
3 DS-Links and C104 Routers

3.1 Introduction

Millions of serial communication links have been shipped as an integral part of the transputer
family of microprocessor devices. This ‘OS-Link’, as it is known, provides a physical point–to–
point connection between two processes running in separate processors. It is full–duplex, and
has an exceptionally low implementation cost and an excellent record for reliability. Indeed, the
OS-Link has been used in almost all sectors of the computer, telecommunications and electronics
markets. Many of these links have been used without transputers, or with a transputer simply
serving as an intelligent DMA controller. However, they are now a mature technology, and by
today’s standards their speed of 20 Mbits/s is relatively low.

Since the introduction of the OS-Link, a new type of serial interconnect has evolved, known as
the DS-Link. A major feature of the DS-Link is that it provides a physical connection over which
any number of software (or ‘virtual’) channels may be multiplexed; these can either be between
two directly connected devices, or can be between any number of different devices, if the links
are connected via (packet) routing switches. Other features include detection and location of the
most likely errors, and a transmission speed of 100 Mbits/s, with 200 Mbits/s planned and further
enhancement possible.

Although DS-Links have been designed for processor to processor communication, they are
equally appropriate for processor to memory communication and specialized applications such
as disk drives, disk arrays, or communication systems.

3.2 Using links between devices

DS-Links provide point–to–point communication between devices. Each connected pair of DS-
Links implements a full–duplex, asynchronous, flow–controlled connection operating at a pro-
grammable speed of up to 100 MBits/s or more. Point to point links have many advantages over
bus based communications in a system with many devices:

� There is no contention for the communication mechanism, regardless of the number of
devices in the system.

� There is no capacitive load penalty as more devices are added to the system.

� The communications bandwidth does not saturate as more communicating devices are
added to the system. Rather, the larger the number of devices, the greater the total com-
munications bandwidth of the system.

� Removing the bus as a single point of failure improves the fault–tolerance of the system.

For small systems, a number of DS-Links on each device can provide complete connection be-
tween a few devices. By using additional message routing devices, networks of any size and
topology can be built with complete connection between all devices.

3.3 Levels of link protocol

As with most communications systems, the links can be described at a number of levels with a
hierarchy of protocols. The lowest level of electrical signals is considered in detail in chapter
4.

3.3.1 Bit level protocol

To achieve the speed required, a new, simple link standard has been produced. DS-Links have
four wires for each link, a data and ‘strobe’ line for each direction. The data line carries the actual
signal, and the strobe line changes state each time the next bit has the same value as the previous
one10. By this means each DS pair carries an encoded clock, in a way which allows a full bit–time
of skew–tolerance between the two wires. Figure 3.1 shows the form of signals on the data and
strobe wires. All signals are TTL compatible.

� � � � � � � � � �

��
�

�
	���

� � � �

Figure 3.1 Link data format

Since the data–strobe system carries a clock, the links are asynchronous; the receiving device syn-
chronizes to the incoming data. This means that DS-Links ‘autobaud’; the only restriction on
the transmission rate is that it does not exceed the maximum speed of the receiver. It also simpli-
fies clock distribution within a system, since the exact phase or frequency of the clock on a pair
of communicating devices is not critical.

3.3.2 Token level protocol

In order to provide efficient support for higher level protocols, it is useful to be able to encode
‘‘tokens” which may contain a data byte or control information (in other standards these might
be referred to as ‘‘characters” or ‘‘symbols” – note that they have no relation to the ‘‘token” of
a token–ring network). Each token has a parity bit plus a control bit which is used to distinguish
between data and control tokens. In addition to the parity and control bits, data tokens contain
8 bits of data and control tokens have two bits to indicate the token type (e.g. ‘end of message’).
This is illustrated in figure 3.2.

Data token End of packet token

P 0 P 1 0 1D D D D D D D D

Parity bit 8 Data bits

Control bit

Scope of parity bit in second token

Figure 3.2 Token level protocol

10. NB: This does not correspond with the usual meaning of ‘strobe’, which would be a signal which indicates
every time that another signal is valid.

The parity bit in any token covers the parity of the data/control flag in the same token, and the
data or control bits in the previous token, as shown in figure 3.2. This allows an error in any single
bit of a token, including the token type flag, to be detected even though the tokens are not all the
same length. Odd parity checking is used. To ensure the immediate detection of errors null to-
kens are sent in the absence of other tokens. The coding of the control tokens is shown in table
3.1, in which P indicates the position of the parity bit in the token.

Table 3.1 Control token codings

���� ������� ����� �� ����

��� �� ������ �
� ����

��� �� ������� �
� ����

������ ����� ��� ����

	��� ����� 	�� ��� ����

Note that the token level of the protocol is independent of details of the higher levels, such as the
amount of data contained in a packet, or the particular interpretations of packets of different types.

Token level flow control

Token level flow control (i.e. control of the flow of tokens between devices) is performed in each
link module, and the additional tokens used are not visible to the higher–level packet protocol.
The token–level flow control mechanism prevents a sender from overrunning the input buffer
of a receiving link. Each receiving link input contains a buffer for at least 8 tokens (more buffer-
ing than this is in fact provided). Whenever the link input has sufficient buffering available for
a further 8 tokens, a flow control token (FCT) is transmitted on the associated link output, and
this FCT gives the sender permission to transmit a further 8 tokens. Once the sender has trans-
mitted a further 8 tokens it waits until it receives another FCT before transmitting any more to-
kens. The provision of more than 8 tokens of buffering on each link input ensures that in practice
the next FCT is received before the previous batch of 8 tokens has been fully transmitted, so the
token level flow control does not restrict the maximum bandwidth of the link. This is analyzed
in detail in chapter 6.

Token level flow control greatly simplifies the higher levels of the protocol, since it prevents data
from being lost due to buffer overflow and so removes the need for re–transmission unless errors
occur. To the user of the system, the net result is that a connected pair of DS-Links function as
a pair of fully handshaken FIFOs, one in each direction.

Note that the link module regulates the flow of data items without regard to the higher level ob-
jects that they may constitute. At any instant the data items buffered by a link module may form
part or all of one or more consecutive higher–level objects. FCTs do not belong to such objects
and are not buffered.

3.3.3 Packet level protocol

In order to transfer data from one device to another, it is sent as one or more packets (in some
other serial standards these might be called ‘‘frames” or ‘‘cells”). This allows a number of simul-
taneous data transfers to be interleaved on the same link. It also allows data to be routed by packet
switches such as the IMS C104 (described later).

Every packet has a header defining the destination address followed by zero or more data bytes
and, finally, a ‘terminator’ token, which may be either an ‘end of packet’ or an ‘end of message’
token. See figure 3.3. This simple protocol supports data transfers of any length, even when (for
reasons of smooth system performance) the maximum packet size is restricted; the receiving de-

vice knows when each packet and message ends without needing to keep track of the number of
bytes received.

header data bytes terminator

Figure 3.3 Packet format

3.3.4 Higher level protocols

A variety of higher level protocols can be layered on top of this basic system. DS-Link packets
can be used as a transport mechanism for protocols defined by other standards such as ATM, SCI
and FibreChannel. They also provide very efficient support for synchronised channel commu-
nication, as described below.

3.4 Channel communication

A model of communication which can be implemented very efficiently by DS-Links is based on
the ideas of communicating sequential processes. The notion of ‘process’ is very general, and
applies equally to pieces of hardware and pieces of software. Each process can be regarded as
a ‘‘black box” with internal state, which can communicate with other processes using communi-
cation channels. Each channel is a point–to–point connection between two processes. One pro-
cess always inputs from the channel and the other always outputs to it. Communication is syn-
chronized: the first process ready to communicate waits until the second is also ready, then the
data is copied from the outputting process to the inputting process and both processes continue.
Because a channel is external to the processes which use it, it provides a connection between them
which hides their location and internal structure from each other. This means that the interface
of a process can be separated from its internal structure (which may involve sub–processes), al-
lowing the easy application of structured engineering principles.

3.4.1 Virtual channels

Each OS-Link of the original transputers implemented only two channels, one in each direction.
To map a particular piece of software onto a given hardware configuration the programmer had
to map processes to processors within the constraints of available connectivity. The problem is
illustrated in figure 3.4 where 3 channels are required between two processors, but only a single
link connection is available.

One response to this problem is the addition of more links. However this does not really solve
the problem, since the number of extra links that can be added is limited by VLSI technology.
Neither does this ‘solution’ address the more general communication problems in networks, such
as communication between non-adjacent processors, or combining networks in a simple and reg-
ular way.

Process
A

Process
B

Process
C

Process
D

Process
E

?

Figure 3.4 Multiple communication channels required between devices

A better solution is to add multiplexing hardware to allow any number of processes to use each
link, so that physical links can be shared transparently. These channels which share a link are
known as ‘virtual channels’.

Process
A

Process
B

Process
C

Process
D

Process
E

Mux/
Demux

Mux/
Demux

Figure 3.5 Shared DS-Links between devices

Virtual links

Each message sent across a link is divided into packets. Every packet requires a header to identify
its channel. Packets from messages on different channels are interleaved on the link. There are
two important advantages to this:

� Channels are, generally, not busy all the time, so the multiplexing can make better use
of hardware resource by keeping the links busy with messages from different channels.

� Messages from different channels can effectively be sent concurrently – the device does
not have to wait for a long message to complete before sending another.

A B
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

B
ÉÉÉÉ
ÉÉÉÉ

Packets arriving on link

A

B

Mux/
Demux

Figure 3.6 Multiple channels sharing a link

In this specific protocol, a packet can contain up to 32 data bytes. If a message is longer than 32
bytes then it is split up into a number of packets all, except the last, terminated by an ‘end of pack-
et’ token. The last packet of the message, which may contain less than a full 32 bytes, is termi-
nated by an ‘end of message’ token. Shorter messages can be sent in a single packet, containing
0 to 32 bytes of data, terminated by the ‘end of message’ token. Messages are always sent using
the minimum possible number of packets.

Packet acknowledgements are sent as zero length packets terminated with an ‘end of packet’ to-
ken. This type of packet can never occur as part of a message because a zero length data packet
must always be the last, and only, packet of a message, and will therefore be terminated by an
‘end of message’ token. Each packet of a message must be acknowledged by receipt of an ac-
knowledge packet before the next can be sent. Process synchronization is ensured by delaying
the acknowledgement of the first packet of a message until a process is ready to input from the
channel, and delaying continuation of the outputting process until all the packets of the message
have been sent and acknowledged.

Virtual channels are always created in pairs to form a ‘virtual link’. This means it is not necessary
to include a return address in packets, since acknowledgements are simply sent back along the
other channel of the virtual link. The strict acknowledgement protocol means that it is not neces-
sary to include sequence numbers in the packets, even when the routing network is non–determin-
istic!

The specific formats of packets used in this system are illustrated in figure 3.7.

header 1 to 32 data bytes end of message

header 32 data bytes end of packet

end of packet

header 0 to 32 data bytes end of message

header 32 data bytes end of packet

Long message (greater than 32 bytes)

Short message (0 to 32 data bytes)

Acknowledge packet

header

First
packet

Last
packet

Figure 3.7 High Level protocol packet formats

3.5 Errors on links

The DS-Links are designed to be highly reliable within a single subsystem and can be operated
in one of two environments, determined by a flag at each end of the link, called LocalizeError .

In applications where all connections are on a single board or within a single box, the communica-
tions system can reasonably be regarded as being totally reliable. In this environment errors are
considered to be extremely rare, but are treated as being catastrophic should one occur. If an error
occurs it will be detected and reported. Normal practice will then be to reset the subsystem in
which the error has occurred and to restart the application. This minimizes the overheads on each
communication, but if an error does occur there will be an interruption in the operation of the
system.

For other applications, for instance when a disconnect or parity error may be expected during
normal operation, a higher level of fault–tolerance is required. This is supported by localizing
errors to the link on which they occur, by setting the LocalizeError bit of the link to 1. If an error
occurs, packets in transit at the time of the error will be discarded or truncated, and the link will
be reset automatically. This minimizes the interruption of the operation of a system, but imposes
an overhead on all communications in order to deal with the possibility that data may be lost.

3.5.1 Errors detected

The DS-Link token protocol allows two common types of error to be detected. Firstly the parity
system will detect all single bit errors at the DS-Link token level, and secondly, because each out-
put link, once started, continues to transmit an uninterrupted stream of tokens, the physical dis-
connection of a link can be detected.

Disconnection errors

If the links are disconnected for any reason whilst they are running then flow control and token
synchronization may be lost. In order to restart the link it is therefore necessary to reset both ends
to a known flow control and token synchronization point.

Disconnection is detected if, after a token has been received, no tokens are seen on the input link
in any 1.6 microsecond window. Once a disconnection error has been detected the link halts its
output. This will subsequently be detected as a disconnect error at the other end, and will cause
that link to halt its output also. It then resets itself, and waits 12.8 microseconds before allowing
communication to restart. This time is sufficient to ensure that both ends of the link have ob-
served disconnection and cycled through reset back into the waiting state. The connection may
now be restarted.

Parity errors

Following a parity error, both bit–level token synchronization and flow control status are no long-
er valid, therefore both ends of the link must be reset. This is done autonomously by the DS-Link
using an exchange–of–silence protocol.

When a DS-Link detects a parity error on its input it halts its output. This will subsequently be
detected as a disconnect error at the other end, and will cause that link to halt its output also, caus-
ing a disconnect to be detected at the first end. The normal disconnect behavior described above
will then ensure that both ends are reset (irrespective of line delay) before either is allowed to
restart.

3.6 Network communications: the IMS C104

The use of DS-Links for directly connecting devices has already been described. The link proto-
col not only simplifies the use of links between devices but also provides hardware support for
routing messages across a network.

The system described previously packetizes messages to be sent over a link and adds a header
to each packet to identify the virtual channel. These headers can also be used for routing packets
through a communication system connecting a number of devices together. This extends the idea
of multiple channels on a single hardware link to multiple channels through a communications
system; a communications channel can be established between any two devices even if they are
not directly connected.

Because the link architecture allows all the virtual channels of a device to use a single link, com-
plete, system-wide connectivity can be provided by connecting just one link from each device
to the routing network. This can be exploited in a number of ways. For example, two or more
networks can be used in parallel to increase bandwidth, to provide fault–tolerance, or as a ‘user’
network running in parallel with a physically separate ‘system’ network.

The IMS C104 is a device with 32 DS-Links which can route packets between every pair of links
with low latency. An important benefit of using serial links is that it is easy to implement a full
crossbar in VLSI, even with a large number of links. The use of a crossbar allows packets to be

passing through all links at the same time, making the best possible use of the available band-
width.

If the routing logic can be kept simple it can be provided for all the input links in the router. This
avoids the need to share the hardware, which would cause extra delays when several packets ar-
rive at the same time. It is also desirable to avoid the need for the large number of packet buffers
commonly used in routing systems. The use of small buffers and simple routing hardware allows
a single VLSI chip to provide efficient routing between a large number of links.

A single IMS C104 can be used to provide full connectivity between 32 devices. IMS C104s can
also be connected together to build larger switch networks connecting any number of devices.

3.6.1 Wormhole routing

The IMS C104 includes a full 32 x 32 non-blocking crossbar switch, enabling messages to be
routed from any of its links to any other link. In order to minimize latency, the switch uses ‘worm-
hole routing’, in which the connection through the crossbar is set up as soon as the header has
been read. The header and the rest of the packet can start being transmitted from the output link
immediately. The path through the switch disappears after the ‘end of packet/message’ token has
passed through. This is illustrated in figure 3.8. This method is simple to implement and pro-
vides very low latency as the entire packet does not have to be read in before the connection is
made.

Minimizing routing delays

The ability to start outputting a packet while it is still being input can significantly reduce delay,
especially in lightly loaded networks. The delay can be further minimized by keeping the headers
short and by using fast, simple hardware to determine the link to be used for output. The
IMS C104 uses a simple routing algorithm based on interval labelling (described in section
3.6.3).

Because the route through each IMS C104 disappears as soon as the packet has passed through
and the packets from all the channels that pass through a particular link are interleaved, no single
virtual channel can monopolize a route through a network. Messages will not be blocked waiting
for another message to pass through the system, they will only have to wait for one packet.

C104

C104

C104

C104
or

Device

C104
or

Device

C104
or

Device

C104
or

Device

C104
or

Device

C104
or

DeviceC104 inputs header and
selects outgoing link

Crossbar connects input to
output; header flows through
followed by rest of packet

Packet terminator closes
crossbar connection

Figure 3.8 Packet passing through IMS C104

The IMS C104s that the packets pass through do not need to have information about the complete
route to the destination, only which link each packet should be sent out of at each point. Each
of the IMS C104s in the network is programmed with information that determines which output
link should be used for each header value. In this way, each IMS C104 can route packets out of
whichever link will send it towards its destination.

3.6.2 Header deletion

An approach that simplifies the construction of networks is to provide two levels of header on
each packet. The first header specifies the destination device (actually, the output link from the
routing network), and is removed as the packet leaves the routing system. This exposes the sec-
ond header which tells the destination device which process (actually, which virtual channel) this
packet is for. To support this, the IMS C104 can route packets of any length. Any information
after the initial header bytes used by the IMS C104 is just treated as part of the packet, even if
it is going to be interpreted as a header elsewhere in the system. Any output link of the IMS C104
can be set to do header deletion, i.e. to remove the routing header from the front of each packet
after it been used to make the routing decision. The first part of the remaining data is then treated
as a header by the next device that receives the packet.

��	�����ÉÉ
ÉÉ

�
�� ��� �� ����
������ ���� �� ����

�
�� ��� �� ����
�����
� ���� �� ����

Figure 3.9 Header deletion

As can be seen from figure 3.10, by using separate headers to identify the destination device and
a channel within that device, the labelling of links in a routing network is separated from the label-
ling of virtual channels within each device. For instance, if the same 2 byte header were used
to do all the routing in a network, then the virtual channels in all the devices would have to be
uniquely labelled with a value in the range 0 to 64K. However, by using two 1 byte headers, all
the devices can use virtual channel numbers in the range 0 to 255. The first byte of the header
will be used by the routing system to ensure that the packets reach the appropriate device before
the virtual channel number is decoded.

��!#����������	

���!"��

���

 �
��
�� �
�����

�
�������

���!"��

���

 ���

 ���

�������

� � �

��� ��������� !�� $!�� #�!� � �$!� ������

��� ��������� !�� $!�� #�!� !#� � �$!� ������

��!#����������	

Figure 3.10 Using header deletion to label a network

The advantages of using header deletion in a network are:

� It separates the headers for virtual channels from those for the routing network.

� The labelling of the network can be done independently of the application using the net-
work.

� There is no limit to the number of virtual channels that can be handled by a system.

� By keeping the header for routing short, routing latency is minimized.

Any number of headers can be added to the beginning of a packet so that header deletion can also
be used to combine hierarchies of networks as shown in figure 3.11. An extra header is added
to route the message through each network. The header at the front of each packet is deleted as
it leaves each network to enter a sub-network. This is just like the local–national–international
hierarchy of telephone numbers. Since the operation of the IMS C104 is completely independent
of the length of the packets, the fact that header deletion changes the length of a packet as it passes
through the network causes no problem at all.

����� �����" %#�� $� ����$�)

�(&�"$%�� ������� �� ��&���

%#�� $� "�%$� ����$

$�"�%�� #%����$'�"��

����$�� �� �%$ %$�

%#�� $� "�%$� ����$

$�"�%�� #%����$'�"��

����$�� �� �%$ %$�

#%����$'�"��������	#

#%����$'�"��������	#

Figure 3.11 Using header deletion to route through sub-networks

3.6.3 Labelling networks

For each IMS C104 there will be a number of destinations which can be reached via each of its
output links. Therefore, there needs to be a method of deciding which output link to use for each
packet that arrives. The addresses that can be reached through any link will depend on the way
the network is labelled. An obvious way of determining which destinations are accessible from
each link, is to have a lookup table associated with all the outputs (see figure 3.12). In practice,
this is difficult to implement. There must be an upper bound on the lookup table size and it may
require a large number of comparisons between the header value and the contents of the table.
This is inefficient in silicon area and also potentially slow.

	�� �� 	�

�	� ��� ��

�	

�
� 	
� ��� �� ��

��� 	�

	�

�

	�

�	

��

�

�	

�
 	

��

�

��

��

	�

��#$���$���# "��������

�"�� $��# �%$ %$ ����
����% $���� "�!%�"��

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

Figure 3.12 Labelling a network

� ��

��� ��� ��

�	� ��� ��� �
�

�

��� ��� �	� �

������� �	 �� 	������ ����� �����

������

������

������

������

������

������

������

������

��"#���#���" !��������

�!�� #��" �$#�$# ����
��#�!%�� !�$#��� #���� !� $�!��

Figure 3.13 Interval labelling

However, a labelling scheme can be chosen for the network such that each output link has a range
of node addresses that can be reached through it. As long as the ranges for each link are non-over-
lapping, a very simple test is possible. The header just has to be tested to see into which range,
or interval, it falls and, hence, which output link to use. For example, in figure 3.13, a header
with address n would be tested against each of the four intervals shown below:

 Interval Output link

 6 � n < 18 1

18 � n < 25 3

25 � n < 40 0

40 � n < 50 2

The advantages of interval labelling are that:

� It is ‘complete’ – any network can be labelled so that all packets reach their destinations.

� It provides an absolute address for each device in a network, so keeping the calculation
of headers simple.

� It is simple to implement in hardware – it requires little silicon area which means it can
be provided for a large number of links as well as keeping costs and power dissipation
down.

� Because it is simple, it is also very fast, keeping routing delays to a minimum.

Figure 3.14 gives an example of interval routing for a network of two IMS C104’s and six IMS
T9000 transputers showing one virtual link per transputer. The example shows six virtual chan-
nels, one to each transputer, labeled 0 to 5. The interval contains the labels of all virtual channels
accessible via that link. The interval notation [3,6) is read as meaning that the header value must
be greater than or equal to 3 and less than 6. If the progress of a packet with the header value
4 is followed from IMS T90001 then it is evident that it passes through both IMS C104s before
leaving on the link to IMS T90004.

������

���

��� ��
�	�
�

��� 	�

��� ��

���
�
��� ��

��� ��

��� ��

���������� ����� ����� ����� ���
� ����� ����� ���	� �	�
�

���

���� ����

������ ������

������

�����	������

Figure 3.14 Interval routing

It is possible to label all the major network topologies such that packets follow an optimal route
through the network, and such that the network is deadlock free. Optimal, deadlock free labelings
are available for grids, hypercubes, trees and various multi–stage networks. A few topologies,
such as rings, cannot be labeled in an optimal deadlock free manner. Although they can be labeled
so that they are deadlock free, this is at the expense of not using one or more of the links, so that
the labeling is not optimal. Optimal deadlock free labelings exist if one or more additional links
are used.

3.6.4 Partitioning

All the parameters determining the routing are programmable on a per link basis. This enables
an IMS C104 to be used as part of two or more different networks. For example, a single IMS
C104 could be used for access to both a data network and a control network (see figure 3.15).

Partitioning provides economy in small systems, where using an IMS C104 solely for a control
network is not desired, whilst maintaining absolute security. By ensuring that no link belonging
to one partition occurs in any interval routing table in another partition, it is guaranteed that no
packet can be routed from one partition to another, whatever the value of its header.

����

��� ��

��� ��

��!$��� �

��!$��� �

�����

�����
���
�

�����

��� ��
�����

�����

����
���
�

��� ��

��� ��

��� ��

�����

�����

��!$��� �
���� " �� �� � ��!� ��!$���

��!$��� �
���� " �� �� � ���!��� ��!$���

�����

���� ���
�����

����	

��� ���

��� ��
����

�

�

�

�

�!��#��

�

	

�!��#�� �����!����

����

��� ���

���� ���

��� ��

����

������ ���� " �� ��!$��� � ��!$���

�����!����

�!��#�� !���� ��� ���� �� 	 ���

�!��#�� !���� ��� ���� �� �� � ��� �

���� ���

��� ���

��� ��

���
�

��� ��

��� ��

��� ��

Figure 3.15 Using partitioning to enable one C104 to be used by two different networks

3.6.5 Grouped adaptive routing

The IMS C104 can implement grouped adaptive routing. Sets of consecutive numbered links
can be configured to be grouped, so that a packet routed to any link in the set would be sent down
any free link of the set11. This achieves improved network performance in terms of both latency
and throughput.

Figure 3.16 gives an example of grouped adaptive routing. Consider a message routed from
C1041, via C1042, to T90001. On entering C1042 the header specifies that the message is to be
output down Link5 to T90001. If Link5 is already in use, the message will automatically be
11. This is also sometimes called a hunt group.

routed down Link6 , Link7 or Link8 , dependent on which link is available first. The links can
be configured in groups by setting a bit for each link, which can be set to ‘Start’ to begin a group
and ‘Continue’ to be included in a group.

����

�����
�����

�����

������

����

����	

�����

�����

�����

�����

�����

� � ��
� �� ��!�
� �� ��!�
� �� ��!�
� � ��
� � ��
	 �� ��!�

 �� ��!�
� �� ��!�
� � ��
�� �� ��!�
�� � ��
 � �
 � �
�� � ��

�� ���� �� ���	����� �� ����� ���
����

���� ������

������

����

���!���

���!���

���!���

Figure 3.16 Grouped adaptive routing

Grouped adaptive routing is also very effective in multi–stage networks such as those illustrated
in figures 7.1 to 7.4. Since all the centre–stage switches are equivalent, all the links from each
first–stage switch towards the centre can be grouped together, allowing a high degree of adaption
to dynamic traffic conditions.

3.7 Conclusion

DS-Link technology provides reliable, high–speed serial communications at low cost, in a simple
form which is suitable for a wide range of applications. A simple protocol, implemented in hard-
ware, keeps overheads down whilst allowing more complex functions to be layered on top of it.
It also permits high–performance routing devices to be constructed, from which efficient systems
of any size can be built to provide very high system bandwidth and fault–tolerance.

