The Helios Operating System

PERIHELION SOFTWARE LTD

May 1991

COPYRIGHT

This document Copyright © 1991, Perihelion Software Limited. All rights
reserved. This document may not, in whole or in part be copied, photocopied,
reproduced, transl ated, or reduced to any electronic medium or machine readable
form without prior consent in writing from Perihelion Software Limited, The
Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE. UK.

Printed in the UK.

Acknowledgements

The Helios Parallel Operating System was written by members of the He-
lios group at Perihelion Software Limited (Paul Beskeen, Nick Clifton, Alan
Cosslett, Craig Faasen, Nick Garnett, Tim King, Jon Powell, Alex Schuilen-
burg, Martyn Tovey and Bart Veer), and was edited by Ian Davies.

The Unix compatibility library described in chapter 5, Compatibility, im-
plements functions which are largely compatible with the Posix standard in-
terfaces. The library does not include the entire range of functions provided
by the Posix standard, because some standard functions require memory man-
agement or, for various reasons, cannot be implemented on a multi-processor
system. The reader is therefore referred to IEEE Std 1003.1-1988, IEEE Stan-
dard Portable Operating System Interface for Computer Environments, which
is available from the IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Pis-
cataway, NJ 08855-1331, USA. It can also be obtained by telephoning USA
(201) 9811393.

The Helios software is available for multi-processor systems hosted by a
wide range of computer types. Information on how to obtain copies of the
Helios software is available from Distributed Software Limited, The Maltings,
Charlton Road, Shepton Mallet, Somerset BA4 5QE, UK (Telephone: 0749
344345).

Contents

1

Introduction

11
12
1.3
14
15
16
1.7
1.8

Hardwarelimitations
Actua requirements
Architectural improvements
Parallelism
TheTransputer e

Helios

Targethardware
Aboutthisbook,

Networks
Introduction
2.2 Thecomponentsof Helios

21

23

221
222
2.2.3
224
225
2.2.6
2.2.7
228
229

Asmplenetwork L
TheHdiosnamingscheme
Thel/Oserver
TheNucleus,
Thelnitprogram
Thenetwork server
TheSessonManager,
TheTask ForceManager
Summary of the bootstrapprocess

Someexamplenetworks

231
232
2.3.3
234
235
2.36
2.3.7
2.3.8
239
2.3.10
2311
2312
2.3.13

Single-processor embedded systems L.
Single-processor workstation L.
Workstation with I/O processor
Workstation for developing paralel software
Asmalnetwork
A farly smal single-user network
A network with configuration hardware
A single-user supercomputer L. .
Severa single-user systems L. L
A single-user process control system
A small multi-user network
Two connected single-user networks
A large multi-user network

P OO0 ~NODNMNWER PR

=

ii CONTENTS
2.3.14 A mainframecomputer 37
2.3.15 Networked mainframe computers 37

24 Theredworld. 38
24.1 Differenthardware, 38
242 1InMOS e 38
243 ParsyteC 40
244 Tdmat 42
245 MéeKo 44
24.6 Handling different hardware 45
247 Mapping task forcesontoanetwork 46
248 Possibletopologies 48
249 Taskforceconnectivity 49
24.10 Other considerations 50
2411 SUMMAY . . o o e e 50

25 Networkcommands. 50

2.6 Configurationfiles 52
26.1 host.con 52
262 0Nitrc 54
2.6.3 .ogin,.cshrc,and.dogout L 57
264 NSIC e 58
26,5 Networkresourcemaps. 60

2.7 Configuringnetworks 72
2.7.1 Single-processor workstation 72
2.7.2 \Workstation with1/Oprocessor 75
2.7.3 Workstation for developing parallel software 77
274 Asmalnetwork 78
275 Afarly smal single-user network 80
2.7.6 A network with configuration hardware 82
2.7.7 Asingle-user supercomputer 83
278 Several single-usersystems L. 84
279 Aprocesscontrol system 85
2710 A smal multi-user network 87
2.7.11 Two connected single-user networks 89
2.7.12 Alargemulti-user network L 90
2.7.13 A manframecomputer 94
2.7.14 Networked mainframe computers 95

3 Programming under Helios 97

31 Smpleprogramming e 97
311 Asmpleprogram 98
3.12 Driveroptions 98
3.13 Multiplemodules 100
314 Make 101
315 Commonsuffixes. 110

3.2 Moreadvanced programming v v e e 111
321 Libraries 112

3.22 Othertools 118

CONTENTS iii
323 Manua compilation 122

33 SEVEIS .. e 128
331 Posixfecilities 128

332 Systemlibrary facilities 131

333 Filesystems. 134

334 Thel/windowserver, 135

335 The/r232server 143

336 ThecentronicSServer o v v v v i i i 149

3.37 Mouseandkeyboardservers 150

338 Networkingservers 152

339 ftasksand/loader 153
3310 Thenull server 154
3.3.11 Theerorlogger 154
3312 Red-timeclock 155
3313 Thelockserver 156
3314 Rawdiscservers 157
3315 TheXwindowsystem 157
3316 Pipeandsocketl/O 157

34 Protection: atutorial 159
4 CDL 167
4.1 The CSPmodel for parallel programming 167
42 TheCDLIlanguage 169
421 Howtoexecutetaskforces. 169

4.2.2 Thetask forcedefinition 171

423 Allocationofstreams 174
424 Component declarations 177

425 Replicators e 179

4.2.6 Replicated component declarations 182
427 Theewironment 184

428 Argumentsandreplicators 186

429 Signalsandtermination 187

43 AnexampleaseasyasPl 187
431 Asmpleproblem. L 187

4.3.2 Howtopardldisetheproblem 188

433 Thering. 188

434 Afamtopology 193

435 Different levelsof communication 197

436 Moreaboutpipel/lO 199

437 Runningthetaskforce 199

438 FORTRANtaskforces 201

439 Pascaltaskforces. 203

44 CDL famsandloadbaancing 205
441 Asmplefarm 205

442 Asmpleloadbalancer 212

443 Moreaboutpackets. L 216

444 Advancedfarms L. 216

7

CONTENTS

45 Oddsandends. 218
451 Communication versus computation 219

45.2 Problemswithworker components. 221

453 Padlelservers 222
Compatibility 225
51 Introduction 225
52 Unix compatibility 225
53 Filehandlesharing 226
54 fork() e 226
BS5 Signals. e 228
56 Processidentifiers. 230
5.7 Userandgroupidentifiers. 230
5.8 BSD compatibility 231
5.9 Portingtechniques, 233
5.10 Multi-threaded libraryaccess 234
Communication and performance 237
6.1 Communication 237
6.1.1 Heliosoverview 238

6.12 Pipes 239

6.1.3 Sockets 242
6.14 MesSsagepassinNg i i e e e 247

6.2 Peformance. 248
6.21 Testconditions 249

6.22 Computational benchmarks 249
6.23 Communication benchmarks 251
6.24 Obtaining performance datafromHelios 260

The Resource Management library 263
7.1 Introduction 263
7.2 TheResource Management library 263
721 Theabstractmodel 265

7.3 Outlineof thelibrarycals 271
7.3.1 Programmingconventions 272

7.3.2 Buildinganetworko L 273

733 Examininganetwork 277

7.34 Obtaininganetwork 284

735 Congtructing ataskforce 287
7.3.6 Examiningataskforce 291

7.3.7 Aprogram’'senvironment 292

7.3.8 Executingatask L. 294
739 Executingataskforce 295
7.3.10 Mappingataskforce 296
7.3.11 Modifyinganetwork, 297
7312 Filel/lO 300
7313 Miscellaneous 301

CONTENTS \Y

7314 Errorhandling 302

7.4 Exampleprograms 303
75 OWNErs e 303
7.6 Mappipe e 306
8 Thel/O server 315
81 Introduction 315
8.2 Theroleofthel/Oserver 316
8.3 1/Oinmoreconventional machines 316
8.3.1 Transputerhardware 318
83.2 Theroleofthel/Oserver 320

84 Thel/lOsarveroptions, 322
841 Thecommandline 322

842 Debugoptions 322
84.3 Thehost.confile 324

8.4.4 Root Transputer bootstrap 329
845 Speciadactions 332
8.4.6 Debugging facilities 333

8.4.7 Thebuilt-indebugger L. 342

85 ThePCl/Oserver 354
851 Hadware 354
852 Specialkeys 356
853 Filel/lO 357
854 Multiplewindows 359

855 Theerrorlogger 359

85.6 Theclockdevice 359

8.5.7 Xwindow systemsupport 359
858 Seridports 360
859 Padld portsand printers 362
85.10 Therawdiskdevice 363
85.11 Thelpcdevice, 364

86 TheSunl/Oserver, 368
8.6.1 Introduction., 369

862 Hydra........ 370
863 Hydramon 372
8.6.4 Supported hardware 373
8.6.5 Whichconfigurationdolneed? 374
8.6.6 Other host.conlink I/Ooptions 379
8.6.7 Thewindowinginterface 379

8.6.8 Background operation 385
869 Filel/lO 385
8.6.10 Theerorlogger i 386

8.6.11 Theclock 386

Vi

9 TheKernd

10

9.1 Kernel data structures
9.1.1 Theroot structure
9.1.2 The configuration structure
Message passing
Message ports
Message structure
Message passing functions
| nter-processor message passing

9.2

9.3

94

9.5
9.6
9.7
9.8

9.2.1
9.2.2
9.2.3
9.24
Links
9.3.1
9.3.2
9.3.3

Events

Linkinfo

Link protocol

Dumb link access
Tasks and threads
9.4.1 Tasks
9.4.2 Threads
Timeout handling
Semaphores
Memory management

The System libraries
10.1 The System library

10.2

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8

System library data structures
System library flags

Open modes

Object and stream manipulation
The environment
Fault tolerance and recovery
Memory management

DES encryption support
Utility library
10.2.1 Clibrary functions
10.2.2 2-D block move
10.2.3 Thread creation
10.2.4 Using fast RAM
10.2.5 Debugging support

11 The System servers

11.1 The Processor Manager
11.1.1 The Helios naming scheme
11.1.2 Thel/O controller
11.1.3 Distributed search protocol
11.1.4 The Task Manager
11.1.5 Debugging system control messages
11.2 The Loader
11.2.1 Code management

CONTENTS

CONTENTS vii

11.2.2 Errordetection 424
11.2.3 Loaderprotocol 424

12 Writing servers 427
121 Introduction 427
122 Heiosservers oo 428
1221 Unixdaemons 428
1222 Heliosservers. i e 429
1223 MeSSaepPassiNg . - « v v v v v e e 430
12.2.4 The Genera Server Protocol 433
1225 TheSeverlibrary 437

123 AJLock server 438
1231 Headerfiles. 438
1232 Programstartupo 439
12.3.3 Initidising thedirectory tree 441
12.34 Registeringtheserver. 444
12.35 Thedispatcher 445
1236 Cleaningup o o i e 447
12.3.7 Usingthelockserver 448
12.3.8 TheOpenroutine. 449
1239 TheCreateroutine 452
12.3.10 The Deeteroutine 455

124 Moredetails 456
1241 Protection 456
1242 TheSeverlibrary 463

125 Thelincludedisc L, 469
125.1 J/includediscpreamble 469
12.5.2 Initidising the/includedisc 471
1253 Dispatching o 473
1254 TheOpenhandler 474
1255 Readrequests. o o 476
1256 Seekrequests 477
12.5.7 Private protocolsfordebugging 478
1258 ARAMdIsC 480

126 Devicedrivers 491
12.6.1 The/keyboardserver 492
12.6.2 Exampledevicedrivers. 498
12.6.3 TheDevinfofile 501

12,7 Standaloneservers 505
12.7.1 Thedispatcher 505
12.7.2 Name handling without protection 508
12.7.3 Namehandling with protection 512

1274 Directoryreads 513

viii CONTENTS
13 General Server Protocol 515
131 Functionandreturncodes. 515
13.2 GSPfundamentals L 517
13.3 Messageformats 518
134 Objecttypes o o i 518
135 Objectflags 519
13.6 Indirect operations 520
1361 Open 521
1362 Create 522
13.6.3 Locate 523
1364 Objectinfo 524
1365 Serverinfo 525
1366 Déeete. 526
1367 Rename. 526
136.8 Link 527
136.9 Protect 527
136.10SetDate 528
136.11Refine. 529
136.12CloseObj 529
136.13Revoke 530

13.7 Directoperations 531
1371 Read 531
1372 Write 533
1373 GetSize 536
1374 SetSize 537
1375 Close 537
1376 Seek 538
13.7.7 Getinfo 539
1378 Setlnfo 540
13.79 EnableEvents, 540
13.710Sdlect 542
13711 Abort 543

13.8 Task control MeSSageS v v v i 544
1381 Create e 544
1382 Déeete. 544
1383 SendEnv 544
1384 Signal 546
13.85 Programinfo, 547

14 Protection 549
14.1 Protectionmechanisms 549
14.2 Helioscapabilities. o 550
143 ACCESSMALNICES v v v o e e e e 551
14.4 Capabilitiesinprograms 553
145 Saving capabilities 553
146 Filesystemprotection.o 554
14.7 Processor protection. e 554

CONTENTS

15

16

Sockets and pipes

151 Sockets
1511 Posix-levl cals
15.1.2 Systemlibrary support L
1513 GetSocketinfo
1514 Messageformats

15.2 TheHELIOSdomain

153 PIPES. . . o
15.3.1 Pipeserver
15.3.2 Pipeconnectionprotocol
15.3.3 Pipedatatransfer protocol

Program representation and calling conventions
16.1 Moduletables
16.1.1 History e
16.1.2 TheBCPL globa vector
16.1.3 Moduletables.
16.2 Cdlingconvention
16.2.1 Ccdlingconvention
16.22 Anexample
16.3 Residentlibraries
1631 Slotnumbers
16.3.2 Compilingthesources
16.3.3 Thelibrary assemblerfile.
1634 makefile
16.4 Devicedrivers
165 TheNucleus.
16.6 Programrepresentation
16.6.1 Typecodes
1662 Modules
16.6.3 Residentlibrary references
16.6.4 Programs
16.6.5 Residentlibraries
16.6.6 Embedded information,
16.7 Nucleusstructure o

Options. debugging and configuration file
Options. debugging and configuration file
Allocation of streams

M easuring performance

605

607

609

CONTENTS

Chapter 1

| ntroduction

All isflux, nothing stays still,
Nothing endures but change.
Heraclitus

This quotation seems appropriate to the world of computing. Every year brings new
and faster computers with more memory and better input/output facilities. There are
many different measurements of computer power, the most commonly quoted ones
being MIPS (millions of instructions per second) and MFLOPS (millions of floating
point operations per second). Both of these are increasing for two reasons. greater
circuit density and faster clock speed. Circuit density is an indication of the number
of electronic components that can be put onto a given chip. The more components a
chip has, the more things can happen during a given time interval. (Individua opera-
tions become more powerful). For example a typical processor chip has an on-board
floating point coprocessor, rather than attempting to perform floating point operations
in software. As components become smaller, less effort is required to drive them, and
they can change their state faster. This means that the clock speed (the number of
operations in agiven time interval) can be increased.

1.1 Hardwarelimitations

The current trend in computing is for an order of magnitude improvement in perfor-
mance every four or five years. This means that today’s computers provide ten times
as many MIPS and ten times as many MFLOPS as their equivalents five years ago,
equivalence being defined in terms of the price of the computer. In five years, com-
puters should be ten times more powerful. It is useful to consider how long the rate of
development can continue.

In computing it is very easy to become somewhat blasé about orders of magnitude.
Figure 1.1 illustrates some of these orders of magnitude, for units of time and space.
The difference between the time taken for a computer to execute one instruction and
the time taken for the seconds digit of an Icd watch to change once is comparable to
the difference between an hour and the whole duration of human civilisation. An order
of magnitude improvement every four or five years is rather impressive, but can it be
sustained ?

Consider circuit density. Today’s computers are based primarily on silicon chip
technology. The electronic components used to build a computer are embedded in the

1

2 CHAPTER 1. INTRODUCTION

surface of a small piece of silicon. Advanced chips use features approximately one
micron across. the size of an electronic component on the chip isjust amillionth of a
metre. A silicon atom has a diameter of approximately 2.35 * 10~'° metre. Hence an

electronic component is about 4000 atoms wide. Atoms are not the smallest building
blocks of nature, and it may prove possible to use smaller building blocks at some
point in the future to build computers. At present thisis pure speculation.

To build faster chips we need smaller components. Suppose for the sake of argu-
ment that it will prove possible to use asingle atom as an electronic component. Since
silicon chips are essentially two-dimensional objects this would give a maximum im-
provement of 4000 x 4000, about seven orders of magnitude. The limits of nature will
probably prevent us from coming even close to this.

Multiple | Prefix | Time (seconds) Space (metres)

10~ ii pico | light moves 1cm subatomic particles
10~

10~10 one atom

109 nano

10-8 one instruction

107 one floating point operation

10-° micro feature on current chip
10~5

10~4

10—3 milli easly visible to eye
102

10-1 size of floppy disc
109 one second one metre

10t

102 minute large building

103 kilo | 1/4 hour ten minutes’ walk
10%

10° day

108 mega | week radius of earth

107

108

10° giga | human lifetime distance to moon
1010 1000 years

1011 human civilisation

1012 tera | homo sapiens size of solar system

Table 1.1: Approximate orders of magnitude

Next, consider clock speed, another important factor in processor performance.
Suppose that a single operation involves one signal moving from one end of a chip to
the other end, again somewhat of a simplification. Today’s chips are typically about a
centimetre across. A signal travelling at the speed of light will take about 30 picosec-
onds to movethis distance. Hence a processor could perform 30 thousand million such
operations every second, corresponding to a 30000 MHz processor, just three orders
of magnitude faster than today’s chips.

These calculations are by no means perfect. For example, it may be possible to start
building three dimensional chipsinstead of two dimensional ones, and the average size
of achip may shrink below one centimetre as circuit density increases. The calcula-
tions ignore quantum effects that become significant for small numbers of atoms, as
well as heat dissipation problems for such tightly packed electronics. However, the
implication is that advances in the current technology will cease after another fifteen
to thirty years, with processors somewhere between a thousand times and ten million

1.2. ACTUAL REQUIREMENTS 3

times more powerful than today’s.

1.2

Actual requirements

Power tends to corrupt, and absolute power corrupts absolutely.
Acton

An obvious question to ask at this point is what al this computing power will be used
for. A single processor will provide somewhere between a gigaflop and a teraflop of
performance. Are there really problems which need such power? More important, are
there problems which need even more ?

Predicting a few years ahead in the field of computing, let alone fifteen or thirty
years, is arisky business. However, the answer to both of the above questions is a
resounding “Yes’. Even today there are problems in science and engineering which
require more computing power than the limits of nature appear to allow. These include,
but are not limited to:

1

Quantum chemistry. It has been known for some time that the behaviour of
atoms and molecules in chemistry is defined by Schrodinger’s equation.

d?/dz?¥ (x) + 2m/h(E - V)¥ =0

This egquation has been solved fully only for the simplest problems. Hence
chemists are forced to work with computer models that generate numerical ap-
proximations. Current models are limited to fairly simple molecules and small
numbers of atoms. More computing power would allow slightly more complex
models.

Cosmology. One cosmic-sized problem is attempting to work out how the uni-
verse could start from a big bang and end up looking the way it does today,
matching the astronomical data. Other problems in cosmology involve looking
at smaller objects than the entire universe such as galaxies, quasars, black holes,
stars and solar systems.

Fluid dynamics. This involves examining the behaviour of gases and liquids in
the vicinity of solid objects such as pipes and the wings of aeroplanes.

Materials science. This requires the modelling of solid objects such as the ma-
terials used to build car engines, and hence being able to design better ones.

Biology and biochemistry. In particular, analysing the sequences of the DNA
molecules
that define our genetic make-up.

Weather forecasting and longer term global climate modelling.

Processing information. By the end of the 1990s, the various satellites in earth
orbit are expected to produce a terabyte of data every day, which should be
processed somehow.

Artificial reality, building realistic computer models of this and other worlds,
and allowing humans to interact with these modelsin real time.

4 CHAPTER 1. INTRODUCTION

9. Artificia intelligence and artificial life, reproducing the behaviour of biological
systems and hopefully improving on them.

Most of these problems have one thing in common: they are essentially open
ended. Providing more computing power simply allows the scientists to build larger,
more complicated, and presumably more accurate models. Each improvement should
give more useful data, but there will not be a definitive solution. Already there are
plans to build teraflop computers to meet these needs, and pentaflop (10'°) and ex-
aflop (10'®) computers would be gratefully received by the scientific community.

Science may be a driving force for supercomputer development, but the needs of
ordinary personal computer users must also be considered. It may seem unlikely that
word processing, spreadsheet, and database applications will need processors much
more powerful than today’s. However, as more features are added to existing applica-
tions as new applications are added, and as the underlying system software becomes
more flexible, even ordinary personal computers will need ever more MIPS and ever
more MFLOPS for some time to come.

1.3 Architectural improvements

The wondrous architecture of the world.
Marlowe

Given that we cannot rely on scientific breakthroughs to produce the sort of perfor-
mance we are going to need, is there anything that can be done at the computer archi-
tecture level to achieve the required speed-ups ? It is often said that existing computers
are based on the classical von Neumann design. There is a central processing unit or
CPU with some memory and I/O devices attached to it. The CPU reads an instruction
from memory, executes it, and then reads the next instruction from memory. Typical
instructions move data from one place to another, test the value of a piece of data,
transfer control to some other location, or perform arithmetic on some data. Only one
instruction at a time gets executed, and hence the computer is said to run sequentially.

In practice this purely sequential architecture did not last very long. I/O operations
such as punching a paper tape took much longer to execute than ordinary instructions,
so computer architects designed their computers to perform 1/0 in paralel with the
main stream of execution. The CPU initiates an |/O operation and, some time later, it
either pollsthe device to see whether the operation isfinished or it receives an interrupt.
Hence there is computation and I/O occurring in parallel.

Some floating point operations take a much longer time than their equivalent inte-
ger operations. Hence it is useful to have a separate floating point processor working
in parallel with the main CPU, controlled by the CPU. A floating point operation is
initiated and, some time later, the CPU checks whether or not the operation has fin-
ished or it gets informed when the operation has finished. The hardware may do this
automatically. To make full use of a separate floating point processor requires some
extrawork in the compiler.

Vector processors take this concept a step further. Instead of there being one float-
ing point processor there are many, typically 64 or so. All the floating point processors
perform the same operations at the same time, but on different data. Typicaly this
data consists of matrices and vectors, where the different parts of the matrix can be
manipulated separately. A great deal of work is required in the compiler to be able

1.3. ARCHITECTURAL IMPROVEMENTS 5

to detect when different bits of data can be operated on in parallel, and, except when
dealing with matrices and vectors, it is difficult, if not impossible, to make efficient
use of avector processor.

A single instruction such as adding two numbers can be subdivided into several
different stages: fetching the instructive code, fetching the data, performing the arith-
metic and storing the results. An instruction pipeline exploits this by performing the
stages of several instructionsin parallel. Instruction n stores its result whileinstruction
n + 1 does some arithmetic and instruction n + 2 fetches data. Since programs con-
tain many branch instructions and each instruction can be divided into only alimited
number of stages, there are limits to the practical length of a pipeline.

Memory caches are another way of speeding up processors. It is common for cur-
rent processors to be able to work significantly faster than the main memory, resulting
in amemory bottleneck. To overcome this problem, fast memory caches can be used.
Instead of all memory accesses going to the external memory, there are one or more
cache units between the CPU and memory. These cache units can work faster than the
external memory, and contain the contents of frequently accessed memory locations.
Cache memory is expensive, so there are limits on the amount of cache that can be put
0N a processor.

A fairly recent development in microprocessor technology is Very Large Instruc-
tion Word processors or VLIW. With these processors a single instruction no longer
contains a single operation, but several. For example, a single instruction could con-
tain an integer addition, afloating point operation, and a conditional jump. The CPU
contains severa units, including one or more integer arithmetic units, floating point
units, and a control flow unit. Keeping all of these busy requires a great deal of effort
in the compiler. Furthermore it is very difficult to keep all the units busy. For example,
if the CPU contains ten different integer arithmetic units then it is most unlikely that
any normal piece of code could be compiled to use al these units at the sametime.

Putting all these features together, we can foresee a single processor on one chip
with the following features:

1. A main CPU containing several paralel units, typically two integer arithmetic
units, between one and 64 floating point units depending on whether or not the
CPU isintended for vector processing, and a control flow unit.

2. Aninstruction pipeline executing different instructions.

3. Thereisaninstruction ableto hold 64K or more of the currently active programs,
aswell asone or more data caches occupying between 64K and amegabyte each.

4., Hardware support for special operations such as signal processing and graphics
operations, because these use up much of the CPU time in existing processors.

5. Asynchronous |/O support, requiring a minimum of effort by the processor.

6. All the units making up the processor (the main CPU and the supporting hard-
ware) work in paralel. A certain degree of synchronisation between the different
units is required, for example a CPU cannot execute an instruction unless it is
has been fetched by the pipeline, which in turn cannot fetch it unlessit isin the
instruction cache.

6 CHAPTER 1. INTRODUCTION

Exploiting al of these features may produce a single CPU that is perhaps one
or two orders of magnitudes faster than the conventional von Neumann architecture.
Undoubtedly there will be further developments at the computer architecture level,
such as multiple instruction streams and self timed (asynchronous) CPUs, which will
provide some extra speed-ups. However, existing processors already use many of these
features. Hence such developments in CPU architecture cannot by themselves provide
the required improvements in performance. It is necessary to look elsewhere for a
solution.

1.4 Parallelism

Many hands make light work.
Heywood

A single processor cannot provide the required performance. This leaves the possi-
bility of using more than one processor to solve a single problem, the field of parallel
processing. A state of the art processor can provide between 10 and 100 megaflops.
Hence if we can build a machine with between 10000 and 100000 such processors, we
have ateraflop computer. With processors athousand times faster, and with ten million
or a hundred million such processors, we could build an exaflop computer. However
isit really possible to have ten processors working on the same problem, let alone ten
thousand or ten million ?

For some problems, fortunately including many of the scientific problems de-
scribed earlier, it is possible to answer affirmatively to at least part of this question.
Currently it is fairly common to solve scientific problems on some tens of proces-
sors, and machines with some hundreds of processors are being installed. Teraflop
machines with tens of thousands of processors are at the design stage, and there are
no major problems at the hardware level building such machines. However, producing
software to control and run on such machines can still be quite difficult.

Merely taking some hundreds of conventional processors, together with some mem-
ory and 1/O facilities, is not sufficient to produce a paralel machine. An analogy is
appropriate. Consider ateam of human programmers, working together to produce a
large software system. Given sufficient time a single programmer could produce the
whole system, but the job would usually take far too long and the system would be
out of date by the time it was finished. Instead, a team of programmers are made to
work together to build the system. These programmers cannot work independently
from each other. Every programmer must produce some part of the system, which will
work with the parts produced by other programmers to give a working system. Ev-
ery programmer must collaborate with his or her colleagues to ensure that the various
parts will fit together, or the final system cannot work. In other words, the program-
mers must communicate with each other. The amount of communication, and the way
the communication is organised, will vary from system to system and from company
to company. It may be sufficient merely to exchange specifications when the project
starts. 1t may be desirable to have regular daily meetings, or to have meetings only
when considered necessary. The programmers may interact directly, or they may have
to go through a chain of command. The exact details vary, but some amount of com-
munication will be required. When not communicating, the programmers can work
independently from each other developing their code.

1.5. THETRANSPUTER 7

The same is true of applications running on a parallel machine. In the simple
case every processor will run some piece of code responsible for solving part of the
problem. Each piece of code is one component of the application. Components must
communicate with components running on other processors, to exchange data. The
amount and nature of the communication may vary. For some applications it is suffi-
cient for the various components to get some data when they start up, and share results
when they finish. For other applications large amounts of communication are required
for every step in the calculation. The various components may interact directly, or
they may communicate only via some master component. Unless the components can
communicate somehow they cannot work together on the same problem.

Every processor within aparallel computer must satisfy two primary requirements.
They must be able to do computation, for example floating point arithmetic. They
must also have some means of communicating with each other, otherwise the various
processors in the parallel computer cannot work together to solve a problem. Different
parallel machines vary in the ways that communication is achieved, and in the relative
speeds of computation and communication.

1.5 TheTransputer

The Inmos ! Transputer family comprises a number of processors particularly appro-
priate for building parallel computers. Every processor contains a number of links,
seria lines providing fast communication between processors. The processors most
commonly used are the T800 and the T805, which have floating point hardware as
well as four communication links, thus providing fast computation as well as commu-
nication.

Figure 1.1: A Transputer network

Consider Figure 1.1. This shows a network of 16 Transputers, each represented
by a single block. Each Transputer contains a conventional CPU, capable of integer
and floating point arithmetic, conditional branches, and al the instructions you could
expect in a processor used to build a sequential computer. Each Transputer also has
four links, and most of these links are connected to links in other processors. A soft-
ware component running on processor 05 in the diagram could communicate directly
with components running on processors 01, 04, 06, and 09. However, if this com-
ponent needs to communicate with a component on processor 15 then life becomes
more complicated. The two processors are not directly connected, so it is necessary to

1Inmos and Transputer are trademarks of the Inmos group of companies

8 CHAPTER 1. INTRODUCTION

somehow route messages through various processors from source to destination. Also,
it is necessary to start al the components on the various processors, set up the com-
munication between them, and so on. Having communication support in the hardware
does not solve al the problems in building a parallel computer.

The network shown in the diagram is configured in the form of a grid. In hard-
ware terms such grids can be extended fairly easily in all four directions, to produce
an arbitrarily large parallel computer. In practice there are limits on the size of such a
computer, depending in part on the applications to be run on it. Consider a machine of
10000 such Transputers, in agrid of 100 by 100. To route a message from one corner
of the grid to the opposite corner involves going through 198 links, and hence requires
some CPU time in 197 processors. If there is too much such communication the par-
alel computer will spend nearly al its time routing messages rather than performing
useful computation. Different applications will vary in the amount of such communi-
cation. Using different network configurations may reduce the problem, but will not
eliminate it.

When Transputers were first released, the only software support was the occam?
language. This language is specifically designed to run on Transputers, with built-in
support for communication exploiting the Transputer links. However, the current ver-
sion of the language, /bf occam 2, contains no support for routing messages through
a network, required by many applications. Starting up all the components on all the
right processors, setting up the communication between them, and so on are jobs | eft
essentially to the programmer. Furthermore occam is rarely used other than for pro-
gramming Transputers. Most programmers are familiar with languages such as C and
Fortran, and do not want to learn another programming language. Most programmers
are familiar with a particular programming environment, typically some version of the
Unix 3 operating system, and wish to continue using such environments on parallel
computers. To address some of these issues, additional software is required.

It should be noted that the Transputer family is relatively old in computing terms.
The first Transputers became available in 1984. At the time of writing Inmos have
announced a new family of processors (the T9000 series) offering significant improve-
ments in performance, both computation and communication, as well as hardware
support for message routing. On the other hand the T9000 has new features such as
limited memory management, which normally require an operating system to exploit
them. Hence the need for additional software remains.

1.6 Helios

Then in all the world they do their work.
Akhnaton’s hymn to the sun

The Helios* Parallel Operating System has been designed to run on parallel comput-

ers. Such computers contain processing units, and fast communication between the

processors. Many such parallel computers are built using Transputers, and Helios runs

on these machines. However, Helios also runs on parallel computers built using pro-

cessors other than Transputers. This book describes some of the aspects of Helios.
The design goals of Helios are ambitious.

2occam is atrademark of the Inmos group of companies
SUnix isaregistered trademark of AT&T
“Helios is atrademark of Perihelion Software Limited

1.7. TARGET HARDWARE 9

1. To provide a general-purpose operating system for parallel computers, indepen-
dent of any specific hardware.

2. To provide an operating system with a very high degree of compatibility with
existing systems, by supporting international standards such as Posix .

3. To provide adevelopment environment that will be familiar to existing program-
mers, so that programmers do not have to learn new ways of using a computer
merely because it isaparallel computer instead of a sequential one.

4. Todlow parallel applications to be developed using conventional programming
languages such as C or Fortran, without the need to learn new languages or
programming constructs.

5. To alow such parallel applications to run with the greatest amount of efficiency
consistent with the other design aims.

6. To alow such applications to be moved from one parallel computer to anothe,
quite possibly based on acompletely different family of processors, with a min-
imum of effort.

7. To provide a high degree of fault tolerance. The system as awhole must be able
to recover from the failure of any one software component or piece of hardware,
subject to physical limitations imposed by the hardware itself.

8. To be independent of the number of processors in the network. Parallel applica-
tions can be developed on a single processor if desired, and then run unchanged
on several hundred processors.

Work began on Helios in the autumn of 1986. It is a new operating system, not
a re-write of some previous system, although obviously some parts of Helios incor-
porate ideas developed in other operating systems. The first commercial release was
Helios 1.0, released in the Summer of 1988. This was followed by 1.1, Autumn 1989,
and 1.1A, an upgrade to 1.1 shipped in early 1990. Helios 1.2 was shipped in De-
cember 1990, again followed by an upgrade some months later. Helios 1.2 supports a
very high degree of Unix compatibility, large processor networks of some hundreds of
processors, and it allows multiple users to share such large machines. At the time of
writing work is proceeding on the next release, Helios 1.3, and this book is intended
to accompany that release. Most of the book isrelevant to earlier versions, and will be
appropriate to later versions also.

1.7 Target hardware

We aim at the infinite.
O.W. Holmes Jr.

Helios has been designed to work with a wide range of machines. One such machine
isaparallel mainframe computer. Such amachine would contain hundreds of proces-
sors, and would support tens of users logged in at once. Some users would be running

SPosix refers to the standard defined by |EEE Standard 1003.1-1988

10 CHAPTER 1. INTRODUCTION

large parallel applications, which together would use up most of the available pro-
cessors. Other users would be developing parallel applications, developing ordinary
sequential applications, sending or reading electronic mail messages, or even play-
ing games. Most users would access the machine via alocal area network, typically
Ethernet 6, and the machine itself would be in a separate air-conditioned room main-
tained by computer operators. Some users might plug in their own private networks
of processors, in order to make use of the larger number of processors. To avoid /O
bottlenecks such large parallel machines must be equipped with a number of fast hard
discs, and tape units for backup purposes and for holding very large amounts of data.

Imagine a different type of parallel machine also running Helios. Consider an au-
tomated factory floor, with large numbers of devices such as robot arms performing the
work, and various metres to monitor what is happening. Some devices need several
processors to control them, while some other processors could control several devices.
The various processors need to communicate and exchange data. For example a pro-
cessor controlling arobot paint spraying arm needs to be informed when the object to
be painted is ready. In effect al the processors controlling pieces of hardware can be
thought of asaparallel computer that happens to spread over afactory floor rather than
being contained inside just one box.

A third Helios system is shown in Figure 1.2. The diagram shows a workstation,
complete with high resolution graphics display, hard disc, and local area network con-
nection. Helios has been designed to provide a high degree of compatibility with Unix
systems, so it supports the X Window System” for graphics and ethernet software such
as remote login facilities and network file systems. The workstation shown has all the
I/0 devices attached to just one processor, making it equivalent to aconventional work-
station. Alternatively the I/O devices could be attached to different processors, one to
handl e the graphics display, another to perform disc 1/0, and so on, offering better per-
formance at a greater cost. If desired it would be possible to connect this workstation
to alarger network of processors, some tens or even hundreds of processors, probably
over a period of time, and thus turn the workstation into a supercomputer. All exist-
ing software will continue to run, and parallel applications simply run faster as more
processors are added.

Ethernet

Figure 1.2: A workstation

SEthernet is atrademark of Xerox Corporation
"The X Window System is a trademark of MIT

1.8 ABOUT THISBOOK 11

1.8 About thisbook

Ancther damned, thick, square book!
William Henry, Duke of Gloucester

The purpose of this book is to give a description of much of the Helios parallel oper-
ating system. It does not attempt to describe every single feature, command, or library
routine provided by the system, because that would require several books of this size.
Instead the book concentrates on the main components of Helios. The book is aimed
at users of Helios and also at anyone with an interest in parallel computing generally.

The book isdivided into sixteen chapters, including thisintroduction. Each chapter
has been written as a self-contained unit, and can be read independently from the oth-
ers. This book does not describe the full range of Helios commands. Comprehensive
information can be obtained in The Helios Encyclopaedia, available from Distributed
Software Limited, The Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE,
UK.

12

Chapter 2

Networks

2.1 Introduction

The purpose of this chapter is to describe al of the aspects of the Helios networking
software. Thisis not an easy task, because Helios runs on a wide range of machines.
At the bottom end of the range would be a single PC plug-in board, typicaly with a
single T800 Transputer and perhaps two megabytes of memory. At the top end would
be large multi-user networks of 400 or more Transputers, with perhaps twenty or so
users at any onetime accessing the network in avariety of ways. Networks may consist
of hardware produced by several different manufacturers.

To control all the different types of network Helios uses a single set of programs:
the networking software, in conjunction with a number of configuration files. Section
2.2 of this chapter gives an outline description of the various programs and configura-
tion files, using a simple network as an example. It describes how this network starts
up, and how a user can access the resources in the network.

Section 2.3 gives a description of the various types of network, varying from a
single-processor system to a large supercomputer. This section describes which com-
ponents of the networking software should run and why. The exact details of config-
uring such anetwork are left to section 2.7: * Configuring networks'.

Designing hardware or choosing the right hardware to buy involves compromises.
A link running at 20 MHz will transfer data faster than a link running at 10 MHz,
but for a shorter distance. A crossbar link switch alows flexibility in setting up the
network, but causes a delay when transferring data. Section 2.4 describes some of the
hardware produced by various manufacturers, with an emphasis on how the hardware
affects the networking. This section aso gives an introduction to the topic of network
topologies (and how they can affect performance).

The networking software contains a considerable number of commands which in-
teract with the various servers. These commands are explained in section 2.5

Section 2.6 describes the various configuration files in detail, in particular the net-
work resource map and how it is affected by the hardware. Thisinformation is then
used in section 2.7, which repeats most of the networks described in section 2.3 and
shows how to configure them.

13

14 CHAPTER 2. NETWORKS

2.2 Thecomponentsof Helios

This section describes the various components of Helios (including the networking
software) and how they interact. The simple network shown in Figure 2.1 will be used
as an example.

221 A simplenetwork

Figure 2.1 A simple network

This network consists of eight Transputers, labelled 00 to 07. Each Transputer is a
microprocessor with its own private memory, which is not accessible by the other pro-
cessors. It is recommended that each processor has at least one megabyte of memory,
although applications may well require more than this. Each Transputer is equipped
with four links which are used by Helios to achieve fast communication between the
processors. The four links are generally referred to aslink 0 to link 3, and in diagrams
link O is conventionally the bottom one as shown in Figure 2.2.

Iin|k2

link 1— —link 3

|
link 0

Figure 2.2 Link numbering

Like any other microprocessor, a Transputer has to be booted with some software
before it can perform useful work. Transputers have two bootstrap mechanisms. ROM
bootstrap, where the software isheld in ‘read only’ memory; and link bootstrap, where
the software is sent down the link by a neighbouring processor. ROM bootstrap in-
volves extra hardware and hence is rarely used. Before a processor can be booted, it
must be reset. On most hardware a processor isautomatically in areset state whenitis
powered up, but not aways. The hardware must provide some other reset mechanism
which can be used by the networking software. In addition to the eight Transputers,
the network contains a host processor or |/O processor. Typically this would be a
Sun workstation or an IBM! PC or compatible, but a wide variety of machines can

IRegistered trademark of International Business Machines, Inc.

2.2. THE COMPONENTSOF HELIOS 15

be used. When the whole network is powered up the I/O processor will usualy be
booted with the host operating system. For a Sun workstation this would be SunOS, a
version of Unix, and for a PC thiswould be MS-DOS?. A program, the 1/0 server, can
then be run on the 1/O processor and initiate the bootstrap of the Transputer network.
Frequently the 1/0O processor also serves the rather useful role of power supply for the
whole network.

The 1/0O processor is not (usualy!) a Transputer and hence it is not naturally
equipped with Transputer links. Since links are needed for both communication and
bootstrap it is necessary to add some special hardware, a link adapter, to the 1/0 pro-
cessor. For example, atypical PC plug-in board such as the Inmos B008 contains a
CO012 link adapter. It should be noted that the link adapter can be abottleneck for many
applications. In theory a 20 MHz link can be used to transfer up to 1.70 megabytes
per second. Helios can achieve 1.62 megabytes/second using Posix-style read() and
write() cals acting on pipes. By contrast a typical link adapter can achieve between
50 and 200 kilobytes per second, just 10 percent of this speed. Since the I/O processor
may have to service the 1/0 requirements of a considerable number of more powerful
processors, another factor is the processing speed of the I/O processor. The network
in Figure 2.1 attempts to solve part of this bottleneck problem by attaching 1/O hard-
ware, in this case a hard disc, directly to a Transputer. This I/O facility cannot be used
until processor 01 has been booted and some additional software, probably the Helios
filing system, starts running on that processor. After thisinitial hurdle the hard disc
can be used to bypass both the communication bottleneck of the link adapter and the
processing bottleneck of the 1/0O processor. Of course there is a price to be paid. In
addition to the cost of the extra hardware, some of the processor’s CPU time and some
of its memory will be taken up by the filing system.

Processors in anetwork are frequently referred to as network nodes. This matches
mathematical graph theory, where the processors are nodes or vertices and the links
are the graph edges. Graph theory is commonly used when designing or analysing
Transputer networks.

2.2.2 TheHeliosnaming scheme

Before describing individual components of the Helios software it is necessary to de-
scribe the Helios naming scheme. Thisisillustrated in Figure 2.3.

At the top of the naming tree are one or more levels of network names. In the
example network /Cluster congtitutes the root of the naming scheme. Below the
network level or levelsisthe processor level. Every processor is given aname when it
is booted. For non-trivial networks it is conventional to use simple numbers, but there
is nothing to stop the user from configuring the network with processor names such as
tom, dick, harry, fred, john, and so on. Below the processor level isthe server
level. For example, processor 00 is shown with two servers, tasks and ram, and will
run severa others as well. A server provides a service of some sort. For example, a
file server provides afile I/O service, and a logger server provides an error logging
service. Usually each server is a separate program, although it is possible for asingle
program to act as more than one server.

2Trademark of Sun Microsystems
3Registered trademark of Microsoft Corporation

16 CHAPTER 2. NETWORKS

/Cluster Network level

/10 /01 Processor level

N\ /N

Nlogger /helios /tasks /ram /tasks /fs Server level

1]

/include /bin /include /bin

~
>O
o

stdio.h stdio.h

Figure 2.3 The Helios naming scheme

Below the server level is an ordinary directory level. For example, the file server
called /Cluster/I O/helios contains ordinary directories include and bin, and the in-
clude directory contains a sys subdirectory and afile stdio.h. However, at all levels of
the network hierarchy the same protocols are used. Consider the Is command, which
isused to list the contents of adirectory. The command Is/Cluster/I O/heliog/include
would produce a normal directory listing, as expected. The command Is /Cluster/00
would produce alisting of the servers running in processor 00.*

In the diagram there are two files stdio.h, held in two separate file servers. These
have different network addresses: one of them is/Cluster/I O/helios/include/stdio.h,
and the other one is /Cluster/OLl/fs/include/stdio.h. This shows that all objects in the
naming scheme have a unigue network name. Incidentally, it is the responsibility of
the user to ensure that these two files are consistent, and that a C compiler could use
either of them. It islikely that the C compiler will be made to use the /0L/fs version by
preference, because using this file server avoids the bottleneck of the 1/O processor’s
link adapter.

For a variety of reasons, not least of which is the tediousness of typing in long
names, it is not always necessary to give full network names when accessing an object.
The minimum that must be supplied is the server name plus the full path within that
server.

For example, /heliog/include/stdio.h will work, but /stdio.h will not because it
does not contain enough information. This introduces the possibility of ambiguity.
For example, there might be two servers called /helios in the network, one in the I/O
processor and the other one on processor 01 with the file server installed as /helios
instead of /fs. In such a case accessing /helios/include/stdio.h will usually access
the nearest server, which is not necessarily the correct one. Ambiguity can always
be resolved by giving more or al of the full network name of an object. Users can
provide their own services if required, by writing new server programs that understand
the protocol used between Helios clients and servers. the general server protocol.

“gtrictly speaking this is not correct. For efficiency reasons every processor maintains a table of
known names of servers and processors, and the Is command would list the appropriate entries in this
name table. Hence any names not yet known, because they have not been accessed yet, would not appear
in the directory listing.

2.2. THE COMPONENTSOF HELIOS 17

This is not aways easy, and many users of Helios can work perfectly happily using
just the standard services provided.

After thisdiscussion of Helios naming it istimeto consider thefirst piece of Helios
software that must be run to boot the processor network.

2.2.3 Thel/O server

The I/O server isthe main and often the only piece of Helios software that runs on the
host processor and not on a network processor. All other software such as compilers,
shells, network management, and user applications, run on the network processors.
The 1/0O server has two main jobs: booting the first network processor or root proces-
sor and providing various services to allow access to the resources of the I/O processor.

The I/O server is alarge but flexible piece of software. Flexibility is achieved by
reading in a configuration file, host.con, when it starts up. Options include the exact
nature of thelink adapter hardware, the location of the Helios system files, and whether
or not particular services such as a mouse device should be provided. Four host.con
options affect the networking software: root. processor, ia processor, bootlink and
enable link.

Every processor in the network needs a name when it is booted up, and this in-
cludes theroot processor. The 1/0O processor forms part of the Helios network, so it too
needs a name. These names can come from the host.con files, although the I/O server
will use default names /00 and /1 O if the entriesin host.con are missing. The bootlink
option specifies which link on the root processor is connected to the I/O processor,
usually but not always link 0. The enable link option is used to connect into arunning
network rather than to boot up a network, if the I/O processor does not contain its own
private processor but just a link adapter. The first job of the 1/O server is booting the
first Transputer in the network. Thisrequires severa stages.

1. Carry out any hardware initialisation necessary to start up the link adapter.

2. Reset the root processor, which may have the side effect of resetting some or all
of the rest of the network at the same time.

3. Send in asmall bootstrap utility nboot.i. This performs some hardware initiali-
sation on the Transputer side and then waits for further instructions from the I/0O
server.

4. Instruct the bootstrap utility to read in the system image or Nucleus, and send in
this Nucleus. The bootstrap utility now transfers control to the first component
of the Nucleus, the Kernel.

5. Send in some additional configuration information needed by the Kernel.

After these bootstrap stages Helios is up and running on the root processor, and
the I/O server now takes a passive role. In particular it starts up a number of servers,
providing various /O facilities for the Helios network. Exactly which servers will be
available depends on the host machine. For a PC host atypical list would be:

¢ /logger, an error logging service.

18 CHAPTER 2. NETWORKS

¢ /window, a pseudo-windowing system which provides multiple full-screen win-
dows and a hot key switching mechanism to move between windows.

e /helios, afile server providing access to the main Helios files.

e /a,/c, /d, additional file servers for the various disc drives a;, ¢, and d:.
e /rs232, accessto the PC's serial ports.

e /centronics, access to the parallel ports.

e /pc, alimited communication facility between programs running under Helios
and programs on the PC.

On a Unix host the list might be:

/logger, an error logging service.

/window, multiple real windows, using an X window display.

/helios, afile server providing access to the main Helios files.
o /files, afile server for the whole of the Unix filing system.

All of these servers are part of the Helios network, within processor /1O. It must
be emphasised that, following the bootstrap, the 1/0 server is purely a passive object.
It waits on the link adapter for incoming requests (to read data from an open file,
for example), it services these requests, and sends replies back into the Transputer
network. All ‘intelligent’ software such as shells, compilers, networking software, and
users applications, runs on the Transputer network.

Itisnot essential to have an 1/0O processor in the network. The alternative isto have
a ROM based system, where one processor in the network executes a ROM bootstrap
when the system is powered up. Typically such abootstrap routine would read aHelios
Nucleus from the first track of a hard disc and transfer control to this Nucleus.

2.2.4 TheNucleus

The Nucleus is the part of Helios that is present on every processor in the network.
The 1/O server boots the Nucleus into the root processor, and some time later the
networking software boots a Nucleus into every other processor. The Nucleus consists
of six parts. Kernel, System library, Server library, Utility library, Processor Manager,
and Loader. The relationship between these and the rest of Helios is shown in Figure
2.4.

e The Kernel is responsible for the processor hardware. On a Transputer thisin-
volves monitoring the links and the event line. In particular, the Kernel has link
guardian processes for every link connected to another processor running Helios,
waiting for messages sent from that processor and forwarding them to the ap-
propriate destination (possibly ancther link). In addition, when the Kernel starts
up it detects the amount of memory in the processor and initialises the memory

2.2. THE COMPONENTSOF HELIOS 19

‘ Application software ‘

'
[Clibrary | [FORTRAN librany

Posix library

r—-—\(——=--- - - - — — = A
I Processor manag
I

|

[
[
[
| At B |
I}Systemv library |Servervl|brary| |
[
[
[

I Utility library |
|

¥
N Kernel |
Y

! Hardware INudlels

L e e e e e e = = = J

Figure 2.4 The Helios Nucleus

alocation system. The Kernel provides low-level calls such as message pass-
ing, semaphore synchronisation, and creating and destroying processes. Most
of these involve atomic operations, which means running at high priority on a
Transputer or in supervisor state on other processors. Normal application pro-
grams rarely if ever need to use Kernel calls, since higher-level library routines
usually provide the same functionality and are much easier to use.

e The System library provides the basic interface between clients and servers. It
contains library routines such as Open(), Read(), and Seek(). The System li-
brary routines take their arguments and pack the required data into messages,
following the format defined by the General Server Protocol. The System li-
brary then sends the message to the appropriate server and usualy waits for a
reply. The server receives the message, acts on the request, and sends back are-
ply. At the System library level it isirrelevant whether the client and the server
run on the same processor or different ones, which is not true of the Kernel level.

The System library a so provides a number of more specialised routines such as
Execute() to run another program, which actually just involves more specialised
interaction with servers. Application programs rarely need to use System library
calls, because higher-level libraries such as the Posix library are generally more
convenient.

e The Server library exists to make it easier to write Helios servers. It contains
code to maintain directory structures within memory, to handle automatically
many incoming requests, and to support buffering of data. Even with the Server
library writing Helios servers is a difficult operation, and should not be at-
tempted lightly.

e The Utility library provides a number of library routines that have to be in the
Nucleus but did not ‘belong’ in one of the previous libraries. This includes
routines to manipulate areas of memory, such as memcpy() and strcpy().

20 CHAPTER 2. NETWORKS

e The Loader is a Helios server, a program rather than alibrary, which takes care
of pieces of code loaded into its processor, and which ensures that code is shared
between programs where possible. When a program has to be run on a processor
an entry is created inside the /loader directory on that processor and the codeis
fetched, usually from adisc. If the program makes use of Resident libraries not
currently in memory, these libraries are fetched automatically.

e The Processor Manager provides another Helios server, /tasks, which alows
clients to run programs or tasks on that processor. It takes care of signals sent
to aparticular task, such asthe SIGINT signal if the user presses control-C, and
ensures that any resources used by a program are freed when the program ex-
its. The Processor Manager performs several other necessary functions such as
keeping an accurate time of day in the absence of a real-time clock and main-
taining name tables for that processor.

The above six parts are present in every Helios Nucleus. It is possible to add
additional servers to the Nucleus. For example, in a system booted from ROM rather
than from an 1/0O processor the Nucleus would have to contain the Helios file server,
so that additional bootstrap files could be read from the disc. The Processor Manager
performs one additional function not listed above. If the processor has been booted
by an /O processor or from ROM, the Processor Manager will execute the program
/heliog/lib/init. This program must perform the next step of the bootstrap process.

2.25 Thelnit program

Theinitial bootstrap stage is similar for al networks and all applications, and involves
getting a Helios Nucleus up and running on one processor in the network. Following
this stage different applications have very different requirements. a work station sys-
tem should get awindowing system up and running and start alogin session; afactory
control system must boot up the network and run appropriate software on specific pro-
cessors. To alow easy configuration of the system, Helios runs the init program and
this in turn reads /heliog/etc/initrc, which is the text resource file. Changing this text
file allows the user to perform much of the system configuration. A typical initrc file
might look like this.

#

This is a comment line

#

First, set up the windowing system

ifabsent /window run -e /helios/lib/window window
console /window console

#

Then start the networking software

run -e /helios/bin/startns startns -r /helios/etc/default.map
#

Wait for the Session Manager to be active
waitfor /sm

#

And start a user session

run -e /helios/bin/newuser newuser mary

2.2. THE COMPONENTSOF HELIOS 21

An early design decision for Helios was to provide multiple windows wherever
possible. These could be real windows on a graphics display, either attached to a
Transputer or the 1/O processor. Alternatively a pseudo windowing system with hot
key switching may be used. The window server may be part of the I/O server or it may
have to be loaded into the processor network. Thefirst lines of the initrc file deal with
these two cases.

The test ifabsent /window will fail if the window server already exists, probably
as part of the 1/0O server, so no further action is needed. If the window server is absent
a window server is loaded from the disc and started up. This might be a terminal
emulator running under the X window system, or some other windowing system. The
next line, console /window console, creates a new window called console inside the
specified server. From now on this window will be used as the standard stream for al
subsequent commands, instead of the error logger.

Following the initialisation of the windowing system the initrc file specifies exe-
cution of the command called startns. startnsis short for Start Networking Software,
and this command starts up the Helios network server which forms the backbone of
the networking software. The network server is responsible for booting up the whole
processor network, for allocating processors to users, and for monitoring the network
and ensuring recovery when individual processors are crashed. The startns command
also starts up a separate program, the Session Manager, responsible for starting user
sessions.

The line waitfor /sm suspends the bootstrap process until a server with that name
appears. /sm isthe Helios name for the Session Manager, so in this case the bootstrap
issuspended until the Session Manager is up and running. Notethat thisisnot the same
as waiting for the whole network to be booted. Booting up a network can take many
seconds, depending on the number of processors, the configuration, and the hardware.

The final line executes the newuser command. This command interacts with the
Session Manager and requests it to start a new session for the user ‘Mary’, in the
current window. Assuming the system is suitably configured for a single-user system,
the Session Manager will not require alogging-in phase. Instead it starts up a separate
program, a Task Force Manager, to handle the session and execute commands for that
user.

2.2.6 Thenetwork server

The network server constitutes the backbone of the Helios networking software. It has
anumber of different jobs.

e Initial bootstrap of the whole network.

e Control of the network hardware, particularly the reset and link configuration
hardware.

e Allocating processors to users as and when required.

e Monitoring the network for errors such as crashed processors, and attempting to
recover from such errors by resetting and rebooting the crashed processor, if the
hardware allows.

22 CHAPTER 2. NETWORKS

The network server is never started up directly by the user. Instead there is a
separate command startns (see the initrc file described in the previous section). This
program reads in a network resource map, defining the network. For the network
shown in Figure 2.1, the text form of the resource map might be:

subnet /Cluster {
Reset { driver; ~00; tram ra.d}

processor 00 { "IO, , 01, ~02; }

processor 01 { ~00, , , 703; run -e /helios/lib/fs fs scsi; }
processor 02 , 700, ~03, "04; run /helios/lib/lock; }
processor 03 { ~02, ~01, , ~05; }

processor 04 , 702, ~05, ~06; }

processor 05 { ~04, ~03, , "07; }

processor 06 { , ~04, ~07, i}

processor 07 { ~06, ~05, , i}

processor IO { ~00; IO }

In this map the network as a whole is given the name /Cluster. The network
consists of nine processors. One of these, /Cluster/I0,isan I/O processor. The
other eight, which are /Cluster/00--/Cluster/07, are assumed to be Trans-
puters. In addition there is one line indicating the hardware facilities available to the
network server for resetting processors in the network.

Looking at the individual processors in more detail, all processors are shown with
their link connections. Consider processor 00: link O is connected to the I/O processor;
link 1 is not connected; link 2 is connected to processor 01; and link 3 is connected to
processor 02. The connections for the other processors are specified in the same way.
In addition, when processor 01 is booted up the network server will run the program
/heliog/lib/fs on that processor, using the arguments specified with the same syntax as
theinitrcfile.

The resource map shown here isfairly simple, asis the network it represents. The
full syntax of resource maps is given in section 2.4, and section 2.5 contains resource
maps for awide range of networks.

The startns program reads in the resource map and a separate configuration file
nsrc, starts up the network server, and sends the information to the network server.
The nsrc file controls whether or not optional facilities such as password checking
are enabled. The network server installs itself as the server /ns, receives the network
details from startns, initialises any machine-specific hardware such as link switches,
and boots up the network. The network server proceeds to monitor the network for

failures and handles requests such as alocating a set of processors to a user.

The network server, like all Helios servers, understands the General Server Proto-
col. This means that commands such asIs will work on it. In particular, the command
Is-I /ns might give the following results.

fr-------- 103 257 Mon Apr 2 16:19:20 1990 00
fr-------- 103 257 Mon Apr 2 16:19:23 1990 01
fr-------- 103 257 Mon Apr 2 16:19:23 1990 02
fr---—----- 103 257 Mon Apr 2 16:19:24 1990 03
fr---———--- 104 257 Mon Apr 2 16:19:24 1990 04

2.2. THE COMPONENTSOF HELIOS 23

f r--——---- 0 257 Mon Apr 2 16:19:24 1990 05
fr-------- 103 257 Mon Apr 2 17:34:54 1990 06
f r-------- 0 257 Mon Apr 2 16:19:25 1990 07
f r-------- 0 259 Mon Apr 2 16:19:19 1990 IO

The /ns directory contains an entry for every processor in the network. Please note
that the object /Cluster/00/ng/01 is different from the processor /Cluster/01. The for-
mer merely provides a convenient way of performing certain operations on the latter.
Thisis reflected in the object types shown in the first column, type file, whereas area
processor is actually adirectory of servers.

The next column indicates the direct access ordinary users have to these objects,
which is very little. In a multi-user environment it is essential that users cannot reset
or reboot other users' processors. More subtly, they are not allowed to reset their own
processors if this involves disconnecting part of the network, and clearly protection
mechanisms like this are useful evenin asingle-user environment. A user’s Task Force
Manager may have greater access to certain processors, and that user’s applications can
use these greater access rights when using networking library calls.

The third column is the account number, indicating who currently owns which
processor. This account number corresponds to somebody’s user id as extracted from
the password file (see the section on the Session Manager below.) In this example all
processors with account 103 are currently ‘owned’ by user Mary, and the processors
with account O are currently in the system pool of free processors.

The next column usually refers to the size of an object. The ‘size’ of a processor
is a rather dubious concept: 7.2 cn? is not very useful information. Hence this field
is actually used to store the current state of the processor. This state encodes various
bits of information. The bottom byte indicates the processor purpose, for example
whether it is an 1/0 processor, a normal Helios processor, a processor reserved for
use by the system, or something else. The top three bytes encode the current state of
the processor, for example whether or not it is running. Rather than forcing users to
interpret this information by decoding the bits Helios provides a command networ k
which, given the show option, will display the current state of the network.

The fifth column is a date stamp corresponding to the time when that processor
was last booted or rebooted. Note that processors 00 and 10 were booted within a
short time of each other — the boot time of an 1/O processor is the time when the I/0
server started running. Then there is a short delay before the other processors are
booted, corresponding to the time it takes for the network server to start up. Processor
06 has a much later boot time, which indicates that at about that time processor 06
crashed and was rebooted.

The network server is responsible for administering the network. That is a large
job, and the network server is a fairly large program. In the interests of modularity
there are separate programs, the Session Manager and the Task Force Manager, to ad-
minister users’ sessions. In anetwork there will be asingle network server responsible
for administering the network. There will also be a single Session Manager, responsi-
ble for al users. There may be a number of Task Force Managers, one for every user
currently logged in.

24 CHAPTER 2. NETWORKS

2.2.7 The Session Manager

In addition to the network server, the startns program starts up the Session Manager
which is responsible for administering all users' sessions. When the Session Manager
installs itself in the name table as /sm, the init program detects this and the initrc
command waitfor /sm succeeds. init now executes the newuser command to start
a user session, by interacting with the Session Manager. If the nsrc configuration
file indicates that no password verification is required, the Session Manager does not
generate ‘login’ and ‘password’ prompts. Creating a hew session involves starting up
another program, the Task Force Manager, as described later in this section. The
Session Manager is aHelios server, like the network server, and hence it can be listed
with the Is command. Typical output might look like this.

d r- z- 0 0 Mon Apr 2 16:19:22 1990 Windows/
f r- 103 1 Mon Apr 2 16:19:28 1990 mary

f r- 104 1 Mon Apr 2 16:30:03 1990 jon

f r- 103 1 Mon Apr 2 17:10:52 1990 mary.1l

The first entry in the directory is Windows. Thisis a subdirectory, holding details
of all the windows currently known to the Session Manager on which it should accept
user sessions. The newuser command can be used to register a window with the
Session Manager.

The next three entries indicate the users currently logged in. User Mary first logged
in shortly after the network was booted, as a result of the newuser command in the
initrc file. About ten minutes later user Jon logged in through a different windowing
system. For example, if the processor network is connected to an ethernet then user
Jon may have logged in through a telnet session. Some time later user Mary logged
in again, through a different windowing system. In order to maintain the uniqueness
of al namesin the network the Session Manager had to append a number to the name
Mary for this second session, or there would have been two objects /sm/mary. Cre-
ating a new session always involves checking the password file, which is called /he-
liog/etc/passwd, even if password checking is not enabled, because that file contains
other information relevant to the session. A typical line in the password file might be:

mary::103:0:mary smith:/helios/users/mary:/helios/bin/shell

The number 103 indicates a unique user identifier, which is used in several other
places within the networking software. The column /helios/users/mary Spec-
ifies the home directory for that user, and the final column indicates the command to
run for that user when the session starts up, in this case the Helios shell.

In alisting of the Session Manager the various fields have the following meanings.
All sessions are of type file, and users are unable to delete each other’s sessions. The
account field indicates the user identifier, obtained from the password file. The size
field does not make much sense; it is hard for a processor to work out that the user is
1.80 metres tall, and again this information is of little use. The time stamp indicates
when the user logged in.

There are various ways of starting a new user session. The conventional way is
to log in by using a window. However, this window may be in an /O processor, or
on adumb terminal, or it may be atelnet session for an ethernet login. Alternatively,

2.2. THE COMPONENTSOF HELIOS 25

a session may have to be created to support remote execution of commands, using
the Unix rsh command, for example. All these cases involve creating a new entry in
the /sm directory, and the code to do this is built into various utilities. In the initrc
file used for this example, there is a newuser command. The Session Manager will
start up a separate program, the Task Force Manager, to handle an individual user’s
requirements.

2.2.8 The Task Force Manager

Theinitrc command
run -e /helios/bin/newuser newuser mary

registers the current window with the Session Manager, causing a new entry to appear
in the subdirectory /sm/Windows. In all such windows the Session Manager will run
the login program to let people start a new session. In this case a user name has been
given as the argument to newuser, so the first time that login is run it will default to
that user. Depending on the nsrc file there may or may not be aprompt for a password.
Once login has al the information needed to create a session for a particular user, it
causes a Task Force Manager to be started for that user. The current window will be
used as the output window for diagnostic and error information, and eventually login
will start up a shell running in that window. By this point the password file will have
been consulted, so the user's home directory and the particular shell to execute will be
known.

The Task Force Manager is another Helios server. It will install itself in the name
table as /mary, or whatever the user name happens to be. The server contains a
number of subdirectories. domain and tfm; again these can be listed with Is.

Thecommand 1s -1 /mary/domain might give the following output.

f rw- - - - - - - 103 257 Mon Apr 2 16:19:24 1990 00
f rw- - - - - d- 103 257 Mon Apr 2 16:19:23 1990 01
f rw- - - - - d- 103 257 Mon Apr 2 16:19:23 1990 02
f rw- - - - - d- 103 257 Mon Apr 2 16:19:24 1990 03
f rw- - - - - d- 103 257 Mon Apr 2 16:19:24 1990 04

The /domain directory contains the various processors currently owned by the
user. The fields have the same meaning as in the /ns directory of the network server.
Theterm ‘owned’ may beinappropriate, since the processors are actually on loan from
the system pool and will be returned to that pool when the user has finished with them.
A user’'sdomain of processors will grow and shrink asrequired. If an application needs
more resources than are available in the current domain the Task Force Manager will
request additional resources from the network server, and return these resources when
they are no longer required. In addition there is a domain command which may be
used to perform operations such as pre-allocating a group of processors. In a single-
user environment it often makes sense to pre-allocate all processors, and this could be
done with the command:

domain get /01 /02 /03 /04 /05 /06 /07

26 CHAPTER 2. NETWORKS

It is not necessary to allocate processor 00 in this way, because this processor
(probably) runs the user’s Task Force Manager and hence is automatically part of that
user’s domain. The remaining processors start off in the system pool. The domain
command can be used with different arguments to release processors back to the sys-
tem pool or to get further information.

A listing of the /tfm directory might give the following information.

t rw----da 0 0 Mon Apr 2 16:19:24 1990 shell.1
t rw----da 0 0 Mon Apr 2 16:19:48 1990 shell.é6
t rw----da 0 0 Mon Apr 2 18:10:42 1990 1s.82

d rw----da 0 88 Mon Apr 2 18:10:32 1990 pi.78/

The /tfm directory lists the tasks and task forces which the Task Force Manager
is currently running on behalf of the user. There are three single programs, two shells
and the |s program, and there is one task force or collection of programs. Each entry
has an extension; for example, the first shell was the first program run on behalf of that
user, and the second shell was the sixth program.

The first shell in the /tfm directory is created by the login program, when the
user’s session is created. In fact login will execute whatever program is specified in
the password file, but this will ailmost certainly be a shell. The shell is started up with
a capability for the Task Force Manager, and after the usual shell startup a prompt will
be displayed. The user is now able to type in commands, and can run applications.
Essentially this completes the Helios bootstrap process.

When the user logs out, the first shell will terminate. The login program will be
informed about this, because it started up the shell. It can now terminate, causing the
Session Manager to run another login program in the same window. Also, the user’'s
Task Force Manager will terminate and release all resources back to the system pool.

2.2.9 Summary of the bootstrap process

The whole bootstrap process can be summarised as follows:

1. The I/O server boots a Nucleus into the root processor, or a ROM bootstrap
causes a Nucleus to start up.

2. The Nucleus initialises itself and runs the init program.

The init program reads the initrc file and runs startns.

Ea

startns runs the network server and the Session Manager.
The network server boots up the network.
Simultaneously init runs the newuser command.
newuser registers the window with the Session Manager.

The Session Manager runs login inside the window.

© © N o u

login creates a new session, causing a Task Force Manager to be started, and
then runs the login shell inside that Task Force Manager.

2.3. SOME EXAMPLE NETWORKS 27

10. The user gets ashell prompt and can start executing commands. The Task Force
Manager obtains resources from the network server as required, and returns
these back to the system when they become free.

11. After aperiod of time, the user logs out from the login shell.
12. The Task Force Manager terminates, releasing resources back to the free pool.
13. Thelogin program terminates, and is restarted by the Session Manager.

14. Another login prompt appears in the window.

2.3 Someexample networks

This section describes a range of Transputer networks, and outlines the software re-
quired and its configuration. The networks range from single-processor systems to
multi-user networks. Section 2.5 describes how to configure each of the networks. It
is hoped that the reader will recognise at least one of these possible networks as the
appropriate one for them.

2.3.1 Single-processor embedded systems

Figure 2.5 Single-processor embedded systems

For single-processor embedded system applications, the processor is used to control a
piece of hardware such as arobot arm or a video recorder.

For such an application there is little point in having an operating system at run-
time. Operating systems tend to need a hard disc for I/O, and they use a considerable
amount of memory. Instead the processor will boot from ROM when it is powered up,
and the entire application is held in this ROM. The application will be implemented
with a standalone system such as occam or Helios Standalone C. However, there is a
question of how this software is developed in the first place, and having an operating
system during the devel opment stage may be adistinct advantage. During devel opment
the target processor would be part of anormal network using one of the configurations
described later in this section, and it would be booted from a link. ROM code would
be produced as afinal stage.

28 CHAPTER 2. NETWORKS

2.3.2 Single-processor workstation

Ethernet

Figure 2.6 A single-processor workstation

A single processor may be equipped with sufficient I/0 hardware to produce a com-
plete workstation. The processor would boot from ROM on ‘power-up’, and load
a Nucleus from the hard disc. This Nucleus would contain the filing system. The
Nucleus can now start up the init program as before. The initrc file would start up
software to interact with an ethernet device, giving conventional local area network
capahility. Keyboard and mouse servers should start up to interact with those devices,
and an X window server could follow to give a high resolution graphics display.

Much of the Helios networking software is no longer required, since there is only
one processor in the network. There is little point in starting up the Helios network
server or to have a per-user Task Force Manager. To protect users from each other
Helios insists that every user has one processor. Thisis because some processors, such
as the Transputer, do not have memory management hardware, thus alowing users
programs running on the same processor to corrupt one another. Hence in this single-
processor network it will not be possible to log into the machine over the ethernet. It
is necessary to start a user session for the workstation’s owner, so a Session Manager
must be run. It may be configured to require password checking or not. The Session
Manager will start up a shell session for the user, but not a Task Force Manager. There
should be a separate user id such as shutdown which, instead of running a shell,
causes the hard disc to be synchronised and so allows the workstation to be shut down
safely.

Some or al of the links on this processor will be free. Hence it is possible to
connect this workstation into a larger network to produce one of the configurations
described later in this section. With this configuration thereis potential for catastrophe.
If the user gets the configuration files seriously wrong, the machine may not boot up.
The same is true if the filing system is badly corrupted, or if the Nucleus is held on
the root sector of the hard disc. There are various solutions to this problem. One
approach is to support an aternative floppy disc bootstrap mechanism instead of the
hard disc bootstrap, typically by pressing a switch or holding down a key when the
machine is turned on. This will give a minimal system which should alow the user
to perform any necessary repairs. Another more complicated approach is to have an
ethernet bootstrap facility. A third approach is to connect a working Helios system to
the broken one, boot the processor through alink, and repair the broken system with
the working one. All three approaches will require considerable expertise.

2.3. SOME EXAMPLE NETWORKS 29

2.3.3 Workstation with /O processor

It is possible to build a system with similar functionality to the workstation by reusing
some existing hardware. Typically the user might start with an IBM PC or compatible
and plug in a Transputer card, with just one Transputer. Such a network would rely on
the PC for al its 1/O, both file I/O and screen I/O. An upgrade might involve adding a
second Transputer with graphics hardware, and running the X window system on this
processor. The PC's screen would be used only for error logging, for debugging, and
for generating ‘beeps’, athough the PC's keyboard, mouse and hard disc are still re-
quired. The next upgrade islikely to be ahard disc, probably with an SCSI interface, to
avoid the bottleneck of the PC’slink interface. Thiswould also provide a secure filing
system, with multi-user protection, rather than the unprotected filing system of the PC.
The final upgrade islikely to be an ethernet connection, giving similar functionality to
the standal one workstation described in the previous section.

The gradual approach has advantages and disadvantages. The individual stages are
likely to be cheaper than buying a complete workstation at once, but the end result is
likely to be more expensive. Every time an addition is made the system configuration
will have to be changed, which may be aminor cause of headaches. The workstation
will probably come fully configured, apart from the details of user ids, passwords,
home directories, and so on. The PC is still usable for conventional software such as
spreadsheets and word processing packages, unlike the workstation.

The software is essentially the same as for the workstation. In this case the 1/0
processor will do the bootstrap rather than a piece of ROM code, and initially the
host filing system will be used rather than the Helios filing system, but these do not
significantly affect the configuration of the networking software. It should be noted
that it is not possible to build a secure system with just the PC filing system. The
various system files which must be secure, such as the password file, could be changed
simply by leaving Helios and editing them under MS-DOS. To build a secure system,
rather desirable for a multi-user environment, the Helios filing system must run within
the network.

2.34 Workstation for developing parallel software

00

]

Figure 2.7 A workstation for developing parallel software

In the description of the single-processor workstation it was mentioned that there is
no point in running all of the networking software on a single-processor system. This
is not always true. Some parallel programming systems, notably the Helios CDL,
alow paralld software to be developed on a single processor and then moved to a
multi-processor system without change, provided the official guidelines are followed.

30 CHAPTER 2. NETWORKS

Testing parallel software requires al of the networking software to be present since,
for example, the Helios shell does not know much about task forces or collections of
programs, and how to map these onto a network. Such knowledge is built into the
Task Force Manager, and should not be duplicated unless absolutely necessary (in the
interests of memory economy aswell asfor other reasons).

2.3.5 A small network

02

Figure 2.8 A small network

The next level of complexity isto change from a single-processor network to a small
network, of perhaps four processors. There are two main ways of organising such a
network. The first approach is not to use the networking software because the network
is too small to make it worthwhile. This has the advantage of greatly reducing the
amount of configuring. Helios provides commands which allow bootstrap of other
processors without the need for networking software, and these commands could be
executed from the initrc or the shell’s login files. It should be noted that with certain
types of hardware it isfairly difficult to initialise the hardware correctly, and hence this
option may not be viable.

The second approach for a small network is to run the networking software, con-
figured as a single-user system. This allows all the networking software to be run on
the same processor, saving some memory. The detailed configuration will be similar
to the next network.

2.3.6 A fairly small single-user network

Figure 2.9 A fairly small single-user network

Once the network grows past a certain size, booting by hand is less reliable. Hence
the user must run the networking software to boot up the network. As the number of

2.3. SOME EXAMPLE NETWORKS 31

processors increases it becomes more important that the network is monitored auto-
matically for failures. Also, it becomes less likely that the network will not be used to
execute parallel software, and the relative overhead of running the networking software
becomes quite small.

2.3.7 A network with configuration hardware

= Link Switch =

02 03 s

]

Figure 2.10 A network with configuration hardware

The networks shown so far are assumed to have hard-wired links. Connections be-
tween processors may be fixed permanently because that is the design of the board.
The connections may involve manipulating pieces of wire. A different type of hard-
ware uses alink switch. Some or al of the links of the various processors enter the
link switch, which must be programmed to make appropriate connections. In such a
network the resource map which describes the network to the network server takes on
a new meaning. Instead of specifying what the network actually looks like, it spec-
ifies what it should look like. The network server initialises the link switch and sets
up the desired network. This involves going through a hardware-specific interface.
It will be difficult to boot up such a network without a network server, because the
configuration hardware is complex. Supporting link configuration adds significantly
to the complexity of the networking software. By default, link configuration is only
used when the network server starts up. Helios makes no attempt to support automatic
dynamic reconfiguration in response to workload or to help map a problem onto a net-
work. Instead the network is assumed to be static. Since the Helios Kernel implements
automatic message routing, the need for dynamic reconfiguration is usually extremely
small.

32 CHAPTER 2. NETWORKS

2.3.8 A single-user supercomputer

Figure 2.11 A single-user supercomputer

In software terms there is little difference between booting up eight processors in a
network and booting up 64, except that the latter may take several seconds more. Al-
locating 64 processors to just one user is fairly expensive in financial terms, but can
make sense for ‘compute intensive’ jobs. On a 64-processor network, automatic de-
tection of failures is essential because it can take along time for a user to detect that
one processor has stopped working. Hence the network server must run continuously.
Such alarge network will be used only for running parallel software, so a Task Force
Manager is also essential.

2.3.9 Several single-user systems

Figure 2.12 Several single-user systems

Given an array of 64 processors it is possible to have perhaps four user networks of
16 processors each, with no overlap at al between the networks. This is a safe way
of managing the network, since the users have no way of interfering with each other’s
networks. However, it may be an inefficient way of using the resource. If a user is
currently making use of just two of the 16 processors the remaining 14 are idle and not
accessible to any of the other users. To reallocate the resources between the users, so
that some get more processors, will involve a considerable amount of work: (1) Ter-
minate some or all current sessions to ensure that the network isidle. (2) Reconfigure

2.3. SOME EXAMPLE NETWORKS 33

the network with the link switches to the desired allocation. (3) Change the resource
maps which define every user’s network. (4) Reboot. There is afurther complication:
changing the resource maps usually involves a Helios session.

Configuring such a system is essentially a case of having four separate sets of
single-user configuration files. In addition the controlling software, which is provided
by the hardware manufacturer rather than being part of Helios, must be set up correctly.
Thisis specific to the implementation.

2.3.10 A single-user process control system

Processors designed for multiprocessing, such asthe Transputer, can be very useful ina
process control system, because they combine processing power and communicationin
one package. Care must be taken with communication, such as using suitably shielded
cables and adequate buffering, or using optical connections instead of electrical ones,
but such hardware details do not affect the software or the configuration.

When the network is powered up suitable software must be run on al the proces-
sors, which can be done by specifying the programs in the resource map. The network
server will boot up the network and run all those programs. Furthermore, if a processor
crashes the network server will attempt to reboot it and restart the software, without
the need for any user intervention. Fault tolerance will be important, so the network
will have to be strongly interconnected to allow continued communication even in the
presence of crashed processors.

The network must contain either an 1/0O processor or a processor booting from
ROM, to get everything started. There must be afiling system from which the various
pieces of software can be loaded, and a display to give monitoring information. High
resolution graphics may be inappropriate for some process control applications, so
the display may be just aterminal attached to a seria line. The monitoring software
may explicitly monitor the other programs in the network. Alternatively it may be
implemented as a Helios server, with the various programs acting as clients.

For many process control applications a single-user system is al that is required.
In fact the network may even be configured as a zero user network, with all the soft-
ware started up automatically by the network server and the init program, and with no
user sessions. This network may well be merged into a larger network, providing an
integrated system within say a whole factory rather than just on part of one factory
floor. In the interests of fault tolerance, the system should still be designed as small
networks booting up separately and then connecting, to avoid a single central service
responsible for everything. Within this larger network, it may be desirable to have a
multi-user system.

34 CHAPTER 2. NETWORKS

2.3.11 A small multi-user network

| terminal }—{7ﬂ—{ terminal |

Figure 2.13 A small multi-user network

In the networks described so far there has been at most one active user at any onetime,
although different users could log in at different times. Adding multiple users involves
considerable complications at the software level, but few changes to the configuration
files.

Consider the network shown in Figure 2.13. There is a network of perhaps eight
or sixteen processors, booted by a PC I/O processor. Attached to this I/O processor
are two or more ordinary terminals, using the PC's serial ports. The intention is to
boot up the network from the 1/0 processor and then alow multiple users to log in
using the dumb terminals. Alternatively the 1/0O processor may be equipped with some
local area network hardware such as ethernet, and users may wish to log into Helios
remotely over such a network. There may not be an 1/0 processor. The system may
consist of a standalone workstation with an ethernet connection and perhaps a serial
line to give a system console for error messages. The users have to share the network
in afair manner, which will need a certain amount of cooperation between them.

Sharing anetwork fairly means that processors should be obtained from the system
pool when required, and released back to the system pool when free again. Users
should be discouraged from pre-allocating large domains of processors, since those
processors would no longer be usable by others. Recovery from errors also becomes
more important in a multi-user environment, since users should be inconvenienced as
little as possible by the mistakes of others. Hence in amulti-user network it is essential
to have a network server running continuously. To alow usersto log out and in at any
time the Session Manager must also run continuously. Finally, every user will be given
a separate Task Force Manager to administrate that session. Since processors have to
be alocated from the system pool and released again, these Task Force Managers
must also run continuously. A side effect of thisisthat multi-user configurations will
use up more of the available resources, including processor memory, than single-user
configurations. The I/O processor has a special ability in such a network. Without
an /O server Helios will be unable to access the serial lines of the host, so the I/0
server must not exit while other users are logged in. Furthermore the I/O server must
boot up the first processor, and has the ability to reboot this processor at any time.
This could be unfortunate if other users are still logged in. The recommended way
to avoid these problems is to treat the 1/O processor as a system console, which is

2.3. SOME EXAMPLE NETWORKS 35

used for administration rather than for user sessions. All user sessions go through the
terminals. Of course there is nothing in Helios to stop users from ignoring this advice
and using both the 1/O processor and the terminals for sessions.

2.3.12 Two connected single-user networks

Figure 2.14 Two connected single-user networks

In the case of two separate networks, perhaps plugged into separate |/O processors,
the users may want to connect their networks together to exchange data, rather than to
share all of the network resources including the processors. The networks are booted
up separately, as single-user networks. The link connecting them should be declared
as aspecial external link in the network resource maps, so that the network server will
know that there may be a Helios network at the other end of the link. To connect the
networks involves running a program to enable the connecting link in one of the net-
works. If the networks are already connected, thiswill be a‘no-op’. The networks can
be disconnected again by running another program to disable the connecting link. The
exact commands differ, depending on whether a network server is currently running,
but since the operation involves simple networking it is easier if the network server is
running.

There is a potential problem with naming the two networks. If both users give
their network the same name, such as /Cluster, the naming system becomes am-
biguous. There will probably be two processors called /Cluster/00, two called
/Cluster/I0,and so on. The users must give their networks separate names. One
network could be called /maryNet, the other /jonNet. The naming tree would
now look something like Figure 2.15.

/maryNet /jonNet
/10 /00 /10 /00
e[. | el |
/heliogns /heliogns

Figure 2.15 Multiple connected networks

User Jon could access afile /maryNet/I0/c/work/test . c, with no doubt
asto the location of thisfile. Of course users may not have access to al of the others
resources. The Helios filing system enforces a protection mechanism and, if a user
does not have a suitable capability, a particular file may not be accessible.

36 CHAPTER 2. NETWORKS

In this configuration it is not possible to use a processor in another user’s network.
If one of the networks has been configured to support multiple users the user can log
into that network over the link and use processors in the remote network, through a
separate session using the same window. The user cannot run an application distributed
over processors in more than one network.

2.3.13 A large multi-user network

Figure 2.16 A large multi-user network

Given a large backbone of processors it is possible to build a powerful multi-user
system. When the network is powered up, the bulk of it is booted, and the network
server and Session Manager continue running. The bootstrap can involve either a
ROM boot or an /O processor, with the error logging going to a system console. This
console is used only for maintaining the network, not for user sessions.

There are various ways in which users can use this network, illustrated in Figure
2.16. On the I€eft is an 1/O processor with just a link adapter, no processor. The 1/0
server on that processor is configured so that it never attempts to boot up the processor
attached to its link adapter. It enables the link, and waits for something to happen. The
resource map used to boot up the bulk of the network should indicate an I/O processor
at the other end of thislink. When the network server detects that thelink is enabled, it
will locate awindow server at the other end of the link and inform the Session Manager
that a user iswaiting to log in. The Session Manager does the rest, starting up a Task
Force Manager for that user and so on. When the user logs out or terminates the 1/0
server, the session will be terminated.

Inthe middleisan I/O processor with one processor attached. The I/O server boots
this processor with a Nucleus and the init program starts running. A network server
is started to initialise this small network, but there is no need for a Session Manager.
Once the network has been initialised the joinnet command can be used to enable
the link to the main network and make the small network part of the main one. Itis
now possible to run the newuser command to register the window with the Session
Manager. The processor tom1l in the small network will only be allocated to sessions

2.3. SOME EXAMPLE NETWORKS 37

started from that network, and will not be accessible to other users.

The third approach has a small network rather than a single processor. The con-
figuration is the same as for the second: a network server is run to boot up the small
network; then the joinnet command is used to make this small network part of the
main machine.

A standalone workstation can be used instead of an 1/O processor for the second
and third case, using exactly the same configuration, although a standal one workstation
consisting of alink adapter but no processor or 1/0 processor does not make sense.

2.3.14 A mainframe computer

— T 031323} 33|43

. : 02— 12}—{22}{32} 42
-

Console : o111} 21314

100 0o}—{10{ 203040

al2—pi

R
el
2

aL—p

terminal

3D
|

——

z]
‘ u
[||

terminal

h
Ethernet

Figure 2.17 A mainframe computer

The large multi-user network described in the previous section, with a central reliable
backbone of processors and a central network server and Session Manager can be
extended to give a large and powerful system. There is no technica reason why it
could not be expanded to several hundred processors, with a number of fast discs, tape
streamers for backup purposes, and one or more ethernet connections. In addition
to logging in through 1/O processors or standalone workstations the network could
support seria line terminals, ethernet logins (possibly from remote X window system
terminals), or even dial-up logins, if a serial port and a modem are added. Such a
network provides much the same facilities as a traditional mainframe.

2.3.15 Networked mainframe computers

There is one main problem with the mainframe approach to building networks. They
rely on a single network server to allocate resources between users, and the network

38 CHAPTER 2. NETWORKS

server isasingle program running on just one processor. The workload of the network
server depends on two things:

1. The number of users, which will affect the rate at which requests comein, and

2. Thesize of the network, which will affect the amount of work to be done for each
request. When a certain number of users and a certain number of processors
is exceeded, the network server will become a bottleneck. At present there is
insufficient data to determine when this will happen.

24 Thereal world

The previous section described various networks which, at least in theory, can be built
quite easily with Transputers. In practice most Helios users purchase off the shelf
hardware, and this will have built-in limitations which may make it unsuitable for
certain applications.

This section describes four different systems, representing different suppliers
of Transputer hardware: the Inmos TRAM system, the Parsytec MultiCluster and
SuperCluster® systems, the Telmat T.Node® and the Meiko Computing Surface. These
systems differ significantly in the hardware used to reset processors, the configuration
hardware, and so on. The purchase price of the hardware also varies considerably, but
that topic is not considered further here.

Given a network of processors, a common question is how to interconnect them
conveniently in away that is appropriate for the application or applications desired. A
correct interconnection may be more important for a small network, where commu-
nication costs may have to be minimised if the application is to run efficiently. For a
larger network, particularly a multi-user network, attempting to optimise the intercon-
nections is less important and requires more effort. This section outlines the topic of
network interconnections.

2.4.1 Different hardware

This section describes four different hardware systems, with different strengths and
weaknesses. These have a significant effect on the networking software, and on the
suitability of the hardware for different applications.

2.4.2 Inmos

Inmos, as the manufacturer of the Transputer, have a strong influence on the industry
as awhole. 1n 1987 Inmos introduced the TRAM system, an ‘industry standard’ for
building hardware based on Transputers. The TRAM system has since been adopted by
anumber of other manufacturers. However, by 1987 several other manufacturers had
aready implemented their own Transputer systems which are not compatible with the
TRAM scheme, and which have taken a major share of the market place. In addition,

SParsytec, MultiCluster and SuperCluster are trademarks of Parsytec GmbH.
5Telmat and T.Node are trademarks of Telmat Informatique

24. THEREAL WORLD 39

the TRAM scheme has a number of weaknesses which makes it inappropriate for many
applications.

Theideabehind the TRAM schemeisquite smple. Manufacturers produce TRAM
modules, small or medium sized circuit boardstypically with one Transputer and some
memory. These modules can be plugged into a TRAM motherboard, to build a net-
work of processors. A typical motherboard might have between five and sixteen slots,
and a module can use up anything from one to eight slots. In addition to processing
modules with just a Transputer and memory, it is possible to have specialised mod-
ules with such features as graphics displays, SCSI peripheral interfaces, and ethernet
connections. The various modules are connected together automatically in a simple
pipeline. Consider the network of Figure 2.18.

The motherboard has ten slots, like the Inmos B008 board. It is filled with six
modules. There is a size four module occupying slots 0, 4, 7 and 3, say the Inmos
B417 module with a T800 and four megabytes of memory. Then there are four size
one modules, in dlots 1, 2, 5 and 6, say four Inmos B411 modules each with a T800
and one megabyte. Finally there is a size two SCSI module such as the Inmos B422,
with a T222 and a SCSI interface. Jumpers will be required on the first module, to
avoid breaking the link pipeline.

[00] o] Ho2| Hog| o4
L] |

Motherboard @@@@ 00

Sots 1 56 2047 389

Figure 2.18 A single-TRAM motherboard

Link O of the first module goes to the 1/0O processor. Link 2 of the first module goes to
link 1 of the second module, link 2 of the second module is connected to link 1 of the
third module, and so on. In addition some motherboards have alink switch to allow the
remaining links of each module to be connected according to the user’s requirements.

It is possible to chain together severa TRAM motherboards, to produce a larger
network. To achieve thisthetail of the pipeline, link 2 of the last module, goes through
an external connector into the head of the next pipeline (link 1 of the first module on
the second board). Usually this will require some soldering on the patch area of the
second board. Inmos produce the B211 Transputer Evaluation Module, arack which
can take up to ten TRAM motherboards such as the B012, each of which has sixteen
dots for TRAM modules. Clearly it is possible to build very large networks with
TRAM modules. It should be remembered that the recommended minimum amount
of memory on a processor running Helios is one megabyte, even though there are
TRAM modules with much less memory.

The flexibility of the TRAM scheme and the availability of awide range of differ-
ent modules areits main advantages. However it suffers from two great disadvantages,
both related to the reset scheme. Theroot processor, occupying slot 0 of thefirst board,
can be reset from the 1/O processor. The remaining processors can be reset in one of
two ways, usually depending on the state of a jumper. The first way is to reset al

40 CHAPTER 2. NETWORKS

processors at the same time from the 1/0 processor, so that when Helios starts up al
processors are in a reset state. The second way is to give the root processor subsys-
tem control. This means that the root processor can perform a global reset, resetting
al other processors in the network. For Helios, neither approach is particularly use-
ful. If the network isto have any reasonable degree of fault tolerance, the networking
software must be able to recover from crashed processors by isolating them and then
rebooting them. Isolating is still possible, if the network connectivity has not been
broken. However, rebooting is impossible without the ability to reset individua pro-
cessors. The networking software cannot recover until all processors in the network,
apart from the root processor, have crashed and should be reset anyway. Before this
happens the user is likely to have lost patience and rebooted the whole network from
the 1/0 processor.

The second problem with the reset scheme is the way in which it is asserted. This

is done by poking a 32-bit integer O into address 0x00000000. Unfortunately, consider
the following piece of poor quality but fairly typical C code.

char *pointer = malloc(128);
memset (pointer, ' ', 128);

Most of the time this piece of code will work fine. However, if the processor happens
to be short of memory the call to malloc() will return NULL, which is the same as
address 0x00000000. Hencethecall to memset will activate the subsystem reset, if itis
running on the root processor, and reset every other processor in the network. Thiswill
berather confusing for the average user, at least until it has happened half adozen times
and the symptoms can be recognised instantly. Furthermore the circumstances which
caused the problem (running out of memory when the program executes on the root
processor) may not occur very often. These problems could have been avoided very
easily, although at a dight additional hardware cost, by choosing a different address
such as 0x70000000.

The lack of an individual processor reset facility and the ease with which the re-
set can be asserted accidentally make the TRAM system an unlikely choice for large
networks. However a small number of TRAM modules can be combined to produce a
workstation, with or without an 1/O processor. A typical collection would be a SCS
module, an ethernet module, a graphics module, and possibly one processor module
for the root processor. For a standalone workstation it would be necessary to add a
ROM bootstrap module and probably an RS232 module with two seria ports, one for
amouse and one for a keyboard. Such aworkstation could be connected into a larger
network such as a Parsytec SuperCluster or a Telmat T.Node, to achieve the required
processing capability. The various processors within the workstation would run mainly
or only system software, such asthe filing system or the X window system server. This
reduces or eliminates the possibility of acrash on one of these processors, which would
require the rebooting of the whole workstation (but not the larger network).

243 Parsytec

Parsytec GmbH have been working on Transputer systems since 1985. They supply
two main systems: the MultiCluster, aimed mainly at industrial applications, and the
SuperCluster, aimed more at the supercomputer market. In fact the two systems are

24. THEREAL WORLD 41

hardware compatible, and it is possible to take MultiCluster boards and plug them into
part of a SuperCluster.

The MultiCluster seriesinvolves one or more heavy duty racks linked together, and
arange of plug in boards. These include processing boards such as the MTM-2, with
two Transputers each with one megabyte; 1/0 boards such asthe GDS graphics display
and the MSC mass storage board with its SCSI interface; and interface boards such as
the BBK-V2 VME bus bridgehead. Host interface boards are available for a range
of machines, including PCs and Suns. RS422 link buffering is supported as standard,
for medium to long distance communication between processors. In the context of an
industrial application, the interconnections between the processors are usualy hard-
wired using cables plugged in to the MultiCluster backplane. Once the network is
up and running it should stay up and running for a long time without changing the
software or the configuration. Cables tend to be more reliable than a crossbar switch,
reducing the possibility of an error. A typical SuperCluster system is shown in Figure
2.19.

The basic unit of a SuperCluster is known as a computing cluster. This con-
tains 16 processors, usually T800s because the system isaimed at supercomputing use
which needs floating point arithmetic. Each cluster also contains a network config-
uration unit which has the link switches needed to configure its part of the network.
The 16 processors in a cluster have atotal of 64 links, which can be connected in any
way. In addition, 32 of these links can be taken outside the cluster, to a higher-level
configuration unit which allows the clusters to be interconnected. The smallest com-
mercially available SuperCluster has four of these computing clusters, giving atotal of
64 processors. Several of these can be combined to produce alarger network.

In addition to the computing clusters, a SuperCluster machine contains a system
services cluster. Any of the MultiCluster boards, including the MSC with its SCS
disc interface, can be

| System Services Cluster |

Network Configuration Unitg |~

Figure 2.19 A Parsytec SuperCluster

plugged into this cluster to provide the required 1/0O facilities. External workstations
and host processors can be connected here as well.

42 CHAPTER 2. NETWORKS

An important aspect of the Parsytec architecture is the reset scheme. Unlike the
Inmos TRAM scheme, every processor can be reset individually. However, unlike the
Telmat T.Node and the Meiko Computing Surface this is achieved without having a
central control bus. Instead every processor is able to reset any of its four neighbours.
This reset facility is supported by all the processors in the SuperCluster and by all
MultiCluster boards, giving a consistent way of booting up any network built from
Parsytec hardware. This distributed reset scheme is, in theory, idea for fault tolerant
networks since error recovery can start from anywhere. A critical requirement for
fault tolerant networks is the duplication of al critical software components, and the
network server is one of these. With Parsytec hardware it should be possible to run
several network servers in different parts of the network: even if a processor running
one network server is crashed, for any reason, the other network servers can recover
from this. At the time of writing, this facility is not yet supported.

The Parsytec distributed reset scheme does, however, have disadvantages. It is not
particularly secure. Any reasonably competent first-year student or similar hacker can
produce a worm program that resets the processors on all four links and duplicates
itself down all four links. Such aworm could spread through any network within sec-
onds, wiping out al the networking software before the latter knows what is happening
and can attempt to recover. For some applications this makes the machine more suited
to the * Several single-user systems' network described in section 2.2, where user net-
works are physically isolated from each other and hence cannot interfere with each
other.

The Parsytec hardware supports a wide range of 1/0 facilities and networks of an
arbitrary size, with a consistent reset scheme throughout the network. This makes it
satisfactory for most applications. In theory it isidea for fault tolerant applications
although at present not much software makes use of this. The disadvantages are alack
of security, which may be important for some multi-user networks, and reset problems
when mixing Helios and native nodes.

244 Temat

The Supernode architecture provides a building block for producing large processor
networks. It was developed under project P10850 funded by the Commission of the
European Community Esprit program. The Telmat T.Node is a redlisation of this ar-
chitecture, manufactured by Telmat Informatique.

Every T.Node building block contains a reconfigurable link switch mounted di-
rectly on the backplane. There are seven plug in card slots per block. Two of these
dots are used for worker modules, each with eight T800 processors and memory. A
third slot is used for a controller card, responsible for configuring the building block
and resetting processors. Two additional slots can be used for connections to other
T.Node building blocks, or may be used to house additional processor cards. The re-
maining two sots are for specia cards. Possibilities include a memory card, with one
processor and up to sixteen megabytes of memory, and a disc card with a SCSI inter-
face. Thereis a Control Bus for resetting processors and various other functions. A
typical network of these building blocks is shown in Figure 2.20.

24. THEREAL WORLD 43

Internode Control Bus

Internode
Controller E Controller E ontroller D

Link Switch Link Switch

bus bus

w

Figure 2.20 T.Node building blocks

Two T.Node building blocks can be combined to produce a Tandem.Node whose
workers are fully interconnected through the link switches. Tandem.Nodes can have
up to 64 worker Transputers. Larger machines based on the T.Node building block are
known as Mega.Nodes. These can have up to 1024 processorsin afully reconfigurable
network. Thisinvolves a control hierarchy, in particular an Internode Control busin
addition to the Control bus inside every T.Node building block.

Unlike other hardware, the T.Node link switch is not a full crossbar switch. Itis
possible to realise any desired network connectivity, but not every topology. For ex-
ample, the link switch always alows processors 05 and 10 to be connected, but might
not alow link 0 of 05 to be connected to link 1 of 10. This does not affect the inner
workings of Helios, which depend only on the connectivity. It has a side effect on the
network specification contained in the resource map, /helios/etc/default.map which
usually defines the topology. When running on a T.Node the internal representation of
the resource map is modified to give the same connectivity but an achievable topology,
before any attempt is made to boot the network.

In addition to the link switch, every processor in a building block is connected to
acontrol bus. This bus is used by the controller card for resetting processors within
the block, and gives an individual reset facility over all processors. The bus also pro-
vides afairly low-bandwidth communication path between the processors and the con-
troller card, and several other facilities. In a network of building blocks the controller
cards are connected through an internode control bus, with a supervisor internode
controller. Essentially this internode controller has complete reset and configuration
control over the entire network, and the Helios network server interacts with it to give
the required functionality.

Like al hardware, the T.Node has advantages and disadvantages. It is very suit-
able for building medium-sized and large networks of processors, forming the network
backbone. Individual reset of al processors is available, and furthermore access to the
internode controller can be restricted so that ordinary users do not have any way of
activating the resets directly. This makes the network more secure in a multi-user

44 CHAPTER 2. NETWORKS

environment. The resets go through a bus, so there are no problems resetting native
nodes. There is a negative side. Having centralised control makes the network less
suitable for fault tolerant applications, because there is no sensible way of having mul-
tiple network servers and recovering if one of the network serversis crashed.

If the software on the internode controller goes wrong the whole network will
have to be rebooted. Also, the size of atypical T.Node building block, with at least
18 processors, makes it less suitable for producing workstations. Instead a typical
network would have other workstations or 1/O processors connected to the T.Node
building blocks.

245 Meiko

Thefinal of the four major systemsisthe Meiko Computing Surface. Meiko’'s Comput-
ing surface has been developed since 1985. It is a scalable multiprocessor architecture
with a performance range from workstation to supercomputer.

The Meiko Surface differs from the Parsytec SuperCluster and the Telmat T.Node
in that there is no basic building block. Instead a Surface is built up from one or
more modules, essentially racks capable of holding different numbers of boards which
can be interconnected to produce larger networks. There is a wide choice of boards
including computing elements, display cards, mass storage cards with aSCSI interface,
and so on. Various different host interface boards are available, the most important
being for the Sun3 and Sun4. All the Transputer links go into the module backplane,
and may be hardwired or connected through a link switch. A heuristic algorithm is
used to attempt to achieve the required topology, and this should succeed for nearly
every topology.

Like the T.Node the Meiko Computing Surface is based around a control bus,
the Supervisor Bus. This supports individual reset of processors and low bandwidth
communication. Every module should contain a L ocal Host board, providing control
over all the processors in that module. The various local hosts in a network should
be chained together in another bus, controlled by the network Module Master. The
Helios network server interacts with this Module Master to achieve the required func-
tionality.

Unlike the Parsytec and Telmat machines, the Meiko Surface comes with its own
system software CS Tools. Helios isan optional extra, which runs alongside CS Tools.
The normal way of using CS Toolsisto develop the software on the host machine, usu-
ally aSun, including cross-compiling on the host. Whenit istimeto run the application
adomain of processors is obtained, and the software is booted into these processors.
The system isintegrated into the host environment. For example, when the application
in the Surface opens afile, arequest is sent to the host to perform this operation. The
integration extends even to debugging facilities. For example, it is possible to com-
pile the Surface application with debugging enabled and then use the dbx program on
the Sun. This approach differs significantly from Helios, where the network of pro-
cessors is continuously running the operating system, and applications execute under
the operating system. In particular, al software development including compiling and
debugging happens under Helios.

CS Tools does impose a number of restrictions. In particular, adomain of proces-
sors obtained from the system cannot overlap with other domains so it is not possible

24. THEREAL WORLD 45

to build a multi-user Helios network. Instead a Computing Surface network behaves
like the * Several single-user systems' network described in section 2.3.9, with the ad-
ditional possibility that some of the single-user systems may not be running Helios.

The Meiko Computing Surface has a centralised individual reset like the T.Node,
and hence it has the same advantages and disadvantages when it comes to security and
fault tolerance. In theory the minimum size of a network is two processors, one local
host and one computing element, so the Surface could be used to build a workstation
with a small network. In practice the minimum machine involves four processors.
Arbitrary topologies are available, unlike the T.Node. The other criterion, which may
or may not be important depending on the user’s requirements, is that the network is
not controlled entirely by Helios.

2.4.6 Handlingdifferent hardware

This section has described the four most important commercial architectures. Helios
supports all four architectures, with an additional but limited capability for mixing
different hardware, using one set of networking software. Other hardware can be sup-
ported as well, usually without modifying the networking software.

Any network is either homogeneous (which means that al the hardware has the
same control facilities) or consists of a number of subnetworks with different control
facilities. The network server achieves control over a homogeneous network or sub-
network by loading a device driver. A Helios device driver is a piece of code loaded
dynamically, usualy to provide an interface between the hardware and the hardware-
independent software. For example, the X window system server loads a device driver
to manipulate video memory and colour look-up tables. The network server loads a
device driver or several device drivers to manipulate the network control hardware. At
present there are two different types of network device drivers, one to control the reset
hardware and one to control the link configuration hardware. The following device
drivers are available:

e null_ra.d areset/analyse driver for when no reset hardware is available.

e tram_ra.d the reset/analyse driver for the TRAM reset scheme.

pa_ra.d the reset driver for the Parsytec scheme.

telmat_r.d the Telmat T.Node reset driver.

telmat_c.d the Telmat T.Node link configuration driver.

rte_ra.d the Meiko computing surface reset driver.
e rte_c.d the Meiko computing surface link configuration driver.

The network resource map /helios/etc/default.map defines the device driver or
drivers to use for the current network. Please note that some of these drivers are actu-
aly owned by the appropriate hardware manufacturers and are not shipped as standard
with Helios.

For Helios to run on networks which are not based on one of the four architectures
described above, it is usually necessary to produce a new device driver or drivers. In

46 CHAPTER 2. NETWORKS

fact, for asmall network it is possible not to specify adevice driver and merely ensure
that the whole network is reset before starting the networking software. Obviously
without adevice driver the networking software’s ability to recover from errors will be
limited.

For a homogeneous network a single device driver will usually suffice. For mixed
networks device drivers can be used within the homogeneous networks, but there is a
problem at the boundaries. The resource map syntax allows the user to specify reset
facilities over and above what is provided by the device driver. For example, consider
the network in Figure 2.21.

Megaframe

Tram
Motherboard 01 00

Sots 1 56 2047 38 9——

Figure 2.21 A mixed network

Processors 00 and 01 are TRAM modules on a suitable motherboard, and the
remaining processors are part of a Parsytec MultiCluster. The TRAM reset is passed
on to the first processor in the megaframe, so that whenever the global reset is asserted
on processor 00 this affects processor 01, the other TRAM module, and processor
02, the first MultiCluster processor. The Parsytec reset scheme can be used on the
remaining processors. Clearly such a network is ‘bootable’, but describing it in a
resource map is difficult. Section 2.5 describes how it can be done for many networks.

2.4.7 Mapping task forces onto a network

In a task force each component task can execute on a separate processor, with the
communication going over the processor links. A typical application might be afarm,
with a master program (M), a number of worker programs (Wn), and a load balancer
(Ib) to distribute the workload. Such afarm is shown in Figure 2.22.

24. THEREAL WORLD 47

M)—(b)

® ® &

W

Figure 2.22 A farm application

The ideal way to run such a task force is to assign a separate processor to every
component task, with the links between the processors matching the communication
between the components. For the farm, this would require a network topology as
shown in Figure 2.23.

00 01 04

05

Figure 2.23 The ideal network topology for afarm

However, there is a small problem with this network. Processor 01 is used for
the load balancer, which communicates with five other programs, and hence in an
ideal network the processor would need five links. This is difficult with the current
generation of Transputers. Instead the application must be mapped onto areal network,
in such a way as to minimise the communication overheads. This means reducing
the number of processors that messages have to be routed through, since this affects
both the communication bandwidth and the CPU time available on the intermediate
processors. Consider the network in Figure 2.24.

The right hand mapping is significantly better than the left hand mapping, because
the average ‘distance’ between the load balancer and the worker components is re-
duced from two links to 1.5.

48 CHAPTER 2. NETWORKS

&
®

w3 Wo—(Io)— (W
& w3

®
@

M)

®

Figure 2.24 Two different mappings

2.4.8 Possibletopologies

The networks that can be achieved depend mainly on the number of available links per
processor. With just two links the choice is very limited: either apipeline or aring, as
shown in Figure 2.25. With three links the choice widens. (See Figure 2.26.)

0d—01—02—{03

Figure 2.25 Two connections per processor

Figure 2.26 Three connections per processor

Both the chordal ring and the tree can be expanded to arbitrarily sized networks. In
the cube all the available links are used, so it isimpossible evento add an 1/O processor.
The chordal ring and the cube offer a degree of fault tolerance, in that the failure of
any one node will not break the connectivity of the network. In the tree topology, any
failure except in the bottom or leaf nodes will disconnect part of the network.

With four links, the number of possible network topologies becomes very large.
Common networks include a simple mesh or a mesh with wrap around and a four
dimensional hypercube, as shown in Figure 2.27.

T

24. THEREAL WORLD 49

Figure 2.27 Four connections per processor

There are many other topologies such as cube connected cycles, lenses, and hy-
pertrees, all with strengths and weaknesses. Given six links, it would be possible to
build three-dimensional meshes, six-dimensional hypercubes with 64 processors, and
systolic arrays. The choice of network topologies is very large, but does not help with
the basic question: which topology is suitable for the application ?

2.4.9 Task force connectivity

Many applications have afairly low connectivity. For example, apipe line of tasks has
just two communication channels between every component task. Such atask force
can be mapped efficiently onto many different network topologies, as shown in Figure
2.28.

(P) P fU pL
08 09 10 11
o) =\ oR)
(Po) @) (Po) (P9
04 05 06 07
(P) @ ® (P4
00 01 02 03

Figure 2.28 Mapping a pipeline of tasks

Other applications have a high connectivity. A farm with 64 workers requires a
load balancer communicating with 65 other tasks. For such applications the exact
network topology may not matter much, assuming all the processors' links are used,
and it is far more important to place the load balancer and master components in a
sensible place in the network. A mesh, preferably with partia or full wrap around,
will give satisfactory results for most applications.

In between these extremes is the case where the connectivity of the task force is
close to the connectivity of the network. For example, in an image processing appli-
cation, the task force often takes the form of a two dimensiona array of component
tasks and a mesh with the same dimensions as the task force is usually the optimal
network topology. For such applications the question arises as to whether or not the
communication overheads are a significant factor in the efficiency of the task force.
If every task spends 99 per cent of its time calculating rather than communicating, it
will be more cost effective to attempt to optimise the calculation rather than modify
the network topology to reduce the communication costs.

50 CHAPTER 2. NETWORKS

2.4.10 Other considerations

In addition to the nature of the task force, there are other practical considerations before
deciding on anetwork topology. The actual hardware must not be forgotten. If thelinks
are hard wired by tracks on a printed circuit board, nothing can change the topology.
If the links are hard wired by sections of cable, wiring up a complex topology such as
a hypercube cannot be recommended. If the hardware contains link switches, which
alow the network to be configured to any desired topology, matters become more
managesble but are still complicated.

With a large network, producing a resource map can be difficult. Thisis greatly
simplified if the network has a very regular structure. For regular structures, and
particularly for meshes, resource maps can be generated automatically or semi-
automatically. The expected gainsin performance when using aless standard topology
may have to be considerable to warrant the effort of producing the required resource
maps.

In a single-user network it is fairly easy to boot up the network with the required
topology, by substituting a different resource map. This is not true in a multi-user
network, where the underlying topology is decided by the network administrator and
users merely borrow processors from the system pooal.

2411 Summary

In an ideal world networks would always match the topology of the application. In an
amost ideal world, networks could be made to match the topology of the application.
There is a wide range of possible topologies, offering hours of fun, but in the real
world a user has to consider several questions before changing the network topology
to match the application.

e Does the task force topology map ‘satisfactorily’ on to the existing network?
The user has to define ‘ satisfactorily’ in this context.

e |scommunication a bottleneck for the application?
e Can the communication costs be reduced significantly by changing the network?
e Can the existing hardware cope with the desired connectivity?

e Must the application run unchanged on a different network, with different and
less flexible hardware?

e In a single-user system, will the application be run often enough or for long
enough to make the production of a new resource map worthwhile?

Experience has shown that asimple mesh, preferably with partial or complete wrap
around, is satisfactory for nearly all cases and is easy to use.

2.5 Network commands

The bulk of the Helios networking software consists of three programs. the network
server to administer the network, the Session Manager to handle all users and the Task

2.5. NETWORK COMMANDS 51

Force Manager, which handles a single user’s session. None of these commands are
run directly by the user. However there are various commands which interact with
these programs and which allow users to exert greater control over the network. This
section describes these commands.

The commands divide into a number of categories.

startns must be used to start networking software.

findns, findsm and findtfm may be used to locate a particular server in a net-
work.

rboot, pa_rboot, clink, pa_reset, and tr_reset are used when booting networks
by hand.

dlink, dink, plink and Istatus can be used to examine and change link modes.
These commands are used mainly to connect and disconnect networks.

joinnet is used to connect into a backbone of processors.
domain is used to administer auser’s domain of processors.
newuser starts up a new user session.

rmgen is used to compile network resource maps.

stopio and rebootio are used to interact with I/O servers.
write and wall allow communication between users.

who and userslist the users currently logged in.

whoami displays the current user name.

diag tfm and diag_ns control debugging options inside a Task Force Manager
and the Network Server.

uptime shows how long the network has been running.

ps gives information about which programs are running on processors in the
network.

loaded gives information about what code is loaded into processors in the net-
work.

networ k can be used to examine the current state of the network.

login is used to start a new session.

Full information on all these commands can be found in The Helios Encyclopaedia
or by using the online help facility.

52 CHAPTER 2. NETWORKS

2.6 Configuration files

The number of Helios configuration files which affect networking is considerable.
They tend to be rather confusing to a user, particularly to a user new to Helios, not
least because of the differences in syntax. This section attempts to eliminate some of
the confusion, by giving details of the following configuration files:

e The host.con configuration file is read by the I/O server when it starts up. The
file contains alist of options for the I/O server.

e Theinitrcfileisread by theinit program on the root processor, during the initial
bootstrap. The file contains alist of commands using aformat specific to init.

e Thensrcfileisread by the networking software. It contains alist of options, not
commands.

e The.login fileisread by auser’s login shell, the first shell run on behalf of that
user, which is usually started by the Helios Session Manager. The file contains
shell commands.

e The .cshrc fileisread by al shells started by a user, whether directly or indi-
rectly. The file contains shell commands.

e The.logout fileisread by auser’slogin shell when it terminates, which happens
when the user logs out. It contains shell commands.

¢ Resource maps are used to describe a network of processors. They are written
in alanguage specialy designed for this purpose.

In addition to these configuration files there are a number of programs and de-
vice drivers. Some of the programs, the network server, the Session Manager and the
Task Force Manager, are run by other programs or in response to events. Others such
as startns and newuser, are commands executed by the user, possibly interactively
through a shell, possibly as part of a file of commands such as initrc or the various
shell resource files. The device drivers such astram ra.d and pa ra.d, complement
the networking software by separating hardware-specific code for controlling the re-
set and link configuration hardware from the hardware-independent networking code.
These hardware-specific device drivers may require additional information from other
configuration files.

2.6.1 host.con

The host.con fileis read by the Helios I/O server when it starts up, and contains a list
of options for the 1/0 server. Typica entries might look like this:

helios directory = c:\helios
Server windows

This is a comment

link base = 0x100

2.6. CONFIGURATION FILES 53

Lines beginning with a # are comments, and are ignored. Other lines can contain
aflag, for example the Server_windows line is a flag enabling windowing in the 1/0O
server; dternatively they may specify a string or a number, for a particular option; for
example, the first line specifies the string ¢: \ helios for the option helios directory.

Four options in the host.con file are important when configuring the network :

1. root_processor
2. io_processor
3. bootlink

4. no_bootstrap

The first two control the initial processor names. Under Helios processors have
names just like other objects, for example /00 and /I0. Processors must be given
these names when they are booted (as soon as they ‘exist’ in the Helios world). Since
the 1/O server is responsible for ‘creating’ the 1/O processor within the Helios world
and for booting up the root processor, it must supply these names. The default names
are /00 and / I0, but alternatives can be provided in the host.con file.

root processor = /maryRoot
io_processor = /maryPC

When booting a processor, that processor must also be supplied with aninitial link
configuration, specifying which links are not connected, which are connected to active
Helios nodes, and so on. Usually the network server will provide this information.
However, the root processor must be booted up with a link configuration by the 1/0
server. The assumption is made that al but one of the links will be not connected,
the exception being the link to the I/O processor which must be active. On nearly al
Transputer hardware this link is link 0, and hence the 1/0 server will default to this.
For the few exceptions, the bootlink option can be used to specify an alternative, for
example:

bootlink = 2

When the 1/0 server is used to initiate the bootstrap of a network, it is important
that the resource map describing the network matches the options used by the 1/0
server. If the resource map indicates that the root processor is called /00, and the 1/O
server has called it /maryRoot, the network will not boot up correctly or at all.

The final option, enable_link, is used if the 1/0O processor is not attached to its
own private Transputer. Instead it is equipped merely with alink adapter, and this link
adapter is used to connect into an existing network. The enable link option prevents
the 1/0 server from booting or rebooting a Transputer, and forces it instead to enable
the link connecting it to the network.

A complete description of the host.con options can be found in chapter 8, The I/O
Server.

54 CHAPTER 2. NETWORKS

2.6.2 initrc

All installations of Helios involve booting a Nucleus into one processor, as the first
stage. What should happen next is not so clear. A large network used to control afac-
tory floor has different needs from a scientific supercomputer, which is also different
from a single-user single-processor workstation. One way to get around this is to use
adifferent Nucleus for different applications, and sometimes this has to be done. For
example, in a single-processor workstation the Nucleus must incorporate the Helios
filing system, but in a network with an 1/0 processor and no additiona hard disc this
would waste memory. The alternative and more flexible approach is to read a textual
resource file. On the root processor, and only on the root processor, the Nucleus will
start up a separate program /heliog/lib/init, which reads and executes commands from
the text file /heliog/etc/initrc.

In theory having a separate init program with its own parser, its own command
syntax, and so on, is unnecessary. A shell could have been used instead. There are a
number of reasons why this approach was not taken in Helios.

e Using ashell can be overkill. A shell provides agreat many facilities not needed
during the bootstrap stage, such asinteractive command line editing.

¢ All of the shell would have to be loaded into memory, including the bits that are
not needed. Also, the shell requires the C and Posix libraries, so these would
have to be loaded as well. This would be rather inefficient and could cause
memory fragmentation problems. The current init program is less than 3K in
size, and does not need these libraries.

e A shell requires afairly stable environment, in terms of a console window and
reliable file 1/0O. This may not be available during the Helios bootstrap stage, for
example a console window might not exist until the X window system has been
started up.

e The requirements of a bootstrap stage are different from those of a shell. In
particular it is rather important to have support for detecting the presence and
absence of servers or other objects, and for waiting for such an object to appear.

A typical initrc file might look like this.
#

This is a comment line

#

First, set up the windowing system

ifabsent /window run -e /helios/lib/window window
console /window console

#

Then start the networking software

run -e /helios/bin/startns startns -r /helios/etc/default.map
#

Wait for the Session Manager to be active
waitfor /sm

#

And start a user session

run -e /helios/bin/newuser newuser mary

2.6. CONFIGURATION FILES 55

As with the host.con file, lines beginning with a # are interpreted as comments.
Otherwise the file contains alist of commands, with one command per line. The init
program understands the following commands:

e run to execute another program.

e ifabsent to check for the absence of an object.

e ifpresent to check for the presence of an object.

e waitfor to suspend the init program until an object exists.
e auto to enter aname into the name table.

e console to specify the current console.

In order to run, most programs need various pieces of information in their environ-
ment which are sent by the parent program, in this case the init program.

1. Standard /O streams stdin, stdout, stderr in C, or units 5 and 6 in Fortran.
2. A current directory.
3. A vector of arguments, possibly empty.

4. A set of environment strings which may be used to store any additional infor-
mation.

When init runs other programs the standard streams are initially set up to be the
error logging server /logger, which is usualy provided by the 1/O server. The current
directory is set to /helios, which must be present because the init program is /he-
liog/lib/init and the initrc file is/heliog/etc/initrc. The arguments are provided by the
run command, and the set of environment strings is empty. The syntax of run is as
follows:

run [-e] [-w] <command name> [argument 0] [argument 1]

There are two optional arguments which must come before the command name.
Thefirgt, -e, causesinit to send an environment to the specified program. It is possible
to produce programs which do not require an environment, for example the Helios ram
disc, but these are the exception rather than the rule. The -w option causes init to wait
until the program has terminated. By default init will continue as soon as the program
starts running, and init itself will terminate as soon as the last statement in the initrc
file has been executed. Following these optional arguments comes the command name,
which must be a complete path name.

If the -e option is used to indicate that an environment should be sent, then the
command name must be followed by one or more arguments. The zerd” argument is
conventionally the program’s name. However, some programs such as login use this
argument to determine that the program was started by the bootstrap process rather
than from a shell. The login program checks that this argument is ‘-’ rather than
login, for example. The zerd”* argument may be followed by additional arguments if
desired. All programs run by init run on the root processor. To execute programs on
remote processors the remote command can be used, for example:

56 CHAPTER 2. NETWORKS

run -e /helios/bin/remote remote -d 01 /helios/lib/fs raw

Thiswould run the remote command on the root processor, sending it an environ-
ment because it is an ordinary program rather than a specia system program. Argu-
ment zero is remote, quite reasonable since that command like most others does not
distinguish between running during the bootstrap phase and running in a user session.
The additional arguments are: -d for detach, to indicate that remote should not wait
for the program to terminate; 01 for the target processor; /heliog/lib/fs for the program
to execute; and raw as an argument for that program.

The reader should be aware that when the network is running in a protected mode
using remote may fail. The remote processor will be protected such that no user other
than the current owner can access it, and the init program does not have any special
privileges for executing programs. Whether or not a network is running in protected
mode is controlled by the nsrc file. Usually it is better to make use of run commands
inside the resource map, which avoids these problems. The remaining commands
understood by init are rather more simple. The console command is used to specify
aternative standard streams for subsegquent run commands. The exact syntax is as
follows:

console <server name> <window names

First init will attempt to locate the specified server. It is assumed that this provides
aterminal window interface, but that is not essential. Next it will attempt to create
the specified window if any, and if successful this window will be used for standard
streams from now on. Typical ways of using the command are:

console /window mywindow
console /termserver console

The first command creates a new window mywindow within the server /window.
The second creates a new window console within the server /termserver.

Theifabsent and ifpresent commands are the only conditions which can be used
in an initrc file. Both commands take as their first argument the name of an object,
which might be a server name, a file name, a processor hame, or any other object
within the Helios world. Thisis followed by another initrc command, usually but not
awaysarun command. In the case of ifabsent this second command will be executed
if and only if the specified object does not exist. In the case of ifpresent the command
will be executed if the specified object does currently exist. Typical ways of using
these commands are:

ifabsent /fs run -e /helios/lib/fs fs raw
ifabsent /lock auto /lock
ifpresent /helios/lockfile run -e /helios/bin/rm rm /helios/lockfile

The waitfor command is used to suspend the init program until an object exists.
init will attempt to locate the object at intervals of one second. The command is
usually used to wait for a server to start up or for a processor to be booted, but is not
restricted to this. For example, a previous program might create a particular file when
it has done a certain amount of work, and the waitfor command can be used to wait
until that file exists.

2.6. CONFIGURATION FILES 57

waitfor /sm
waitfor /Cluster/07
waitfor /helios/lockfile

The auto command is used to create an entry in the name table. Certain Helios
servers such as the ram disc and the null device are loaded automatically as soon as
an attempt is made to access them. Thisis achieved by creating a suitable entry in the
processor’'s name table, and the auto command can be used to do this. auto takes a
single argument, the name of the server. For example:

auto /lock

would enter the name /lock in the root processor’s name table, and cause the program
called /heliog/lib/lock to be run automatically when any attempt is made to access the
lock server. The server is started up without an environment, so it is unlikely to be
particularly complicated. Helios does this automatically for the /ram, /pipe, /fifo and
/null servers on every processor.

2.6.3 .login, .cshrc, and .logout

The normal user interface used with Heliosis ashell, or anumber of shellsin separate
windows. These shells read in a set of files containing shell commands, which may
be useful when configuring the networking software. The .cshrc file isread by every
shell when it starts up, and users can start up any number of shells either explicitly
or implicitly as the result of other commands. Hence the .cshrc file is not very useful
for networking purposes. However the .login file is read only by the first shell to be
started for a user, the login shell. Similarly the .logout file is read only by the login
shell. Hence these provide afairly simple way of executing networking commands on
aper-session basis. In asingle-user environment it may be desirable to obtain all the
processors in the network as soon as the bootstrap process has been completed and a
user session has been started. This can be achieved by a call to the domain program
in the .login file.

domain get /00 /01 /02 /03 /04 /05 /06 /07

Even in amulti-user environment, it is often desirable to pre-allocate a small num-
ber of processors.

domain get 2

This command would attempt to obtain two processors satisfying the default require-
ments. The .login fileis particularly useful for the special user shutdown. When a
user logs in with that user id, in order to shut down the network, Helios will start up a
Task Force Manager and a shell for that session as usual. Hence the .login file will be
executed in the directory /helios/users/shutdown. For asimple network, this
file might contain asingle line.

stopio /maryPC

58 CHAPTER 2. NETWORKS

This runs the stopio program, making it send a terminate message to the 1/0 server
running on processor /maryPC. If thereis only asingle I/O processor in the network
then this suffices for shutting down the network, and the I/O processor will return to the
host operating system. For more complicated multi-user networks it may be desirable
to have a more complicated file.

wall << end

The system is going down in five minutes.
end

sleep 240

wall << end

One more minute until the system goes down.
end

sleep 60

wall << end

The system is now going down

end

sleep 5

stopio /jonPC

stopio /nickPC

termfs /fs

stopio /BootPC

Alternatively, it may be desirable to start up anormal shell session, execute some
of these commands interactively to give other users a chance to request a delay before
the shutdown occurs, and perform the final shutdown commands in the .logout file.

264 nsrc

The nsrc file contains a list of options for the networking software, like the host.con
file which has a list of options for the I/O server. The nsrc fileis read by the startns
program when networking software is started up, and passed in the environment to
the network server and/or Session Manager. By default startns reads the file /he-
liogetc/nsre, but an aternative filename can be specified on the command line. A
typical nsrc file might look like this:

#

This is a comment

#

single_user

#password checking
#processor protection
#no taskforce manager
share root processor
#root processor =/06
waitfor network
preload netagent

Again, the # symbol can be used to indicate a comment. It is also rather useful when
disabling or re-enabling an option, because it means that there is only one character to
be added or deleted. The various options have the following meanings.

no_taskforce manager

2.6. CONFIGURATION FILES 59

In asingle-user system with a network of just one or a small number of proces-
sors, having a Task Force Manager for that user may not be necessary. However
it may till be useful to have a Session Manager to alow multiple users to make
use of the network at different times, or to enforce password checking. With
the no_taskforce_manager option the Session Manager will not start up a Task
Force Manager when the user logsin. Instead it will execute the default com-
mand from the password file, usually a shell, on the root processor.

In amulti-user system, using this option allows several userstolog in and share
the same processor. Hence a multi-user system is possible even if there is only
one processor in the network, but this is not recommended.

passwor d_checking

In a given network it may or may not be desirable to force users to quote
passwords when they start a session. If passwords are in use then the pass-
wor d_checking option must be enabled. Please note that password checking
must be enabled or disabled on a global basis. When an ordinary user logs in,
they may not need a password if there is no entry in the password file. When a
new user is added to the system, the system administrator could decide whether
or not to give them a password.

preload_netagent

The network server frequently needs to perform a complicated operation on var-
ious processors in the network, such as cleaning out unnecessary libraries from
the Loader when a processor is returned to the system free pool by a Task Force
Manager. To do such jobs the network server will run a little program, /he-
liog/lib/netagent, on the required processor. For small networks there is very
little overhead in loading this program off disc every time it is required. For
large networks loading off disc isinefficient and it is better to keep the network
agent permanently loaded in memory. To do this, the preload. netagent option
should be used.

processor _protection

Helios can run either in a protected mode or in an open mode. In a protected
mode users will be completely unable to access each other’s processors, or pro-
cessors in the system pool, unlessthe current owner explicitly givesaccess. Inan
open mode users can access each other’s processors explicitly, unless the owner
has denied access to all other users. However, users must force programs to run
on each other’s processors. The difference between the two modes can be illus-
trated with the remote command. In protected mode attemptsto remotely access
aprocessor will fail, unless that processor is currently in the user’s domain or the
user has been given a capability for that processor by its owner. In open mode
attempts to execute commands remotely will succeed, unless the owner of the
processor has explicitly denied access to the processor. The domain command
can be used to set protection modes on processors.

root_processor = /Net/Cluster A/06

60

CHAPTER 2. NETWORKS

For very complicated networks the networking software may occasionally have
difficulty working out on which processor it is supposed to run the network
server and Session Manager. Should this happen, it may be necessary to give
the full name of the root processor in the nsrc file. This option need not be
used unless the networking software produces an error message that it cannot
determine the root processor.

share_root_processor

In asingle-user system the question arises asto whether the Task Force Manager
can run on the same processor as the network server and Session Manager (the
root processor) or must run on a different one. Note that the login shell will
also run on this processor. The only reason for not sharing the root processor
is a shortage of memory. In a multi-user network the network server always
reserves its own processor, and never allows users to access this processor.

single_ user

By default a Helios network is assumed to be a multi-user network. Multi-
user networks are more restrictive than single-user ones, because in amulti-user
environment the networking software has to take care to protect users from each
other. Hence, for example, the network server cannot be made to exit in amulti-
user environment. The single_user option can be used to put the network into
the less secure mode. The option must be enabled by the user.

waitfor _network

When initialising a network there are two important stages. booting up the net-
work; and starting user sessions. It is not possible to start a user session until
the network has been fully booted. Attempting to log in before then will give an
error message, insufficient network resources available. For small networks
the time taken for booting the network is comparable to the time taken to start
up the Session Manager, register the current window, and run login. Hence the
initialisation process can continue while the network server is booting up the
network, and everything is ready at about the same time. For large networks
this is not true. The time taken to boot up a network can be considerable, and
hence there can be a significant delay between the networking software start-
ing up and the time when a user is able to login. To provide synchronisation,
the waitfor_network option can be used. This option delays the startup of the
Session Manager until the whole network has been booted, and hence no login
prompts will appear until the network is fully booted.

2.6.5 Network resource maps

A network resource map is atext file describing the available network hardware. Net-
works can be very complicated, and hence a specia language is used to allow users
to specify their networks. Helios comes with a resource map compiler rmgen which
parses the resource maps, performs validation checks, and produces a binary object
file which is used by the networking software. By convention the textual form is given
the suffix .rm and the binary form the suffix .map.

2.6. CONFIGURATION FILES 61

In theory producing textual resource maps is not the only way to specify a net-
work. Other possible techniques are: agraphical editor which allows usersto draw the
network; a worm program that explores an existing network; and network generators
that can specify standard topologies automatically. Unfortunately all these approaches
have disadvantages. A graphical editor will be tied to a particular graphics system,
probably the X window system, that may not be available on the user's hardware. A
worm program can fail if the network supports link configuration, because most pro-
cessors cannot be accessed until the networking software has set up thelinks. Also with
distributed reset schemes such as the Parsytec one, triggering a worm in a multi-user
environment can be disastrous. Generating network topologies automatically is fine,
but does not supply the required information about reset and configuration facilities,
nor can it specify that say afile server should be run automatically on aparticular pro-
cessor that is equipped with a SCSI interface. Textual resource maps, though perhaps
more difficult to use, provide greater functionality. Consider the network of Figure
2.29.

Figure 2.29 A simple network

A resource map for this might be:

This is a comment
network /Cluster {
Reset { driver; ~00; tram ra.d}

processor 00
processor 01

{ ~10, , ~o01, ~02; }
{ ~oo, , , 703; run -e /helios/lib/fs fs scsi; }
processor 02 , 700, ~03, "04; run /helios/lib/lock; }
processor 03 { ~02, ~01, , ~05;
processor 04 , ~02, ~05, ~06;

{

{

{

{

processor 05 ~04, ~03, , ~07;
processor 06 , 04, T07, ;
processor 07 06, ~05, , ;
processor I0 { ~00; IO }

e

Resource maps may contain the following information:
e The network name, or a hierarchy of network names.

e Descriptions of the processors.

62 CHAPTER 2. NETWORKS

e Specification of the reset driver.
e Specification of the configuration driver.
e Additional reset facilities that might be available.

In addition lines beginning with a # are treated as comments and ignored. Blank
space is also ignored, and resource maps are not case sensitive except when specifying
names.

Networ k names and hierarchies
A resource map must contain the following:

network <name> { <network descriptions> }

Any data following the closing curly bracket is ignored. The keyword subnet is an
dias for
network. A name can consist of any combination of letters, digits, and the under-
score character (_). Names can be up to 31 characters long, and are case sensitive.
Hence network /Cluster is different from network /cluster. Names must not
match with any of the resource map syntax keywords. For most networks there is no
need for a hierarchy of network names. However, with mixed networks containing
different reset schemes it may be useful. For example,

network /Cluster {
processor 00 { IO, , 01, ~02; }

subnet /subnetA {

reset { driver; ~00; tram ra.d }

processor 01 { /Cluster/00, , , ~03;
run -e /helios/lib/fs fs scsi; }

processor 02 { , /Cluster/00, 703, /Cluster/subnetB/04;
run /helios/lib/lock; }

processor 03 { ~02, ~01, , /Cluster/subnetB/05; }

}

subnet /subnetB {

reset {driver; ; pa ra.d }

processor 04 { , /Cluster/subnetA/02, ~05, ~06; }
processor 05 { ~04, /Cluster/subnetA/03, , ~07; }
processor 06 { , ~04, ~07, i}

processor 07 { ~06, ~05, , i}

}

processor IO { ~00; IO }

}

In this network processors 00 and 10 are at the top level. Processors 01, 02, and
03 arein /Cluster/subnetA, and controlled with one reset driver. The remain-
ing processors are to be found in /Cluster/subnetB, and are controlled with a
different reset driver. The naming tree for such a network is shown in Figure 2.30.

2.6. CONFIGURATION FILES 63

[Cluster

/subnetA /subnetB

NN

/o0 /N0 /01 /02 /04 /06

Figure 2.30 Hierarchical network names

Inside the network server, the /ns directory would contain two objects 00 and
10, and two subdirectories clustera and clusterB. These subdirectories would
contain the appropriate processor objects. In fact it is unnecessary to give unique
network names to the subnetwork names. The subnets can be left unnamed, simply by
using curly brackets.

With this second syntax the naming tree is straightforward again. There is one
network level, one processor level, and a server level within the processors. Similarly,
the network server’'s/nsdirectory would contain all processors at the top level, without
any subdirectories.

network /Cluster {

processor 00 { IO, , 01, ~02; }
{
reset { driver; ~00; tram ra.d }
processor 01 { ~00, , , ~03;
run -e /helios/lib/fs fs scsi; }
processor 02 { , ~00, ~03, ~04;
run /helios/lib/lock; }
processor 03 { ~02, ~01, , ~05; }
}
{
reset {driver; ; pa ra.d }
processor 04 ({ , 02, ~05, ~06; }
processor 05 { ~04, 703, , "07; }
processor 06 { , ~04, ~07, i}
processor 07 { ~06, ~05, , i}

}

processor IO { ~00; IO }

The two resource maps have exactly the same effect, but the first syntax gives
longer processor and server names. Hence for most networks the second syntax is
preferable, if only because it involves less typing. For both resource maps there would
be only one network server in the network, usualy running on processor 00. This
network server would have two device driversloaded, tram. ra.d and pa_ra.d.

Processor connectivity

Inside a given network or subnetwork the resource map should contain one or more
processor descriptions, and possibly details of the networking hardware. A processor

64 CHAPTER 2. NETWORKS

description takes the following form:

processor <name> { <connections>; <options> }
An example might be:

processor 00 { IO, ,~02,703; System }

The keyword terminal can be used as an alias for processor. Again, the name can be
a combination of letters, digits, and the underscore and character up to 31 characters
long. The name is case sensitive. A typical list of connections would be:

~01, /Cluster/subnetB/02, Ext, ;

This indicates that link 0 of the processor is connected to a processor 01 at the same
level of the network hierarchy. The ~ character is short for the current network or
subnetwork name. If the processor has a full name /Cluster/xx, then this means
that 01 isequivaent to /Cluster/01. If the network has a hierarchy of network
names and the full processor name is /Cluster/subnetA/00 then this means
that the shorthand ~01 will be equivalent to /Cluster/subneta/01. It isaways
possible to use the fully expanded form in place of the shorthand form. Link 1 is
connected to processor /Cluster/subnetB/02. That processor has a different
network base name from the current processor, so the ~ shorthand cannot be used. Link
2isan external link. This means that there may be another processor running Helios
or a Helios network at the other end of the link, now or at a future stage. Hence the
network server puts the link into pending state, waiting for the other side to connect in.
This can happen when a user in the remote network uses the elink or clink commands.
Links not specified in the resource map as external ones can be put into pending mode
explicitly, using the plink or clink -p commands. Link 3 is shown as not connected.
Following the link connection there may be an optional number enclosed in sguare
brackets.

“01([1], ~o01f[2], Ext([12], ;

There are two connections between the current processor and processor 01. The extra
numbers in the square brackets indicate the destination link on the remote processor,
so link O of this processor is connected to link 1 of the remote processor. In the case of
external links the meaning is different. The number isused only with certain machines
such as the Telmat T.Node, to indicate which external connector on the backplane
of the machine should be used. Since this connection has to be made through the
electronic switch it isimportant to specify exactly which connector to use.

If there is an /O processor at the other end of a link with just a link adapter,
then when the 1/O server is started up on that processor it will merely enable the link.
The network server must distinguish this case from another Helios network enabling
the link, because the action required is different. Hence the 1/O processor must be
specified in the resource map, instead of leaving the link as an external one.

For most hardware the network resource map specifies the actual topology of the
network. If the resource map indicates that link O of aprocessor is connected to another
processor, then that connection really exists. It may be hard-wired, or it may be set
up by the networking software using a link switch. However, given hardware with
restricted link switching such asthe Telmat T.Node this may not betrue. If theresource
map indicates that link 0 of a processor is connected to another processor then a link
will be connected to that processor, but it does not have to be link O.

2.6. CONFIGURATION FILES 65

Processor options

Following the link connections in a processor description there can be a number of
additional options. The various options should be separated by semi-colons and ter-
minated with the curly bracket that finishes the processor description. The following
options are available.

e A modefield. This can be used to specify one of four processor modes.

1. Helios. The default. Thisisanormal processor which can be allocated to
users for running applications.

2. 10. An 1/O processor. 1/0 processors cannot be used for running applica-
tions. Also, 1/O processors are never booted by the network server. There
is usualy one I/O processor responsible for performing the first stage of
the network bootstrap, and additional ones connect into the network.

3. System. The processor is reserved for use by the system. It cannot be
allocated to users, and hence it is usualy impossible to run applications
there. In an unprotected network programs can be placed explicitly using
the remote command. System mode is usually used with the run option to
run just one program such as afile server on that processor.

4. Native. This processor should never be booted, and will not be used by
Helios. It may be necessary to incorporate it into the resource map in
order to make the link connections, if the hardware includes alink switch.

The processor mode can be specified simply by listing it.

processor 00 { IO, ~01, , ; System; }
processor 01 { ~“00 , , , ; Helios; }

e A processor type. Thisis used to control the default Nucleus to be booted into
the appropriate processor, and the bootstrap mechanism. Once the processor is
up and running the network server will verify that the processor type specified
is correct, and if necessary it will give warnings. The real processor type rather
than the specified one will be used when allocating processors, so if a user re-
quests four T800s that iswhat will be supplied, no matter what the resource map
says. The processors recognised by rmgen are:

1. T800, T805, T414, T425, T400, these are actually equivalent because the
same bootstrap mechanism and the same default Nucleusis used for all of
them.

2. T212, for 16-bit processors. Helios cannot run on a 16-bit processor, so
these processors must always be native ones.

680x0, used with Helios running on any of the 680x0 family.
ARM, for Helios running on any version of the ARM".

i860, for Helios running on any version of the i860.

T9000, in preparation for the Inmos T9000.

7. 320C40, in preparation for the Texas Instruments TMS 320C40

"Trademark of Acorn Computers Ltd
8Trademark of Texas Instruments, Inc.

o gk~ w

66

CHAPTER 2. NETWORKS

The ptype keyword should be used to specify the processor type. In this context
processor can be used as an dias. Typical examples are:

processor 00 { IO, ~01, , ; ptype T800 }
processor 01 { ~00, , , ; ptype T400 }

A memory size. With most hardware Helios is perfectly capable of working
out how much memory there is on a processor, and the network server will
obtain this information when the processor has been booted. However, with
some hardware the memory map may be arranged strangely. In particular there
are graphics boards with one or several megabytes of normal processor memory,
immediately followed by a megabyte or so of video memory. It is extremely
difficult for software to distinguish between the types of memory, so Helios will
use video memory for its memory alocation. The resulting display can be very
interesting but is not usually what is desired. Helios can be made to skip the
phase determining the memory size, by specifying the actual amount of memory
in the resource map. For the root processor this must be done in the host.con
file, using the transputer_memory option. Memory sizes can be specified in
hex, decimal or octal.

processor 01 { 00, , 702, ; memory 1048576 }
processor 02 { ~o01, , , ; memory 0x100000 }

A Nucleus. In most networks the standard Helios Nucleus, /helios/lib/nucleus,
should be booted into every processor in the network. This Nucleus should be
present already on the processor doing the booting, so there is no need to fetch
it off disc every time. However, in very special cases it may be necessary to
boot a different Nucleus into the processor and hence the networking software
provides an option.

processor 01 { ~00, , , ; nucleus /helios/lib/nucleus.fs }

For processors other than Transputers the argument is an arbitrary string inter-
preted by the appropriate bootstrap software. Usually, but not always, this will
be afile name.

Programs to run on that processor. The network server can be made to run
software automatically on particular processors, using the run option. Once the
programs are up and running the network server ignores them, so it does not
matter whether or not they exit. Hence the facility is useful for ‘once only’
initialisation programs and for permanent servers. If the processor has to be
rebooted, the program will be run again. Any number of programs can be runin
thisway. The syntax isthe same as used by the initrc file.

processor 01 { ~00, , , ~03; System;
run -e /helios/lib/fs fs raw }
processor 02 { , ~00, ~03, “04 ; run /helios/lib/lock }

2.6. CONFIGURATION FILES 67

This facility provides a fairly ssimple way of starting up a network such that all
the software required runs as soon as possible. However, the initrc file is used
to run programs on the root processor whereas the resource map makes it easy
to run programs on particular processors. The programs are executed as soon as
the processor has been booted, so they can be used by network device driversiif
required. Thisis useful when booting mixed networks.

e Additional attributes. The options described so far should suffice for most
networks. However, to give users maximum flexibility it is possible to define
arbitrary string attributes as well. These strings are not used directly by the net-
working software. However, it is possible to request processors with a specific
attribute and the networking software will try to find one. Typical examples
might be:

processor 01 { ~00, , , ~03; attrib 30Mhz }

domain get "{ attrib 30Mhz }"

Reset and configuration drivers

Performing resets in a homogeneous network isfairly easy. Device drivers are avail-
able for the most common hardware architectures, and these can be specified in the
resource map. Link configuration drivers can be specified in the same way.

Reset { driver; ~00; tram ra.d }
Configure { driver; ; telmat c.d }

Drivers are specified by the keywords Reset or Configure, depending on the driver
purpose. By convention, reset drivers end with_ra.d or _r.d, and configuration drivers
end with _c.d. Following the keyword are three arguments, enclosed in curly brackets.
The first argument should be the keyword driver. In the case of Reset thisfirst argu-
ment may be alist of processors. The second argument is a string of some sort, that
will be passed to the device driver. Usually this string is the processor in the network
that has the actual reset hardware attached, but device drivers are free to interpret the
string in any way. The final argument is the device driver file name. This can be an
absolute file name, for example /c¢/drivers/myrst_ra.d, but by default refers
to afilein the /heliog/lib directory. Within a given network or subnetwork there may
be only one device driver, and the network server will invoke this device driver for the
processors in this network. For example,

Network /Cluster {
Reset { driver; ; pa ra.d }

subnet /subnetA
Reset { driver; ~06; tram ra.d }

}

subnet /subnetB
Reset { driver; ; telmat r.d }

}

68 CHAPTER 2. NETWORKS

Processors at the top level are controlled using the Parsytec reset driver. Processors
within subnetA are controlled using the TRAM reset driver, and the network server
will never attempt to reset these using the Parsytec scheme. The TRAM reset driver
will be passed the string /Cluster/subnetA/06, presumably the processor equipped
with the TRAM subsystem control hardware. Similarly processors in subnetB are
controlled only using the Telmat scheme.

The following device drivers are available at present.

1. tram_ra.d, the reset driver for the Inmos TRAM scheme. The only facility sup-
ported by this driver is a global reset of all processors under its control. The
driver can take an optional argument specifying the processor with the subsys-
tem control hardware, defaulting to the root processor. In mixed networks it may
be necessary to specify a processor other than the default.

2. parad, the reset driver for the Parsytec reset scheme. This supports an indi-
vidual reset for all processors that currently have active Helios neighbours. No
argument is required.

3. telmat_r.d, the reset driver for the Telmat T.Node which is supplied by Telmat
Informatique. It supports an individual reset for all processors.

4. tdmat_c.d, the configuration driver for the Telmat T.Node, again supplied by
Telmat Informatique.

5. rtera.d, areset driver for use on the Meiko Computing Surface. This driver
does not require any additional arguments.

6. rte_c.d, a configuration driver for the Meiko Computing Surface. Again this
driver does not require any additional arguments.

Reset drivers only work within a subnet. This causes problems in mixed networks.
If the Parsytec scheme is used within one subnet then it is necessary to reset one
processor within this subnet in order to reset and boot the rest. This processor must be
reset without using the Parsytec reset scheme, since the processors outside the subnet
do not support it. Hardware can usually be rearranged to give reset on this processor,
possibly with a bit of soldering, but the network server needs to be informed about
this. The user can specify commands which, when run on a particular processor, reset
one or more other processors to support such mixed. networks.

Mixed networks and additional resets

To support mixed networks, networks containing hardware supplied by more than one
manufacturer and using different reset schemes, users can specify additional reset fa-
cilitiesin the resource map. The syntax is similar to that for reset drivers, but specifies
one or more processors, instead of the keyword driver, asthe first argument. The sec-
ond argument gives the processor on which the reset command is to be executed. If
omitted the command will be executed on the root processor. The third argument is
the actual command, using the same syntax as the initrc file and the run option in a
processor description.

2.6. CONFIGURATION FILES 69

Reset { 701, 702, ~03; ~00; run -e tr_ reset tr reset}

This line specifies that running the tr_reset program on processor 00 will reset pro-
cessors 01, 02, and 03. Similarly,

Reset { 705; ~04; run -e pa reset pa reset 3 }

specifiesthat it is possible to reset processor 05 individually by executing the pa reset
command on processor 04. To illustrate the way this can be used in practice, consider
Figure 2.31.

Vegarane HHH

Tram
Motherboard| °* y ﬁ

Sots 1 56 2047 389

Figure 2.31 A mixed network

Processors 00 and 01 are TRAM modules on a suitable motherboard, and the
remaining processors are part of a Parsytec MultiCluster. The TRAM reset is passed
on to thefirst processor in the megaframe, so that whenever the global reset is asserted
on processor 00 this affects processor 01, the other TRAM module, and processor
02, the first MultiCluster processor. The Parsytec reset scheme can be used on the

remaining processors.
A possible resource map for thisis:

Network /SlightlyUnusual {

Reset { 701, 702; ; run -e tr_reset tr reset }
processor 00 { ~I0, , ~01, ; }
processor 01 { , ~00, ~02, ; }
{ Reset { driver; ; pa_ra.d}
processor 02 { , ~01, ~03, ~04; }
processor 03 { ~02, , , ~05; }
processor 04 { , ~02, ~05, ~06; }
processor 05 { ~04, ~03, , ~07; }
processor 06 { , ~04, ~07, ; }
processor 07 { ~06, ~05, , ; }

}

processor IO { ~00; IO }

No reset driver is specified for the top level. In fact the tram.ra.d driver could
have been specified but this would not have given any greater flexibility. Using the

70 CHAPTER 2. NETWORKS

tr_reset program on the root processor will reset processors 01 and 02. Thereisan
unnamed subnet containing processors 02 to 07, and the Parsytec reset driver can be
used within this subnet. This resource map describes the available reset hardware, and
alows the network server to boot up such a network reliably.

Another common mixed subnet would be a Telmat T.Node as the network back-
bone, but with a TRAM based workstation as the front-end. Assuming asimilar topol-
ogy to the above, the resource map would be:

Network /Possibility

Reset { 701, 702; ; run -e tr_reset tr_ reset }
processor 00 { ~I0, , ~01, ; }
processor 01 { , ~00, ~02, ; }
{ Reset { driver; ; telmat r.d }
Configure { driver; ; telmat c.d }
processor , 01, 703, ~04;

2 {

run -e /helios/lib/tcontrol tcontrol }
processor 03 { ~ , , ~05; }
processor 04 { , ~05, ~06; }
processor 05 { ~ 03 , "07; }
processor 06 { 04 07, ; }
processor 07 05, , ; }

}

processor IO { ~00; IO }

1 ~

Now the Telmat reset and configuration drivers will be used within the unnamed
subnet, and in addition the tcontrol program will be executed on processor 02 as
soon as it is booted. This tcontrol program is a server to interface to the internode
controller, and is accessed by the device drivers.

A third network might have perhaps ten Parsytec Transputers making up the work-
station and some additional processors, attached to a Telmat T.Node. The resource
map for that would be something like:

Network /VeryConfused ({
Reset { 710; ~09; run -e /helios/netbin/pa reset pa reset 2 }

{ Reset { driver; ; pa ra.d }
processor 00 { ... }
processor 01 { ... }
processor 09 { ... }
}
{ Reset { driver; ; telmat ra.d }
Configure { driver; ; telmat c.d }
processor 10 { ...; run -e /helios/netbin/tcontrol tcontrol }
processor 11 { ... }
processor 12 { ... }

}

processor IO { ~00; IO }

2.6. CONFIGURATION FILES 71

Thereisanindividual reset available for processor 10, using the pa reset program.
Processors 00 to 09 are controlled using the Parsytec reset driver. Processors 10
onwards are controlled using the Telmat reset and configuration drivers. Provided that
adequate hardware reset facilities are available it should be possible to define them in
the resource map. The standard hardware reset programs supplied with Helios will
suffice for most of the networks, but users can write their own if needed.

Formal syntax

An outline of the formal syntax of resource maps is shown below. Lexical tokens are
enclosed in quotes, and are not case sensitive. Optional items are enclosed in square
brackets.

<Resource Map> ::= ‘network’ <address> ’'{’ <networks> |

"subnet’ <address> ’'{’ <networks>

SN
'reset’ <reset> <network>

"configure <configure> <networks
'processor’ <processor> <networks>
"terminal’ <processor> <networks>
"{" <networks> |

'network’ <address> ' {’
"subnet’ <address> ‘' {’

{" rdriver’ ’;’
{" <list> "

r{r

<network> =

<networks> |
<networks>

<reset> si= [string] ’;’ <file> '}’ |
<proc_id> ’;’ ’‘run’
<configures> t= "driver’ ;'

[string] ’;’ <file> '}’

<processors> ::= <name> '{’ <list> ’;’ <description>

SN

’;' <descriptions> |

<description> ti=

<command>

"helios’
"system’
"native’

<description>
<description>
<description>

"10’ <descriptions> |

"ptype’ <ptype> <description>
'processor’ <ptype> <descriptions>
‘memory’ <sizex <descriptions>
"nucleus’ <files> <description>
"run’ <commands> <description>
"attrib’ <descriptions>

<string>

"T800' |
TT2127 |
"ARM’ |

"T414" |
"T2227 |
118607 |

"T425" |
'M2127 |
"68000" |

<ptype> e "T400' |

"T9000’ |
<list> ti=

<proc_id> [’',’ <list>]

7320C40’

72

<proc_id>
<address>
<fullname>
<file>
<command>
<strings
<size>

<name>

CHAPTER 2. NETWORKS

'~ <name> | <fullname>

"/’ <name>

"/' <name> [<fullname>]
<fullnames>

[-e] <string> [string] [string]

a sequence of characters

a number in hex, decimal, or octal

a sequence of letters, digits, and underscores
not exceeding 31 characters

2.7 Configuring networks

Section 2.3 described many different types of processor networks that can be used with
Helios, giving an outline of what is required but no details of the commands or con-
figuration files. Section 2.4 explained why networking can be difficult, because of the
range of hardware available. Section 2.5 described the various networking commands
that can be used. Section 2.6 gave details of the configuration files. This section will
repeat most of the networks of section 2.3, this time giving details of how to configure
al the networks. Where a network’s configuration is similar to a previous one only
the differences will be given. It is hoped that the reader will recognise at least one
of the networks as the appropriate one, given the available hardware and the user’s

requirements.

2.7.1 Single-processor workstation

Ethernet

Figure 2.32 A single-processor workstation

A single processor may be equipped with a ROM bootstrap mechanism, a hard disc,
a graphics display, an ethernet connection, keyboard, and mouse, to give a complete
single-processor workstation. Thereisno need for anetwork server, since thereisonly
one processor, and there is no need for a Task Force Manager to administer the user’s
domain of processors and run programs within that domain.

2.7. CONFIGURING NETWORKS 73

Thereisno 1/0 processor, and hence no I/O server, so the host.con fileis not used.
The next configuration file is the initrc file. As a result of the ROM bootstrap the
filing system must start up and interact with the hard disc, which will be followed by
the Nucleus running the init program. A possible initrc file might be:

#

Get the X server and Terminal emulator up

run -e /helios/bin/xhelios -newXrc=/helios/etc/Xrc

run -e /helios/lib/window window

Direct output to one of these windows

waitfor /window

console /window console

#

The user now has a chance to see what is happening

#

The mouse and keyboard are attached to serial ports
run -e /helios/lib/rs232 rs232 coml.8250.10000000 com2.8250.10000008
run -e /helios/lib/keyboard keyboard /rs232/coml

run -e /helios/lib/mouse mouse /rs232/com2

#

Ethernet software should be next. This involves the TCP/IP
server and the internet daemon

run -e /helios/lib/tcpip tcpip jon 91.0.0.111

run -e /helios/lib/inetd inetd

#

Start up a Session Manager, but not a network server
run -e /helios/bin/startns startns -nons

waitfor /sm

#

and create a user session

run -e /helios/bin/newuser newuser

The hardware is started up step by step, in order of importance. The hard disc
must be running already, or the system would not have got this far. Screen output is
the next most important because until atermina system is up there is no way to output
diagnostics to the user. This requires the X server, with a specification of the Xrc
configuration file to use. If the initrc file is changed such that the X server is not run
then the machine will not be able to display any output. This is unfortunate, because
the machine is now unusable. Usually the only good reason for changing theinitrc file
is to support additional hardware, an infrequent occurrence, and the user will have to
be careful.

In addition to the X server it is necessary to start up the terminal emulator, whichis
aclient of X. By default the X server simply initialises and clears the screen, displays
amouse cursor, and waits for clients to connect in. The terminal emulator is aHelios
server that installs itself in the name table as /window, and waits for its clients. The
console command creates a new terminal window, and redirects the initrc output to
this window. The termina emulator interacts with the X server to make this window
visible. It is now possible for the user to get diagnostic information.

In addition to a graphical output device the X server needs keyboard and mouse
inputs. These devices could be plugged into serial ports attached to the Transputer. The

74 CHAPTER 2. NETWORKS

initrc file runs an rs232 server to control these serial ports, and mouse and keyboard
servers which interact with the rs232 server. Next come the commands to start up the
ethernet software, including al the TCP/IP support and the required daemons. The
ethernet software will read some configuration files of its own to specify appropriate
options.

All the hardware has now been accounted for, so it is possible for a user to log in.
Logging in requires a Session Manager, so the startns command is used. The -nons
option suppresses starting up the network server, since there is nothing for it to do.
Without a network server there is no need to worry about the -r option or the resource
map. The Session Manager will start up after a short delay, and then the newuser
command is used to create anew session. No name is specified, so the user has to type
in aname. Depending on the nsrc file, a password will be required aswell. If desired
theinitrc line could read:

run -e /helios/bin/newuser newuser mary

If password checking is not enabled a session will be created for user mary. If
password checking is enabled the login program will echo this name and prompt for
the password. One of the user ids should be shutdown, to terminate al the software,
synchronise the hard disc, and allow the workstation to be powered down without loss
of data.

The next file to consider is the nsrc file. This would be something like:

#

This is a comment

#

single user
#password checking
#processor protection
no_taskforce_manager
share root processor
#root processor = /00
#waitfor network
#preload netagent

The network is a single-user network. There is only one processor and every user in
a network needs at least one processor. Password checking is disabled. Some op-
tions, such as the waitfor_network and processor_protection options, are only in-
terpreted by the network server, and no network server is run in this network. The
no_taskforce_manager line forces the Session Manager to start up a shell on thelocal
processor, rather than to start up a Task Force Manager for the user and create a shell
within its /tfm directory.

It may be desirable to separate the window used for hardware diagnostics from the
first window used for the user session. This can be done very easily. The first console
statement should be replaced by:

console /window diagnostics
and just before the newuser command there should be aline

console /window console

2.7. CONFIGURING NETWORKS 75

to create a second window for the user’s session. Please note that under the X window
system it is necessary to run aseparate Window M anager program to allow position-
ing and repositioning of windows. The UltrixX? Window Manager or uwm, and the
TAB Window Manager or twm, are shipped with the Helios X window system, but
various other Window Managers exist.

There is no need to write a network resource map, since this is used only by a
network server and no network server is started up. The other important file to consider
isthe .logout file for user shutdown. This must contain commands to shut down the
whole network cleanly. For this machine shutting down means synchronising and
terminating the file server.

termfs /fs
echo Disks synched
echo The system may be powered down.

2.7.2 Workstation with /O processor

00 —{

| me

i Ethernet

Figure 2.33 A workstation with 1/0O processor

It is possible to build a Transputer workstation based around an /O processor such
as a PC. The network can start off with just the PC and one processor, and can be
expanded gradually. An /O server must be run on the 1/O processor, so ahost.con file
isrequired. Amongst the options might be:

The host.con file

Server windows

logging destination = both
#root_processor = /tom

#io processor = /pc
#bootlink = 2
#no_bootstrap

The Server_windows option causes the 1/0O server to provide a /window server,
so this does not have to be run on the root processor. The error logger is configured
to send all its output to afile and to the I/O processor’s screen. The default processor
names /00 and /I0 are used, and the I/O processor is connected to link O of the
root processor. The 1/0O server must boot up the root processor rather than attempt to
connect into arunning network. Thefirst initrc file might be something like:

®Trademark of Digital Equipment Corporation

76 CHAPTER 2. NETWORKS

#

Run a Session Manager

run -e /helios/bin/startns startns -nons
Create a console window

console /window console

And start a session

run -e /helios/bin/newuser newuser mary

A Session Manager is started up, using the I/O server’s error logger for its diagnostics
output. Then awindow is created, and a user session is started up. The same nsrc file
can be used as with the standalone workstation. Asthe network is expanded the initrc
file can be changed to allow for it. For example, when a graphics display is added the
following lines could be added before creating the console window. 1

ifabsent /window run -e /helios/bin/xhelios xhelios
ifabsent /window run -e /helios/lib/window window

If the Server _windows option in the host.con fileis enabled a/window server will
already exist, so thereisno need to run X. If the option is disabled then the above lines
would start up the X server and the terminal emulator. At timesit may be useful not to
run X, if an application needs alot of memory, and asingle line change to the host.con
file achieves this. Please note that with some I/O processors, notably PCs, it will be
necessary to enable the Xsupport option of the host.con file as well.

When a SCSI interface is added a file server could be started up by adding the
command

run -e /helios/lib/fs fs scsitram 3

indicating that the file server should interact with a SCSI TRAM module on link 3.
It might be necessary to run the tr_reset command first to reset this TRAM module.
When an ethernet interface is added the tcpip and inetd commands could be added
to theinitrc file. The user is unlikely to add serial ports for the mouse and keyboard,
since these can usually be provided by the I/O processor.

The nsrc file for this configuration is the same as for a stand-alone workstation.
The presence or absence of an /O processor has no significant effect on the configu-
ration of the Session Manager, which is the only part of the networking software that
isrunning.

Given that there is an 1/O processor, there are two possible things to do when a
user logs out. The first is to put up another login prompt. In this case logging in
as shutdown would cause a terminate message to be sent to the 1/0O server, as well
as synchronising the hard disc and disconnecting the ethernet. The second is to shut
down the system as soon as the user logs out, including terminating the 1/0O server,
which means that the code in shutdown’s.login file is moved to the user’'s .logout
file. Exactly the same work must be done to shut down the system.

termfs /fs
stopio /IO

10|n practice adding a graphics display would require a second processor rather than plugging more
hardware into the root processor

2.7. CONFIGURING NETWORKS 77

2.7.3 Workstation for developing parallel software
O

Figure 2.34 A workstation for developing parallel software

Usually there is no point in running all the networking software on a single-processor
system. The Session Manager isrequired to get a user session started, but the network
server and Task Force Manager are redundant. However, with some parallel program-
ming systems including the Helios CDL it is possible to develop software on asingle
processor and run it unchanged on multiple processors. To test the software it is nec-
essary to start up a network server and run a Task Force Manager. Theinitrc line used
to start the networking software should be changed to:

run -e /helios/bin/startns startns -r /helios/etc/default.map

Thiswill cause startnsto run anetwork server as well as a Session Manager. The
-r options is used to inform the network server that it is running in a network that has
not yet been booted. Strictly speaking it is redundant in this single-processor system
because there is nothing else to boot, but as soon as another Transputer is added it
would be essential. The resource map is held in the file /helios/etc/default.map. The
text form of this might look like the following:

Network /Cluster {
processor 00 { "IO, , , ; run -e /helios/lib/fs fs scsitram 1 }
processor IO { ~00; IO }

If desired the T222 on the SCSI TRAM module could be specified in the resource
map as a native processor, but there is little point in doing so. It is possible to use
names other than 00 and 10, provided the host.con names match the ones in the
resource map.

root processor = /tom
io_processor = /pc

Network /Cluster {
processor tom { "pc, , , ; run -e /helios/lib/fs fs scsitram 1}
processor pc { “tom; IO }

}

There is no need to specify a reset driver or a configuration driver, since there are
no other processors to boot up. It will be necessary to change one line in the nsrc
file. Because a Task Force Manager isrequired to test the parallel software, the option

78 CHAPTER 2. NETWORKS

no_taskforce_manager should bedisabled. Thiswill stop the Session Manager simply
running a shell on the root processor, as happens in the previous two networks. The
network is still a single-user system, with no need for password checking. The time
taken for the network server to initialise the two processors is very small, so there is
no need to wait for the network before the Session Manager is run and sessions can be
started.

The options for shutting down the system are the same as before. It is necessary to
synchronise and terminate the file server, if it is running in the network, and to send a
terminate message to the I/O processor. This can be done either in auser’s .logout file
or inthe .login file for user shutdown.

2.7.4 A small network

02

Figure 2.35 A small network

As with the previous two networks, the 1/0 processor will boot up the root processor
and theinit program will start running. Then the remaining three processors should be
booted. There are two ways to do this.

1. Do the booting ‘by hand.
2. Run the networking software.

The network can be booted manually from the initrc file if desired. The three
processors may or may not have to be reset, depending on whether or not resetting the
root processor from the 1/O processor acts as a global reset. If no reset is required the
following commands can be used. '

run -e /helios/lib/rboot rboot 1 /00 /01 0032
run -e /helios/lib/rboot rboot 2 /00 /02 2203
run -e /helios/lib/rboot rboot 3 /00 /03 0220

Thiswill automatically enable the cross links. Alternatively the clink command could
be used.

run -e /helios/bin/remote remote 01 clink 2 -p
run -e /helios/bin/remote remote 02 clink 1 -e

11 See The Helios Encyclopaedia for a fuller explanation of manual booting using rboot.

2.7. CONFIGURING NETWORKS 79

The clink command has to be run on the processor with the link that has to be
changed. Hence the remote command is required. If not all processors are attached to
the root processor it is still possible to perform amanual bootstrap, again by using the
remote command.

run -e /helios/lib/rboot rboot 1 /00 /01 0002

waitfor /01

run -e /helios/bin/remote remote 01 rboot 2 /01 /02 3200
waitfor /02

run -e /helios/bin/remote remote 02 rboot 3 /02 /03 0320
run -e /helios/lib/clink clink 2 -e

run -e /helios/lib/clink clink 3 -e

Note that the root processor is booted up with all but one of its links on a ‘not con-
nected’ setting, the exception being the link to the I/O processor. Hence it is necessary
to enable the crosslinks from processor 00 to 02 and 03, after these have been booted.

If the processors are not automatically reset, more work must be done. If the

TRAM reset scheme is in use the tr_reset program should be run before attempting
the bootstrap of the other three processors.

run -e /helios/lib/tr reset tr reset
run -e /helios/lib/rboot rboot 1 /00 /01 0032

If the Parsytec schemeisin usethe pa_reset program can be used. It isdesirable to
use the pa_rboot program instead of rboot, since the former is specifically designed
for booting Parsytec hardware.

run -e /helios/lib/pa reset 1
run -e /helios/lib/pa reset 2
run -e /helios/lib/pa reset 3
1 /00 /01 0032
2 /00 /02 2203
3 /00 /03 0220

run -e /helios/lib/pa_rboot
run -e /helios/lib/pa_rboot
run -e /helios/lib/pa_rboot

Even when booting by hand it is still necessary to run a Session Manager to create
a user session. This can be done using startns and the -nons option, as before. In
the nsrc file the no_taskfor ce.manager option should be enabled, because there is no
network server and hence the Task Force Manager cannot obtain a domain of proces-
sors. This prevents the user from running parallel software automatically. However,
the remote program can be used to run programs explicitly on specific processors.

For booting by hand, the nsrc file and the various ways of shutting down the system
are the same. The options need to be changed only if it is intended to run a network
server. If booting by hand is considered too difficult, it is possible to run a network
server instead. It may or may not be desirable to force this network server to exit.

80 CHAPTER 2. NETWORKS

2.7.5 A fairly small single-user network

[= i\

Figure 2.36 A fairly small single-user network

Adding more processors actually makesit easier to decide how to configure the system.
For a network this size booting by hand, although still possible, becomes excessively
tedious. Hence a network server must be used to boot up the network. Theinitrc file
for such a network might be:

#

Run the network server and Session Manager

run -e /helios/bin/startns startns -r /helios/etc/default.map
#

Run X windows if necessary

ifabsent /window run -e /helios/bin/xhelios xhelios
ifabsent /window run -e /helios/lib/window window
ifabsent /window waitfor /window

#

Create a console

console /window console

#

And start a user session

run -e /helios/bin/newuser newuser

Both the network server and the Session Manager are started up, with their diagnostic
output going to the error logger of the I/O server. If the I/O server does not contain a
/window server then the X window system is booted up and the terminal emulator is
started. A console window is created, and a session is run within that window. The
newuser command is not given a user name, so the Session Manager will prompt for
one. The network resource map for this might look something like this.

Network /Mynet ({
Reset { driver; ; pa_ra.d }

processor 00 { IO, , 701, ~02; run /helios/lib/lock }
processor 01 { ~00, , ~03, ;
processor 02 , ~00, ~03, ~04;
processor 03 { ~02, ~01, , ~05;
processor 04 , ~02, ~05, ~06;
processor 05 { ~04, 703, , ~07;
processor 06 { , 04, ~07, ;

{

processor 07 06, 705, / ;

e e

processor IO { ~00; IO }

2.7. CONFIGURING NETWORKS 81

The resource map is quite straightforward. The network is assumed to be homoge-
neous, using the Parsytec reset scheme. If it contained hardware supplied by different
manufacturers using different reset schemes, giving amixed network, the resource map
would have to be more complicated. This was discussed in detail in section 2.6. The
only ‘complication’ in this resource map is running alock server on the root proces-
sor. This program is a simple Helios server not requiring an environment, so the run
command is not given the -e option and no arguments can be passed. An aternative
resource map would be:

Network /MyNet ({

Reset { driver; ; tram ra.d }

processor tom { "pe, , "lisa, ~dick; run /helios/lib/lock }
processor lisa { “tom, , , “sarah; }

processor dick { , “tom, “sarah, “harry; }

processor sarah { ~dick, “lisa, , “susan; }

processor harry { , “dick, “susan, “fred; }

processor susan { “harry, “sarah, , Temma; }

processor fred { , “harry, “emma, , ; }

processor emma { “fred, “susan, , ; }

processor pc { “tom; IO }

}

With this resource map the host.con file must contain the following lines:

root processor /tom
io _processor = /pc

or the network will fail to boot up. The nsrc file for this network might be something
like the following.

single_user

#password checking
#processor_ protection
#no taskforce manager
share root processor
#root_processor = /tom
#waitfor network
#preload netagent

The network is put into single-user mode with a shared root processor. No pass-
words are required, possibly because the network does not have a separate hard disc
for the Helios filing system and hence the password file cannot be protected in any
case. Processors are not protected since this option is useful only in a multi-user en-
vironment. The network is still quite small, so there is little need for preloading the
network agent or to delay sessions until the network is fully initialised.

A Task Force Manager is needed for running most parallel software, including
Helios CDL. However, if the user can make do with the facilities provided by the
remote and wsh commands, to run programs on particular processors, then the option
no_taskforce_manager could be enabled. Thiswould make the Session Manager start

82 CHAPTER 2. NETWORKS

a shell on the root processor, rather than start a Task Force Manager /mary for user
Mary, and run the shell in /mary/tfmasasimple task force.

The share_root_processor option may be important if a Task Force Manager is
started, otherwise the option is ignored. When the Session Manager creates a new
session it needs to obtain one processor from the system pool for running that session’s
Task Force Manager. In amulti-user network the root processor is always reserved for
use by the system, so another processor will be allocated. However in a single-user
network it may or may not be desirable to alow the root processor to be allocated. If
the share_root_processor option is enabled then the root processor will be allocated,
otherwise it is reserved for use by the network server and Session Manager. Unless
the root processor is low on memory, for example because the network server has to
administer avery large network or because the X server or the filing system is running
there, it isusual to enable this option. Assuming that a Task Force Manager isrun, the
user could pre-allocate all processors to that user's domain. Typically thisis donein
the .login file.

domain get /00 /01 /02 /03 /04 /05 /06 /07

This alocates al processors to the user's domain. The processors will be returned
to the system pool automatically when the user logs out and the Task Force Manager
terminates. Once the network grows past a certain size specifying all the processorsin
the domain get command becomes tedious, and it may be easier to use atemplate.

domain get 8

This would request eight processors with no restrictions on the processors, and the
network happens to have exactly eight processors. Shutting down the network happens
in much the same way as before. This can happen either in a user’s .logout file or in
the .login file for user shutdown.

2.7.6 A network with configuration hardware

= Link Switch =

—
—0

Figure 2.37 A network with configuration hardware

Adding alink switch to the hardware makes very little difference to the network con-
figuration. All of the previous section is still relevant, and one line should be added
to the network resource map to specify adevice driver for controlling the link switch.
Only the network server needs to know about the presence or absence of alink switch,
because it is responsible for programming the switch. All other software can ignoreit.

2.7. CONFIGURING NETWORKS 83

Network /Cluster {

Reset { driver; ; telmat r.d }
Configure { driver; ; telmat c.d }
processor 00 { IO, , 701, ~02; run /helios/lib/lock }
processor 01 { ~00, , ~03, i}
processor 02 , 700, ~03, "04; }
processor 03 { ~02, ~01, , ~05; }
processor 04 , 702, ~05, ~06; }
processor 05 { ~04, ~03, , "07; }
processor 06 { , ~04, ~o07, i}
processor 07 { ~06, ~05, , i}
processor IO { ~00; IO }

2.7.7 A single-user supercomputer

Figure 2.38 A single-user supercomputer

Adding large numbers of processors to the network does not affect the initrc file in
any way. A typical resource map for this network would be:

Network /net ({

Reset { driver; ; pa ra.d}
Configure { driver; ; pa_c.d}
processor root { ~I0, , “files, ~00; System }
processor files { “root, , , T01; System;

run -e /helios/lib/fs fs MSC 2 }
processor 00 { , “root, ~01, ~10; }

processor 01 { ~00, “files, ~02, ~11; }

processor I0 { “root; IO }

}

Thefirst two processors are given the mode System instead of the default mode Helios.
This means that the processor cannot be allocated to the user’s domain, and hence the

84 CHAPTER 2. NETWORKS

user's Task Force Manager will not run programs there. In an unprotected network,
a single-user system does not require protection of processors. The user could still
explicitly run programs on these processors with the remote and wsh commands. With
very large networks the network server will need a considerable amount of memory,
and hence there may not be much left on the root processor. The second processor is
only used to run the filing system. Treating it as a system processor means that the
file server can use al available memory as acache, and cannot be crashed, or its cache
corrupted by auser program.

Several of the options in the nsrc file are affected. First, the user will
amost certainly want a Task Force Manager to distribute programs, so the
no_taskforce_manager option must be disabled. Second, the share root. processor
option will be ignored because the root processor is reserved for use by the system.
This means that the network server will not allocate the processor to any user, not even
for running a Task Force Manager. For large networks it is highly desirable to pre-load
the network agent, to reduce disc accesses. Also it will take time to boot up a very
large network, so it is desirable to wait for the network. The nsrc file should ook
something like this.

single_user

#password checking
#processor protection
#no taskforce manager
#share root processor
#root_processor = /tom
waitfor network
preload netagent

In the .login file it is still desirable to obtain all processors in the network. A
suitable command might be:

domain get 64

which would get any 64 processors. Shutting down the network will be the same as
before.

2.7.8 Several single-user systems

Given alarge array of processors, users can be allocated their own smaller networks,
without overlap. Thisis a safe way of administering the system because users do not
interfere with each other’s networks. However, it can be an inefficient use of resources.
There will be an underlying administrative system, usually not controlled by Helios,
to alocate processors to users networks. Management of this underlying system is
hardware-dependent.

Configuring such a system involves separate sets of configuration files, each sim-

ilar to one of the previous single-user networks. For example, the user in the bottom
left of the diagram could have the following resource map.

Network /Net ({
Reset { driver; ; rte ra.d }
Configure { driver; ; rte c.d }

2.7. CONFIGURING NETWORKS 85

H

o, , ~o1i, ~02; }

processor 00 { ~

Figure 2.39 Several single-user systems

2.7.9 A process control system

The networking requirements of a process control system are very different from any
of the previous networks. It isnecessary to run anetwork server to boot up the network,
and possibly to run various control programs on the different processors. The network
server should continue running, monitoring the network, rebooting crashed processors,
and running the control programs again on these rebooted processors. A typical initrc
file might look like this.

#

Run the rs232 server, and a terminal server to talk to it
run -e /helios/lib/rs232 rs232 coml.8250.10000000

run -e /helios/lib/terminal terminal /rs232/coml

waitfor /terminal

#

Create a console window on that terminal for network diagnostics
console /terminal NetDiagnostics

#

Run the network server only

run -e /helios/bin/startns -r -nosm /helios/etc/floorlc.map
#

And run a monitor program in another window

console /terminal Monitor

run -e /helios/process/monitor monitor floorlc

To get console output aterminal server is started up, interacting with aserial line. The
network server is run in one window, and a process monitor program is run in another.
There is no need to run a Session Manager, since no user session is required. The
monitor program may be an output only device, or it may allow interaction through
a keyboard or quite possibly another input device. A resource map for this network
might look something like this.

86 CHAPTER 2. NETWORKS

Network /floorlc {
Reset { driver; ; pa _ra.d }

processor 00 { ext, ext, ~01, ~03; }
processor 01 { ~00, ~02, ~04, ~03;
run -e /helios/process/arm.Mk4 arm.Mk4 job72 }

processor 02 { ~03, ~01, , ~04;
run -e /helios/process/TempGauge TempGauge monl2 }
processor 04 { ~01, ~02, , ~03;

run -e /helios/process/arm.Mk4 arm.Mk4 job89 }
processor 03 { 700, ~01, ~02, ~04;
run -e /helios/process/PressGauge PressGauge mon43 }

Two of the root processor’s links are declared as external ones, giving the option of
having a larger network interacting with this small one to give remote monitoring
and control facilities. The Network is made to run one program on every processor,
representing the various jobs to be done by this network. In fact the network server
could be made to start several jobs on every processor, simply by giving more run
commands. Most of the nsrc options are redundant, because there are never any users
in this network. A suitable nsrc file might be:

#single user

#password checking
#processor_ protection
#no_taskforce_manager
#share root processor
#root_processor = /tom
#waitfor network
preload netagent

With no user sessions shutting down, the network must be arranged differently.
It is no longer possible to put suitable commands into a .logout file or in the .login
file for user shutdown, because these files are never used. Instead there must be an
aternative way to shut down the network, for example through the monitor program.
In atypical factory environment it is usually necessary to consider very carefully the
exact order in which to shut down the network and hence the machinery, to avoid
accidents.

2.7. CONFIGURING NETWORKS 87

2.7.10 A small multi-user network

| terminal }—{7ﬂ—{ terminal |

Figure 2.40 A small multi-user network

Configuring a small multi-user network involves severa changes to the initial boot-
strap. Usually the Helios file server must be started up as soon as possible so that
the networking software can use a protected file system. This can be done by using
a specia Nucleus which incorporates afile server, so that the file server runs as soon
as the first processor is booted. It may be desirable to suppress the /helios server that
normally runs inside the 1/0 server, using host.con options in the I/O server. Chapter
8, Thel/O server, should be consulted for more details. Suitable entries might include:

system image = “/lib/nucleus.fs
no_helios

The first command in the initrc file will usually start up the networking software.

run -e /fs/bin/startns startns -r

Both a network server and a Session Manager are required. While the network
is being booted, it is possible to start termina servers to cope with the two dumb
terminals.

run -e /helios/lib/terminal terminal Terml rs232 /IO/rs232/coml
run -e /helios/lib/terminal terminal Term2 rs232 /IO/rs232/com2

It is now necessary to wait for the Session Manager to be ready. Once that happens
it is possible to create and register suitable windows.

waitfor /sm

console /Terml User

run -e /helios/bin/newuser newuser
console /Term2 User

run -e /helios/bin/newuser newuser

If desired it is also possible to run a session on the 1/0 processor, but this is not
necessarily safe. In particular, if the I/O processor crashes or is rebooted for some
reason, the users logged in through the dumb terminals are also affected.

The resource map for this multi-user network is dightly different than for the
single-user network, because a special Nucleus is running on the first processor. This
Nucleus should not be used on any of the other processors, because these do not have
the required hardware to run the file server.

88 CHAPTER 2. NETWORKS

Network /Net ({
processor 00 { ... ; nucleus /helios/lib/nucleus.fs }
processor 01 { ... }

Since the system has changed from single-user to multi-user, the network configu-
ration file nsrc needs important changes. A suitable nsrc file might look like this:

#single_user

#password checking
processor_ protection
#no taskforce manager
#share_ root processor
#root_processor = /tom
waitfor network
preload netagent

The network is no longer single-user and this affects the configuration. The sin-
gle_user option must be disabled, or the Session Manager will refuse to start more than
one session. Password checking isstill optional. Processor protection isnow desirable,
to stop users accessing each other’s processors. Use of the na taskforce manager op-
tion is conceivable but unlikely: this would cause both users' shells to run on the root
processor, which is dangerous, and there would be no easy way to exploit the network
facilities. Sharing the root processor isno longer possible: in amulti-user network the
network server and Session Manager run on areserved processor, inaccessible to users.
It isdesirable to wait for the whole network to be booted before starting sessions, since
the dumb terminals may have no obvious way to work out when the network has been
booted. Depending on the size of the network, it may be desirable to pre-load the
network agent. Individual users may wish to pre-allocate some processors when they
login, by using the domain command in their .login file.

domain get 2

Shutting down the network should involve logging in as user shutdown, o that
all userscan log out first. Theterminals connected to Helios may bein different rooms,
so it may not be easy to work out who is logged in and where. A .login file for user
shutdown might be:

wall << end

The system is going down in five minutes.
end

sleep 240

wall << end

One more minute until the system goes down.
end

sleep 60

wall << end

The system is now going down !

end

sleep 5

termfs /fs

stopio /PC

2.7. CONFIGURING NETWORKS 89

2.7.11 Two connected single-user networks

Figure 2.41 Two connected single-user networks

It is possible to connect together two or more networks merely to allow an exchange of
data, rather than to share processors which is rather more difficult. The two networks
should be configured separately as either single-user or multi-user networks, similar to
the ones described previously. The only difference with these previous networksisin
the resource map: the connecting link should be declared as external.

Network /jonNet {
Reset { driver; ; tram ra.d }

processor 00 { IO, ~01, ~02, ext; }

}

Network /maryNet {
Reset { driver; ; pa_ra.d }

processor 00 { ~IO, ext, ~02, ~01; }

}

Given this resource map user Jon could enable the connecting link with the command
elink /00 3

if there is a network server running in that network, or with the command

remote 00 clink 3 -e

User Mary could enable the connecting link in much the sasme way. Thelink could
be disabled again with the command.

dlink /00 3

It is very important that the two networks have different names. If both networks
are caled /Cluster network names would become ambiguous: there would be two
processors called /Cluster/00,and so on. Hence in the resource maps given above
the two networks are called /jonNet and /maryNet. Given a connected network
the userswill be able to access each other’s resources subject to any protection that may

90 CHAPTER 2. NETWORKS

beinstalled. For example, user Jon could accessthefile /maryNet /I0/c/test.c,
a file on the remote hard disc. Whether or not it is possible to execute programs
in the remote network depends on the processor_ protection option of the nsrc files.
If processor protection is disabled then user Jon could execute a command remotely
using:

remote /maryNet/02 1s

However, the networking software will never place a program in aremote network
automatically. For many networks, allowing this remote execution facility isdesirable,
because it gives the users greater flexibility. When shutting down a network it may be
desirable to include another command to disable the connecting link. For example, the
Jogin file for user shutdown might now look something like this:

dlink /00 3
stopio

2.7.12 A largemulti-user network

Figure 2.42 A large multi-user network

Building a large, reliable multi-user system usually requires a reliable backbone of
processors, with its own system console. Severa 1/0O processors or workstations are
connected to this backbone. The network backbone is booted up and should not be
rebooted during normal operation. It may have to be taken down occasionaly for
essential system maintenance or to add new system software or new hardware support.
In extreme cases the network may have reached a state where the networking software
cannot recover and the whole network has to be rebooted, for example when a worm
program has flooded the network and crashed the network server.

There are various different sets of configuration files for such a network. First,
there is a set for the network backbone. Then there are separate sets for every 1/0
processor and workstation connected to this backbone. The backbone's initrc file is
fairly smple.

2.7. CONFIGURING NETWORKS 91

#

Run the network server and Session Manager

run -e /helios/bin/startns startns -r /helios/etc/backbone.map
Create a console window

console /window console

And start a session

run -e /helios/bin/newuser newuser operator

The networking software is started up from the console, probably an I/O processor,
and diagnostic output is sent to the 1/0 server’s error logger. It is assumed that the
host.con file has the following entries.

Server windows
logging destination = both

root processor = /root
io_processor = /console
bootlink = 2

Multiple windows are enabled inside the I/O processor, because the console does not
need any fancy graphics output. Diagnostic output sent to the error logger will be
recorded in afile and displayed on the /O processor’s screen. The root and 1/0 pro-
Cessors are given appropriate names. According to the diagram, link 2 of the root pro-
cessor is connected to the 1/0O processor, but this is mainly for artistic reasons. Once
the networking software has been started a session is created for the user operator.
Thisisanormal shell session, but should be used for system maintenance rather than
for running applications.

There is no particular reason why the system console should be a standard 1/0
processor. It could be a standalone workstation with a graphics display, booting from
ROM. Alternatively it might a Transputer with a serial port, and a dumb terminal
attached to this port. For these two cases the root processor will need its own hard
disc, and the filing system should be started during the ROM bootstrap. Part of the
resource map for this backbone would ook something like this:

Network /Network {

Reset { driver; ; telmat r.d }

Configure { driver; ; telmat c.d }

processor root { , “files, “console, ~00; System }
processor files { , . , root; System;

run -e /helios/lib/fs fs scsi }
processor console { “root; IO }

processor 00 { “pcl, “root, ~01, ~10; }
processor pcl { ~00; IO }
processor 20 { ext[3], ~10, ~21, ~30; }

processor 40 { ext[4], ~30, ~41, ~50; }

92 CHAPTER 2. NETWORKS

Typically the backbone would consist of aParsytec SuperCluster, a Telmat T.Node,
aMeiko Computing Surface, or a mixture of these. The resource map has to specify
the appropriate drivers. The root processor and the filing system processor run as
System processors, so that they will not be allocated to users. Processor 00 is shown
as connected to another 1/O processor, pc1l. When an I/O server starts up on that
I/O processor it should enable the connecting link. Usually the Nucleus on 00 will
detect this and send a message to the network server. When an /O processor connects
to a network the network server will automatically locate a /window server in that
processor and start anew session. Processors 20 and 4 0 are listed with external links,
indicating that at a future stage there may be a processor or a network at the other end
of thelink. The nsrc file for the backbone would be something like this:

#single user

#password checking
processor_ protection
#no_taskforce_manager
#share_ root processor
#root_processor = /tom
waitfor network
preload netagent

Thisisthe same nsrc file asfor other multi-user networks. The size of the network has
little or no effect on the nsrc, only on the resource map. Typically the .login filefor the
operator would start up one or more monitoring programs, in different windows. Also,
there would be one or more interactive shells for system maintenance. The .logout file
could contain commands to shut down the network, since running a network without
an operator may not be agood idea. This could replace the work normally done in the
Jogin file for user shutdown.

In addition to the network backbone the diagram shows three ways of connecting
into the network. On the left is a single 1/O processor with just a link adapter, no
Transputer. When the 1/0 server runs on that processor it should not attempt to boot
up a Transputer. Instead it should enable the link into the network. To achieve this,
the enable_link option should be enabled in the host.con file. Some time later, in
about a second or two, the network server detects this, locates a/window server inside
the 1/O processor, creates a window, and creates a new session within that window.
The Session Manager prompts for alogin name and password. When the user logs out
another prompt isdisplayed. If the I/O server terminates the network server detectsthis
and takes appropriate action, stopping the Session Manager from running login inside
the 1/0 server’s window, and possibly aborting a session that might still be running
from inside that 1/O server.

In the middle is an /O processor with a single processor. Alternatively it could
be a standalone workstation with a hard disc and graphics display. This processor is
booted up normally, by the I/O server or from ROM. On the right isasmall network of
processors. Both machines start up in much the same way. The initrc file might look
like this.

#
Initrc file for connecting into a larger network
#

Run X windows if necessary

2.7. CONFIGURING NETWORKS 93

ifabsent /window run -e /helios/bin/xhelios xhelios

ifabsent /window run -e /helios/lib/window window

ifabsent /window waitfor /window

console /window console

#

Start a network server, but no Session Manager. Wait for the

network server to perform its initialisation

run -e -w /helios/bin/startns startns -r /helios/etc/outside.map
#

Now join the larger network

run -e -w /helios/bin/joinnet joinnet toml 2

#

And register the window with the backbone’s network server, to
start a session

run -e /helios/bin/newuser newuser tom

The resource maps used to boot the two small networks are fairly standard, al-
though care has to be taken with the names used. The resource map for Tom’s network
might be:

Network /TomNet {
Processor toml { “TomPC, , ext, ; }
Processor TomPC { “toml; IO }

Pat’s resource map might be something like this:

Network /PatNet {

Processor patl { “PatPC, , “pat2, “pat3; }
Processor pat2 { “patl, , , “pat4; }
Processor pat3 { , "patl, “pat4, ; }
Processor pat4 { “pat3, “pat2, , ; }

Processor PatPC { “patl; IO }

The nsrc file for both networks might look like this.

#single_user

#password checking
processor protection
#no taskforce manager
#share root processor
#root_processor = /tom
waitfor network
preload netagent

Since no Session Manager isrun inside the small network, options like single user
and password_checking are ignored. These options are useful only for the Session
Manager, and the only Session Manager in the network runs in the main backbone.
Once the network server has booted up and initialised the small externa network it
is necessary to connect into the main network. This is the purpose of the joinnet
command, which takes two arguments, describing the processor and link connected to
the backbone. It contacts the local network server, then it tries to enable the link to the
network backbone, and searches the backbone for another network server. The local

94 CHAPTER 2. NETWORKS

network server is then made to surrender control of its processors to the remote one,
and will exit. The main network server in the backbone now knows about the external
processors, and can allocate these to users logged in through the external network. For
safety reasons these processors will not be allocated to other users. Once the external
network has been joined with the main network it is possible to register windows and
start sessions with the newuser command.

2.7.13 A mainframe computer

Thereis no essential difference between a‘mainframe’ computer and the large multi-
user network of the previous section. Once a multi-user network reaches a certain size
and has a sufficient amount of attached 1/0 hardware, thinking of it as a mainframe
rather than an ordinary processor network gives the right frame of mind for admin-
istering it. For example, a traditional mainframe requires one or more full-time or
part-time operators with responsibility for the day to day running of the machine, in-
cluding making tape backups. Also, atraditional mainframe requires aroom of itsown
with suitable air conditioning. A large processor network will generate considerable
heat, just like amainframe, so a separate room may be appropriate.

The only difference between configuring this mainframe and the multi-user net-
work of the previous section is the amount of software to be started up to handle
the varied hardware. The mainframe has multiple discs and a tape drive, rather than a
single disc drive. It has dumb terminals attached to seria ports, so the networking soft-
ware must start up /rs232 servers and /terminal servers. Thereis ethernet hardware,
so run low-level software to interact with this hardware and higher-level daemons, to
alow for file transfer, remote logins, and so on. Usually this software can be started
up conveniently with run commands in the resource map.

0‘2 ‘
0‘1 “*

1

terminal

2

terminal

h
Ethernet

Figure 2.43 A mainframe computer

2.7. CONFIGURING NETWORKS 95

2.7.14 Networ ked mainframe computers

To network mainframes together, simply specify the connecting links as external links
in the resource map, and enable them automatically at the end of theinitrc file. Main-
frames are normally networked together on a permanent basis, rather than enabled and
disabled when required, because the networking software will not know when a user
needs access to aremote facility. When shutting down a machine it is polite to disable
the links, but not essential.

96

Chapter 3

Programming under Helios

The purpose of this chapter is to provide a description of the mechanics of program-
ming under Helios. It makes no attempt to teach programming itself, and the reader
is assumed to be familiar with concepts such as stack, calling conventions, program
modules, and the like. Instead this chapter describes how existing programs can be
compiled under Helios to produce executables.

This chapter concentrates on programs written in the C language, because thisis
the language used for most Helios applications. Most of the chapter should be appli-
cable to other languages such as Fortran, Pascal, and Modula 2. Since these languages
are not part of the standard Helios package the language specific documentation should
also be consulted.

Section 3.1 gives a basic introduction to the programming tools. Experienced pro-
grammers may find it tedious, but the information should suffice for most users.

Section 3.2 gives more detailed information about the programming tools, and
in particular it describes the underlying programs. In addition this section describes
libraries, what they are for and which ones are available. A distinction is made between
Scanned and Resident (Shared) libraries, and an example is given on how to produce
a Scanned library. This section also describes some of the other tools available under
Helios to help programmers, and a brief description of the actual compilation process.

Section 3.3 gives a description of some of the servers available under Helios, start-
ing with a general description of how to interact with different servers and giving a
description of some of the more common ones.

The final section of this chapter, section 3.4, is atutorial. It explains how to use
the Helios protection mechanism to protect your files from other users, and how you
can then use it to give other users limited access to your files.

3.1 Simple programming

This section describes the basic tools available under Helios to support programming.
First the compiler driver isintroduced, and is used to compile some simple programs.
For non-trivial programs it is desirable to let the system perform the administrative
side of compilation, and the make utility is useful for this. Finally there isa summary
of the various types of filelikely to be encountered during programming, and how they
can be compiled.

97

98 CHAPTER 3. PROGRAMMING UNDER HELIOS

311 A simpleprogram
Consider the following C program.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char xxargv)

{

puts ("Hello world") ;
return (EXIT_SUCCESS) ;

}

Before anything can be done with this program it has to be typed in and written to
afile. Usudly this involves invoking an editor of some sort. Helios comes with the
Micro Emacs editor as standard, and this is described in detail in The Helios Micro
Emacs Guide.! Various other editors are also available under Helios.

When the program has been typed in it must be given a filename; for example,
hello.c. Thefirst part, hello, reflects the purpose of the program. The suffix, .c, spec-
ifies the type of the file, in this case a C program. This suffix is used by tools such as
the compiler driver to work out what to do with thefile.

Given a typed-in program, it is necessary to turn it into an executable binary by
compiling and linking it. Compiling translates the machine-independent C program
into a machine specific intermediate file. Linking means taking this intermediate file,
adding some start-up code and various libraries provided by the system, and producing
an executable file. Doing this can be tedious, so Helios provides a compiler driver
program to do all the complicated bits. To invoke this compiler driver the following
command line could be used.

¢ hello.c

cisthe compiler driver. It issimilar to the command cc on most Unix systems, and the
options are usually identical. Given a single argument ending in a.c suffix it assumes
that this argument refers to a file containing a C program. This program is passed
through the C compiler to produce an intermediate assembler file. This assembler file
is then linked with some initialisation code, the C library, and various other libraries
needed by the program. Finally a binary executable is written to the file a.out, and
typing in the command a.out to the shell will execute thisfile and causethetextHello
world to appear on the screen. During the compilation process the compiler will
display a copyright message, giving amongst other things the version of the compiler,
and often the compiler will give some warnings about your program. For the example
program the compiler will warn you that the variables argc and argv are not used. A
quick examination of the actual program will show that this is correct, the variables
are not used, but for this program it does not matter.

3.1.2 Driver options

There is rather more to the compiler driver than just compiling a “Hello world” pro-
gram. Some of the more useful command line options are given below.

!Published by Distributed Software Ltd.

3.1. SIMPLE PROGRAMMING 99

-help

Simply typing in the command c -help will cause the compiler driver to list
the current options. These options include the type of source files recog-
nised, for example . ¢ for C programs and . £ for Fortran programs. Next
there are a number of command line options, with almost every letter of the
alphabet used for one option or another, both the upper case and the lower
case version of the letter. Finally there isa set of environment strings which
can be used to override some of the defaults built into the compiler driver.

It ispossible to specify aparticular fileto hold the final binary program. For
example, given the command line

¢ -o hello hello.c

the compiler driver will compile and link the program hello.c as before, but
the binary executable will be written to the file hello instead of to a.out.

Thisoption isused to compile the program for debugging. It isuseful only if
you have a copy of the Helios debugger. Please consult the Helios debugger
manual for more information.

is used to pre-define some options for the C preprocessor. For example,
consider the following command line.

¢ -DTesting -Ddebugflags=17 hello.c

This is equivalent to having the following two lines at the start of the C
program.

#define Testing
#define debugflags 17

can be used to make the C compiler search a particular directory for the
C header files. By default the compiler will search the current directory,
followed by the main include directory /helios/include. Suppose that there
isan /include server running somewhere in the network, which can be used
to read header files without accessing a disc. To use this include disc, the
following command line can be used.

¢ -I/include -o hello hello.c

is used to enable optimisation within the compiler and the linker. When
optimisation is used the final binary program is likely to run faster. In addi-
tion the program may be smaller than it would otherwise be, but that is not
guaranteed. Producing an optimised binary will take longer, possibly alot
longer, than producing an unoptimised binary.

is used to specify the type of processor on which the binary object is meant
to run. Options include -T4 to compile for a T414 Transputer, and -T8 to
compile for a T800 Transputer. The processor types supported are subject
to change at any time, but ¢ -help should list the currently supported proces-
sors.

100 CHAPTER 3. PROGRAMMING UNDER HELIOS

The above list accounts for less than a quarter of the command line options avail-
able in the compiler driver. In addition there are a number of environment variables
used to override defaults built into the compiler driver. For example the default name
of the binary executable is a.out, if the user does not specify another file with the -0
option. Thereis an environment variable OBIJNAM E which can be used to change the
default from a.out to something else. Consider the following two commands:

setenv OBJNAME binary
¢ hello.c

This causes the compiler driver to generate the file binary as the executable binary
program, instead of a.out. Typing the name binary would execute the program and
display thetext Hello world.

The exact options understood by the compiler driver are subject to change at any
time, as Helios devel opment continues and more processors are supported. Also, many
of the options are of little or no interest to the majority of users. Hence this chapter
does not give acomplete list of al options, merely the ones most likely to be needed by
atypical user. Instead the -help option can be used to determine the options understood
by the current version of the driver, or the Helios Encyclopaedia can be consulted.

3.1.3 Multiple modules

The “Hello world” example used earlier consisted of just one source file. Thisis fine
for simple programs, but many programs are so large that they should be split into
a number of different source files or modules. Having multiple modules makes the
linking process more complicated and hence slows that down. However, compiling a
small file takes less time than compiling alarge one. Deciding when and how to split a
large program into separate modules should always be left to individual programmers.
To show how to use the compiler driver with separate modules, consider the following
two files.

main.c
#include <stdlib.h>
extern void say hello(void) ;
int main(int argc, char *xargv)
{
say_hello() ;
return (EXIT_SUCCESS) ;
}
io.c

#include <stdio.h>

void say hello()

{

puts ("Hello world.") ;

}

3.1. SIMPLE PROGRAMMING 101

The simplest way to compile these two modul es together is to specify both of them on
the command line, for example:

¢ -o hello main.c io.c

The compiler driver will put module main.c through the compiler, generating two
warnings about unused variables as before. Then it will put module io.c through the
compiler. Finally it will link the resulting object files together to produce the binary
executable hello. Thisissimple. A problem occurs when just one of the source filesis
changed, because using exactly the same command line will cause the compiler driver
to put both source files through the compiler again.

To avoid this problem it is necessary to make use of intermediate files. If you
examine the directory after the above command you would find two extrafiles, main.o
and io.0. These are intermediate object files which can be passed to the linker. To
rebuild the binary executable using the two object files, the following command line
can be used.

¢ -0 hello main.o io.o

Since al the file names passed as arguments to the compiler driver end with the .o
suffix, the compiler driver can work out that none of the files need to be compiled and
hence it will invoke the linker. Suppose that one of the files needs to be recompiled but
the other one does not. A command line to do thisis:

¢ -o hello main.c io.o

One of the file arguments ends with .c and hence the compiler driver will invoke
the compiler for thisfile. The resulting main.o object file will be linked with the other
object file and various standard libraries to produce the binary executable. Thisextends
naturally to any number of source and object files.

When there are severa source files it may be easier to recompile one file to the
intermediate object form, and then link all the .o files together in a separate command.
For example if the programmer changes just one file out of six then it isinefficient to
recompile all six. The compiler driver has a-c option to produce intermediate object
files. For example, the following command lines may be used to rebuild the program
from scratch.

c -c¢ main.c
c -c lo.c
¢ -o hello main.o io.o

314 Make

Using the compiler driver to build programsis fine for simple programs with just one
of a small number of modules. For more complicated programs it becomes tedious,
inefficient because the user has to remember to recompile files when appropriate, and
dangerous because it is easy to forget one of the files. However, the basic job required
is fairly simple: given a set of sources, recompile any that have changed since the
last compilation; then link together al the objects that have been changed. All this

102 CHAPTER 3. PROGRAMMING UNDER HELIOS

administration is tedious, and can be left to the computer. A tool which can be used
for thisisthe make utility.

Consider an example. There is a program teatime, comprising the sources
assam.c,water.c, sugar.c, cream.c, scones.c, and jam. c. In addition
there is a header file teapot .h which is used by the source files agsam. ¢ and
water.c. The make utility needs to know what the target program is, what it de-
pends on, and similar information. To do this it reads a separate file, makefile. For
this application a suitable makefile is:

teatime: assam.o water.o sugar.o cream.oO sScones.o jam.o
c -0 teatime assam.o water.o sugar.o cream.o sScones.o jam.o

assam.o: assam.c teapot.h

c -c assam.c
water.o: water.c teapot.h

c -c water.c
sugar.o : sugar.c

¢ -Cc sugar.c
cream.o : cream.c

c -Cc cream.c
scones.o: scones.c

c -c scones.c
jam.o: jam.c

c -c jam.c

These lines all have the same format. First there is a target, indicating something
that the make program should produce. This target is usually, but not aways, afile.
Following the target is a colon :, and then alist of dependencies. These indicate the
objects that must exist before the target can be made, and each such dependency is
usually listed in the makefile as another target. On the next line, and starting with a
tab character, there is a command which the make program should execute to build
the target. These commands are ordinary commands, as you would type in at the shell
prompt or possibly put into a shell script. The first target in the makefile is specidl, it
isthe default target which will be made unless makeis specifically instructed to build
some other target. The combination of target, dependencies, and commands is usualy
referred to arule.

Referring to the example makefile, the default target is teatime. Before this
target can be made the make program has to build the targets assam. o, water. o,
and so on. Once al the object files have been madeit ispossible to build the teat ime
program by invoking the compiler driver, as per the command line. The second target
assam.o isrequired to build the default target. This second target depends on two
files, assam. c and teapot . h, and can be built by invoking the compiler driver on
the . c file.

So how does this work in practice? Assume that the source files exist, that the
makefile has been typed in, but that nothing has been compiled yet. To get the job
started, just use the make command without any arguments. make will read the make-
file, determine the default target, and note that all the object files need making first.
There arerules for making al the object files. Hence make would invoke the compiler

3.1. SIMPLE PROGRAMMING 103

driver for al the source files, one by one, and then the compiler driver would be in-
voked alast time to link the objects together and produce the executable program. If
something goes wrong halfway through the make, for example if one of the files could
not be compiled because of atyping mistake, then the make would be aborted at that
point.

Now suppose that the programmer makes asmall change to themodule scones . ¢
and needs to rebuild it. All that the programmer has to do is type make again. The
program reads the makefile again, works out the default target, and hence the depen-
dencies. Thefirst dependency ison assam. o. Thisaobject filein turn depends on two
other files, assam. ¢ and teapot . h. However, these two sources have not changed
since thelast timethat assam. o was created: make examines the file system to work
out which files were changed and when, so it can work out such things. Since the
sources have not changed there is no need to recompile them. When scones.ois
examined make will discover that the dependency file scones . ¢ has changed since
scones .o was last updated, and hence this file will be recompiled. Thiswill result
in afile scones . o which has changed since the last time teat ime was produced,
S0 it is necessary to remake the default target by relinking the objects.

If the programmer changes the file teapot . h everything becomes a bit more
complicated. Since teapot .h is adependency for both assam.o and water. o,
both these targets will be remade by executing the appropriate commands. Subse-
quently, the default target, teat ime, has to be remade by executing the linking com-
mand.

Variables

The make utility is more powerful than described so far. The first useful extrafacility
is the use of variables. In the first rule of the makefile there are two identical lists of
object files. Thisis inefficient, because the details must be typed in twice. It isaso
dlightly dangerous, because the two lists might get out of step as the software is being
developed. To avoid this problem avariable could be used.

objects = assam.o water.o sugar.o cream.o sScones.o jam.o

teatime: $(objects)
c -o teatime $(objects)

The first line declares a variable objects, and this variable is assigned a text string
containing the six object names. Variables are always text strings, as the make utility
does nat have the concept of variable types such as integer, double precision numbers,
or anything like that. Thisfirst line is not a make rule, because it does not follow the
syntax for rules. target, colon, dependencies, commands.

The next line is arule. It defines the default target teatime as before, and then
uses the objects variable for the dependencies. The syntax $ (x) means “Insert the
value of variable x”. This is different from depending on target x: if the rule said
that teat ime depended on x without the brackets, make would assume that it had to
create target x first; since there is no rule for making target x, this would produce an
error message. After the dependencies comes the command used to rebuild the current
target, and again this can use the objects variable.

104 CHAPTER 3. PROGRAMMING UNDER HELIOS

In addition to your own variables, make pre-defines a number of useful variables
for you. These are used mainly to makeit easier to write the commands needed to build
the targets. All pre-defined variables consist of a $ character followed by something
else.

S@ is equivalent to the target of the current rule. For example, the first rule in the
makefile can be written as follows.

teatime: $(objects)
¢ -o $@ $(objects)

When the make program comes to execute the command it will substitute the
current target, teatime, in place of $@, and then it will substitute the user’'s
variable objects to givethelist of abjects files.

$” isequivalent to all the dependencies for the current rule. For example, the rule to
rebuild the object file scones . o can be written as:

scones.o: scones.c
c -c $°

In this case there is only a single dependency file, scones. ¢, so the make
program will substitute this name for $.

S< issimilar to $~, but refers to the first dependency only. Thisis useful for the file
assam. o, which has a dependency on a header file as well asthe C source file:
using $~ would result in an attempt to compile the header file. A suitable rule
for building assam. o would be:

assam.o: assam.c teapot.h
c -c S<

$* stands for the target name without its suffix. For example, if the target of the rule
iscalled assam. othenthevariable $x isequivalent to assam. Thisvariableis
occasionally useful when manipulating suffixes in afairly unusual way. Details
of such suffixes are given later on. For example, the following rule can be used
to build an object file together with its associated assembler file, should this be
required for some reason.

sconesg.o: scones.c
c -S S«<
Cc -Cc $*.8

The first command is used to compile the C program to give the corresponding
assembler file, scones . s, without producing the object file. The second line
is used to produce the object file. Since the current target is scones . o the
variable $x is set to scones and hence the second line invokes the compiler
driver with argument scones. s.

3.1. SIMPLE PROGRAMMING 105

$? isavariable defining which of the current target’s dependencies had changed. It
isused mainly for reporting during the progress of amake, or when the makefile
is not working as expected. For example, consider the following:

assam.o: assam.c teapot.h
echo Rebuilding $@ because $? has changed
Cc -Cc assam.c

Complicated lines

Building programs can get very complicated, so the lines in a makefile can become
equally complicated. For this reason makefiles can have comments, just like ordinary
sources. In a makefile comments are introduced by a hash symbol, just like in shell
scripts. Comment lines are ignored completely by the make program.

#

Makefile for the subsystem "teatime"

This is component 16.30 of project "daily schedule"
Author: A. Programmer

#

For large systems it is possible that some text does not fit into one line of the
makefile. make uses the same approach as the shell, a backslash character \ indicates
that the current line really continues on to the next one. For example, the following
lists some objects for a more complicated system.

high tea = darjeeling water honey cream lemon cakes biscuits \
scones jam crumpets silver spoons china \
cucumber sandwiches and lots of other things

Note that the last line does not use a backslash character, because there is no point in
continuing the line on to the following blank line. In the commands section of arule,
it is possible to give severa different commands.

assam.o: assam.c teapot.h
c -S S«<
Cc -Cc S$*.8

The first command compiles the source file called assam. ¢ to produce an assem-
bler file assam.s. The second command takes this assembler file and turns it into
an object file called assam. o. Note that there is no backslash character between the
commands. If a backslash character were used then make would merge the two com-
mand lines into asingle ling, giving ¢ -S assam.c ¢ -c assam.s: thiswill
not have the desired effect, instead it will cause the compiler driver to produce an error
message and abort.

Default rules

Taking the original makefile of some pages back, but using the facilities described so
far, we would get afilelike the following.

#

There will be some comments at the start of the file.

#

106 CHAPTER 3. PROGRAMMING UNDER HELIOS

These are the modules required for the teatime program
objects = assam.o water.o sugar.o cream.o Scones.o jam.o

The default target is the program teatime
teatime: $(objects)
c -o S@ $~°

These rules recompile the various modules needed by teatime
assam.o: assam.c teapot.h

c -c S<
water.o: water.c teapot.h

c -c S<
sugar.o: sugar.c

c -c $°
cream.o: cream.c

c -c S<
scones.o: scones.c

c -c $°
jam.o: jam.c

c -c S<

Note that $< can often be used instead of $~, but not the other way around. Most of
the commands in this makefile are identical, and it is silly to duplicate the commands
every time. make has a mechanism for defining default rules, for example the default
way to create an object file from a C source file is to invoke the compiler driver with
the -c option. More specifically, make can be given rules on how to turn afile with
one suffix into a file with a different suffix. The first step is to specify which suffixes
should be recognised by the make program.

.SUFFIXES:
.SUFFIXES: .c .f .o

Most make programs require two lines in the makefile for this. The first line
eliminates any suffixes which might be built into the make program, because it is not
usually clear whether the built-in ones are correct, or even what they are. The second
line defines the suffixes used by this makefile. In the example, make is told to recog-
nise three suffixes, for C and Fortran sources and for the object files, but any number
of suffixes can be given. Default rules involve a special target name constructed from
the two suffixes. There should not be a dependency, and the command name should
use the various built-in variables where possible. For example, the following defines a
default rule for changing afile with a.c suffix into one with a .o suffix.

.c.o:
c -c $*.cC

Constructing similar rules for other types of compilation is relatively easy, and a
list of such rulesis given at the end of this section. To tell make to use the default rule
to build atarget, just specify the target and the dependencies without a command.

assam.o: assam.c teapot.h

3.1. SIMPLE PROGRAMMING 107

water.o: water.c teapot.h
sugar.o: sugar.c

cream.o: cream.cC
scones.o: scones.cC

jam.o: jam.c

In fact makefiles can be even simpler than this. The last four lines are redundant
because make will automatically use default rules under certain circumstances. Sup-
pose make needs to build the target X . o. The following conditions must be met:

1. Thereisno specific rule for building target X . o
2. Thereisadefault rule for building . o filesfrom . c files

3. Thereisafilex.c

If al conditions are met then make will automatically use the default rule. The
whole makefile now looks something like this.

#
Simplified makefile for building the teatime system

#
.SUFFIXES:
.SUFFIXES: .c .o

c -c Sx.c
objects = assam.o water.o sugar.o cream.O Scones.o jam.o

teatime: $ (objects)
¢ -o $@ $(objects)

assam.o: assam.c teapot.h
water.o: water.c teapot.h

It is still necessary to have rules for the two object files assam.o and water.o
because these depend on a separate header file as well as on the source file. If these
dependencies were not part of the makefile then the two objects would not be remade
if the header file were changed, which was one of the reasons for using make in the
first place.

Multiple targets

Usually there is only one makefile per directory. If adirectory isto contain multiple
programs then it must be possible to build multiple targets with a single makefile. For
example, suppose agiven directory isused to build three programs: coffee break,
lunch, and teatime. Unless told otherwise, make treats the first ordinary rulein
the makefile as the default target it is supposed to make. This default target need not
refer to aredl file. For example, the following makefile achieves the required results.

108 CHAPTER 3. PROGRAMMING UNDER HELIOS

default: coffee break lunch teatime

coffee break: $(coffee objects)
c -o $@ $(coffee objects)

lunch: $(lunch objects)
¢ -o $@ $(lunch objects)

teatime: $(teatime objects)
c -0 $@ $(teatime objects)

Thefirst target in the makefileis now something called default. To build thistarget,
make must first build three subsidiary targets. Since make is not given any rules
for making the main target from its three components, it will never generate a file
default. Thisis, in fact, exactly the behaviour that is required.

On the make command line it is possible to specify exactly which target is sup-
posed to make. For example suppose that the programmer needs to rebuild program
lunch, but not the other two programs. Using the command line make lunch
causes make to ignore any targets except 1unch, and whatever subsidiary targets are
needed to build that one. It is also possible to have some specia targets: consider the
following makefile entry.

clean:
rm $(coffee objects) $(lunch objects) $(teatime objects)

This should not be the first rule in the makefile, since the default action should not be
deleting the intermediate files. Also this rule should not be a subsidiary target of any
other rule, so that it does not get invoked by mistake. Instead the rule will be ignored
completely unless the user types make clean. Similar extra rules are commonly
used for backing up, installing software, and other administrative chores.

Argumentsto make

The make program can take various command line options, as shown below. The
Helios Encyclopaedia and the on-line help system may give further information if
necessary.

-f <filename> allows the user to specify a makefile other than the default, which
is makefile in the current directory. This is used mainly when
experimenting with the makefile, by copying the working makefile
to atemporary one and changing and using this temporary one. To
use this option the following command line can be used.

make -f makefile.tmp

-i causes maketo ignore errors produced by the various commands it
runs. Normally when acommand in the makefile fails, for example
when a compiler encounters a serious error, the make program
detects this and aborts the whole job. The -i option would allow
make to continue in spite of such errors. This can be dangerous,
and the option should be used with care.

3.1. SIMPLE PROGRAMMING 109

-n causes make to list the commands it would execute to build the
target, without actually executing them.

-q is used mainly with shell scripts. The make program reads the
makefile and checks the default target. If any commands must be
executed then make would return an error. Otherwise make would
exit with success. No commands are actually executed, and no
output is produced. For example the following shell script checks
whether or not amake isrequired, and if so it generates some mes-
sages first. The shell variable cwd is used here to display the cur-
rent directory.

make -qg

if ($status == 1) then

echo Make in $cwd, some work is required
echo Please go and drink a cup of coffee

make
else
echo Make: the target is up to date
endif
-S runs the make program in silent mode. By default the program

will display the commands it is because to execute before actually
running them. This option prevents this. It is not very useful be-
cause commands like the C compiler will generate a considerable
amount of output anyway.

-t is used to touch atarget, rather than build one. The time stamp
associated with the default target or the one specified is changed
as if the target had just been rebuilt. This is used mainly when
debugging makefiles to avoid excessive recompilations.

Any other arguments will be interpreted as the targets which are supposed to be
produced instead of the default target. For example, the following command line

make -n coffee break lunch

will cause make to show the commands it would execute in order to build the targets
caled coffee break and lunch, without actually executing these commands.

Different make programs

Helios comes with two different make programs. The first one, /helios/bin/make, is
a conventional version of the utility which supports the features described so far and
nothing else. This version suffices for most programming needs. The second program
isaport of GhuMake, a much more powerful utility suitable for very big applications.
This second program is held in the file /helios/local/bin/gmake.

Thefacilities provided by GnuM ake come at aprice. The program is almost eight
times larger than the simple make utility and it needs alot more memory at run-time.
Hence, on machines which have fairly small amounts of memory use of GhnuMake
should be avoided.

110

CHAPTER 3. PROGRAMMING UNDER HELIOS

3.1.5 Common suffixes

Programs written in C are conventionally given the suffix .c. The suffixes used for
other languages and for intermediate files are as follows.

a

.bep

.Cpp

def

lib

.mod

pas

is used for source files to the assembler macro preprocessor AM PP, used
mainly for advanced programming such as building device drivers and
Resident libraries.

is also used for some libraries. For example, the file /heliog/lib/libX11.a
is the main X Window System library. Such libraries always start with
lib and are used only for linking: they are not passed as sources to the
compiler driver. Hence there is little possibility of confusion.

is used for programs written in the BCPL language.
isused for C programs.

is commonly used for programs written in C++. Other common suffixes
for thisinclude .cxx, .c++, and .C.

suffixes refer to device drivers, which are special types of program.
is the suffix for another type of library.
refers to programs written in Fortran.

isaC header file. The standard header files can be found in the directory
/heliog/include and its subdirectories.

isused for C fileswhich have been passed through the C preprocessor but
have not been compiled. This can be achieved with the -E option of the
compiler driver. It isalso used for special binaries that can be embedded
in the Nucleus.

is another way of describing libraries. The name xyz.lib is equivalent
to libxyz.a, but the file name is more likely to fit into the naming limits
imposed by certain filing systems.

is a macro include file used by AMPP programs. The standard macro
include files can be found in the directory /helios/include/ampp.

is used for Modula-2 programs.

files are object files produced by the assembler, which can be passed
through the linker to give executable programs.

filesare another type of object file usually generated when building device
drivers and Resident libraries.

files are Pascal sources.

3.2. MORE ADVANCED PROGRAMMING 111

S is the input to the Helios assembler. Such files are rarely written, but are
produced by the C compiler and by AM PP and then passed through the
assembler to produce .o files.

The table below shows the most useful commands for compiling programs.

From To Command
X.c X.0 c-cX.c

X.0 X executable | c-0X X.0
X.f X.0 c-cX.f

X.a X.0 c-cX.a
X.mod | X.0 ¢ -c X.mod
X.c X.s c-SX.c

X.s X.0 c-cX.s

X.c X.i c-EX.c

X.c X.p c-m-c-oX.pX.c
X.a X.p c-c-oX.pX.c

The corresponding makefile rules are:

.suffixes:
.suffixes: .a .¢ .£f .mod .1 .s .o .p

.a.c
c -S Sx.a
a.o
c -c S$*.a
a.p:
cC -C $*.p
.Cc.8
c -S S$x.c
Cc.O:
c -c $*.cC
CcC.p:
C -m -C -0 $x.p $*x.C
.f.o
c -c $*.f
mod.o:
c -c S$S*.mod
.c.i
c -E S$x.c
S.0:

c -Cc S$%.8

3.2 Moreadvanced programming

This section describes three things. Firstly, it describes libraries: what they are for;
what types there are; the main ones available under Helios; and how to produce your
own. Secondly, it describes some of the other tools available to help programmers.
Thirdly, it gives a more detailed description of the compilation process, indicating
the work that has to be done by the compiler driver and explaining some of the less

112 CHAPTER 3. PROGRAMMING UNDER HELIOS

obvious options that are available. This section is aimed at more advanced users who
need facilities not described so far.

3.21 Libraries

The purpose of libraries isto make programming easier. For example, atypical appli-
cation program usually needs to read and write some files. If the application program-
mer had to worry about individual disc blocks or about the exact hardware registers
which must be poked to access a particular kind of disc, then very few programswould
bewritten. Instead, the operating system provides some library routines to perform file
1/O, alowing the programmer to concentrate on the application. Application programs
must be linked with these libraries after the compilation stage, in order to produce the
final executable program.

A considerable number of libraries are available for Helios, either as part of the
standard product or as optional extras. The following list is not exhaustive — new
libraries are added regularly as Helios development continues — but it contains the
more common ones. Some of the descriptions refer to specific routines, and further
details of these can be found either in the Helios Encyclopaedia or in the on-line help
system.

1. The Clibrary isused by most C programs. It contains a wide range of routines
varying from fopen() to access afileto strtol() to manipulate strings.

2. The Fortran library is another language library, like the C one. There are aso
libraries for Pascal, Modula2, BCPL, and so on. Language libraries are usually
mutually exclusive, in other wordsit is not possible to link a program with both
the Clibrary and the Fortran library.

3. The Posix library is an implementation of the |EEE standard 1003.1-1988 Stan-
dard Operating System Interface for Computer Environments. The standard de-
fines an operating system interface for Unix-style systems. It includes routines
like execve() to run another program, and getpwentry() to check the contents of
the system’s password file. For a variety of reasons concerning the architecture
of the Transputer and other processors without memory management facilities,
the Posix library cannot be fully conformant to the standard for these proces-
sors. More details can be found in chapter 5, Compatibility. The Posix library
isat alower level than the language libraries. In fact most language libraries are
built on top of the Posix library, so for example any C program can access Posix
library routines automatically.

4. The System library exists at a lower level still. Helios is based on the client-
server model: for an application to do anything other than pure computation it
must interact with a server; to read afile it must interact with a file server; to
create alock it can interact with alock server; to display graphics on a suitable
display it must interact with a graphics server, usually the one supplied with the
X window system. The System library is used to perform standard interactions
with the majority of servers. Additional libraries may exist for specific interac-
tions, for example to display graphics. The System library is part of the Helios
Nucleus.

3.2. MORE ADVANCED PROGRAMMING 113

5.

10.

11.

12.

The Kernel is the lowest level accessible to application programmers. It pro-
vides routines which inherently need to interact closely with the hardware. For
example the Kernel has routines Wait() and Signal() to act on semaphores and
provide synchronisation between threads. The Kernel also provides the message
passing routines used by the higher-level software, particularly the System li-
brary, but use of these routines should be avoided by application programmers.
The Kernel is part of the Nucleus.

The Utility library is also part of the Nucleus, and provides miscellaneous rou-
tines needed inside the Nucleus that did not logically belong anywhere €else.
These routine include strlen() and similar string operations, Fork() to start a
new thread within the current program, and 10debug() for very low-level de-

bugging.

The Server library is the final library embedded in the Nucleus. Its purpose is
to facilitate the writing of Helios servers, and it is described in more detail in
chapter 12, Writing servers. In addition to these four libraries the Nucleus con-
tains two programs, the Processor Manager and the Loader. Thisisillustrated in
Figure 3.1.

X

Figure 3.1: Thelibrary hierarchy

The X library provides a programmer’s interface to the X server. It is comple-
mented by various other libraries for the X toolkit, widgets, Motif 2, and so on.
Thisisthe main graphics facility supported by Helios.

The PC graphics library provides some basic graphics facilities, using a VGA
or similar display on ahost PC. It is a cheap aternative to X, but only offers a
fraction of the functionality.

The Windows 3 library provides an alternative windowing system and graph-
ics library for use with Microsoft Windows version 3.0. The graphics being
displayed on the host PC’s screen.

The BSD? compatibility library contains some routines provided by BSD 4.3
Unix systems that are not part of the Posix standard. These routines are provided
to assist in porting programs to Helios.

Similarly, Helios contains curses and termcap libraries to improve Unix compat-
ibility. Existing Unix systems need to cope with many different terminal types,
for example VT 100 terminal s attached to serial ports or Xterm windows on an X
display. All these terminals need different control sequences to clear the screen,

2Trademark of Open Software Foundation, Inc.
3Berkeley Software Distribution

114 CHAPTER 3. PROGRAMMING UNDER HELIOS

move the cursor to a specific location, and so on. To achieve hardware indepen-
dence for application programs Unix provides the curses and termcap libraries.
Under Helios these are redundant, since Helios ensures that all terminals accept
exactly the same sequences. Nevertheless, these libraries are provided to cope
with existing programs that use them.

13. The Debugger library is linked with programs that have been compiled for de-
bugging, provided the Helios debugger is part of your system. Thislibrary inter-
acts with the debugging server tla. Itsroutines are never called from user code,
as compilers generate the calls automatically.

14. The Fault library isused for interpreting Helios error codes. For communication
between clients and servers Helios uses 32-bit integers to encode requests and
replies. For example, the integer 0xCA06800C is an error code generated by
the /0O server indicating that afile is missing. The Fault library provides various
routines to interpret such numbers, the most important being Fault() which takes
a number and turns it into a string that contains a description of the error in
English.

15. TheFloating Point libraries are used to perform certain floating point operations.
There are different versions for the different types of processor. For example
fplib.t4 is used for T414, T400, and T425 Transputers which do not have a
built-in floating point unit, and hence these libraries must do the arithmetic the
hard way.

16. The Resource Management library provides an application programmer inter-
face to the network of processors. It allows programmers to write applications
that examine the network, manipulate processors, execute parallel applications,
and so on. It isdescribed in more detail in chapter 7, The Resource Management
library.

Typesof library

The usua place for holding libraries is in the directory /helios/lib. Examining this
directory can be somewhat confusing, because there are rather alot of files with rather
alot of different suffixes.

Thefirst type of library isthe Resident or Shared library. A Resident library isa
separate piece of code which isloaded into memory upon demand. For example, atyp-
ical C program islinked with the C library and the Posix library amongst other things.
These two libraries could be embedded into the binary of every C program, which
means that every C program would have about 50K of code inside it. Since the direc-
tory /heliog/bin contains over 100 such programs the system would use five megabytes
just to hold duplicate copies of the C and Posix libraries. Thisis nonsensical.

Resident libraries provide an alternative. When aprogram islinked with a Resident
library the library code does not get embedded in the binary object. Instead the binary
object contains adescription of the Resident library, its name and how to use it. When
the program is executed the system detects that it uses one or more Resident libraries,
and these libraries are loaded into memory. If there are several programs running on

3.2. MORE ADVANCED PROGRAMMING 115

the same processor needing the same Resident library then only one copy of the library
will be loaded, and this will be shared by the various programs.

For example, suppose that the user runs a shell on an empty processor using the
command wsh 01. The shell is linked with the C library and the Posix library, both
of which are resident. Hence when the shell is executed the system detects that both
of these libraries are now needed, and they will be loaded into memory automatically.
The shell can now use these libraries as if they were embedded in the binary object,
just like any other piece of code.

Helios Resident libraries have a .def file associated with them. For example, the
/neliogd/lib directory contains files clib.def and posix.def. This .def file defines the
library and contains all the information needed to link with thelibrary. In addition there
arefiles clib and posix. These are the library objects themselves, in other words they
are the pieces of code loaded by the system when needed. Only the library definition
files are needed for linking.

There are several .def files which do not appear to have a corresponding object
file. They are asfollows: Kernel.def, syslib.def, util.def and servlib.def. These four
libraries are part of the Helios Nucleus and hence they are always loaded in memory,
so there is no need to have separate object files.

Resident libraries can be very useful, particularly for system programmers. How-
ever, building them is rather complicated (a full explanation of how to do so can be
found in chapter 16, Program representation and calling conventions). Hence Helios
also supports a different type of library: the Scanned library. When a program is
linked with a Scanned library the linker extracts the parts of the library needed by the
program, and adds these to the final binary program. The Scanned libraries shipped
with Heliosinclude bsd.lib, curses.lib, and termcap.lib. For example, suppose an ap-
plication program uses the popen() routine. This routine isin the BSD compatibility
library bsd.lib, so the program hasto be linked with thislibrary. Thislibrary, however,
contains over 50K of code of which only a small part is needed for popen(). Hence
during the linking process most of the library will be discarded as unnecessary, and
the final program does not contain all of the code. The code that implements popen()
itself is embedded in the final program, and is not part of a Resident library loaded
dynamically.

Consider an example. There is a Helios command network which can be used
to examine the current state of a network of processors. This program contains the
following parts.

Program network
ResRef Kernel
ResRef SysLib
ResRef ServLib
ResRef Util
ResRef FpLib
ResRef Posix
ResRef Clib
Module network.c
Module popen.c
Module string.c
Module signal.c
Module nuprtnet.c
ResRef RmLib

116 CHAPTER 3. PROGRAMMING UNDER HELIOS

At the start of the binary object there will be a header identifying the program and
containing some information needed by the system when the program is being loaded,
such as its stack size. The program contains Resident library references or ResRefs
for eight libraries, and the system has to ensure that al of these are in memory when
the program starts up, loading them off disc if necessary. The libraries themselves are
not part of the binary object, only references to them. The next part is the module net-
work.c, which forms the main part of the program. Thisisthe code actually written by
the programmer, and there may be several such modules. Then there are three modules
popen.c, string.c and signal.c which are part of the BSD compatibility library. That
is a Scanned library, so the linker extracted the bits it needed and discarded the rest.
The module nuprtnet.c also comes from a Scanned library, a private one written by
the programmer.

Suppose that at some moment in time two programs are being executed on the
same processor: network and domain. Figure 3.2 illustrates the bits of code loaded
into memory.

X

Figure 3.2: Code in memory

There is only one copy of the C library and of all the other Resident libraries,
shared by the two programs. There are two copies of module popen.c in memory
because that module comes from a Scanned library, and hence the module is actually
part of the binary program.

Linking with libraries

Given all theselibrariesit isnecessary to know how to link programs with them. By de-
fault programs are linked automatically with the libraries they are likely to need. For
example, every C program is linked automatically with the C, Posix, floating point,
fault, server, utility, system, and Kernel libraries. However, the linker is intelligent
enough to only link libraries that are referenced by other code modules into the ex-
ecutable file it produces. So, if a program does not make use of any Server library
calls, the binary program will not contain the corresponding Resident library refer-
ence. Some libraries, for example the Kernel, are needed by higher-level libraries so

these are nearly always included.
Linking with most other librariesisfairly easy. The following command line links
a program with both the X and the Resource Management libraries.

¢ -0 drawmap -1X -1Rm drawmap.c

The - argument specifies a library to be linked with. The compiler driver will
automatically search for something that matches with the library name. For example,
-1Rm would match with Rmlib.def, Rm.def, Rm.lib, libRm.a, and so on. In other
words the compiler driver ensures that the library is found and the user does not need
to supply the full name.

3.2. MORE ADVANCED PROGRAMMING 117

The BSD library is a specid case. It isnot possible to combine BSD compatibility
with the full Posix standard, so the user has to decide whether to use BSD or not.
Typically, the BSD library would be used when porting existing programs, but not
when writing new programs from scratch. To usethe BSD library the option -D_BSD
should be used, for example:

¢ -oprogram -D BSD program.c -1X

Below is a table of the various libraries and how to link with them. The first
column gives the name of the library. The second column gives the option for the
compiler driver which should be used. The third column gives a brief description of
the library’s purpose.

Library How to link Purpose

Kernel automatic basic part of Nucleus

Sydlib automatic client-server interaction

Util automatic miscellaneous Nucleus routines
Servlib automatic building Helios servers

Fault automatic interpreting Helios error codes
Posix automatic main Unix library

Floating Point automatic arithmetic on different processors
Language automatic C, Fortran, Pascal etc. libraries

X -1x interaction with X graphics server
PC graphics -1PCgraph | simplegraphicslibrary

BSD -D_BSD BSD Unix compatibility

Curses -lcurses Unix-style screen control
Termcap -ltermcap | termind characteristics

Debugger -g use the Helios source-level debugger
Resource Management | -IRm control of the processor network

If aprogrammer builds his or her own Scanned libraries then these should not nor-
mally be exported to /heliog/lib. The compiler driver can be made to search directories
other than the default /helios/lib with acommand line option. For example, the follow-
ing line can be used to link with the library matrix.lib held in a separate subdirectory
../mathlibs.

c -o calc -L../mathlibs -lmatrix calc.c

Building Scanned libraries

Libraries can be very useful things so experienced programmers will normally want
to produce their own. Building Resident libraries is rather complicated (see chapter
16, Program representation and calling conventions). Such libraries are normally pro-
duced only by system programmers. On the other hand, building Scanned libraries is
easySupposxe a maths library has four different modules; fourier.c, matrix.c and also
integral.c and simulegn.c. (Remember that a module normally equals a source file.)
The makefile to turn these into a library would look something like this.

Makefile for the maths library

.suffixes:

118 CHAPTER 3. PROGRAMMING UNDER HELIOS

.suffixes: .c .o

.C.O:
c -c $%x.C

objects = fourier.o matrix.o integral.o simulegn.o

maths.lib : $(objects)
c -os@ -j §7

The -j option to the compiler driver instructs it to take the specified object files and
turn them into a Scanned library. This library can now be used as any other library,
with -Imaths.

Some guidelines should be observed when designing Scanned libraries. Most im-
portantly, parts of Scanned libraries are included on a per module basis. If the ap-
plication program needs just one routine in a module of a Scanned library then all of
that module gets included. Hence Scanned libraries consisting of a small number of
large modules tend to be inefficient. In theory every single routine should have its own
module, but maintaining large numbers of small source files is difficult. Hence the
approach normally taken isto split the library into closely-related modules, where al
of the routines relating to a particular area are put into the same module.

For example, the BSD compatibility library contains the following modul es, amongst
others.

1. getopt.c to parse program arguments.

2. inetaddr.c for manipulating internet and socket addresses.
3. popen.c holding the popen() and pclose() routine.

4, sydog.c for writing to the system log.

5. fileio.c for certain file I/O operations.

Suppose aprogram uses popen() and pclose(). This meansthe binary object would
include the third module listed above, but not any of the others. If pclose() had been
put into a different module then the final binary object would need to incorporate two
BSD modules instead of one, and hence it would be larger. For most libraries, the
programmer need not be too concerned about the above, because the libraries will split
quite sensibly into modules anyway. However, occasionally asmall amount of effortin
library design will result in significant improvements in the library usage, and produce
smaller binary objects.

3.2.2 Other tools

So far the only tools described have been the compiler driver ¢ and the two make
utilities. Various other tools are available to help programmers, and this subsection
describes afew of them.

3.2. MORE ADVANCED PROGRAMMING 119

CDL

The CDL compiler can be used when developing parallel programs. It is described in
detail in chapter 4, CDL, and will not be discussed further here.

RCS

The RCS system can be used for controlling complex software systems. It can keep
track of when source files were changed, who changed them, and why the change was
necessary. Hence if a system suddenly stops working the programmers can find out
what has changed to cause this, and find out whether the changes introduced a bug or
simply revealed a bug that had been lurking in the software. A typical software system
goes through many different versions and releases during itslifetime, and RCS allows
the programmers to work out exactly which files were used to build a specific release.

For fairly simple systems implemented by just one programmer RCSis not usually
worthwhile. If multiple programmers are involved in producing the system then some
sort of control mechanism is essential, and RCS serves this need.

AMPP

The AMPP program is a macro pre-processor. It takes a piece of text and transforms
it to adifferent piece of text using certain rules, which can be defined dynamically. Its
main purpose is for writing programs in assembler language, because it can take care
of tedious jobs such as putting the right return instruction at the end of every routine.
However, it could be used more generally for any system that needs to transform text
files.

include

Compiling programs can take a long time. Various factors affect the amount of time
taken:

1. The compiler and other tools may need to be loaded off disc. Seethe description
of cache below to avoid this.

2. The source code has to be loaded off disc, and the binary has to be written to
disc. This cannot be avoided.

3. The code has to be compiled, and this involves some computation by the com-
piling processor. This cannot be avoided.

4. Any header files needed by the program have to be loaded off disc. For many
programs the header files are actually significantly larger than the program itself,
and reading in the header files controls the speed of the compilation.

To speed up compilations Helios has an include disc, a server somewhat like the
RAM disc which contains all the system header files. These files are read-only. This
means that the header files are permanently in memory, and hence disc /0 is avoided.
The compiler driver will automatically use theinclude disc if oneisloaded somewhere
in the network of processors. It should be installed by the system administrator, and

120 CHAPTER 3. PROGRAMMING UNDER HELIOS

typicaly it gets started automatically on a system processor by running it from the net-
work resource map. For more information, please consult the help system for include
and buildinc.

cache

The other problem with compiling software is having to load programs off disc. To
avoid this, it is possible to cache useful programs on a processor, typicaly from the
resource map. For example, the system administrator might put the following into the
resource map.

Processor 07 { ~05, ~06, ~08, ~09; System;
run -e /helios/bin/cache cache cc asm make ampp emacs ls more;

Cached programs will not always be used automatically. To force the system to
use the cached versions of the program the cache should be added to the shell’s search
path in the user’'s .cshrcfile.

set path=(/07/loader . /helios/bin /helios/local/bin)

If al the useful tools are cached, and if an include disc isloaded, then compilation
times can be greatly reduced. Obviously this does involve a cost in terms of processor
memory, so the techniques are useful only if one or more processors in the network
has enough spare memory.

map

map is a simple processor monitoring utility. It can be used to display a processor’'s
memory map, cpu usage, link statistics, and message port usage. When things go
wrong it provides asimple way of determining whether the problem islack of memory
or something else. It can also be used to get a rough idea of a program’s performance
and what bottlenecks may exist. map isuseful only on asingle processor, and there are
other utilities such as domain and network to examine what is going on in a network
of processors.

bison

A common requirement in programming is to read in a text file of some sort, where
the text file has a specific syntax. A compiler isthe obvious example, where the syntax
is that of the programming language, but it is not the only example. A raytracing
application might read a description of the various objects in the picture from a text
file. A text processor reads plain text interspersed with control sequences. Much of a
typical parser can be generated automatically, and bison is a public domain tool which
can help with this. In theory the programmer merely specifies the syntax used in the
file, and bison generates the parser program. In practice everything is, of course, a bit
more complicated but for many jobs using bison can save time.

3.2. MORE ADVANCED PROGRAMMING 121

flex

bison only forms half of a parsing system. The parser produced by bison accepts
tokens. For example, in the C language if and while are keywords which generate
specific tokens. Taking a sequence of bytes as found in afile and turning this into a
sequence of tokens isthe responsibility of alexical analyser, and the flex program can
be used to generate such lexical analysers automatically.

cCc

The compiler driver c is a relatively simple program. It does not compile programs
itself. Instead it works out what has to be done, which files must be compiled to
produce which assembler files, and which of these assembler files must be linked with
the right libraries to produce an executable program. The actual compilation is done
by a separate program cc, which takes atext file containing a C program and produces
an assembler output file. Later on in this subsection there is a description of how to
use cc directly, avoiding the compiler driver.

asm

The assembler asm is also invoked automatically by the compiler driver to do certain
jobs. It can take an assembler source file, generated by a compiler, by AMPP, or very
occasionally by a user, and turns this into a binary version. The assembler file usualy
has a .s suffix, and the output produced has a .o suffix. The source file is significantly
larger than the binary file, and hence keeping these .s files is costly in terms of disc
usage.

On Transputer based systems the asm program serves a second purpose. It can
take assembler files, either as text .s files or binary .o files, and it can link these with
start-up code and the relevant libraries to produce an executable program. Hence asm
acts as the Transputer linker as well as the assembler.

objed

objed is an object program editor which can be used to examine binary executables
and change some of the characteristics. It can take various options plus the file name
of the executable. The -i option can be used to obtain relevant information about the
program.

% objed -i /helios/bin/ls
Image size = 5384

Object type is Program
Name is ’'1ls’

Stacksize = 20000
Heapsize = 4000

The image size is an indication of the size of the program. In addition there will
be a small header at the start of the file, typicaly another 12 bytes. Typical types
are program and module, module referring to a Resident library. Every program has a
name embedded init. When the program starts up theinitial stack for the main program
is set to 20000 bytes. If the program generates a stack overflow message then this has

122 CHAPTER 3. PROGRAMMING UNDER HELIOS

to be increased. Theinitial heap size is set to 4000 bytes. Hence the program is given
4000 bytes for dynamic memory allocation when it starts up, for use by malloc() and
similar routines. Should the program need more than these 4000 bytes then another
4000 bytes chunk will be allocated dynamically, if there is enough free memory in
the processor. If the program should attempt to allocate more than 4000 bytes then a
suitable chunk will be allocated directly from the system pool, bypassing the program’s
current heap. For applications that use a lot of dynamic memory allocation it may
be desirable to increase the heap size. In addition, it may be possible to tune this
heap size to match the actual allocation requirements of the application; this helps to
reduce memory fragmentation. To change stack and heap size once a program has
been compiled, objed can be used.

objed -s50000 -h100000 myprogram

At compile time the compiler driver can be given suitable options.
C -0 myprogram myprogram.c -s10000 -h100000

In addition objed allows programmers to examine their programs and in particular
which Resident libraries and which parts of Scanned libraries have been included. This
is achieved with the -m option.

[}

% objed -m /helios/bin/network

Program : network slot 8 version 1001 size 120 datasize
ResRef Kernel slot 1 version 2000
ResRef SysLib slot 2 version 1000
ResRef ServLib slot 3 version 1000
ResRef Util slot 4 version 1000
ResRef : FpLib slot 5 version 1000
ResRef : Posix slot 6 version 1000
ResRef Clib slot 7 version 1000
Module : network.c slot 9 version 1 size 5580 datasize
Module : popen.c slot 10 version 1 size 672 datasize
Module : string.c slot 11 version 1 size 700 datasize
Module : signal.c slot 12 version 1 size 424 datasize
Module : nuprtnet.c slot 13 version 1 size 2640 datasize
ResRef RmLib slot 24 version 1000

ResRef refers to a Resident library. Module refers to part of the user’s code or to
part of a Scanned library. For modules the size indicates the size of the binary code
of that module, and datasi ze indicates the amount of static data used by that modulein
4-byte words.

3.2.3 Manual compilation

In addition to the compiler driver ¢ Helios has two other utilities, cc and asm, which
are used to build programs. These two programs are invoked automatically by the
compiler driver. ccisthe actual C compiler, it takes some C source code and compiles
it to produce intermediate assembler code. asm serves two purposes. Firgtly, it can act
as a simple assembler, taking textual assembler code as produced by the compiler or
by some other means, and turning it into binary object files. Secondly, on Transputer

172
13

3.2. MORE ADVANCED PROGRAMMING 123

versions of Helios, it can take these binary object files and link them with start-up code
and the necessary libraries to produce executable programs.

There are three reasons why explicit use of the compiler and assembler may be
necessary.

1. Intheearly days of Heliosthe c compiler driver did not exist so al programming
had to go through the compiler and assembler directly. Hence for historical
reasons there are still makefiles that use the compiler and assembler directly
instead of going through the compiler driver.

2. The compiler driver involves a small overhead. Typically it requires about 40K
of memory to run, so if memory istight then a compilation might fail because it
goes through the compiler driver. Also, it is dightly less efficient to go through
the compiler driver, because it involves running an extra program.

3. Some compiler and assembler options are not supported by c.

For these reasons, programmers may occasionally find themselves using the compiler
and assembler directly, and this subsection explains how to use these programs.

The compiler

The C compiler cc takes a single C module and converts it to an assembler file. In the
simplest case the command line would be something like this.

cc test.c -s test.s

The output file produced is an assembler text file and hence it has a .s suffix rather than
the .o suffix for object files. The command line options include:

-d isused to pre-define macros, rather like -D option of the compiler driver. It can be
used in two ways.

Cc test.c -s test.s -dSysteml2
C test.c -s test.s -dSystem=12

The first defines the constant System12 but does not give it a value. Hence it
can be used by #ifdef and similar constructs but not by #if. The second
defines the constant System and gives it the value 12, so this can be used for
both types of pre-processor test. By default the compiler driver automatically
pre-defines three constants, and any makefile using the compiler directly should
also pre-define these three.

cc test.c -s test.s -d_ HELIOS -d_ TRAN -d__HELIOSTRAN

Some of the Helios header files check for these constants and programs are un-
likely to compile correctly if these constants are not defined. Another important
constant iscalled -d_BSD to indicate whether or not the program is being com-
piled for Berkeley compatibility.

124 CHAPTER 3. PROGRAMMING UNDER HELIOS

-i is used to specify the include file search path, in other words the directories to
be searched for header files. With the compiler it is possible to specify different
search paths for header filesincluded by #include” header.h” and #include<header.h>.
The -i option is used for include files inside double quotes. All the include di-
rectories should be listed as a single string.

cc test.c -s test.s -d_ HELIOS -d_ TRAN -d_HELIOSTRAN \
-i,/include/, /helios/include/

When a header fileis supposed to be included the C compiler works as follows.
If the name specifies an absol ute filename, for example

#include "/helios/include/stdio.h"

then the search path is ignored. Otherwise the compiler takes the search path
and, for every entry, appends the specified hame to the directory name. For
example, if the header file to be included is "header.h" then the compiler
would search for it in the current directory (the result of appending header.h
to an empty string), then it would search for /include/header.h, and fi-
naly /helios/include/header.h. Notethat it isimportant that al the
rea directories specified in the search path end with a/ character, or appending
the header name will generate gibberish.

-j islike -i but isused for include files enclosed in <> characters. It is used in exactly
the same way.

-w, -e, and -f control various options in the compiler such aswhich warning and error
messages are suppressed. These do not affect the actual code produced. More
information can be found in the help entry for cc.

-t can be used to specify a particular Transputer processor. The recognised options
include -t8 to compile for T800 or similar processors with a built-in floating
point unit, -t4 for a T414, and -t5 for a T425 or other processor without the
built-in floating point unit but with the dup, bytblt, and similar instructions.
The default is -t4 because under Helios a program compiled for the T414 can
run on any processor.

-s is used to specify the output file for the compiler. This will be an assembler text
file.

-p is used to pass pragmas to the compiler. Pragmas are system specific options to
the compiler. Usually they should not be put into source code because different
compilers will have a different set of pragmas. The -p string should be followed
by aletter and a number. For example, if the option -ps0 is given then thisis
equivalent to the following line in the C code.

#pragma -s0

The most useful pragmas are:

3.2. MORE ADVANCED PROGRAMMING 125

1. -psl can be used to disable stack checking. This will result in a small
decrease in code size and a small speed-up. On Transputers there is no
hardware facility for detecting stack overflows and the associated memory
corruption. Hence the compiler puts extra code into the program to do the
checks in software. Clearly, disabling these checks should be done only
once a program has been fully debugged.

2. -pfOisused to disable the vector stack. This may be necessary when pro-
ducing Resident libraries. A description of the vector stack mechanism is
given in chapter 16, Program representation and calling conventions.

3. -pg0 can be used to suppress the putting of namesinto the binary code. By
default the C compiler will put the names of al routines in the code pro-
duced and this can be used by, for example, the stack error handling. Sup-
pressing thiswill result in reduced code size and possibly asmall speed-up,
but again it should not be used until the program has been fully debugged.

-I is used when building Resident libraries and device drivers. It stops the compiler
from outputting code for certain things including module headers, calling stubs,
and static data declarations. More information is given in chapter 16, Program
representation and calling conventions.

asm

The asm program can be used in two main ways. First it can take one or more assem-
bler text files and produce the binary object files. A command line to do thisis:

asm -p -o module.o module.s

The -p argument specifies that no linking should take place. The assembler text file
module.sis transformed into a binary file module.o containing the same information,
but using up rather less file space. Multiple source modules can be specified. If so then
the assembler produces a single binary file containing the different modules. Thisis
used by the compiler driver to build Scanned libraries.

asm -p -omaths.lib matrix.s fourier.o integral.o simuleqgn.s

Note that the assembler can take a mixture of text .s files and binary .o files. The
latter are unchanged, but are now incorporated into the single binary file. To invoke
the asm program as alinker acommand line like the following should be used.

asm -o a.out /helios/lib/c0.o0 program.o -1l/helios/lib/helios.lib \
-1/helios/1lib/c.lib -1/helios/lib/bsd.lib

Since no -p argument is given the assembler will attempt to link the various parts
together to produce an executable program. The first of these must be some start-up
code. Unless there is some start-up code at a known fixed location within the binary
file the system cannot start the program. For C programs the normal start-up code
is held within the file /helios/lib/c0.0, which calls the routine _main() inside the C
library. Once the C library has initialised itself it will call main() inside the user’'s
program, and the user’s code can now be executed. Languages other than C will have

126 CHAPTER 3. PROGRAMMING UNDER HELIOS

their own versions of this file. In addition there is a file /heliog/lib/s0.0 for use by
special programs which do not need the C library.

The start-up code is normally followed by the user’s own code, as one or more
modules. Any number of modules can be given. Finaly the necessary libraries are
included. helios.lib includes the Kernel, System library, Utility library, Server library,
Fault library, Floating Point library, and Posix library. Thisis normally used for all
programs irrespective of the language. c.lib contains the C library only, so thisis used
only when linking C programs. Again other languages will have their equivalents. The
assembler has a number of other options.

-V puts the assembler into verbose mode. This causes it to report progress at
regular intervals, and produce a summary at the end.

-f specifiesafast link. Thismeansthat the assembler should attempt to optimise
the output produced, hopefully speeding up the code and reducing its size.
This optimisation can take along time for big programs. Thisfacility isused
by the -O option of the compiler driver.

0.0

By default every C program is linked automatically with the C library, because in the
vast majority of cases this is what is required. Occasionally it may be necessary or
desirable to avoid using the C library. One reason would be if the target program
is to run on a processor with very little memory, for example 512K. Another reason
would be for writing simple Helios servers, which should use up as little memory
as possible because they run continuously. Writing such programs can be difficult,
as the application programmer must take care to avoid using any C library routines,
which is a somewhat unusual way of programming. For example it no longer possible
to use stdin, stdout, fprintf(), or anything similar. Only the following C routines
can be used: strlen(), strepy(), strncpy(), strcat(), strncat(), stremp(), strnemp(),
memset(), memcpy(), setjmp(), or longjmp().

For such specia needs Helios is shipped with an alternative piece of start-up code,
namely /helioglib/s0.0. Instead of calling _main() in the C library, this code calls
main() in the user’'s program immediately. Note that the system cannot perform any
initialisation on behalf of the program, so the program has to do more work than is
usual. To link such a program the following command line can be used.

asm -v -f -olockserv /helios/lib/s0.o lockserv.o \
-1/helios/lib/helios.1lib

If the application programmer chooses to use the Posix library but not the C library
theinitialisation is relatively easy. The Posix library contains aroutine _posix_init()
which can do most of the work. The program should start with code something like
this:

#include <unistd.h>

int main(void)

3.2. MORE ADVANCED PROGRAMMING 127

{ int argc;
char xxargv;

{ char xxargvi;
argv = argvl = posix init();
for (argc = 0; %xargvl != (char) NULL; argc++, argvl++) ;

}

/% The normal user program starts here. =/

Using the Posix library but not the C library saves some overhead, but not all. It
is possible to write applications that rely only on the libraries built into the Nucleus:
the Kernel, System library, Server library and Utility library. This would save another
30K of memory, but leaves the programmer with even fewer library routines available.
The start-up for such a program might look something like this.

#include <syslib.h>
#include <task.h>

int main(void)
{ Environ env;

if (GetEnv (MyTask->Port, &env) < Err Null)
{ Iodebug("MyProgram: failed to receive environment") ;
Exit (0x100) ;

}

The environment block env will contain pointers to various vectors, including Strv
for the program’s standard streams, Envv for the environment strings, and Argv for
the program’s arguments. All of these vectors are terminated by a NULL pointer.

Occasionally, particularly for basic system servers such as the RAM disc, it may
be desirable to start programs without an environment at al. This is possible from
theinitrc file or from the network resource map. For example the following two lines
from an initrc file start up two programs, one with an environment and one without.

run /helios/lib/lockserv
run -e /helios/bin/startns startns default.map

The first line runs a lock server without an environment at all. Hence the lock server
does not receive any arguments, environment strings, standard streams, or anything
else: everything must be done the hard way. The second line runs the startns program
with a full environment including the arguments specified on the command line, and
environment strings and standard streams inherited from the init program. Note that if
aprogram is written to not receive an environment at all then it cannot be started from
ashell, because the shell will always attempt to send an environment.

Start-up for programs that do not accept an environment is very easy. main() is
called without any arguments, and the program should not call getenv(). The program

128 CHAPTER 3. PROGRAMMING UNDER HELIOS

is limited in what it can do; for example, it does not have a current directory so it
cannot perform file 1/0 in this directory.

3.3 Servers

This section describes the various ways of interacting with servers. Essentially there
are three ways of interacting with servers. The first is from the command line, for
example:

myprog >& /logger

This would execute the program myprog and send the output to the logger server.
Many Helios servers work in much the same way; for example, it is possible to use a
command like this to redirect output to afilein afiling system or in aRAM disc, to a
window, to the null server, to the error logger, and so on. However, it is not possible
to redirect output to, for example, the mouse server because there is no reason for a

mouse server to read data.

The second way is through C library or Posix library calls, from inside the user’'s
application. Essentially this uses mechanisms defined by existing standards to perform
1/0. For example, the following piece of code opens afile and writesto it.

FILE *str = fopen("hello", "w");
fputs ("Goodbye\n", str);

The third mechanism involves using Helios specific facilities. For example, exist-
ing Unix standards do not describe how a mouse behaves, so a mechanism has been
implemented which is suitable for the sort of hardware that typically runs Helios. If
application programmers use these mechanisms then their code will not be portable to
systems other than Helios. On the other hand, for some applications this is unavoid-
able.

This section begins with a summary of the Posix library 1/O routines, which will
suffice for the mgjority of applications. Next it gives a description of the System li-
brary routines, indicating the similarities and differences compared to the Posix library.
Finally there are descriptions of some of the more common servers available under He-
lios. file systems; the /window server; the /rs232 server; the /centronics server; the
/mouse and /keyboar d servers; the various networking servers; the Nucleus /tasks and
/loader; the null server; the error logger; the real-time /clock server; the lock server;
the raw disc server; X windows; and pipe and socket I/O.

3.3.1 Posix facilities

The Posix library provides a wide range of 1/0O facilities. In fact it has to support all
the I/O facilities that Unix systems might use. Some Posix routines operate on named
objects, for example the unlink() routine acts on one specific named object. Other
routines operate only on open files and require afile descriptor, for example read() can
be used to read data from an open file or server. File descriptors are simple integers
starting at 0. Detailed information on specific routines can be found in the online help
system or in the Helios Encyclopaedia. The most useful routines in the first category
are:

3.3. SERVERS 129

open() isused to open astream to anamed file or server, creating/truncating the object
depending on the exact open mode used. It returns a file descriptor that can be
used by routines such asread() and select().

opendir() islike open() but acts on adirectory instead of afile.

creat() issimilar to open(), and is used to create or truncate afile or server. It returns
afile descriptor.

mkdir() islikecreat() but creates adirectory instead of afile.

unlink() is used to delete afile, provided the application has sufficient access to the
file. The way it interacts with servers depends very much on the server. For
example, deleting the error logger clears its memory, but deleting the mouse has
no effect.

rmdir() islike unlink() but acts on directories rather than files. It israrely useful for
anything other than file systems.

rename() can be used to change the name of afile or object. Note that renaming a
file is not the same as moving it. Renaming it is usually permitted only within
one directory and cannot be used to move a file from one directory to another.
Similarly renaming cannot be used to move afile from onefile system to another.
Such operations should be implemented by making a copy of the file and then
deleting the original.

link() is used to create a symbolic link, in other words an entry in the naming tree
which actually refers to some other object elsewhere in the naming tree. It is
only useful inside file systems.

access() can be used to examine an application’s current access rights to a file or
server. Please note that the Helios protection mechanisms are not the same as
those assumed by the Posix standard, so the information returned by this routine
is not necessarily completely accurate. For more details please see chapter 5,
Compatibility.

stat() fillsinastruct stat data structure with various pieces of information about the
file or server, such as its type, its size, and the time when it was last changed.
Thisis used by, for example, Is - to obtain additional information about a spe-
cific object.

getewd() fillsin abuffer with the name of the current directory. This allows applica
tions to change the current directory with chdir() and restore it later on.

chdir() changes the current directory to that specified. After a call to chdir() any
relative pathnames (that is, ones not beginning with a slash character /), are
relative to the new current directory.

ctermid() puts the name of the current controlling terminal, usually the application’s
current window, into the specified buffer.

130 CHAPTER 3. PROGRAMMING UNDER HELIOS

pipe() takes as argument an array of two file descriptors. The routine creates a new
pipe, with one end allowing read-only access and the other end write-only ac-
cess. File descriptors for these two ends are put into the array. Typically this
routine is called just before starting another program with vfork() and execve(),
to alow the new child program to interact with its parent.

socket() bind(), accept(), connect() and a considerable number of related routines are
used for interacting with sockets, a Unix compatible mechanism for interaction
between programs. Typically these routines are used for interaction between a
client and a server on two different machines attached to the same internet, but
the routines can be used more generally.

The most useful routines acting on existing file descriptions are:

close() terminates a stream connection to afile or server that was produced by open()
or
create().

closedir() applies the same operation to an open directory.

readdir() and rewinddir () interact with an open directory to extract the data.
read() attempts to obtain data from an open file or server.

write() attempts to send data to an open file or server.

Iseek() can be used to control the position within the file for the next read() or write()
operation. Usually this routine has no effect on servers.

select() isavailable to determine whether various streams, either to files or to servers,
have data to be read or can accept more data from awrite.

dup() duplicates an existing file descriptor, returning a new integer.

dup2() is rather more useful. It attempts to take an existing file descriptor and open
a second stream to the object. This second stream should use the file descriptor
specified as the second argument. A typical use for thiswould beinside the child
process produced by vfork(), to overwrite the standard input and output streams
of the child with pipes to the parent.

isatty() takes a file descriptor as argument and checks whether or not the stream
corresponds to an interactive stream such as a window or a seria line. This
is particularly useful to check the nature of the streams inherited through the
environment, for example to check that a particular stream really does refer to a
window and has not been redirected to or from afile.

ttyname() can be used on interactive streams to determine the name of the stream. It
islike ctermid() but can be used on any interactive file descriptor.

fstat() is like stat() but operates on an open file descriptor rather than on a named
object. The information produced is usualy the same, except that fstat() is
more likely to give an accurate file size than stat() with some servers.

3.3. SERVERS 131

fileno() takes a C stream, in other words a FILE pointer such as stdin, stdout, or
stderr, and extracts the underlying Posix file descriptor.

fdopen() performs the inverse operation to fileno(), taking a Posix file descriptor and
turning itintoaC FILE * stream.

cfgetospeed() cfsetospeed(), cfgetispeed(), cfsetispeed(), tcgetattr (), and tesetattr ()
can be used to control window and RS232 servers.

3.3.2 System library facilities

The System library uses three different types of data. Like the Posix library it uses
names of files and servers. However the System library routines do not operate on
namesin isolation. Instead the various routines always involve a context of some sort,
and contexts are specified by Object data structures. Also, instead of using integer file
descriptors to represent open streams the System library uses Stream data structures.
The following code fragment indicates two ways of opening a stream to an existing
filein the current directory.

int fd = open("data", O _RDONLY) ;

Object xcurrent dir = cdobj () ; /* get from environment =/
Stream *str = Open(current dir, "data", O_ReadOnly) ;

In practice the Posix library always uses the current directory as the context Object.
The System library is more flexible in that various different context Objects are pos-
sible. These contexts can be obtained dynamically by calls to Locate() or Create(),
or they may be inherited through the environment through the Objv vector. A C pro-
gram’s environment can be obtained through the getenviron() call.

Both the Object and the Stream data structures are to be found in the header
file caled /heliog/include/sydib.h. The names used in System library calls can be
absolute, in other words beginning with a slash character /, or relative to the context
Object. All of the main routines acting on names require a context Object, with the
exception of L ocate(). The purpose of the context being also to define the access rights
of the application, and unless a suitable context is provided the application will have
only default access to the file or server. Similarly if an absolute pathname is used
then the application will have only default access. This default access may or may not
suffice for the application’s requirements.

The following code fragment illustrates the use of System library calls to create a
new text window, asis done by the run and wsh commands.

Object xcreate window (char xname)
{ Environ xenv = getenviron();
Object *window_server = env->0bjv[OV_CServer];

Object +new window =Create(window_server, name, Type Stream,

Null (BYTE)) ;

return (new_window) ;

}

O I

132 CHAPTER 3. PROGRAMMING UNDER HELIOS

The routine extracts a context Object for the current window server from the envi-
ronment, and creates a new entry in the /window directory. This new entry is equiva
lent to a new window, so another window will actually pop up on the screen. A stream
to this new window can now be opened in order to write to the window or read data
from that window. Alternatively the window can be removed from the screen by acall
to Delete(). The main routines in the System library acting on Objects and names are:

Locate() can beusedintwo ways. If itis given an absolute pathname, with or without
a context, then it checks whether the file or server exists and returns a suitable
Object. The application will have only default access, for example it might not
be able to delete the file. Alternatively the routine can be given a context such as
the current directory and arelative pathname, and it will return an Object with
suitable access.

Create() returns an Object like Locate(), but it is used to create a new file or alter-
natively to truncate an existing one. The exact behaviour depends on the file
system or server. For example, attempting to Create() afile that already exists
isequivalent to truncating it. Attempting to Create() awindow that has the same
name as an existing window will succeed, and the window server will actually
create a new window which has a modified name. For example, if a user exe-
cutes the wsh command twice in arow then there will be two Create requests
for a window called shell and the window server will create two new windows
shell and shell.1. Note that the System library Create() is somewhat different
from the Posix library creat(), which isjust a modified version of open().

Open() is used to establish a stream connection, and it will return a Stream struc-
ture that can be used for calls to Read(), Write() and so on. Like the Posix
open() routine there are various different open modes including O_ReadOnly,
O _Truncate, and O_Create.

Objectinfo() isthe System library’s equivalent to stat(), but the information produced
is somewhat different. Similarly there are routines Link(), Delete(), and Re-
name() which perform the obvious actions.

ServerInfo() can be used to get additional information about a server. For example,
applied to afile server it gives disc usage statistics, and applied to a processor it
gives performance statistics.

SetDate() can be used to change the time stamps associated with afile. It is used by
the touch() command.

Protect() Refing() and Revoke() are used to implement the Helios protection mecha-
nisms.

The routines operating on streams tend to be similar to the Posix ones. The fol-
lowing table indicates the equivalents.

3.3. SERVERS 133

System library Posix equivalent
Read () read ()
Write () write ()
Seek () lseek ()
Close () close ()
GetFileSize() fstat ()
GetAttributes () | tcgetattr ()
SetAttributes () | tcsetattr ()
SelectStream() select ()

The System library’s equivalent to theisatty() routine isto examine the Flags field
of the Stream structure. In addition the System library provides a considerable number
of other routines that are useful.

EnableEvents(), Acknowledge() and NegAcknowledge() are used to interact with
servers
such as mice that generate real time data. An example is given in section 3.3.7
on the mouse server.

Socket(), Bind(), Listen(), Accept(), and Connect() are the System library equiva
lents of the Posix routines for manipulating sockets.

Load() and Execute() can be used to start programs on the local processor or on a
specific processor. These are normally used only by system programs. Applica-
tion programs should use the Posix library’s vfork() and execve() routines for
executing asingle program, and the Resource Management library for executing
paralel applications.

SendSignal(), InitPrograminfo(), and GetPrograminfo() canbeused tointeract with
a running program. SendEnv() and GetEnv() manipulate program environ-
ments. Again these should not normally be used except in system programs.

Malloc() and Free() arethe System library’s equivalent of the Posix memory manage-
ment routines. They offer no advantages over the Posix routines but are useful
for writing certain applications that are not linked with the Posix or C libraries,
as described in the previous section.

Exit() canbe used to force aprogram termination. It works at alower level than the C
library’s exit() routine, bypassing the C library tidying up code. In particular, if
Exit() isused instead of exit() then the application’s buffers may not get flushed
and hence the output files may be incomplete.

MachineName() can be used to determine the full name of the current processor.

AddAttribute(), IsAnAttribute() and similar routines manipulate window and serial
line attributes in a more general way than the Posix mechanisms. These are
described in more detail in section 3.3.4 on the /window server, below.

The vast mgjority of applications should not attempt to use the System library. Its
main purpose isto support higher-level facilities such as the Posix and C libraries.

134 CHAPTER 3. PROGRAMMING UNDER HELIOS

3.3.3 Filesystems

Helios has a wide range of servers offering file I/O of some sort. The main ones are
listed below.

1. The Helios file system can be used on processors in the network with suitable
hardware, for example a SCSI hard disc. Thisisthe main file system supported
by Helios, and in particular it supports symbolic links and the full Helios protec-
tion mechanism. The file system can & so be used with raw disc servers attached
to ahost machine, typically a spare partition on a PC.

2. NFS permits Helios to access remote file systems over the ethernet. NFS is
designed around the Unix file access model so this system does not support
Helios capabilities.

3. Unix I/O servers attached to the network allow accessto any disc drives attached
to the Unix workstation, aswell as NFSdrives mounted on that workstation. The
same limitations apply as for NFS.

4. PCI1/O serversallow accessto the MS-DOSfile system, usually including floppy
disc drives. The MS-DOSfile system islimited in many respects, in particular it
can only support filenames of eleven characters, three of them in the suffix. File
names are not case sensitive and the server will automatically translate namesto
lower case. Symbolic links and protection are not supported at all. Text filesare
held in a dlightly different format, using two characters at the end of every line
instead of one, and Language libraries such as the C library must translate data
between these formatswhen it isread or written. Given an open Stream structure
to afile it is possible to check whether or not it is on an MS-DOS compatible
filing system, as shown below.

#include <nonansi.hs>
#include <stdio.h>
#include <syslib.h>

bool is file msdos (FILE xstr)
{ Stream xstream = Heliosno(str);
/+* convert from C library to system library descriptor =/
if (stream->Flags & Flags MSdos)
return (TRUE) ;
else
return (FALSE) ;

5. The MS-DOS compatible disc server allows Helios to use floppy or hard disc
hardware attached directly to a processor in the network. This server supports
only MS-DOS compatible discs so it is subject to the same limitations as a disc
inthe 1/O server.

6. Every processor in the network can run a RAM disc and thisis loaded automat-
icaly on demand. RAM discs provide fairly fast 1/O, but obviously the datais

3.3. SERVERS 135

not preserved if the machine is switched off or rebooted. RAM discs provide
the same functionality as the Helios file system, including symbolic links and
protection.

7. ROM discs are used occasionaly in stand-alone systems without a host pro-
cessor which boot a Nucleus from EPROM or from disc. The ROM disc may
contain various useful configuration files, allowing the system to start up fully.
ROM discs are read-only, and to change the files it is necessary to rebuild the
ROM disc and then incorporate it into a new Nucleus. This Nucleus then has to
be blown into EPROM or put on the appropriate location of the hard disc.

8. The include disc provides aread-only file system containing the Helios header
files, and is designed to speed up compilation.

File systems essentialy all look alike, providing adirectory hierarchy with files as
the leaf nodes. They permit files and directories to be opened, examined, read, closed,
and so on. Usualy writing to afileis aso permitted. Some file systems support more
advanced facilities such as symbolic links and full multi-user protection.

3.3.4 The/window server

After file I/O in its various forms, the most common type of server used under Helios
is the window server. A typical window supports 80 columns and 25 rows of text
output with various special escape sequences to perform operations such as clearing
the screen or moving the cursor to a particular location. Shells, editors, and most of
the commands supplied with Helios expect to run inside such text windows.

Helios provides multiple windows wherever possible. If it is possible to display
real windows on the screen, for example on a bit-mapped display running the X win-
dow system, then every Helios window corresponds to a separate graphics window on
the screen. If the underlying display provides only text output then Helios can till
provide multiple windows. At any one time only one window will be visible, but one
or more hot keys can be used to switch between windows and bring another one to the
front. Typical keys used for hot-key switching include Alt-F1 and Alt-F2 in the PC I/O
Server, and PageUp/PageDown in the tty server.

A /window server is a directory containing entries for every window. Usually it
is provided in the 1/O server, either on a PC or in a Unix workstation. Thereisaso a
tty server /tty.0, /tty.1 and so on which is used, typically, when logging in to Helios
over the ethernet. Occasionally there will be a/console server which supports only a
single window rather than a collection of windows. The exact server used does not
matter since they al behave in the same way, defined below. Programs inherit the
information they need to interact with the window server through their environment,
just like details of the current directory and the user’s session are inherited. Thereisa
command tty which displays the name of the current window. At the Posix level, the
ctermid() routine provides the same facility.

Creating new windows

Because Helios provides multiple windows wherever possible, it must be able to create
and delete windows. Normally this is done with the wsh and run commands rather

136 CHAPTER 3. PROGRAMMING UNDER HELIOS

than from inside user’s applications, but the facilities are available if desired. The
following code fragment illustrates how it can be done.

/* display a message on an empty window for a few seconds =/
void write to_new window (char xmessage)
{ Environ xenv = getenviron() ;
Object «CServer = env->0bjv[OV_CServer] ;
Object *window;
Stream «*str;

window = Create (CServer, "Message", Type Stream, 0, Null (BYTE)) ;

if (window == Null (Object))
{ fputs ("Error: failed to create new window.\n", stderr);
return;

}

str = Open(window, Null (char), O ReadWrite);

if (str == Null (Stream))
{ fputs("Error: failed to open new window.\n", stderr);
return;
}
(void) Write(str, message, strlen(message), -1);

Delay (10 * OneSec) ;

Close(str) ;
Delete (window, Null (char)) ;
Close (window) ;

}

When the application has finished with the window and all streamsto it have been
closed then the window can be deleted. This can be done from inside the application
or using the rm command. It is not possible to delete awindow if there are still open
streamsto it.

Executing a program inside the new window is slightly more difficult, asit is nec-
essary to patch the environment for the child program. If this is done using Posix
vfork() and execve() then it should be done inside the child process, directly after the
vfork(), by overwriting parts of the environment returned by getenviron(). If itisdone
with Helios calls then the environment has to be built manually anyway. The relevant
fields that must be manipulated are the OV _Console entry of the object vector, and the
first three entries in the streams vector which are the program’s standard 1/0 streams.

Console modes

Windows can be complicated servers to program because they need to operate in ava
riety of different ways. For example, when a shell or an editor needs to read data from
the keyboard these expect to get the data one character at a time, and the characters
should not be echoed. On the other hand if the cat program is used to take some data
from a keyboard and redirect it to afile then the program expects to receive its data a
wholeline at atime and, even it wanted to do so, it would not be able to echo the char-
acters until a whole line had been typed in. To support al the different requirements

3.3. SERVERS 137

windows can be put into various different modes.

Echo mode means that the window server should echo characters typed in to a partic-
ular window. Thisis enabled by default and some applications such as editors
will need to disable this mode.

Pause is used to enable CTRL-S and CTRL-Q handling and is enabled by default.
Hence if a big file is displayed on the screen then the user can type CTRL-S
to suspend output for a file and CTRL-Q to resume it later. Again applications
such as editors need to disable this mode because they use these keys as input.

Rawlnput determines whether characters are read one character at atime or awhole
line at atime. The default is cooked input, in other words line at atime. In
cooked mode the window server also takes care of operations such as backspace
to delete a character. The application does not receive any data until a whole
line has been typed in, terminated by the return key. The input mode controls
the character produced by the return key. In raw mode the return key produces a
carriage return character * \r’, hex 0x0D. In cooked mode the return key marks
the end of arecord, and hence it returns alinefeed character ’ \n’, hex Ox0A.

RawOutput is less useful. By default a window is in cooked output mode which
meansthat any linefeed characters * \n’ , hex OxOA, aretrandated into carriage-
return/linefeed pairs. In raw output mode a linefeed character smply moves the
cursor down one line, scrolling if necessary, but leaves the horizontal position
unchanged.

IgnoreBreak controls some of the behaviour of the CTRL-C key. By default this
option is disabled. If an application enables it then the CTRL-C key will be
ignored compl etely, which may be useful occasionaly.

Breakinterrupt is enabled by default. If enabled then hitting the CTRL-C key will
generate an asynchronous event, probably resulting in the current application
being sent a SIGINT signal and terminating. Applications such as editors need
to disable this mode or they will be unable to process this key.

The Posix and System libraries have similar mechanisms for controlling window
modes, based on an attributes structure. The following code fragment illustrates the
Posix way of disabling echoing on the standard input stream.

#include <termios.h>

void disable echo (void)
{ struct termios attr;

if (!isatty(0))
{ fputs("Fatal: standard input has been redirected.\n", stderr);
exit (EXIT_FAILURE) ;
}

tcgetattr (0, &attr);
attr.c_lflag &= TECHO;

138 CHAPTER 3. PROGRAMMING UNDER HELIOS

tcsetattr (0, &attr);

}

Thetcgetattr () routine extracts the current window attributes into ater mios struc-
ture. These attributes can now be modified locally, and then they can be installed in
the window server by acall to tcsetattr(). The termios structure contains four fields
defining the screen mode: ¢ oflag, c iflag, ¢ cflag, and c_Iflag. At the Posix level,
applications need to check these four sets of flags explicitly and set or clear individual
bits. The following table shows which Helios screen modes correspond to which flags
in the termios structure.

Mode Posix name Flag

Echo ECHO c 1flag
Pause IXON c_iflag
Rawlnput not ICANNON | ¢ _1flag
RawOutput not OPOST c_oflag
IgnoreBreak IGNBRK c _iflag
Breakinterrupt | BRKINT c _iflag

Note that the flags used by Posix to control raw input and output have the inverse
meaning to the Helios ones, so for example to set raw input mode it is necessary to
clear the ICANNON bit. Equivalent code to clear the echo console mode using only
Helios code is shown below.

#include <syslib.h>
#include <attrib.h>
#include <nonansi.hs>

void disable echo (void)
{ Attributes attr;
Stream *str = Heliosno(stdin) ;

if ((str->Flags & Flags_ Interactive) == 0)
{ fputs ("Fatal: standard input has been redirected.\n", stderr);
exit (EXIT_FAILURE) H

}

GetAttributes (str, &attr);
RemoveAttribute (&attr, ConsoleEcho) ;
SetAttributes (str, &attr);

The equivalent routines to tcgetattr () and tcsetattr () are GetAttributes() and the
routine SetAttributes(). The resulting attribute information should not be examined
or changed directly. Instead the System library provides various routines to do this:

IsAnAttribute() returns TRUE if the specified attribute is enabled, FAL SE otherwise.

AddAttribute() enables one specific attribute.

RemoveAttribute() disables one specific attribute.

3.3. SERVERS 139

The recognised Helios attributes for windows are: ConsoleEcho, ConsolePause
and also Consolel gnoreBreak, ConsoleBreakl nterrupt, ConsoleRawl nput and Con-
soleRawOutput. Using the System library has the advantage that the programmer
need not worry about which field of the attributes structure holds the relevant bit, but
it does mean that attributes can be manipulated only one at atime.

Screen size

Text windows comein various sizes. Usually they are all 80 columns wide, but heights
vary from 20 rows to 25 and higher. Hence there must be some way of determining

the current window size, and thisis handled by an extension to the attributes system.

At the Posix level, the termios structure contains two fields ¢_min and c_time.
The first contains the current number of rows, in other words the screen height. The
second contains the number of columns, the screen width. At the System library level,
the Attribute structure contains fields Min and Time with the same meanings. The
following code fragment obtains the current screen size.

void find screen size(int xrows, int xcolumns)
{ Stream x*str = Heliosno(stdin) ;
Attribute attr;

GetAttributes (str, &attr);
*rows = attr.Min;
*Ccols = attr.Time;

Usually the size of awindow isfixed and it is not hecessary for applications to cope
with resizable windows. Helios does not have a mechanism for informing applications
that the window size has changed. If an application needs to cope with such changes
then it must check the current window size at regular intervals, typicaly in a separate
thread that is Fork()ed off.

Output sequences

When an ordinary ASCII character is written to the screen it appears at the current
cursor position, which is advanced one column. If a character is written into the final
column then the cursor stays in that column. However, writing a second character
without outputting a carriage return or linefeed will cause an implicit wrap (the cursor
is moved to the first column of the next row, scrolling if necessary, before the second
character gets written). This behaviour ensures that it is possible to write a character
into the bottom right-hand corner of the screen. There are a number of special output
characters such as linefeed.

0x07 , "\a’,thebell character. Outputting thiswill produce an aert of some sort. It
depends on the window server exactly how this alert isimplemented. If suitable
hardware is available then the bell character will actually cause abell to be rung.
Alternatively the alert might cause the screen to flash.

0x08 , ' \b’,thebackspace character. If the cursor isalready in theleft-most column
then outputting this character has no effect. Otherwise the cursor is moved left

140 CHAPTER 3. PROGRAMMING UNDER HELIOS

one column, without overwriting the character that used to be there. To erase a
character the sequence "\b \b" can be used.

0x09 , " \t",thetab character. Thismovesthe cursor horizontally to the next tabbing
position. Helios defines the tabbing positions to be eight characters apart at all
times. If atab character moves the cursor past the last column on the current
row then the cursor will automatically move to the first column of the next line,
scrolling if necessary.

0x0A , ' \n’,thelinefeed character. This has different effects depending on whether
the window is currently in raw output mode or in cooked output mode. In raw
mode alinefeed character moves the cursor down to the next row, without chang-
ing the column position. If necessary this will cause the window to scroll. In
cooked mode a linefeed character will cause the cursor to move to the first col-
umn of the next row, in other words both column and row positions are affected.

0x0B , ' \v’, the vertical tab character. If the cursor is already in the top row then
this character has no effect. Otherwise it moves the cursor up one row, leaving
the column position unchanged.

0x0C , *\f, the form feed character. This character clears the screen, leaving the
cursor position in the top left corner.

0x0D , " \r’,the carriage return character. This movesthe cursor to the first column
of the current row. If the cursor is already in the first column then this character
has no effect.

In addition Helios windows accept a number of special escape sequences, based
on the ANSI standard x3.64-1979 Additional controls for use with American national
standard code for information interchange. These sequences all start with a control
sequence introducer or CSl. There are two types of CSl. The first consists of single
character 0x9B. The second consists of two characters, escape 0x1B, followed by '[’
0x5B. Both CSls have the same effect. This CSI may be followed by some data,
consisting of numbers separated by semicolons. The sequenceisterminated by asingle
character which specifies the exact operation. For example, to move the cursor to a
particular position on the screen the following code fragment could be used.

void move cursor (int row, int column)
{ printf ("%$c%d;%dH", 0x9B, row, column);
fflush (stdout) ;

Note that the CSl is output as a single character whereas the row and column
numbers are output as plain text. The following escape sequences are supported.

cursor up 0x9B [n] A moves the cursor n rows up, leaving the column position
unchanged. If this would take the cursor past the top of the screen then it sticks
at the top, and the screen does not scroll down.

cursor down 0x9B [n] B moves the cursor n rows down, leaving the column po-
sition unchanged. Thiswill cause the screen to scroll if necessary.

3.3. SERVERS 141

cursor right 0x9B [n] C movesthe cursor n columnsto the right, but not past the
last
column.

cursor left 0x9B [n] D moves the cursor n columns to the left, but not past the
first column.

cursor on 0x9B [n] E movesthe cursor n lines down and to the first column. The
screen will scroll up if necessary.

cursor back 0x9B [n] F movesthe cursor n lines up and to the first column. The
screen will not scroll down.

move cursor 0x9B [m] ; [n] H movesthe cursor to row m column n. The top
left corner of the screen has coordinates (1,1).

erase screen 0x9B J erases al characters on the current row starting at and includ-
ing the current cursor position. In addition it erases all characters on subsequent
rows. If the cursor is currently in the top left corner then this sequence erases
the whole screen, like the form feed character.

eraseline 0x9B K erases al characters on the current row starting at and including
the current cursor position. Other rows are not affected.

insert line 0x9B L inserts a blank row at the current cursor position. Rows below
the current cursor position scroll down and the bottom row is lost completely.
The current cursor position remains unchanged.

deleteline 0x9B M deletes the current row. All rows below the current cursor posi-
tion scroll up, and the bottom row becomes blank. The current cursor position
remains unchanged.

insert characters 0x9B [n] @ inserts n characters at the current cursor position.
The characters currently below and to the right of the cursor are shifted right,
and the ones on the right-hand side are lost. The current cursor position and the
other rows are not affected.

delete characters 0x9B [n] P deletes n characters starting at the current cursor
position. The remaining characters on the current row are shifted left, and blank
characters are placed in the right-most columns. The current cursor position and
other rows remain unchanged.

scroll up 0x9B [n] S scrollsthe whole screen up n rows. Blank lines are inserted
at the bottom of the screen.

scroll down 0x9B [n] T scrolls the whole screen down n rows. Blank lines are
inserted at the top of the screen.

set rendition 0x9B [n] m can beused to affect the way characters are displayed on
the screen. Currently the only features supported are 7 to enable inverse video
and 0 to disable inverse video.

142 CHAPTER 3. PROGRAMMING UNDER HELIOS

For all escape sequences that take arguments, if no digits are specified then the
window server will default to the value 1.

I nput sequences

Window servers usualy provide input from a keyboard as well as output to a screen.
The mgjority of keys will generate the expected ASCII characters. For example press-
ing key a will generate the byte 0x61, which can then be read by an application in the
usual way.

Some keys such as the function keys do not have associated ASCII values. These
keys generate byte sequences similar to the output escape sequences, consisting of a
control sequence introducer which is aways the character 0x9B, followed by one or
more extra characters. The following sequences are commonly available.

For example, pressing function key 5 would generate a sequence of three bytes:
the control sequence introducer 0x9B; the ASCII character 4, 0x34; and the tilde char-
acter ~ Ox7E. Helios runs on a wide range of hardware with a corresponding variety
of keyboards. Applications should avoid relying on particular keys such as PageUp
and PageDown because these may not always be available. For example MicroEmacs
supports CTRL-B, CTRL-F, CTRL-N, and CTRL-P as aternatives for the four arrow
keys in case the arrow keys do not work. See the following table for alist of keys and
the sequences they generate.

Key Sequence
Up arrow 0x9B A
Down arrow | 0x9B B
Right arrow | 0x9B C
Left arrow 0x9B D
Help 0x9B ? ~
Undo 0x9B 1z
Home 0x9B H
End 0x9B 2z
PageUp 0x9B 3z
PageDown 0x9B 4z
Insert 0x9B @
F1 0x9B 0 ~
F2 0x9B 1~
F3 0x9B 2 ~
F4 0x9B 3 ~
F5 0x9B 4 ~
F6 0x9B 5~
F7 0x9B 6 ~
F8 0x9B 7 ~
Fo 0x9B 8 ~
F10 0x9B 9 ~

Special events

Occasionally an event occurs that should bypass the normal flow of events. For exam-
ple, if the user presses the CTRL-C key then that user expects the current application
to terminate immediately, and not wait for al previously typed keys to be processed.
To cope with such requirements Helios provides an asynchronous event mechanism.
In the case of the window server the only supported event is a CTRL-C break event.

3.3. SERVERS 143

Usually the shell intercepts all such events and ensures that the appropriate action is
taken, which usually means sending a SIGINT signal to the current foreground appli-
cation. Hence application programmers do not need to worry about special window
events.

Subsection 3.3.7 on the mouse and keyboard server gives an example code frag-
ment illustrating the use of the events mechanism. Should an application need to
intercept console events then it can use similar code, substituting Event_Break for
Event Mouse.

3.35 The/rs232 server

Even with modern bit-mapped displays there are still uses for serial RS232 lines. Con-
ventional dumb terminals can be attached to such seria ports and, using the tty server
to provide multiple windows, it is possible to have additional users logged in to the
Helios machine through these terminals. Another use involves aterminal emulator to
login to adifferent machine from Helios, as an alternative to the ethernet mechanisms.
A third use isto control adial-up modem.

Typically an RS232 server needs to cope with more than one port. For example, a
common add-on card for a Transputer system would have eight RS232 lines to connect
to dumb terminals. Hence the /rs232 server isimplemented as a directory containing
a number of ports, which can be viewed with the Is command just like any other di-
rectory. There will always be one entry in the directory, caled default. Hence an
application program can always open /rs232/default, without needing to know what
the ports are actually called. If the server supports more than one port (for example,
coml and com2), then there will be three entries in the directory called default, com1
and com2. There will be some way of configuring the RS232 server so that default
maps onto either com1 or com2. Also, it is possible to rename either com1 or com2to
default to change the default port dynamically. The following three shell commands
would make com1 the default port.

% pushd /rs232
% mv coml default
% popd

For example, a user runs the public domain communications utility kermit to con-
nect to a remote machine. Kermit opens the server /rs232/default unless instructed
otherwise, and the RS232 server has been configured to map default onto com2. Hence
the user attempts to connect through com2. However, if it is hecessary to connect
through com1 occasionally then the user can write a shell script which renames com1
to default, runs kermit, and then renames com2 to default again to restore the system.
Alternatively the -1 option to kermit could be used to explicitly specify the port.

Once an application has opened a stream to an RS232 port, the port can be recon-
figured to suit particular needs. In this they are similar to windows. Just as a window
may need to be set to raw input mode to suit the needs of a particular application, so
do RS232 ports. The same termios and Attributes mechanisms are used, but with a
different set of modes. Also, serial ports can operate at avariety of different baud rates
or speeds, and they can generate asynchronous events such as modem rings.

144 CHAPTER 3. PROGRAMMING UNDER HELIOS

Baud rates

RS232 lines can operate at a number of different speeds or baud rates. In theory an
RS232 line should cope with different baud rates for sending and receiving data, but
not all hardware can support this. For example, the 8250 UART chip used in the IBM
PC and compatibles can cope with only a single baud rate for both input and output.
In such acase only the input speed is used, and the output speed isignored.

At the Posix level, the routines cfgetispeed() and cfgetospeed() can be used to
determine the current baud rates. The Helios equivaents are GetlnputSpeed() and
GetOutputSpeed(). Similarly there are Posix routines cfsetispeed() and cfsetospeed(),
and Helios routines caled SetlnputSpeed() and SetOutputSpeed(), to change the
baud rates. The recognised baud rates are:

Baud rate | Posix name | Helios name

50 B50 RS232_B50

75 B75 RS232 B75
110 B110 RS232 B110
134 B134 RS232 B134
150 B150 RS232 B150
200 B200 RS232_B200
300 B300 RS232 B300
1200 B1200 RS232 B1200
1800 B1800 RS232 B1800
2400 B2400 RS232 B2400
4800 B4800 RS232 B4800
9600 B9600 RS232 B9600
19200 B19200 RS232 B19200
38400 B38400 RS232 B38400

Not al hardware can cope with all the baud rates, particularly 19200 baud and
38400 baud, and if an attempt is made to set the baud rate to an illegal value then the
seria port will use some default instead. To detect this, the application should check
the attributes again after installing a new set.

Incoming and outgoing data

Data is sent and received in units of characters which may vary in size from 5 to
8 bits. This size excludes the optional parity bit, described below. The modes for
controlling the size are: Csize 5, Csize 6, Csize 7 and Csize 8. Only one data
size can be active at any one time, so to change the data size it is necessary to remove
the current size from the termios or Attributes structure and then insert the new size.
Determining the current size may involve checking up to four bits at the Posix level, or
up to four callsto IsAnAttribute(). The usual character sizes are 8 bits without parity
or 7 bits with parity.

Dataistransmitted asasingle start bit, followed by the character, an optional parity
bit, and either one or two stop bits. To choose between one and two stop bits, you
should use the Cstopb mode: if set, the RS232 port will use two stop bits; otherwise
it will use only one.

3.3. SERVERS 145

Flow control

Flow control has to be used between the sending and receiving ends of an RS232 line
to control the rate at which data is sent. The recommended approach to flow control
is XON/XOFF. When the sender is transmitting data too quickly and the receiver is
unable to process it quickly enough, usually because its client is not reading the data,
the receiver must suspend the sender for a while to avoid overflowing its buffer. This
is done by sending asingle XOFF character. When the receiver isready for more data,
it should send an XON character. After sending the XOFF character, there may be
some delay before the sender gets a chance to process it so the receiver must be able
to buffer at least another 128 characters.

To control XON/XOFF flow control there are two modes. First, IXON controls
XON/XOFF on output. If thismodeis set and the application iswriting down the serial
line, then the other side can suspend the write by sending an XOFF character. If the
mode is not set then the X ON/X OFF characters may be read by the application. Note
that there may be some considerable delay between the port receiving the XON/X OFF
character and the application reading it, so applications should not normally perform
their own X ON/XOFF handling. The second modeis | X OFF and controls XON/X OFF
oninput. If thismode is set and the port is receiving data faster than the application is
reading it, then the port can send X OFF characters to the other side. If the attribute is
not set then the port may overflow its buffers, and data will be lost irretrievably. Data
may also belost irretrievably if the other side isill-behaved and continues to send data
after an XOFF.

The alternative approach to handshaking is to use the modem status lines. If the
Clocal mode is set then these lines are ignored. If the mode is not set then the server
will use the handshake lines to the best of its ability. However, the exact operation of
these handshake lines is not well-defined and different pieces of hardware are likely
to disagree about their interpretation. Under Helios the Data Terminal Ready (DTR)
line should be kept high whilst there is an outstanding read to be satisfied, allowing
the other side to continue to send data; also, while there is an outstanding write the
Request To Send (RTS) line should be kept high, and the server will send data when
the other side asserts the Clear To Send (CTS) line. However, RS232 servers are free
to interpret these handshaking lines in different ways or ignore them completely, if this
is appropriate for the hardware.

Parity

No less than six modes control the parity behaviour of an RS232 line. The first mode
isParEnb: if this modeis set then the server will use either odd or even parity on both
input and output. Note that it is not possible to use parity on input but not on output
or vice versa, because little if any hardware supports it. If the mode is not set then
no parity is used, which means that the application does not need to worry about the
various parity errors.

The next mode is|strip. If thismodeis set then all data received from the RS232
line is stripped to the bottom seven bits. This is useful if the application is unsure
whether the other side is using seven bits with parity or eight bits without parity, be-
cause it ensures that at least seven bits are correct assuming no transmission errors. If

146 CHAPTER 3. PROGRAMMING UNDER HELIOS

the mode is not set then the top bit is not stripped.

The Par Odd mode is useful only if parity has been enabled: if set, odd parity will
be used; otherwise even parity is used.

The remaining parity modes control the detection of parity errors on input. Note
that the server cannot take any action if there are parity errors on output because this
can be detected only at the other side, and higher levels of protocol must take recovery
action. The attribute InPck controls whether it is the client or the server that should
notice parity errors. if the attribute is not set then any data received with parity errors
is sent to the application program as usual (in effect, the server ignores the parity
error) otherwise the server takes some recovery action depending on modes I gnPar
and ParMrk. If the IgnPar mode is set and the server detects a parity error then the
datareceived in error is discarded; otherwise some specia characters are placed in the
read stream, depending on the remaining attribute, ParMrk. If that attribute is not set
then the data received in error will be replaced by a single byte 0x00, and it is up to
the application to work out whether this 0x00 is the result of a parity error or some
real data. If the ParMrk attribute is set then a parity error will generate two bytes,
a byte OxFF followed by a byte 0x00; this can lead to ambiguity if a character OxFF
is received correctly, possible only if the Istrip attribute is not set, so in that case a
character OxFF received correctly is placed in the read stream as two bytes OxFF OXFF.

Consider thefollowing example: an RS232 port is configured with 7-bit characters,
Par Enb, ParOdd, InPck, ParMrk, not IgnPar, and not Istrip; the data received is
the byte 00111001. Parity is enabled so the first bit (that is, a 0) is the parity bit.
However, odd parity is in use and there are an even number of 1s in the byte, so a
parity error of some sort has occurred. InPck is enabled, so the parity error should be
handled by the RS232 server rather than by the application. Since IgnPar is not set,
the data received should not be thrown away, but instead placed in the read stream as
a special sequence. Because ParMrKk is set the data placed in the read stream will be
two bytes, OxFF followed by 0x00. When the application discovers a byte OxXFF in the
read stream, and the next byte is an 0x00 rather than an OxFF, this means that a parity
error has occurred and it can take whatever recovery action is appropriate.

Thereis arelated error code: if the RS232 server is kept sufficiently busy that it
cannot handle the incoming data as it arrives, and some data is lost before the server
had a chance to buffer it, an overrun error has occurred; thisis indicated to the appli-
cation as the sequence OxFF 0x01.

Break signals

A break signal occurs when the voltage on the RS232 line drops to O for atime, and
is usualy generated when one of the sides wishes to drop the connection. First, the
application must be able to generate a break signal. There are two ways to do this: it
can set the baud rate to BO or RS232_BO (the output baud rate if separate baud rates
are supported on input and output, otherwise the input baud rate), in which case the
server will reset the baud rate to its default value afterwards; alternatively, if the HupCl
attribute is set and the stream to the RS232 port is closed then the server will generate
abreak signal automatically. Typicaly this mechanism is used to shut down a modem
at the end of a session.

The second problem is the detection of a break signal. There are two attributes to

3.3. SERVERS 147

control this. ThefirstislgnoreBreak: if thisis set, any break signals are ignored com-
pletely; otherwise the behaviour isdetermined by the next attribute. If BreakInterrupt
is not set then abreak signal causes a byte 0x00 to be inserted in the read stream, and
the application must distinguish this byte 0x00 from a transmitted byte 0x00 or a byte
0x00 generated by parity errors given the appropriate attributes. If Breaklnterrupt
is set, the server will send a break event to an event handler if the application has in-
stalled one; if the application has not installed an event handler, the break is ignored.
To install such an event handler the application should use an EnableEvents() call
with Event RS232Break as one of the arguments. Subsection 3.3.7 on the mouse
and keyboard servers gives an example of how to use the EnableEvents() mechanism.

Modem interrupts

One of the lines specified in the RS232 protocol is Ring Indicator (RI). Thisis used
mainly by dial-up modems, to inform an application that somebody is trying to dial
in. To detect such events, the application should install an event handler by calling
EnableEvents() with Event M odemRing as one of the arguments.

Thedefault configuration

The default configuration for a Helios RS232 port is as follows:. 9600 baud for both
input and output; 8 bits per character, and one stop bit; parity and Istrip disabled;
XON/XOFFflow control enabled on both input and output with hardware handshaking
disabled; break interrupts enabled, but the client hasto install an event handler; HupCl
disabled. This configuration should work correctly on all implementations.

M ode names

The following table gives the names and fields associated with the various RS232
modes, for both Posix and Helios calls.

Mode Posix name | Posix field | Helios attribute

Csize 5 CS5 c _cflag | RS232 Csize 5
Csize 6 CS6 c_cflag | RS232 Csize 6
Csize 7 Ccs7 c_cflag | RS232 Csize 7
Csize 8 Css8 c _cflag | RS232 Csize 8
Cstopb CSTOPB c_cflag | RS232 Cstopb

IXON IXON c_iflag | RS232 IXON

IXOFF IXOFF c_iflag | RS232 IXOFF
Clocal CLOCAL c_cflag | RS232 CLocal
ParEnb PARENB c_cflag | RS232 ParEnb
Istrip ISTRIP c_iflag | RS232 Istrip
ParOdd PARODD c_cflag | RS232 Par0Odd
InPck INPCK c_iflag | RS232 InPck
IgnPar IGNPAR c_iflag | RS232 IgnPar
ParMrk PARMRK c_iflag | RS232 ParMrk
HupCl HUPCL c_cflag | RS232 HupCl
IgnoreBreak IGNBRK c_iflag | RS232 IgnoreBreak
BreakInterrupt | BRKINT c_iflag | RS232 BreakInterrupt

148 CHAPTER 3. PROGRAMMING UNDER HELIOS

Examples

Suppose an application needs to open an RS232 port, either the one specified or the
default one. This port should operate with 8-bit characters, XON/XOFF flow contral,
and ignoring break events. The application does not know what parity to use so the
8-hit is stripped off and parity errors areignored. The port should operate at 9600 baud
in both directions. The following two code fragments show how this can be done at
the Posix and at the Helios level.

int open port (char sname)
{ int £4;
struct termios trm;

fd = open((name == NULL) ? "/rs232/default" : name, O_RDWR) ;
if (£d4 < 0)
{ fputs("open port: failed to open rs232 port.\n", stderr);

return(-1) ;

}

tcgetattr (f£d, &trm);

trm.c_cflag &= ~(CS5 | CS6 | CS7 | CSTOPB | CLOCAL | PARENB
HUPCL)

trm.c_cflag |= (CS8);

trm.c_iflag &= " (INPCK | PARMRK | BRKINT) ;

trm.c_iflag |= (IXON | IXOFF | ISTRIP | IGNBRK) ;

tcsetinputspeed (&trm, B9600) ;
tcsetoutputspeed (&txrm, B9600) ;
tcsetattr (fd, &trm) ;

return (£d) ;

Stream xopen_port (char sname)
{ Object *port;
Stream *result;
Attributes attr;

if (name == Null (char)) name = "/rs232/default";

port = Locate (Null (Object), name) ;
if (port == Null (Object))
{ fprintf (stderr, "open port: cannot find %$s\n", name);
return (Null (Stream)) ;

}

result = Open(port, Null (char), O ReadWrite);
if (result == Null (Stream))
{ char buf([80];
Fault (Result2 (port), buf, 80);
fprintf (stderr, "open port: failed to open %s, fault %s\n",
port->Name, buf) ;

3.3. SERVERS

Close (port) ;
return (Null (Stream)

}

Close (port) ;

GetAttributes (result,
RemoveAttribute (&attr,
RemoveAttribute (&attr,
RemoveAttribute (&attr,
AddAttribute (&attr,
RemoveAttribute (&attr,
RemoveAttribute (&attr,
RemoveAttribute (&attr,
RemoveAttribute (&attr,
RemoveAttribute (&attr,
RemoveAttribute (&attr,
RemoveAttribute (&attr,
AddAttribute (&attr,
AddAttribute (&attr,
AddAttribute (&attr,
AddAttribute (&attr,
SetInputSpeed (&attr,
SetOutputSpeed (&attr,
SetAttributes (result,

return (result) ;

3.3.6 Thecentronics server

149

) ;

&attr) ;

RS232 Csize 5
RS232 Csize 6
RS232 Csize 7
RS232 Csize_8
RS232 Cstopb) ;

RS232 CLocal) ;

RS232 ParEnb) ;

RS232 HupCl) ;

RS232 InPck) ;

RS232 ParMrk) ;

RS232 BreakInterrupt) ;
RS232 IXON) ;

RS232 IXOFF) ;

RS232 Istrip);

RS232 IgnoreBreak) ;
RS232 B9600) ;

RS232 B9600) ;

&attr) ;

1

1

7

)
) ;
)
)

In addition to serial RS232 ports, some hardware, notably PC I/O processors, can
be equipped with parallel centronics ports. These ports are much easier to control
because centronics ports work at a single speed and there are no configuration options.
The /centronics server consists of a simple directory. This will aways contain an
entry default, like the RS232 server. If there are more than one parallel ports then
the directory will contain additional entries for every port. Again the server usually
provides some mechanism for specifying the initial default, and this default can be

changed dynamically.

% pushd /centronics

% 1s

default lptl
% mv lpt2 default
% popd

1lpt2

A centronics server provides only a simple transport service. Typically the server
would be used by a higher-level printer spooler which is responsible for queueing

users print jobs.

150 CHAPTER 3. PROGRAMMING UNDER HELIOS

3.3.7 Mouseand keyboard servers

Some servers, notably a mouse, can generate data rapidly. This data may need to
be transmitted from the processor with the mouse hardware to the processor using it,
typicaly the processor running the X windows server. If each piece of data were to
be read separately then this would require two messages through the network, a read
request and a reply from the mouse server. This could consume a large proportion
of the available communications bandwidth, significantly slowing down file 1/O and
users parallel applications. To avoid this Helios has an alternative mechanism, the
event system. Essentially an application such as the X server registers its interest in
one or more types of event with the server. Until thisregistration is cancelled the server
will now send al such events directly to the application, without any further requests.
For example, the mouse server will automatically send any mouse events directly to
the X server without having to be asked.

Ancther use for the event mechanism is to handle asynchronous events. For exam-
ple, suppose the user presses the CTRL-C key to abort the current foreground applica
tion. In astrictly synchronous maode this would have no effect until all previous keys
had been read in and processed, and the CTRL-C key itself had been read in. Thisis
rather unsatisfactory. Hence under Helios the CTRL-C key can cause an asynchronous
event to be sent by the window server to whichever application has registered itself,
usually the shell.

The main routine used with the events mechanism is EnableEvents(). Thisroutine
acts on an open stream and sends a message to the server. It takes a second argument,
the type of event to enable. The routine returns a message port which should be used
for low-level message passing.

The following code fragment illustrates the use of the event mechanism to receive
mouse movements:

#include <ioevents.h>
extern void handle mouse_ event (IOEvent =) ;

void start mouse (char xname)

{ Object xserver;
Stream *Str;
BYTE buffer [IOCDataMax] ;
MCB message;
Port incoming;
int rc, i;
if (name == Null (char)) name = "/mouse";

server = Locate (Null (Object), name) ;
if (server == Null (Object))
{ fprintf (stderr, "start mouse: cannot find %s\n", name);
exit (EXIT_ FAILURE) ;

}

str = Open(server, Null(char), O ReadWrite);
if (str == Null (Stream))
{ Fault (Result2 (server), buffer, IOCDataMax) ;

3.3. SERVERS 151

fprintf (stderr, "start mouse: failed to open %s, fault %s\n",
server->Name, buffer);

Close (server) ;

eXit(EXIT_FAILURE);

}

Close (server) ;

incoming = EnableEvents (str, Event Mouse) ;
if (incoming == NullPort)
{ Fault (buf, Result2(str), IOCDataMax) ;

fprintf (stderr,
"start _mouse: failed to enable mouse %s, fault $s\n",

str->Name, buffer);
eXit(EXIT_FAILURE);

}

forever
{ message.Data = buffer;
message.Timeout = -1;
message.MsgHdr.Dest = incoming;
rc = GetMsg(&message) ;
if (rxc < 0)
{ if (((rc & EC Mask) == EC Error) ||
((rc & EC Mask) == EC Fatal))
break;
else
continue;
}
for (1 = 0; i < MsgHdr.DataSize; i += Mouse EventSize)
{ IOEvent xevent = (IOEvent x) & (buffer[i]);

handle mouse event (event) ;

}

/* This is reached only if there is a serious error, */
/+* 1f another program has grabbed the mouse port. x/
Fault (rc, buffer, IOCDataMax) ;
fprintf (stderr, "start mouse: lost contact with %s, fault %s\n",
str->Name, buffer);
Close (str) ;
eXit(EXIT_FAILURE);

In theory several events can actualy be packed together into one single message
of up to |OCDataM ax bytes. Thisis certainly possible with mouse and raw keyboard
servers. Itisunlikely to happen when using the window server’s Event_Break or with
the RS232 server’'s Event RS232Break or Event_ModemRing. The event structure
contains various bits of information. Full details of these can be found in the header
filesioevents.h. For the mouse server the important fields are:

152 CHAPTER 3. PROGRAMMING UNDER HELIOS

event->Mouse.X a 16-bit integer giving the new horizontal position of the mouse.
This integer can take values in the range 0-32767, and if the mouse is moved
too far in one direction this number will wrap. The number is not meant to
refer to areal screen position. However, because the number is absolute rather
than relative it alows the application to recover quickly from any lost event
messages: alost message simply results in a dlightly abrupt jump rather than a
smooth cursor movement.

event- >MouseY is another 16-bit integer giving the new vertical position of the
mouse. It has the same behaviour as the X coordinate.

event - >Mouse.Buttons reflects any changes to the mouse buttons state. It can take
various different values such as Buttons left Down, al defined in the header
file ioevents.h, describing the change to the button state.

The raw keyboard server is needed by systems such as X which need to do all
their own keyboard handling. Normally when akey is pressed the window server will
immediately generate a single ASCII character. If the key is held down then, after
a short delay, the window server will start auto-repeating. When the key is released
the auto-repeat stops but no further data is generated. With a window server it is not
possible to work out which shift keys, control keys, Alt keys, and so on are currently
held down.

The data supplied by awindow server does not suffice for X. Under X it is possible
to hold down a shift key and press a mouse button at the same time, and this may have
adifferent effect from simply pressing the mouse button by itself. Hence the X server
must be informed as soon as a shift key is pressed, and again as soon as the key is
released. To achieve this Helios has araw keyboard server /keyboar d which generates
events, just like the mouse events. The keyboard event structure contains two useful
fields:

event- >Keyboard.Key isascancode for the key. In general thiswill bear no relation
to the ASCII values normally associated with that key, and the application will
need its own tables to convert scan codes to ASCII.

event->Keyboard.What is set to either Keys KeyUp or to Keys keyDown. It in-
dicates whether the key has been pressed or released.

The mouse and keyboard servers are not normally accessed directly by application
programmers. Instead they are used by higher-level graphics software such as the
X server, and application programs should interact with this higher-level software,
typicaly through the X library, to obtain mouse and keyboard data.

3.3.8 Networking servers

The Helios networking software includes various servers: the Network server or /ns
controls the network as awhole; the Session Manager or /sm controls the various users
logged in to the Helios machine; there is a Task Force Manager associated with every
user’s session, with aname derived from the user name and two subdirectories tfm and
domain.

3.3. SERVERS 153

The networking servers support some simple operations. For example, it is possi-
ble to list the contents of the /ns directory with the Is command to find out the names
of al the processors and subnetworks in the machine. Similarly the /sm directory can
be listed to give details of the various users logged in. For anything more complex the
networking software comes with its own Interface library, the Resource Management
library. Applications should go through thislibrary rather than interact with the servers
directly.

3.39 /[tasksand /loader

These servers are part of the Helios Nucleus, so they are present on every processor.
Between them they permit program execution on the processor. Usually this happens
automatically by executing a shell command or CDL script, using vfork() and ex-
ecve() in the Posix library, or using the routines in the Resource Management library.
Accessing /tasks and /loader directly is not usually possible (these servers are pro-
tected). On the rare occasion that direct access is possible and desirable, the following
code fragment indicates how this may be achieved.

#include <syslib.h>

Stream xrun program(Object xprocessor, Object xprogram

)
{ oObject *procman = Locate (processor, "tasks");
Object x*loader = Locate (processor, "loader") ;
Object *code = Load(loader, program) ;
Object *exec = Execute (procman, code) ;
Stream xprogstream = Open(exec, Null (char), O ReadWrite);
Environ env;
Environ *myenv = getenviron() ;
char argv[4];
Object *objv[OV_End + 1];
env.Strv = myenv->Strv; /* inherit standard streams x/
env.0Objv = objv;
env.Envv = myenv->Envv; /% inherit environment strings =/
env.Argv = argv;
argv[0] = objname (program->Name) ;
argv([1l] = "Hello";
argv([2] = "world";
argv([3] = Null (char) ;
objv[OV_Cdir] = myenv->0bjv[OV_Cdir];
objv [OV_Task] = exec;
objv [OV_Code] = code;
objv[OV_Source] = program;
objv[OV_Parent] = myenv->0bjv[OV_Task];

[
[
objv [OV_Console] myenv->0bjv[OV_Console] ;
objv [OV_CServer] myenv->0bjv [OV_CServer] ;

[

[

[

objv[OV_Session] myenv->0bjv[OV_Session] ;
myenv->0bjv [OV_TFM] ;
myenv->0bjv [OV_TForce] ;

objv [OV_TFM]

[

[

[

[

[

objv [OV_Home] = myenv->0bjv[OV_Home] ;
[

[

[

[

objv [OV_TForce]

154 CHAPTER 3. PROGRAMMING UNDER HELIOS

objv [OV_End] = Null (Object) ;
SendEnv (progstream->Server, &env) ;

exec) ;

code) ;

Close (loader) ;
Close (procman) ;
return (progstream) ;

Close
Close

—~ o~ o~ —~

Obviously in areal program it would be necessary to test for errors throughout the
above code fragment to cope with running out of memory or any of the other possible
failures. The routine returns a stream to the executing program which could be used
for InitPrograminfo() and GetProgramlnfo(), or aternatively for SendSignal (), but
not for both.

3.3.10 Thenull server

The /null server is a very simple server. It isloaded on demand into any processor,
so there is no need to start it explicitly from the initrc file or from the network re-
source map. The /null server can be opened like any file. Data written to the server
isdiscarded. Any attempt to read from the server will return end-of-file immediately.
Typically the server is used only from the command line as away of discarding output
while retaining diagnostics. For example the following command compiles a program,
discarding the assembler file produced as output but leaving the diagnostics messages
on the screen.

% cc -D__HELIOS -D__ TRAN -D_HELIOSTRAN hello.c > /null
Helios C 2.03 15/01/91

(c) Copyright 1988-91 Perihelion Software Ltd.

All rights reserved.

3.3.11 Theerror logger

The error logger /logger is designed to provide an emergency debugging facility. The
server is fairly simple and as independent as possible, so that even if other parts of
Helios are failing then it should still be possible to access the error logger. Care must
be taken not to abuse it. Typically any datawritten to the logger appears on the system
console so that the system administrator is informed and can take appropriate action.
Hence it should be used mainly for data that the system administrator needs to know
about.

Within a single-user environment the user is effectively the system administrator,
so these guidelines can be relaxed somewhat. In particular in such an environment it is
possible to use the error logger to help debug applications. Any such debugging code
should be removed from the final product, or the application may be unsuitable for a
multi-user environment.

3.3. SERVERS 155

The error logger is primarily awrite-only server. An application can open astream
to /logger and write to it. Alternatively the BSD compatibility library provides a rou-
tine syslog() that can be used. In addition Helios provides two routines | Odebug() and
IOputs() which interact directly with the error logger by low-level message passing,
bypassing the streams mechanism of the System library. The error logger completely
ignores file positions when writing data, and any data written is always appended to
the end. This prevents accidental or deliberate overwriting of previously logged infor-
mation.

Where possible the error logger will buffer some or all of the data written to it. If
a convenient and reliable filing system is available then it can be made to use a file
for this buffer, and the amount of data held is limited by the size of the filing system.
Alternatively the error logger could buffer afixed amount of datain memory, typically
10K, and overwrite old datawhen it runs out of buffer space. The datain the buffer can
be retrieved simply by opening a stream to /logger and reading it, typically through
cat or more from the command line. If an editor is used to examine the contents of
the logger’s buffer then care must be taken not to write the data back at the end of the
editing session, or the whole contents of the buffer will be appended to the end of the
logger.

Occasionally it may be desirable to clear the contents of the buffer, and this can be
done simply by deleting it, for example by the command rm /logger. This delete does
not terminate the server, it merely empties the buffer.

The exact behaviour of the error logger depends on its implementation. If it is part
of the I/O Server then it can use the host’s filing system as a buffer. The logger can be
configured from the host.con file and at run-time using keyboard control sequences to
send its data to the screen only, to afile in the host filing system, or to both. On the
other hand, if the error logger runs as a separate server within the Helios network then
it will use a buffer in memory to hold the data. In addition it can be configured to use
a user-defined device driver and/or to send data to some other stream, typically afile
or awindow.

3.3.12 Real-timeclock

Some networks may provide a clock service to determine the current time. Helios
networks do not normally have a battery-backed clock attached to every processor.
Hence every processor receives the current time when it is booted up, and maintainsiits
own software clock as accurately as possible. After awhileitis possible for the various
processors to have dightly different ideas about the current time, with a possible drift
of several seconds, but experience to date indicates that this is not a problem for the
vast majority of applications. Should an application need a highly accurate time value
it can examine the /clock server. From the command line this can be done as follows:

$ 1ls -1 /clock
v rwe---da 0 0 Tue Apr 16 15:11:16 1991 clock

Alternatively the Posix stat() or the System library ObjectInfo() routines can be
used. The /clock device normally does have a battery-backed hardware clock asso-
ciated with it so it can use hardware to maintain an accurate time value. However,
accessing the clock server involves at least one request and reply message which may

156 CHAPTER 3. PROGRAMMING UNDER HELIOS

have be routed through the network, with potentially an unpredictable delay, so even
this technique will not give a completely accurate time.

Very occasionally it may be necessary to reset the hardware clock, for example
because the batteries had to be changed. This may not aways be possible from Helios.
For example, if Heliosis hosted from a Unix workstation such as a Sun then the clock
can only be set by the super user on that Sun. If the clock can be set then the date
command may be used to achieve this. please see the Helios Encyclopaedia or the
online help system for details. Alternatively it could be done from inside a user’s
application using the System library’s SetDate() routine.

3.3.13 Thelock server

The Helios lock server can be run in a network to permit locking of resources between
different applications. To avoid ambiguity there should only ever be one lock server
in a network, and typically this would be run from either the initrc file or from the
network resource map. Essentially the lock server provides only two facilities: create
named lock and delete named lock. The following code fragments give routines which
interact with the lock server.

bool Lock (char xname)
{ Object xlock_server = Locate (Null (Object), "/lock");
Object =*lock;

if (lock_server == Null (Object))
{ fputs("Lock: there is no lock server in this network.\n",
stderr) ;

exit (EXIT_FAILURE) ;

}

lock = Create(lock server, name, Type Stream, 0, Null (BYTE)) ;
Close(lock server) ;
if (lock == Null (Object))

return (FALSE) ;
else

{ Close(lock);

return (TRUE) ;
}
}

void Unlock (char xname)
{ Object xlock server = Locate (Null (Object), "/lock");
Object xlock = Locate(lock server, name);

(void) Delete(lock, Null (char)) ;
Close (lock) ;
Close (lock_server) ;

}

The first routine attempts to create the named lock, returning TRUE for success or
FALSE for faillure. The probable cause of failure is that there is already alock with

3.3. SERVERS 157

that name, although other failures such lack of memory in the lock server are aso
possible. The second routine removes the named lock.

3.3.14 Rawdisc servers

The /rawdisk server provides raw access to one or more hard discs. A raw disc server
has no file system, directory structure, or anything else. It appears as a simple file
of, perhaps, 40 megabytes. This file can be read from or written to only in blocks of
512 bytes, in other words the sector size. Typically araw disc server can be used to
implement a higher-level filing system. For example in a PC hosted system one or
more spare partitions on the PC hard disc can be turned into raw disc drives, and the
Helios file system can then be run using these partitions. Another possible use for a
raw disc server isfor applications which require very rapid 1/O, such as databases, and
which can organise the whol e disc themselves to meet the application’s requirements.

A /rawdisk server isadirectory of one or more partitions. Each partition is treated
completely separately, so for example it is possible to run the Helios filing system in
one partition /rawdisk/0 and use a second partition /rawdisk/1 for an application such
as a database. The partitions are named 0, 1, and so on.

Objectinfo() on araw disc partition gives the size of the partition in sectors rather
than in bytes, each sector being 512 bytes. The same information is produced by Posix
stat() and fstat(). For example the Is command might produce the following output.

o°

ls -1 /rawdisk

2 Entries
f rw----da 0 41668 Tue Apr 16 09:53:16 1991 O
f rw----da 0 20834 Tue Apr 16 09:53:16 1991 1

In this case the /rawdisk server contains two partitions 0 and 1, and these have size
of 20 Mbytes and 10 Mbytes respectively. The sizes are given in sectors rather than in
bytes because thisinformation is likely to be clearer.

The stream operations supported by the rawdisk server areread(), write(), Iseek(),
and close(). 1/0 must always involve multiples of 512 bytes, for example it isillega
to attempt to read 1000 bytes.

3.3.15 The X window system

To interact with an X server application programs should use the X library, and pos-
sibly higher-level libraries such as the toolkit, the Widget library, Motif, and so on.
Applications should never interact directly with the X server, for example by opening
sockets and writing to it. For more information on X see the Helios X window system
manual.

3.3.16 Pipeand socket /0

There are two correct ways to create a pipe. The first involves letting the system do it
for you. For example, when starting a parallel application using CDL or the Resource
Management library, the system will automatically create the necessary pipes and the
individual programs will inherit these files in their environment. Similarly executing

158 CHAPTER 3. PROGRAMMING UNDER HELIOS

the command psall | more causes the shell to create the pipe, and the two programs
inherit this pipe in their environments. The second correct way is to use the Posix
library’s pipe() routine shortly before executing a child program. The child program
inherits the pipe in its environment. Thisisillustrated by the following code fragment.

/+ Run a child program, and return a C FILE pointer *x/
/* that corresponds to a pipe to that child’s standard =/
/% input. The child program is identified by the first =/
/% entry in the argument vector. */
FILE xrun_child(char x+argv)
{ int pipe descriptors([2];
FILE «*result;
int pid;

pipe (pipe descriptors) ; /% create the two ends of the pipe x/

pid = vfork();
if (pid == 0)
{ /+ Executing in the child process x/
/+ Make a copy of the pipe’s read-only end. x/
dup2 (pipe descriptors[0], 0); /+ overwriting stdin =/
/+ and close the unnecessary file descriptors =/
close (pipe descriptors([0]) ;
close (pipe descriptors|[1]) ;

/+ finally start the child program. x/
execvp (argv[0], argv);
}
else
{ /+ Executing in the parent process. x/
/* Turn the write-end of the pipe into a C x/
/+ FILE » stream. */
result = fdopen(pipe descriptors[1], "w");

/+ and close the unnecessary file descriptor. =/
close (pipe descriptors|[0]) ;
return (result) ;

}

To use a pipe the application should call the Posix library’s read(), write(), close()
and select() routines. Pipes are not quite synchronous, so if one end writes to a pipe
before the other end reads then a small amount of data can be buffered by the system.
The exact size of the buffer is not defined. Using language-level 1/0 on pipes, for ex-
amplethe Clibrary’s fprint() routine, isfine provided communication isone way only,
in other words if the application involves a simple pipeline. For a more complicated
arrangement language-level 1/0 can give problemsin some cases because the C library
itself will perform some buffering. This subject is discussed in more detail in the CDL
chapter.

The correct way to use sockets, either within aHelios network or over the ethernet,
is to use the Posix calls socket(), accept(), connect(), and so on. System library
equivalents are available if necessary, but these provide little or no extra functionality.
The socket calls return file descriptors which should be used in the same way as pipe

3.4. PROTECTION: A TUTORIAL 159

file descriptors. See chapter 6, Communication and Performance, for amore complete
description of pipe and socket usage.

3.4 Protection: atutorial

This tutorial show how you can use the Helios protection mechanism to protect your
files from other users, and how you can then use it to give other users limited accessto
your files. It takes the form of an example session which may befollowed by the reader
at his own machine. Only the Helios File Server and the /ram server can support the
full protection mechanism. For simplicity this tutorial uses only the /ram server so
you can follow it on your own machine even if you do not have the file server.

We will start by moving into the ram server and creating two user directories:

% cd /ram
% mkdir dale bob

We now change the prompt in this shell and start another shell in another window:

[}

% set prompt="dale: "
dale: wsh

In the new window we also change the prompt, and also change our current direc-
tory:

[}

% set prompt="bob: "
bob: cd bob

Now go back to the first window. If you are using the PC window system you can
do this with ALT-F1, if you are using Windows 3, your host is a SUN workstation, or
if you are using the Helios X Window server, you should move the mouse and click
on the window. In the latter cases you should now rearrange your windows so you can
see both at once. From now on the window you should type the commands to will be
indicated by the prompt.

We start by moving into the appropriate user directory, and print out the /ram
server's access matrix:

dale: cd dale
dale: matrix /ram
d rwv----a:rw-X----:¥YwW--y---:¥----z-- ram

The matrix command simply prints out the access matrix associated with the file or
directory given, in this case /ram (from now on the word object will be used where it
does not matter whether we are talking about afile or a directory, or even some other
object like a processor, pipe, task or task force). The matrix can be thought of as an
array of bits, eight wide by four deep, making 32 bitsin all. The matrix for /ram is:

column:; rr- w v x y z d a
row v. 1 1 1 - - - - 1
row X: 1 1 - 1 - - - -
row y: 1 1 - - 1 - - -
row z. 1 - - - - 1 - -

160 CHAPTER 3. PROGRAMMING UNDER HELIOS

Each of the four rows is named by one of the letters v, x, y and z. Each of the eight
columns corresponds to an access right, and is also named by letters. Four of the
columns have the same meaning in all objects: r for read access, w for write access, d
for the right to delete the object, and a for the right to alter the object’s access matrix.
The remaining four columns depend on the type of the object to which the matrix is
attached. For files, only one of these columns is used, and is used to denote execute
permission, with the letter e. For directories the remaining four columns correspond
to the four matrix rows, v, x, v and z. These are used to select which rows of the
matrices attached to objects inside the directory will be used to control access to those
objects; exactly how this works will be shown later.

In the output of the matrix command shown above the letter d indicates that this
is a directory. Following this it prints each row of the matrix out in the order v, x, y
and z separated by colons. The bits set in each row are shown by the letters which
correspond to the columns they occupy; unset bits are shown by a hyphen. Hence, in
this matrix, the /ram server has bits set in the v row to give read, write and alter access
to the directory itself, and v access to objects inside the directory. When typing in a
matrix, or any set of accessrights, it is not necessary to follow this format exactly. The
hyphens may be left out, and the column letters may be given in any order. So, the

matrix above may be written as awrv : wxr : ryw : zr without confusion.
We can change the access matrix of an object with the chmod command:

dale: chmod v=rz x=rza y=rz /ram
dale: matrix /ram
d r----z--:r----z-a:¥----2--:Y----2-- ram

The arguments to chmod are similar to the arguments of the UNIX command of
the same name. The argument v=rz alters the v row of the matrix to just have bits set
in the r and z columns. The same effect could have been achieved with the sequence
v-wva v+z which causesthew v and a bits to be cleared and the z bit to be set?

The access matrix controls the access rights that users have over objects just like
the mode bits in UNIX. The four rows may be though of as corresponding to similar
access classes, where the v row controls the owner’s access rights, the z row controls
the access rights of the general public, and the x and y rows can perform the same job
asthe group rights. However, unlike UNIX modes, the access rights auser gets are not
fixed only by the matrix in the object, but can also be influenced by it parent directory,

and any other directory the user must pass through to access the object.
Asan example, let us create afile and look at its access matrix:

dale: echo "The owls are not what they seem" >audrey
dale: matrix audrey
f rw----da:rw----d-:rw------ r------- audrey

Thisisthe default matrix for any file, it givesthe owner full access rights while the
other classes get successively fewer rights until the general public can only read it.
Directories also have a default matrix:

dale: matrix .
d rwv---da:rw-x--d-:rw--y---:r----z-- ram

“See the Helios Encyclopaedia entry for chmod for more details.

3.4. PROTECTION: A TUTORIAL 161

Asfar asthe r, w, d and a bits are concerned, this follows the same pattern as for
files. Additionally, each row in the matrix has its own corresponding bit set (so the v
row hasabit set in the v column). This simply propagates the same access rights down
into the objects in this directory. So, the directory owner, whose rights are controlled
by the v row, will aso have his rights controlled by the v row in the matrices of the
objects inside the directory.

A user’s current access rights to any object can be examined using the access
command:

dale: access .

d rwv---da /00/ram/dale

dale: access audrey

f rw----da /00/ram/dale/audrey

This produces output similar to matrix except that only one set of access rights
are printed out and not four matrix rows. Here, the user has full access to both his cur-
rent directory and to the file audrey. However, if the same commands are executed,
on the same objects, but using a different way of naming the objects, a different result
will be seen:

dale: access /ram/dale

d r----z-- /00/ram/dale
dale: access /ram/dale/audrey
fr------- /00/ram/dale/audrey

By using absolute path names, rather than naming them relative to the current
directory, we get only the public access rights. The reason for thisis that we changed
the matrix of /ram to contain only r and z bitsin al itsrows. This meansthat whatever
we started with, our access rights to the /ram directory will aways be just rz:

dale: access /ram
d r----z-- /00/ram

The r bit means that we are only allowed to read the directory, we are not allowed
to create new entries, delete it, or change its matrix. The z bit means that for any
entries in the directory /ram, we can only have the access rights contained in their
z matrix rows. In the directory dale thisrow isr----z--, so we get exactly the
same set of rights as for /ram, and in particular, we only get z access rights to the file
audrey, whose z matrix row isr------- , meaning that we can only read it.

The reason why we get different access results is that the Helios shell possesses a
capability for the directory dale. A capability isaset of access rightsfor aparticular
object. The shell’s capability for the directory dale forms part of its current directory
(which can be changed with the cd command). Whenever the shell runs a command
it passes this capability on to it. The access rights to any object named relative to
the current directory are calculated relative to the set of rights stored in the capability.
Whenever a capability for an object is obtained, it effectively takes a snapshot of the
access rights which are then in force. If the matrix is subsequently changed, this does

not affect the rights stored in the capability, which are still enforced.

In our example the shell’s capability for dale contain the rights rwv- - -da, ex-
actly the contents of the matrix’s v row (which is where it came from). Because the
v bit is set, access to objects within dale will use their v matrix rows, so access to
audrey iSrw- - - -da which is exactly what we saw earlier. However, if a program

162 CHAPTER 3. PROGRAMMING UNDER HELIOS

has a capability for an object, its access rights are derived only from the capability and
not from the matrix in that object at all. So, if we change the matrix attached to dale,
we will not affect the shell’s access rights at all, but we will affect the rights of other
users:

dale: chmod v-rwd x-d z-rz .

dale: matrix .

d --V----a:rW-X----:1FW--y---:1-------~- dale
dale: access .

d rwv---da /00/ram/dale

dale: access /ram/dale

could not locate /ram/dale: c6040000

Here we remove some rights from the matrix, yet our accessto dale has remained the
same. In particular, note that while al d bits have been removed from the matrix, we
still have d accessto dale. We have also taken the opportunity to remove all bitsin
the z row of dale’smatrix. Because /ram restricts all accesses to just the z category,
this eliminates all external accessrightsto dale.

Meanwhile, in the other window, that shell has a capability for directory bob but
has no access to directory dale or any of its contents:

bob: access .

d rwv---da /00/ram/bob

bob: mkdir laura

bob: access laura

d rwv---da /00/ram/bob/laura

bob: access /ram/dale

could not locate /ram/dale: c6040000
bob: access /ram/dale/audrey

could not locate /ram/dale: c6040000

The directory bob can also be protected against the outside world:

bob: chmod z-rz .
bob: matrix .
d rwv---da:rw-xX--d-:rw--y---:-------- bob

Now neither bob nor dale is accessible from the outside. This can be shown as
follows:

bob: shell

% cd /helios

% 1ls /ram

/bob /dale

% access /ram/bob /ram/dale

ls: could not locate /ram/bob - c6040000
ls: could not locate /ram/dale - c6040000
% exit

bob: access .

d rwv---da /00/ram/bob

It is necessary to create a new shell because the original shell’s capability is now the
only access route to bob, and the cd command would have destroyed it. The new shell
does destroy its copy, and thus cannot ever access bob again. Only when the new shell
is exited and the original shell used can access be regained to bob.

3.4. PROTECTION: A TUTORIAL 163

So far we have seen how access matrices can be used to control access rights
to abjects, and how users may protect their directories against outside access. The
other side of the coin is to allow users to share information in a controlled way. The
mechanism for doing thisis for one user to pass the other a capability for the object to
be shared.

A capability is normally stored in an interna form by Helios, it may be converted
into a printable string by the refine command:

bob: refine laura
@hmnnmfocamhedhmg/00/ram/bob/laura

The result of the refine command is a string which starts with an @ character,
encodes the capability in the next 16 characters, and ends with the full name of the
object. This may be used aimost everywhere a file name may be used and effectively
bypasses any access matrices to give direct access to the object. (Note that the string
you will get will look different from the one shown above).

The refine command gets its name from the fact that it can alter the access rights
carried in the capability. To do this it takes an option argument similar to that given
to chmod except that since it is changing only one set of access rights it needs no row
letter (see the Helios Encyclopaedia for more details). We can see how this works as
follows:

bob: access ‘refine laura‘

d rwv---da /00/ram/bob/laura
bob: access ‘refine =rx laura‘
d r--x---- /00/ram/bob/laura

In the first command the standard access rights are encoded in the string produced
by refine. Inthe second example the access rights are set to rx, which is confirmed

by the access command.

Now that a suitable capability has been manufactured, it is necessary to transfer
it to dale. Since the directory dale isinaccessible, it is not possible to transfer it
directly. A simple option would be for user bob to print out or write down the string
and passit to user dale who could then typeitin. An equivalent isto put it somewhere
they can both access. For the sake of this example wewill useafifo.

bob: refine =rx laura >/fifo/to.dale
bob: echo "leland did it" s>laura/dream

Here we generate the encoded capability string and write it out to a fifo. Before
leaving bob, we put the information he wants to share into the directory laura.

Back with dale, we can see that the information is ready for us by examining the
fifo server:

dale: 1s /fifo

to.dale

dale: cat /fifo/to.dale > from.bob
dale: cat from.bob
@jaapjncioahedhmg/00/ram/bob/laura

We start by copying the fifo into alocal file. The contents of thisfileis simply the
string produced by refine. It can be used as it stands from the shell:

164 CHAPTER 3. PROGRAMMING UNDER HELIOS

dale: 1ls ‘cat from.bob'
dream

A more convenient way of using it, however, isto useit to create asymbolic link.
A symbolic link is nothing more than a capability stored in the file system. It can then
be used just like a normal file or directory and access through it is totally transparent
to the user.

A symboalic link is created with the In command:

dale: 1n ‘cat from.bob' laura
dale: 1s
audrey from.bob laura@

In listings symbolic links are terminated with an @ character to distinguish them,
this character should never actually be typed.
Now, user dale can access directory 1aura in the normal way:

dale: access laura

d r--x---- /00/ram/bob/laura
dale: 1ls laura
dream

dale: access laura/dream

f rw----d- /00/ram/bob/laura/dream
dale: cat laura/dream

leland did it

Because bob gave dale a capability with just the r and x bits set, dae is only
alowed to read the directory 1aura, and has x access to objects within it. Hence, the
access rights to 1aura/dream show only rw----d- which is the x row of that
file'smatrix. Like the shell’s current directory capability, this symbolic link capability
is independent of any subsequent alterations to the access matrix of 1aura by user
bob, but bob can still affect dale's rights to objects within the directory 1aura by
changing their matrices. For example, bob can stop dale reading 1aura/dreamas
follows:

bob: chmod x= laura/dream

This setsthe x row of the matrix of laura/dreamto al zeros, so if dale repeats
his last command:

dale: cat laura/dream
cat: Can’'t find ‘laura/dream’

So far we have restricted ourselves to using just one of the access classes v, x, y
or z. However, the access rights allow any combination of these four bitsto be setin a
capability or amatrix row. It is therefore possible for a matrix row to specify atotally
different access class for entries inside the directory to that for the directory itself.

For example, suppose user bob has a change of character and wants all users to
be able to both read and write al his files and directories. Rather than go through
his entire file space dtering the z row of al his matrices, he can do this smply by
changing the z row of his home directory:

bob: chmod z=rwy .

bob: matrix .

d rwv---da:rw-x--d-:rw--y---:rw--y--- bob
bob: access /ram/bob/laura

d rw--y--- /00/ram/bob/laura

3.4. PROTECTION: A TUTORIAL 165

Now the z row of bob allows read and write access, but it also selects y access, not
z, to objects within the directory. So the accessrightsto laura are now rw--y- - -.
Effectively, the y matrix row for all objects in bob's file space now controls public
access and not the z row.

It is also possible to select more than one matrix row, for example:

bob: chmod z+x .

bob: matrix .

d rwv---da:rw-x--d-:rw--y---:rw-xy--- bob
bob: access /ram/bob/laura

d rw-xy-d- /00/ram/bob/laura

Now, public access to bob selects both the x and y rows from the matrices of
subentries. When more than one row is selected, the access rights from each rows are
simply combined. In this case public accessto laura contains rw-x--d- from the
x row and rw- -y - - - from the y row.

This ends this example session. You will need to reboot your system if you want to
use the /ram server again since it is irrevocably protected. A more detailed technical
description of the protection mechanism may be found in chapter 14, Protection.

166

Chapter 4

CDL

The Component Distribution Language, or CDL, the language which enables you to
carry out parallel programming under Helios, is described in this chapter. The pur-
pose of CDL isto provide a high-level approach to parallel programming, where the
programmer defines the program components and their relative interconnections and
alows Heliosto take care of the actual distribution of these components over the avail-
able physical resources.

This chapter contains six sections. Section 4.1 describes the underlying model
behind the design of CDL. Section 4.2 describes the language syntax and explains how
to execute your parallel programs. Section 4.3 provides some detailed examples and
programming guidelines. Section 4.4 tells you about CDL farms and how to balance
the workload between components. Section 4.5 is devoted to miscellaneous problems
and design issues. Appendix B provides additional reference material (the allocation
of streams).

4.1 The CSP model for parallel programming

There are a number of different models of paralel programming. Different models
may be appropriate for different applications, or may be better suited to different hard-
ware. Communicating Sequential Processes or CSP is possibly the most popular at
present: in addition to the Helios CDL language, Transputers in general and the occam
language in particular are based on it. The basic ideais very simple. An application is
decomposed into a number of smaller parts, or processes. Each process receives data
from a source (which is usually another process), does some work on it, and outputs
the results to one or more other processes.

Figure 4.1 illustrates such an application, consisting of eight black boxes or ‘se-
guential processes' . Each box obtains data from one or more sources, manipulates this
data, and outputs results to one or more other boxes. Parallelism is possible because
each of these black boxes can run on a different processor. The boxes interact with
each other only through the communication channels.

The occam language implements this scheme at alow level: every black box corre-
sponds to a single Transputer process, and every communication channel corresponds
to an occam channel. Some of these channels are actually Transputer links, so that
the process is communicating with a process on an adjacent Transputer. Note that the

167

168 CHAPTER 4. CDL

—>
data / \
from |, L, L]
file
\ T \ l output
— device

Figure 4.1 CSP

user has to allocate processes to Transputers and specify the interconnecting channels
correctly, using the placement facility, which causes problems if the network size or
topology changes. If the user isforced to work out the placement, performance isim-
proved. Thisis because the user will generally have quite a good knowledge of what
datawill be transferred across the channels. The occam language can be thought of as
alow-level approach to parallelism , alowing the user to get optimal performance at
the cost of greater programming effort.

The Helios approach is to work at a much higher level. Under Helios every black
box is known as a task, and the application as awhole is known as atask force. Each
task is a separate program, compiled and linked separately, and quite possibly de-
bugged separately. Theindividual tasks may be written in any appropriate or preferred
language. In agiven task force some tasks might be written in C, othersin FORTRAN,
others still in Pascal or any other language. If the tasks agree on what data to com-
municate, there is no problem. In theory it is aso possible to run different parts of a
task force on different types of processors for example, to run all the tasks requiring
integer arithmetic only on T414s and all the ones requiring floating point on T800s.
Eventually this could be generalised so that one part of the task force runs on, for ex-
ample, anetwork of Intel ! i860s and another part of the task force runs on a network
of Transputers. This assumes that there is a communication facility between the two
networks which has sufficient bandwidth. Communication between tasks takes place
over Unix style pipes, which are set up automatically by the Task Force Manager when
the task force is executed. This means that the standard /O calls can be used for the
communication between tasks, and there is no need to add new language constructs to
support parallelism.

The purpose of the CDL language isto alow the user to specify atask force. This
includes all the component tasks in the task force, the various communication paths
between them, for example the pipes to be created, and the particular requirements
of individual tasks. The CDL language alows the user to specify task forces of an
arbitrary topology. Normally the task force is completely independent of the size and
topology of the Transputer network. Helios takes care of mapping the task force onto
the available resources. The user can choose to do part or all of the mapping by hand,
modifying the CDL script appropriately if the network changes.

' Registered trademark of the Intel Corporation

4.2. THECDL LANGUAGE 169

Y Y

Figure 4.2 Tasks and processes

There is one other point which is worth noting. Consider the two black boxes in
Figure 4.2. The one on the left represents an ordinary sequential task with one input
and two outputs. The task on the right consists of five separate Transputer processes
(Helios threads), al within the same task and hence on the same processor. Both
boxes take the same input and produce the same two outputs. As far as the task force
as awhole is concerned, the two are indistinguishable. Under Helios, threads can be
Fork()ed off dynamically, if required.

4.2 TheCDL language

This section describes the various constructs available in the CDL language, and how
to execute task forces defined using CDL. Like most languages CDL is best taught by
example. A typical CDL script might look like this:

component master { memory 500000; }
master (<> slave, <> slave, <> slave, <> slave)

This CDL script defines a task force of five tasks. This includes a program called
master and four invocations of the program called slave. Thetask force is depicted in
Figure 4.3. Each task isacomponent of the task force. In the following discussion, the
terms task, program and component are synonymous. The CDL script consists of two
parts. the component declaration(s) and the task force definition. The former describes
requirements of particular components in the task force. The latter describes the task
force as awhole, that is, how the components interact.

A simple introduction to CDL can be found in the Helios Parallel Programming
Tutorial .2

421 How toexecutetask forces

The Helios Task Force Manager is the program responsible for mapping and executing
task forces. This program is a Helios Server, which obeys the General Server Protocol
and hence some of the standard commands can be used on it. For example, 1s /tfm
would list al the task forces currently running, and rm /tfm/job.6 can be used

2Published by Distributed Software Limited.

170 CHAPTER 4. CDL

slave|

component master { memory 500000; }

master (<> dave, <> dlave, |
<> dave, <> dave) master —_>

dave

slave|

slave|

Figure 4.3 A simple task force

to attempt to kill off atask force: whether or not it will succeed depends mostly on
the programs making up the task force. There are two ways in which the user can
interact with the Task Force Manager to execute new task forces. the shell and the
CDL compiler.

There are two types of binary object to consider: programs and compiled task
forces. A program is produced by, for example, compiling a C program. A compiled
task force can be produced by running the CDL compiler on a CDL script. The Helios
shell can operate in two modes. a Unix mode and a CDL mode. In the Unix mode
the shell behaves like the Unix C shell, and any commands are executed on the same
processor as the shell. These commands must be simple programs, not compiled task
forces. To switch from Unix to CDL mode and vice versa the user should use set cdl
and unset cdl. It is possible to have multiple shells running at the same time, each in
a separate window, with some shells running in Unix mode and others in CDL mode.

In CDL mode the shell will send all commands, whether programs or compiled
task forces, to the Task Force Manager for execution, and in this way the workload is
spread over the available network. In addition, in CDL mode the shell understands a
subset of the CDL language, which means that programs can be combined using the
pipe, subordinate and parallel constructors (but not the interleave constructor). Nei-
ther replicators nor component declarations are available, so this facility is limited.
However, in the case of acommand like

cc test.c | asm -p -o test.o

the C compiler and the assembler would run on separate processors in parallel, if
enough processors were available. Typically such commands would be found in a
makefile. To define anon-trivial task force the user should produce atext file, the CDL
script, and invoke the CDL compiler on this file. This CDL compiler is an ordinary
command like the C compiler or the assembler and takes the following arguments:

cdl <options> <source file> <'compiletime’ arguments>

4.2. THECDL LANGUAGE 171

with the following options :
[-1] [-I listfile] [-n] [-c] [-o outfil€]

The compiler takes a CDL script as input, defaulting to stdin if no source file is
specified. Given the -n option the compiler will only parse the file, and not compile it.
If neither the -c nor the -0 option is given, the compiler will execute the resulting binary
immediately. If the -c option is given, the compiler will not execute the binary object,
but write it to stdout instead. If the -0 option is given, the binary object will be written
to the output file specified. The -i option is used to make the compiler produce afully
expanded listing of the compiled CDL script, giving details of al the components and
the streams on which they communicate. Thislisting will be sent to the stderr stream.
The -1 option is similar, but makes the listing go to the file specified. Please note that
all the CDL compiler options must come before the source file, in order to distinguish
them from the compile time arguments. If the binary object produced by the CDL
compiler is written to a file this file may be executed directly from the shell, if the
CDL flag is set in that shell. This can be used to avoid recompiling the CDL script
every time you want to run atask force. Many CDL scripts take the following format:

#! /helios/bin/cdl

master [10] ||| slave

This file can be used as input to the CDL compiler since in CDL lines beginning
with a # sign are treated as comments . It can also be used as a shell script. The shell
recognisesthe # ! segquence at the start of the file and executes the command following
it, /heliog/bin/cdl, using the rest of the file as the standard input to the CDL compiler.
No -0 option is given so the resulting binary will be executed immediately. If the
shell’s CDL flag has not been set the CDL compiler will run on the same processor
as the shell, but the resulting task force will be sent to the Task Force Manager for
distributing over the network. If the CDL flag has been set the CDL compiler will
itself be executed as a simple task force, running on any suitable processor within the
network.

4.2.2 Thetask forcedefinition

A A

The CDL language defines four parallel constructors: |, <>, . ||| . Thepipe
constructor | defines a uni-directional pipeline between two programs.

AlB

The subordinate constructor <> defines a bi-directional pipeline, that is to say,
there is apipe from task A to task B, and another pipe from B to A.

A<>B

172 CHAPTER 4. CDL

The parallel constructor ~~ defines no communication between the two programs.
Of course the two programs may set up a communication channel themselves. For
example, one program might write to afile and the other could read the file. Commu-
nication pipes could also be set up through the component declarations.

A™B

The interleave constructor ||| is used mainly in conjunction with the replicator
facility discussed below, to construct farms. It involves the automatic insertion of an
additional component: the load balancer.

AlllB

It is possible to combine the CDL constructors to produce more complicated task
forces, for example:

A<>B<>C A B C

It is possible to have branches off the main left to right chain, for example:

Here (<> B) and (<> D, | E) areknown asauxiliary lists. A more compli-
cated example would be:

[=]
A(<>B,<>C(|D)| A E E

E(<>(F<>QG)|H l

4.2. THECDL LANGUAGE 173

Each constructor has aunique precedence. Theorder of precedenceis ™~ ||| | <>.
<> has the highest precedence and "~ has the lowest. For example: the task force
A <> B | Cisequivalentto (A <> B) | candnota <> (B | C).
Smilarlly,A <> B | ¢ °~ D | Eisequivaentto

(A<>B)|C)" (D|E)

D[]
1
]

In addition to the task force constructors, it is possible to use Unix style redirection
in the task force.

(A < input) | (B > output)

file H file
‘input’ ‘output’

Here component A takes its standard input from a file, and component B writes its
standard output to afile. These redirections must not contradict the communication
specified by the main definition. For example:

(A > output) | (B < input)

Here the standard output of A is defined to go to the output file as well as to a pipe,
and the standard input of B is defined to come from an input file aswell asfrom a pipe.
The CDL compiler will object, because it will think that this is invalid. In addition
to the standard redirections < for input, > for output, and >> for output in append
mode, the CDL language supports < | for input from named pipe and > | for output
from named pipe. For example, the following constitutes atask force in the form of a
ring.

(A <|loop) | B | (B >|loop)

‘loop’

Normally when the CDL script specifies a pipe it is unnamed, and the CDL com-
piler will automatically generate a unique name. However, named pipes can always be
used as an alternative. For example, the following two task forces are equivalent.

A|B|C=(A >|pipel) ™ (B <|pipel >|pipe2) = (C <|pipe2)

c]
,Z} ‘pipel’ Iil ‘pipe2 ¢

174 CHAPTER 4. CDL

From the above it should be clear that CDL provides avery powerful way of spec-
ifying the parallelism in atask force, and it isfairly easy for users to become confused
as to the best way to specify a particular topology. There are a number of ways to
proceed. First, the CDL compiler’'s -i option makes it display information about ex-
actly what it has compiled (which may not be what you thought it had compiled).
Second, the component declaration part of the CDL script may be used to specify the
connecting streams instead of the task force definition.

4.2.3 Allocation of streams

So far this chapter has described how the CDL constructors may be used to combine
component programs to give atask force, with pipes connecting the components. This
subsection describes how the components can access these pipes.

First consider an ordinary C program. Every C program has three standard streams
at the C library level: stdin, stdout, stderr. At the Posix level, these correspond to
file descriptors 0, 1, and 2; there are al'so underlying Helios streams accessible through
the Heliosno() and fdstream() calls, but these are rarely needed by the application
program. Other languages may need more or fewer standard file descriptors. For
example, FORTRAN has standard streams corresponding to units 5 and 6. CDL allows
for up to four standard streams, Posix file descriptors 0-3 with file descriptor 3 not
currently used by any language, and will use additional streams from 4 onwards. Now
whenever a user runs an application, whether a simple program or a task force, that
application inherits an environment from its parent which is usually the shell. This
environment includes the application’s current directory, some globa arguments, some
environment strings, and standard streams. These streams usually refer to the current
window, which meansthat if the application reads from stdin it expects the user to type
something at the keyboard, and if the application writes to stdout or stderr the data
should appear in the window. It isimportant that task forces can access the window
just like ordinary programs, but the question arises as to which component(s) of the
task force can do so. Consider the following task forces.

A|B

For compatibility with Unix, the standard output of program A goes to the pipe
and the standard input for program B comes from the pipe. Stdin for A isusually
aconsole stream, asisstdout for B and stderr for both components.

A <> B

Here component B is a subordinate of component A, that is, A is considered to
be the senior of the two. Hence stdin, stdout, and stderr for A al correspond
to console streams. Additional file descriptors are used for the pipes. A can read
from file descriptor 4 to get data from the pipe, and write to file descriptor 5.

4.2. THECDL LANGUAGE 175

File descriptor C stream Used for

0 stdin console 1/0

1 stdout console 1/0

2 stderr console 1/0

3 not used in C

4 undefined input from pipe
5 undefined output to pipe

Component B is the junior one, and hence its stdin and stdout streams do not
need to refer to the console. In fact it would be wrong for the stdin to refer to the
console. Thiswould imply two programs reading from the same window, with
possible confusion as to which key presses go where. It is still very useful for
component B to have an error stream. Hence the stream allocation for B looks
like this:

File descriptor Used for

0 input from pipe

1 output to pipe

2 error output to console
A """ B

This defines no communication between the two components. Hence both pro-
gramsinherit all their standard streams from the environment, which means that
stdin, stdout and stderr for both programs will correspond to the console. It is
assumed that the application is sensible, and that the two programs do not both
try to read the keyboard.

A <>B <> CC

Again, component A is considered to be the senior one requiring access to the
console. Component B now has four pipe streamsinstead of two. The allocation
of streams for all componentsis:

FD component A component B component C

0 console input from A input from B
1 console output to A output to B
2 console console console
3 unused unused
4 input from B input from C
5 output to B output to C

Al c

Thisis equivalent to A <> B <> ¢, with B being the load balancer. The
pattern should now be fairly clear. All components have access to stderr, file
descriptor 2, for debugging output. Additional file descriptors are alocated as

176 CHAPTER 4. CDL

required starting with file descriptor 4. Inputs always correspond to even file
descriptors, and outputs correspond to odd file descriptors.

The precedence of constructors affects the allocation of streams. For example,
consider thetask forceA | B <> C. Thesubordinate constructor has ahigher prece-
dence so thetask forceisequivalenttoa | (B <> C).When allocating streamsthe
subordinate constructor is handled first, and then the pipe. The complete alocation is:

File descriptor component A component B component C

0 console input from A input from B
1 output to B console output to B
2 console console console

3 unused unused unused

4 output to C

5 input from C

Next we should consider auxiliary lists. Consider the following:

A(|B,<>C,|D)

There are two uni-directional pipes from component A to other components, and
clearly it is not possible for both to use the standard output of A. To avoid confusion,
stream alocation for such auxiliary lists always starts at file descriptor 4, never using
the standard output. This allows something like:

D

A(|B,<>C,|D)|E Al E|

The alocation of streams can become complicated. Consider the following:

4.2. THECDL LANGUAGE 177

A(|B,<>(C|D))|E<>(F|G)| A 1 E
i F

It may seem unlikely that any real task application would require such a topol-
ogy, but CDL alows it. However, working out the exact stream allocation for such a
task force is difficult and hence the CDL compiler’s -i option will make it display the
standard streams. Appendix B gives the formal rules for stream allocation. As an a-
ternative, it is possible to specify acomponent’s streams in the component declaration
part of the CDL script.

4.2.4 Component declarations

The task force definition part of a CDL script specifies the task force as a whole. It
is also necessary to specify additional details for particular components, for example
to tell the Task Force Manager that a particular component must run on a T800 and
not just on any processor. This is the purpose of the component declarations. The
following CDL script is atypical example:

#

These are the component declarations

#

component master { processor T800; memory 500000; }
component slave { memory 200000; }

component display { attrib frame store; }

this is the task force definition
master (<> slave, <> slave, <> slave) | display

The master program must run on a T800 with at least 500,000 bytes of memory.
The slave programs require 200,000 bytes each, and the display program must run on a
processor which has been given the user defined frame store attribute in the resource
map. Note that all three invocations of the slave program share the slave component
declaration. There are six useful fields in a component declaration: code, processor,
puid, attrib, memory, and streams. The code field specifies the actual program to
execute. For example,

component master { code /c/usr/bin/mandel; }

specifies that the program in file /c/usr/bin/mandel should be used for the component
master. By default the component name must correspond to a program in the current
search path. For example: if the shell’s current search path (inherited by the CDL com-
piler through the environment string PATH), is (/helios/bin .), then the CDL compiler

178 CHAPTER 4. CDL

would search through the directory /helios/bin and then through the current directory
for the program(s) specified.

The processor field may be used to specify the type of processor on which the
component can run. For the Transputer version of Helios, the recognised processor
types are T800, T414, and ANY. The default is ANY. The puid field may be used
to specify a particular processor in the network using the full network address, for
example /Cluster/02. This allows the users themselves to map all or part of the
task force. Of course using thisfacility makes the task force dependent on the network.
If the processor changesto /net/subneta/ 02 for example, the CDL script would
have to be changed and recompiled. Theattrib fieldisentirely under the user’s control.
Itis possible to give processors attributes in the resource map, and to force components
onto particular processors by specifying the attributes. For example, if the resource
map contains the following two entries:

terminal 05 { ~03, ~04, ~06, ~07; attrib Al; attrib A2; }
terminal 06 { ~04, ~05, ~07, ~08; attrib Al; }

and a CDL script contains the following component declarations:

component pl { attrib Al; }
component p2 { attrib A2; }

Component pl could run on either 05 or 06, but p2 can only run on 05. Depending
on the network loading and the rest of the network and task force it is possible that
both components would be mapped onto 05, since this solution satisfies the user's
specification. The memory field may be used to specify the minimum amount of
memory that must be available on a processor if it is to run there. The streams field
may be used to explicitly specify some of the streams on which a component is to
communicate, extending the communication set up by the task force definition. For
example:

component A { streams , >| sO0, ; }
component B { streams <| s0, >| s1, ; }
component C { streams <| s1, , ; }

A" B~ C

‘sO’ B e ©

isequivalenttoa | B | C.Component A hasthe usua streams for Posix file descrip-
tors 0 and 2, but file descriptor 1 now corresponds to a named pipe. Component B has
file descriptors 0 and 1 redefined to be named pipes, but file descriptor 2 remains un-
changed. Note that commas are used as place holders. The entries in the streams field
must not conflict with the streams specified by the task force definition, for example:

4.2. THECDL LANGUAGE 179

component A { streams , >|mystream, ; }

A | B

isillega because file descriptor 1 of component A is used for two separate pipes.

The possible forms of stream redirection are the same asin the task force definition:
> for output to a named object, < for input from a named object, >> for appended
output, > | for output to a named pipe and < | for input from a named pipe. Any
number of streams may be specified. It is not essential to follow the convention of
using even file descriptors as inputs and odd file descriptors as outputs, but sticking to
this convention may avoid confusion.

Certain task force topologies cannot be defined easily (or at all) using just a task
force definition. However, any topology can be specified using a combination of the
streams fields in the component declarations and asimplified task force definition. For
example,

BN=E

iy
|

A possible CDL script for thisis:

component C { streams , , , , <| s0, >| s1; }
component D { streams , , , , <| s2, >| s3; }
component E { streams <|sl, >|s0, <| s3, >| s2; }

(A <> B (<> C, <> D)) ™" E

425 Replicators

So far this section has described task forces consisting of a small humber of compo-
nents, al different. In practice most task forces consist of asingle controller or master
task, a number of worker or slave tasks, and possibly some specialised tasks for oper-
ations such as graphics 1/0. The syntax described so far alows the user to specify a
pipeline of perhaps ahundred components, but typing itinisrather tedious. To help the
user to specify task forces where a component is repeated, the CDL language provides
a facility known as replication. In fact there are two forms. pre-replicators which
appear before a constructor and post-replicators which appear after a constructor. The
following illustrate pre-replicators.

A[3|B=A|B|B|B

180 CHAPTER 4. CDL

A[3l<>B=A<>B<>B<>B

[AF={B[={B[~B]

A[31"B=A"B" BB

Af3]|B
- N=0= L1

A <>1Ib3(<>B,<>B,<>B)

Using replicators with the interleave constructor is particularly interesting. The
master component only interacts with the load balancer, and this interaction is inde-
pendent of the number of daves. Similarly a given slave component only interacts
with the load balancer. This means that the task force can be run with any number of
daves simply by changing the CDL script, without changing the code for the master
and slave components. Replicators can be used in more complicated task forces, for
example:

A3 (B ([<>C)ID

The use of pre-replicators in auxiliary listsislimited in the current release of CDL.
If a pre-replicator is required there can be no other components in the auxiliary list
and the replicator must be preceded by a comma. Post-replicators can be used without
these restrictions. The pre-replicators shown so far, when expanded, define a sub task
force as well as the communication for this sub task force. Thus in the definition
A [2] <> B thereplicator expands to a sub task force B <> B, and it specifies
how this sub task force interacts with the rest of the task force, which means that
component A post-replicators define only a sub task force, and not the communication
with this sub task force.

A=A A AR {A]{A]

4.2. THECDL LANGUAGE 181

<>[BA=A<>A<>Ap =] A

“[BIA=ATATA

[[3] A
_ Ib == A
Ib3(<>A,<>A, <>A)

Post-replicators may be used to define exactly the sametask forces aspre-replicators.

A[3] | B ==2a1] (] [3] B)

A [3] <> B == A <> (<> [3] B)
A [3] "B ==A"" (7" [3] B)
A [3] ||| B==2Aa<> (||] [3] B)

However, many common task force topologies can be described much more easily
using post-replicators. For example, consider aring:

Using a post-replicator this task force can be defined by:

A <> (| [5] B)

The sub task force (| [5] B) isasimple pipeline, and this pipeline as awhole
is asubordinate of component A. Hence the standard input of the pipeline comes from
A, and the standard output of the pipeline goes to A. Post-replicators can also be used
to define alternative farm topol ogies:

182 CHAPTER 4. CDL

AldliEB|C

or even:

A (<> [[LB 18 18]

4.2.6 Replicated component declarations

Given atask force definition involving replicators, for example: 2 [5] | B, dl five
instances of component B would share a single component declaration. Thisis accept-
able in most cases, for example if the purpose of the component declaration is simply
to specify the memory requirements or the processor types. However, if the compo-
nent declaration defines additional streams for the component in question then every
component must be defined uniquely. CDL provides a way of specifying subscripts
for the replicated components. For example,

Ai<s) | B{(i) --a | B{o} | B{1} | B{2) | B{3) | B(4)

Using these subscripts it is possible to define topologies like this:

D

ool {el e

component B[i] { streams , , , , ,>| x{i}; }
component D { streams , , , , <| x{o}, , <| x{1}, ., <| x{2}; }
A [1 < 3] | B{i} | C (<> D)

The sub task force which is being replicated may contain other replicators , and
this means that the iteration variable may be defined several times. Replicators are
always expanded starting at the innermost level. For example,

4.2. THECDL LANGUAGE 183

| [i<2, F<2] (a{i,j} <> (|[i<3] b{i,j}))

expands to

(a{0,0} <> (b{o,0} | b{1, 0o} | b{2, 0})) |
(a{0,1} <> (b{o,1} | b{1, 1} | {2, 1})) |
(a{1,0} <> (b{o,0} | b{1, 0o} | b{2, 0})) |
(a{1,1} <> (b{o,1} | b{z, 1} | b{2, 1}))

a{0,0} — a{0,1} — a{1,0} ——> a{1,1}
)]])
‘ b{0,0} ‘ ‘ b{0,1} ‘ ‘ b{0,0} ‘ ‘ b{0,1} ‘

‘b{1,0} ‘ ‘5{1,1} ‘ ‘ b{1,0} ‘ ‘5{1,1}‘

b{2,0} b{2,1} b{2,0} b{2,1}

Of course in the above definition there are two components with the name b{0, 0},
two with the name b{1, 0}, and so on. This makes it impossible to use a component
declaration for b{i, j} which involves streams. Multi-dimensional indices are permit-
ted, allowing arrays of components. For example, for an image processing or graphics
application each component might be responsible for part of the image, and each com-
ponent would have to interact with its four neighbours to resolve border conditions.
Typically there would be a single controller component responsible for actually dis-
playing the final output and interacting with the user. Consider the following topology,
which uses wrap around to resolve the edge conditions:

t i t 4 t i t 4
2 B{0,0} [B{1,0} 1 B{2,0} [B{3, 0} [~

ettt
::‘B{O,1}'___’1B{1,1}L__"B{2,1}'___’13{3,1}’:

1t 1 1l
::‘3{0,2}'___’1B{1,2}L__"B{2,2}'___’13{3,2}’:

tE ket 1l

BB s B2 s [BE.3)
3 F 3 3 3

A CDL script which implements this topology is:

184 CHAPTER 4. CDL

component B[i, j] {

streams , , , ,
<| right{i, 3}, >| right{i, (3 + 1) % 4},
<| left{i, (3 + 1) %4}, >| left{i, j},
<| down{i, 3}, >| down{ (i + 1) % 4, j},
<| up{(i+1) % 4, 3}, >| up{i, j}
i}
A (,[1 < 4, J < 4] <> B{i,j})

For example, component B{1, 2} has the following streams:

up{1,2} down{l,2}

right{1, 3}

right{1,2}
{ Bl T left{1,3}

left{1,2}" | 2}

up{2,2} down{2,2}

Use of the remainder operator % is used to provide the desired wrap around.

up{0,0} down{0,0} up{0, 3} down{0, 3}
right{0,0 -, right{0,1 right{0, 3 -, right{0,0
zejgft{({), 0}%3 %0,10}._ zejgft{({), 1}} ze?t{é, 3}33 %Of’h— zejgft{({), 0}}

up{1,0} down{1,0} up{1, 3} down{1, 3}

The expressions used for stream subscripts are written in standard arithmetic for-
mat and may contain integers, subscript names, the standard binary operands +, —, *
and %, the unary operands + and —, and parentheses.

4.2.7 Theenvironment

Whenever a program or atask force is executed it receives an environment from its
parent, usually the shell. This environment contains four types of information: the cur-
rent directory, the environment strings, the standard streams, and the argument vector.
When the Task Force Manager executes the various components of the task force it
must send an environment to every component, based partly on the CDL script and
partly on the environment sent to the task force as awhole. The current directory and
the environment strings are straightforward. Every component of the task force simply
inherits these from the parent. Therefore atask force consisting of a single component
(the Is command) would list the current directory just like the Is command itself.

The alocation of streams has already been discussed. For atask forcea <> B,
component A inherits its streams for file descriptors 0, 1, and 2 from the environment

4.2. THECDL LANGUAGE 185

and has additional streams for file descriptors 4 and 5. Component B uses file de-
scriptors 0 and 1 for the pipes, and inherits 2 from the environment. Suppose that
this task force is compiled to abinary file called job, and the user types the command
job < infile > outfile. Theexact stream alocation would be:

A B

input from infile input from pipe
output to outfile output to pipe
output to window output to window
not used

input from pipe

output to pipe

g b wWwNPEFO

Cornversely, if thetask force definitionwas (A < filel) <> B andthesame
command was used as above, the input redirection for infile would have no effect be-
cause none of the components inherit standard input from the environment. There is
a subtlety if the task force definition contains redirections. For example, if the task
force definitionis (A < filel) <> B then component A takesits standard input
from thefile £ile1l inthe directory where the task force was compiled, which is usu-
aly (but not always) the directory in which the task force is executed. The arguments
passed to the various components in the task force can be divided into three groups:
constant arguments, ‘compile time' arguments and ‘run time' arguments,; These are
best illustrated by an example. Consider the following CDL script.

component A { code xx; }
(A 5 $1) "7 (B $1 s2 \s1) "7 (C \$3)

Here component A has a constant argument 5 plus the first ‘compile time' argument,
which means that the CDL compiler will substitute the first ‘compile time’ argument
for every occurrence of the string $1. Component B hastwo ‘compile time’ arguments
and the first ‘run time' argument, so the Task Force Manager will substitute the first
‘runtime’ argument for every occurrence of the string \ $1. Component C is given the
third ‘run time’ argument. Suppose the CDL script is compiled with the command

cdl -o test test.cdl xx 123

and the resulting binary is executed with the command

test 456 yy 789

then the arguments passed to all the components will be:

A B C
agvf0] A B C
agv[l] 5 xx 789

argv[2] xx 123
argv[3] 456

186 CHAPTER 4. CDL

Note that the second ‘run time’ argument is discarded because none of the components
use it. Also note that argument zero (cornventionaly the program name) which is
passed to al the components, is in fact the component name. ‘Run time’ arguments
only make sense if the CDL script is compiled to a file and the resulting binary is
executed. If the CDL compiler executes the resulting binary immediately there is no
way of supplying ‘run time’ arguments.

4.2.8 Argumentsand replicators

When using replicators in a CDL script it is possible to use ‘compile time’ arguments
to specify the size of the task force. For example, given the following task force
definition,

A ($1] ||| B

and the command line,

cdl test.cdl 5

the CDL compiler would produce a farm with five worker components, and this farm
would be executed immediately. Note that with the current release of the software the
size of the task force must be specified at ‘compile time'. For example the task force
definitiona [\s1] ||| Bisillegal becausethe CDL compiler doesnot know the size
of the task force: \$1 isa‘runtime argument.

If the CDL script reads:

#! /helios/bin/cdl

a (511 ||| B

then it is possible to execute the command test .cdl 10 to execute afarm with 10
workers. This approach appears to give ‘run time control over the size of the task
force, although of course there is an implicit invocation of the CDL compiler When
using named replicators it is possible to pass the current value of the replicator to every
component. For example,

| [1 < 3] (B%i) == (B 0) | (B 1) | (B 2)

This can be used to tell every component its place within the pipeline. ‘ Compile time’
arguments can also be used in component declarations. For example, consider the two
dimensional array of tasks defined earlier. It is possible to change the size of the array
both horizontally and vertically at ‘compile time', using the following CDL script:

component B[i, j] {

streams , , , ,
<| right{i, 3}, >| right{i, (3 + 1) % $1},
<| left{i, (3 + 1) % $1}, >| left{i, j},
<| down{i, 3}, >| down{ (i + 1) % 32, j},
< wp{(i+1) % 2, 5}, | up{i, 3)
i}
A (L [i < $2, § < 811 <> (B{1,9} %i %9))

If this script is compiled using the command
cdl -o test test.cdl 16 8

this would produce an array of 128 components, 16 horizontally and 8 vertically, with
every component being given its vertical and horizontal offsets.

4.3. AN EXAMPLEASEASY ASPI 187

w g

1
4.0
= ——dx2]
T /0 1.0+x2dm

1]

T

Figure 4.4 The value of =

429 Signalsand termination

To conclude this section, it is necessary to explain what happensin terms of signalsand
termination of tasks and the task force as awhole. Signals are fairly straightforward.
If asigna is sent to the task force as awhole, for example a SIGINT signal if the user
presses CTRL-C to abort the task force, this signal is sent to every component in the
task force. Unless the application has installed its own signal handling, the system
signal handling routines will terminate every component and the task force as awhole
will be terminated.

Another important signal to consider is SIGPIPE. This signal is likely to occur
if one of the components terminates abruptly and closes its pipes, while other com-
ponents are attempting to write to these pipes. Reading such a pipe would produce
an ‘end of file' result. The default handling for a SIGPIPE signal is to terminate the
component. Hence if one component terminates abruptly thisislikely to cause achain
reaction and terminate other components (possibly the entire task force). This should
not be considered areliable way of terminating atask force.

A task force has terminated when all the components in that task force have ter-
minated, normally or abnormally. The recommended way to cause termination is for
the controller task to send a terminate message to the rest of the task force. If all the
components exit without an error code, that is, with a return code of O, then the task
force as a whole will give a return code of 0. If any of the components exit with an
error code (a value other than 0), or as the result of a signal, then the task force as a
whole will exit with an error code.

4.3 An exampleaseasy as Pl

4.3.1 A simpleproblem

The previous section described the CDL language in detail, explaining how it can be
used to combine component programs into atask force. This section gives a complete
example of parallel programming with CDL, concentrating on how to write the com-
ponent programs. The example involves estimating the value of 7 by approximating
anintegral. (Figure 4.4.)

One way of approximating the area under the curve isto split this areainto rectan-
gles and add the areas of the rectangles, as shown in Figure 4.5. In theory the larger the
number of rectangles the better the approximation. In practice digital computers have

188 CHAPTER 4. CDL

PN W Ay

%

Figure 4.5 Approximating 7

alimited precision, with even double precision floating point arithmetic providing only
52 bits of accuracy. Beyond a certain point rounding errors will become more signifi-
cant than the increased precision obtained from alarger number of intervals. Sincethis
is intended to be an example of parallel programming rather than numerical analysis,
such errors will not be considered any further.

4.3.2 How to parallelisethe problem

Solving this problemin ‘parallel’ rather than ‘ sequentia’ is quite straightforward. Ev-
ery interval, that is, every small rectangle which contributes to the total area can be
evaluated independently from every other interval. In afine grained parallel solution
every interval could be calculated by a separate component, but that would be point-
less. Every component would do atiny bit of arithmetic, communicate its result, and
exit. The cost of loading the components from disc and starting them, the cost of
the communication, and of tidying up after the components have exited, would be far
greater than the cost of doing the calculation. Instead every component should calcu-
late alarge number of intervals. If there are ten processors it would make sense to have
ten components, each calculating perhaps 100,000 intervals, giving atotal of amillion
intervals.

The task force can be split into a single controller and a number of workers. The
controller is responsible for setting up the workers and for interacting with the user.
The workers are responsible for doing the actual arithmetic. It is necessary to consider
the possible topologies, and there are two main candidates. a ring and a non-load-
balanced farm. These are shown in Figure 4.6. There s little point in having a load-
balanced farm since the controller can ensure that all the workers do exactly the same
amount of work.

4.3.3 Thering
The CDL script for aring would be:

control <> (| [$1] worker)

Note that the number of workers is determined by a compile time argument. The
control component writes to the start of the worker pipeline using file descriptor 5, and
reads from the end of the pipeline using file descriptor 4. Each worker reads from file
descriptor 0 and writes to file descriptor 1. The first steps are to determine the number

4.3. AN EXAMPLEASEASY ASPI 189

control —> worker — worker

T l
‘ worker H worker H worker ‘

Figure 4.6 Possible topologies

‘ control

of worker components and to initialise every worker so that it knows its position in the
pipeline and the length of the pipeline. One way of doing thisis to add arguments to
the CDL script and to have every component examine its arguments:

CDL script : (control $1) <> (| [i<$1] (worker %i S$1))
controller : int number workers = atoi(argv[1l]);
worker : 1int position = atoi(argv([1l]);

int number workers = atoi(argv[2]);

An aternative approach involves the components working these things out by com-
munication. Thisis particularly appropriate if the language has few or no facilities for
examining the arguments passed to a program. The controller starts by writing a num-
ber 0 to the start of the pipeline. The first worker in the pipeline now knows that its
position is 0, adds 1 to this value, and writes it to the next worker. Eventualy the
last worker writes a value back to the controller, and this value is the length of the
pipeline. The controller circulates this value through the pipeline, and every worker is
now partially initialised.

controller :
int number workers = 0;
write (5, (BYTE *) &number workers, sizeof (int));
read(4, (BYTE *) &number workers, sizeof (int));

printf ("Pi controller: number of workers is %d.\n",
number workers) ;

write (5, (BYTE %) &number workers, sizeof (int));
read(4, (BYTE *) &number workers, sizeof (int)) ;
worker :

int number workers, position, temp;

read(0, (BYTE *) &position, sizeof (int));
temp = position + 1;
write(l, (BYTE %) &temp, sizeof (int));

190 CHAPTER 4. CDL

read(0, (BYTE *) &number workers, sizeof (int)) ;
write (1, (BYTE %) &number workers, sizeof (int));

Note that the code above uses Posix I/O calls read() and write(). The reasons for
this, the various alternatives, and doing this |/O in another language such as FORTRAN
will be discussed later. The remaining piece of information needed by the controller
and all the workersisthe number of intervals each worker should calculate. This could
be passed as a run-time argument.

CDL script : control \$1 <> (| [$1] worker)
controller : int intervals = atoi(argv([1l]);

Alternatively the controller could ask the user. The controller’s standard streams
stdin, stdout, and stderr, are inherited from the environment and hence they should
till refer to the console.

controller :
printf ("Number of intervals per worker ? ");
fflush (stdout) ;
scanf ("%d", &intervals) ;

Thisinformation must be sent to every worker.

controller :
write (5, (BYTE *) &intervals, sizeof (int)) ;
read(4, (BYTE x) &intervals, sizeof (int)) ;
worker
read(0, (BYTE =) &intervals, sizeof (int));

write (1, (BYTE *) &intervals, sizeof (int)) ;

Now, consider the fourth worker in a pipeline of 5. The first value read in will
have been 3, giving its position in the pipeline, and the worker will have passed 4 to
the next one. The second value will have been 5, giving the length of the pipeline.
If the user specified 100000 intervals per worker this would have been the third value
read. Using these values the worker can determine that it should calculate the areas of
100000 rectangles in the range 0.6 to 0.8. The following code does this:

worker
double width, sum, tmp;
int first, current, last;
width = 1.0 / (intervals x number workers) ;
first = position * intervals;
last = first + intervals;
sum = 0.0;
for (current = first; current < last; current++)
{ tmp = ((double) current + 0.5) % width;

sum = sum + width %= (4.0 / (1.0 + tmp % tmp));

}

4.3. AN EXAMPLEASEASY ASPI 191

The above worker evaluates intervals 300,000 to 399,999, each of width 0.000002.
The first rectangle has a centre point at 0.600001, a height of (4.0/(1 + 0.600000%))
=2.941173875 ..., and hence an area of 0.000005882. ... Thisisadded to the current
total. The next rectangle is centred at 0.600003, and so on.

The final problem is how to collect all the partia results produced by the workers
and add them together. This can be done by sending apartial sum through the pipeline:
the controller sendsaninitial value 0.0 into the pipeline; every worker reads the current
partial sum, adds its result, and sends it to the next worker; finally the controller can
read in the result.

controller :
double total = 0.0;

write (5, (BYTE *) &total, sizeof (double)) ;
read(4, (BYTE x) &total, sizeof (double)) ;

worker :
double total;

read(0, (BYTE x) &total, sizeof (double)) ;
total = total + sum;
write(l, (BYTE %) &total, sizeof (double)) ;

It remains for the controller to print out the value of 7, and some statistics. Every
interval involves eight floating point operations. conversion from integer to double;
adding 0.5; multiplying by width; squaring; adding 1.0; dividing into 4.0; multiply-
ing by width; and a final addition. There are some other floating point operations in
every worker, but these are not in the central loop so they can be ignored. Using the
number of intervalsit is possible to estimate the floating point performance of the task
force. Another useful statistic is the proportion of time spent communicating rather
than calculating. Putting all this together gives the following two programs.

The controller

#include <helios.h>
#include <stdio.h>
#include <posix.h>
#include <nonansi.h>

int main(void)

{ int number_ workers, intervals;
double total;
int comm_start, comm end, comp_start, comp end;
number_workers = 0;
write (5, (BYTE %) &number workers, sizeof (int));
read(4, (BYTE) &number workers, sizeof (int));

printf ("Pi controller: the number of workers is %d.\n",
number_ workers) ;

192 CHAPTER 4. CDL

write (5, (BYTE %) &number workers, sizeof (int));
read(4, (BYTE x) &number workers, sizeof (int)) ;

printf ("Number of intervals per worker ? ");

fflush (stdout) ;

scanf ("%$d", &intervals) ;

printf ("Evaluating a total of %d intervals.\n",
number workers * intervals);

comm_start = cputime() ;
write (5, (BYTE x) &intervals, sizeof (int)) ;
read(4, (BYTE x) &intervals, sizeof (int)) ;
comm_end = cputime () ;

total = 0.0;

comp start = cputime();

write (5, (BYTE x) &total, sizeof (double)) ;
read(4, (BYTE x) &total, sizeof (double)) ;
comp_end = _cputime() ;

printf ("\nCalculated value of pi is %.14f.\n", total);
printf ("Computation time is %.3f seconds.\n",
((double) (comp end - comp_ start)) / 100.0);
printf ("Communication time around ring is %.3f seconds.\n",
((double) comm end - comm_start) / 100.0);
printf ("Rating is approximately %d flops.\n", (int)
(100.0 * 8.0 % (double) (number workers * intervals) /

(double) (comp_end - comp_start)));

return(0) ;

Theworker

#include <helios.h>
#include <stdio.h>
#include <posix.h>

double eval (int position, int number workers, int intervals) ;

int main(void)
{ int position, number workers, temp, intervals;
double sum, total;

/% get the worker’s position in the pipeline =/
read(0, (BYTE x) &position, sizeof (int));
temp = position + 1;
write(l, (BYTE %) &temp, sizeof (int));

/% get the length of the pipeline =/
read(0, (BYTE x) &number workers, sizeof (int)) ;
write (1, (BYTE %) &number workers, sizeof (int));

4.3. AN EXAMPLEASEASY ASPI 193

}

/* get the number of intervals per worker x/
read(0, (BYTE %) &intervals, sizeof (int)) ;
write(1l, (BYTE %) &intervals, sizeof (int)) ;

sum = eval (position, number workers, intervals);

read(0, (BYTE %) &total, sizeof (double)) ;

total = total + sum;
write(1l, (BYTE %) &total, sizeof (double)) ;
return(0) ;

double eval (int position, int number workers, int intervals)

{

int first, current, last;
double width, sum, tmp;

sum = 0.0;
width = 1.0 / (double) (number workers x intervals);
first = position % intervals;
last = first + intervals;
for (current = first; current < last; current++)
{ tmp = (0.5 + (double) current) = width;

sum = sum + width % (4.0 / (1.0 + tmp = tmp));

}

return (sum) ;

4.3.4 A farm topology

For the pi problem an aternative task force topology is a farm, as shown in Figure
4.7. The controller task can ensure that every component receives the same amount of

work, so there is no need for aload-balancing component. At the time of writing CDL

has no syntax for such afarm, but all the workers can be treated as auxiliaries of the
controller giving the following CDL script:

CDL script control (<> worker, <> worker, <> worker)

or, using replicators,

CDL script control (, [$1] <> worker)

There is no simple way for the controller to determine the number of workers at

run-time, so this value should be passed as an argument. In addition, the number of
intervals per worker can be passed as a run-time argument.

CDL script control $1 \S$1 (, [$1] <> worker)

controller int number workers = atoi(argv[l]);

int intervals

atoi (argv([2]) ;

194 CHAPTER 4. CDL

control

Figure 4.7 A farm topology

As before the controller should now write the initialisation data to all the workers.
This can be done as three separate writes: position, number_workers, and intervals.
It can be done more efficiently as asingle write of a data structure.

typedef struct pi data {
int position;
int number workers;
int intervals;

} pi data;

Consider the stream allocation in this task force. Every worker is a subordinate of
the controller, so it reads from file descriptor O and writes to file descriptor 1. All the
workers are auxiliaries of the controller, so stream allocation in the controller starts at
file descriptor 4. The following macros can be used.

controller
#define to_worker (i) (5 + 1 + 1
#define from worker (i) (4 + 1 + 1i)

The workers can now be initialised by the following code:

controller

pi _data data;

int i;

data.number workers = number workers;

data.intervals = intervals;

for (1 = 0; i < number workers; i++)

{ data.position = i;
write(to_worker (i), (BYTE x) &data, sizeof (pi data));

worker

pi_data data;
double result;

read (0, (BYTE %) &data, sizeof (pi data));
result = eval(data.position, data.number workers,
data.intervals) ;

4.3. AN EXAMPLEASEASY ASPI

Collecting the results is straightforward.

controller
double total, tmp;

total = 0.0;
for (i 0; 1 < number workers; i++)

{ read (from worker (i), (BYTE *) &tmp, sizeof (double)) ;

(
total = total + tmp;

}

worker
write(1l, (BYTE *) &result, sizeof (double)) ;

Putting all the above together, we end up with the following two programs.

The controller

#include <helios.h>
#include <stdio.h>
#include <posix.h>
#include <stdlib.h>

typedef struct pi data {

int position;

int number workers;

int intervals;
} pi data;
#define to worker (i) (5 + 1 + 1)
#define from worker (i) (4 + i + 1)

int main(int argc, char xxargv)
{ pi data data;

int i;

double result, temp;

int number workers = atoi(argv[l]);
int intervals = atoi (argv[2]) ;

data.number workers = number workers;
data.intervals intervals;

for (i = 0; i < data.number workers; i++)
{ data.position = i;
write(to_worker (i), (BYTE *) &data, sizeof (pi _data));

}

printf ("Pi : evaluating %d intervals on %d workers.\n",
number workers * intervals, number workers) ;

result 0.0;
for (i = 0; i < number workers; i++)
{ read(from worker (i), (BYTE %) &temp, sizeof (double)) ;

195

196 CHAPTER 4. CDL

result = result + temp;
}
printf ("\nCalculated value of pi is %.14f.\n", result);

return(0) ;

}

Theworker

#include <helios.h>
#include <stdio.h>
#include <posix.h>
#include <stdlib.h>

typedef struct pi_data {

int position;
int number workers;
int intervals;

} pi data;

double eval (int position, int number workers, int intervals);

int main(void)
{ pi data data;
double result;

read (0, (BYTE %) &data, sizeof (pi data)) ;

result = eval (data.position, data.number workers,
data.intervals) ;

write(1l, (BYTE x) &result, sizeof (double)) ;

return(0) ;

}

double eval (int position, int number workers, int intervals)
{ int first, current, last;
double width, sum, tmp;

sum = 0.0;
width = 1.0 / (double) (number workers x intervals);
first = position % intervals;
last = first + intervals
for (current = first; current < last; current++)
{ tmp = (0.5 + (double) current) * width;

sum = sum + width % (4.0 / (1.0 + tmp % tmp));

}

return (sum) ;

4.3. AN EXAMPLEASEASY ASPI 197

435 Different levels of communication

The two versions of the pi task force described above both use Posix-level 1/O calls
for the communication between components. This subsection describes the different
levels of 1/O available under Helios. The lowest level of 1/O is provided by System
library calls:

result = Read(Stream xstream, byte xbuffer, word amount,
word timeout) ;

result = Write(Stream *xstream, byte xbuffer, word amount,
word timeout) ;

These functions and the Stream structure are defined in the header file sydlib.h.
All Helios /0 occurs through these routines, directly or indirectly. The routines take
abuffer and a buffer size: the contents of the buffer are entirely up to the application.
The next level of I/O isthe Posix level, using the library calls:

result
result

read(int file descriptor, byte xbuff, word amount) ;
write(int file descriptor, byte *buff, word amount) ;

Essentially Posix 1/0 is equivalent to Helios I/O using an infinite timeout. Every
Posix file descriptor has an underlying Helios stream. For many applications timeouts
areirrelevant and there is no need to use the underlying Helios calls. The highest level
of I/0 is the language level. In FORTRAN this corresponds to READ and WRITE
statements. The C language has a large number of /O routines: printf(), scanf(),
viprintf(), fgetc(), fgets(), fputc(), fputs(), gets(), puts(), fread(), fwrite(), feof(),
fflush(), setvbuf(), to name just a few.

There is a very important difference between system and Posix 1/0O on the one
hand, and language-level 1/O on the other: the first two are unbuffered; the latter is
buffered. If an application uses a Posix write() call for 10 bytes, thiswrite takes place
immediately. If it is a write to a file the data is sent to the file server immediately:
depending on the implementation of the file server, this may store the datain a cache
or it may perform some physical disc activity. On the other hand, if the application
uses C library calls to transfer the 10 bytes this data would be put into a buffer by the
C library: the data would not be sent to the file server until either the buffer had filled
up, or the stream was closed possibly because of a program exit, or the application
used the fflush() call to explicitly flush the buffer. For many applications buffered 1/0
is extremely desirable because it greatly reduces the number of actual 1/0O operations
that take place: one operation per buffer instead of one operation per piece of data.

Now consider how this affectsasimpletask force: 2 <> B. Component A writes
50 bytes of datato B, which simply echoes it back. Using C library routines this might
be coded as:

component A : fwrite(buffer, 1, 50, out stream);
fread(buffer, 1, 50, in_stream);

component B : fread(buffer, 1, 50, stdin);
fwrite (buffer, 1, 50, stdout);

198 CHAPTER 4. CDL

This would not work. The fwrite() in component A would simply copy the datainto a
buffer, and the data would not be sent onto component B. Hence component B never
receives the data and cannot echo it back. The task force is now in a state of deadlock,
because of the buffered 1/0. On the other hand, using Posix-level 1/0 routines:

component A : write(5, buffer, 50);
read(4, buffer, 50);

component B : read(0, buffer, 50);
write(1l, buffer, 50);

Posix 1/0 is not buffered, so awrite() of 50 bytes really does cause the 50 bytes to
be transferred immediately, and component B can read() the data without problems.
For asimple pipeline buffering is not important. Consider:

cc test.c | asm -p -o test.o

Both the compiler and the assembler use buffered 1/0. Hence no dataistransferred
between the two programs until the C compiler has filled up the buffer, typically with
1K of data. However, the assembler will be waiting patiently suspended on a read()
until the datais available. There is no feedback from the assembler to the compiler, so
there is no possibility of a deadlock. This explains why ordinary utilities can be used
in pipelines but not in a more complicated topology.

Some languages provide adequate 1/O facilities to alow components to interact
correctly, but others do not. FORTRAN 1/O is still based around punched cards and
line printers, and there are no facilities in the language to manipulate the buffering.
Hence FORTRAN components of a task force must always use Posix calls for their
I/0. These areillustrated later in this section, using a FORTRAN version of the pi ring
example. The Clanguage is much better equipped, and in particular the following calls
may be found useful:

fflush (FILE =*)

This routine flushes an output buffer, which means that it causes all the data in the
buffer to be sent immediately.

setvbuf (FILE =, buffer, mode, size)
setbuf (FILE %, buffer)

These routines allow the application to specify the buffering to be used. Note that
they may only be used once on a stream, and must be used before any 1/0 takes place.
The mode in setvbuf() can be unbuffered, line-buffered, or fully buffered with the
specified buffer size. In unbuffered mode every byte is transferred immediately, so
that no buffering takes place: this modeis very inefficient for most applications. Line-
buffered mode isintended for interaction with terminals, not for interaction with pipes.
Fully-buffered mode allows the user to specify the buffer size: if the component always
reads or writes data using just one size, this size can be used as the buffer size to give
the desired effect.

It should be noted that C /O always goes through the buffers, which causes a
significant overhead compared with Posix or system 1/O. In practice it is unusual for a
task force component to use anything other than the Posix calls for itsinteraction with
other components.

4.3. AN EXAMPLEASEASY ASPI 199

4.3.6 Moreabout pipel/O

So far the rules for accessing pipes under Helios have not been discussed. When a
component program starts up it receives an environment from its parent, usualy the
Task Force Manager. Helios Stream structures are set up for al the streams passed in
the environment, and Posix file descriptors are allocated to these streams. The library
start-up will not actually open the streams: this is delayed until the program actually
uses the stream. For example, in atypical task force all components will inherit a
stream to the console as the standard error stream, file descriptor 2. However, under
normal circumstances this error stream will not be used, so opening the stream as soon
as the environment is received is a waste of resources. As far as the application is
concerned, this delayed opening is transparent.

All the environment streams will be available at the Posix and Helios levels. In ad-
dition, some of them will be opened at the language level. For example, in Cthelibrary
start-up will initialise C FILE structures for stdin, stdout and stderr corresponding
to the first three file descriptors. Additional file descriptors passed in the environment
will not be opened at the C level: it islikely that they will not be used at the C level,
and there islittle point in using up the space for the FIL E structures. Furthermore, the
C library has alimit of 20 open C streams at any one time. If an application wishesto
use file descriptor 4 as a C stream, for example, the library routine fdopen() may be
used to convert a Posix file descriptor into a C FILE * pointer.

At any one time only two components may access a pipe, one for writing and
one for reading. This /O is synchronous. When an application writesto apipe it is
suspended until the write has completed. When an application reads from a pipe it is
suspended until data is available. Note that this is asymmetric. If the writer sends 10
bytes and the reader reads 5, the writer remains suspended until the rest of the data
is read but the read returns immediately with the first 5 bytes. If the reader reads 15
bytes, the write completes immediately and the read completes with just 10 bytes: the
reader does not remain suspended until all the 15 bytes are available. If it isdesired to
have asynchronous /0 additional processes can be Fork()ed off to perform the 1/0.

If the writer closes the pipe, possibly as a side effect of program termination, any
further reads on that pipe will return end-of-file. However, if the reader has closed the
pipe when the writer tries to send data this is an error which will generate a SIGPIPE
signal.

4.3.7 Runningthetask force

There are afew additional points worth discussing regarding this task force. The first
involves the problem of distributing the problem over a rea network. As it stands,
the controller task performs mainly communication rather than calculation. Whilst the
pipeline of workers is calculating, the controller is suspended. This means that the
controller could run on the same processor as one of the workers, without affecting the
performance. Given n free processors in the network, the task force should consist of
n workers and one controller.

A problem arises. As far as the Task Force Manager is concerned the controller
and the workers are equal: it is not given any information to tell it otherwise. It hasthe
job of putting (n + 1) components on n processors. This means that the Task Force

200 CHAPTER 4. CDL

Manager is as likely to put two workers on the same processor with the controller
on a processor by itself, as to put a worker on the same processor as the controller.
Having two workers on the same processor will halve the speed of both components,
and without aload-balancing component this means that the speed of the task force as
awholeis halved.

One solution is to overload the network. If every processor is given at least three
workers, the difference in performance between a good mapping and a bad mapping is
much less. This approach is particularly suitable in aload-balanced farm. A disadvan-
tage of this approach isthat it increases the amount of communication.

An aternative solution is to give Task Force Manager more information about the
task force. One way is to explicitly place the controller and one worker on the same
processor.

component control { puid /Cluster/00; }
component workerO { code worker; puid /Cluster/00; }

control <> (worker0 [$1] | worker)

Ancther approach is to use the memory attribute. Suppose that every processor
in the network has one megabyte, and this information is supplied to the Task Force
Manager using the resource map. If the Task Force Manager istold that every worker
needs 600K of memory, it believesthat it isimpossible to put two workers on the same
processor. Hence it would have to put aworker on the same processor as the controller.

component worker { memory 600000; }
control <> (| [$1] worker)

A third solution is to make the controller do the same amount of work as the work-
ers. Thisisrelatively simple. The controller can install itself as the first worker during
theinitialisation stage, simply by sending an integer 1 to the start of the pipeline instead
of 0. On an n-processor network the task force would now consist of (n — 1) workers
and a controller, al doing the same amount of work.

During theinitial runs the performance of the task force may be disappointing, par-
ticularly compared with the official performance rating of a Transputer. The first point
to consider isthe target processor: the task force performs floating point arithmetic, so
if it iscompiled for a T414 but runs on T800s the floating point unit will not be used
efficiently. If the network is a mixture of T800s and T414 it becomes more difficult.
It is possible to have two types of worker binary, one compiled for a T414 and one
compiled for a T800, and use both workers in the task force. Clearly it is necessary to
specify the processor type in the CDL script. On a network with four T414s and four
T800s, a suitable CDL script might be:

component worker.t4 { processor T414; }
component worker.t8 { processor T800; }

control <> ((| [4] worker.t4) | (| [16] worker.t8))

This should run four workers on every T800, using the floating point unit efficiently,
and one worker on every T414, hopefully balancing the workload equally between

4.3. AN EXAMPLEASEASY ASPI 201

the two types of processor. Some experimentation may be required to get the balance
exactly right.

It should be noted that the official performance statistics for Transputers are based
on having both program and datain the fast internal memory. Normally under Helios
external memory will be used, and this makes a significant difference to the perfor-
mance. The amount of internal memory on a Transputer is limited: it may be inad-
equate even for a program’s current data area, and it will certainly be inadequate for
the code of a non-trivial program. If it is desired to make use of interna memory,
Helios provides the Accelerate() and AccelerateCode() functions to move the current
program stack into internal memory and to place program code into internal memory.
The reader is referred to the Helios Encyclopaedia and online help system for further
details.

4.3.8 FORTRAN task forces

Producing parallel task forces with CDL isindependent of the language used to imple-
ment the individual components. The same CDL script can be used irrespective of the
language(s) used to implement the components, provided that the language provides
access to the Posix file descriptors set up by the Task Force Manager. It is possible for
the controller to be written in C, and the worker in FORTRAN or Pascal. It is even
possible to have the controller in C, some workersin C, somein FORTRAN, and some
in Pascal:

(| [$1] cworker) |
(| [$2] fworker) |
(| [$3] pworker))

ccontrol <> (

The reader is referred to the appropriate language manual for details of the 1/0
facilities provided. The FORTRAN programs below are written using the Meiko 3
FORTRAN compiler. This provides library routines POS WRITE and POS READ
to access the Posix library routines. To perform FORTRAN 1/0O with the neighbours,
units 30 onwards map onto the Posix file descriptors. Thusa WRITE(31,x) statement
would perform buffered 1/0 to Posix file descriptor 1. The 1/O facilities provided by
FORTRAN are inadequate for any task force more complicated than a pipeline, be-
cause of the buffering problems already discussed. Meiko FORTRAN provides access
to the component’s arguments using a GETPARAMETERS() function.

The controller

PROGRAM CONTROL

INTEGER WORKERS, INTERVALS
DOUBLE PRECISION TOTAL

WORKERS = 0
CALL POS WRITE(5, WORKERS, 4)
CALL POS READ(4, WORKERS, 4)

3Meiko is atrademark of Meiko Limited

202 CHAPTER 4. CDL

WRITE (%, 10) WORKERS
10 FORMAT ('’ Pi : the number of workers is ', I4)

CALL POS_WRITE(5, WORKERS, 4)
CALL POS_READ(4, WORKERS, 4)

WRITE (%, 20)
20 FORMAT (' Number of intervals per worker ? ')

READ (%, %) INTERVALS

CALL POS WRITE(5, INTERVALS, 4)
CALL POS READ(4, INTERVALS, 4)

TOTAL = 0.0
CALL POS _WRITE(5, TOTAL, 8)
CALL POS_READ(4, TOTAL, 8)

WRITE (%,30) TOTAL

30 FORMAT (' Calculated value of pi is ', Flé6.14)
END
Theworker

PROGRAM WORKER

INTEGER WORKERS, INTERVALS, POSITION, TEMP
DOUBLE PRECISION TOTAL, SUM
INTEGER FIRST, CURRENT, LAST
DOUBLE PRECISION WIDTH, TMP

CALL POS READ(0, POSITION, 4)
TEMP = POSITION + 1
CALL POS_WRITE(1, TEMP, 4)

CALL POS READ(0, WORKERS, 4)
CALL POS WRITE(1, WORKERS, 4)

CALL POS_READ(0, INTERVALS, 4)
CALL POS _WRITE(1, INTERVALS, 4)

SUM = 0.0

WIDTH = 1.0D0 / (WORKERS x INTERVALS)
FIRST POSITION % INTERVALS

LAST = FIRST + INTERVALS

DO 100 CURRENT = FIRST,LAST-1,1

TMP = (CURRENT + 0.5D0) % WIDTH

SUM = SUM + WIDTH % (4.0D0 / (1.0DO + TMP % TMP))
100 CONTINUE

4.3. AN EXAMPLEASEASY ASPI 203

CALL POS_READ(0, TOTAL, 8)
TOTAL = TOTAL + SUM
CALL POS WRITE(1, TOTAL, 8)

END

4.3.9 Pascal task forces

To end this section, here are the same task force components written in Prospero Pas-
cal. For more details of the facilities used, please refer to the Pascal manual.

The controller

PROGRAM control (input, out) ;

FUNCTION _read(hand:integer; place:integer; amount:integer) :

integer; EXTERNAL;

FUNCTION write(hand:integer;place:integer;amount:integer):

integer; EXTERNAL;

VAR number workers, intervals, junk:integer;
total:longreal;
BEGIN
number_ workers := 0;
junk := write(5, addr (number workers), 4);
junk := read(4, addr (number workers), 4);
writeln(’Pi : the number of workers is ',
number workers) ;
junk := write(5, addr (number workers), 4);
junk := read(4, addr (number workers), 4);
write ('Number of intervals per worker ? ’');
readln (intervals) ;
write (’Evaluating a total of ’);
writeln (number workers x intervals,’ intervals’);
junk := write(5, addr(intervals), 4);
junk := read(4, addr(intervals), 4);
total := 0.0DO;
junk := write(5, addr(total), 8);
junk := read(4, addr(total), 8);
writeln(’Calculated value of pi is ’, total:16:14);
END.
Theworker

PROGRAM worker (input, out) ;

204 CHAPTER 4. CDL

FUNCTION _read(hand:integer; place:integer; amount:integer) :
integer; EXTERNAL;
FUNCTION write(hand:integer;place:integer;amount:integer) :
integer; EXTERNAL;
{ the evaluation routine }

FUNCTION eval (position, workers, intervals : integer):
longreal;

VAR
first, current, last : integer;

width, sum, tmp : longreal;

BEGIN
sum = 0.0DO0O;
width = 1.0D0 / (workers * intervals);
first := position % intervals;
last := first + intervals;
for current := first to (last - 1) do
BEGIN
tmp := (0.5D0 + current) * width;
sum := sum +
width % (4.0D0 / (1.0D0 + tmp % tmp));
END;
eval := sum;
END;

{ the main routine }

VAR position, number workers, intervals,
junk, temp:integer;
total, sum:longreal;

BEGIN
junk := read(0, addr(position), 4);
temp := position + 1;
junk := write(l, addr(temp), 4);
junk := read(0, addr (number workers), 4);
junk := write(l, addr (number workers), 4);
junk := read(0, addr(intervals), 4);
junk := write(l, addr(intervals), 4);
sum := eval (position, number workers, intervals) ;
junk = read(0, addr(total), 8);

total := total + sum;
junk _write(1l, addr(total), 8);

END.

4.4. CDL FARMSAND LOAD BALANCING 205

4.4 CDL farmsand load balancing

In the pi example described in the previous section the task force had no need of aload
balancing component The problem could be divided into a number of smaller jobs, all
requiring the same amount of CPU time. Every worker could be given one of the jobs,
thus ensuring that al the workers and hence al the processors in the network were
kept busy.

Many problems can be paralelised without load balancing, like the pi example.
Other problems are not suitable for simple load balancing, particularly if the individ-
ual jobs are not independent and the workers need to communicate with each other.
Nevertheless, for many applications and under many circumstances a load balancing
component is essential or very desirable. Consider aray tracing program. One pixel
might just display empty space, while an adjacent pixel might involve rays bounc-
ing off a hundred objects. There is no way of predicting in advance how much work
might be required for a given pixel. Another problem occurs if the network is hetero-
geneous or shared. If atask force involves floating point arithmetic and the network
has a mixture of T414s and T800s, the latter should do most of the work. In a multi-
user environment with a shared pool of perhaps 64 processors, one user might start
a 64 component task force whilst a neighbour starts up 16 components. The result-
ing performance will be unpredictable, probably unrepeatable, and almost certainly
disappointing unless load balancing is being used.

One other advantage of |oad balanced task forces should be mentioned at this point.
They tend to be very easy to write, because the chore of distributing the workload
amongst an arbitrary number of workersis handled by a standard component, the load
balancer.

This section introduces the reader to programming farms, the main task force
topology which uses load balancing. It starts with a description of the communication
between the master and worker components and the load balancer, with an example
task force. Next the inner workings of a simple load balancing component are de-
scribed, in addition to ways in which this program might be modified for particular
applications. The sources of this load balancer are shipped with Helios.

441 A smplefarm

The CDL syntax for asimple farmis

master [3] ||| worker

as shown in Figure 4.8.

The master components send jobs, in the form of packets, to the load balancer. A
packet contains al the information needed to perform the required calculations. The
load balancer reads in packets from the master, checks whether any of the daves are
free, and if so the packet is sent to that slave. All of the slave components read in one
job packet, process it, send back a reply packet, and read in the next job. The load
balancer continuously reads reply packets from the workers and sends them back to
the master.

This scheme provides load balancing without needing any information about the
application. If the task force has been mapped so that two workers are mapped onto

206 CHAPTER 4. CDL

j worker
master [3] ||| worker | MO o] 1P == worker
Figure 4.8 A simple farm

one processor, and athird worker has aprocessor to itself, the first two will work at half
speed. The third worker will be able to process packets twice as fast, so it will receive
twice as many packets as each of the other two. Therefore it receives the same number
of packets as the other two together, and the two processors both handle exactly the
same number of packets and are kept equally busy.

What exactly isapacket? In general both job packets and reply packets can contain
an arbitrary amount of data, to be read in by the other side. However, the amount of
data must be known by the other side before it can be read in. The solution is to split
the packet into two parts: afixed size header, and a variable size data field whose size
is contained in the header.

typedef struct LB HEADER {
word size;
word control;

} LB_HEADER;

First, consider the slave. This component must execute aloop, as described below.

forever
read packet header
allocate space for data, if necessary
read rest of data
perform calculation
construct reply packet header
send packet header and packet data

The master is slightly more complicated. It must send out enough packets to keep all
the workers busy, but not so many that the load balancer runs out of memory in trying
to buffer them. In addition it must read back reply packets from the load balancer as
quickly aspossible. The simplest way to achieve thisisto have two separate processes,
one generating job packets as quickly as the load balancer will accept them, the other
reading reply packets from the load balancer as quickly as they are produced (see
Figure 4.9).

PAR

writer : loop
generate job
initialise packet header
send packet to load balancer

4.4. CDL FARMSAND LOAD BALANCING 207

worker

B
=

worker

worker

%
i

Figure 4.9 Two processes

reader : loop
read packet header
allocate space for data, if necessary
read packet data
process the result, (write it to a file)

Now consider how to apply thisto a particular problem. Given arange of numbers
ab where 1,000, 000,000 < a < b < 2,000,000, 000, find the integer in this range
with the largest number of factors. The range of numbers will be at least 100,000. For
anumber x, the number of factors can be evaluated by the following code:

worker : int root = square root (x);
int number factors = 2;

for (i = 2; 1 <= root; i++)
if (x $ 1 == 0)
number factors += 2;

/+* do not count an exact root twice %/
if (root % root == x)
number factors -= 1;

Consider the size of ajob very carefully. The above loop will be executed at most
44721 times, since v/2,000, 000,000 = 44721. Therefore the amount of work per
number is small. To get the right balance between the computation time per packet
and the communication overheads, every job should be a set of numbers, perhaps 100,
giving at least 1000 packets in total.

What exactly should the packets contain? A job packet sent by the master to the
workers must contain the set of 100 numbers to be handled as part of that job. This
can be done by sending the first number in that set. The following code can be used.

master, writer process :

typedef struct job_data
LB _HEADER header;
int start;

} job data;

208 CHAPTER 4. CDL

job_data data;
int i;

data.header.control = 0;
data.header.size sizeof (int) ;

for (i = base; i < end; i+= 100)
{ data.start = i;
write (5, (BYTE *) &data, sizeof (job data)) ;

}

The load balancer is a subordinate of the master, so file descriptors 4 and 5 are
used for communication. The job packet is sent as a single 12 byte structure. In fact
the load balancer will read in the header so that it knows the amount of data to come
(in this case another 4 bytes), and then it will read in this data. Because of the way the
pipe protocols work this does not cause any confusion. The write() will be suspended
until the load balancer has read in al 12 bytes.

Next, consider the worker. Every worker is a subordinate of the load balancer, so
file descriptors 0 and 1 are used for communication.

worker :
job_data data;

read (0, (BYTE *) &data, sizeof (job data)) ;

Strictly speaking the worker should read in the packet header and then the data.
In practice the load balancer always writes packets all at once. The fina result that
the task force computes is the number with the greatest number of factors. Therefore
the reply packet returned by the worker must contain the number within its current job
with the greatest number of factors, together with the count. The master can compare
this with the best result to date.

master, reader :

typedef struct reply data {
LB_HEADER header;
int best;
int count;

} reply data;

reply data data;
int i, best, count = -1;

for (i = base; i < end; i += 100)
{ read(4, (BYTE x) &data, sizeof (reply data)) ;
if (data.count > count)
{ best = data.best; count = data.count; }
}

printf ("The winner, with a score of %d, is %d.\n",
count, best);

4.4. CDL FARMSAND LOAD BALANCING 209

Note that the reader process reads exactly the same number of packets as the writer
process sends out. For less trivial applications the two processes might synchronise,
so that the writer does not start the next run of jobs until the current run has been
compl eted.

Neither the load balancer nor the workers have any way of knowing when the last
data packet has been sent. Therefore these programs will not exit, and the task force
as a whole will not exit. To avoid this the master component should send a special
‘terminate’ packet, which the load balancer will broadcast to all workers before exiting.
Every worker should check every packet to seeif it isthis special terminate packet, and
if so the worker should exit.

Combining all the above, we get the following:

The CDL script

master \$1 \$2 [$1] ||| worker

The master

#include <helios.h>
#include <stdio.h>
#include <stdlib.h>
#include <posix.h>
#include <lb.h>
#include <sem.h>
#include <nonansi.h>

typedef struct job data {
LB _HEADER header;
int start;
} job_data;

typedef struct reply data {
LB_HEADER header;
int best;
int count;

} reply data;

int base, end;
Semaphore finished;

static void reader process (void) ;
static void writer process (void) ;

int main(int argc, char *xargv)
{ LB_HEADER terminate;

base = atoi(argv[1l]);
end = atoi(argv([2]);

InitSemaphore (&finished, 0);

210 CHAPTER 4. CDL

unless (Fork (2000, &reader process, 0))
{ fprintf (stderr, "Unable to fork off reader process.\n");

exit (1) ;
}
writer process(); /* send all the job packets =/
Wait (&finished) ; /+ signalled by the reader process x/

terminate.control LB_MASTER + Fn Terminate;
terminate.size = 0;

write (5, (BYTE %) &terminate, sizeof (LB _HEADER)) ;
return(0) ;

}

static void writer process (void)
{ job_data data;
int i;

data.header.control 0;
data.header.size = gizeof (int) ;
for (i = base; i < end; i+= 100)
{ data.start = i;
write(5, (BYTE *) &data, sizeof (job data));

}

}

static void reader process (void)
{ reply data data;
int i1, best, count = -1;

for (i = base; i < end; i+= 100)
{ read(4, (BYTE *) &data, sizeof (reply data)) ;
if (data.count > count)
{ best = data.best; count = data.count; }
}

printf ("The winner, with a score of %d, is %d.\n",
count, best) ;

Signal (&finished) ;

Theworker

#include <helios.h>
#include <stdio.h>
#include <stdlib.h>
#include <posix.h>
#include <lb.h>

#include <sem.h>
#include <nonansi.h>
typedef struct job data

4.4. CDL FARMSAND LOAD BALANCING 211

LB _HEADER header;
int start;
} job data;

typedef struct reply data {
LB _HEADER header;
int best;
int count;

} reply data;

static void process_job(job_data *, reply data =) ;
static int square_ root (int);

int main(void)
{ job data job;
reply data reply;

forever
{ read(0, (BYTE %) &job, sizeof (job data));
if ((job.header.control & LB _FN) == Fn Terminate)
exit (0) ;

process_job(&job, &reply);

reply.header.control = 0;

reply.header.size = sizeof (reply data) -
sizeof (LB_HEADER) ;

write (1, (BYTE %) &reply, sizeof (reply data));

}

return(0) ;
}
static void process job(job_data *job, reply data xreply)
{ int %, i, root, number factors;

reply->count = -1;

for (x = job->start; x < job->start + 100; xX++)
{ number factors = 2;
root = square_ root (x) ;

= 2; 1 <= root; 1i++)
if (x % 1 == 0)
number factors += 2;

if (root % root == x)
number factors--;

if (number factors > reply->count)
{ reply->count = number factors;
reply->best = x;

}

212 CHAPTER 4. CDL

/* evaluate a square root without using floating point =/
/+ five iterations of the Newton-Raphson method with a %/
/% starting point of sqgrt(1,500,000,000) will suffice «*/
static int square root (int x)
{ int estimate = 38730, i;

for (1 = 0; 1 < 5; i++)
estimate = (estimate + (x / estimate)) / 2;

return (estimate) ;

}

4.4.2 A smpleload balancer

worker

=]
Y

m
(R m:

worker

14

worker

Figure 4.10 Processes in the load balancer

The previous subsection gave an example of a simple farm. However, to make
efficient use of farms it is necessary to understand the inner workings of the load
balancing component, and possibly to modify the program to suit the application. The
sources of the load balancer are shipped with Helios.

At any one time the load balancer must be ready to read in new job packets from
the master, and reply packets from some or all of the workers. Simultaneous inputs
from different sources can be handled conveniently by separate processes (see Figure
4.10).

A worker component goes through the following loop.

forever
wait for a job packet to be sent
read the packet
process the job
send the reply packet

It is convenient for the load balancer processes interacting with the workers to use
asimilar loop.

forever
wait for a job packet to be available
send the packet to the worker
wait for and read the reply packet
pass the reply on to the master

4.4. CDL FARMSAND LOAD BALANCING 213

Itisagood ideato have an input buffer of new job packets, waiting to be sent to the
workers. If aworker finishes its current job a new one will be available immediately
to be sent to that worker. Assuming that the master can generate job packets much
faster than a worker can process a packet, the largest buffer size that makes sense is
one packet per worker. Even if all the workers were to finish their current job at the
same time they could all be sent anew job immediately. The master should then have
enough time to refill the buffer.

If the master component cannot generate jobs fast enough to keep the workers
busy, the farm is unbalanced and some of the workers will be idle, wasting valuable
processors. Thisis particularly important in a multi-user environment. Suppose that a
problem involves n packets, to be evaluated on x workers. Every worker can handle
y packets per second, and the master can generate = packets per second. The workers
can process atotal of (x *y) packets per second, so for abalanced farm we must have:
z >= (x*y),orx <= (z/y). Thevauesof y and z can be estimated by using some
simple tests, giving an approximate idea of the number of workers that can be used
sensibly. If too many workers are used then the master component is a bottleneck, and
some of the workers areidle.

It is possible that the rate at which jobs can be generated varies asthe run proceeds.
For parts of the run the master can generate packets much faster than they can be
processed, whilst for other parts of the run the master takes too much time. Under
these circumstances it makes sense to increase the size of the input buffer in the load
balancer to alarger number than the number of workers in the task force.

Ancther possible bottleneck arises if the master component cannot read back the
reply packets as quickly asthey are generated. Again, if x isthe number of workers, y
the rate at which workers can generate reply packets, and z the rate at which the master
component can read reply packets, the largest farm that makes senseis: = = z/y. If
the rate z varies, it may make sense to have some buffering for the reply packets. This
buffer can be incorporated into the master component, as shown in Figure 4.11.

worker

Y

0

[w] L]

master [

LB

worker

A

worker

Figure 4.11 Buffering in the master

Consider the load balancer in this scheme. With x worker components, the load bal-
ancer contains (n + 1) processes. All of these access the input table, and all but one
access the single stream back to the master. These are shared resources which must be
protected by semaphores table lock and master_lock. In addition, it is useful to have
two counting semaphores controlling the table usage. The process reading from the
master is suspended automatically if there is no space left in the input table, and this
in turn suspends the writer process in the master component when it tries to send its

214 CHAPTER 4. CDL

E} : {:HIIII D:ﬂ worker

Figure 4.12 Buffering in the load balancer

next job packet. The processes interacting with the workers are suspended if there are
no new jobsin the input table, leaving the worker components idle.

In the load balancer all the interact. with.worker () processes must send the reply
packets to the master themselves. This means that these processes are performing pipe
I/O, or even that these processes are suspended on a semaphore waiting to do pipe
I/0, whilst the corresponding worker components are idle waiting for their next job
packets. Depending on how quickly the master reads the reply packets, this may or
may not affect performance significantly. One solution isto add an output buffer to the
load balancer, matching the input buffer, as shown in Figure 4.12.

Given this output buffer, it is arelatively small change to add some new control
packets which the master component can send to modify the load balancer’s behaviour.
One control packet could change the size of the input table, reducing it if the load
balancer runs out of memory in buffering too many packets, or increasing it to allow
for variations in the rate at which job packets can be produced. Another control packet
could change the size of the output table, increasing it to alow for variations in the
rate at which reply packets are handled. This eliminates any need for buffering in the
master component. A very intelligent load balancer could monitor the rates at which
the master produced job packets and collected reply packets, adjusting the buffer sizes
asrequired.

Thisbrings usto the concept of control packets generally. The simpleload balancer
only supports two special control packets: ‘terminate’ and ‘broadcast’. The'terminate’
packet requires no additional data. It is implemented simply as a broadcast of the
terminate packet to al the workers, followed by the load balancer exiting. The workers
are not expected to send a reply to the terminate packet. A broadcast packet can be
used to send an arbitrary amount of data to all the workers. For example, in a ray
tracing application all the workers must be initialised with details of al the objectsin
the picture being ray traced. Thisis done as a simple broadcast, with details of all the
objects held in the data vector. The worker component should recognise this specia
broadcast packet and handle it as appropriate. While atask force is running it may be
necessary to send many broadcasts. For example, to raytrace a completely different
picture, or to raytrace the current picture from a different angle.

Broadcasting a packet involves synchronisation. The broadcast cannot be sent un-
til al the previous job packets have been handled, because these must be processed
with the old broadcast data. This can be implemented by waiting for al the workersto
be idle and the table to be empty. A specia broadcast packet is inserted into the table.

4.4. CDL FARMSAND LOAD BALANCING 215

Whenever a process such as interact with worker () detects this packet it suspends
itself until it is reactivated by the process interacting with the master. Thisisimple-
mented using the broadcast_master and broadcast. slave semaphores. Broadcasting
could be implemented more efficiently but with considerable effort, by sending the
broadcast packet and the new jobs to aworker as soon as possible.

Many other control packets are possible, and it may well be worthwhile to add
these to the load balancer if it makes the other components easier to write. Some of
the possibilities that spring to mind are as follows.

sync packet

Thisisreturned to the master when all the current jobs have been finished, leav-
ing the workers idle. It can be used to inform the reader process in the master
component that the end of the run has been reached.

wor ker count

The load balancer sends areply packet indicating the number of workers in the
farm.

to_worker

This could be sent by the master to direct the packet to one particular worker,
rather than to the next free worker.

set_input_buffer

This could be used by the master component to control the buffering in the load
balancer.

set_output_buffer

Thisissimilar to set_input_buffer.

job_packet_size

Thistells theload balancer about the size of job packets, so that it does not need
to do any dynamic alocation every time a packet arrives. A specia number,
-1 for example, could be used to reset the load balancer to packets of variable
length.

reply_packet_size
Thisisasimilar facility for the reply packets.

Users can implement any control packets they choose. The LB.HEADER structure
contains a 32 hit control field, whose interpretation is entirely up to the components.
There is no need to follow the current encoding scheme, if this seems inappropriate.
Different applications have different requirements for the load balancing component,
and the program is intended merely as a basis on which users can build.

216 CHAPTER 4. CDL

443 Moreabout packets

When designing atask force with afarm topology, the critical design decision will be
the nature of the job packets. There is avery important relationship between the cost
of small packets and the need for a large number of packets. Again, consider a ray
tracing application, with a picture size of 512 x 512 pixels. One approach would beto
make every pixel aseparate job, thus generating 262,144 jobs. Each job involves 4 lots
of pipe I/O: from master to load balancer, from load balancer to worker, from worker
back to load balancer and from load balancer back to master. Therefore if every pixel
is a separate job, over amillion lots of pipe I/O isinvolved, and this will be alengthy
process.

Another approach would be to have every scanline as a separate job, giving 512
jobs. If the number of workersisfairly small, perhaps 10, every worker would haveto
process about 50 jobs which should allow for sensible load balancing. Conversely, with
100 workers each worker would have only 5 packets. Under the worst circumstances,
calculation on the 512" scanline would start just as scanlines 412-511 have been
handled, leaving 99 workers idle while the other oneis processing scanline 512. These
worst circumstances can arise irrespective of the size of the job and the number of
workers, but they become more serious as the size of each job increases.

It is not possible to give any rules for the amount of work per packet compared
with the amount of communication and the number of workers. In generdl, it should
be easy to experiment and produce a good compromise given a particular application
and processor network. In the ray tracing example, it should be fairly easy to measure
the performance for jobs consisting of 1, 4, 16, 64, 128, 256 and 512 pixels with little
changeto the programs. It islikely that the number of workersthat can be used sensibly
issmall, aslow as 5 or 10 perhaps (even on a 1024 processor network), because the
master component is a bottleneck. Of course, if the optimal solution is to have 14
workers, a load balancer, and the master, then it is possible to run 64 of these task
forces simultaneously on the 1024 processor network and get optimal performance
from the entire network.

One other point must be noted. In general, the packets returned to the master will
not be in the same order as the packets sent out by the master, because some of the
jobs may require more time than others or because some of the workers can operate
faster than others. Therefore the reply packet must always contain some information
which allows the master component to identify it. This might be a sequence number,
or it might be the screen coordinates of the pixels calculated during the current job.

444 Advanced farms

So far this section has discussed simple farms, consisting of one master component,
one load balancer, and an arbitrary number of workers. For certain applications other
topologies might be appropriate. For example, it may be desirable to have more than
one load balancer, as shown in Figure 4.13.

This might be useful if the packet size islarge, and asingle load balancer is unable
to buffer the nine packets in a simple farm. Of course the above topology forces the
master component to distribute the jobs equally between the three load balancers. An
alternative solution is to have a hierarchy of load balancers (see Figure 4.14).

4.4. CDL FARMSAND LOAD BALANCING 217

master

Figure 4.13 Multiple load balancers

g

Ib

‘ masterL__" big.Ib Ib

Figure 4.14 Hierarchy of load balancers

218 CHAPTER 4. CDL

worker

(WHID [5
mester | |
(R [

worker

il

worker

Figure 4.15 Built-in load balancer

A different version of the load balancer would be required in the middle. It would
have to know that its three subordinate load balancers all had three workers, and hence
that they could all receive and process three job packets immediately and buffer another
three. 1t would have to take care not to fill up the buffer in a subordinate load balancer
if the workers of another subordinate load balancer were idle. Note that the middle
load balancer is given two arguments: the number of subordinate load balancers and
the number of workers per subordinate. Therefore it is possible to produce a single
load balancer which could operate in either position, simply by examining the number
of arguments. Also note that exactly the same worker program can be used with all
these configurations.

One more possibility should be considered. In a simple farm all packets involve
four lots of pipe I/O as discussed earlier. This can be reduced to just two lots of pipe
1/0 by merging the master component and the load balancer. The writer process in the
master, instead of sending a packet to the load balancer, now adds it to the input table.
Similarly, the reader process in the master, instead of reading packets from the load
balancer, takes them from the end of the output table. This creates the scheme shown
in Figure 4.15.

The worth of the performance gain with this merger depends on the application.
If the cost of communication is higher than the cost of computation, the merger may
make the paralelisation worthwhile. If the cost of computation is much larger, the
gains are not worthwhile.

45 Oddsand ends

The reader can now produce task forces by using the information and the examplesin
the previous sections. However, there are a few points left that should be discussed.
Firstly, there is a more detailed description of the relationship between computation
and communication, together with the problems of bottlenecks. Secondly, the possible
problems encountered with workers are mentioned. Thirdly, the possibility of pro-
ducing a parallel server is discussed, using a number crunching server as an example.
Fourthly, the possibility of using message passing rather than pipe read() and write()
calls is discussed. Finaly, there is a program illustrating message passing between
components, rather than Posix read() and write() calls.

4.5. ODDSAND ENDS 219

throughput

rOCESSOI's

Figure 4.16 The throughput curve

4.5.1 Communication versus computation

When solving a problem in paralel, two types of cost must be considered. First of
al there is the computation. If one processor can solve a problem in x seconds,
then n processors should be able to do exactly the same amount of computation in
(x/n) seconds. The n processors are doing useful work for (z/n) seconds. This as-
sumes that the amount of computation can be split up in some way, so that the different
processors can al do part of the computation.

The processors must exchange data if they are to carry out the computation. It is
necessary to split up the data and transfer it from one processor to another. This com-
bined cost is the communication cost. If the problem was solved on a single processor,
the communication cost would be zero. Therefore all of the communication cost is an
overhead.

Thereisathird cost: installation. This term applies to mapping the task force onto
the available processors, loading the components from the disc into these processors,
reading initial data from disc, writing final results to disc, etc. If the task force is
going to be used only a few times, the extra cost of producing a parallel rather than
a sequential solution must also be considered. For many task forces the installation
cost will be negligible compared with the other two, but there are always exceptions.
Installation cost will not be considered further here.

For a given amount of computation, as the number of processors used increases,
the amount of computation done per processor must decrease. Also, the amount of
communication will increase. Hence the proportion of time usefully spent will de-
crease. There are two parameters to consider. First, the computation throughput per
second (the amount of real work done) (see Figure 4.16).

When the number of processors increases to a certain level, the throughput will ac-
tually decrease because the increase in communication is more than the computation
done by the extra processors. It never makes sense to have so many processors that
the throughput actually decreases. A closely related parameter is ‘speed up’. Thisis
ameasure of the throughput on »n processors compared with the throughput on 1 pro-
cessor, the speed up achieved by having a parallel rather than sequential solution. The
second parameter is the efficiency, which is the throughput per processor. This mea
sures how much time is spent usefully on every processor, the time spent computing
divided by the total time spent computing and communicating (see Figure 4.17).

On asingle processor the efficiency is 100%, and this drops as the number of pro-
cessors (and hence the communication) increases. The throughput for n processors is
n « efficiency(n). Theturning point for throughput occurs when (n « efficiency(n)) >

220 CHAPTER 4. CDL

efficiency

rOCESSOI's

Figure 4.17 The efficiency curve

((n+ 1) efficiency(n + 1)).

For some applications the efficiency and throughput curves might not be smooth.
For example, an application might be quite efficient with 16 workersin a4 x 4 array, or
with 20 workersin a5 x 4 array, but give poor performance with 17, 18 or 19 workers.

For a small number of processors, the throughput rises quickly. This has an im-
portant consequence. Given a 16 processor network, the throughput of a single task
force will be less than the combined throughput of two task forces, both running on 8
processors. The most efficient use of the network can be achieved by having 16 task
forces, all on one processor. Of course it will take longer to calculate these 16 results
than it would take to calculate a single result on 16 processors, and it is necessary to
strike a balance between the response time and efficient use of the network.

The exact slope of the throughput curve depends very much on the application. For
some applications it is possible to maintain high efficiency even with many thousands
of processors. For other applications the throughput is actually reduced by having even
two processors. (The communication overheads are such that with two processors each
operates at less than 50% efficiency.) For any given application it is difficult to esti-
mate the throughput curve in advance with any degree of accuracy, but some simple
experiments should give a good idea. There are various ways in which the commu-
nication costs can be reduced. The first way is to reduce the number of packets sent,
by increasing the amount of work per packet. This solution is particularly appropriate
for afarm. It is not always applicable if the amount of communication is determined
by the problem. Thus in image processing it is possible to have a two-dimensional
array of workers, with every worker needing to communicate with its neighbours to
deal with the boundary conditions. This communication is implicit in the problem,
and cannot be reduced in any way.

The second way to reduce the communication cost is to send a few large packets
instead of many small ones. The cost for a single-pipe I/0 can be divided into afixed
latency cogt, to do any I/O at al, and a variable cost proportional to the amount of
data. Sending one large packet instead of 10 small ones saves 9 «x latency cost. As
an example consider the following transfer rates achieved for pipe I/O between two
processors 4 links apart, for different packet sizes.

4.5. ODDSAND ENDS 221

Packet Size (bytes) Transfer Rate (Kb/s)

4 2

64 38
2048 507
65536 1372

It would take almost 3.5 seconds to transfer 128K of data across 4 links using 64-
byte packets. Using two 64K packets the transfer could be achieved in a fraction of a
second.

It should be noted that the above measurements were made in an otherwise idle
network. Computation will not usually affect the time taken for communication, be-
cause under Helios the former will run at low priority whilst communication occurs at
high priority. However, if many components are communicating over the same set of
links then these will affect each other adversely.

Again it is not always possible to adjust the size of the packets to get better per-
formance, because this size is determined by the problem. The third way to improve
performance (possibly the most important) is to identify and attempt to remove any
bottlenecks. These were discussed in some detail in the previous section. Not all bot-
tlenecks can be eliminated, and if so this will severely limit the number of processors
that can be used. To detect bottlenecks it is necessary to experiment, using perfor-
mance monitoring code in the various components.

The final way of improving efficiency may seem obvious but is often overlooked.
Make the components themsel ves more efficient. If a programming trick cuts 10% off
an inner loop in a sequential program, exactly the same trick will make the worker
components of atask force more efficient. The saving will not be the full 10% because
of the communication costs, but there will be a saving none the less.

45.2 Problemswith worker components

In a typical network there might be a 4 megabyte root processor with some addi-
tional 1 megabyte processors. Quite often the master component requires more than
1 megabyte, and so the CDL script will place it on the root processor, for example by
specifying its memory requirements. The workers must run on the 1 megabyte proces-
sors. These processors really have just one megabyte, and it isremarkable how quickly
that can be filled up. Consider the following innocuous FORTRAN statement.

DOUBLE PRECISION MATRIX[256,256]

Such astatement will give no problems at all on atraditional mainframe with avirtual
memory system, where portions of the matrix can be swapped out to disc whenever
necessary. On a Transputer this statement would use up 256 x 256 * 8 bytes, or half of
the 1 megabyte attached to the processor. If we also consider the rest of the memory
required by the program data, the program code, the space required for the various
libraries including approximately 100K for the FORTRAN library, and some space
for the operating system, 1 megabyte may not be enough. Applications where every
worker really needs so much memory may not be appropriate for the Transputer hard-
warein use, and there is nothing that Helios or any other operating system can do about

222 CHAPTER 4. CDL

this. Of course it may well be possible to modify the application. If the matrix is a
sparse one, with perhaps just afew thousand actual values instead of the 64K possible,
it can be stored and processed in appropriate data structures without using so much
memory.

The other common problem with task forces is that the worker components try
to do their own |/O, instead of passing results back to the master component. For
example, consider a task force of 100 components al trying to access a file on disc.
If the Transputer network is hosted by a PC then MS-DOS* imposes a limit of 20
open filesfor all of the processors. On a Sun host the limit is 64, but still less than the
application demands. Hence the application will fail because of a design error. Even
worse, it may work perfectly on a small processor network with just 10 components
and fail just when the time comes to demonstrate the application on alarger network,
for reasons that are not immediately obvious, or it may fail if the application is moved
to adightly different environment.

Limits on the number of open files are not the only limits to consider. Suppose
that every one of the workers writes alog to the standard error stream, which happens
to be a window in the 1/0O Server running on a PC. With 10 workers this means 10
open streams to the |/O Server, al using up a significant amount of memory. With
100 workers, a PC 1/0 Server will run out of memory long before 100 streams can be
opened. After al, the PC 1/O Server is running in at most 640K of memory, which
is less than the minimum of a megabyte attached to a typical Transputer. Again, the
application will fail for reasons not immediately obvious if attempts are made to run it
on alarger network or in a different environment.

If every worker tries to interact with the Helios X window system server the prob-
lem is dlightly different. The X server may be running on a processor with sufficient
memory to cope with alarge number of connections. However, every worker would
require the X library, about 128K, and possibly the X Toolkit library and the Widget
library at 64K each. Asaresult 256K out of the megabyte available would be used up
just for these libraries, quite possibly not leaving enough memory to do the real work.

Apart from the improper use of resources described above, there is another good
reason why worker components should not perform any 1/0. The Helios Task Force
Manager is responsible for mapping the components onto the available network in an
efficient way, trying to minimise the distance between communicating components. If
all the workers spend their time doing 1/0 which is not related to the inter-component
communication, the Task Force Manager will not have allowed for that and the effort
spent trying to achieve an efficient mapping will have been wasted. The rule is that
workers should communicate only with other components in the task force. Any read
1/0 should be left to the master component if possible.

45.3 Paralld servers

The Helios parallel operating system is based on a client-server model. To perform
certain types of work, an application or client sends a message to a server, which
may be on the same processor or it may be anywhere else in the network, and this
server program does the real work. Under Helios it is possible to produce a server

*MS-DOS s aregistered trademark of the Microsoft Corporation

4.5. ODDSAND ENDS 223

Program j

Library Server [|b == worker

worker

worker

LY

AT

Figure 4.18 A parallel server

which is atask force. For example, consider a number crunching library on a single-
processor machine which isused by many existing applications. Rather than rewrite all
the applications to work in parallel, the library is turned into client code of a number
crunching server. Suppose the application performs a library call for a complicated
matrix operation. The library sends arequest to the number crunching server, with al
the data, and the server performs the work on multiple processors. When the work
has been done the server returns the result to the library, which returns control to the
application (see Figure 4.18).

The master component of the task force installs itself as a Helios server, in the
standard way. When the library needs to access the server it opens a stream to the
server, transfers al the required control information and data using this stream, and
receives the results over this stream. The server accepts multiple open requests from
different clients and receives jobs from these clients. Each job is evaluated using some
or al of the workers, and the results are returned to the client. The advantage of the
scheme is that the existing applications run unchanged.

Not all numerical problems can be solved using this approach. First of al this
approach is less efficient than parallelising the actual applications, because there is
additional communication overhead between the library and the server. Second, not
al standard library routines can be handled in thisway. In particular, if the application
passes the address of a compiled function to alibrary routine, perhaps a routine for
evaluating an integral, then there is no easy way of passing this function to aserver on
aremote processor, and certainly not to al the workers. A string representation of the
function might be used, which could be interpreted or compiled in all the workers, but
thisis only possible for relatively simple functions and it means that the applications
would have to be changed. However, there is no reason why the numerical library
could not handle such routines on the local processor, whilst passing other callsto the
remote server.

224

Chapter 5

Compatibility

5.1 Introduction

This chapter covers the compatibility of Helios with various actual and de facto stan-
dards, and the porting of programs to Helios. The basdline for Helios compatibility
is Unix, in its various flavours. The intention is to make the porting of a program to
Helios amost as easy as porting it from one type of Unix to another. The emphasis
here is to aid the portability of application programs rather than system programs.
Code which makes unreasonably detailed assumptions about the operating system it
is using will not port directly. However, depending on the assumptions made, such
system programs can be ported with few changes.

5.2 Unix compatibility

There are ailmost as many different forms of Unix asthere are hardware vendors. How-
ever, some standards are emerging, and it is to these that any compatibility measures
must adhere. The two explicit standards are POSI X (IEEE 1003.1-1988) and X/OPEN.
There are aso two de facto standards: System V.4 and BSD4.3. The former has the
might of AT& T behind it and the latter is most widely used in the academic and scien-
tific establishments, where Helios is most used. It must be emphasised that POSIX and
X/OPEN merely codify current Unix practice. They are not generic operating system
interface standards. These standards are currently converging, and whilst a common
subset based on POSIX will probably emerge, features not covered by the standard
will still be implemented in widely differing ways.

The model of computation under Unix is of a group of single-threaded processes
al executing on a single processor. The Helios model consists of a group of multi-
threaded tasks distributed across several different processors. Also, in Unix al operat-
ing system functions, such as the file system, terminal 1/O or Resource Management,
are performed by a single Kernel. In Helios these functions are distributed amongst
several Kernels and servers. The result of thisis that the Unix model is serioudly in-
adequate for describing programming under Helios, and it makes a humber of basic
assumptions which are not true in a distributed environment. The following sections
describe some of these inadequacies, and how Helios deals with them.

225

226 CHAPTERS5. COMPATIBILITY

5.3 Filehandlesharing

Under Unix the file descriptors of a process are small integers which index a per-
process Kernel table of pointersto globally shared file handles. These handles contain,
amongst other things, the current file position. A dup() operation merely copies the
pointer. A fork() will copy the pointer table, but not the handles. This means that
every access to a particular open file, whether it is through duplicated descriptors in
the same process or through the same descriptor in different processes, will use the
same file handle. In particular, all such descriptors share the same file position, so a
read or write through one descriptor will affect the position of the next read or write
through another descriptor.

Under Helios, the task accessing afile and the server which contains it will almost
aways be on different processors. If the task creates a child, this may be on a third
processor. Without shared memory between the processors, there is no possibility of
maintaining a shared file handle, and each client has its own file position. This means
that reads and writes made from different tasks are independent.

One of the design aims for Helios was to make it fault tolerant. To achieve this it
must be possible for aclient to continue running across a crash and to restart al of the
serversitisusing. In the same way, a server should not be affected by the failure of any
of itsclients. This has been achieved by making servers statel ess, and maintaining with
the client any state information required for access to an object. If the server crashes
and restarts, the client can continue because no state has been lost. If the client crashes,
al state relating to that session is lost with it, and the server does not need to take
recovery action. For these reasons, the obvious approach of keeping the file position in
the server, which would preserve Unix file handle sharing semantics, is unacceptable.
Fortunately, few applications exploit this feature of Unix, so compatibility isseldom a
problem. The Posix library implements the correct semantics in the case of dup(), but
not in the case of fork()/exec().

54 fork()

On a single processor with memory management hardware, fork() is a conceptually
simple mechanism for creating new processes. However, depending on the processor
architecture, available memory and swapping strategy, it can be complex and expen-
sive to implement. In most cases this effort is wasted, since the new child almost im-
mediately executes an exec() call which destroys the entire address space which was
so expensively duplicated. For this reason, BSD introduced the vfork() call, which
does not duplicate the address space of the process, but only its Kernel environment
(current directory, file descriptors, process/group/user ids, etc). The new child usesits
parent’s address space until it executes an exec() call or an exit() call, and the parent
is suspended during this period. This allows the child to manipulate the Kernel envi-
ronment, move file descriptors, and change user or directory, before executing another
program.

Clearly there are problems in the implementation of fork() in the environment in
which Helios operates. The most fundamental problem is that the T400 and T800
series Transputers do not have any memory management hardware. If al the memory

5.4, FORK() 227

belonging to a particular process was duplicated locally, it would not occupy the same
range of addresses, and any pointers would still point back to the original memory. It
might be possible to duplicate the process into another processor, at the correct position
but the likelihood of finding a processor with exactly the right range of addresses free
isdim.

For the above reason aone, fork() is impossible to implement. However, there
are further, more fundamental problems, with the whole concept of fork() as aprocess
creation mechanism. In an environment where processes are internally multi-threaded,
the fork() operation is called by only one thread. The execution state of the other
threads is indeterminate. What should be done with these threads? One alternative
is to duplicate all threads into the new process. This then raises the problem of what
happens to threads which are blocked in, or about to execute system calls which should
not, or cannot, be executed in the new process. Theonly other aternativeisto duplicate
only the thread which called fork(). Thisraises aproblem with process-local Resource
Management. If athread holds a resource in the parent, that resource will never be
released in the child, because the thread which should release it has not been duplicated
into the child. Both of the options described above would require considerable effort
on the part of the programmer to deal with the consequences of afork().

Unix fork() also has problems in a distributed environment. In a distributed sys-
tem, process creation isthe ideal point at which to decide in which processor a process
should execute. Unix fork() is potentially expensive even in a uniprocessor. It would
become totally unacceptable if the entire process state and address space needed to be
copied to another processor aswell. A distribution decision could aso be made when
exec() is caled. This is more acceptable, since the address space is to be replaced
and the process state is at its minimum. However, there are still problems with this.
The new process is created in the Kernel of one processor, which must then transfer
it to another, yet it must retain some information for the benefit of the parent process.
Such a mechanism still incurs the cost of creating a new process address space, only
to destroy it soon afterwards. A process which exec()s without forking will move yet
again, introducing a further indirection between it and its parent.

Ancther main use of fork() is to create a new thread of control in the existing
program. Thisis usually necessary to overcome the purely sequential nature of Unix
processes and perform some form of multiplexing. Thisis most frequently present in
programs written before select() (or poll() in System V) was introduced. The multi-
threading introduced by this mechanism is of limited use since the processes have
digoint address spaces, and any communication between them must be achieved by
using signals or pipes which were set up before the fork(). This is more adequately
catered for by the use of process-internal threads. When a standard for internal multi-
threading emerges (POSIX 1003.4 is working towards such a standard), this use of
fork() can be expected to cease.

Another use of fork() is by programs such as mailers and printer daemons to con-
tinue processing in the background. In this case, the program forks a child and then
terminates. The original parent, which is usually a shell, sees its child finish and can
continue. Meanwhile, the grandchild can do the job in the background without forcing
the user to wait for it to finish. This is better dealt with by an explicit detach() call,
which is a more portable mechanism, and can be implemented much more cheaply
than by using fork().

228 CHAPTERS5. COMPATIBILITY

The obvious conclusion is that fork() is not appropriate for process creation in a
multi-threaded, distributed environment. The only function of fork() which cannot be
provided by other, more efficient and more powerful, mechanismsisitsrolein running
new programs. It is undeniably attractive to be able to manipulate the environment
of a new program before it is entered by means of nhormal C code between fork()
and exec() calls. This is the magjor use of the call, and it must be retained if Unix
compatibility isto be preserved. For this reason, vfork() is retained in Helios solely
as a prefix to exec(), to alow this environment manipulation to take place. The same
restrictions apply to Helios vfork() as to the BSD version. The child may not return
from the calling procedure, and it must terminate with exec() or _exit(). For source
compatibility, fork() is defined as a macro which executes vfork().

55 Signals

In Unix, a signal is delivered to a process by invoking a signal handling procedure
on the top of the stack of the process. Thisis possible because the Kernel explicitly
schedules processes, and it is aware of all process states at all times. Transputer ver-
sions of Helios use the processor’s scheduler, and have no direct involvement in either
the creation or the scheduling of processes. For this reason, Helios is unable to deliver
signal handlers onto the top of the stack of aprocess, because it has no way of knowing
wherethisis.

Helios delivers signals to a separate signal delivery process. This means that sig-
nal handlers will execute in parallel with the other threads in the process. It also
means that the Unix practice of exiting asigna handler by longjumping back to some
recovery code will not work. To preserve such behaviour, the Posix library alows sig-
nal handlers to be marked as synchronous or asynchronous. An asynchronous signal
handler is called in the signal delivery process. A synchronous signal is only called
when the Posix library isentered. By default, SIGABRT, SIGHUP, SIGINT, SIGKILL,
SIGQUIT and SIGTERM only are delivered asynchronoudly. If auser signal handler
isinstalled for any of these it reverts to being called synchronously. Only if the han-
dler isinstalled using sigaction() with the SA_LASY NC bit set in the flags will the user
handler be called asynchronously. This does not guarantee that the longjump trick
mentioned earlier will work in a multi-threaded program, but it will work in a Unix
compatible single-threaded program.

Like fork(), Unix signal handling has fundamental problems in a multi-threaded
distributed environment which are not related to Helios or to the Transputer. Signals
are used for three purposes in Unix.

1. Reporting synchronous hardware traps such as SIGSEGV, SIGKILL and
SIGFPE.

2. Reporting asynchronous events sent explicitly by other processes, or the system,
such as SIGINT, SIGABRT, and SIGHUP, etc.

3. Reporting asynchronous events which are used to multiplex a single thread be-
tween several activities. Signalsin this class are SSIGCHLD, SIGALRM, SIGIO
€etc.

55. SIGNALS 229

The synchronous signals are associated with the thread which causes the hardware
trap. In amulti-threaded environment, there are two alternatives for handling these. In
the first option, the signal is delivered directly to the faulting thread. The problem with
thisis that the thread may have corrupted its stack, and this may be the reason why it
trapped. In the second option, the thread is suspended and the signal is delivered to
another nominated thread, together with the original thread’s state. The signal handler
can then inspect and modify the trapped thread, and possibly resume it. This could
become highly machine specific, and it is at variance with current practice, although
it isused by MACH and Topaz. There is no standard practice at present, although the
first option is preferable for the sake of compatibility. Currently there is no mechanism
for raising these traps on the Transputer, so the Transputer version of Helios does not
support these signals.

Of the two types of asynchronous signal, the provision of multi-threading elimi-
nates the need for the second class, although they will need to be supported for the sake
of compatibility. The aternatives for handling asynchronous signals are as follows.

1. Deliver al signalsto al threads.
2. Déliver all signals to anominated thread.
3. Deliver each signal to athread nominated on a per-signal basis.

4. Introduce a function which suspends the calling thread until one of a specified
set of
signals is pending.

5. Create anew thread for each signal asit is delivered.
6. Deliver all signalsto a specia signal handling thread.

7. Deliver each signal to an arbitrary thread.

Clearly option one leads to chaos, option two is close to current practice, option three
results in contention between threads over the single per-process signal mask, and op-
tion four is too different from current practice. Option five is the mechanism used in
Helios until version 1.2, and options six and seven are combined in the signal mecha-
nism for Helios version 1.2 onwards.

The POSIX 1003.4 Readltime Extensions Committee in Draft 8 (August 1989) has
chosen option two, where the nominated thread is always the initial thread of the pro-
cess, since it is backwards compatible with existing systems. However, the committee
has documented a function called sigwait() to implement option four, in the hope of
encouraging its use and eventual standardization. The advantages of this mechanism
arethat it removesall restrictions on the signal handling code, it allows multiple signals
to be handled simultaneously, and it allows different signals to be handled at different
priority levels. With multi-threading, there is no longer any need for signals to be
treated analogously to interrupts, and a more controlled mechanism for handling them
is preferable.

230 CHAPTERS5. COMPATIBILITY

5.6 Processidentifiers

The single Unix Kernel is in sole control of al processes in its system, and it can
choose process ids which are unique. In Helios, there is an arbitrary number of pro-
cessors, each running a different Kernel. It is impossible to ensure that any particular
processid isunique throughout the entire system. Posix restricts pid t to being asigned
integer type. This means that conventional mechanisms for concatenating site id with
a site unique value will rapidly run out of bits. If, asin Helios, subnetwork may be
disconnected and reconnected at will, the system must cope with the possibility that
previoudly digjoint networks are using the same set of processids. Also, aprimary de-
sign objective of Helioswasthat all objects should have textual names with meaning in
human terms, rather than arbitrary ‘ magic numbers'. For this reason, all running tasks
are entered in the /tasks directory, with a name derived from the name of the program
inuse.

In the Helios Posix library, the process ids returned by getpid(), vfork() and
wait(), which should be supplied as arguments to Kill() and waitpid(), are entirely
local to the calling task. They are used merely as tokens by the library, to represent
internal data structures. The processid of any task is42, and its parent is41. Each new
invocation of vfork() yields amonotonically increasing sequence starting from 43. Be-
tween vfork() and exec(), getpid() returns the new value and getppid() returns 42. A
task may only wait() for or Kill() its own children through the Posix library. Control
may be exercised over other tasks by means of the Helios mechanisms, particularly
SendSignal().

5.7 User and group identifiers

Protection of resources in Unix is achieved by assigning an owner’s user identifier and
agroup identifier to all objects. Access rights for the owner, for the group members
and for the general public are also stored. In the same way, processes are given user
and group ids. When a process attempts to operate on an object, the identifiers are
compared and, depending on the results, the appropriate set of access rights is used
to determine whether the operation is allowed. This mechanism relies on the Kernel
to protect the identifiers stored with objects and processes against tampering. Thisis
achieved by storing them outside any process address space, and by closely control-
ling the functions which manipulate them. Helios for the T400 and T800 series of
Transputer has no memory protection, so cannot prevent users from tampering with
their user identifiers. However, as aready mentioned, there are fundamental flawsin
the Unix mechanism which make it unsuitable for a distributed system. In brief, to
duplicate the Unix mechanism in a distributed system requires a centralised user au-
thentication server which must be consulted before every operation on every protected
object, to validate the user. This slows down al operations and vastly complicates the
implementation of all servers. It isacentralised system, with all the consequent prob-
lems of reliability, and it could become a serious bottleneck. If a user could fake an
authentication server, the whole system would be open to them.

The Helios mechanism for resource protection and access controls is based on
encrypted capabilities. This is a distributed system, and the implementation of the

5.8. BSD COMPATIBILITY 231

protection mechanism is entirely in the hands of the servers containing the protected
objects. Consequently, the overheads are minimal, and there is no problem with relia-
bility beyond that of the original server. Users cannot fake a capability in the same way
as they can fake a user id. Thefirst is a 64 bit number chosen from a sparse number
space, and the second is listed in the password file. No special means of storing the
capabilities is needed in the operating system. They can be stored in user memory, and
the user can gain no advantage by tampering with them.

In choosing a protection mechanism which is suited to a distributed system rather
than to Unix emulation, a large degree of compatibility has been sacrificed in this
area. However, experience suggests that, with the exception of afew system programs,
portable Unix programs do not manipulate their own ids, or object user and group
ids. A simple tranglation between Unix access modes and Helios access matrices is
sufficient to support programs like tar and even NFS.

The Helios Posix library from version 1.2 stores a single user and group id for a
task which can be manipulated with the usual calls. Unix programs normally have
both real and effective user and group ids, but since the only mechanism for making
these different is the set-user-id option on executable programs, which Helios does not
support, there is no need to store both. Similar advantage has been taken of the Posix
option to define the number of subsidiary group ids as zero, so nothing need be stored.

Normally Helios does not pass the uid and gid from parent to child, since they
serve no useful function. However, if the environment variables_UID and_GID are
set when a program is entered, uid and gid are set from them. The values of these
variables must be 8 digit hexadecimal numbers. In the same way, the current uid and
gid will be passed on by exec() to any child programs if these variables exist.

5.8 BSD compatibility

A new addition in Helios version 1.2 was a Berkeley Unix compatibility library. This
isalink library of routines which have been written while porting a number of public
domain programs. These routines are a mixture of code written by Perihelion, pub-
lic domain sources and a few genuine BSD sources. Again, the emphasis here is on
minimising changes to source code rather than complete emulation of BSD. No doc-
umentation is supplied for these routines. They are all documented by Berkeley. The
following isalist of the contents of this library.

alloca() bemp () bcopy () bzero ()
closelog () ffs () ftruncate () getopt ()
getpass () getw () getwd () index ()
inet addr () inet 1naof () inet makeaddr () inet netof ()
inet network() inet ntoa() initgroups () insque ()
ioctl () mktemp () openlog () pclose ()
perror () popen () psignal () putw ()

rcmd () readlink () readv () remque ()
rexec () rindex () rresvport () ruserok ()
seekdir () setegid() seteuid() setgroups ()
setlinebuf () setlogmask () setrgid() setruid()
sigblock () sigpause () sigsetmask () sigstack ()
sigvec () strcasecmp () strncasecmp () syslog ()

232 CHAPTERS5. COMPATIBILITY

telldir () truncate () writev ()
Thelibrary also contains the following variables or tables.
sys_errlist sys_nerr sys_siglist
For implementation purposes, the following routines are in the Posix library.

getdtablesize () gettimeofday () lstat ()

wait2 () wait3 ()

Some extra headers have been added to the include directories to support BSD
compatibility. These are listed below.

sgtty.h strings.h sys/dir.h sys/errno.h
sys/file.h sys/ioctl.h sys/param.h sys/resource.h
sys/time.h sys/ttychars.h sys/ttydev.h sys/un.h
varargs.h

BSD compatibility features have been added to the following existing headers.

errno.h fentl.h pwd.h signal.h
stdio.h string.h sys/stat.h sys/types.h
sys/wait.h unistd.h

The BSD compatibility features in the existing headers are only enabled if the
macro _BSD is defined. The BSD only headers will generate an error message if they
areincluded when _BSD has not been defined. Care must be taken when mixing Posix
and BSD specific code, because the headers redefine some things for the BSD option.

The support for ioctl() is limited. For terminals it is implemented on top of the
Posix termios system, and it only implements the common features. The most com-
monly used attributes: RAW, ECHO and TANDEM are implemented. The ability to
change the special charactersis not currently implemented. All ioctls to internet sock-
ets are implemented with the exception of SIOCGIFCONF. The following ioctls each
correspond to their BSD equivalent.

FIONREAD FIONBIO TIOCGETD TIOCGETP
TIOCSETP TIOCSETN TIOCFLUSH TIOCGETC
TIOCLSET TIOCLGET TIOCGPGRP TIOCSPGRP
TIOCGLTC TIOCSTOP TIOCSTART TIOCGWINSZ
TIOCOUTQ

Some of these (TIOCFLUSH for instance) simply call the equivalent Posix routine,
which may not be implemented. Those ioctls mentioned in the headers but not in this
list will do nothing, and return zero.

5.9. PORTING TECHNIQUES 233

5.9 Portingtechniques

This section gives some helpful hints on porting programs to Helios. It only covers
programs written in C for Unix, athough programs written in C for the PC, Amiga,
Atari ST and even the Macintosh should port as easily if they make few machine
specific assumptions. Programs which are genuinely written for portability present
few problems. In many cases they simply need to be compiled and linked.

There are two potential areas of difficulty in porting a program: the C language,
and system functionality. The Helios C compiler is ANSI standard, while most Unix
programs are written to K& R standard. The ANSI standard includes the K& R features
for compatibility, but some of these are known as‘ deprecated’ features, and their useis
discouraged. An example of thisisthe use of afunction declaration without giving any
argument types. These deprecated features all generate warning messages, but they can
be turned off with the -w flag to the compiler. In version 1.3 of Helios, the C compiler
driver can take the flag -wA to turn off al optional warning and error messages. This
isrecommended on al K&R style programs.

CAUTION: Thisoption can sometimes suppress too many error messages, in par-
ticular the message concerning the use of nested comments.

Once the sources of a program have been compiled, they must be linked. Putting
aside referencesto library code for amoment, there isapotentia problem with linking
the parts of a program together. This problem arises from the practice of declaring all
references to avariable as extern, without explicitly defining it and allocating storage.
The Unix linker is then responsible for alocating the storage in the data part of the
final program image. Under Helios, all programs are composed of modules which
export a set of variables and functions to their peers. If there is no definition of a
variable, it cannot be alocated to a module, and therefore it does not fit the Helios
model. There are two simple solutions to this problem. The first is to selectively
remove the extern directive from one declaration of the variable, thus alocating it to
that module. The second solution is to add an extra source file containing definitions
for al such variables. The advantage of this is that the original sources need not be
atered. Fortunately, it appears that few Unix programmers use this feature, and most
take a modular view of their programs, with explicit definitions and clearly defined
interfaces.

The remaining area of difficulty is in system functionality. A program written
purely in terms of the runtime system should have no problems, but such programs are
rare. More frequently, programs use anumber of Unix system calls. Portable programs
will have conditional compilation for different Unix systems. If thisisthe case, try the
POSIX option, if it exists. Otherwise, try -wA -D_BSD in the compilation, and -Ibsd
when linking with the C compiler driver. This has been found to work for a large
number of programs.

If some routines are still undefined, your only option is to write them. It is prefer-
able to add some stubs to implement the missing functions, rather than to change
the sources. If it becomes necessary to change the sources in any way, ensure that
the change is made in conditional compilation flags. The C compiler defines the
macro __STDC__ for marking ANSI C code. The compiler driver defines the macros
__HELIOS, _proc and __ HELI1OSproc, where proc is one of the processor types.
TRAN, ARM, i860 etc.

234 CHAPTERS5. COMPATIBILITY

The only area where significant changes may be needed is in the use of fork(). If
it is used as a prefix to exec(), nothing need be done, although you must ensure that
fork() iscaled at the same leve as, or at a higher fork() level in the calling tree than
exec(). It is not permitted to call a procedure to call fork(). If the fork() is used to
detach the program from its invoker, it must be removed and the invocation must be
atered. Thismay be as simple as writing an alias or a shell script to call the program
in the background. When a fork() is used to obtain a new thread, it can usually be
replaced easily by using internal threads. Care must be taken with any assumptions
made about the separation of the process address spaces.

There are five further problems when porting code. Thefirst problem isthat Helios
does not provide a version of the Bourne shell, so utilities and programs which rely
on it will not necessarily work. The second problem is that file system limitations
can serioudly affect the ease of porting large pieces of code. In particular, if Heliosis
hosted by the MS-DOS or TOS filing systems, then the eight character filename, three
character extension case insensitivity limitations can cause problems, as can the lack
of hard or symbolic links.

The third problem is with function name clashes. Helios has its own specific sys-
tem call names which differ from Unix system calls, so the function names of ap-
plication programs can clash with Helios system function names such as Malloc(),
Exit(), etc. The fourth problem is with changed socket domains. Programmers using
socket should note that the AF_UNIX domain does not exist. Instead, they should
use AF_HELIOS. Also, Helios sockets do not need to be unlinked before or after use,
since they are not created into the filing system, whereas Unix sockets are so created.

The fifth problem is with memory corruption. The greatest problem encountered
when porting Unix code will bethe lack of memory protection in aHelios environment.
Such practices as using memory after it has been freed, accessing negative elements of
arrays and placing large arrays on the stack can all cause programs to crash.

5.10 Multi-threaded library access

Helios is designed to be a multi-threaded system. Unfortunately, the standards for the
C library and the Posix library were not designed as such. This means that you must
be careful when using these libraries in a multi-threaded environment.

The ANSI C library contains no interlocks, so simultaneous calls into it are not
protected from interference. However, if no common data structures are used, two
threads can call C library routines simultaneously. For example, I/O on different FILE
structures is quite safe, but calling printf() from two threads simultaneously can pro-
duce unpredictable results. The use of the Helios system call 10debug() to produce
debugging output is recommended. This lack of interlocking is largely aresult of the
implementation of many C library functions as macros, particularly getc() and putc().
They are implemented in this way for the sake of speed. To call procedures to claim
and release interlocks on data structures would defeat the purpose.

The Posix library is amost entirely procedural, so it is possible to perform some
interlocking. In genera it is safe to call most Posix routines simultaneously from
several threads. Problems may arise where routines are defined to use static data areas,
for example: getpwnam(), ctermid() and so on. Such areas are alocated once per

5.10. MULTI-THREADED LIBRARY ACCESS 235

task, and not on a per-thread basis. Similarly, errno is asingle variable for the entire
task, so errors in two threads simultaneously may result in the loss of one error code.
The Helios system libraries are totally reentrant, with full interlocking on all Streams
and Objects. This means that they are aways safe to use in all situations.

236

Chapter 6

Communication and performance

6.1 Communication

Helios runs on a wide variety of system configurations. The only assumptions made
about the underlying hardware is that it comprises a network of processors that are
inter-connected by some means. The physical connection medium can assume various
forms — for example, serial links or ethernet.

Typically, Helios runs on Transputer networks. As described in the networks chap-
ter, the fundamental features of the T400 and T800 series Transputer are a 16 or 32-
bit processor (CPU) and high-speed communication links that provide point-to-point
inter-processor connections. These components reside on a single chip and can op-
erate concurrently. The IMS T414 Transputer is an example of this basic model —
other special purpose members of the Transputer family feature additional circuitry,
microcode and interfaces that support specific tasks (for example, disc and memory
controllers). The IMS T800 includes an on-chip floating-point unit (FPU). The CPU,
memory, communications links and FPU all share a 32-hit data and address bus. An
external memory interface is provided to allow access to additional, off-chip memory.

This chapter concerns the communication mechanisms provided by Helios, and it
is therefore worthwhile to briefly examine the underlying hardware communications
system. The Transputer has a number of seria links (typically 4) that provide full du-
plex, synchronous inter-processor communications. Each link has an input and output
channel. A connection between two Transputers is implemented by connecting these
channels through a pair of uni-directional signal lines.

Datathat is sent along alinks output channel is acknowledged on the input channel,
and synchronisation is implemented by a handshaking technique. The IMS T800 al-
lows messages to be pre-acknowledged, and each of the links are capable of maximum
uni- and bi-directional datarates of 1740 and 2350 Kbytes per second respectively (see
the Inmos handbook for further details).! Thefact that each link hasits own DMA con-
troller means that any specific link can operate independently and in parallel with the
other links, the CPU and the FPU. Communication, therefore, does not involve proces-
sor overhead. Networks of Transputers can be configured through the communications
links to specific topologies — for example, a pipe, ring, mesh or hypercube.

Iransputer Reference Manual published by Prentice Hall, ISBN 0-13-929001-X

237

238 CHAPTER 6. COMMUNICATION AND PERFORMANCE

Message routing is not supported by current Transputer hardware? This does not
pose a problem when communicating between adjacent, directly linked Transputers
— data can be simply sent and received over the connecting link. If, however, the
data must traverse a number of intermediate processors, the message must be suitably
routed. Message routing must be explicitly provided as a function of the software
running on each Transputer.

The foundation of the Helios communication system is a message passing mech-
anism resident within the Kernel. Message passing is implemented by means of two
Kernel primitive operations, PutM sg() and GetM sg(). It isimportant to note, however,
that these routines are not reliable — they do not provide error detection or recovery,
and there is no guarantee that messages will arrive at their respective destinations.
Messages can become ‘lost’, for example if a processor in the network crashes, or if
there is insufficient buffer space in an intermediate processor for a message. Mes-
sage routes can become unusable if, for example, one or more intermediate processors
are switched into a native mode, requiring a higher-level reconnection operation. Al-
though the probability of messages not reaching their intended destinations is low, it
isobviously essential to provide higher-level communication mechanisms that ensure
some degree of reliability. Under Helios, these higher-level mechanisms take the form
of pipes and sockets — these mechanisms support reliable, fault tolerant inter-process
communications.

This chapter describes the use of Helios pipes and sockets. The utilisation of the
low-level message passing primitives is also explained, athough it is stressed that
the use of these routines is not encouraged. The remainder of the chapter focuses
on performance issues, and examines the extent to which the functionality of Helios
compromises the raw computational and communications capabilities of the under-
lying hardware. There is a cost in terms of processing overhead associated with the
provision of operating system services such as transparent and fault tolerant commu-
nications, and it is obvioudly crucial to be aware of the magnitude of this cost. Itis
shown by a series of experiments that Helios imposes a negligible amount of compu-
tational overhead, and that the message passing mechanism is highly efficient. For the
sake of completeness, a short overview of the Helios model isincluded below.

6.1.1 Heliosoverview

The Helios parallel operating system is ba