
October 1995

The information in this datasheet is subject to change

42 1593 05

1/66

FEATURES

High speed parallel to DS-Link converter.

Data-Strobe Link (DS-Link) interface device
for high speed asynchronous communications
avoids the need for high speed clocks within the
system. Interfaces directly to STC104 Asynch-
ronous Packet Switch (APS).

Performs DS-Link packetization for APS.

Full duplex serial interface operating at 100
Mbits/s serial bandwidth in each direction (19
Mbytes/s bi-directional).

Programmable parallel bus interface (16 and 32
bit modes).

Variable packet length capability.

64 byte Tx and Rx FIFOs optimize packet
processing performance.

Packetization function can be disabled to
provide simple point to point connection.

Provides point-to-point bi-directional hands-
haken high speed FIFO function.

Optional handshaken ports.

Interrupt capability.

Link loop back for test purposes.

Independent clock systems.

100 pin quad flat pack package.

Single +5V ” 5% power supply.

APPLICATIONS

Allow ATM, Fibrechannel, switched Ethernet/
Token Ring and other communications nodes to
take advantage of SGS-THOMSON’s high
speed Asynchronous Packet Switch architec-
ture.

Connecting microprocessors/peripherals to
STC1xx family communications devices.

High speed heterogeneous link between micro-
processors in a multi-processor system.

Rx data

Rx frame
buffer

Rx data
FIFO

Tx data
FIFO

Tx frame
buffer

Tx data

Bus
C

om
bi

ne
S

ep
ar

at
e

P
ar

al
le

li
nt

er
fa

ce

System services

Signals

D
S

-L
in

k

STC101

PARALLEL DS-LINK ADAPTOR
ENGINEERING DATA

STChapter

STC101

2/66

Contents

3/66

1 STC101 introduction 5. .

2 Communication on an STC101 system 6. .

2.1 Levels of communication protocols 6. .

3 STC101 functional overview 8. .

4 Pin designations 10. .

5 Processor interface modes 13. .

5.1 16-bit processor interface 13. .

5.2 32-bit processor interface 14. .

5.3 16-bit processor interface with token interfaces 14. .

5.3.1 16-bit processor interface with non-multiplexed token interfaces 14.
5.3.2 16-bit processor interface with multiplexed token interfaces 16. .

6 Operation of the STC101 17. .

6.1 Transparent mode 18. .

6.1.1 Data transmission in transparent mode 18. .
6.1.2 Data reception in transparent mode 18. .

6.2 Packetizing mode 19. .

6.2.1 Data transmission in packetizing mode 19. .
6.2.2 Data reception in packetizing mode 20. .

7 Buffering 22. .

7.1 Data buffering for both modes of operation 22. .

7.2 Frame buffering for packetizing mode operation 23. .

7.2.1 Tx frame buffering 23. .
7.2.2 Rx frame buffering 23. .

8 Parallel interface 24. .

8.1 Access to the ports 24. .

8.1.1 Access to the framing and configuration/status ports 24. .
8.1.2 Access to the data ports 24. .

8.2 Valid/Hold protocol of the token interfaces 26. .

9 Link interface 27. .

9.1 Data/Strobe links 27. .

9.2 Low-level flow control 28. .

9.3 Link speeds 28. .

9.4 Errors on DS-Links 29. .

9.4.1 Reliable links 29. .
9.4.2 More reliable links 29. .

STC101

4/66

9.5 Link state on start up 30. .

9.6 Resetting DS-Links 30. .

9.7 Link connections 30. .

10 Interrupts 32. .

11 Clocking 33. .

12 Reset 33. .

13 Programmable register functionality 34. .

13.1 System services registers 34. .

13.2 Interrupt registers 35. .

13.3 Framing data registers 38. .

13.3.1 Tx framing registers 38. .
13.3.2 Rx framing registers 40. .

13.4 FIFO registers 42. .

13.5 DS-Link registers 43. .

14 Address map 45. .

15 Timing specifications 46. .

15.1 Clock timings 46. .

15.2 Bus interface timings 47. .

15.2.1 Asynchronous bus timings 48. .
15.2.2 Synchronous bus timings 52. .

15.3 Token interface timings 55. .

15.4 DS-Link timings 57. .

15.4.1 Link Input and Output relative skews 58. .
15.4.2 Skew budget 59. .

16 Electrical specifications 60. .

16.1 Absolute maximum ratings 60. .

16.2 Operating conditions 61. .

16.3 DC characteristics 61. .

16.4 Power rating 61. .

17 Package specifications 63. .

17.1 STC101 100 pin CQFP package pinout 63. .

17.2 STC101 100 pin CQFP package dimensions 64. .

17.3 STC101 100 pin CQFP package thermal data 65. .

18 Ordering information 66. .

STC101

5/66

1 STC101 introduction
The STC101 Parallel DS-Link Adaptor allows high speed serial DS-Links to be interfaced to buses
and peripherals. It is part of the family of communications devices, which also includes the STC104
Asynchronous Packet Switch. These communications devices are based on the DS-Link. DS-Links
consist of four wires, two in each direction, one carrying data and one carrying a strobe, hence the
term DS-Links (data-strobe). Each link can operate at up to 100 Mbits/s, providing a bidirectional
bandwidth of 19 Mbytes/s. The link protocol supports virtual channels and dynamic message routing,
and provides a high data bandwidth. The DS-Link protocols are part of the proposed standard for
Heterogeneous InterConnect (P1355).

The STC101 provides an inter-networking solution for mixed processor systems, allowing systems
to be constructed using the optimum mix of microprocessors and peripherals, for processing power,
communication bandwidth and system cost. Its potential range of applications include interfacing
several different types of microprocessors and peripherals, and also applications such as switches
for ATM, FibreChannel, and switched Ethernet and Token Ring systems.

The STC101 converts between the serial DS-Link format and external systems such as buses,
peripheral devices and microprocessors. It is particularly suitable for interfacing such devices to
interconnects which deal in packets consisting of data and header information. This header informa-
tion may be used to demultiplex packets from different sources and/or route them through one or
more switches.

The STC101 has two basic modes of operation, depending on whether it has packetization enabled
or not. With packetization disabled it provides simple access to the DS-Link, all data provided to the
STC101 is transmitted down the DS-Link. This mode can be used either by devices which do not
need to use a higher level protocol on the DS-Link or by devices which take responsibility for the
formation of packets. The STC101 simply transmits the data provided down the DS-Link hence the
term transparent mode is used. With packetization enabled it can be used by less specialized
devices such as processors to exploit efficiently devices such as the STC104 Asynchronous Packet
Switch (refer to the STC104 datasheet (document number 42 1470 06) for details). In this mode the
STC101 builds packets as used by the STC104 and hence this mode is referred to as packetizing
mode.

In both modes the STC101 parallel interface can be used in one of three ways;

16-bit processor interface,

32-bit processor interface,

16-bit processor interface with token interfaces (providing two 9-bit unidirectional buses for
the token interfaces).

The STC101 contains FIFO buffering for data and packet framing information. This smooths out
differences in data rates and maximizes the possibilities for parallelism in packet handling.

6/66

2 Communication on an STC101 system
The STC101 can transfer packets of arbitrary length. It contains both a Tx and an Rx data FIFO which
can each buffer up to 64 bytes (which is sufficient for one complete ATM cell). It also contains
buffering for both the Tx and Rx framing information. Support is provided so that the STC101 may
be used with a small amount of external logic to reproduce the virtual channel protocol as used by
the control channels of the STC104 for a single virtual channel at a time, or with a larger amount of
logic or a processor to reproduce the protocol for many virtual channels.

The structure of packets is shown in figure 2.1. To enable packets to be routed by STC104s, each
packet has a header at the front which contains routing information. Bytes following the header are
treated as the data section of the packet until a packet termination token is received. A packet
termination token is either an EOP (end of packet) token or an EOM (end of message) token. Packets
containing no data and terminated by an EOP token are called acknowledge packets and may be
used for special purposes by higher level protocols.

header packet body
packet

terminator

direction of travel

header end of packet
token

Data
packet

Acknowledge
packet

Figure 2.1 Structure of a packet on DS-Links

2.1 Levels of communication protocols

There is a hierarchy of protocols on DS-Links. The five levels of protocol are listed below. These
protocols have been adopted by the working group of IEEE standard P1355, although the
terminology employed by the working group differs slightly from that used here.

1 electrical

2 bit level (data-strobe encoding)

3 token level (includes device-to-device flow-control)

4 packet level (interface to routing function)

5 message level (e.g. 32 byte packets, packet/acknowledge protocol)

There is a DS-Link macrocell on the STC101 which deals with the first three levels of protocol
automatically. In addition the STC101 contains logic which supports the packet level of protocol, that
is the addition and subtraction of framing information (headers and termination tokens) from the raw
data stream. The information regarding packetization is handled separately from the data to maxi-
mize the possibilities for concurrent processing. Note that the packetization function can be disabled
if only a simple point-to-point connection is required.

STC101

7/66

When packetization is enabled, the STC101 handles the packet level protocol. The STC101 does
this by either separating out or combining the streams of frame (packet headers and termination
tokens) and data information. The device is full-duplex and the two directions are entirely indepen-
dent.

Table 2.1 shows which of the levels of protocol are handled by the STC101 and which by the external
processor when packetization is enabled and when it is disabled.

Protocol Packetization enabled Packetization disabled

Protocol handled by

electrical C101 C101

bit level C101 C101

token level C101 C101

packet level C101 external processor

message level external processor external processor

Table 2.1 Table showing which device handles the level of protocol

To transmit data in packets, the STC101 assembles four components of information, which are
provided by the user on a packet-by-packet basis.

packet header

packet length

number of bytes of data

packet terminator type

The STC101 provides buffering for this information, so that the components of the next packet can
be supplied whilst the previous packet is still being transmitted, enabling the link to be driven
continuously.

As the STC101 receives packets, it separates them into the same set of components. Buffering is
provided to enable the user to accept the components of a packet while the next packet is being
received and separated.

8/66

3 STC101 functional overview
An STC101 block diagram is shown in figure 3.1. The STC101 provides an interface between a serial
DS-Link and a parallel bus or peripheral. The parallel interface can be used as a 16 or 32-bit
processor interface, or as a 16-bit processor interface with additional token interfaces.

Rx frame
buffer

Rx data FIFO

Tx data FIFO

Tx frame
buffer

Tx data

Rx data

Bus

C
om

bi
ne

S
ep

ar
at

e

System services

DS-Link

Control
signals

LinkOutData

LinkOutStrobe

LinkInData

LinkInStrobe

BusClock

Parallel
interface
adaptor

Tx data
port

Tx framing
port

Rx data
port

Rx framing
port

Configuration/
status port

SysClock

Reset

fr
am

e
an

d
da

ta
in

fo
fr

am
e

an
d

da
ta

in
fo

Link interfaceProcessor interface

Figure 3.1 STC101 block diagram

STC101

9/66

The internal interface of the STC101 consists logically of five distinct ports, as follows:

Tx data port – STC101 receives data for transmission down the DS-Link.

Tx framing port – tx framing information (headers and termination tokens) that is added to
the data to make packets for transmission down the DS-Link.
The framing ports are disabled in transparent mode.

Rx framing port – rx framing information (headers and termination tokens) that is separated
from the data of packets received on the DS-Link.
The framing ports are disabled in transparent mode.

Rx data port – STC101 provides data received from the DS-Link.

Configuration and status port – configuration registers are set up and read.

The parallel interface adapter multiplexes the logical ports onto the physical ports.

The STC101 contains FIFO buffering for data and packet framing information. This smooths out
differences in data rates and maximizes the possibilities for parallelism in packet handling.

System services provides general information for operation of the STC101. System services include
a set of configuration registers which contain status and control information.

10/66

4 Pin designations
The following tables outline the function of each of the pins. Package pinout details are given in
chapter 17.

Signal names are prefixed by not if they are active low, otherwise they are active high.

Supplies

Pin In/Out Function

VDD Power supply

GND Ground

Table 4.1 STC101 supplies

Clocks

Pin In/Out Function

BusClock in Bus clock

LogicClock in 50 MHz system clock

Table 4.2 STC101 clocks

System services

Pin In/Out Function

Reset in System reset

Table 4.3 STC101 system services

Bus

Pin In/Out Function

Addr0-4 in Address bus.

Data0-31 in/out Data bus. Data0 is the least significant bit (LSB) and Data31 is the
most significant bit (MSB).

Data16-31 If only 16 bits of the data bus are required, Data16-31 pins can be
used for RxData0-7 and TxData0-7 signals (refer to table 4.5).

notCS in Chip select.

ALE in Address latch enable.
Used for multiplexed address/data.

BusWait out Used as acknowledge access valid for synchronous bus.
Used as a wait in asynchronous mode.

RdnotWr in Read or write data.

notBusOE in Data output enable.

BusSnotA in Synchronous or asynchronous bus operation.

Bus32not16 in 32-bit or 16-bit data bus.

EnableTxRx in Enable token interfaces.

Table 4.4 STC101 bus

STC101

11/66

Token interface

The signals are all synchronized to the bus clock.

Pin In/Out Function

RxValid out Signals valid data on RxData0-7.

RxHold in High when the connected device cannot accept data.

RxEOXnotData out Signals a packet termination token (EOP or EOM), not data. The two
tokens are distinguished by bit 7 of the data bits (RxData7).

If RxData7 is 1, the token is an EOP.
If RxData7 is 0, the token is an EOM.

The other data bits (RxData0-6) will be 0.
This pin is enabled/disabled by the notRxOE pin.

notRxOE in Rx token interface data output enable. Used for multiplexed Rx and
Tx token interfaces.

RxData0-7 / Data24-31 out Rx token interface 8-bit data bus.

These signals aremultiplexed onto theData24-31 pins under control
of Bus32not16 and EnableTxRx pins (refer to table 4.4).

TxValid in Signals valid data on TxData0-7 .

TxHold out High when the STC101 cannot accept data.

TxEOXnotData in Signals a packet termination token (EOP or EOM), not data. The two
tokens are distinguished by bit 7 of the data bits (TxData7).

If TxData7 is 1, the token is an EOP.
If TxData7 is 0, the token is an EOM.

The other data bits (TxData0-6) should be 0.

TxData0-7 / Data16-23 in Tx token interface 8-bit data bus.

These signals aremultiplexed onto theData16-23 pins under control
of Bus32not16 and EnableTxRx pins (refer to table 4.4).

Table 4.5 STC101 token interface

12/66

Control signals

The signals are all synchronized to the bus clock.

These outputs reflect the state of the corresponding bits of the Tx and Rx Interrupt Status registers,
see section 13.2.

Pin In/Out Function

HeaderValid out Signal to indicate a valid header has been received.

PacketRx out Signal to indicate a complete packet has been received, i.e. a packet
terminator token has been received.

TxFifoLevel out Signals the Tx FIFO has reached its set level, see section 13.2, page
35 for details.

RxFifoLevel out Signals the Rx FIFO has reached its set level, see section 13.2, page
35 for details.

PacketTx out When set to 1, the TxSendPacket register (see table 13.10) can be
written to.

AckRx out Signals that an acknowledge packet (an empty packet terminated by
an EOP) has been received.

Int out Interrupt signal.

DisableInt in The EnableInterrupts register is cleared when this pin is asserted.

Table 4.6 STC101 control signals

Link

Pin In/Out Function

LinkInData in Link input data channel

LinkInStrobe in Link input strobe

LinkOutData out Link output data channel

LinkOutStrobe out Link output strobe

Table 4.7 STC101 link

Miscellaneous

Pin In/Out Function

HoldToGND Must be connected to GND

HoldToVDD Must be connected to VDD

DoNotWire Must not be wired

Table 4.8 STC101 miscellaneous pins

STC101

13/66

5 Processor interface modes

The parallel interface of the STC101 can be used in one of three ways; 16-bit processor interface;
32-bit processor interface; 16-bit processor interface with additional token interfaces.

The parallel bus interface can be used asynchronously or synchronously depending on the BusS-
notA pin. In both synchronous and asynchronous operation, all outputs are synchronized to the
external bus clock.

5.1 16-bit processor interface

Figure 5.1 shows the STC101 processor interface configured as a 16-bit data bus interface with its
token interfaces disabled.

Address0-4

Data0-15

notCS

ALE

RdnotWr

BusWait

notBusOE

BusSnotA

Bus32not16

EnableTxRx

STC101

0

0

parallel
interface

Figure 5.1 16-bit processor interface

The Bus32not16 pin is held low for 16 bit operation. The 16-bit data bus is on pins Data0-15, with
Data0 the least significant bit (LSB) and Data15 the most significant bit (MSB). In this case the
EnableTxRx pin is low to disable the token interfaces and the data pins Data16-31 are not used.

The chip select pin (notCS) and the data output enable pin (notBusOE) are active low.

The BusWait signal is used to signal acknowledge access valid for synchronous operation, or used
as a wait in asynchronous mode.

The ALE pin is used to signal address latch enable for multiplexed address/data.

14/66

5.2 32-bit processor interface

Figure 5.2 shows the STC101 processor interface configured as a 32-bit data bus interface with its
token interfaces disabled.

The Bus32not16 pin is held high for 32 bit operation. The 32-bit data bus is on pins Data0-31 , with
Data0 the least significant bit (LSB) and Data31 the most significant bit (MSB). The EnableTxRx
pin is low to disable the token interfaces.

Address0-4

Data0-31

notCS

ALE

RdnotWr

Wait

notBusOE

BusSnotA

STC101

Bus32not16

EnableTxRx

1

0

parallel
interface

Figure 5.2 32-bit processor interface

5.3 16-bit processor interface with token interfaces

This section describes the STC101 parallel interface configured as a 16-bit processor interface with
token interfaces.

5.3.1 16-bit processor interface with non-multiplexed token interfaces

Figure 5.3 shows the STC101 being used as a 16-bit processor interface with Tx and Rx token ports,
providing two 9-bit unidirectional buses for the token interfaces.

Data16-31 pins are used for the RxData0-7 and TxData0-7 signals. The RxData0-7 signals are
multiplexed onto the Data24-31 pins under control of the Bus32not16 and EnableTxRx pins. The
TxData0-7 signals are multiplexed onto the Data16-23 pins under control of the Bus32not16 and
EnableTxRx pins.

STC101

15/66

Address0-4

Data0-15

notCS
ALE

RdnotWr
Wait

notBusOE
BusSnotA

Bus32not16
EnableTxRx

TxEOXnotData
TxData0-7 /

TxValid
TxHold

RxEOXnotData
RxData0-7 /

RxValid
RxHold

notRxOE

Tx Token port

Rx Token port

STC101

0
1

Data24-31

Data16-23

parallel
interface

Figure 5.3 16-bit processor interface with token interfaces

16/66

5.3.2 16-bit processor interface with multiplexed token interfaces

Figure 5.4 shows the STC101 processor interface configured as a 16-bit processor interface with
multiplexed Rx and Tx token interfaces. The notRxOE pin is used to enable the Rx output. The
combined Rx and Tx data bus (TxRxData0-7) is multiplexed onto the Data16-23 and Data24-31
pins.

Address0-4

Data0-15

notCS
ALE

RdnotWr
Wait

notBusOE
BusSnotA

Bus32not16
EnableTxRx

STC101

0
1

TxRxEOXnotData

TxRxData0-7/

TxValid
TxHold

RxValid
RxHold

notRxOE

Multiplexed token
interface

parallel
interface

Data16-31

Figure 5.5 16-bit processor interface with multiplexed token interfaces

STC101

17/66

6 Operation of the STC101
The STC101 has two basic modes of operation, which is determined by the EnablePacketization
bit in the DeviceConfig register (see table 13.3). The default configuration is with packetization
disabled.

When packetization is disabled, the STC101 can be used for a simple point to point connection,
providing a parallel interface to the DS-Link with FIFO buffering of the data. This mode can be used
when the DS-Link is simply transferring data, with no higher level protocol. Alternatively it may also
be used where the attached processor or hardware takes responsibility for any higher level proto-
cols. The STC101 simply transmits the data provided down the DS-Link and provides data received
from the DS-Link on the parallel interface, hence the term transparent mode is used. Figure 6.1
shows an STC101 in transparent mode with the processor interface configured as a 16-bit data bus
interface and a pair of handshaken token interfaces.

LinkOutData

LinkOutStrobe

LinkInData

LinkInStrobe

ASIC

this is not a design example it is an illustration only

STC101

16

8

8

TxData0-7

RxData0-7

Data0-15

control
signals

RxEOXnotData

TxEOXnotData

Figure 6.1 Transparent mode

When packetization is enabled, the STC101 can be used by less specialized devices such as
processors to exploit efficiently devices such as the STC104 Asynchronous Packet Switch. In this
mode the STC101 builds packets, hence this mode is referred to as packetizing mode. Figure 6.2
shows a simple case with the processor interface used as a data bus only.The STC101 has its token
interface disabled. The microprocessor generates and processes all the packet framing information.
It generates packets by writing the framing information into registers addressed by the address bus
(Addr0-4).

18/66

LinkOutData
LinkOutStrobe
LinkInData
LinkInStrobe

Microprocessor

32

this is not a design example it is an illustration only

STC101

Interrupt

InterruptAck

DisableInterrupts

Interrupt

Data0-31

control
signals

Figure 6.2 Packetizing mode

6.1 Transparent mode

This section describes data transmission and data reception for an STC101 in transparent mode.

6.1.1 Data transmission in transparent mode

When packetization is disabled, data supplied to the Tx port is transmitted immediately from the
DS-Link, or buffered in the Tx FIFO if it is supplied more quickly than the DS-Link is able to transmit
it. If the token interfaces are not used, and all data is transferred using the processor interface, then
it is impossible to cause the DS-Link to transmit EOP or EOM tokens in this mode. Thus in this case
the STC101 can only be used as a point to point distributed FIFO, and is not useful as an interface
to a system using a packet level of protocol such as one using STC104s. Care must be taken to
ensure that the Tx FIFO is not overfilled, this can be done by setting the Tx level register setting (see
section 13.2). If the token interfaces are used, then an additional pin (TxEOxnotData) is provided
on the Tx token interface so that EOM or EOP tokens can be transmitted. In this case the STC101
takes no part in the formation of packets, but simply provides some buffering on an interface to the
DS-Link.

6.1.2 Data reception in transparent mode

When packetization is disabled, data supplied to the DS-Link is provided immediately on the Rx port,
or buffered in the Rx data FIFO if it is received on the DS-Link faster than it is read out from the
STC101.

Note that care must be taken to ensure that the processor does not attempt to read more data than
is present in the FIFO because the BusWait signal is asserted when there is no valid data present
and therefore the processor could be waiting for the read for an indeterminate time, until some data

STC101

19/66

arrives on the DS-Link. This can be avoided by setting the RxLevel register to an appropriate value,
and when an interrupt occurs signalling that the level has been reached, then that number of bytes
can be read out.

Note that the flow-control protocol, enforced automatically by the DS-Link (see section 9.2), ensures
that this FIFO cannot be over-filled.

If the token interface is not used, and all data is transferred out of the STC101 by means of the
processor interface, then it is impossible to observe the reception of EOP or EOM tokens, and they
should be prevented from being stored in the Rx FIFO by setting the SuppressRxEOX bit in the
DeviceConfig register. Thus in this case the STC101 can only be used as a point to point distributed
FIFO, and is not useful as an interface to a system using a packet level of protocol such as one using
STC104s. If the token interfaces are used, then an additional pin (RxEOXnotData) is provided on
the Rx token interface so that EOX tokens can be received. In this case the STC101 takes no part
in the decoding of packets, but simply provides buffering on the interface to the DS-Link.

6.2 Packetizing mode

This section describes data transmission and data reception for an STC101 in packetizing mode.

6.2.1 Data transmission in packetizing mode

In this mode the framing information, i.e. the packet length, headers and packet terminators, is
supplied separately from the data and the STC101 combines these to form packets. The framing
information is set up in registers, see chapter 13 for full details of these registers. The framing
information for a packet is generated by setting bits in the TxSendPacket register (see table 13.10).
The values written to the various bit fields determine the framing information. Note, writes to the
TxSendPacket register can only be made when the SendPacket bit of the TxInterruptStatus
register (see table 13.4) is 1.

If packetization is enabled, a packet will only be transmitted when both the complete framing
information and some data have been supplied. If data is supplied before the framing information,
it is buffered in the Tx data FIFO, until the framing information is provided. Care must be taken to
ensure that the Tx FIFO is not overfilled, this can be done by setting the Tx level register setting (see
section 13.2). If the framing information is provided before there is any data, and the packet length
(PacketLength bits of the TxSendPacket register) is not 0, the framing information is buffered in
the Tx frame buffer and the transmission of the packet is delayed until data is available. If the packet
length is set to 0, the packet is normally transmitted immediately with the given header and termi-
nator. Headers can be 1 to 4 bytes, and terminators can be either EOP (end of packet) or EOM (end
of message).

The headers to be added to packets are defined by writing to the TxPacketHeaderUpper0-1 or
TxPacketHeaderLower0-1 registers and the corresponding TxHeaderLength0-1 register. These
registers do not need to be written for every packet if the same headers are required.

Note that the TxPacketHeader0-1 and the TxHeaderLength0-1 registers can be written to whilst
the SendPacket bit of the TxInterruptStatus register is not set without affecting the framing
information for the packet to be transmitted. The SendPacket bit must be set before the TxSend-
Packet register bits can be set.

20/66

Delayed packet transmission

When the stream of data into the Tx port is slow relative to the speed of the DS-Link, then the
performance of a routing network to which the STC101 is connected can be improved by buffering
each packet so that it can be sent in a burst from the DS-Link. This can be achieved by withholding
the framing information until the necessary data is present in the Tx data FIFO; this can be detected
by setting the TxLevel register to an appropriate value.

Once the framing information of the packet has been provided, the STC101 starts transmitting the
contents of the Tx data FIFO from the DS-Link. The DS-Link will stop transmitting once it has sent
an EOP or EOM if the framing information and data of the next packet have not both been supplied.

Long packet transmission

Packets longer than the limit imposed by the PacketLength bit field in the TxSendPacket register
can be sent by sending the first part as a packet with no terminator, and sending subsequent parts
as packets with no header. Note that if the packet is very long there may be one or more parts with
no header and also no terminator. The last part of the packet must have a terminator (EOP or EOM).

Packet abort

A packet abort command can be used to terminate a packet which has started but for which the
supply of data has ceased. Note that it is the responsibility of the user to ensure that the correct
packet is aborted. Writing a 1 to the PacketAbort bit of the TxPacketAbort register causes the
packet currently being transmitted to be aborted. When this occurs, the header of the packet is sent,
followed by any data which is in the Tx FIFO. An EOM token is then sent to terminate the truncated
packet. The user should not provide more data after the packet abort command has been issued until
the FIFO has emptied and the packet has been terminated. This condition can be met be setting the
Tx level to indicate when the FIFO becomes empty.After that, normal transmission can be resumed.

6.2.2 Data reception in packetizing mode

When packetization is enabled, the packet information is provided in registers. The RxInterrupt-
Status register contains information about the state of the Rx data FIFO.

The STC101 takes the header (the first 1 to 4 bytes depending on the setting of the RxHeader-
Length bit-field in theDeviceConfig register) of each packet received and places it in the RxPacke-
tHeader register. The HdrValid bit of the RxInterruptStatus register is set at the same time. The
HdrValid bit can be unset by writing a 1 to the AckHdrValid bit of the RxAcknowledge register. The
contents of the RxPacketHeader register do not change whilst the HdrValid bit is set to 1, but may
change at any time when the HdrValid bit is 0.

Packet headers can be received either by polling the RxInterruptStatus register until the HdrValid
bit is set, or by writing a 1 to the HdrValidEnable bit of the RxInterruptEnable register and waiting
for an interrupt to occur. The RxPacketHeader register can then be read to determine the header
of the packet. The Rx frame buffer enables the STC101 to receive the packet header of the next
packet and to start inputting the data of the packet into the Rx data FIFO whilst the RxPacketHeader
register contains a valid value.

The STC101 counts the data bytes of each packet received on the DS-Link. When the packet
terminator is received, the length of the body of the packet is recorded in the RxPacketLength

STC101

21/66

register, and the terminator type is recorded in the RxInterruptStatus register. Writing a 1 to the
corresponding bit in the RxAcknowledge register causes the bit in the RxInterruptStatus register
to be unset, enabling the packet length and terminator type information of the next packet to be
recorded. The packet length and terminator type information can not change when the associated
bit of the RxInterruptStatus register is 1, but can change at any time when it is 0. There is buffering
for the packet length and terminator type information inside the STC101 so that another packet can
start to be received whilst the RxPacketLength register contains valid information.

If a packet ends before the specified number of header bytes are received, the entire packet is
discarded and the ShortPkt bit of the RxInterruptStatus register is set. The appropriate terminator
type bit (EOMRxed or EOPRxed) is also set. While the ShortPkt bit is set the HdrValid bit cannot
become set. Writing a 1 to the AckShortPkt bit of the RxAcknowledge register unsets the ShortPkt
bit, enabling it to be set to 1 again if another short packet is received. The short packet information
is buffered in the Rx frame buffer in the same way as other header information.

Long packet reception

The RxFifoLevel bit of the RxInterruptStatus register is set to 1 when the Rx FIFO has reached
the level given in the RxLevel register. If the RxLevel register is programmed with its maximum value
of 64 bytes, the RxFifoLevel bit is a FIFO full indication. This enables Rx packets which are longer
than 64 bytes to be received as the receiving device knows when the Rx FIFO is full to remove the
data before a packet terminator is received.

Note that if the token interfaces are used, the RxEOXnotData pin is provided on the Rx token
interface so that EOX tokens can be received. These tokens can be supplied even when the framing
ports are used so that external hardware connected to the token interface (e.g. a DMA controller)
knows when the data belonging to a packet is finished.

If a packet is longer than the 4 Kbyte counter size, the CountOverflow bit of the RxInterruptStatus
register is set.This bit remains set until a 1 is written to theAckCountOverflow bit of the RxAcknow-
ledge register. While it is set none of the other bits of the RxInterruptStatus register can become
set, except the RxFifoLevel and LinkError bits, and the STC101 will not receive any more data on
the DS-Link. When the AckCountOverflow bit is set, the counter is cleared enabling counting to
start again. In this case the receiving device must keep a count of the length of the packet. The
counter may overflow repeatedly for an exceptionally long packet.

22/66

7 Buffering
Buffering on the STC101 allows concurrency in the processing of the packet streams. The STC101
contains two data FIFOs, a Tx FIFO and an Rx FIFO. Both can buffer up to 64 bytes. Data buffering
is used in both modes of operation. In addition the STC101 contains a Tx frame buffer and an Rx
frame buffer which are used in the packetizing mode of operation to provide FIFO bufferingof framing
information.

7.1 Data buffering for both modes of operation

Rx and Tx data FIFO buffering is provided on the STC101 in both modes of operation. The data for
the next packet can start to be input to the Rx data FIFO while the previous packet is still being read
from the STC101, and data can be input to the Tx data FIFO whilst the data for the current packet
is still being transmitted from the DS-Link, enabling continuous transmission.

The Tx and Rx FIFOs can be programmed with either a high or a low level, see figure 7.1. The high
or low level is determined by the LevelHighnotLow bit in the Tx and Rx Level registers.

Low level – indication given to the connected
device when the FIFO is at or less than this level.

FIFO

LevelHighnotLow = 1

LevelHighnotLow = 0

High level – indication given to the connected
device when the FIFO reaches this level that there
is a definite amount of data in the FIFO.

Figure 7.1 Data FIFO programmable levels

The low level provides an indication to a processor or other device that there is a definite amount
of space in the FIFO. It guarantees a certain amount of buffer space is available (useful when it is
more efficient to send data in a block).

The high level provides an indication to a connected device that there is a definite amount of data
in the FIFO. The Tx high level can be used by systems in which the supply of Tx data is slow or
irregular by signalling that there is enough data in the Tx FIFO to transmit a complete packet
efficiently down the DS-Link. The Rx high level can be used as a ‘Fifo full’ indication if the RxLevel
register is programmed with its maximum value of 63 bytes. The interrupt is signalled when the
contents of the fifo are greater than 63 bytes, i.e. when the fifo contains 64 bytes. This can be used
to enable Rx packets which are longer than 64 bytes to be received. The receiving device knows
when the FIFO is full and that it must remove data from the FIFO before a packet terminator can be
received.

When the FIFO has reached the programmed level, the corresponding FifoLevel bit of the Inter-
ruptStatus register is set to 1, and the FifoLevel pin output is set high.

STC101

23/66

7.2 Frame buffering for packetizing mode operation

In packetizing mode the framing information (information regarding the length, headers and termina-
tors of packets) is supplied separately from the packet data. This information is set up in program-
mable registers, as described in chapter 13. In addition, in this mode there are Tx and Rx frame
buffers which store the framing information.

Note that frame buffering is not used in the transparent mode of operation.

7.2.1 Tx frame buffering

The framing information of the next packet can be set up whilst the data for the previous packet is
still being supplied to the Tx data port, and/or the packet is being transmitted from the DS-Link. There
is an internal 2-place FIFO buffer for the framing information of the next packets to be sent. Writing
to the TxSendPacket register (see table 13.10 for details) sets up the framing information for a
packet and ‘pushes’ the data into the frame buffer.When the framing information has been accepted,
the SendPacket bit of the TxInterruptStatus register is set to 1 and another set of framing informa-
tion can be provided.

7.2.2 Rx frame buffering

The header information of an incoming packet can be read from the Rx framing port and processed
whilst the data of the packet is still arriving. For reasonably short packets (i.e. those smaller than the
Rx data FIFO), the information about the packet’s length and terminator can be read whilst the next
packet is being input.

There are two 1-place Rx frame buffers on the STC101. One buffer contains Rx header information,
the other contains Rx terminator information.

The buffer containing Rx header information enables the next packet to be received whilst the
framing information for the current packet is still being processed. The frame buffer contains the
value of the header and information that the header is valid or that a too-short packet has been
received. Information is copied from the buffer to the RxPacketHeader and RxInterruptStatus
registers provided that neither the ShortPkt nor the HdrValid bits of the RxInterruptStatus register
are set. One or other of those bits then becomes set, and the buffer is free to receive the information
regarding the following packet. Once the buffer is occupied the STC101 will not attempt to take the
header of the next packet from the DS-Link until the buffer is cleared.

The other Rx frame buffer contains information about the packet length and terminator.This enables
the header to be read and processed while the body of the packet is still being received. Information
is copied from the internal buffer to the RxPacketLength and RxInterruptStatus registers provided
the EOPRxed , EOMRxed , and AckRxed bits of the RxInterruptStatus register are all zero. One
of these bits then becomes set and the buffer is free to receive the information regarding the following
packet. Once the buffer is occupied and the terminator of a packet is received, the STC101 will not
attempt to take any further data from the DS-Link until the buffer is cleared.

Note that because the Rx header buffer and the Rx terminator buffer are independent, it is possible
for the corresponding information in the RxInterruptStatus register to contain header information
and terminator information for two successive packets.

24/66

8 Parallel interface
The parallel interface of the STC101 contains a bus, which implements the Rx and Tx framing ports
and the configuration and status port. This bus interface can be treated as 16 or 32 bits wide
dependent on the Bus32not16 pin, and can be used asynchronously or synchronously depending
on the BusSnotA pin. In both synchronous and asynchronous operation, all outputs are synchro-
nized to the external bus clock.

The parallel interface of the STC101 can be used in 1 of 3 ways:

1 16-bit processor interface

2 32-bit processor interface

3 16-bit processor interface and IO token interfaces

In the third case there are two unidirectional parallel buses, RxData0-7 and TxData0-7 , which have
associated handshake control lines. Components connected to the interface bus need to provide or
receive data and a flag (RxEOxnotData or TxEOxnotData) indicating whether the token is data or
a packet termination token.

8.1 Access to the ports

8.1.1 Access to the framing and configuration/status ports

The framing and configuration/status ports are accessed via the processor interface, some status
flags are also signalled on pins (see table 4.6). They are a single set of registers which are accessed
by presenting addresses to the bus. For the full address map, see chapter 14. Most of the registers
are 16 bits or less and can be accessed in a single bus cycle using 16 data pins. Access to 32 bits
can be achieved in a single cycle when using the 32-bit processor interface, or with two 16-bit cycles
if only 16 data pins are available.

8.1.2 Access to the data ports

Data can be read/transmitted either via the processor interface or via the token interfaces, but not
both. This is controlled by the EnableTxRx pin.

Token interfaces

When the token interfaces are enabled, the Rx and Tx data ports are handled separately via the two
9-bit (8 data bits plus a control/data line) handshaken token interfaces.

Bus interfaces

When the token interfaces are disabled, the TxData and RxData addresses are used to put data into
and get data out of the Tx and Rx FIFOs, see section 13.4 for data FIFO addresses. Accessing the
FIFOs in this way is equivalent to using the token interfaces, and the two mechanisms are mutually
exclusive.

Dealing with unaligned data

Unaligned data can be transmitted and received. Consider a processor with data in its memory, as
illustrated in figure 8.1, which is to be transmitted as a packet via the STC101. In this example the
data is shown as little-endian.

STC101

25/66

Byte

0 1 2 3

0

1

2

3

4

5

Word

Figure 8.1 Packet in processor ’s memory

The dynamic width of the Tx port (assuming use of all 32 data pins) can be used to transmit the packet
as follows:

The processor loads the first byte, and stores it to the 8-bit interface to the Tx port;

Then the processor loads four words and stores them to the 32-bit interface to the Tx port;

Finally the processor loads the last word and stores it to the 16-bit interface to the Tx port.

In this way unaligned data can be transmitted using the minimum number of loads and stores. If the
processor can load data from non word-aligned addresses, shifting can be avoided, otherwise the
first word can be shifted to ensure that all valid bytes are at the bottom before storing it to the Tx port.

In a similar way, a packet can be received and stored, as illustrated in the figure, using the different
width interfaces to the Rx data port.

26/66

8.2 Valid/Hold protocol of the token interfaces

The Valid /Hold protocol of the Rx and Tx token interfaces allows single cycle transfers of data
between two devices.

The handshake signals have the following functions:

Valid indicates the presence of valid data on the bus.

Hold indicates that the data cannot be accepted by the receiving device.

The Valid /Hold protocol is defined as follows:

Data is transferred on a rising clock edge when Valid is high and the corresponding Hold
signal is low.

Valid can be held high, in which case data is transferred on each rising edge when Hold is
low.

While the Valid signal is high, and the Hold signal is high, the data must not change.

If the Hold signal is high when Valid is asserted, then the Valid signal cannot be de-asserted
until the Hold signal has been seen low at a rising edge of the clock. Thus, Valid cannot be
taken low again until the data has been transferred.

The assertion of Valid must not depend on the value of Hold .

The assertion of Hold must not depend on the value of Valid .

At reset Valid must be low and Hold must be high.

BusClock

Data

Data
transfer

Valid

Hold

Data
transfer

Data
transfer

Wait

D1 D2 D3

Figure 8.2 Valid/Hold protocol diagram

STC101

27/66

9 Link interface

9.1 Data/Strobe links

The STC101 DS-Link uses a protocol with two wires in each direction, one for data and one to carry
a strobe signal. Hence the link is referred to as a data/strobe (DS-Link) and is capable of:

Up to 100 Mbits/s.

Unidirectional peak bandwidth of 10 Mbytes/s per link.

Support for virtual channels and through routing.

The DS pair carries tokens and an encoded clock. The tokens can be data or control tokens. Figure
9.1 shows the format of data and control tokens on the data and strobe wires. Data tokens are 10
bits long and consist of a parity bit, a flag which is set to 0 to indicate a data token, and 8 bits of data.
Control tokens are 4 bits long and consist of a parity bit, a flag which is set to 1 to indicate a control
token, and 2 bits to indicate the type of control token.

0 0 1 1 1 0 1 0 0 0

Data

Strobe

Data
Token type

Parity bit

Data flag

Parity bit

Control flag

Bits covered by parity bit in control token

Data token Control token

e.g. FCT

Figure 9.1 Link data and strobe formats

The DS-Link protocol ensures that only one of the two wires of the data strobe pair has an edge in
each bit time. The levels on the data wire give the data bits transmitted. The strobe signal changes
whenever the data signal does not. These two signals encode a clock together with the data bits,
permitting asynchronous detection of the data at the receiving end.

The data and control tokens are of different lengths, for this reason the parity bit in any token covers
the parity of the data or control bits in the previous token, and the data/control flag in the same token,
as shown in figure 9.1. This allows single bit errors in the token type flag to be detected. Odd parity
checking is used. Thus the parity bit is set/unset to ensure that the bits covered, inclusive of the parity
bit (see figure 9.1), always contain an odd number of 1’s. The coding of the tokens is shown in table
9.1. To ensure the immediate detection of parity errors and to enable link disconnection to be
detected null tokens are sent in the absence of other tokens.

28/66

Token type Abbreviation Coding

Data token – P0DDDDDDDD

Flow control token FCT P100

End of packet EOP P101

End of message EOM P110

Escape token ESC P111

Null token NUL ESC P100

P = parity bit
D = data bit

Table 9.1 Token codings

9.2 Low-level flow control

Token-level flow control is performed in each DS-Link module, and the additional flow control tokens
used are not visible to the higher-level packet protocol. The token-level flow control mechanism
prevents a sender from overrunning the internal input buffer of a receiving link. The receiving link
input contains a buffer for at least 8 tokens (20 bytes of buffering is in fact provided). Whenever the
link input has sufficient buffering available to consume a further 8 tokens an FCT is transmitted on
the associated link output, and this FCT gives the sender permission to transmit a further 8 tokens.
Once the sender has transmitted a further 8 tokens it waits until it receives another FCT before
transmitting any more tokens. The provision of more than 8 tokens of buffering on the link input
ensures that in practice the next FCT is received before the previous block of 8 tokens has been fully
transmitted, so the token-level flow control does not restrict the maximum bandwidth of the link.

9.3 Link speeds

The STC101 DS-Link can support a range of communication speeds, which are programmed by
writing to the LinkMode register (refer to section 13.5). Only the transmission speed of a link is
programmed as reception is asynchronous. This means that links running at different speeds can
be connected, provided that each device is capable of receiving at the speed of the connected
transmitter.

An internal 100 MHz link clock is derived from the 50 MHz logic clock. This root clock is then optionally
divided (by programming the SpeedDivide bits) by 1, 2, 4 or 8, giving a range of speeds. This
arrangement allows the DS-Link to be run at one of four transmission speeds, as shown in table 9.2.

SpeedDivide1:0 Division Link speed
(Mbits/s)

0 0 1 100

0 1 2 50

1 0 4 25

1 1 8 12.5

Table 9.2 Link speed selection

Note also that the DS-Link can be programmed to use a base rate clock of 10 MHz. At reset the
DS-Link is configured to run at the base speed of 10 Mbits/s. The SpeedSelect bit in the LinkMode

STC101

29/66

register (see table 13.22) when set to 1 sets the link to the speed selected by the SpeedDivide bits,
as opposed to the default base speed of 10 Mbits/s.

9.4 Errors on DS-Links

DS-Link inputs can detect parity and disconnection conditions as errors. The single bit odd parity
system will detect single bit errors at the link token level. The protocol to transmit NUL tokens in the
absence of other tokens enables disconnection of a link to be detected. A disconnection error
indicates one of two things:

the link has been physically disconnected;

an error has occurred at the other end of the link, which has then stopped transmitting.

The LinkError bit in the LinkStatus register flags that a parity and/or disconnection error has
occurred on the DS-Link. The LinkError bit is duplicated in the RxInterruptStatus register and can
therefore be used to generate an interrupt. The bit fields ParityError and DiscError indicate when
parity and disconnect errors occur respectively.

When a DS-Link detects a parity error on its input it halts its output. This is detected as a disconnect
error at the other end of the link, causing this to halt its output also. Detection of an error causes the
link to be reset. Thus, the disconnect behavior ensures that both ends are reset. Each end can then
be restarted.

Note that a disconnect error is only flagged once a token has been received on a link and transmis-
sion is subsequently interrupted. Therefore when one end of a link is started up before the other end
of a link, a disconnect error does not occur as no tokens have yet been received. As soon as the other
end of the link is started communication can begin immediately.

The DS-Link is designed to be highly reliable within a single subsystem and can be operated in one
of two environments, dependent on the level of reliability required. A DS-Link can be set to an
environment in which any link errors are localized to the link. This is set by the LocalizeError bit in
the LinkMode register. The LocalizeError bit is set on a per link basis, therefore it is possible to have
some links in a system set to localize link errors and other links which are not. The consequence of
a link error depends on which environment the link is in, as described below.

9.4.1 Reliable links

In the majority of applications, the communications system should be regarded as being totally
reliable. In this environment errors are considered to be very rare, but are treated as being cata-
strophic if they do occur.This environment is the default on power-on reset, with all links having their
LocalizeError bit set to 0. If an error occurs it will be detected and the LinkError bit (bit 7) of the
RxInterruptStatus register will be set to indicate that an error has occurred. Normal practice will then
be to reset the subsystem in which the error has occurred and to restart the application. Re-starting
the DS-Link will unset the LinkError bit of the RxInterruptStatus register.

9.4.2 More reliable links

For some applications, for instance when a disconnect or parity error may be expected during normal
operation, an even higher level of reliability is required. This level of fault tolerance is supported by
localizing errors to the DS-Link. This is achieved by setting the LocalizeError bit in the LinkMode
register to 1. If an error occurs packets in transit at the time of the error are discarded or truncated.

30/66

9.5 Link state on start up

After power-on LinkData and LinkStrobe signals are low, without clocks. Following power-on reset
an initialization sequence sets the speed of the link clock. The DS-Link is initially inactive, with a
default configuration. It is configured and started by configuration writes via the configuration/status
and framing ports. Its status can be determined by configuration reads. The DS-Link must be
explicitly started by writing to the StartLink bit of the LinkCommand register. When the DS-Link is
started up it transmits NUL tokens. When the DS-Link starts receiving tokens it transmits 2 FCT
tokens.

Data may not be transferred over the DS-Link until the receiving link has sent an FCT to signify that
it has enough free buffer space to receive the data.

The receiving link receives and correctly decodes the tokens. However,only when the receiving link
has been explicitly started by writing to the StartLink bit of the LinkCommand register can it send
tokens back. NUL tokens are then sent until data is required.

9.6 Resetting DS-Links

If one end of a running DS-Link is reset, that end of the link stops transmitting tokens on a token
boundary and any buffered data is discarded. The other end of the link detects a disconnection and
also stops transmission. The reset end then also detects disconnection and clears its flow-control
state and error status bits, and the link becomes insensitive to transitions on its input for 3.2 s. In
order to ensure that both ends of the link have completed reset and are sensitive to transitions before
either end is started there is a further delay of 12.8 s. Note that the Data and Strobe outputs are
simply held at the values they have at the end of the last transmitted token, since forcing them to zero
could be decoded as a bit by the other end of the link.

Since the disconnection protocol between the two ends of a DS-Link ensures that both ends become
reset automatically if an error is detected, there is normally no reason to explicitly reset either end.
However, one end may be reset as a consequence of a reset of a device or subsystem. In this case
it is important to ensure that either: both ends of the link have been started before the reset occurs;
or that both ends are quiet (by resetting if necessary). This is because if one end of a DS-Link is
already running before the other end comes out of reset, the initial transmission of FCTs will be lost,
and so the reset end will never receive permission to transmit data. Also, unless the reset end is
brought out of reset precisely on a null token boundary (for which there is 1 chance in 8), it will
misinterpret the bit-stream and consequently detect a parity error.

9.7 Link connections

DS-Links are TTL compatible and intended to be used in electrically quiet environments, between
devices on a single printed circuit board or between two boards via a backplane. Simple connection
may be made between devices separated by a distance of less than 200 mm. For longer distances
matched 100 ohm transmission lines should be used with series matching resistors, see figure 9.2.

The inputs and outputs have been designed to have minimum skew at the 1.5V TTL threshold.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be
stable within the skew tolerance of the link, although the absolute value of the delay is immaterial.

STC101

31/66

LinkOutData

LinkInStrobe

LinkInData

LinkOutStrobe

Zo=100 ohms

LinkInData LinkOutData

LinkOutStrobe LinkInStrobe

STC104

LinkOutData

LinkInStrobe

LinkInData

LinkOutStrobe
LinkInData LinkOutData

LinkOutStrobe LinkInStrobe

STC104

DS-Links connected by buffers

DS-Links connected by transmission lines

STC101

STC101

RM=75 ohms

Figure 9.2 DS-Link connections

32/66

10 Interrupts
The interrupt system supported directly by the STC101 is level triggered. Thus, a bit is set in one of
the interrupt status registers (RxInterruptStatus or TxInterruptStatus) whenever a condition which
causes an interrupt becomes true. The bit remains set until the condition is cleared. If the corre-
sponding bit in the appropriate interrupt enable register (RxInterruptEnable or TxInterruptEnable)
is set, the interrupt will be active. The interrupt signal is active whenever any interrupt bits are set
whose interrupt enable bits are also set, and bit 0 of the EnableInterrupts register is 1. When bit
0 of the EnableInterrupts register is 0, the interrupt signal is inactive, regardless of the state of the
InterruptStatus and InterruptEnable registers. This is summarized in table 10.1 below. Writing 1
to the EnableInterrupts register returns the interrupt signal to the state determined by these
registers.

InterruptEnable InterruptStatus EnableInterrupts bit 0 Interrupt behavior

1 1 1 Interrupt is active

0 1 1 Interrupt is disabled

1 0 1 Interrupt condition is false

x x 0 Interrupts are disabled

Table 10.1 Interrupt settings

A condition which may be transient, for example the Tx FIFO reaching its high level when either
packetization is disabled or the framing information has already been supplied (in which case the
FIFO can spontaneously empty), should not be enabled as an interrupt.

Conversion to an edge triggered interrupt system can be achieved in software, by masking all
interrupts when an interrupt is taken and then un-masking all appropriate ones at the end of the
interrupt service routine. This can be done efficiently by setting the EnableInterrupts register bit to
0. This register is also cleared by asserting the DisableInt pin.

Note that the EnableInterrupts register remains cleared even when the DisableInt pin is de-
asserted; it is set by writing 1 to the register providing the DisableInt pin is not asserted. The
EnableInterrupts register cannot be set while the DisableInt pin is asserted.

STC101

33/66

11 Clocking
There are two externally supplied clocks on the STC101.

LogicClock
This must be 50 MHz1. It is a logic clock for the internals of the STC101 and is used to provide
the base speed 10 MHz clock for the DS-Link.
The internal 100 MHz link clock is derived from this 50 MHz logic clock. The 100 MHz link
clock can be divided to give a range of link speeds (refer to section 9.3 for details).

BusClock
This can be any frequency up to 30 MHz. It is the bus clock, to which all signals from the
STC101 on the parallel interface are synchronous (or at least synchronized).

The STC101 performs all necessary synchronizations between these clock domains.

Note that neither clock may be stopped while the device is operating, they must both be free-running.

12 Reset

The STC101 can be reset by asserting the Reset pin high for at least 2 cycles of the bus clock. After
a reset the STC101 is in the following state: the DS-Link is in a quiescent state with a default speed
of 10 MHz; all registers contain their default values (see chapter 14); and all buffers are cleared.

1. The LogicClock can be less than 50 MHz, however if this is the case the links will not be compatible with the standard, and the
LogicClock must always be greater than or equal to the BusClock .

34/66

13 Programmable register functionality
The STC101 is controlled via registers accessed via the configuration/status and framing ports. The
functionality to be controlled by the registers is described below.The tables below detail the bit fields
of each of the registers and give the register address and whether the register is read only,write only,
or read and writable.

Note that in the following bit field descriptions the lowest numbered bit is the least significant bit.

Note, all reserved/undefined bits of a register must always be written with 0’s, unless otherwise
stated.

13.1 System services registers

System services consists of registers which contain control and status information and general
information on the STC101.

DeviceID

The DeviceID register contains a 16-bit device identification code unique to the device. The value
of the device identification code for the STC101 is 336.

DeviceID #17
Read only

Bit Bit field Function

15:0 DeviceID Device identification code.

Table 13.1 Bit fields in the DeviceID register

DeviceRevision

The DeviceRevision register contains the revision of the device.

DeviceRevision #18 Read only

Bit Bit field Function

15:0 DeviceRev Device revision.

Table 13.2 Bit fields in the DeviceRevision register

STC101

35/66

DeviceConfig

The DeviceConfig register may be programmed to set the configuration of the device.

DeviceConfig #19 Read/Write

Bit Bit field Function

2:0 RxHeaderLength Programs the expected length of the incoming Rx packet header (1 to 4 bytes).
Only values 1 to 4 inclusive are valid. Note thisvalue must not be changed after
the DS-Link has been started.

001 1 byte header
010 2 byte header
011 3 byte header
100 4 byte header

4 EnablePacketization When set to1, the operation of the framing logic is enabled. If set to 0, packetiza-
tion is disabled.

5 LinkLoopBack When set to 1, the data and strobe outputs of the DS-Link are connecteddirectly
back to the data and strobe inputs respectively. This can be used for test
purposes. The DS-Link outputs are still connected to the data and strobe output
pins.

6 SuppressRxEOX When set to 1, termination tokens received by the link are not passed into the
Rx FIFO (and hence do not appear on the token interfaces, if enabled). This bit
should always be set when the external token interfaces are not enabled.

15:7, 3 Reserved, write 0.

Table 13.3 Bit fields in the DeviceConfig register

13.2 Interrupt registers

TxInterruptStatus

The TxInterruptStatus register is read only and contains information about the state of the Tx FIFO.

TxInterruptStatus #E Read/Write

Bit Bit field Function

0 TxFifoLevel The Tx FIFO has reached its level. The setting of this bit is dependent on the
setting of the TxLevelHighNotLow bit in the TxLevel register, see table 13.20.
This bit is set when the TxLevelHighNotLow bit is 0 and the number of bytes in
the Tx Fifo is less than or equal to the Tx Fifo low level.
This bit is set when the TxLevelHighNotLow bit is 1 and the number of bytes in
the Tx Fifo is greater than the Tx Fifo high level. This can be unset by taking data
from the Tx data port.

1 SendPacket The TxSendPacket register (see table 13.10) is available for writing. This bit is
unset by writing to the TxSendPacket register.

15:2 Reserved.

Table 13.4 Bit fields in the TxInterruptStatus register

TxInterruptEnable

The TxInterruptEnable register is a read/write register which contains bits associated with the
TxInterruptStatus register. This register controls whether the corresponding bit in the TxInterrupt-
Status register causes an interrupt to be signalled.

36/66

TxInterruptEnable #10 Read/Write

Bit Bit field Function

0 TxFifoLevelEnable If set the setting of the TxFifoLevel bit in the TxInterruptStatus register (see
table 13.4) causes an interrupt to be signalled.

1 SendPacketEnable If set the setting of the SendPacket bit in the TxInterruptStatus register (see
table 13.4) causes an interrupt to be signalled.

15:2 Reserved, write 0.

Table 13.5 Bit fields in the TxInterruptEnable register

RxInterruptStatus

The RxInterruptStatus register contains information about the state of the Rx FIFO.

Note that only one of the ShortPkt and HdrValid bits can be set at any one time. Note also that only
one of the EOPRxed , EOMRxed , and AckRxed bits can be set at any one time. The contents of the
RxPacketHeaderLower and RxPacketHeaderUpper registers are only valid when the HdrValid
bit is set. If either of the ShortPkt or AckRxed bits are set the RxPacketLength register will have
the value zero. The AckRxed bit is only set if a complete header has been received, followed
immediately by an EOP, therefore it cannot be set at the same time as the ShortPkt bit.

RxInterruptStatus #F Read only

Bit Bit field Function

0 ShortPkt A packet has been received with too few bytes of header. This can be unset by
writing to the AckShortPkt bit of the RxAcknowledge register (see table 13.8).

1 HdrValid A complete packet header has been received. This can be unset by writing to the
AckHdrValid bit of the RxAcknowledge register.

2 EOPRxed A non-empty packet has been received, terminated by EOP. This can be unset
by writing to the AckEOPRxed bit of the RxAcknowledge register.

3 EOMRxed A packet has been received, terminated by EOM. This can be unset by writing
to the AckEOMRxed bit of the RxAcknowledge register.

4 AckRxed An empty packet has been received, terminated by EOP. This can be unset by
writing to the AckAckRxed bit of the RxAcknowledge register.

5 CountOverflow The Rx packet counter has overflowed. This can be unset by writing to the
AckCountOverflow bit of the RxAcknowledge register.

6 RxFifoLevel The Rx FIFO has reached its level. The setting of this bit is dependent on the
setting of the RxLevelHighNotLow bit in the RxLevel register, see table 13.21.
This bit is set when the RxLevelHighNotLow bit is 0 and the number of bytes
in the Rx Fifo is less than or equal to the Rx Fifo low level.
This bit is set when the RxLevelHighNotLow bit is 1 and the number of bytes
in the Rx Fifo is greater than the Rx Fifo high level. This can be unset by taking
data from the Rx data port.

7 LinkError An error has been detected by the DS-Link. This can be unset by re-starting the
DS-Link.

15:8 Reserved.

Table 13.6 Bit fields in the RxInterruptStatus register

RxInterruptEnable

The RxInterruptEnable register contains bits associated with the RxInterruptStatus register. This
register controls whether the corresponding bit in the RxInterruptStatus register causes an
interrupt to be signalled.

STC101

37/66

RxInterruptEnable #11 Read/Write

Bit Bit field Function

0 ShortPktEnable If set the setting of the ShortPkt bit in the RxInterruptStatus register (see table
13.6) causes an interrupt to be signalled.

1 HdrValidEnable If set the setting of the HdrValid bit in the RxInterruptStatus register causes an
interrupt to be signalled.

2 EOPRxedEnable If set the setting of the EOPRxed bit in the RxInterruptStatus register causes
an interrupt to be signalled.

3 EOMRxedEnable If set the setting of the EOMRxed bit in the RxInterruptStatus register causes
an interrupt to be signalled.

4 AckRxedEnable If set the setting of the AckRxed bit in the RxInterruptStatus register causes an
interrupt to be signalled.

5 CountOverflowEnable If set the setting of the CountOverflow bit in the RxInterruptStatus register
causes an interrupt to be signalled.

6 RxFifoLevelEnable If set the setting of the RxFifoLevel bit in the RxInterruptStatus register causes
an interrupt to be signalled.

7 LinkErrorEnable If set the setting of the LinkError bit in the RxInterruptStatus register causes
an interrupt to be signalled.

15:8 Reserved, write 0.

Table 13.7 Bit fields in the RxInterruptEnable register

RxAcknowledge

The RxAcknowledge register contains bits associated with the RxInterruptStatus register (see
table 13.6). This register can be used to reset to 0 the corresponding bit in the RxInterruptStatus
register, allowing it to be set to 1 again by the recurrence of the condition which sets it.

Writing 1 to any bit causes the corresponding bit in the RxInterruptStatus register to be reset within
2 bus cycles beyond the end of the write cycle. The Status bit will be low for at least one cycle.

Note that any number of bits may be written to at once.

RxAcknowledge #12 Write only

Bit Bit field Function

0 AckShortPkt When set to 1, resets the ShortPkt bit in the RxInterruptStatus register.

1 AckHdrValid When set to 1, resets the HdrValid bit in the RxInterruptStatus register.

2 AckEOPRxed When set to 1, resets the EOPRxed bit in the RxInterruptStatus register.

3 AckEOMRxed When set to 1, resets the EOMRxed bit in the RxInterruptStatus register.

4 AckAckRxed When set to 1, resets the AckRxed bit in the RxInterruptStatus register.

5 AckCountOverflow When set to 1, resets the CountOverflow bit in the RxInterruptStatus register.

15:6 Reserved, write 0.

Table 13.8 Bit fields in the RxAcknowledge register

EnableInterrupts

The EnableInterrupts register is a read/write register.

This register is cleared by asserting the DisableInt pin. Note that the register remains clear even
when the pin is de-asserted; it can be set by writing 1 to it providing the DisableInt pin is de-asserted.

38/66

EnableInterrupts #13 Read/Write

Bit Bit field Function

0 EnableInterrupts When set to 1, enables the interrupt signal to be active. When it is 0 the interrupt
signal is inactive, regardless of the state of the InterruptStatus and InterruptEn-
able registers. Writing 1 to it returns the interrupt signal to the state determined
by these registers.

15:1 Reserved, write 0.

Table 13.9 Bit fields in the EnableInterrupts register

13.3 Framing data registers

Note that in transparent mode these framing data registers are all irrelevant.

13.3.1 Tx framing registers

When the STC101 is operating in packetizing mode, the information regarding the length, headers
and terminators of packets is supplied separately from the packet data. This information is set up
in registers, as described below.

TxSendPacket register

The TxSendPacket register is a 16-bit read/write register.When the SendPacket bit of the TxInter-
ruptStatus register (see table 13.4) is 1, the framing information for a packet can be generated by
writing to this register. The values written to the various bit fields determine the framing information.

When the framing information has been accepted, the SendPacket bit of the TxInterruptStatus
register is set to 1 and another set of framing information can be provided. Note that the TxPacke-
tHeader0-1 and the TxHeaderLength0-1 registers can be written to whilst the SendPacket bit is
not set without affecting the framing information for the packet to be transmitted.

Note that writes should only be made to this register when the SendPacket bit is 1. Note also that
the return of the SendPacket bit to 1 can be enabled as an interrupt, see table 13.4.

TxSendPacket #4 Read/Write

Bit Bit field Function

11:0 PacketLength Determines the length of the packet (which may be 0). Note that packets which
are longer than the maximum allowed by the length of this field may be trans-
mitted in several parts; see section 6.2.1.

12 HeaderEnable When set to 1, a header is added to the packet.

13 HeaderSelect Determines which of the two possible TxPacketHeader0-1 registers is used to
provide the header, as follows:

If 0, the TxPacketHeader0 and TxHeaderLength0 registers are used;
If 1, the TxPacketHeader1 and TxHeaderLength1 registers are used.

14 TerminatorEnable When set to 1, a termination token is sent at the end of the packet. If it is 1, the
TerminatorType bit determines the terminator type (EOP or EOM).

15 TerminatorType If a terminator token is sent at the end of a packet, this bit determines whether
an EOP or EOM terminator token is sent, as follows:

If 1, an EOP is sent;
If 0, an EOM is sent.

Table 13.10 Bit fields in the TxSendPacket register

STC101

39/66

TxPacketHeaderLower0-1

The TxPacketHeaderLower0 and TxPacketHeaderLower1 registers are read/write registers
which contain the value of a header to be added to a packet transmitted from the link. If the bus is
operating as 32-bits wide (as determined by the Bus32not16 pin) these are 32-bit registers which
contain the whole headers, and are the same as the TxPacketHeaderUpper0-1 registers. Other-
wise these are 16-bit read/write registers which contain the least significant two bytes of the header.
The presence of these shorter registers allows the setting of headers in systems using a 16-bit bus
to access the framing ports. The number of bytes of these registers which are valid is recorded in
the corresponding TxHeaderLength registers. These registers are little-endian, that is byte 0 is the
first byte transmitted, byte 1 the next byte.

TxPacketHeaderLower0 #5 Read/Write

TxPacketHeaderLower1 #7 Read/Write

Bit Bit field Function

31:0
or
15:0

TxHeaderLower Contains the packet header for 32-bit wide bus operation.

Contains the least significant 2 bytes of the header for 16-bit wide bus operation.

Table 13.11 Bit fields in the TxPacketHeaderLower0-1 registers

TxPacketHeaderUpper0-1

The TxPacketHeaderUpper0 and TxPacketHeaderUpper1 registers are read/write registers
which contain the value of a header to be added to a transmitted packet from Link0 . If the bus is
operating as 32-bits wide (as determined by the Bus32not16 pin) these are 32-bit registers which
contain the whole headers, and are the same as the TxPacketHeaderLower0-1 registers. Other-
wise these are 16-bit read/write registers which contain the most significant two bytes of the header.
The presence of these registers allows the setting of long headers in systems using a 16-bit bus to
access the framing ports. The number of bytes of these registers which are valid is recorded in the
corresponding TxHeaderLength registers (see table 13.13). These registers are little-endian, that
is byte 0 is the first byte transmitted, byte 1 the next byte.

TxPacketHeaderUpper0 #6 Read/Write

TxPacketHeaderUpper1 #8 Read/Write

Bit Bit field Function

31:0
or
15:0

TxHeaderUpper Contains the packet header for 32-bit wide bus operation.

Contains the most significant 2 bytes of the header for 16-bit wide bus operation.

Table 13.12 Bit fields in the TxPacketHeaderUpper0-1 registers

TxHeaderLength0-1

The TxHeaderLength0 and TxHeaderLength1 registers are 16-bit read/write registers.

40/66

TxHeaderLength0 #C Read/Write

TxHeaderLength1 #D Read/Write

Bit Bit field Function

2:0 TxHeaderLength Programs the number of bytes of the corresponding TxPacketHeader register
to be used. This number can be 1 to 4 inclusive. Other values are not valid.

001 1 byte
010 2 byte
011 3 byte
100 4 byte

15:3 Reserved, write 0.

Table 13.13 Bit fields in the TxHeaderLength0-1 registers

TxPacketAbort register

The TxPacketAbort register is a write-only register.

TxPacketAbort #16 Write only

Bit Bit field Function

0 PacketAbort Writing a 1 to this bit causes an EOM token to be sent to the DS-Link provided
any data bytes have been sent to the DS-Link since the last EOP or EOM token.
This enables a transmitted packet to be terminated (thereby closing a path it may
have opened across a network) even if the supply of data fails.

15:1 Reserved, write 0.

Table 13.14 Bit fields in the TxPacketAbort register

13.3.2 Rx framing registers

When packetization is enabled, the information regarding the length, headers and terminators of
incoming packets is separate to the data part of the packets received and is contained in registers.

RxPacketHeaderLower

If the bus is operating as 32-bits wide (as determined by the Bus32not16 pin) this is a 32-bit
read-only register which contains the value of the header of the most recently received packet, if any,
and is the same as the RxPacketHeaderUpper register. Otherwise this is a 16-bit read-only register
which contains the least significant two bytes of the header. This is provided to allow the receipt of
packet headers in systems using a 16-bit bus to access the framing ports. The number of bytes of
this register which are valid is recorded in the RxHeaderLength field of the DeviceConfig register.
The header is little-endian, that is byte 0 is the first byte transmitted, byte 1 the next byte.

The validity of the value in the RxPacketHeaderLower register is indicated by the HdrValid bit of
the RxInterruptStatus register. This register should only be read when the HdrValid bit is set.

Writing a 1 to the AckHdrValid bit of the RxAcknowledge register unsets the HdrValid bit of the
RxInterruptStatus register, and ‘pops’ the header value, allowing it to be replaced with the header
of the next packet.

STC101

41/66

RxPacketHeaderLower #9 Read only

Bit Bit field Function

31:0

or
15:0

RxHeaderLower For 32-bit wide bus operation, contains the value of the packet header of the most
recently received packet.

For 16-bit wide bus operation, contains the least significant 2 bytes of the header.

Table 13.15 Bit fields in the RxPacketHeaderLower register

RxPacketHeaderUpper

If the bus is operating as 32-bits wide (as determined by the Bus32not16 pin) this is a 32-bit
read-only register which contains the value of the header of the most recently received packet, if any,
and is the same as the RxPacketHeaderLower register.Otherwise this is a 16-bit read-only register
which contains the most significant two bytes of the header. This is provided to optimize the receipt
of packets with more than two bytes of header in systems using a 16-bit bus to access the framing
ports. The number of bytes of this register which are valid is recorded in the RxHeaderLength field
of the DeviceConfig register. The header is little-endian, that is byte 0 is the first byte transmitted,
byte 1 the next byte.

The validity of the value in the RxPacketHeaderUpper register is indicated by the HdrValid bit of
the RxInterruptStatus register and should only be read when this bit is set.

Writing a 1 to the AckHdrValid bit of the RxAcknowledge register unsets the HdrValid bit of the
RxInterruptStatus register, and ‘pops’ the header value, allowing it to be replaced with the header
of the next packet.

RxPacketHeaderUpper #A Read only

Bit Bit field Function

31:0

or
15:0

RxHeaderUpper For 32-bit wide bus operation, contains the value of the packet header of the most
recently received packet.

For 16-bit wide bus operation, contains the most significant 2 bytes of the header.

Table 13.16 Bit fields in the RxPacketHeaderUpper register

RxPacketLength

The RxPacketLength register contains the length of the most recently received packet (not
including the header or terminator). Note that the length may be zero.

The contents of this register are valid if one of the EOPRxed , EOMRxed or AckRxed 2 bits of the
RxInterruptStatus register are set, and should only be read if this is the case. The set bit is cleared
by writing 1 to the corresponding bit of theRxAcknowledge register.This also ‘pops’ the length value
and allows it to be replaced with the length of the next packet.

RxPacketLength #B Read only

Bit Bit field Function

11:0 RxPacketLength Contains the length of themost recently received packet (not including the header
or terminator).

15:12 Reserved.

Table 13.17 Bit fields in the RxPacketLength register

2. If the AckRxed bit of the RxInterruptStatus register is set, the contents of the RxPacketLength register will always be zero.

42/66

13.4 FIFO registers

TxData and RxData

The TxData and RxData addresses are used when the token interfaces are disabled. Reading from,
or writing to, these addresses gets data out of, or puts data into, the Rx or Tx FIFO. Addresses are
word addresses where the word width is dependent on the Bus32not16 pin. The Tx/
RxData24/32Bit registers are disabled in 16-bit mode. All of the Tx/RxData registers are disabled
if the token interfaces are enabled. Accessing the FIFOs in this way is equivalent to using the token
interfaces, and the two mechanisms are mutually exclusive.

Bit Register Function

7:0 TxData8 Writing to this address puts 8 bits of data into the Tx FIFO.

15:0 TxData16 Writing to this address puts 16 bits of data into the Tx FIFO.

23:0 TxData24 Writing to this address puts 24 bits of data into the Tx FIFO.

31:0 TxData32 Writing to this address puts 32 bits of data into the Tx FIFO.

Table 13.18 TxData

Bit Register Function

7:0 RxData8 Reading from this address gets 8 bits of data out of the Rx FIFO.

15:0 RxData16 Reading from this address gets 16 bits of data out of the Rx FIFO.

23:0 RxData24 Reading from this address gets 24 bits of data out of the Rx FIFO.

31:0 RxData32 Reading from this address gets 32 bits of data out of the Rx FIFO.

Table 13.19 RxData

TxLevel

The TxLevel register contains the value of the Tx FIFO level. The direction of the level is determined
by the TxLevelHighNotLow bit. See section 7.1 for further details on the Tx FIFO level.

Note this register should not be written to while the corresponding Tx interrupt is enabled, as it may
cause spurious interrupts.

TxLevel #14 Read/Write

Bit Bit field Function

0 TxLevelHighnotLow Determines whether the Tx FIFO level (given in the TxLevel bit field) is a high or
low level.
When 0, the TxFifoLevel bit of the TxInterruptStatus register is set when the
number of bytes in the Tx FIFO is less than or equal to the Tx level.
When 1, the TxFifoLevel bit of the TxInterruptStatus register is set when the
number of bytes in the Tx FIFO is greater than the Tx level.

6:1 TxLevel Tx FIFO level marker value.

15:7 Reserved, write 0.

Table 13.20 Bit fields in the TxLevel register

RxLevel

The RxLevel register contains the value of the Rx FIFO level. The direction of the level is determined
by the RxLevelHighNotLow bit. See section 7.1 for further details on the Rx FIFO level.

STC101

43/66

Note this register should not be written to while the corresponding Rx interrupt is enabled, as it may
cause spurious interrupts.

RxLevel #15 Read/Write

Bit Bit field Function

0 RxLevelHighnotLow Determines whether the Rx FIFO level (given in the RxLevel bit field) is a high
or low level.
When 0, the RxFifoLevel bit of the RxInterruptStatus register is set when the
number of bytes in the Rx FIFO is less than or equal to the Rx level.
When 1, the RxFifoLevel bit of the RxInterruptStatus register is set when the
number of bytes in the Rx FIFO is greater than the Rx level.

6:1 RxLevel Rx FIFO level marker value.

15:7 Reserved, write 0.

Table 13.21 Bit fields in the RxLevel register

13.5 DS-Link registers

The DS-Link interface on the STC101 is controlled via registers, the LinkMode register, LinkCom-
mand register and LinkStatus register.

LinkMode

The LinkMode register may be re-programmed before or after the DS-Link has been started.

LinkMode #1A Read/Write

Bit Bit field Function

1:0 SpeedDivide Sets the DS-Link to transmit at one of four link speeds (see section 9.3).
SpeedDivide1:0 Link speed (Mbits/s)

00 100
01 50
10 25
11 12.5

2 SpeedSelect When set to 0 the DS-Link transmits at 10 Mbits, when set to 1 the DS-Link trans-
mits at the speed determined by the SpeedDivide bits.

3 LocalizeError When set to 1, if a link error occurs it is localized to the DS-Link (see section 9.4)
and packets in transit at the time of the error are discarded or truncated. When
set to 0, if a link error occurs communication on the DS-Link stops until the link
is reset.

4 1 (RESERVED) This bit must be written as 1.

15:5 Reserved, write 0.

Table 13.22 Bit fields in the LinkMode register

LinkCommand

The LinkCommand register contains four bits which when set cause a specific action to be taken
by the DS-Link.

44/66

LinkCommand #1B Write only

Bit Bit field Function

0 ResetLink Resets the link engine of the DS-Link. The token state is reset, the flow control
credit is set to zero, the buffers are marked as empty, and the parity state is reset.

1 StartLink When a transition from 0 to 1 occurs the DS-Link will be initializedand commence
operation.

2 ResetOutput Sets both Data and Strobe outputs of the DS-Link low.

3 WrongParity The DS-Link output will generate incorrect parity. This may be used to force a par-
ity error on the device at the other end of the DS-Link.

15:4 Reserved, write 0.

Table 13.23 Bit fields in the LinkCommand register

LinkStatus

The LinkStatus register contains information about the state of the DS-Link.

LinkStatus #1C Read only

Bit Bit field Function

0 LinkError Flags that an error has occurred on the DS-Link.

1 LinkStarted Flags that theoutput DS-Link has been started and no errors have been detected.

2 ResetOutputComplete Flags that ResetOutput has completed on the DS-Link.

3 ParityError Flags that a parity error has occurred on the DS-Link.

4 DiscError Flags that a disconnect error has occurred on the DS-Link.

5 TokenReceived Flags that a token has been seen on the DS-Link since ResetLink .

15:6 Reserved.

Table 13.24 Bit fields in the LinkStatus register

STC101

45/66

14 Address map
All of the addresses are word addresses where the word width is dependent on the Bus32not16 pin.
For the three 32-bit registers TxPacketHeader0-1 and RxPacketHeader these will be written/read
32 bits at a time at either of their lower/upper addresses when in 32-bit bus mode and 16 bits at a
time when in 16-bit mode.

Name Address Reset value Notes

TxData8Bit 0 (W) – disabled if token interfaces enabled

TxData16Bit 1 (W) – disabled if token interfaces enabled

TxData24Bit 2 (W) – disabled if token interfaces enabled
disabled in 16-bit mode

TxData32Bit 3 (W) – disabled if token interfaces enabled
disabled in 16-bit mode

RxData8Bit 0 (R) – disabled if token interfaces enabled

RxData16Bit 1 (R) – disabled if token interfaces enabled

RxData24Bit 2 (R) – disabled if token interfaces enabled
disabled in 16-bit mode

RxData32Bit 3 (R) – disabled if token interfaces enabled
disabled in 16-bit mode

TxSendPacket 4 0

TxPacketHeaderLower0 5 0

TxPacketHeaderUpper0 6 0

TxPacketHeaderLower1 7 0

TxPacketHeaderUpper1 8 0

RxPacketHeaderLower 9 0

RxPacketHeaderUpper A 0

RxPacketLength B 0

TxHeaderLength0 C 0

TxHeaderLength1 D 0

TxInterruptStatus E 3

RxInterruptStatus F 0

TxInterruptEnable 10 0

RxInterruptEnable 11 0

RxAcknowledge 12 0

EnableInterrupts 13 0

TxLevel 14 0 (empty)

RxLevel 15 127 (full)

TxPacketAbort 16 0

DeviceID 17 Device ID

DeviceRevision 18 Device revision

DeviceConfig 19 0

LinkMode 1A 0

LinkCommand 1B 0

LinkStatus 1C 0

Table 14.1 STC101 address map and reset state

(R) and (W) mean accessed during a read or a write cycle.

46/66

15 Timing specifications

15.1 Clock timings

Symbol Parameter Min Nom Max Units Notes

tBCHBCH BusClock period 33.0 ns 1

tBCHBCL BusClock pulse width high 5.0 ns

tBCLBCH BusClock pulse width low 5.0 ns

tBCf BusClock fall time 10.0 ns 2

tBCr BusClock rise time 10.0 ns 2

tLCHLCH LogicClock period 20.0 ns 1

tLCHLCL LogicClock pulse width high 5.0 ns

tLCLLCH LogicClock pulse width low 5.0 ns

tLCf LogicClock fall time 10.0 ns 2

tLCr LogicClock rise time 10.0 ns 2

Table 15.1 BusClock and LogicClock timings

Notes

1 Measured between corresponding points on consecutive falling edges.

2 Clock transitions must be monotonic within the range VIH to VIL (refer to Electrical specifica-
tions chapter).

BusClock

tBCHBCH tBCLBCH

tBCHBCL
90%

10%
tBCr tBCf

LogicClock

tLCHLCH tLCLLCH

tLCHLCL
90%

10%
tLCr tLCf

Figure 15.1 BusClock and LogicClock timings

STC101

47/66

15.2 Bus interface timings

The timing for the bus interface is given in sections 15.2.1 and 15.2.2, one for the asynchronous and
one for the synchronous bus modes.

Address latch enable

The following section describes the relationship between the ALE signal and the other signals
involved in latching the address.

In asynchronous mode the address is latched on one of the following conditions:

if notCS is high, the address is latched on the falling edge of ALE .

if notCS goes low while ALE is high, the address is latched on the falling edge of notCS .

address latched here

ALE

notCS

Address

ALE

notCS

Address

address latched here

Figure 15.2 Address latching in asynchronous mode

In synchronous mode the address is latched on a rising clock edge, if that occurs while ALE is high.

48/66

ALE

Address

BusClock

address latched here

Figure 15.3 Address latching in synchronous mode

15.2.1 Asynchronous bus timings

Accesses start when notCS goes low and finish when notCS goes high again. ALE can be left high
for non-multiplexed bus systems with address signals that are valid throughout the access.

Since the BusWait signal is synchronized back to the BusClock this avoids the use of an external
synchronizer between the STC101 and the external processor. It also allows the timing of the
BusWait signal to be modified by a simple state machine running from the BusClock without
incurring a synchronizer delay.

STC101

49/66

Asynchronous read cycle

tAVAEL tAELAX

tRWVCSL

tCSHCSLtCSLCSH

tCSLCSL

tAVCSL
tCSLRDX tCSHRDZ

tBCHWtH

tWtLRDV

tBCHWtL

Addr[4:0]

ALE

RdnotWr

notCS

Data[31:0]/

BusClock

BusWait

Data[15:0]

tBELRDX
tBEHRDZ

notBusOE

tCSLAX

tAEHAEL

tAEHCSL

tCSLAEH

tBCHRWX

Figure 15.4 Bus interface – asynchronous read cycle

50/66

Symbol Parameter Min Nom Max Units Notes

tAEHAEL ALE pulse width high 5.0 ns

tAEHCSL ALE high to notCS low 2.0 ns

tAELAX ALE low to Address hold 3.0 ns

tAVAEL Address valid to ALE low 2.0 ns

tAVCSL Address valid to notCS low 2.0 ns

tBCHRWX BusClock high to RdnotWr hold 5.0 ns

tBCHWtH BusClock high to BusWait high 25.0 ns

tBCHWtL BusClock high to BusWait low 25.0 ns

tBEHRDZ notBusOE high to Read Data tristate 15.0 ns

tBELRDX notBusOE low to Read Data low Z 3.0 ns

tCSHCSL notCS pulse width high 2 cycles

tCSHRDZ notCS high to Read Data tristate 15.0 ns

tCSLAEH notCS low to ALE high 5.0 ns

tCSLAX notCS low to Address hold 3.0 ns

tCSLRDX notCS low to Read Data low Z 3.0 ns

tCSLCSH notCS pulse width low 2 cycles

tCSLCSL notCS period 4 cycles

tRWVCSL Read valid to notCS low 2.0 ns

tWtLRDV BusWait low to Read Data valid 8.0 ns

Table 15.2 Bus interface – asynchronous read cycle timings

STC101

51/66

Asynchronous write cycle

tAVAEL tAELAX

tRWVCSL

tCSHCSLtCSLCSH

tCSLCSL

tAVCSL tCSHWDX

tBCHWtHtBCHWtL

Addr[4:0]

ALE

RdnotWr

notCS

BusClock

BusWait

tWDVCSH

Data[31:0]/
Data[15:0]

tCSLAX

tAEHAEL

tCSLAEH

tAEHCSL
tBCHRWX

Figure 15.5 Bus interface – asynchronous write cycle

52/66

Symbol Parameter Min Nom Max Units Notes

tAEHAEL ALE pulse width high 5.0 ns

tAEHCSL ALE high to notCS low 2.0 ns

tAELAX ALE low to Address hold 3.0 ns

tAVAEL Address valid to ALE low 2.0 ns

tAVCSL Address valid to notCS low 2.0 ns

tBCHRWX BusClock high to RdnotWr hold 5.0 ns

tBCHWtH BusClock high to BusWait high 25.0 ns

tBCHWtL BusClock high to BusWait low 25.0 ns

tCSHCSL notCS pulse width high 2 cycles

tCSHWDX notCS high to Write Data hold 4.0 ns

tCSLAEH notCS low to ALE high 5.0 ns

tCSLAX notCS low to Address hold 3.0 ns

tCSLCSH notCS pulse width low 2 cycles

tCSLCSL notCS period 4 cycles

tWDVCSH Write Data valid to notCS high 2.0 ns

tRWVCSL Write valid to notCS low –2.0 ns

Table 15.3 Bus interface – asynchronous write cycle timings

15.2.2 Synchronous bus timings

Accesses start on the rising edge of BusClock when notCS is low and finish on the rising edge of
BusClock when BusWait is low. All synchronous accesses take at least two BusClock cycles,
BusWait is always high during the first clock cycle. In systems in which address signals are valid
throughout the access ALE can be left high, otherwise the addresses are latched on the rising edge
of BusClock when ALE is high. ALE causes the address to be latched and does not imply that an
access is about to start.

All signals, with the exception of the notBusOE and read data signals, are synchronous to the
BusClock .

Transfers occur on all rising BusClock edges when notCS is low and BusWait is low. Read data
is available in the clock cycle when the BusWait signal goes low and is setup to the next rising edge
of the clock assuming notBusOE is low. If notBusOE is held low after a read ends (i.e. after notCS
goes high) then the read data will be held on the bus, until the next access is initiated.

STC101

53/66

BusClock

Addr[4:0]

ALE

notCS

BusWait

RdnotWr

notBusOE

Data[31:0]/

tBCHAX

tAVBCH

tAEVBCH tBCHAEX

tCSVBCH tBCHCSX

tBCHWtV tBCHWtX

tRWVBCH tBCHRWX

tBCHRDV

tBELRDX

tBEHRDZ

tWDVBCH
tBCHWDX

Wait Read
transfer Wait Write

transfer

Data[15:0]
(read)

Data[31:0]/
Data[15:0]

(write)

Figure 15.6 Bus interface – synchronous read and write cycles

54/66

Symbol Parameter Min Nom Max Units Notes

tAEVBCH ALE valid to BusClock high 2.0 ns

tAVBCH Address valid to BusClock high 2.0 ns

tBCHAEX BusClock high to ALE hold 3.0 ns

tBCHAX BusClock high to Address hold 5.0 ns

tBCHCSX BusClock high to notCS hold 2.0 ns

tBCHRDV BusClock high to Read Data valid 25.0 ns

tBCHRWX BusClock high to RdnotWr hold 5.0 ns

tBCHWDX BusClock high to Write Data hold 5.0 ns

tBCHWtX BusClock high to BusWait hold 25.0 ns

tBCHWtV BusClock high to BusWait valid 25.0 ns

tBEHRDZ notBusOE high to Read Data tristate 15.0 ns

tBELRDX notBusOE low to Read Data low Z 3.0 ns

tCSVBCH notCS valid to BusClock high 3.0 ns

tRWVBCH RdnotWr valid to BusClock high 2.0 ns

tWDVBCH Write Data valid to BusClock high 5.0 ns

Table 15.4 Bus interface – synchronous read and write cycle timings

STC101

55/66

15.3 Token interface timings

The setup and hold times for the token interfaces are shown below.

Data transfers take place on a rising bus clock edge when Valid is high and Hold is low.

BusClock

notRxOE

RxData7:0

Idle
Rx data
transfer Wait

Tx data
transfer

RxValid

RxHold

TxData7:0

TxValid

TxHold

tBCHRVV

tBCHRVX

tRHVBCH tBCHRHX

tBCHTHV tBCHTHX

tTVVBCH
tBCHTVX

tRELRxDX
tREHRxDZ

tBCHRxDV tBCHRxDX

tTxDVBCH tBCHTxDX

TxEOXnotData

tTxEoxVBCH tBCHTxEoxX

RxEOXnotData

tBCHRxEoxV

tBCHRxEoxXtRELRxEoxX

tREHRxEoxZ

Figure 15.7 Token interface timings

56/66

Symbol Parameter Min Nom Max Units Notes

tBCHRHX BusClock high to RxHold hold 0.0 ns

tBCHRVV BusClock high to RxValid valid 25.0 ns

tBCHRVX BusClock high to RxValid hold 10.0 ns

tBCHRxDV BusClock high to RxData valid 20.0 ns

tBCHRxDX BusClock high to RxData hold 3.0 ns

tBCHRxEoxV BusClock high to RxEOXnotData valid 20.0 ns

tBCHRxEoxX BusClock high to RxEOXnotData hold 10.0 ns

tBCHTxEoxX BusClock high to TxEOXnotData hold 5.0 ns

tBCHTHV BusClock high to TxHold valid 25.0 ns

tBCHTHX BusClock high to TxHold hold 10.0 ns

tBCHTVX BusClock high to TxValid hold 5.0 ns

tBCHTxDX BusClock high to TxData hold 5.0 ns 1

tREHRxDZ notRxOE high to RxData tristate 10.0 ns

tREHRxEoxZ notRxOE high to RxEOXnotData tristate 15.0 ns

tRELRxDX notRxOE low to RxData low Z 3.0 ns

tRELRxEoxX notRxOE low to RxEOXnotData hold 0.0 ns

tRHVBCH RxHold valid to BusClock high 10.0 ns

tTVVBCH TxValid valid to BusClock high 3.0 ns

tTxDVBCH TxData valid to BusClock high 1.0 ns 1

tTxEoxVBCH TxEOXnotData valid to BusClock high 10.0 ns

Table 15.5 Token interface timings

Notes

1 This only needs to be met when a data transfer is taking place.

STC101

57/66

15.4 DS-Link timings

tLODSf

2.0V

0.8V
tLODSr

2.0V

0.8V

LinkOutData

LinkInData

LinkOutStrobe

LinkInStrobe

tLIDSftLIDSr

1.5 V

tDSDSO

LinkOutData
LinkOutStrobe

2 x tDSO

tDSI

LinkInStrobe

tDSI

1.5 V

1.5 V

LinkInData or

LinkInStrobe
LinkInData or

2 x tDSO

Figure 15.8 DS-Link timing

LinkOutData

LinkInStrobe

LinkInData

LinkOutStrobe

Zo=100 ohms

LinkInData LinkOutData

LinkOutStrobe LinkInStrobe

STC104STC101 RM

Figure 15.9 DS-Links connected by transmission lines

58/66

Symbol Parameter Min Nom Max Units Notes

CLIZ LinkIn capacitance 7 pF 1

tDSDSI Sustainable averaged input bit period 9 110 ns

tDSDSO Output bit period 10 100 ns 2

tDSI Data/strobe input edge minimum separation 2.5 ns 3,4,5

tDSO Data/strobe output skew 1 ns 6

tLIDSf LinkIn fall time (2.0–0.8V) 100 ns 7

tLIDSr LinkIn rise time (0.8–2.0V) 100 ns 7

tLODSf LinkOut fall time (2.0–0.8V) 7 ns 8

tLODSr LinkOut rise time (0.8–2.0V) 7 ns 8

ROH Output impedance (output driving high) 5 50

ROL Output impedance (output driving low) 5 50

RM Series resistor for 100ohm transmission line

Table 15.6 DS-Link timings
Notes

1 Sampled, not 100% tested.

2 tDSDSO represents the minimum and maximum programmable bit periods.

3 tDSI is the shortest permissible spacing of 2 consecutive edges on the Data and Strobe wires
(1 edge of either sense on each wire). If arriving Data and Strobe edges are skewed to the
extent that this parameter is exceeded then the order of the edges becomes ambiguous and
a parity error is likely to result.

4 Edge separation includes consecutive edges of a data input or a strobe input.

5 Based on a slew rate of 1.5 V/s, monotonic across the transition region. For other values of
slew rate, use the following formula:

1.0 + (k * slew rate) where k=1.0

6 tDSO is the maximum discrepancy between the time when a DS Output edge (either sense)
starts a transition and the theoretical ideal (i.e. all consecutive DS edges spaced by tDSDSO).

7 Edges must be monotonic, hence faster edges are recommended unless the link is to be
used in a noise free environment.

8 Measurement based on a loading of 25pF.

15.4.1 Link Input and Output relative skews

For the skew parameters to be valid for a wide range of operating speeds (10 – 100 Mbits/s) certain
parameters must be made relative to edge rates, as the interaction of edge rates and logic threshold
have significant impact on the skew. Note that skew is measured relative to the edges crossing a
nominal 1.5V logic threshold.

tDSI = Fixed skew + k * (the larger of tLIDSr and tLIDSf)

Where Fixed Skew is related to the worst case DSDecoder input skew rejection and internal input
path mismatch, and k is found by characterization and related to minimum variation in input threshold
and input pad propagation delay.

STC101

59/66

tDSO = Fixed skew

Where Fixed Skew is related to the worst case Link Output PLL jitter and internal output path
mismatch.

15.4.2 Skew budget

The concept here is that in order to eliminate the risk of DSLink parity errors due to the relative skew
between Data and Strobe inputs a systemdesigner must ensure that the sum of 2tDSO and the relative
skew between Data and Strobe induced by all system interconnect and buffering must be less than
tDSDSO – tDSI.

Note that an edge rate dependent calculation must be performed for external buffers with variable
thresholds in order to calculate worst case tEXTSkew for both Data and Strobe.

i.e. 2tDSO + tEXTSkew < tDSDSO – tDSI

The parameter tDSO on the left hand side of the expression is multiplied by two to allow for the worst
case situation of Data and Strobe undergoing maximum skew in opposite directions.

60/66

16 Electrical specifications
Inputs and outputs are TTL compatible.

16.1 Absolute maximum ratings

Symbol Parameter Min Max Units Notes

VDD DC supply voltage 0 7.0 V 1,2,3,4,5

VI, VO Voltage on input and output pins –0.5 VDD+0.5 V 1,3,4,5

II Input current 10 A 6

tOSC Output short circuit time (one pin) 1 s 4

TS Storage temperature –65 150 oC 4

Table 16.1 Absolute maximum ratings

Notes

1 All voltages are with respect to GND.

2 Power is supplied to the device via the VDD and GND pins. Several of each are provided to
minimize inductance within the package. All supply pins must be connected. The supply must
be decoupled close to the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor
between VDD and GND. Four layer boards are recommended; if two layer boards are used,
extra care should be taken in decoupling.

3 Input voltages must not exceed specification with respect to VDD and GND, even during pow-
er-up and power-down ramping, otherwise latchup can occur.CMOS devices can be perma-
nently damaged by excessive periods of latchup.

4 This is a stress rating only and functional operation of the device at these or any other condi-
tions beyond those indicated in the operating sections of this specification is not implied.
Stresses greater than those listed may cause permanent damage to the device. Exposure
to absolute maximum rating conditions for extended periods may affect reliability.

5 This device contains circuitry to protect the inputs against damage caused by high static volt-
ages or electrical fields. However, it is advised that normal precautions be taken to avoid
application of any voltage higher than the absolute maximum rated voltages to this high im-
pedance circuit. Unused inputs should be tied to an appropriate logic level such as VDD or
GND.

6 The input current applies to any input or output pin and applies when the voltage on the pin
is between GND and VDD.

STC101

61/66

16.2 Operating conditions

Symbol Parameter Min Max Units Notes

VDD DC supply voltage 4.75 5.25 V 1

VI, VO Input or output voltage 0 VDD V 1,2

TA Operating temperature range 0 TAMAX oC 3

Table 16.2 Operating conditions

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended.

3 For details of TAMAX, refer to section 17.3 on thermal data.

16.3 DC characteristics

Symbol Parameter Min Max Units Notes

VIH High level input voltage 2.4 VDD V 1,2,3

VIL Low level input voltage –0.5 0.8 V 1,2,3

II Input current @ GND<VI<VDD 1 1,2

VOH Output high voltage @ IOH=2mA 2.4 V 1,2,3,4

VOL Output low voltage @ IOL=4mA 0.4 V 1,2,3,4

IOZ Tristate output current @ GND<V0<VDD 1 1,2,3

CIN Input capacitance @ f=1MHz 7 pF 3

COZ Output capacitance @ f=1MHz 7 pF 3

Table 16.3 DC characteristics
Notes

1 All voltages are with respect to GND.

2 Parameters for STC101 measured at 4.7V<VDD<5.3V and 0oC<TA<TAMAX.
Input clock frequency = 10 MHz.

3 Characterized on a sample of devices, not tested.

4 For link outputs, IOH=1mA, IOL=1mA.

16.4 Power rating

Power dissipation depends on VDD. The peak power dissipation for an STC101 operating with a
LogicClock of 50 MHz and BusClock of 30 MHz, with the DS-Link running at 100 Mbits/s is 2.35W.
Power dissipation is also dependent on operating frequency,as shown in figure 16.1, for an STC101
operating at 5 V and LogicClock of 50 MHz.

62/66

Power
W

6.25 25.012.5

BusClock MHz

1.0
1.1

0.7
0.8
0.9

1.2
1.3

x

x

x1.4
1.5

Figure 16.1 Power dissipation vs BusClock frequency

STC101

63/66

17 Package specifications

The STC101 is available in a 100 pin ceramic quad flatpack (CQFP) package.

17.1 STC101 100 pin CQFP package pinout

Figure 17.1 STC101 100 pin CQFP package pinout

STC101

64/66

17.2 STC101 100 pin CQFP package dimensions

Figure 17.2 STC101 100 pin CQFP package dimensions

STC101

65/66

REF. CONTROL DIM. mm ALTERNATIVE DIM. inches NOTES

MIN NOM MAX MIN NOM MAX

A – – 3.400 – – 0.134

A1 0.250 – – 0.010 – –

A2 – – 3.073 – – 0.121

B 0.220 – 0.432 0.009 – 0.017

C 0.130 – 0.230 0.005 – 0.009

D 23.650 – 24.150 0.931 – 0.951

D1 19.800 20.000 20.200 0.780 0.787 0.795

D3 – 18.850 – – 0.742 – REF

E 17.650 – 18.150 0.695 – 0.715

E1 13.840 14.000 14.150 0.545 0.551 0.557

E3 – 12.350 – – 0.486 – REF

e – 0.650 – – 0.026 – BSC

G – – 0.100 – – 0.004

K 05 – 75 05 – 75
L 0.650 0.800 0.950 0.026 0.031 0.037

Table 17.1 STC101 100 pin CQFP package dimensions

Notes

1 Lead finish to be 60 Sn/40 Pb hot solder dip.

2 Maximum lead displacement from the notional center line will be no greater than + 0.125 mm.

17.3 STC101 100 pin CQFP package thermal data

The STC101 is tested to a maximum silicon junction temperature of 1005C. For operation within the
given specifications, the case temperature should not exceed 905C.

Given a maximum operating junction temperature of 1005C, the following maximum power condi-
tions apply:

Conditions Maximum power (Watts)

Still air at 355C 1.65

Still air at 705C 0.75

Case held at 855C 2.5

For actual maximum power dissipation see section 16.4.

For temperatures above 1005C the operation of the device cannot be guaranteed and reliability may
be impaired.

For further information on reliability refer to the SGS–THOMSON Microelectronics Quality and
Reliability Program.

External thermal management is recommended in order to ensure optimum performance and
reliability.

)66/66

18 Ordering information

Device Package

STC101–F10S 100 pin ceramic quad flatpack (CQFP)

For further information contact your local SGS–THOMSON sales office.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-
THOMSON Microelectronicsproducts arenotauthorized foruseascriticalcomponents in lifesupport devicesorsystemswithoutexpress written
approval of SGS-THOMSON Microelectronics.

1995 SGS-THOMSON Microelectronics - All Rights Reserved

DS-Link is a trademark of SGS-THOMSON Microelectronics Limited.

is a registered trademark of the SGS-THOMSON Microelectronics Group.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco -

The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

