DSTD 328
256K DYNAMIC MEMORY MODULE
FOR THE DSTD-188 8088 CARD
DY00513

dy-4 Systems Inc.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTIION NUMBER</th>
<th>PARAGRAPH NUMBER</th>
<th>TITLE</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.1</td>
<td>Introduction</td>
<td>1 - 1</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>DSTD Series description</td>
<td>1 - 1</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>DSTD-328 Features</td>
<td>1 - 1</td>
</tr>
<tr>
<td>2.0</td>
<td>2.1</td>
<td>Introduction</td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Block Diagram Description</td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td>2.2.1</td>
<td>STD Bus Interface</td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td>2.2.2</td>
<td>Page Decoding</td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td>2.2.3</td>
<td>Card Enabling</td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td>2.2.4</td>
<td>Parity Logic</td>
<td>2 - 2</td>
</tr>
<tr>
<td>3.0</td>
<td>3.1</td>
<td>Introduction</td>
<td>3 - 1</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Card Address Selection</td>
<td>3 - 1</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>RAM Timing</td>
<td>3 - 1</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Page Address Selection</td>
<td>3 - 2</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>DMA Priority Chain</td>
<td>3 - 2</td>
</tr>
<tr>
<td>4.0</td>
<td>4.1</td>
<td>Electrical Specification</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.1</td>
<td>Maximum System Clock</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.2</td>
<td>STD Bus Interface</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.3</td>
<td>Operating Temperature</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.4</td>
<td>Power Supply Requirements</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>Mechanical Specification</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.2.1</td>
<td>Card Dimensions</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.2.2</td>
<td>STD Bus Edge Connector</td>
<td>4 - 1</td>
</tr>
<tr>
<td>5.0</td>
<td>5.1</td>
<td>Factory Repair Service</td>
<td>5 - 1</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>Limited Warranty</td>
<td>5 - 1</td>
</tr>
</tbody>
</table>
APPENDICES

Appendix A Optional Jumper Summary
Appendix B STD Bus Pin Out and Description
Appendix C DSTD-328 Parts List
Appendix D Schematics

LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 1</td>
<td>Page Address Selection</td>
<td>3 - 2</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 1</td>
<td>DSTD-328 Dynamic Memory Module</td>
<td>1 - 3</td>
</tr>
<tr>
<td>2 - 1</td>
<td>DSTD-328 Block Diagram</td>
<td>2 - 3</td>
</tr>
<tr>
<td>3 - 1</td>
<td>Card Address Selection</td>
<td>3 - 1</td>
</tr>
<tr>
<td>3 - 2</td>
<td>DMA Priority Chain</td>
<td>3 - 2</td>
</tr>
<tr>
<td>C - 1</td>
<td>DSTD-328 Silk Screen</td>
<td>C - 2</td>
</tr>
</tbody>
</table>

Acknowledgements

Z-80 is a Trademark of Zilog, Inc.
SECTION 1

1.0 GENERAL INFORMATION

1.1 Introduction

The DSTD-328 is a 256 kilobyte dynamic RAM card designed as a companion card to the DSTD-188. The DSTD-188 is a 8088 based CPU card with a 1 megabyte addressing capability. The DSTD-328 is positioned within the 1 megabyte address space using a hardwired jumper block. The card can be enabled and disabled under software control allowing more than four cards to be used in a system using paging techniques. The DSTD-188 provides the dynamic RAM refresh function.

1.2 DSTD Series General Description

The dy-4 SYSTEMS DSTD Series of Z80 and 8088 STD-Bus compatible products was designed to satisfy the need for high performance microcomputer modules that could be quickly and inexpensively integrated into a variety of end-user applications. The popular STD-Bus motherboard interconnect system concept provides expandability as needs change. Support by numerous manufacturers provides the user with a choice from scores of compatible products.

The modules are a compact 4.5 x 6.5 inches (11.4 X 16.5 cm) which provides for system partitioning by function, i.e. CPU, Memory, I/O, etc. dy-4 SYSTEMS has been able to combine most popular functions on single cards to reduce system card count and cost.

1.3 DSTD-328 Features

The dy-4 SYSTEMS DSTD-328 is a very dense dynamic memory module designed for use with dy-4 SYSTEMS DSTD Series STD Bus products.

The DSTD-328 supports the full 20 bit address bus of the 8088 using the data bus to receive the top 4 address bits.

It is available configured with or without Parity generation/checking logic. The optional parity generation and checking circuitry provides error detection automatically. The error condition is latched to allow checking on completion of memory transfers or accesses.
Figure 1 - 1

DSTD-328 256K DYNAMIC MEMORY MODULE WITH PARITY
SECTION 2

2.0 FUNCTIONAL DESCRIPTION

2.1 Introduction

The DSTD-328 is a 256 kilobyte dynamic RAM card designed to be a companion card to the DSTD-188 8088 CPU card. The card can be positioned in any one of the four 256 kilobyte pages in the 1 megabyte address space of the 8088. It features the ability to be enabled and disabled under software control to extend the memory capabilities beyond 1 megabyte using paging techniques. The card generates, stores and checks parity on all 256 kilobytes.

[The DSTD-188 is an 8088 based CPU card designed to run on both the 8088 STD Bus AND the Z80 STD Bus. In the Z80 mode the card's bus signals and signal timing emulate those of a Z80 CPU card, including refresh cycles. This allows the DSTD-188 to make use of the large number of existing Z80 peripheral cards.]

2.2 Block Diagram Description

The block diagram for the DSTD-328 is shown in figure 2 - 1. The following paragraphs discuss the functions of the various blocks.

2.2.1 STD BUS Interface

The interface logic includes all the buffers for the address, data and control signals, ensuring that the card represents only one TTL load to the bus.

The interface also includes the logic to "capture" the upper four address bits. The data bus is used to extend the direct address capability of the bus from 64 kilobytes to the 1 megabyte required by the 8088. During the first part of a memory cycle the high order four address bits are placed on the data bus by the processor card. The /ALE signal (pin 38) clocks these bits into a latch for subsequent decoding.

2.2.2 Page Decoding

The card is positioned in one of the four pages using a hardwired jumper block. The page decoding circuitry initiates a memory cycle and enables the data bus transceiver.
2.2.3 Card Enabling

The DSTD-328 can be enabled and disabled under software control. This is done using an I/O port. Writing a '1' to bit 6 of the port enables the card and writing a '0' to bit 6 of the port disables the card. The address of the I/O port is set using a jumper block (J31). When more than one card is used in a system, each card would be assigned to a different I/O port number. Because this card runs with Z80 peripheral cards only the bottom 8 bits of the address bus are decoded during an I/O cycle.

The board powers-up disabled and is disabled by a system reset. This means that more than one card can be assigned to the same page. The software chooses which pages to enable. The RAM is still refreshed when it is disabled.

The parity error register is accessed using the same I/O port. See section 2.2.4

```
<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>C/E</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
```

- **PAR** Parity Error
 - 1 = error detected
 - 0 = no error detected
- **C/E** Card Enable
 - 1 = enable the card
 - 0 = disable the card
- x not used

2.2.4 Parity Logic

If Parity is used, an additional bit of data is stored in parallel with each byte so that there is always an odd number of high bits (1's) stored. When the data is retrieved, parity is checked automatically. If the number of high bits counted is not odd, a flag is set in the parity error register indicating an error. This flag remains set until it is cleared by writing to the card's I/O port. Thus although parity checking is done on a byte basis, parity error reporting is typically done on a block basis. That is, the parity error flag is checked periodically, for instance, after disk transfers.

Note that a parity error may be generated if a location in RAM is read before it has been written. After power-up the state of the RAM including the parity bit is indeterminate and memory locations must be written at least once before the parity will be correct.
FIGURE 2 - 2 DSTD-328 BLOCK DIAGRAM
SECTION 3

3.0 USER SELECTABLE OPTIONS

3.1 Introduction

The following sections discuss the user selectable or user programmable options. The manual concentrates on the hardware selectable options with only a brief discussion of the system and software options.

3.2 Card Address Selection (JB1)

The DSTD-328 may be addressed at any one of 256 possible I/O locations. This selection is made using Jumper Block JB1. Shunting adjacent pins creates a low logic level (a '0'), leaving a pair open creates a high logic level (a '1'). These bit values are compared with the lower 8 bits of the address bus. When the two match, the card control registers may be written to and read from. An example is shown in Figure 3-1.

FIGURE 3 - 1

Card Address Selection JB1

1A o---o 1B <-- compares with address bit 7
2A o o 2B <-- compares with address bit 6
3A o o 3B <-- compares with address bit 5
4A o o 4B <-- compares with address bit 4
5A o---o 5B <-- compares with address bit 3
6A o---o 6B <-- compares with address bit 2
7A o---o 7B <-- compares with address bit 1
8A o---o 8B <-- compares with address bit 0

OPEN = '1'
SHORTED = '0'
FACTORY SETTING = 70H, as shown

3.3 RAM Timing (JB2)

Some special applications require modifications to the normal RAM control signal timing relationships. This jumper block is not normally installed. Consult the factory if changes are required.
3.4 Page Address Selection (JB4)

The DSTD-328 can be positioned in any of the four 256 kilobyte pages of the 8088's 1 megabyte address space using jumper block JB4. Once the card is positioned it can be turned on and off under software control using an I/O port. Table 3-1 shows the jumper block connections.

<table>
<thead>
<tr>
<th>PAGE ADDRESS SELECTION</th>
<th>JB4-2B to 3B</th>
<th>JB4-2B to 3A</th>
<th>JB4-2B to 2A</th>
<th>JB4-2B to 1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000H to 3FFFFH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40000H to 7FFFFH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80000H to BFFFFH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C0000H to FFFFFH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5 DMA Priority Chain (JB3)

The STD-Z80 Bus was not originally designed to accommodate more than one DMA device. A problem could exist when two DMA controllers attempted to access the bus at the same time. dy-4 SYSTEMS has developed a technique whereby multiple DMA devices can operate in a prioritized fashion similar to the existing interrupt priority chain provided on the STD Bus.

dy-4 SYSTEMS backplanes incorporate a DMA priority daisy chain using the /BUSAK and /STATUS 0 signal lines (pins 41 and 40 respectively.) Effectively, the DMA device closest to the processor will get control of the bus if two or more are competing for it because it will receive the bus acknowledge signal, preventing those cards further away from the processor from sensing it. If that card did not request the bus, the /BUSAK flows through to be recognized by the next highest DMA device.

Jumper block JB3 of the DSTD-328 allows this signal chain to be carried forward by shunting traces 40 and 41 on the bus. If not used with a dy-4 SYSTEMS backplane, this jumper block should be left open. Figure 3-2 describes this option.

FIGURE 3-2

DMA Priority Chain

1A ---- o 1B

SHORTED = DMA Priority Chain flows through the card
OPEN = Multiple DMA devices not supported, non dy-4 SYSTEMS backplane
FACTORY SETTING = shorted, as shown
SECTION 4

4.0 SPECIFICATIONS

4.1 Electrical Specifications

4.1.1 Maximum System Clock
DSTD-328x-5.0 5.0MHz ± 0.05%
DSTD-328x-8.0 8.0MHz ± 0.05%

4.1.2 STD BUS Interface
Bus Inputs: One 74LS load max.
Bus Outputs: \(I_{OL} = 24 \) mA min. \(V_{OL} = 0.5 \) Volts
\(I_{OH} = 15 \) mA min. \(V_{OH} = 2.4 \) Volts

4.1.3 Operating Temperature
0 Degrees C to 50 Degrees C
95% humidity non-condensing

4.1.4 Power Supply Requirements
DSTD328 5V +/- 5% \& 1.8A

4.2 MECHANICAL SPECIFICATIONS

4.2.1 Card Dimensions
4.50 in. (11.43 cm.) wide by 6.50 in. (16.51 cm) long
0.48 in. (1.22 cm.) maximum height
0.062in. (0.16 cm.) printed circuit board thickness
4.2.2 STD Bus Edge Connector

56 pin Dual Readout; 0.125 in. centers
Mating Connector

- Viking 3VH28/1CE5 (printed circuit)
- Viking 3VH28/1CND5 (wire wrap)
- Viking 3VH28/1CN5 (solder lug)
SECTION 5

5.0 FACTORY NOTICES

5.1 Factory Repair Service

In the event that difficulty is encountered with this unit, it may be returned directly to dy-4 for repair. This service will be provided free of charge if the unit is returned within the warranty period. However, units which have been modified or abused in any way will not be accepted for service, or will be repaired at the owner's expense.

When returning a circuit board, place it inside the conductive plastic bag in which it was delivered to protect the MOS devices from electrostatic discharge. THE CIRCUIT BOARD MUST NEVER BE PLACED IN CONTACT WITH STYROFOAM MATERIAL. Enclose a letter containing the following information:

Name, address and phone number of purchaser
Date and place of purchase
Brief description of the difficulty

Mail a copy of this letter SEPARATELY to the closest office:

dy-4 SYSTEMS INC.
888Lady Ellen Place
Ottawa, Ontario
K1Z 5M1, Canada

-or-

dy-4 SYSTEMS INC.
3582Dubarry Rd.
Indianapolis, IN 46226

Securely package and mail the circuit board, prepaid and insured, to the same address.

5.2 Limited Warranty

Dy-4 warrants this product against defective materials and workmanship for a period of one year from date of purchase. This warranty does not apply to any product that has been subjected to misuse, accident, or improper installation, application, or operation, nor does it apply to any product that has been repaired or altered by other than our authorized factory representative.

There are no warranties which extend beyond those herein specifically given.

NOTICE

The antistatic bag is provided for shipment of dy-4 products to prevent damage to the components due to electrostatic discharge. Failure to use this bag in shipment will VOID the warranty.
APPENDIX A

OPTION JUMPER SUMMARY INCLUDING FACTORY SETTINGS
APPENDIX A

OPTION JUMPER SUMMARY

A - 1
Optional Jumper Blocks

The DSTD-328 has the following jumpers.

JB1 Module address selection
JB2 Memory Timing
JB3 DMA chain
JB4 Memory Page Selection

A - 2
Card Address Selection

This jumper block sets the module's I/O address port.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 to A8 Ground

B1 Address Bit 0
B2 Address Bit 1
B3 Address Bit 2
B4 Address Bit 3
B5 Address Bit 4
B6 Address Bit 5
B7 Address Bit 6
B8 Address Bit 7

A - 3
RAM Timing (JB2)

This jumper block is not normally installed and is preset at the factory.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 no connect B1 Delay line tap 4
A2 CAS Enable B2 Delay line tap 2
A3 Delay line tap 1 B3 Address Mux Control
A4 Delay line tap 3 B4 Delay line tap 5

A - 1
A - 4 DNA Chain (JB3)

This jumper should be installed only when the card is used in a dy-4 SYSTEMS backplane.

- BUSAK (pin 40)
- BAC (pin 41)

A - 5 Memory Page Selection (JB4)

To select a page install one of four jumpers.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 3 decoded</td>
<td>1</td>
<td>o</td>
</tr>
<tr>
<td>Page 2 decoded</td>
<td>2</td>
<td>o</td>
</tr>
<tr>
<td>Page 1 decoded</td>
<td>3</td>
<td>o</td>
</tr>
</tbody>
</table>
APPENDIX B

STD-280 BUS PIN OUT AND DESCRIPTION
APPENDIX B

STD-Z80/STD-8088 BUS PIN OUT AND DESCRIPTION

<table>
<thead>
<tr>
<th>BUS</th>
<th>MNEMONIC</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5V</td>
<td>5Vdc system power</td>
</tr>
<tr>
<td>2</td>
<td>5V</td>
<td>5Vdc system power</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground - System signal ground and DC return</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-5V</td>
<td>-5Vdc system power</td>
</tr>
<tr>
<td>6</td>
<td>-5V</td>
<td>-5Vdc system power</td>
</tr>
<tr>
<td>7</td>
<td>D3</td>
<td>Data Bus (Tri-state, input/output active high). D0-D7 constitute a 8-bit bidirectional data bus. The data bus is used for data exchange with memory and I/O devices A16-A19 are multiplexed in D0-D3 during ALE</td>
</tr>
<tr>
<td>8</td>
<td>D7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>D6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>D0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>A7</td>
<td>Address Bus (output, active high). A0-A15 make up a 16-bit address bus. The address bus along with the multiplexed Address on the data bus provides for 1 Megabyte of memory. I/O addressing uses these same 16 address bits to allow the user to directly select up to 65K input or 65K output ports. A0 is the least significant address bit. During refresh time, the lower 8 bits contain a valid refresh address for dynamic memories in the system.</td>
</tr>
<tr>
<td>16</td>
<td>A15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>A14</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>A13</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A12</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>A11</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A10</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>A0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>/WR</td>
<td>Memory Write (output, active low). /WR indicates that the CPU data bus holds valid data to be stored in the addressed memory or I/O device.</td>
</tr>
<tr>
<td>Pin</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>/RD</td>
<td>Memory Read (output, active low). /RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.</td>
</tr>
<tr>
<td>33</td>
<td>/IORQ</td>
<td>Input/Output Request (output, active low). In Z80 mode the /IORQ signal indicates that the address bus holds a valid I/O address for an I/O read or write operation. An /IORQ signal is also generated with an /M1 signal when an interrupt is being acknowledged to indicate that an interrupt response vector can be placed on the data bus. Interrupt Acknowledge operations occur during /M1 time, while I/O operations never occur during /M1 time. In 8088 mode this pin contains the 8088 status signal '/S2'.</td>
</tr>
<tr>
<td>34</td>
<td>/MEMREQ</td>
<td>Memory Request (output, active low). The /MEMREQ signal indicates that the address bus holds a valid address for a memory read or write operation.</td>
</tr>
<tr>
<td>35</td>
<td>/IOEXP</td>
<td>I/O expansion, not used on dy-4 SYSTEMS DSTD.</td>
</tr>
<tr>
<td>36</td>
<td>/MEMEX</td>
<td>Memory expansion, not used on dy-4 SYSTEMS DSTD cards.</td>
</tr>
<tr>
<td>37</td>
<td>/REFRESH</td>
<td>/REFRESH (output, active low). /REFRESH indicates that the lower 8 bits of the address bus contain a refresh address for dynamic memories and the /MEMREQ signal should be used to perform a refresh cycle for all dynamic RAMs in the system. During the refresh cycle A8-A15 are not defined.</td>
</tr>
<tr>
<td>38</td>
<td>/MCSYNC</td>
<td>MEMORY CYCLE SYN (OUTPUT, active low). This pin contains /ADDRESS LATCH ENABLE (ALE) from the 8088 processor. It signals to the bus that D0-D3 contains A16-A19.</td>
</tr>
<tr>
<td>39</td>
<td>/STATUS 1</td>
<td>Machine Cycle One (output, active low). /M1 occurs with /IORQ to indicate an interrupt acknowledge cycle.</td>
</tr>
</tbody>
</table>
In 8088 mode:
Status 1 (output, active low). This pin contains the 8088 status signal '/S1'.

40 /STATUS 0
Status 0 (output, active low). This pin contains the 8088 status signal '/S0'.

41 /BUSAK
Bus Acknowledge (Output, active low). Bus Acknowledge is used to indicate to the requesting device that the CPU address bus, data bus, and control bus signals have been set to their high impedance state and the external device can now control the bus.

42 /BUSRQ
Bus Request (Input, active low). The /BUSRQ signal is used to request the CPU address bus, data bus, and control signal bus to go to a high impedance state so that other devices can control those buses. When /BUSRQ is activated, the CPU will set these buses to a high impedance state as soon as the Current CPU machine cycle is terminated, and the Bus Acknowledge (/BUSAK) signal is activated.

43 /INTAK
Interrupt Acknowledge (Tri-state output, active low). The /INTAK signal indicates that an interrupt acknowledge cycle is in progress, and the interrupting device should place its response vector on the data bus.

44 /INTRQ
Interrupt Request (Input, active low). The Interrupt Request Signal is generated by I/O devices. A request will be honored at the end of the current instruction if the internal software controlled interrupt enable flip-flop is enabled and if the /BUSRQ signal is not active. In Z80 mode, when the CPU accepts the interrupt, an acknowledge signal (/IORQ during an /M1) is sent out at the beginning of the next instruction cycle.

45 /WAITRQ
WAIT REQUEST (Input, active low). Wait request indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to
enter wait states for as long as this signal is active. The signal allows memory or I/O devices of any speed to be synchronized to the CPU.

46 /NMIIRQ

Non-Maskable Interrupt request (Input, negative edge triggered). The Non-Maskable Interrupt request has a high priority than /INTRQ and is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. /NMIIRQ automatically forces the CPU to restart to location 00008H. The program counter is automatically saved in the external stack so that the user can return to the program that was interrupted. Note that continuous WAIT cycle can prevent the current instruction from ending, and that a /BUSREQ will override a /NMIIRQ.

47 /SYSRESET

System Reset (Output, active low). The System Reset line indicates that a reset has been generated from either an external reset or the power-on reset circuit. The system reset will occur only once per reset request and will be approximately 2 microseconds in duration. The system reset will also force the CPU program counter to OFFFF0H.

48 /PBRESET

Pushbutton Reset (Input, active low). The Pushbutton reset will generate a debounced system reset.

49 /CLOCK

Bus Clock (Output, active low). Single phase system clock. This clock runs at one half processor clock rate.

50 CNTRL

Auxiliary Timing

51 PCO

Priority Chain Output (Output, active high.) This signal is used to form a priority interrupt daisy chain when more than one interrupt driven device is being used. A high level on this pin indicates that no other devices of higher priority are being serviced by a CPU interrupt service routine.
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>PCI Priority Chain In (Input, active high)</td>
</tr>
<tr>
<td></td>
<td>Priority chain is used to form a priority interrupt daisy chain when more than one interrupt driven device is being used. A high level on this pin indicates that no other devices of higher priority are being serviced by a CPU interrupt service routine.</td>
</tr>
<tr>
<td>53</td>
<td>AUX GND Auxiliary Ground (Bussed)</td>
</tr>
<tr>
<td>54</td>
<td>AUX GND Auxiliary Ground (Bussed)</td>
</tr>
<tr>
<td>55</td>
<td>+12V +12Vdc system power</td>
</tr>
<tr>
<td>56</td>
<td>-12V -12Vdc system power</td>
</tr>
</tbody>
</table>

NOTES:

1. The reference to input and output of a given signal is made with respect to the CPU module.
APPENDIX C

DSTD-328 PARTS LIST
APPENDIX C

DSTD-328 PARTS LIST

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESIGNATION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTEGRATED CIRCUITS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>U49</td>
<td>74LS74</td>
</tr>
<tr>
<td>1</td>
<td>U37</td>
<td>74S138</td>
</tr>
<tr>
<td>1</td>
<td>U40</td>
<td>74LS174</td>
</tr>
<tr>
<td>1</td>
<td>U41</td>
<td>74LS139</td>
</tr>
<tr>
<td>3</td>
<td>U43,46,47</td>
<td>74LS245</td>
</tr>
<tr>
<td>1</td>
<td>U42</td>
<td>74S280</td>
</tr>
<tr>
<td>2</td>
<td>U44,45</td>
<td>74LS373</td>
</tr>
<tr>
<td>1</td>
<td>U48</td>
<td>74LS682</td>
</tr>
<tr>
<td>2</td>
<td>U38,39</td>
<td>DS3648</td>
</tr>
<tr>
<td>36</td>
<td>U1 - 36</td>
<td>4164-150/200</td>
</tr>
<tr>
<td>1</td>
<td>U50</td>
<td>DTZM - 100/250</td>
</tr>
<tr>
<td>1</td>
<td>U51</td>
<td>PAL16L8</td>
</tr>
</tbody>
</table>

	DISCRETE COMPONENTS	
1	RN1	4306-101-472
1	RN2	4308-102-470
1	R3	4.7K 1/4 watt
2	R1,2	47 1/4 watt
5	C2,20,22,40,42	10uF Tant.Cap
44	C1,3-19,21,23-39,41	0.1uF ceramic
3	JB1,2,4	CHD6900W1S
36	16 Pin sockets	640356-3 AMP
1	20 Pin socket	640464-1 AMP

C - 1
APPENDIX D

DSTD-328 SCHEMATIC
<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION

- Integrated Circuit: PAL-20
- Integrated Circuit: PAL-8
- Printed Circuit Board: PAL-16
- Print Circuit Board: PAL-24
- Integrated Circuit: PAL-8
- Printed Circuit Board: PAL-16

DESIGNATION

- U1-3
- U2-3
- U3-3
- U4-3
- U5-3
- U6-3
- U7-3
- U8-3
- U9-3
- U10-3

Additional Components

- Socket: IC-16 Pin DIP
- Socket: IC-20 Pin DIP
- Socket: IC-24 Pin DIP

Notes

- Capacitor, Ceramic, 27pF
- Resistor, Fixed, 1kΩ
- Resistor, Fixed, 10kΩ
- Resistor, Fixed, 100kΩ
- Resistor, Fixed, 1MΩ
- Resistor, Fixed, 10MΩ
IC Power Pins

<table>
<thead>
<tr>
<th>Type</th>
<th>+12</th>
<th>+12</th>
<th>+5</th>
<th>-5</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>5556-14B</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>55116.8</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4164</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>74LS245</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>74LS373</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>74L582</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>74LS74</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>745138</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>74LS5139</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>745280</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>74LS74</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Delay Line</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Note:

1. Unless otherwise specified:
 - Resistance values are in Ohms
 - Capacitance values are in microfarads
 - Values preceded by the symbol + (plus) or – (minus) are in volts