET =
2

3
π2R3

0

∫

dz
CD(z)

C̄D

CA(z). (5.6)

We have been left with an integral over the product of donor and acceptor concentrations,

a very simple quantity to calculate.

As a footnote, the approximation applied to Eq. 5.3 is reminiscent of the “Perrin

approximation” used in fluorescence decay. [35] In this approximation, one presumes

that if an acceptor is within a certain cut-off radius (the “Perrin radius”) of a donor,

energy transfer will occur eventually. If it is outside the Perrin radius, energy transfer

will not occur. Thus, if CA(r) represents the probability of an acceptor being at r, then
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4
3
πR3

maxC̄A(r0) represents the probability that an acceptor will be within a sphere of Rmax

centred at r0. (This probability may be greater than 1 as a single donor can “quench”

multiple acceptors.) Here Rmax is the Perrin radius and C̄A(r0) is the average acceptor

concentration within that sphere centred on r0. Weighing this over the distribution of

all possible donors, CD(z)/C̄D, gives a total energy transfer of

ΦPerrin =
4

3
πR3

max

∫

dz
CD(z)

C̄D

C̄A(z). (5.7)

It is encouraging that from this completely distinct and intuitive approach, we get exactly

the same result as Eq. 5.6.

As an interesting side note, if we equate Eq. 5.6 and 5.7, we find a relation between

the Perrin radius and the Förster radius, namely Rmax = (π/2)
1

3R0.

Eqs. 5.6 and 5.7 indicate that fluorescence decay experiments would be ideal for

measuring the overlap of two tagged monomer types within a system. With homopolymer

tagged as donor and the copolymer joints tagged as acceptor, we can thus get a very good

idea of the quantity of homopolymer at the interphase.
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5.2 Predictions of Theory

From the analysis in Section 5.1, the appropriate theoretical measure in the study of

homopolymer localisation would be

L ≡ 1

φH

∫

dx φH(x)J(x). (5.8)

The normalisation constants have been chosen so that L = 1 represents a homogeneous

distribution of homopolymer. When homopolymer localises at the interphase, there

will be greater overlap between the homopolymer and joints, resulting in L > 1. By

contrast, if L < 1 the homopolymer would be inhomogeneously shifted away from the

interphase. Intuitively, this is clear when considering the ideal strong-segregation case

where the copolymer joints are all located at a single offset within the cell. In such case,

J(x) = δ(x− x0) and L would reflect whether φH(x0) was less than, equal to, or greater

than its homogeneous value, φH .

To convert Eq. 5.8 into a quantum efficiency, one need only multiply by the prefactor

of Eq. 5.6, 2
3
π2R3

0, and also C̄A ≡ φCρref /rC .

Figure 5.1 illustrates the results for L for a typical system where χrC = 30. Inter-

estingly, homopolymer localisation in the interphase is predicted, but primarily for small

to intermediate fH combined with large φC . The exact bounds on fH and φC are not

simple. As φC decreases, the upper bound on fH where L > 1 is still detected diminishes.

Figure 5.2(a) defines the φC vs. fH boundaries in parameter space delineating the area.

For a given fH and χrC , the maximum value of L achieved would seem to be as

φC → 1. This is consistent with the hypothesis in Section 3.3 that the initial addition of

homopolymer to the system would first act to relieve conformational, entropic constraints

on the A-b-B copolymer by going to the interphase. Recall that this was hypothesised to

explain the reason why domain thickness dipped slightly before becoming independent of
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(a)

(b)

(c)

Figure 5.1: Localisation measure as a function of fH and φC for the χrC = 30 case.
(a) L as a function of fH for specific φC ’s. (b) L as a function of φC for specific fH ’s.
Only fH < 0.03 is shown here. (c) L as a function of φC for remaining fH ’s. fH < 0.03
was graphed separately so that features would not be lost due to the large Y-axis scale
required for fH = 0.5. fH = 0.0008 and fH = 0.03 appear in both panels for comparison.
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(a)

(b)

Figure 5.2: Contours in parameter space significant to localisation. (a) Boundaries de-
lineate systems with interphase-localised polymer (L > 1) from systems with subdo-
main-A-localised polymer (L < 1). A boundary has been plotted for each investigated
value of χrC . (b) Contours connecting the values of fH , for a given φC , that give a
maximum in localisation. For comparison, the same scales have been used as in (a).
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φC at the special fH,cross value. (Refer to the discussion surrounding Eq. 3.13 for further

details.)

Interestingly, though φC → 1 represents the maximum localisation of homopolymer

at the interphase, fH → 0 does not. As can be seen in Figure 5.1(a), the maximum in L

vs. fH for a given φC and χrC occurs at a small, non-zero fH . Figure 5.2(b) indicates the

fH at which this maximum occurs as a function of φC for our selected χrC values. The

shift of this contour has a similar characteristic as the L = 1 boundary in Figure 5.2(a),

though the Lmax contour naturally lies further into the L > 1 “Interphase” region of this

phase diagram.

The final consideration is the χrC dependence. Figure 5.3 illustrates how Lmax, the

maximum localisation value for a given φC , varies with φC and χrC . Paradoxically, the

maximum-achievable localisation measure increases with χrC . One could easily expect it

to decrease, since a higher χrC would indicate a higher repulsion between the homopoly-

mer and block B of the copolymer which, in principle should drive the homopolymer

away from the interphase and its proximity to block B.

The key to resolving this puzzle is to remember that block A of the copolymer will also

experience an increased repulsion due to the increase in χrC . This results in a narrower

interphase and thus a more tightly constrained configuration of copolymer. The addition

of homopolymer to the interphase relieves this constriction. Though it results in a greater

interaction energy between the homopolymer and block B, the trade-off against entropy

due to the relaxation of constraints on the copolymer is a net gain, at least for the smaller

values of fH considered in this investigation.

This trend is also consistent with the d/d0 vs. χrC dependence in Table 3.2. As χrC

increases, the fH,cross balance is achieved at decreasing values of the d/d0 ratio. Since

decreasing d/d0 is achieved by increased dilution by the homopolymer, it would seem to

indicate that more homopolymer is collecting at the interphase as χrC increases.
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(a)

(b)

Figure 5.3: (a) Dependence of maximum localisation on φC for various values of χrC . (b)
Extrapolating the Lmax vs. φC curves to φC → 1, we obtain a maximum Lmax for each
given χrC .
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Ultimately, the localisation effects predicted here are subtle, however, and would likely

require careful and directed exploration by experiment in order that they be resolved. It

is hoped that the above results may help to guide such studies.

It is important to note, however, that while the above represents an accurate the-

oretical study of how L varies in the face of changes to system parameters, there is a

caveat that should be emphasised. An increase in L does not uniquely guarantee a shift

of homopolymer toward the interphase. From Eq. 5.8, one can see that an increase in the

dispersion of joints throughout the system (i.e. a less-sharply peaked J(r)) would also

increase L. While this might come down to a matter of semantics, since the homopolymer

overlap with the joints will increase, it is important when interpreting experimental data

to keep in mind that this may be due to the interphase becoming more ill-defined rather

than due to the homopolymer migrating toward an unchanging interphase.



Chapter 6

Summary and Conclusions

The preceding chapters illustrate the richness of detail with which the behaviour of

copolymer-homopolymer blends can be explored using the numerical self-consistent mean

field theory. Even from the theoretical foundations, we were able to obtain the significant

result that – to the extent that the mean field approximation is valid – the equilibrium

structure of the copolymer-homopolymer blend is entirely determined by eight physical

parameters:

• φC – the total volume fraction of copolymer in the system.

• fA – the volume fraction of the A-B copolymer molecule which is of species A.

• fH – the ratio of the homopolymer’s molecular volume to the molecular volume of

the copolymer.

• χABrC , χAHrC , and χBHrC – the “segregation parameters” for the pair-interactions

of each of the three species in the system. These are the product of the appropriate

Flory interaction parameter, χκκ′ , and the volume of the copolymer molecule, rC ,

in units 1/ρref where ρref is the reference volume used in obtaining χκκ′ . [5]

• εA and εB – the conformational asymmetry parameters, defined as the ratio εκ ≡

ρ0κb
2
κ/ρ0Hb

2
H where ρ0κ and bκ are, respectively, the bulk monomer densities and

the statistical segment lengths of species κ.

96
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In order to restrict the parameter space investigated to a manageable scope, we consid-

ered only systems where εA = εB = 1, fA = 1
2
, χAHrC = 0, and χABrC = χBHrC ≡ χrC ,

except when reproducing specific experimental results of known parameters different than

this restriction.

The εκ restrictions require that all three monomer species, A, B, and H have the same

product ρ0κb
2
κ, where ρ0κ is the monomer density and bκ is the characteristic statistical

segment lengths. If the recasting of ρ0κ is performed using Eqs. 3.5 through 3.7 so that

ρ′
0A = ρ′

0B = ρ′
0H , this εκ restriction reduces to the requirement that all species have

roughly the same effective statistical segment length. In either case, this restriction is

not unreasonable given the uncertainty in experiment’s ability to discern the distinction

in these parameters, even among the more common species investigated. [20]

The fA = 1
2
restriction considers systems with blocks A and B of the copolymer being

of equivalent size – a compositionally symmetric copolymer. In neat copolymer systems,

this restriction optimises the chances of a lamellar structure forming and so was chosen

here for our present lamellar study. [1]

Finally, the restriction on χκκ′ specifies that block A of the copolymer be composed

of the same species of monomer as the homopolymer molecules in the system. This

last restriction, also typical in many experiments, permitted an explicit statement of

the field, η(r), which arises from the assumed incompressibility of the system. This

statement, Eq. 2.70, was the equation that completed the closed set of self-consistent

equations that determined the mean field of the system.

In Section 3.1 we compared and contrasted the results of the current NSCF result with

the previous “Many-Wave Approximation” (MWA). [3] The MWA obtained solutions in

the mean field by evaluating a truncated Fourier series representation of the densities

and potentials that describe the system, with the free energy contributions of these fields

evaluated to the fourth order term. As the MWA considers only a finite number of Fourier
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terms, it is best suited to the weak segregation regime where, in neat copolymer systems,

density variations have a distinct cosine-like shape. The NSCF approach, by contrast,

considers the exact mean field solution, albeit using iterative numerical methods to obtain

the result. Eliminating truncation error, the NSCF approach is much more suited to

considering systems of intermediate to stronger segregation as expected for χκκ′rC>∼30.

In the weak-segregation limit, the NSCF results compared favourably to the previous

MWA results, though corrections were present. In particular, the equilibrium domain

thicknesses predicted in Figures 3.1 and 3.2 were slightly offset from the MWA result.

The MWA result predicted an increase in domain thicknesses when compared to the

one-wave approximation. [3] The NSCF result also predicted an offset from the one-wave

result, but a more moderate one (by approximately 50%) of the one predicted by the

MWA.

Also in contrast to the MWA, the subdomain thicknesses – i.e. the thickness of each

A-dominated and B-dominated layer in the system – in the NSCF result did not exhibit

a sudden non-linear divergence as the concentration of copolymer went below 80 vol%

(that is, for φC < 0.8). This likely indicates a greater stability in the NSCF calculations

for moderate to high concentrations of homopolymer than in the MWA result.

The reason that the MWA would appear to fail under these circumstances is that, in

the moderate-to-low-φC range, the NSCF results indicated that copolymer often exhibited

strong-segregation behaviour, exasperated by localisation of the homopolymer in the

middle of the A subdomain, away from the A-B interphase, particularly in realistic ranges

of fH . The presence of homopolymer in the A-B interphase, like the good solvent results,

[9, 10] would seem to dilute the A-B interactions and reduce segregation. And so, with

homopolymer driven out of the interphase, this effect is absent. Strong-segregation is

further encouraged as a response to the compression of the copolymer’s A block, forcing

it to coil up closer to the interphase and thus creating a greater need for the interphase
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to be narrow in order to minimise contact with the B block.

As in the MWA study, it was found that domain thickness increased or decreased

with φC , depending on the value of the homopolymer-to-copolymer volume ratio, fH .

Furthermore, for a special choice of fH , a balance of competing effects was achieved

wherein the domain thickness was found to be largely independent of φC . That is, for

this special fH,thresh, d(φC) = d0, where d(φC) represented the domain thickness of a

blend with φC copolymer and φH ≡ 1−φC homopolymer, and d0 represented the domain

thickness of a system consisting only of the copolymer.

Again, there were differences in the details of the NSCF version of this phenomenon,

however. The MWA analysis revealed only a fH,thresh value of approximately 1/5. The

NSCF result found that the value of fH wherein d = d0 was given roughly by Eq. 3.11,

namely fH,thresh = (1.3φC + 0.75)/χrC . Encouragingly, this fH,thresh agreed with MWA

results in the low homopolymer φC → 1 limit near the microphase separation transition

(MST) of χrC ' 10.5, where MWA would seem to be most valid.

Such a significant spread of fH,thresh, nearly tripling over the full range of φC , il-

luminated a greater complexity in the form of fH,thresh than uncovered in the MWA

investigation, wherein the φC dependence was not discovered. One intriguing observa-

tion from our current investigation, though, was that for each χrC , all of the d vs. fH

plots in Figures 3.5 through 3.9 did cross very close to a common fH , albeit one where d

was slightly less than d0.

What did this mean? There seemed to be a fH which we dubbed fH,cross where d

seemed effectively independent of φC . This fH,cross was determined from the data in

Table 3.2 to be roughly 4.50(χrC)
−1.36.

If this d were independent of φC as φC → 1, then it should follow that d = d0.

Yet, paradoxically, the stable d seemed to shift further below d0 as χrC increased. How

should this come about? It was hypothesised that the first addition of homopolymer
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preferentially localised in the interphase between the A and B subdomains. This would

reduce the contact between copolymer blocks at the interface. Less contact would lead

to a reduction in the magnitude of the repulsive interaction and thus would reduce the

extension of the molecule. Since the domain thickness relates to the extension of the

copolymer molecule, d would be reduced below d0. After this initial effect, the successive

addition of more homopolymer to the system would distribute elsewhere in a manner

that balanced entropy considerations in the cell.

This hypothesis was supported by the results of our homopolymer localisation inves-

tigation in Chapter 5. The addition of small amounts of homopolymer were seen to have

a marginal bias toward first localising at the interphase. This localisation effect decreases

monotonically with the addition of homopolymer (i.e. decrease in φC) for a given fH and

χrC , but, by contrast, for a specific φC , the localisation effect was maximised at a finite

intermediate value of fH as seen by the contours in Figure 5.2(b).

As the value of χrC increases, from Figure 5.2(a) we saw that this localisation persists

to lower values of φC but at the expense of the upper limit on fH . This localisation

effect has an analogue in copolymer-solvent blends, where a “bump” in the otherwise

near-homogeneous distribution of the solvent was reported at the interphase. [2] Though

minute, an example of this bump can be seen in Figure 6.1.

Returning to the consideration of the disparate behaviours of d vs. φC above and

below fH,cross, a simple explanation exists for these two extremes. Below fH,cross, in

the limit of fH → 0, the homopolymer molecules were very small when compared to

the volume of the copolymer molecules. It was thus fair to treat the homopolymer as a

good molecular solvent, neglecting the complex effects of extended homopolymers which,

for fH → 0, would be negligible on the scale of the copolymer. Good solvents, being

largely dominated by entropy, would permeate the system, including the interphase. The

presence of solvent in the interphase and its near-homogeneous penetration into each
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Figure 6.1: The “bump” in local homopolymer volume fraction at the interphase for a
typical copolymer-homopolymer blend. Only 1% homopolymer is present, and so φH(x)
has been plotted on a separate scale.
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of the subdomains would serve to dilute the copolymer and thus reduce the interaction

between block A from block B. This effectively reduced the segregation parameter, χrC .

With a weaker repulsion the copolymer molecules would relax their extension, resulting

in a reduction in the thickness of the unit cell.

This picture of fH → 0 homopolymer as a good solvent was reinforced by the approx-

imate scaling behaviour of d vs. φC in the fH → 0 case of Figure 3.1. As good solvents

distribute homogeneously in the system in the same manner as a perfectly non-selective

solvent, we used this analogy to consider the scaling behaviour of d vs. φH in the limit

of the dilution approximation. Using a binomial expansion for small φH , we arrived at

the correct slope, namely d/d0 ' 1 − 0.4φH , for the d vs. φC dependence in that limit.

By contrast, the MWA predicted a slope of −1 instead of −0.4.

The roughly-homogeneous distribution of the homopolymer in the fH → 0 limit

was confirmed both in the homopolymer localisation study in Chapter 5 and in the

determination of relative subdomain sizes as a function of fH in Section 3.4. In the latter

study, it was found in the fH → 0 limit, the relative size of subdomain A, given by dA/d,

remained roughly equivalent to fA = 1
2
as would be expected by a system uniformly

diluted by a homogeneously-distributed solvent.

By contrast, in the high-fH limit, the homopolymer distribution was severely inho-

mogeneous. By and large, it collected almost exclusively within the middle of the A

subdomain. This collection of homopolymer essentially became a separate zone with

homopolymer residing in its own exclusive volume. The copolymer was left to segregate

with virtually no interaction from the isolated homopolymer, and so ordered with its

own fraction of the cell’s volume nearly exactly as it would if there were no homopolymer

present. Since the neat copolymer case’s domain thickness, d0, would be fixed, and the

neat copolymer only accounted for φC of the system volume, the complete cell in this
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high-fH scenario should have thickness of d0/φC . For a cell of volume V , this would pro-

vide a volume φCV in which neat copolymer could form a lamellar structure of thickness

d0 and a remaining volume φHV and thickness d0(φC

−1 − 1) in which the homopolymer

could reside.

This model is consistent with the relative subdomain thickness results in the large-fH

limit. In Section 3.4 it was found that for fH>∼2/χrC , dA/d approached 1−φCfB which is

exactly what one would expect when dB/d0 = fB as it would for the neat copolymer case

in strong segregation, combined with the definition d = dA + dB. Once the copolymer

and homopolymer had demixed to this extreme, macrophase separation was a possibility,

as seen in Section 4.2 and corroborated by Banaszak and Whitmore’s MWA, [30] and

also seen by de Gennes in homopolymer-homopolymer blends. [27]

Even when some intermixing occurred between the homopolymer and the neighbour-

ing region dominated by compatible block A copolymer, it had very little effect on the

domain thickness. This is likely due to the fact that the interpenetration of homopolymer

and block A copolymer is merely entropy driven, rather than driven by the Flory inter-

action potentials which would significantly contribute to the free energy of the system.

The model of this extreme behaviour would seem to indicate that once the homopoly-

mer has sufficiently isolated itself into the A subdomain, further increases to fH should

have no effect on the domain thickness d, since it is now simply a matter of geometry

determined by φC . The results of the NSCF seem consistent with this, showing the d

vs. fH dependence for a given χrC and φC to level off in the limit of large fH .

That said, even in the large-fH limit we again saw evidence of the first fraction of

homopolymer introduced to a neat system going to the interphase. The above hypothesis

describing the relative cell volumes should imply that for fixed χrC and fH , d should scale

inversely with φC . However, near φC → 1, this dependence is slightly weakened to φC

−2/3
.

As seen in Figure 3.13, the offset to d being slightly less than the ideal value of d0/φC is
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never recovered, even in the low φC range. This again is consistent with the hypothesis

that the first fraction of homopolymer collects in the interphase and thus screens the A-B

interaction, slightly reducing d.

Overall there seems much evidence that the localisation effect, the “bump” of sol-

vent systems, also exists in copolymer-homopolymer blends. It is by no means an overt

effect, but rather a subtle one. With sufficient precision, it is hoped that the experimen-

tal method of fluorescence decay measurements described in Section 5.1, or some other

experimental methodology, might be able to detect this phenomenon.

The final area covered in this investigation, albeit more briefly, was the matter of

phase behaviour. Like neat copolymer systems, copolymer-homopolymer blends can or-

ganise into several different ordered structures such as lamellae, cylinders in a hexagonal

lattice, spheres in a bcc lattice, etc. Also, when none of these orderings are energeti-

cally favourable, the system may exist in a disorganised homogeneous state. The results

of a comparison between the free energy of the organised lamellar structure and the

disorganised homogeneous state were plotted in the phase diagram found in Figure 4.1.

In the low-fH limit the homogeneous state became preferable when φCχrC dropped

below 10.5, just as would be expected in the good solvent limit where the dilution ap-

proximation would be valid. As fH increased, the ordered state would persist to lower

values of φC for a given χrC . By extrapolation, there is some indication that there may

exist finite, realistic values of fH where the system may remain ordered to very small

values of φC . However, since the phase behaviour has only been conclusively probed

down to φC = 0.1 to 0.3, it is quite possible that there are unforeseen deviances in the

phase boundary. At any rate, as φC → 0, we enter the semi-dilute regime where the SCF

approach would cease to apply.

At the very least, it does seem that the ordered structures other than the lamellar

morphology may become energetically preferable in the low-φC limit. From the model
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for the high-fH system described above, we find that, despite fA = fB, the relative

subdomain thicknesses are very disparate with dB/d = φC

2
fB. With this high asymmetry,

the cylindrical and spherical phases might be the more economic geometry since they are

optimal when one sumdomain is of significantly smaller volume than the other. [1]

Indeed, using the “unit cell approximation” (UCA) [31] to obtain the NSCF equations

in the cylindrical symmetry, we find that in an extreme corner of our data set with high

χrC and fH and low φC (namely, χrC = 50, fH = 0.25, and φC = 0.3) the cylindrical

morphology was found to be energetically preferable to the lamellar structure. This

is interesting as, in the neat copolymer case, fA = fB = 1
2
as here would result in

the lamellar morphology being the exclusive ordered structure. [1] The introduction of

cylindrical and possibly spherical morphologies in blends with fA = fB = 1
2
would thus

seem to be a consequence of the asymmetries induced in the cell due to the presence of

homopolymer.

In the neat copolymer case, when there is an asymmetry between the volume fraction

of species A and species B the system will pass through a cylindrical and spherical

equilibrium microphase when descending through values of χrC toward the MST. [1] In

our blends, since the homopolymer is of species A and the copolymer is configurationally

symmetric, we have a similar inbalance between the total volume fraction of species A

and species B in the system. Thus, one might expect that very near MST, cylinders or

spheres might be the equilibrium state. Nonetheless, in the neat case, these non-lamellar

morphologies are stable over a very narrow range of parameters, except when φB is much

different than 1
2
.

So, while the majority of the data collected in this investigation would seem to repre-

sent systems in which the lamellar structure is legitimately the most stable, this exception

would seem to indicate that a more thorough exploration of microphase behaviour might

be warranted.
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The new standard in the study of phase behaviour is to consider the proper hexagonal

or bcc unit cell by solving the mean field equations in two or three dimensions. [31] This is

not something easily done within the present numerical implementation, as the number of

calculations and rate of convergence of the NSCF equations in the present method when

considered in 3-D are both prohibitively slow. [18] The proper course of action would

seem to be the adaptation of Matsen and Schick’s UCA-free approach to the solution of

the copolymer-homopolymer blend NSCF formalism, [11] particularly so that one might

explore the gyroidal phase. [6]

Recently, Drolet and Fredrickson did attempt to explore equilibrium morphologies

in neat triblock copolymers in 2-D using a NSCF theory with a modest discretisation

grid. [36] The technique showed promise in its ability to generate spontaneously, without

inforced symmetries, various known morphologies in 2-D in addition to some previously

unreported ones. However, in order to keep the computations on a realistic scale, a

sacrifice in resolution had to be made. The NSCF were solved in a 128x128 box with

length and width each roughly 10 times the size of a typical unit cell. Thus, there was

insufficient resolution to obtain anything beyond a qualitative result. Furthermore, the

investigation would have to be restricted to the weak segregation regime in order to

minimise numerical error in the discrete spacial derivatives of the NSCF.

Unfortunately, a similarly-qualitative exploration that included 3-D phases such as

spheres would be two orders of magnitude more demanding, computationally. Explo-

ration in 3-D would be necessary in order to encompass all the standard morphologies.

Quantitative exploration would require even greater computational power, perhaps as

much as 103 on top of the demands of a 3-D NSCF solution.

Section 4.2 gave a glimpse at what the macrophase separation of our targeted systems

may be like. However, the required resolution of free energy vs. φC for each choice of

fH and χrC would result in the need for a prohibitively large number of unique NSCF
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calculations. And so, the phase boundaries determined here for each choice of χrC and fH

were rough at best. Three trends were observed that were believed qualitatively correct,

however:

1. Macrophase transition boundaries appeared primarily at large fH . This would seem

likely to be a natural progression of the strong isolation of homopolymer from the

copolymer interphase in high-fH scenarios – namely fH>∼2/χrC .

2. The lower and upper extremes on φC of macrophase separation for a given χrC and

φC seemed to grow wider with increase of χrC .

3. The aforementioned widening appeared primarily as a result of a shift of the upper

bound on φC while the lower bound was much less affected.

As with the issue of stability of other microphase structures such as cylinders and spheres,

a further investigation of macrophase separation using NSCF would seem warranted, if

the requisite computing power becomes feasible.

Overall, this investigation has provided many insights into the characteristic be-

haviour of copolymer-homopolymer blends, particularly in idealised extremes. It has

also suggested several avenues of further investigation – both theoretical and experimen-

tal.

In theory, the study of competing microphase morphologies and also of macrophase

separation would seem warranted. A further improvement on the mean field formalism

itself may also be of interest. The mean field approximation leads one to treat the mean

density profiles, < ρ̂κ(r) > in Eq. 2.28, as equivalent to the most probable density profile,

ρ(peak)
κ (r). An improvement on this would be to expand Eq. 2.28 functionally about this

most probable configuration and from there determine the lowest-order correction term

to the approximation < ρ̂κ(r) >' ρ(peak)
κ (r).
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On the experimental frontier, the investigation of homopolymer localisation at the

interphase should continue. The NSCF suggests specific trends in homopolymer locali-

sation which could be investigated through the use of fluorescence decay experiments.

And so, like most scientific investigations, the self-consistent mean field theory of

copolymer-homopolymer blends enlightens certain aspects of our system of interest, but

in revealing its results, suggests directions of further investigation.



Bibliography

[1] J. D. Vavasour and M. D. Whitmore. Self-consistent mean field theory of the mi-

crophases of diblock copolymers. Macromolecules, 25:5477–5486, 1992.

[2] M. D. Whitmore and J. Noolandi. Self-consistent theory of block copolymer blends:

Neutral solvent. J. Chem. Phys., 93:2946–2955, 1990.

[3] M. Banaszak and M. D. Whitmore. Mean field theory of the lamellar structure

of block copolymer/homopolymer blends in the weak segregation regime. Macro-

molecules, 25:2757–2770, 1992.

[4] A. E. Woodward. Atlas of Polymer Morphology. Oxford University Press, Don Mills,

Ontario, 1988.

[5] P. J. Flory. Principles of Polymer Chemistry. Cornell University Press, Ithaca,

N.Y., 1953.

[6] D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, E. L. Thomas, and

L. J. Fetters. A re-evaluation of bicontinuous cubic phases in starblock copolymers.

Macromolecules, 25:2570–2573, 1995.

[7] E. Helfand and Z. R. Wasserman. Microdomain structure and the interface in block

copolymers. In I. Goodman, editor, Developments in Block Copolymers, volume 1,

pages 99–125. Elsevier, New York, 1982.

[8] L. Leibler. Theory of microphase separation in block copolymers. Macromolecules,

13:1602–1617, 1980.

109



Bibliography 110

[9] M. D. Whitmore and J. D. Vavasour. Self-consistent mean field theory of the

microphase diagram of block copolymer/neutral solvent blends. Macromolecules,

25:2041–2045, 1992.

[10] M. Banaszak and M. D. Whitmore. Self-consistent theory of block copolymer blends:

Selective solvent. Macromolecules, 25:3406–3412, 1992.

[11] M. W. Matsen and M. Schick. Microphases of diblock copolymers with conforma-

tional asymmetry. Macromolecules, 27:4014–4015, 1994.

[12] C. Kittel. Introduction to Solid State Physics. Wiley, New York, 6th. edition, 1986.

[13] M. W. Matsen. Stabilizing new morphologies by blending homopolymer with block

copolymer. Phys. Rev. Lett., 74:4225–4228, 1995.

[14] M. D. Whitmore and J. D. Vavasour. Self-consistent field theory of block copolymers

and block copolymer blends. Acta Polymer., 46:341–360, 1995.

[15] F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York,

1965.

[16] M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford Science

Publications, Oxford, 1986.

[17] K. F. Freed. Renormalization Group Theory of Macromolecules. Wiley-Interscience,

New York, 1987.

[18] J. D. Vavasour. Self-Consistent Mean Field Theory of the Microphases of Neat

Diblock Copolymers. BSc Thesis, Memorial University of Newfoundland, 1992.

[19] M. Banaszak. Microphase and Macrophase Separation in Binary and Ternary Block

Copolymer Blends. PhD thesis, Memorial University of Newfoundland, 1991.



Bibliography 111

[20] J. D. Whitmore and M. D. Vavasour. Self-consistent field theory of block copolymers

with conformational asymmetry. Macromolecules, 26:7070–7075, 1993.

[21] L. Fox, editor. Numerical Solution of Ordinary and Partial Differential Equations.

Addison-Wesley, Reading, Mass., 1962.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press, New

York, 2nd. edition, 1993.

[23] K. M. Hong and J. Noolandi. Theory of phase equilibria in systems containing block

copolymers. Macromolecules, 16:1083–1093, 1983.

[24] M. D. Whitmore and J. Noolandi. Theory of phase equilibria in block copolymer-

homopolymer blends. Macromolecules, 18:2486–2497, 1985.

[25] K. I. Winey, E. L. Thomas, and L. J. Fetters. Swelling a lamellar diblock copolymer

with homopolymer: influence of homopolymer concentration and molecular weight.

Macromolecules, 24:6182–6188, 1991.

[26] T. Hashimoto, T. Tanaka, and H. Hasegawa. Ordered structure in mixtures of a

block copolymer and homopolymers. 2. effects of molecular weights of homopoly-

mers. Macromolecules, 23:4378–4386, 1990.

[27] P.-G. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press,

Ithaca, N.Y., 1979.

[28] E. Helfand and Y. Tagami. Theory of the interface between immiscible polymers.

II. J. Chem. Phys., 56:3592–3601, 1972.



Bibliography 112

[29] G. H. Fredrickson and L. Leibler. Theory of block copolymer solutions: Nonselective

good solvents. Macromolecules, 22:1238–1250, 1989.

[30] M. Banaszak and M. D. Whitmore. Mean field theory of the phase behavior of

ternary block copolymer-hompolymer blends. Macromolecules, 25:249–260, 1992.

[31] M. W. Matsen and M. D. Whitmore. Accurate diblock copolymer phase boundaries

at strong segregations. J. Chem. Phys., 105:9698–9701, 1996.

[32] M. A. Winnik, J. G. Spiro, and R. Yahya. (private communication).

[33] A. Yekta, J. Duhamel, and M. A. Winnik. Dipole-dipole energy transfer. fluorescence

decay functions for arbitrary distributions of donors and acceptors: systems with

planar geometry. Chem. Phys. Lett., 235:119–125, 1995.

[34] A. Yekta, J. G. Spiro, and M. A. Winnik. A critical evaluation of direct energy

transfer as a tool for analysis of nanoscale morphologies in polymers. Application to

block copolymer interfaces. J. Chem. Phys., 102:7960–7970, 1998.

[35] M. Inokuti and F. Hirayama. Influence of energy transfer by the exchange mecha-

nism on donor luminescene. J. Chem. Phys., 43:1978–1989, 1965.

[36] F. Drolet and G. H. Fredrickson. Combinatorial screening of complex block copoly-

mer assembly with self-consistent field theory. Phys. Rev. Lett., 83:4317–4320, 1999.



Appendix A

Program Listing

/*

Copolymer-homopolymer blends

Assumes homopolymer and block A are same species

*/

#include <stdio.h>

#include <io.h>

#include <fcntl.h>

#include <sys\stat.h>

#include <math.h>

// Constants

#define GRID 101 // Number of spacial steps for all functions

#define STEPS 41 // Number of time steps to record in diffusion solution

#define FINE_STEPS 10 // Number of sub-steps in time for diffusion solver

#define pi 3.14159265358979

// Dependent constants

#define R_END (GRID-1.)

#define T_END (STEPS-1)

// Variables

double phiA0, // mean block A density

phiB0, // mean block B density

113
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phiH0, // mean homopolymer density

phiC0, // mean copolymer density

fA, // block A copolymer fraction

fB, // block B copolymer fraction

fH, // homopolymer-to-copolymer volume ratio

chirc, // interaction coefficient

epsilon, // coil parameter

beta, // Diffusion parameter

energy, // Free energy

lastEnergy, // Previous free energy for comparison

R, // Initial lattice parameter

Rstep, // Lattice parameter step

Rres; // Smallest order of lattice parameter step

double phiA[GRID], // block A density profile

phiB[GRID], // block B density profile

phiH[GRID], // homopolymer density profile

omegaA[GRID], // block A potential

omegaB[GRID], // block B potential

newA[GRID], // new block A potential

newB[GRID], // new block B potential

qA[GRID][STEPS], // block A propagator

qB[GRID][STEPS], // block B propagator

qH[GRID][STEPS], // homopolymer propagator

qAp[GRID][STEPS],// block A reverse propagator

qBp[GRID][STEPS],// block B reverse propagator

alpha[GRID], // integrator (d3r = dr, 2*pi*r*dr, or 4*pi*r*r*dr)

QC, // copolymer modes

QH, // homopolymer modes

conv, // target self-consistent error limit

error, // current self-consistent error limit

ratio, // Used to extrapolate next trial potential

x, y; // generic variable

int preload, // non-zero if potentials preloaded

core, // +1 if A in core, -1 if B in core

dim, // dimensions

iterations, // number of iterations before aborting

count, // counts iterations on this pass
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found_bottom = 0, // goes true when energy went down after a step

first_pass = 1, // goes false when one data point collected

reset = 1, // non-zero to restore defaults

i, j, k, l, // generic variables

last; // record # of next entry to process in params.dat

char entry[5], // Number for this data set

prefile[5], // Number of file containing first-guess potential

file[256]; // Temp string for building file names

// Math operation macros

#define VECTOR(x) for (i = 0; i < GRID; i++) {x};

#define INTEGRATE_R(x, y) \

i = 0; x = (y)*17./48.*alpha[0]; \

i = 1; x += (y)*59./48.*alpha[1]; \

i = 2; x += (y)*43./48.*alpha[2]; \

i = 3; x += (y)*49./48.*alpha[3]; \

for (i = 4; i < GRID - 4; i++) x += (y)*alpha[i]; \

i = GRID - 4; x += (y)*49./48.*alpha[GRID - 4]; \

i = GRID - 3; x += (y)*43./48.*alpha[GRID - 3]; \

i = GRID - 2; x += (y)*59./48.*alpha[GRID - 2]; \

i = GRID - 1; x += (y)*17./48.*alpha[GRID - 1];

#define INTEGRATE_T(x, y) \

j = 0; x = (y)*17./48./T_END; \

j = 1; x += (y)*59./48./T_END; \

j = 2; x += (y)*43./48./T_END; \

j = 3; x += (y)*49./48./T_END; \

for (j = 4; j < STEPS - 4; j++) x += (y)/T_END; \

j = STEPS - 4; x += (y)*49./48./T_END; \

j = STEPS - 3; x += (y)*43./48./T_END; \

j = STEPS - 2; x += (y)*59./48./T_END; \

j = STEPS - 1; x += (y)*17./48./T_END;

// Math operation functions

void Diffusion(double q[GRID][STEPS], double, double *, double);



Appendix A. Program Listing 116

void Oracle(void);

// File I/O functions

int OpenParameters(void);

void CloseParameters(void);

int GetParameters(void);

void WriteData(void);

// Program

void main(void) {

int handle, file_action;

char output[256];

OpenParameters();

while (1) {

// Load fundamental parameters:

// fA, phiC0, chirc, epsilon, R, core, preload, conv, iterations, Rstep

// Rres, ratio;

while ((i = GetParameters()) == 2); // find next unlocked data set

if (!i) {

CloseParameters();

return;

}

// Initialise

lastEnergy = 0;

first_pass = 1;

found_bottom = 0;

// Calculate frequently-used constants

fB = 1. - fA;

phiA0 = fA*phiC0;

phiB0 = fB*phiC0;
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phiH0 = 1. - phiC0;

// If were not preloading the potential, calculate one for a starting point

if (!preload) {

VECTOR(

phiA[i] = phiA0*(1+core*cos(i*pi/R_END));

phiB[i] = phiB0*(1-core*cos(i*pi/R_END));

phiH[i] = phiH0;

omegaA[i] = chirc*(phiB[i] - phiB0);

omegaB[i] = chirc*(phiA[i] - phiA0);

);

} else {

sprintf(file, "data\\omeg%s.dat", prefile);

handle = open(file, O_BINARY|O_RDONLY);

read(handle, omegaA, sizeof(omegaA));

read(handle, omegaB, sizeof(omegaB));

close(handle);

}

// First write to ENER????.DAT file should clear file

file_action = O_TRUNC;

// Initialise t=0 step of qA, qB, and qH

VECTOR(

qA[i][0] = 1.;

qB[i][0] = 1.;

qH[i][0] = 1.;

)

// Initialise integrator

switch (dim) {

default:

VECTOR(

alpha[i] = 1./R_END;

)
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break;

case 2:

x = 2./R_END/R_END;

VECTOR(

alpha[i] = x*i;

)

break;

case 3:

x = 3./R_END/R_END/R_END;

VECTOR(

alpha[i] = x*i*i;

)

break;

}

// Loop until minimum found

lastEnergy = 0;

while (!found_bottom || Rstep > Rres || -Rstep > Rres) {

// Loop until self-consistent error is within tolerence

count = iterations;

error = conv;

while (error >= conv && --count) {

// Solve diffusion equations for forward propagators

beta = 1./(6.*R*R);

Diffusion(qA, beta, omegaA, fA);

Diffusion(qB, beta*epsilon, omegaB, fB);

Diffusion(qH, beta, omegaA, fH);

// Set initial conditions for reverse propagator

VECTOR(

qAp[i][0] = qB[i][T_END];

qBp[i][0] = qA[i][T_END];

);
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// Solve diffusion equation for reverse propagators

Diffusion(qAp, beta, omegaA, fA);

Diffusion(qBp, beta*epsilon, omegaB, fB);

// Calculate normalisation constants

INTEGRATE_R(QC, qA[i][T_END]*qB[i][T_END]);

INTEGRATE_R(QH, qH[i][T_END]);

// Calculate density profiles

VECTOR(

INTEGRATE_T(phiA[i], qA[i][j]*qAp[i][T_END-j]);

INTEGRATE_T(phiB[i], qB[i][j]*qBp[i][T_END-j]);

INTEGRATE_T(phiH[i], qH[i][j]*qH[i][T_END-j]);

phiA[i] *= phiA0/QC;

phiB[i] *= phiB0/QC;

phiH[i] *= phiH0/QH;

);

// Potentials

y = phiA0 + phiH0;

VECTOR(

x = (omegaA[i] + omegaB[i]) / 2;

newA[i] = chirc*(phiB[i] - phiB0) + x;

newB[i] = chirc*(phiA[i] + phiH[i] - y) + x;

);

// Calculate error from last iteration

error = 0.;

VECTOR(

x = newA[i] - omegaA[i];

if (x < 0) x = -x;

if (x > error) error = x;
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x = newB[i] - omegaB[i];

if (x < 0) x = -x;

if (x > error) error = x;

);

printf("Iteration #%d: error = %f \x0D", iterations-count, error);

// Calculate new potential

Oracle();

}

// Calculate free energy

INTEGRATE_R(energy, (phiA[i]+phiH[i])*(chirc*phiB[i] - omegaA[i])

- omegaB[i]*phiB[i]);

energy -= chirc*(phiA0+phiH0)*phiB0 + phiC0*log(QC) + phiH0*log(QH)/fH;

// Determine next step direction

if (energy > lastEnergy) {

// If we’ve already passed bottom, go finer

if (found_bottom) Rstep /= 10;

// Reverse direction and try again

Rstep = -Rstep;

} else {

WriteData();

// If energy going down after two samples, we’re on its trail...

if (!first_pass) found_bottom = 1;

}

// Add entry to energy vs. repeat distance log

if (count) {

sprintf(output, "%f\t%f\n", R, energy);

} else {

sprintf(output, "%f\t%f\tFAILED\t%f\n", R, energy, error);

}
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for (i = 0; output[i]; i++);

sprintf(file, "data\\ener%s.dat", entry);

handle = open(file, O_CREAT|O_RDWR|file_action, S_IWRITE|S_IREAD);

write(handle, output, i);

close(handle);

// Subsequent writes to ENER????.DAT will append to file

file_action = O_APPEND;

R += Rstep;

first_pass = 0;

lastEnergy = energy;

}

printf(" \n");

}

}

// Solve diffusion equation

void Diffusion (double q[GRID][STEPS], double D, double *w, double z) {

double dt, f, g, g0, tf, b1[GRID], b2[GRID], a, b, c, d, r[GRID], a2[GRID],

sp[GRID], sq[GRID];

int l;

dt=z/T_END/FINE_STEPS;

f = D*dt/2.*R_END*R_END;

g0 = f/2.*(dim-1);

tf = 2.*f+dt*w[0]/2.;

b2[0] = (tf-1.)/f;

b1[0] = -(tf+1.)/f;

c = 2.;

r[0] = q[0][0];

// Decomposition of tridiagonal matrix

for (i = 1; i < GRID; i++) {

r[i] = q[i][0];

g = g0/i;

a = (f-g)/(f+g);
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a2[i] = a;

sp[i] = c/b1[i-1];

tf = 2.*f+dt*w[i]/2.;

b = -(tf+1.)/(f+g);

b1[i] = b-a*sp[i];

b2[i] = (tf - 1.)/(f+g);

c = 1.;

}

// Correct final coefficient for boundary conditions

// (c=2 corrects initial point as a2(1)+1=2)

a2[GRID-1] += 1;

b1[GRID-1] -= sp[GRID-1];

// Time step loop: forward substitution

for (j = 1; j < STEPS; j++) {

for (l = 0; l < FINE_STEPS; l++) {

sq[0] = (r[0]*b2[0]-2*r[1])/b1[0];

for (i = 1; i < GRID-1; i++) {

d = -a2[i]*r[i-1]+b2[i]*r[i]-r[i+1];

sq[i] = (d-a2[i]*sq[i-1])/b1[i];

}

r[GRID-1] = (r[GRID-1]*b2[GRID-1] -

a2[GRID-1]*(r[GRID-2]+sq[GRID-2]))/b1[GRID-1];

// Back substitution

for (i = GRID-2; i >=0 ; i--) r[i] = sq[i] - sp[i+1]*r[i+1];

}

for (i = 0; i < GRID; i++) q[i][j] = r[i];

}

}

// Extrapolate next potential

void Oracle(void) {
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for (i = 0; i < GRID; i++) {

omegaA[i] += (newA[i] - omegaA[i]) * ratio;

omegaB[i] += (newB[i] - omegaB[i]) * ratio;

}

return;

}

// Platform-specific file I/O

int phandle; // Handle for params.dat file when open

struct { // Record structure

long dim;

double fA;

double fH;

double phiC0;

double chirc;

double epsilon;

double R;

long core;

long preload;

char prefile[4];

double conv;

double Rstep;

double Rres;

double ratio;

long iterations;

char note[10];

} rec;

#define RECORD_SIZE sizeof(rec)

// Opens params.dat file and set start position according to last_set.dat

// If you want to use your own method of inputing parameters, simply insert a

// "return 1;" at the top of this function and modify GetParameters according

// to your needs

int OpenParameters(void) {
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int handle2, x;

entry[0] = ’0’;

entry[1] = ’0’;

entry[2] = ’0’;

entry[3] = ’0’ - 1;

phandle = open("data\\params.dat", O_RDONLY|O_BINARY);

// If file couldn’t be opened, return

if (phandle == -1) return 0;

// See if we’re starting other than at the first file set

handle2 = open("data\\last_set.dat", O_RDONLY|O_BINARY);

if (handle2 == -1) return 1;

// Starting at other than beginning, so read position and move there

read(handle2, &last, sizeof(last));

lseek(phandle, RECORD_SIZE*last, 0);

x = last;

entry[3] += x % 10;

x /= 10;

entry[2] += x % 10;

x /= 10;

entry[1] += x % 10;

x /= 10;

entry[0] += x % 10;

return 1;

}

// Close params.dat and update last_set.dat

void CloseParameters(void) {

if (phandle == -1) return;

close(phandle);

}

// Read a parameter set from the file and advance
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// If you want to use your own method of inputting data, rewrite GetParameters

// to load up the "rec" structure yourself. GetParameters should return a 1

// if a parameter set is available, 0 to exit the program, or a 2 to have the

// program discard the data set returned by GetParameters and then call

// GetParameters again for another one.

int GetParameters(void) {

int handle;

// Update last data set processed

handle = open("data\\last_set.dat", O_RDWR|O_BINARY|O_CREAT|O_TRUNC,

S_IREAD|S_IWRITE);

write(handle, &last, sizeof(last));

close(handle);

// Advance entry pointers (better not go beyond 10000 files!)

entry[3]++;

if (entry[3] > ’9’) {

entry[2]++;

entry[3] = ’0’;

}

if (entry[2] > ’9’) {

entry[1]++;

entry[2] = ’0’;

}

if (entry[1] > ’9’) {

entry[0]++;

entry[1] = ’0’;

}

// If there was an error opening, return

if (phandle == -1) return 0;

// Read data if any left

if (!read(phandle, &rec, sizeof(rec))) return 0;
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// Set parameters

dim = rec.dim;

fA = rec.fA;

fH = rec.fH;

phiC0 = rec.phiC0;

chirc = rec.chirc;

epsilon = rec.epsilon;

R = rec.R;

core = rec.core;

preload = rec.preload;

prefile[0] = rec.prefile[0];

prefile[1] = rec.prefile[1];

prefile[2] = rec.prefile[2];

prefile[3] = rec.prefile[3];

conv = rec.conv;

Rstep = rec.Rstep;

Rres = rec.Rres;

ratio = rec.ratio;

iterations = rec.iterations;

last++;

// If this one has the "locked" bit set, return the skip flag

if (rec.note[0] & 128) return 2;

printf("Data set %04d:\n", last-1);

printf(" dim = %d, fA = %f, fH = %f,\n", dim, fA, fH);

printf(" phiC0 = %f, chirc = %f, epsilon = %f\n", phiC0, chirc, epsilon);

printf("\n");

return 1;

}

void WriteData(void) {

int handle;

char output[256];

if (count) {

printf("R = %f, energy = %f, iterations = %d\n", R, energy, iterations - count);
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} else {

printf("R = %f, energy = %f, CONVERGENCE FAILED! (error=%f)\n", R, energy, error);

}

sprintf(file, "data\\dens%s.dat", entry);

handle = open(file, O_CREAT|O_TRUNC|O_RDWR, S_IWRITE|S_IREAD);

VECTOR(

sprintf(output, "%f\t%f\t%f\t%f\n", phiA[i], phiB[i], phiH[i], qA[i][T_END]*qB[i][T_END]/QC);

for (j = 0; output[j]; j++);

write(handle, output, j);

);

close(handle);

sprintf(file, "data\\omeg%s.dat", entry);

handle = open(file, O_CREAT|O_TRUNC|O_RDWR|O_BINARY, S_IWRITE|S_IREAD);

write(handle, omegaA, sizeof(omegaA));

write(handle, omegaB, sizeof(omegaB));

close(handle);

}


