
DSI Transputer 

B Y T E  �  February 1988 - 1 - 

John Poplett and Rob Kurver 
 
 

The DSI  Transputer Development System 
 
Definicon Systems' new Transputer coprocessor board  
puts concurrency in your IBM PC 

 
ew-generation microprocessors like the 

80386 and the 68020 have brought the power 
of a minicomputer onto the desktop.  Yet 
even this power is inadequate for software 
designers who are working with applications 

that run mainly on supercomputers, such as ray tracing and 
other solid modeling graphics. 

Increased microcomputing power is emerging from two 
main areas of technological development: high-speed 
reduced-instruction-set computer (RISC) technology and 
parallel processing.  RISC technology offers the promise of 
microcomputer systems that approach today's 
supercomputers in performance, yet it requires little 
change in the way current software is developed. Parallel 
processing offers the promise of systems whose computing 
power is limited only by the resources of the system 
designer and the ingenuity of the programmer. 

BYTE has arranged with Definicon Systems to offer 
BYTE subscribers the TG2 multiprocessor board and TCC, 
a parallel C compiler, at a special introductory price (see 
the text box on page 250).  The board and compiler let you 
develop software in parallel at a cost lower than previously 
possible.  This board contains two 32-bit INMOS 
Transputers, a host interface, and a television-quality 
graphics section on a single IBM PC expansion bus card. 
 
The INMOS T414 Transputer 

The idea of yoking together a number of processors in 
parallel to perform a computationally demanding task is as 
conceptually simple as it is difficult to implement.  The 
appeal of this approach is that, in theory, you can add more 
processors to such a system as computational workloads 
increase.  The difficulty is that conventional 
microprocessor technology makes little, if any, provision 
for the fundamental, requirement of parallel processing: a 
mechanism for interprocess communications. 

The INMOS Transputer was designed for parallel 
processing; facilities for interprocess communications are 
embedded in the chip's silicon.  In addition to a 32-bit 
microprocessor, a dynamic RAM (DRAM) memory 
controller, and 2K bytes of 50nanosecond on-chip RAM, 
the Transputer implements four high-speed direct-memory-
access engines-dubbed "links" by INMOS-for serial data 
communication with neighboring Transputers.  Transputer 
links comprise two unidirectional channels each.  The links 
can transfer data in both directions at a rate of up to 20 
megabits per second.  The four hardware links and the 
microprocessor can independently access memory 

simultaneously; this is accomplished with minimal loss in 
processor throughput. 

The links implement a communication protocol in 
hardware.  The Transputer communicates by sending data 
bytes down the output channel of a link, framing each data 
byte with a start and stop bit.  Once it has sent a data byte, 
the Transputer waits until it receives an acknowledge 
message on the input channel of the link.  Programmers 
have access to these hardware links via instructions in the 
instruction set of the Transputer's microprocessor. 

The Transputer supports multitasking in hardware, but it 
is more instructive, with respect to the Transputer's design, 
to regard multitasking as virtual concurrency.  In a 
Transputer network, parallel processes may be physically 
concurrent (running on separate Transputers) or virtually 
concurrent (multitasking on the same Transputer).  In 
practice, physically concurrent and virtually concurrent 
processes most likely will be running on a Transputer 
network. 

The Transputer's multitasking capability makes it 
possible for you to write a concurrent program for a 
network of Transputers even when the number of 
computing nodes in the network is unknown or may vary.  
You could design a program embodying, say, twelve 
parallel processes to function the same on a single 
Transputer as it would on a network of two, three, four, or 
twelve Transputers.  Programs designed in this manner can 
gain an almost linear increase in execution speed as you 
add Transputers to the network. 
 
TCC, A Parallel C Compiler 

TCC is a superset of the Kernighan and Ritchie 
definition of C that incorporates extensions to support 
concurrent programming on a network of Transputers.  The 
TCC package consists of a compiler, an assembler, a 
linker, and a run-time library. 

The TCC's run-time library closely follows the emerging 
ANSI run-time standard.  It accomplishes access to the 
host PC's file system via level-two file I/O functions, such 
as fopen( ), fread( ), fwrite( ), getc( ), and so on.  Functions 
for low-level access to the host (e.g., bdos( ) and sysint( )) 
and functions for sending and receiving message packets 
supplement the standard run time. 

You can control all the Transputer's devices directly, 
including those that support concurrency, by the MPU's 
microcode.  The Transputer's instruction set has 
instructions to start up processes, to start up interprocess 
communications, to select a process's priority, and to cause 



DSI Transputer 

B Y T E  �  February 1988 - 2 - 

a process to wait on an event., Standard high-level 
languages (HLLs), including C, Pascal, and FORTRAN, 
lack any formal constructs that correspond to these 
operations.  Consequently, conventional language 
implementations would never access the Transputer's 
concurrent programming resources. 

To get at the Transputer's parallel processing 
capabilities, you have a few options.  You could provide a 
subroutine or function library to extend the language.  
Another possibility is a distributed operating system or 
kernel that manages all the parallel aspects of a system 
through system calls.  The option we took in the 
development of TCC was to extend the definition of the C 
language.  These extensions include the channel data type, 
the par construct, the alt construct, and the pseudo-variable 
timer. 

Extending the language definition has the advantage of 
efficiency, since the compiler produces in-line code 
(instead of a function or system call) whenever a 
programmer uses one of these parallel constructs.  The 
efficiency gained by this approach is similar to that gained 
by a compiler that generates in-line code for a floating-
point unit rather than calling floating-point functions. 

 
Parallel Extensions 
Parallel extensions include the following: 

o The channel data type and interprocess 
communications.  TCC's channel data type supplies the 
mechanism for synchronized process-to-process 
communications.  The programmer uses channel variables 
to send data entities between two processes.  These 
processes may reside on the same Transputer or on two 
different Transputers connected by a link.  The channel 
data type conducts interprocess communications with 
equal facility in either instance.  Channel variables behave 
in a manner that is consistent with the C language.  They 
accept the cast operator, the sizeof operator, and type 
checking. 

C's assignment statement is used with channel variables 
to send and receive data between two processes.  When 
data is "assigned" to a channel variable within a process, 
the process attempts to send the data; conversely, when a 
channel variable assigns its contents to a data variable, the 
process attempts to read data via the channel into the data 
variable.  Communication is synchronized; it occurs only 
when two processes become ready to communicate via a 
shared channel.  The Transputer automatically deschedules 
a process that is waiting to communicate.   
 
The following code fragment illustrates how a process 
might send a message to a host system: 

static char *msg = "hello world!";
char *ptr = msg;
channel *host = (channel*)Ox8OOOOOOO; /*

host link output */

while(*ptr)
*host = *ptr++;

 
Whereas this code fragment illustrates how a program 

might send a character string down a link, the channel data 
type supports the transmission of a variety of data types, 

including floats, integers, arrays, and structures.  Here is an 
example using non-pointer channel variables: 
 
channel Comm0l;

CalcOl() {
double result;
for(;;) (

.. code .... /* a nasty
calculation here */

Comm0l = result;
}

}

IOProc0l() {
double result;
for(;;) {
result = Comm0l;
printf(“result: %g\n”, result);
}

}

 
In this example, Calc0l and IOProc0l run as 

concurrent processes.  IOProc0l waits to receive result 
over the channel Comm0l.  Upon receipt of result, 
IOProc0l displays the value on standard output; 
CalcOl is released to start its next calculation.  Pending 
input from Calc0l, the Transputer deschedules 
IOProc0l so that microprocessor unit (MPU) cycles are 
not wasted on an idle process. 

o The par construct.  This starts up (spawns) processes 
on a Transputer.  It resembles a compound statement in C: 
 
void proc0l(), proc02(), procO3();

.... code ....

par {
proc01();
proc02();
proc03();

}

.... code ....

This example starts three separate processes to call each 
of three functions.  The processes terminate when the 
functions return.  The parent process waits for the 
three processes to terminate and then resumes 
execution with the code following the par statement.  
Processes started with the par construct each have 
their own stack (or "workspace, " as it is known in 
Transputer nomenclature).  Workspace requirements are 
calculated by the compiler at compile time and 
dynamically allocated at run time. 

o The timer pseudo-variable.  The timer pseudo-variable 
provides the programmer with access to the Transputer's 
on-chip timer.  By means of this pseudo-variable, you can 
read the hardware timer or write to it almost as if you were 
reading or assigning a value from an integer variable: 
 



DSI Transputer 

B Y T E  �  February 1988 - 3 - 

#include <time.h>
(int) timer = 0;

.... code .... /* your favorite
benchmark here */

printf("ELAPSED TIME IN SECONDS "
"%ld\n", timer/CLK-TCK);

In this example, the assignment to timer is prefixed with 
an integer cast operator.  The cast operator informs the 
compiler to initialize the hardware timer only.  You can 
deschedule a process for a specific interval with the use of 
the timer pseudo-variable: 
 

timer += 1000; /* sleep for a thousand
clock ticks */

o The alt construct.  The alt construct provides a 
software mechanism whereby a process may arbitrate 
between events.  With the alt construct, a process can test 
the readiness of any of several events, selecting the first 
event to become ready.  An event may be a ready channel, 
a ready timer, or a Boolean true condition.  Each 
component of an alt construct (i.e., each alternative) uses 
the keyword guard. 

Its syntax and function are not unlike the C switch 
statement: 

 
typedef Boolean int;
channel Comm01, Comm02;
int Result;
Boolean NoTimeOut = FALSE;

.... code ....

TimeOutBegin:

alt
{
/* boolean event */
guard NoTimeOut: break;

/* channel event */
guard &Comm01: Result = Comm01;

break;

/* channel event */
guard &Comm02: Result = Comm02;

break;

/* timer event */
guard timer += 1000; break;

/* no event ready just yet */
default: goto TimeOutBegin;

}
 
This code fragment illustrates how you can use the alt 

construct to multiplex channels and to time-out a process 
in the event of a communications failure.  This statement 
evaluates three alteratives: It checks for the readiness of 
the Boolean flag Timeout, the readiness of channels 
Comm0l and Comm02, or the readiness of the timer.  
Alternatives are evaluated in the same order as they are 
written: from top to bottom.  Thus, if two events should 
become ready simultaneously, the first in order is selected.  
The first alternative tests the status of the Boolean variable 
NoTimeout.  If true, the alternative is skipped altogether.  

The next two alternatives check for pending input on one 
of two channels.  Should either channel become ready, an 
input is performed and the alt statement terminates. (In this 
instance, input from two processes are multiplexed; in an 
actual application, an I/O routing process might funnel the 
output of a number of processes into a single channel.) The 
third alternative will cause a timeout if either of the two 
channels should fail to become ready within a specific time 
interval.  Our example merely breaks out of the alt 
statement on a time-out; you could use this alternative to 
initiate a recovery strategy or to print an error message. 

o The #pragma macro preprocessor directive.  TCC 
provides a number of #pragma preprocessor directives to 
give the programmer greater control over program 
execution.  These directives include- #pragma par, 
#pragma seq, #pragma fast, #pragma slow, and #pragma 
stack. 

The par and seq directives allow you to control the 
compilation mode of a C module.  You can also select 
either mode from the command line upon compiler 
invocation.  In the parallel compilation mode, functions 
call a workspace allocator to a reserve space for local 
variables.  This dynamic allocation of process workspaces 
ensures that recursion is possible even when multiple 
processes are executing concurrently.  In sequential 
compilation mode, a single workspace is allocated at 
program startup.  This workspace behaves identically to a 
stack on a conventional microprocessor.  You use the 
sequential mode when a Transputer program consists of a 
single process, obviating the overhead of dynamic 
workspace allocation.  You can use sequential mode when 
single-process programs are run on multiple Transputers. 

The stack directive instructs the compiler to reserve a 
specific amount of memory for a given function or set of 
functions. This directive takes a hexadecimal value as an 
argument.  It typically prefaces a function definition: 

 
# pragma stack 8000

main(argc, argv)
int argc;
char *argv[];
{
.... code ....

}

The fast and slow directives are used in conjunction with 
the parallel compilation mode.  They provide control over 
the workspace allocator.  Functions prefaced by the fast 
directive will first try to obtain their workspaces from the 
Transputer's on-chip RAM, while functions prefaced by 
the slow directive will receive their workspaces from 
external memory. 

 
Run-time Support for Parallel Processing 
The TCC run time provides additional support for the 
Transputer's parallel processing capabilities, particularly in 
instances where the compiler's language extensions are ill 
suited. 

 
The functions msgsend( ) and msgrcv( ) send and receive 

data packets of arbitrary lengths across channels.  Channel 
assignments work only with data entities whose size is 



DSI Transputer 

B Y T E  �  February 1988 - 4 - 

known to the compiler.  Consequently, you will often use 
these functions to send and receive buffers: 

 
channel Comm01;
Proc01()
{
static char *msg = “hello world!\n”;

Comm01 = strlen(msg);
msgsend(&Comm01, msg, strlen(msg));

}

Proc02()
{
char str[MAXSTRLEN];
int length;

length = Comm01;
msgrcv(str, &Comm01, length);
puts(str);

}
 
The function startp( ) takes a function address as a 

parameter and starts the function as a separate process.  A 
programmer can use startp( ), albeit with caution, to run 
multiple processes in a program compiled in sequential 
mode. 

The function resetch( ) initializes a channel variable, 
taking the address of a channel variable as a parameter. 
(You must initialize channel variables before you can use 
them.) 

The two functions stpri ( ) and ldpri ( ) pertain to 
process priority levels, of which, on the Transputer, 
there are two: high and low.  The function stpri( ) 
sets the priority status of the process that calls it; 
ldpri( ) returns the priority status of the calling process.  A 
high-priority process will always execute in preference to a 
low-priority process.  However, the Transputer will 
deschedule a high priority if that process is waiting to 
communicate or is waiting for a timer to 3ecome re 
Transputer will then grant time slices to any extent low-
priority processes.  Should the high-priority process 
become ready to run again, the low-priority processes will 
be interrupted. 
 
Programming a Transputer Network with TCC 
On a single Transputer, we can start up a number of 
processes using TCC's par construct or the run-time startp ( 
) function.  Running multiple processes on a single 
Transputer compares to the kind of multitasking that 
operating systems such as Unix perform.  In this case, we 
do not have true concurrency but, rather, virtual 
concurrency.  You can achieve true concurrency on a 
single Transputer with programs that make use of channel 
I/O.  In such a case, it is possible to employ one or more of 
the Transputer's links even as the MPU is executing code. 

The link facilities of the Transputer make it possible for 
you to use various schemes of interconnection between 
multiple Transputers in a network.  These interconnection 
schemes are known as "topologies." 

Topology types include two-dimensional arrays, systolic 
arrays, hypercubes, and trees.  Strategies in implementing 
or choosing a Transputer topology may involve 
minimizing the distance of link paths between Transputer 

nodes for efficiency and redundancy of ha paths for 
reliability.  In the programming example that follows, we 
chose to make a daisy chain of Transputer nodes; this 
topology has the virtue of simplicity. 

 
Concurrency with Multiple Transputers 
Two expedient techniques for concurrent programming on 
a Transputer network are pipelining and the FARM 
architecture. 

Pipelining sets up stages of a program, with each stage 
lodged on a separate Transputer.  The first stage sends its 
output to the second stage, the second to the third, and so 
on.  A compiler is a good example of a program that stands 
to benefit from pipelining.  A pipelined compiler, running 
on a Transputer network, might run its preprocessor in the 
first stage, the lexical analyzer and parser in the second 
stage, the code generator in the third, and an output 
process, which resolves a binary image to a specific link 
format, in the fourth.  Pipelining transforms a program 
from a single sequential process with multiple phases to an 
ordered set of concurrent processes.  In addition to the 
performance benefit, a pipelined program imposes the kind 
of modular design on a program that lends itself to ease of 
maintenance and team development efforts. 

The FARM architecture is implemented by identifying 
one or more points in a program where a calculation task 
iterates through a wide body of data.  These calculation 
tasks are then coded as individual processes and replicated 
on each node in a Transputer network.  Typically, a 
message passer process or processes are replicated on the 
network along with these calculation processes. 

The following represents a simple form for a calculation 
process on a FARM: 

 
1. Wait for input on a given channel or

link.
2. Input the data.
3. Perform the calculation on the data.
4. Wait for output on a given channel.
5. Output the data.
6. Repeat.
 
The program TDHRY.C is a version of the well-known 

Dhrystone benchmark modified to run in parallel on a 
Transputer network. [Editor's note: TDHRY C is available 
for uploading from BYTEnet and BIX.  The author has 
also provided another example program-PWC.  C, a word-
counting program-for uploading.  It and its 
documentation, PWC.  DOC, are available on BYTEnet 
and BIX.] It uses a rudimentary FARM architecture.  
Underpinning the TDHRY.C program is a network hooter, 
NB.LIB, or NB for short.  NB performs the fundamental 
task of booting TDHRY.C on multiple Transputers.  The 
operation of NB, as shown in the list below, is fairly 
straightforward: 



DSI Transputer 

B Y T E  �  February 1988 - 5 - 

 
1. A prebooter reads NB into Transputer

memory.

2. NB reconstructs a clone image of itself
and the prebooter in Transputer memory.

3. Each of the nonboot links is tested for
the presence of a Transputer on the
other end.

4. The status of each of the four links,
including the boot link, is recorded in
an array.

5. NB uploads a copy of itself (its clone
image) to each of the active non-boot
links.

6. NB begins to read in the program
proper. As it reads in the program,
copies are sent to all the active non-
boot links (those that received a copy
of NB). Any requisite code relocation,
data initiation, and so on, is done at
this time.

7. NB reads in the command-line argument
count and the argument vector from its
boot link. To each of the active non-
boot links NB sends out a null argument
count. (Thus, only the program on the
root Transputer has a non-null argument
count.)

8. NB sets up a stack for the program and
calls main().

 
NB acts as a virus, spreading itself and a program 

throughout a Transputer network.  The original copy of the 
program (that lodged on the root Transputer) differs from 
its clones in one respect: All clones have a null argument 
count, while the root program has an argument count of at 
least one (for argv[0]).  argv[0], of course, is a pointer to 
the program's name.  The clone copies of the program are 
(fittingly) nameless. 

NB is limited to a daisy-chain topology; it assumes only 
one connection between any two Transputers.  For other 
topologies, we would have to incorporate additional logic 
into NB; namely, NB would have to have a strategy to 
recognize an active link that has already been booted by 
another Transputer. 

With NB in place, the modifications to the Dhrystone 
benchmark are slight.  However, it is necessary to code in 
different logic paths that depend on whether the program is 
a clone copy or the original copy on the root Transputer.  
The root Transputer is charged with displaying the 
benchmark results on the console, since it is the only copy 
of the program with direct access to the host system. 

The following piece of code is the initialization code at 
the start of main(): 

 

main(argc, argv, LinkArray)

int argc;

char *argv[];

channel *LinkArray[];

{

int i, NoOfTxxs = 1;

/* if root copy of DHRY.c */

if (argc > 1)

{

/* get # of transputers */

NoOfTxxs = atoi(argv[1]);

}

/* if clone */

if (argc == 0)

{

/* get # of TXXs */

NoOfTxxs = *_fromhost;

}

for (i = 0; i < 4; i++)

{

channel *ChanPtr;

if ((ChanPtr = LinkArray[i]) != 0)

*ChanPtr = NoOfTxxs;

}

Proc0(argc, NoOfTxxs, LinkArray);

Exit(0);

}

The root copy of the program determines, from a value 
passed on the command line, the number of Transputers in 
the network.  Clone copies, lacking command- arguments, 
must determine the number of Transputers by fetching it 
from their boot link.  Then for each active link, the 
program-be it a clone or the root copy-passes along 
NoOfTxxs.  Eventually, all copies of TDHRY.C executing 
in the network are informed of the total number of 
Transputers in the network. 

The next point of interest in TDHRY.C occurs in 
Proc0(): 

 
loops = LOOPS/NoOfTxxs; /* adjust

iteration count */

 
Here, the constant LOOPS is replaced by the variable 

loops, which is equivalent to LOOPS divided by the total 
number of Transputers in the network.  The main iteration 
loop of the benchmark replaces the constant LOOP with 
the variable.  Thus, a single Transputer running the 
benchmark will iterate to the full value of LOOP; two 
Transputers running the benchmark will each iterate to 
LOOP / 2; four Transputers, to LOOP / 4; and so on . In 
any case, the number of total iterations performed on the 



DSI Transputer 

B Y T E  �  February 1988 - 6 - 

network will equal LOOP, and the results, save the overall 
execution time, will be the same. 

Once the main iteration loop of the program completes, 
each copy of the program on the network calculates its 
execution time, collects the execution times of any 
Transputers it might have itself booted, and forwards this 
value to the Transputer that booted it.  Eventually, the 
aggregate execution time is collected by the root copy of  
the program and displayed on the console: 

if (NoOfTxxs > 1)

{

for (i = 0; i < 4; i++)

{

channel *ChanPtr;

if (ChanPtr = LinkArray[i]) != 0)

{

ChanPtr = ChanPtr&0x10;

benchtime += *ChanPtr;

}

}

}

if (IsRoot)

{

printf(“Dhrystone(%s) time for “

“%ld passes = %ld\r\t”,

version, (long) LOOPS,

benchtime);

printf(“This machine benchmarks at “

“%ld dhrystones/second\r\n”,

((long) LOOPS) / benchtime);

}

else

{

*_tohost = benchtime;

}

 
Theoretically, the parallel Dhrystone should yield almost 

linear increases in performance as Transputers are added to 
the network.  Communications overhead will, of course, 
preclude the possibility of strict linear increases.  Running 
TDHRY.C on the TG2 board confirms the theory: On a 
single 20-MHz Transputer, TDHRY.C achieves about 
4500 Dhrystones.  Two Transputers boost the execution 
time to about 8600 Dhrystones-not quite a factor of 2, but 
close. 

 
Conclusion 
The INMOS Transputer's on-chip support for parallel 
processing make it an efficient parallel-processing engine. 
The TG2, TCC, and the TMAC macro assembler combined 

form a cost-effective parallel-processing development 
system for PC users. 

TCC defines extensions to the C language that a high-
level language needs to harness the potential of the 
Transputer in a multiprocessor network. TMAC offers 
similar capabilities for assembly language programmer. 
With these tools, software developers can design programs 
for Transputer, networks of any size and with almost 
unlimited performance potential.  

 
ACKNOWLEDGMENT'S 
The authors of this article wish to acknowledge Trevor 
Marshall, Ph.D., Christopher Jones, Bernt Roelost, Hans 
Bieleman, Klaas Wijbrans, Merik Voswinkel, Professor 
Andre Bakkers, the Twente University of Technology, and 
Vince Williams, Ph. D., for their advice and support. 

 
BIBLIOGRAPHY 
Karplus, Walter J., ed. Multiprocessors and Array 
Processors. San Diego, CA: Simulation Councils Inc., 
1987. 
 
Roscoe, A. W., and C.A. R,. Hoare. The Laws of OCCAM" 
Programming. Oxford, England: Oxford University 
Computing Laboratory Programming Research Group, 
February 1986. 
 
Shepherd, Roger,. "Extraordinary Use of Transputer 
Links," INMOS Technical Note 1. Bristol, England: 
INMOS Ltd., 1986. 

 
"The Transputer Instruction Set-A Compiler Writer's 
Guide." Bristol, England: INMOS Ltd., May 1987. 
 
Transputer Reference Manual. Bristol, England: INMOS 
Ltd., January 1987. 



DSI Transputer 

B Y T E  �  February 1988 - 7 - 

 
 

 

The TG2 Microprocessor Board 
 
  

he TG2 uses two 15-
MHz INMOS T414 
Transputers.  Each 
Transputer can address I 

megabyte of supplied DRAM in 
addition to its 2K bytes of internal 
memory.  You can upgrade the 
second section of the TG2 to 
accommodate 4 megabytes of 
DRAM. 

The graphics section provides a 
bitmapped display of up to 512 by 
512 pixels with 24 bits of color per 
pixel.  It can display over 16 million 
colors simultaneously on low-cost 
multisync monitors.  The display 
system operates independently of 
the host PC's display.  The on-board 
Texas Instruments 34061 video 
RAM controller allows complete 
programmability of the displayed 
pixel count and the sync rates (e.g., 
for PAL operation). 

The Transputer board 
communicates with the host PC for 
console I/O and other system 
service requests via a Transputer 
hardware link.  To ease the 
programming task, the TG2's host 
interface causes the host to appear 
as though it were another 
'Transputer on the network. 

The TG2 provides a row of pin 
headers for interconnection of 
Transputer links, affording the 
developer complete control over 
network topologies.  You can 
arrange the Transputers in two 
dimensional grids, binary trees, 
hypercubes, or systolic arrays.  You 
can network and run multiple TG2s 
from the host PC, and larger 
Transputer networks are possible 
with the use of a PC expansion 
chassis.  The size of the Transputer 
network is limited only by the 
number of available expansion slots 
and power supplies. 

You can also use the TG2 with 
Definicon's T4 multiprocessor 
board.  The T4 omits the graphics 
section to provide four Transputer 
sections on a single PC expansion 
bus card. 

 
A Transputer Macro Assembler 
Definicon supplies each TG2 with a 
full-featured macro assembler, 
TMAC, to support Transputer 
program development at the 
assembly language level.  TMAC 
recognizes the complete instruction 
set, as published by INMOS, for the 
T414 and provides extensive 
pseudo-op codes to facilitate the 
programming task.  These pseudo-
op codes allow the programmer to 
define bytes, words, macros, and 
constants; to align code and data in 
memory; to toggle listings; and to 
include files. 
 
Product Information 

Definicon Systems will provide 
the DSITG2 Transputer graphics 
board and the TCC development 
system at the following special 
prices for BYTE readers.  Definicon 
has not allowed any margin for 
accounting overhead, so no 
purchase orders can be accepted for 
these products.  At these prices, 
documentation is supplied on floppy 
disk. (You can order a printed copy 
of the documentation at additional 
cost.) 

To order, contact Definicon 
Systems (1 100 Business Center 
Circle, Newbury Park CA 90320, 
(805) 499-0652).  Terms of 
payment are Visa, MasterCard, or 
American Express only.  There is a 
30-day, no-questions-asked, 
moneyback guarantee.  Goods must 
be returned in "as new" condition in 
original packaging for full credit. 

Software support available is 
limited to diagnosis and correction 
of your software problem, The TG2 
board has been tested in machines 
compatible with the EBM XT and 
AT.  If it doesn't work in yours, 
Definicon reserves the right to 
either correct the problem (if it 
pertains to the DSI-TG2) or refund 
your money. 

The DSI-TG2 will operate in a 
system with floppy disks, but you'll 

need a hard disk for meaningful 
program development. 

The DSI-TG2 with a single 
Transputer section costs $945.  One 
Transputer section consists of I 
megabyte of dynamic RAM and one 
15-MHz T414; a host interface 
section; MS-DOS interface 
software; and macro assembler-
assembled and tested. 

The DSI-TG2 with two 
Transputer sections costs $1595.  
Two Transputer sections consist of I 
megabyte of DRAM and one 15-
MHz T414 per section; a host 
interface section; MS-DOS interface 
software; and macro assembler-
assembled and tested. 

The DSI-TG2 with two 
Transputer sections and graphics 
costs $1995.  Two Transputer 
sections consist of I megabyte of 
DRAM and one 15-MHz T414 per 
section; one high-definition 
graphics section (512 by 512 pixels, 
24 bits per pixel); multisync 
monitor output; a host interface 
section; MS-DOS interface 
software; and macro assembler-
assembled and tested. 

The TCC "Parallel" Development 
System consists of a TCC compiler, 
assembler, and linker for 395.  The 
Kernighan and Ritchie definition C 
compiler has extensions for parallel 
programming, in addition to many 
Unix and ANSI extensions. 

TG2 and TCC documentation 
costs $35 and includes typeset, 
printed material for the DSI-TG2 
Transputer board; TMAC, the 
Transputer macro assembler; and 
the TCC Development System. 

  


