
The Helios Operating System

PERIHELION SOFTWARE LTD

May 1991

COPYRIGHT

This document Copyright c© 1991, Perihelion Software Limited. All rights
reserved. This document may not, in whole or in part be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent in writing from Perihelion Software Limited, The
Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE. UK.

Printed in the UK.

Acknowledgements

The Helios Parallel Operating System was written by members of the He-
lios group at Perihelion Software Limited (Paul Beskeen, Nick Clifton, Alan
Cosslett, Craig Faasen, Nick Garnett, Tim King, Jon Powell, Alex Schuilen-
burg, Martyn Tovey and Bart Veer), and was edited by Ian Davies.

The Unix compatibility library described in chapter 5, Compatibility, im-
plements functions which are largely compatible with the Posix standard in-
terfaces. The library does not include the entire range of functions provided
by the Posix standard, because some standard functions require memory man-
agement or, for various reasons, cannot be implemented on a multi-processor
system. The reader is therefore referred to IEEE Std 1003.1-1988, IEEE Stan-
dard Portable Operating System Interface for Computer Environments, which
is available from the IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Pis-
cataway, NJ 08855-1331, USA. It can also be obtained by telephoning USA
(201) 9811393.

The Helios software is available for multi-processor systems hosted by a
wide range of computer types. Information on how to obtain copies of the
Helios software is available from Distributed Software Limited, The Maltings,
Charlton Road, Shepton Mallet, Somerset BA4 5QE, UK (Telephone: 0749
344345).

Contents

1 Introduction 1
1.1 Hardware limitations . 1
1.2 Actual requirements . 3
1.3 Architectural improvements . 4
1.4 Parallelism . 6
1.5 The Transputer . 7
1.6 Helios . 8
1.7 Target hardware . 9
1.8 About this book . 11

2 Networks 13
2.1 Introduction . 13
2.2 The components of Helios . 14

2.2.1 A simple network . 14
2.2.2 The Helios naming scheme 15
2.2.3 The I/O server . 17
2.2.4 The Nucleus . 18
2.2.5 The Init program . 20
2.2.6 The network server . 21
2.2.7 The Session Manager . 24
2.2.8 The Task Force Manager . 25
2.2.9 Summary of the bootstrap process 26

2.3 Some example networks . 27
2.3.1 Single-processor embedded systems 27
2.3.2 Single-processor workstation 28
2.3.3 Workstation with I/O processor 29
2.3.4 Workstation for developing parallel software 29
2.3.5 A small network . 30
2.3.6 A fairly small single-user network 30
2.3.7 A network with configuration hardware 31
2.3.8 A single-user supercomputer 32
2.3.9 Several single-user systems 32
2.3.10 A single-user process control system 33
2.3.11 A small multi-user network 34
2.3.12 Two connected single-user networks 35
2.3.13 A large multi-user network 36

i

ii CONTENTS

2.3.14 A mainframe computer . 37
2.3.15 Networked mainframe computers 37

2.4 The real world . 38
2.4.1 Different hardware . 38
2.4.2 Inmos . 38
2.4.3 Parsytec . 40
2.4.4 Telmat . 42
2.4.5 Meiko . 44
2.4.6 Handling different hardware 45
2.4.7 Mapping task forces onto a network 46
2.4.8 Possible topologies . 48
2.4.9 Task force connectivity . 49
2.4.10 Other considerations . 50
2.4.11 Summary . 50

2.5 Network commands . 50
2.6 Configuration files . 52

2.6.1 host.con . 52
2.6.2 initrc . 54
2.6.3 .login, .cshrc, and .logout 57
2.6.4 nsrc . 58
2.6.5 Network resource maps . 60

2.7 Configuring networks . 72
2.7.1 Single-processor workstation 72
2.7.2 Workstation with I/O processor 75
2.7.3 Workstation for developing parallel software 77
2.7.4 A small network . 78
2.7.5 A fairly small single-user network 80
2.7.6 A network with configuration hardware 82
2.7.7 A single-user supercomputer 83
2.7.8 Several single-user systems 84
2.7.9 A process control system . 85
2.7.10 A small multi-user network 87
2.7.11 Two connected single-user networks 89
2.7.12 A large multi-user network 90
2.7.13 A mainframe computer . 94
2.7.14 Networked mainframe computers 95

3 Programming under Helios 97
3.1 Simple programming . 97

3.1.1 A simple program . 98
3.1.2 Driver options . 98
3.1.3 Multiple modules . 100
3.1.4 Make . 101
3.1.5 Common suffixes . 110

3.2 More advanced programming . 111
3.2.1 Libraries . 112
3.2.2 Other tools . 118

CONTENTS iii

3.2.3 Manual compilation . 122
3.3 Servers . 128

3.3.1 Posix facilities . 128
3.3.2 System library facilities . 131
3.3.3 File systems . 134
3.3.4 The /window server . 135
3.3.5 The /rs232 server . 143
3.3.6 The centronics server . 149
3.3.7 Mouse and keyboard servers 150
3.3.8 Networking servers . 152
3.3.9 /tasks and /loader . 153
3.3.10 The null server . 154
3.3.11 The error logger . 154
3.3.12 Real-time clock . 155
3.3.13 The lock server . 156
3.3.14 Raw disc servers . 157
3.3.15 The X window system . 157
3.3.16 Pipe and socket I/O . 157

3.4 Protection: a tutorial . 159

4 CDL 167
4.1 The CSP model for parallel programming 167
4.2 The CDL language . 169

4.2.1 How to execute task forces 169
4.2.2 The task force definition . 171
4.2.3 Allocation of streams . 174
4.2.4 Component declarations . 177
4.2.5 Replicators . 179
4.2.6 Replicated component declarations 182
4.2.7 The environment . 184
4.2.8 Arguments and replicators 186
4.2.9 Signals and termination . 187

4.3 An example as easy as PI . 187
4.3.1 A simple problem . 187
4.3.2 How to parallelise the problem 188
4.3.3 The ring . 188
4.3.4 A farm topology . 193
4.3.5 Different levels of communication 197
4.3.6 More about pipe I/O . 199
4.3.7 Running the task force . 199
4.3.8 FORTRAN task forces . 201
4.3.9 Pascal task forces . 203

4.4 CDL farms and load balancing . 205
4.4.1 A simple farm . 205
4.4.2 A simple load balancer . 212
4.4.3 More about packets . 216
4.4.4 Advanced farms . 216

iv CONTENTS

4.5 Odds and ends . 218
4.5.1 Communication versus computation 219
4.5.2 Problems with worker components 221
4.5.3 Parallel servers . 222

5 Compatibility 225
5.1 Introduction . 225
5.2 Unix compatibility . 225
5.3 File handle sharing . 226
5.4 fork() . 226
5.5 Signals . 228
5.6 Process identifiers . 230
5.7 User and group identifiers . 230
5.8 BSD compatibility . 231
5.9 Porting techniques . 233
5.10 Multi-threaded library access . 234

6 Communication and performance 237
6.1 Communication . 237

6.1.1 Helios overview . 238
6.1.2 Pipes . 239
6.1.3 Sockets . 242
6.1.4 Message passing . 247

6.2 Performance . 248
6.2.1 Test conditions . 249
6.2.2 Computational benchmarks 249
6.2.3 Communication benchmarks 251
6.2.4 Obtaining performance data from Helios 260

7 The Resource Management library 263
7.1 Introduction . 263
7.2 The Resource Management library 263

7.2.1 The abstract model . 265
7.3 Outline of the library calls . 271

7.3.1 Programming conventions 272
7.3.2 Building a network . 273
7.3.3 Examining a network . 277
7.3.4 Obtaining a network . 284
7.3.5 Constructing a task force . 287
7.3.6 Examining a task force . 291
7.3.7 A program’s environment 292
7.3.8 Executing a task . 294
7.3.9 Executing a task force . 295
7.3.10 Mapping a task force . 296
7.3.11 Modifying a network . 297
7.3.12 File I/O . 300
7.3.13 Miscellaneous . 301

CONTENTS v

7.3.14 Error handling . 302
7.4 Example programs . 303
7.5 Owners . 303
7.6 Mappipe . 306

8 The I/O server 315
8.1 Introduction . 315
8.2 The role of the I/O server . 316
8.3 I/O in more conventional machines 316

8.3.1 Transputer hardware . 318
8.3.2 The role of the I/O server . 320

8.4 The I/O server options . 322
8.4.1 The command line . 322
8.4.2 Debug options . 322
8.4.3 The host.con file . 324
8.4.4 Root Transputer bootstrap 329
8.4.5 Special actions . 332
8.4.6 Debugging facilities . 333
8.4.7 The built-in debugger . 342

8.5 The PC I/O server . 354
8.5.1 Hardware . 354
8.5.2 Special keys . 356
8.5.3 File I/O . 357
8.5.4 Multiple windows . 359
8.5.5 The error logger . 359
8.5.6 The clock device . 359
8.5.7 X window system support 359
8.5.8 Serial ports . 360
8.5.9 Parallel ports and printers 362
8.5.10 The rawdisk device . 363
8.5.11 The /pc device . 364

8.6 The Sun I/O server . 368
8.6.1 Introduction . 369
8.6.2 Hydra . 370
8.6.3 Hydramon . 372
8.6.4 Supported hardware . 373
8.6.5 Which configuration do I need ? 374
8.6.6 Other host.con link I/O options 379
8.6.7 The windowing interface . 379
8.6.8 Background operation . 385
8.6.9 File I/O . 385
8.6.10 The error logger . 386
8.6.11 The clock . 386

vi CONTENTS

9 The Kernel 387
9.1 Kernel data structures . 387

9.1.1 The root structure . 387
9.1.2 The configuration structure 389

9.2 Message passing . 390
9.2.1 Message ports . 390
9.2.2 Message structure . 391
9.2.3 Message passing functions 392
9.2.4 Inter-processor message passing 392

9.3 Links . 395
9.3.1 LinkInfo . 395
9.3.2 Link protocol . 397
9.3.3 Dumb link access . 398

9.4 Tasks and threads . 399
9.4.1 Tasks . 399
9.4.2 Threads . 400

9.5 Timeout handling . 401
9.6 Semaphores . 401
9.7 Memory management . 401
9.8 Events . 403

10 The System libraries 405
10.1 The System library . 405

10.1.1 System library data structures 405
10.1.2 System library flags . 406
10.1.3 Open modes . 407
10.1.4 Object and stream manipulation 407
10.1.5 The environment . 408
10.1.6 Fault tolerance and recovery 409
10.1.7 Memory management . 409
10.1.8 DES encryption support . 410

10.2 Utility library . 410
10.2.1 C library functions . 410
10.2.2 2-D block move . 411
10.2.3 Thread creation . 411
10.2.4 Using fast RAM . 411
10.2.5 Debugging support . 412

11 The System servers 415
11.1 The Processor Manager . 415

11.1.1 The Helios naming scheme 415
11.1.2 The I/O controller . 416
11.1.3 Distributed search protocol 416
11.1.4 The Task Manager . 419
11.1.5 Debugging system control messages 421

11.2 The Loader . 422
11.2.1 Code management . 423

CONTENTS vii

11.2.2 Error detection . 424
11.2.3 Loader protocol . 424

12 Writing servers 427
12.1 Introduction . 427
12.2 Helios servers . 428

12.2.1 Unix daemons . 428
12.2.2 Helios servers . 429
12.2.3 Message passing . 430
12.2.4 The General Server Protocol 433
12.2.5 The Server library . 437

12.3 A /Lock server . 438
12.3.1 Header files . 438
12.3.2 Program startup . 439
12.3.3 Initialising the directory tree 441
12.3.4 Registering the server . 444
12.3.5 The dispatcher . 445
12.3.6 Cleaning up . 447
12.3.7 Using the lock server . 448
12.3.8 The Open routine . 449
12.3.9 The Create routine . 452
12.3.10 The Delete routine . 455

12.4 More details . 456
12.4.1 Protection . 456
12.4.2 The Server library . 463

12.5 The /include disc . 469
12.5.1 /include disc preamble . 469
12.5.2 Initialising the /include disc 471
12.5.3 Dispatching . 473
12.5.4 The Open handler . 474
12.5.5 Read requests . 476
12.5.6 Seek requests . 477
12.5.7 Private protocols for debugging 478
12.5.8 A RAM disc . 480

12.6 Device drivers . 491
12.6.1 The /keyboard server . 492
12.6.2 Example device drivers . 498
12.6.3 The DevInfo file . 501

12.7 Standalone servers . 505
12.7.1 The dispatcher . 505
12.7.2 Name handling without protection 508
12.7.3 Name handling with protection 512
12.7.4 Directory reads . 513

viii CONTENTS

13 General Server Protocol 515
13.1 Function and return codes . 515
13.2 GSP fundamentals . 517
13.3 Message formats . 518
13.4 Object types . 518
13.5 Object flags . 519
13.6 Indirect operations . 520

13.6.1 Open . 521
13.6.2 Create . 522
13.6.3 Locate . 523
13.6.4 ObjectInfo . 524
13.6.5 ServerInfo . 525
13.6.6 Delete . 526
13.6.7 Rename . 526
13.6.8 Link . 527
13.6.9 Protect . 527
13.6.10 SetDate . 528
13.6.11 Refine . 529
13.6.12 CloseObj . 529
13.6.13 Revoke . 530

13.7 Direct operations . 531
13.7.1 Read . 531
13.7.2 Write . 533
13.7.3 GetSize . 536
13.7.4 SetSize . 537
13.7.5 Close . 537
13.7.6 Seek . 538
13.7.7 GetInfo . 539
13.7.8 SetInfo . 540
13.7.9 EnableEvents . 540
13.7.10 Select . 542
13.7.11 Abort . 543

13.8 Task control messages . 544
13.8.1 Create . 544
13.8.2 Delete . 544
13.8.3 SendEnv . 544
13.8.4 Signal . 546
13.8.5 ProgramInfo . 547

14 Protection 549
14.1 Protection mechanisms . 549
14.2 Helios capabilities . 550
14.3 Access matrices . 551
14.4 Capabilities in programs . 553
14.5 Saving capabilities . 553
14.6 File system protection . 554
14.7 Processor protection . 554

CONTENTS ix

15 Sockets and pipes 557
15.1 Sockets . 557

15.1.1 Posix-level calls . 557
15.1.2 System library support . 558
15.1.3 GetSocketInfo . 559
15.1.4 Message formats . 559

15.2 The HELIOS domain . 565
15.3 Pipes . 565

15.3.1 Pipe server . 566
15.3.2 Pipe connection protocol . 566
15.3.3 Pipe data transfer protocol 566

16 Program representation and calling conventions 569
16.1 Module tables . 569

16.1.1 History . 569
16.1.2 The BCPL global vector . 571
16.1.3 Module tables . 573

16.2 Calling convention . 575
16.2.1 C calling convention . 576
16.2.2 An example . 578

16.3 Resident libraries . 582
16.3.1 Slot numbers . 583
16.3.2 Compiling the sources . 584
16.3.3 The library assembler file . 585
16.3.4 makefile . 587

16.4 Device drivers . 588
16.5 The Nucleus . 590
16.6 Program representation . 592

16.6.1 Type codes . 593
16.6.2 Modules . 593
16.6.3 Resident library references 594
16.6.4 Programs . 594
16.6.5 Resident libraries . 595
16.6.6 Embedded information . 595

16.7 Nucleus structure . 596

A Options: debugging and configuration file 599

B Options: debugging and configuration file 605

C Allocation of streams 607

D Measuring performance 609

x CONTENTS

Chapter 1

Introduction

All is flux, nothing stays still,
Nothing endures but change.

Heraclitus

This quotation seems appropriate to the world of computing. Every year brings new
and faster computers with more memory and better input/output facilities. There are
many different measurements of computer power, the most commonly quoted ones
being MIPS (millions of instructions per second) and MFLOPS (millions of floating
point operations per second). Both of these are increasing for two reasons: greater
circuit density and faster clock speed. Circuit density is an indication of the number
of electronic components that can be put onto a given chip. The more components a
chip has, the more things can happen during a given time interval. (Individual opera-
tions become more powerful). For example a typical processor chip has an on-board
floating point coprocessor, rather than attempting to perform floating point operations
in software. As components become smaller, less effort is required to drive them, and
they can change their state faster. This means that the clock speed (the number of
operations in a given time interval) can be increased.

1.1 Hardware limitations

The current trend in computing is for an order of magnitude improvement in perfor-
mance every four or five years. This means that today’s computers provide ten times
as many MIPS and ten times as many MFLOPS as their equivalents five years ago,
equivalence being defined in terms of the price of the computer. In five years, com-
puters should be ten times more powerful. It is useful to consider how long the rate of
development can continue.

In computing it is very easy to become somewhat blasé about orders of magnitude.
Figure 1.1 illustrates some of these orders of magnitude, for units of time and space.
The difference between the time taken for a computer to execute one instruction and
the time taken for the seconds digit of an lcd watch to change once is comparable to
the difference between an hour and the whole duration of human civilisation. An order
of magnitude improvement every four or five years is rather impressive, but can it be
sustained ?

Consider circuit density. Today’s computers are based primarily on silicon chip
technology. The electronic components used to build a computer are embedded in the

1

2 CHAPTER 1. INTRODUCTION

surface of a small piece of silicon. Advanced chips use features approximately one
micron across: the size of an electronic component on the chip is just a millionth of a
metre. A silicon atom has a diameter of approximately 2.35 ∗ 10−10 metre. Hence an
electronic component is about 4000 atoms wide. Atoms are not the smallest building
blocks of nature, and it may prove possible to use smaller building blocks at some
point in the future to build computers. At present this is pure speculation.

To build faster chips we need smaller components. Suppose for the sake of argu-
ment that it will prove possible to use a single atom as an electronic component. Since
silicon chips are essentially two-dimensional objects this would give a maximum im-
provement of 4000 ∗ 4000, about seven orders of magnitude. The limits of nature will
probably prevent us from coming even close to this.

Multiple Prefix Time (seconds) Space (metres)
10−12 pico light moves 1cm subatomic particles
10−11

10−10 one atom
10−9 nano
10−8 one instruction
10−7 one floating point operation
10−6 micro feature on current chip
10−5

10−4

10−3 milli easily visible to eye
10−2

10−1 size of floppy disc
100 one second one metre
101

102 minute large building
103 kilo 1/4 hour ten minutes’ walk
104

105 day
106 mega week radius of earth
107

108

109 giga human lifetime distance to moon
1010 1000 years
1011 human civilisation
1012 tera homo sapiens size of solar system

Table 1.1: Approximate orders of magnitude

Next, consider clock speed, another important factor in processor performance.
Suppose that a single operation involves one signal moving from one end of a chip to
the other end, again somewhat of a simplification. Today’s chips are typically about a
centimetre across. A signal travelling at the speed of light will take about 30 picosec-
onds to move this distance. Hence a processor could perform 30 thousand million such
operations every second, corresponding to a 30000 MHz processor, just three orders
of magnitude faster than today’s chips.

These calculations are by no means perfect. For example, it may be possible to start
building three dimensional chips instead of two dimensional ones, and the average size
of a chip may shrink below one centimetre as circuit density increases. The calcula-
tions ignore quantum effects that become significant for small numbers of atoms, as
well as heat dissipation problems for such tightly packed electronics. However, the
implication is that advances in the current technology will cease after another fifteen
to thirty years, with processors somewhere between a thousand times and ten million

1.2. ACTUAL REQUIREMENTS 3

times more powerful than today’s.

1.2 Actual requirements

Power tends to corrupt, and absolute power corrupts absolutely.
Acton

An obvious question to ask at this point is what all this computing power will be used
for. A single processor will provide somewhere between a gigaflop and a teraflop of
performance. Are there really problems which need such power? More important, are
there problems which need even more ?

Predicting a few years ahead in the field of computing, let alone fifteen or thirty
years, is a risky business. However, the answer to both of the above questions is a
resounding “Yes”. Even today there are problems in science and engineering which
require more computing power than the limits of nature appear to allow. These include,
but are not limited to:

1. Quantum chemistry. It has been known for some time that the behaviour of
atoms and molecules in chemistry is defined by Schrödinger’s equation.

d2/dx2Ψ(x) + 2m/h̄(E − V)Ψ = 0

This equation has been solved fully only for the simplest problems. Hence
chemists are forced to work with computer models that generate numerical ap-
proximations. Current models are limited to fairly simple molecules and small
numbers of atoms. More computing power would allow slightly more complex
models.

2. Cosmology. One cosmic-sized problem is attempting to work out how the uni-
verse could start from a big bang and end up looking the way it does today,
matching the astronomical data. Other problems in cosmology involve looking
at smaller objects than the entire universe such as galaxies, quasars, black holes,
stars and solar systems.

3. Fluid dynamics. This involves examining the behaviour of gases and liquids in
the vicinity of solid objects such as pipes and the wings of aeroplanes.

4. Materials science. This requires the modelling of solid objects such as the ma-
terials used to build car engines, and hence being able to design better ones.

5. Biology and biochemistry. In particular, analysing the sequences of the DNA
molecules
that define our genetic make-up.

6. Weather forecasting and longer term global climate modelling.

7. Processing information. By the end of the 1990s, the various satellites in earth
orbit are expected to produce a terabyte of data every day, which should be
processed somehow.

8. Artificial reality, building realistic computer models of this and other worlds,
and allowing humans to interact with these models in real time.

4 CHAPTER 1. INTRODUCTION

9. Artificial intelligence and artificial life, reproducing the behaviour of biological
systems and hopefully improving on them.

Most of these problems have one thing in common: they are essentially open
ended. Providing more computing power simply allows the scientists to build larger,
more complicated, and presumably more accurate models. Each improvement should
give more useful data, but there will not be a definitive solution. Already there are
plans to build teraflop computers to meet these needs, and pentaflop (1015) and ex-
aflop (1018) computers would be gratefully received by the scientific community.

Science may be a driving force for supercomputer development, but the needs of
ordinary personal computer users must also be considered. It may seem unlikely that
word processing, spreadsheet, and database applications will need processors much
more powerful than today’s. However, as more features are added to existing applica-
tions as new applications are added, and as the underlying system software becomes
more flexible, even ordinary personal computers will need ever more MIPS and ever
more MFLOPS for some time to come.

1.3 Architectural improvements

The wondrous architecture of the world.
Marlowe

Given that we cannot rely on scientific breakthroughs to produce the sort of perfor-
mance we are going to need, is there anything that can be done at the computer archi-
tecture level to achieve the required speed-ups ? It is often said that existing computers
are based on the classical von Neumann design. There is a central processing unit or
CPU with some memory and I/O devices attached to it. The CPU reads an instruction
from memory, executes it, and then reads the next instruction from memory. Typical
instructions move data from one place to another, test the value of a piece of data,
transfer control to some other location, or perform arithmetic on some data. Only one
instruction at a time gets executed, and hence the computer is said to run sequentially.

In practice this purely sequential architecture did not last very long. I/O operations
such as punching a paper tape took much longer to execute than ordinary instructions,
so computer architects designed their computers to perform I/O in parallel with the
main stream of execution. The CPU initiates an I/O operation and, some time later, it
either polls the device to see whether the operation is finished or it receives an interrupt.
Hence there is computation and I/O occurring in parallel.

Some floating point operations take a much longer time than their equivalent inte-
ger operations. Hence it is useful to have a separate floating point processor working
in parallel with the main CPU, controlled by the CPU. A floating point operation is
initiated and, some time later, the CPU checks whether or not the operation has fin-
ished or it gets informed when the operation has finished. The hardware may do this
automatically. To make full use of a separate floating point processor requires some
extra work in the compiler.

Vector processors take this concept a step further. Instead of there being one float-
ing point processor there are many, typically 64 or so. All the floating point processors
perform the same operations at the same time, but on different data. Typically this
data consists of matrices and vectors, where the different parts of the matrix can be
manipulated separately. A great deal of work is required in the compiler to be able

1.3. ARCHITECTURAL IMPROVEMENTS 5

to detect when different bits of data can be operated on in parallel, and, except when
dealing with matrices and vectors, it is difficult, if not impossible, to make efficient
use of a vector processor.

A single instruction such as adding two numbers can be subdivided into several
different stages: fetching the instructive code, fetching the data, performing the arith-
metic and storing the results. An instruction pipeline exploits this by performing the
stages of several instructions in parallel. Instruction n stores its result while instruction
n + 1 does some arithmetic and instruction n + 2 fetches data. Since programs con-
tain many branch instructions and each instruction can be divided into only a limited
number of stages, there are limits to the practical length of a pipeline.

Memory caches are another way of speeding up processors. It is common for cur-
rent processors to be able to work significantly faster than the main memory, resulting
in a memory bottleneck. To overcome this problem, fast memory caches can be used.
Instead of all memory accesses going to the external memory, there are one or more
cache units between the CPU and memory. These cache units can work faster than the
external memory, and contain the contents of frequently accessed memory locations.
Cache memory is expensive, so there are limits on the amount of cache that can be put
on a processor.

A fairly recent development in microprocessor technology is Very Large Instruc-
tion Word processors or VLIW. With these processors a single instruction no longer
contains a single operation, but several. For example, a single instruction could con-
tain an integer addition, a floating point operation, and a conditional jump. The CPU
contains several units, including one or more integer arithmetic units, floating point
units, and a control flow unit. Keeping all of these busy requires a great deal of effort
in the compiler. Furthermore it is very difficult to keep all the units busy. For example,
if the CPU contains ten different integer arithmetic units then it is most unlikely that
any normal piece of code could be compiled to use all these units at the same time.

Putting all these features together, we can foresee a single processor on one chip
with the following features:

1. A main CPU containing several parallel units, typically two integer arithmetic
units, between one and 64 floating point units depending on whether or not the
CPU is intended for vector processing, and a control flow unit.

2. An instruction pipeline executing different instructions.

3. There is an instruction able to hold 64K or more of the currently active programs,
as well as one or more data caches occupying between 64K and a megabyte each.

4. Hardware support for special operations such as signal processing and graphics
operations, because these use up much of the CPU time in existing processors.

5. Asynchronous I/O support, requiring a minimum of effort by the processor.

6. All the units making up the processor (the main CPU and the supporting hard-
ware) work in parallel. A certain degree of synchronisation between the different
units is required, for example a CPU cannot execute an instruction unless it is
has been fetched by the pipeline, which in turn cannot fetch it unless it is in the
instruction cache.

6 CHAPTER 1. INTRODUCTION

Exploiting all of these features may produce a single CPU that is perhaps one
or two orders of magnitudes faster than the conventional von Neumann architecture.
Undoubtedly there will be further developments at the computer architecture level,
such as multiple instruction streams and self timed (asynchronous) CPUs, which will
provide some extra speed-ups. However, existing processors already use many of these
features. Hence such developments in CPU architecture cannot by themselves provide
the required improvements in performance. It is necessary to look elsewhere for a
solution.

1.4 Parallelism

Many hands make light work.
Heywood

A single processor cannot provide the required performance. This leaves the possi-
bility of using more than one processor to solve a single problem, the field of parallel
processing. A state of the art processor can provide between 10 and 100 megaflops.
Hence if we can build a machine with between 10000 and 100000 such processors, we
have a teraflop computer. With processors a thousand times faster, and with ten million
or a hundred million such processors, we could build an exaflop computer. However
is it really possible to have ten processors working on the same problem, let alone ten
thousand or ten million ?

For some problems, fortunately including many of the scientific problems de-
scribed earlier, it is possible to answer affirmatively to at least part of this question.
Currently it is fairly common to solve scientific problems on some tens of proces-
sors, and machines with some hundreds of processors are being installed. Teraflop
machines with tens of thousands of processors are at the design stage, and there are
no major problems at the hardware level building such machines. However, producing
software to control and run on such machines can still be quite difficult.

Merely taking some hundreds of conventional processors, together with some mem-
ory and I/O facilities, is not sufficient to produce a parallel machine. An analogy is
appropriate. Consider a team of human programmers, working together to produce a
large software system. Given sufficient time a single programmer could produce the
whole system, but the job would usually take far too long and the system would be
out of date by the time it was finished. Instead, a team of programmers are made to
work together to build the system. These programmers cannot work independently
from each other. Every programmer must produce some part of the system, which will
work with the parts produced by other programmers to give a working system. Ev-
ery programmer must collaborate with his or her colleagues to ensure that the various
parts will fit together, or the final system cannot work. In other words, the program-
mers must communicate with each other. The amount of communication, and the way
the communication is organised, will vary from system to system and from company
to company. It may be sufficient merely to exchange specifications when the project
starts. It may be desirable to have regular daily meetings, or to have meetings only
when considered necessary. The programmers may interact directly, or they may have
to go through a chain of command. The exact details vary, but some amount of com-
munication will be required. When not communicating, the programmers can work
independently from each other developing their code.

1.5. THE TRANSPUTER 7

The same is true of applications running on a parallel machine. In the simple
case every processor will run some piece of code responsible for solving part of the
problem. Each piece of code is one component of the application. Components must
communicate with components running on other processors, to exchange data. The
amount and nature of the communication may vary. For some applications it is suffi-
cient for the various components to get some data when they start up, and share results
when they finish. For other applications large amounts of communication are required
for every step in the calculation. The various components may interact directly, or
they may communicate only via some master component. Unless the components can
communicate somehow they cannot work together on the same problem.

Every processor within a parallel computer must satisfy two primary requirements.
They must be able to do computation, for example floating point arithmetic. They
must also have some means of communicating with each other, otherwise the various
processors in the parallel computer cannot work together to solve a problem. Different
parallel machines vary in the ways that communication is achieved, and in the relative
speeds of computation and communication.

1.5 The Transputer

The Inmos 1 Transputer family comprises a number of processors particularly appro-
priate for building parallel computers. Every processor contains a number of links,
serial lines providing fast communication between processors. The processors most
commonly used are the T800 and the T805, which have floating point hardware as
well as four communication links, thus providing fast computation as well as commu-
nication.

00 01 02 03

04 05 06 07

08 09 10 11

12 13 14 15

Figure 1.1: A Transputer network

Consider Figure 1.1. This shows a network of 16 Transputers, each represented
by a single block. Each Transputer contains a conventional CPU, capable of integer
and floating point arithmetic, conditional branches, and all the instructions you could
expect in a processor used to build a sequential computer. Each Transputer also has
four links, and most of these links are connected to links in other processors. A soft-
ware component running on processor 05 in the diagram could communicate directly
with components running on processors 01, 04, 06, and 09. However, if this com-
ponent needs to communicate with a component on processor 15 then life becomes
more complicated. The two processors are not directly connected, so it is necessary to

1Inmos and Transputer are trademarks of the Inmos group of companies

8 CHAPTER 1. INTRODUCTION

somehow route messages through various processors from source to destination. Also,
it is necessary to start all the components on the various processors, set up the com-
munication between them, and so on. Having communication support in the hardware
does not solve all the problems in building a parallel computer.

The network shown in the diagram is configured in the form of a grid. In hard-
ware terms such grids can be extended fairly easily in all four directions, to produce
an arbitrarily large parallel computer. In practice there are limits on the size of such a
computer, depending in part on the applications to be run on it. Consider a machine of
10000 such Transputers, in a grid of 100 by 100. To route a message from one corner
of the grid to the opposite corner involves going through 198 links, and hence requires
some CPU time in 197 processors. If there is too much such communication the par-
allel computer will spend nearly all its time routing messages rather than performing
useful computation. Different applications will vary in the amount of such communi-
cation. Using different network configurations may reduce the problem, but will not
eliminate it.

When Transputers were first released, the only software support was the occam2

language. This language is specifically designed to run on Transputers, with built-in
support for communication exploiting the Transputer links. However, the current ver-
sion of the language, /bf occam 2, contains no support for routing messages through
a network, required by many applications. Starting up all the components on all the
right processors, setting up the communication between them, and so on are jobs left
essentially to the programmer. Furthermore occam is rarely used other than for pro-
gramming Transputers. Most programmers are familiar with languages such as C and
Fortran, and do not want to learn another programming language. Most programmers
are familiar with a particular programming environment, typically some version of the
Unix 3 operating system, and wish to continue using such environments on parallel
computers. To address some of these issues, additional software is required.

It should be noted that the Transputer family is relatively old in computing terms.
The first Transputers became available in 1984. At the time of writing Inmos have
announced a new family of processors (the T9000 series) offering significant improve-
ments in performance, both computation and communication, as well as hardware
support for message routing. On the other hand the T9000 has new features such as
limited memory management, which normally require an operating system to exploit
them. Hence the need for additional software remains.

1.6 Helios

Then in all the world they do their work.
Akhnaton’s hymn to the sun

The Helios4 Parallel Operating System has been designed to run on parallel comput-
ers. Such computers contain processing units, and fast communication between the
processors. Many such parallel computers are built using Transputers, and Helios runs
on these machines. However, Helios also runs on parallel computers built using pro-
cessors other than Transputers. This book describes some of the aspects of Helios.

The design goals of Helios are ambitious.
2occam is a trademark of the Inmos group of companies
3Unix is a registered trademark of AT&T
4Helios is a trademark of Perihelion Software Limited

1.7. TARGET HARDWARE 9

1. To provide a general-purpose operating system for parallel computers, indepen-
dent of any specific hardware.

2. To provide an operating system with a very high degree of compatibility with
existing systems, by supporting international standards such as Posix5.

3. To provide a development environment that will be familiar to existing program-
mers, so that programmers do not have to learn new ways of using a computer
merely because it is a parallel computer instead of a sequential one.

4. To allow parallel applications to be developed using conventional programming
languages such as C or Fortran, without the need to learn new languages or
programming constructs.

5. To allow such parallel applications to run with the greatest amount of efficiency
consistent with the other design aims.

6. To allow such applications to be moved from one parallel computer to another,
quite possibly based on a completely different family of processors, with a min-
imum of effort.

7. To provide a high degree of fault tolerance. The system as a whole must be able
to recover from the failure of any one software component or piece of hardware,
subject to physical limitations imposed by the hardware itself.

8. To be independent of the number of processors in the network. Parallel applica-
tions can be developed on a single processor if desired, and then run unchanged
on several hundred processors.

Work began on Helios in the autumn of 1986. It is a new operating system, not
a re-write of some previous system, although obviously some parts of Helios incor-
porate ideas developed in other operating systems. The first commercial release was
Helios 1.0, released in the Summer of 1988. This was followed by 1.1, Autumn 1989,
and 1.1A, an upgrade to 1.1 shipped in early 1990. Helios 1.2 was shipped in De-
cember 1990, again followed by an upgrade some months later. Helios 1.2 supports a
very high degree of Unix compatibility, large processor networks of some hundreds of
processors, and it allows multiple users to share such large machines. At the time of
writing work is proceeding on the next release, Helios 1.3, and this book is intended
to accompany that release. Most of the book is relevant to earlier versions, and will be
appropriate to later versions also.

1.7 Target hardware

We aim at the infinite.
O.W. Holmes Jr.

Helios has been designed to work with a wide range of machines. One such machine
is a parallel mainframe computer. Such a machine would contain hundreds of proces-
sors, and would support tens of users logged in at once. Some users would be running

5Posix refers to the standard defined by IEEE Standard 1003.1-1988

10 CHAPTER 1. INTRODUCTION

large parallel applications, which together would use up most of the available pro-
cessors. Other users would be developing parallel applications, developing ordinary
sequential applications, sending or reading electronic mail messages, or even play-
ing games. Most users would access the machine via a local area network, typically
Ethernet 6, and the machine itself would be in a separate air-conditioned room main-
tained by computer operators. Some users might plug in their own private networks
of processors, in order to make use of the larger number of processors. To avoid I/O
bottlenecks such large parallel machines must be equipped with a number of fast hard
discs, and tape units for backup purposes and for holding very large amounts of data.

Imagine a different type of parallel machine also running Helios. Consider an au-
tomated factory floor, with large numbers of devices such as robot arms performing the
work, and various metres to monitor what is happening. Some devices need several
processors to control them, while some other processors could control several devices.
The various processors need to communicate and exchange data. For example a pro-
cessor controlling a robot paint spraying arm needs to be informed when the object to
be painted is ready. In effect all the processors controlling pieces of hardware can be
thought of as a parallel computer that happens to spread over a factory floor rather than
being contained inside just one box.

A third Helios system is shown in Figure 1.2. The diagram shows a workstation,
complete with high resolution graphics display, hard disc, and local area network con-
nection. Helios has been designed to provide a high degree of compatibility with Unix
systems, so it supports the X Window System 7 for graphics and ethernet software such
as remote login facilities and network file systems. The workstation shown has all the
I/O devices attached to just one processor, making it equivalent to a conventional work-
station. Alternatively the I/O devices could be attached to different processors, one to
handle the graphics display, another to perform disc I/O, and so on, offering better per-
formance at a greater cost. If desired it would be possible to connect this workstation
to a larger network of processors, some tens or even hundreds of processors, probably
over a period of time, and thus turn the workstation into a supercomputer. All exist-
ing software will continue to run, and parallel applications simply run faster as more
processors are added.

00

�

�

�

�

Ethernet

�

� �

Figure 1.2: A workstation

6Ethernet is a trademark of Xerox Corporation
7The X Window System is a trademark of MIT

1.8. ABOUT THIS BOOK 11

1.8 About this book

Another damned, thick, square book!
William Henry, Duke of Gloucester

The purpose of this book is to give a description of much of the Helios parallel oper-
ating system. It does not attempt to describe every single feature, command, or library
routine provided by the system, because that would require several books of this size.
Instead the book concentrates on the main components of Helios. The book is aimed
at users of Helios and also at anyone with an interest in parallel computing generally.

The book is divided into sixteen chapters, including this introduction. Each chapter
has been written as a self-contained unit, and can be read independently from the oth-
ers. This book does not describe the full range of Helios commands. Comprehensive
information can be obtained in The Helios Encyclopaedia, available from Distributed
Software Limited, The Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE,
UK.

12

Chapter 2

Networks

2.1 Introduction

The purpose of this chapter is to describe all of the aspects of the Helios networking
software. This is not an easy task, because Helios runs on a wide range of machines.
At the bottom end of the range would be a single PC plug-in board, typically with a
single T800 Transputer and perhaps two megabytes of memory. At the top end would
be large multi-user networks of 400 or more Transputers, with perhaps twenty or so
users at any one time accessing the network in a variety of ways. Networks may consist
of hardware produced by several different manufacturers.

To control all the different types of network Helios uses a single set of programs:
the networking software, in conjunction with a number of configuration files. Section
2.2 of this chapter gives an outline description of the various programs and configura-
tion files, using a simple network as an example. It describes how this network starts
up, and how a user can access the resources in the network.

Section 2.3 gives a description of the various types of network, varying from a
single-processor system to a large supercomputer. This section describes which com-
ponents of the networking software should run and why. The exact details of config-
uring such a network are left to section 2.7: ‘Configuring networks’.

Designing hardware or choosing the right hardware to buy involves compromises.
A link running at 20 MHz will transfer data faster than a link running at 10 MHz,
but for a shorter distance. A crossbar link switch allows flexibility in setting up the
network, but causes a delay when transferring data. Section 2.4 describes some of the
hardware produced by various manufacturers, with an emphasis on how the hardware
affects the networking. This section also gives an introduction to the topic of network
topologies (and how they can affect performance).

The networking software contains a considerable number of commands which in-
teract with the various servers. These commands are explained in section 2.5

Section 2.6 describes the various configuration files in detail, in particular the net-
work resource map and how it is affected by the hardware. This information is then
used in section 2.7, which repeats most of the networks described in section 2.3 and
shows how to configure them.

13

14 CHAPTER 2. NETWORKS

2.2 The components of Helios

This section describes the various components of Helios (including the networking
software) and how they interact. The simple network shown in Figure 2.1 will be used
as an example.

2.2.1 A simple network

00

01

02

03

04

05

06

07

�

�

�

�

Figure 2.1 A simple network

This network consists of eight Transputers, labelled 00 to 07. Each Transputer is a
microprocessor with its own private memory, which is not accessible by the other pro-
cessors. It is recommended that each processor has at least one megabyte of memory,
although applications may well require more than this. Each Transputer is equipped
with four links which are used by Helios to achieve fast communication between the
processors. The four links are generally referred to as link 0 to link 3, and in diagrams
link 0 is conventionally the bottom one as shown in Figure 2.2.

link 0

link 2

link 1 link 3

Figure 2.2 Link numbering

Like any other microprocessor, a Transputer has to be booted with some software
before it can perform useful work. Transputers have two bootstrap mechanisms: ROM
bootstrap, where the software is held in ‘read only’ memory; and link bootstrap, where
the software is sent down the link by a neighbouring processor. ROM bootstrap in-
volves extra hardware and hence is rarely used. Before a processor can be booted, it
must be reset. On most hardware a processor is automatically in a reset state when it is
powered up, but not always. The hardware must provide some other reset mechanism
which can be used by the networking software. In addition to the eight Transputers,
the network contains a host processor or I/O processor. Typically this would be a
Sun workstation or an IBM1 PC or compatible, but a wide variety of machines can

1Registered trademark of International Business Machines, Inc.

2.2. THE COMPONENTS OF HELIOS 15

be used. When the whole network is powered up the I/O processor will usually be
booted with the host operating system. For a Sun workstation this would be SunOS2, a
version of Unix, and for a PC this would be MS-DOS3. A program, the I/O server, can
then be run on the I/O processor and initiate the bootstrap of the Transputer network.
Frequently the I/O processor also serves the rather useful role of power supply for the
whole network.

The I/O processor is not (usually!) a Transputer and hence it is not naturally
equipped with Transputer links. Since links are needed for both communication and
bootstrap it is necessary to add some special hardware, a link adapter, to the I/O pro-
cessor. For example, a typical PC plug-in board such as the Inmos B008 contains a
C012 link adapter. It should be noted that the link adapter can be a bottleneck for many
applications. In theory a 20 MHz link can be used to transfer up to 1.70 megabytes
per second. Helios can achieve 1.62 megabytes/second using Posix-style read() and
write() calls acting on pipes. By contrast a typical link adapter can achieve between
50 and 200 kilobytes per second, just 10 percent of this speed. Since the I/O processor
may have to service the I/O requirements of a considerable number of more powerful
processors, another factor is the processing speed of the I/O processor. The network
in Figure 2.1 attempts to solve part of this bottleneck problem by attaching I/O hard-
ware, in this case a hard disc, directly to a Transputer. This I/O facility cannot be used
until processor 01 has been booted and some additional software, probably the Helios
filing system, starts running on that processor. After this initial hurdle the hard disc
can be used to bypass both the communication bottleneck of the link adapter and the
processing bottleneck of the I/O processor. Of course there is a price to be paid. In
addition to the cost of the extra hardware, some of the processor’s CPU time and some
of its memory will be taken up by the filing system.

Processors in a network are frequently referred to as network nodes. This matches
mathematical graph theory, where the processors are nodes or vertices and the links
are the graph edges. Graph theory is commonly used when designing or analysing
Transputer networks.

2.2.2 The Helios naming scheme

Before describing individual components of the Helios software it is necessary to de-
scribe the Helios naming scheme. This is illustrated in Figure 2.3.

At the top of the naming tree are one or more levels of network names. In the
example network /Cluster constitutes the root of the naming scheme. Below the
network level or levels is the processor level. Every processor is given a name when it
is booted. For non-trivial networks it is conventional to use simple numbers, but there
is nothing to stop the user from configuring the network with processor names such as
tom, dick, harry, fred, john, and so on. Below the processor level is the server
level. For example, processor 00 is shown with two servers, tasks and ram, and will
run several others as well. A server provides a service of some sort. For example, a
file server provides a file I/O service, and a logger server provides an error logging
service. Usually each server is a separate program, although it is possible for a single
program to act as more than one server.

2Trademark of Sun Microsystems
3Registered trademark of Microsoft Corporation

16 CHAPTER 2. NETWORKS

stdio.h stdio.h

/include /bin /include /bin

/logger /helios /tasks /ram /tasks /fs

/IO /00 /01

/Cluster

��
�

��
�

���� ���� ����

���
���

���
���

Server level

Processor level

Network level

Figure 2.3 The Helios naming scheme

Below the server level is an ordinary directory level. For example, the file server
called /Cluster/IO/helios contains ordinary directories include and bin, and the in-
clude directory contains a sys subdirectory and a file stdio.h. However, at all levels of
the network hierarchy the same protocols are used. Consider the ls command, which
is used to list the contents of a directory. The command ls /Cluster/IO/helios/include
would produce a normal directory listing, as expected. The command ls /Cluster/00
would produce a listing of the servers running in processor 00.4

In the diagram there are two files stdio.h, held in two separate file servers. These
have different network addresses: one of them is /Cluster/IO/helios/include/stdio.h,
and the other one is /Cluster/01/fs/include/stdio.h. This shows that all objects in the
naming scheme have a unique network name. Incidentally, it is the responsibility of
the user to ensure that these two files are consistent, and that a C compiler could use
either of them. It is likely that the C compiler will be made to use the /01/fs version by
preference, because using this file server avoids the bottleneck of the I/O processor’s
link adapter.

For a variety of reasons, not least of which is the tediousness of typing in long
names, it is not always necessary to give full network names when accessing an object.
The minimum that must be supplied is the server name plus the full path within that
server.

For example, /helios/include/stdio.h will work, but /stdio.h will not because it
does not contain enough information. This introduces the possibility of ambiguity.
For example, there might be two servers called /helios in the network, one in the I/O
processor and the other one on processor 01 with the file server installed as /helios
instead of /fs. In such a case accessing /helios/include/stdio.h will usually access
the nearest server, which is not necessarily the correct one. Ambiguity can always
be resolved by giving more or all of the full network name of an object. Users can
provide their own services if required, by writing new server programs that understand
the protocol used between Helios clients and servers: the general server protocol.

4Strictly speaking this is not correct. For efficiency reasons every processor maintains a table of
known names of servers and processors, and the ls command would list the appropriate entries in this
name table. Hence any names not yet known, because they have not been accessed yet, would not appear
in the directory listing.

2.2. THE COMPONENTS OF HELIOS 17

This is not always easy, and many users of Helios can work perfectly happily using
just the standard services provided.

After this discussion of Helios naming it is time to consider the first piece of Helios
software that must be run to boot the processor network.

2.2.3 The I/O server

The I/O server is the main and often the only piece of Helios software that runs on the
host processor and not on a network processor. All other software such as compilers,
shells, network management, and user applications, run on the network processors.
The I/O server has two main jobs: booting the first network processor or root proces-
sor and providing various services to allow access to the resources of the I/O processor.

The I/O server is a large but flexible piece of software. Flexibility is achieved by
reading in a configuration file, host.con, when it starts up. Options include the exact
nature of the link adapter hardware, the location of the Helios system files, and whether
or not particular services such as a mouse device should be provided. Four host.con
options affect the networking software: root processor, io processor, bootlink and
enable link.

Every processor in the network needs a name when it is booted up, and this in-
cludes the root processor. The I/O processor forms part of the Helios network, so it too
needs a name. These names can come from the host.con files, although the I/O server
will use default names /00 and /IO if the entries in host.con are missing. The bootlink
option specifies which link on the root processor is connected to the I/O processor,
usually but not always link 0. The enable link option is used to connect into a running
network rather than to boot up a network, if the I/O processor does not contain its own
private processor but just a link adapter. The first job of the I/O server is booting the
first Transputer in the network. This requires several stages.

1. Carry out any hardware initialisation necessary to start up the link adapter.

2. Reset the root processor, which may have the side effect of resetting some or all
of the rest of the network at the same time.

3. Send in a small bootstrap utility nboot.i. This performs some hardware initiali-
sation on the Transputer side and then waits for further instructions from the I/O
server.

4. Instruct the bootstrap utility to read in the system image or Nucleus, and send in
this Nucleus. The bootstrap utility now transfers control to the first component
of the Nucleus, the Kernel.

5. Send in some additional configuration information needed by the Kernel.

After these bootstrap stages Helios is up and running on the root processor, and
the I/O server now takes a passive role. In particular it starts up a number of servers,
providing various I/O facilities for the Helios network. Exactly which servers will be
available depends on the host machine. For a PC host a typical list would be:

• /logger, an error logging service.

18 CHAPTER 2. NETWORKS

• /window, a pseudo-windowing system which provides multiple full-screen win-
dows and a hot key switching mechanism to move between windows.

• /helios, a file server providing access to the main Helios files.

• /a, /c, /d, additional file servers for the various disc drives a:, c:, and d:.

• /rs232, access to the PC’s serial ports.

• /centronics, access to the parallel ports.

• /pc, a limited communication facility between programs running under Helios
and programs on the PC.

On a Unix host the list might be:

• /logger, an error logging service.

• /window, multiple real windows, using an X window display.

• /helios, a file server providing access to the main Helios files.

• /files, a file server for the whole of the Unix filing system.

All of these servers are part of the Helios network, within processor /IO. It must
be emphasised that, following the bootstrap, the I/O server is purely a passive object.
It waits on the link adapter for incoming requests (to read data from an open file,
for example), it services these requests, and sends replies back into the Transputer
network. All ‘intelligent’ software such as shells, compilers, networking software, and
users’ applications, runs on the Transputer network.

It is not essential to have an I/O processor in the network. The alternative is to have
a ROM based system, where one processor in the network executes a ROM bootstrap
when the system is powered up. Typically such a bootstrap routine would read a Helios
Nucleus from the first track of a hard disc and transfer control to this Nucleus.

2.2.4 The Nucleus

The Nucleus is the part of Helios that is present on every processor in the network.
The I/O server boots the Nucleus into the root processor, and some time later the
networking software boots a Nucleus into every other processor. The Nucleus consists
of six parts: Kernel, System library, Server library, Utility library, Processor Manager,
and Loader. The relationship between these and the rest of Helios is shown in Figure
2.4.

• The Kernel is responsible for the processor hardware. On a Transputer this in-
volves monitoring the links and the event line. In particular, the Kernel has link
guardian processes for every link connected to another processor running Helios,
waiting for messages sent from that processor and forwarding them to the ap-
propriate destination (possibly another link). In addition, when the Kernel starts
up it detects the amount of memory in the processor and initialises the memory

2.2. THE COMPONENTS OF HELIOS 19

Hardware

Kernel

Utility library

System library Server library

�

�

� �

Loader

Processor manager

�
��� �

����� �

Nucleus

Posix library

�

C library FORTRAN library

�
			

Application software

� �

Figure 2.4 The Helios Nucleus

allocation system. The Kernel provides low-level calls such as message pass-
ing, semaphore synchronisation, and creating and destroying processes. Most
of these involve atomic operations, which means running at high priority on a
Transputer or in supervisor state on other processors. Normal application pro-
grams rarely if ever need to use Kernel calls, since higher-level library routines
usually provide the same functionality and are much easier to use.

• The System library provides the basic interface between clients and servers. It
contains library routines such as Open(), Read(), and Seek(). The System li-
brary routines take their arguments and pack the required data into messages,
following the format defined by the General Server Protocol. The System li-
brary then sends the message to the appropriate server and usually waits for a
reply. The server receives the message, acts on the request, and sends back a re-
ply. At the System library level it is irrelevant whether the client and the server
run on the same processor or different ones, which is not true of the Kernel level.

The System library also provides a number of more specialised routines such as
Execute() to run another program, which actually just involves more specialised
interaction with servers. Application programs rarely need to use System library
calls, because higher-level libraries such as the Posix library are generally more
convenient.

• The Server library exists to make it easier to write Helios servers. It contains
code to maintain directory structures within memory, to handle automatically
many incoming requests, and to support buffering of data. Even with the Server
library writing Helios servers is a difficult operation, and should not be at-
tempted lightly.

• The Utility library provides a number of library routines that have to be in the
Nucleus but did not ‘belong’ in one of the previous libraries. This includes
routines to manipulate areas of memory, such as memcpy() and strcpy().

20 CHAPTER 2. NETWORKS

• The Loader is a Helios server, a program rather than a library, which takes care
of pieces of code loaded into its processor, and which ensures that code is shared
between programs where possible. When a program has to be run on a processor
an entry is created inside the /loader directory on that processor and the code is
fetched, usually from a disc. If the program makes use of Resident libraries not
currently in memory, these libraries are fetched automatically.

• The Processor Manager provides another Helios server, /tasks, which allows
clients to run programs or tasks on that processor. It takes care of signals sent
to a particular task, such as the SIGINT signal if the user presses control-C, and
ensures that any resources used by a program are freed when the program ex-
its. The Processor Manager performs several other necessary functions such as
keeping an accurate time of day in the absence of a real-time clock and main-
taining name tables for that processor.

The above six parts are present in every Helios Nucleus. It is possible to add
additional servers to the Nucleus. For example, in a system booted from ROM rather
than from an I/O processor the Nucleus would have to contain the Helios file server,
so that additional bootstrap files could be read from the disc. The Processor Manager
performs one additional function not listed above. If the processor has been booted
by an I/O processor or from ROM, the Processor Manager will execute the program
/helios/lib/init. This program must perform the next step of the bootstrap process.

2.2.5 The Init program

The initial bootstrap stage is similar for all networks and all applications, and involves
getting a Helios Nucleus up and running on one processor in the network. Following
this stage different applications have very different requirements: a work station sys-
tem should get a windowing system up and running and start a login session; a factory
control system must boot up the network and run appropriate software on specific pro-
cessors. To allow easy configuration of the system, Helios runs the init program and
this in turn reads /helios/etc/initrc, which is the text resource file. Changing this text
file allows the user to perform much of the system configuration. A typical initrc file
might look like this.

#
This is a comment line
#
First, set up the windowing system
ifabsent /window run -e /helios/lib/window window
console /window console
#
Then start the networking software
run -e /helios/bin/startns startns -r /helios/etc/default.map
#
Wait for the Session Manager to be active
waitfor /sm
#
And start a user session
run -e /helios/bin/newuser newuser mary

2.2. THE COMPONENTS OF HELIOS 21

An early design decision for Helios was to provide multiple windows wherever
possible. These could be real windows on a graphics display, either attached to a
Transputer or the I/O processor. Alternatively a pseudo windowing system with hot
key switching may be used. The window server may be part of the I/O server or it may
have to be loaded into the processor network. The first lines of the initrc file deal with
these two cases.

The test ifabsent /window will fail if the window server already exists, probably
as part of the I/O server, so no further action is needed. If the window server is absent
a window server is loaded from the disc and started up. This might be a terminal
emulator running under the X window system, or some other windowing system. The
next line, console /window console, creates a new window called console inside the
specified server. From now on this window will be used as the standard stream for all
subsequent commands, instead of the error logger.

Following the initialisation of the windowing system the initrc file specifies exe-
cution of the command called startns. startns is short for Start Networking Software,
and this command starts up the Helios network server which forms the backbone of
the networking software. The network server is responsible for booting up the whole
processor network, for allocating processors to users, and for monitoring the network
and ensuring recovery when individual processors are crashed. The startns command
also starts up a separate program, the Session Manager, responsible for starting user
sessions.

The line waitfor /sm suspends the bootstrap process until a server with that name
appears. /sm is the Helios name for the Session Manager, so in this case the bootstrap
is suspended until the Session Manager is up and running. Note that this is not the same
as waiting for the whole network to be booted. Booting up a network can take many
seconds, depending on the number of processors, the configuration, and the hardware.

The final line executes the newuser command. This command interacts with the
Session Manager and requests it to start a new session for the user ‘Mary’, in the
current window. Assuming the system is suitably configured for a single-user system,
the Session Manager will not require a logging-in phase. Instead it starts up a separate
program, a Task Force Manager, to handle the session and execute commands for that
user.

2.2.6 The network server

The network server constitutes the backbone of the Helios networking software. It has
a number of different jobs.

• Initial bootstrap of the whole network.

• Control of the network hardware, particularly the reset and link configuration
hardware.

• Allocating processors to users as and when required.

• Monitoring the network for errors such as crashed processors, and attempting to
recover from such errors by resetting and rebooting the crashed processor, if the
hardware allows.

22 CHAPTER 2. NETWORKS

The network server is never started up directly by the user. Instead there is a
separate command startns (see the initrc file described in the previous section). This
program reads in a network resource map, defining the network. For the network
shown in Figure 2.1, the text form of the resource map might be:

subnet /Cluster {
Reset { driver; ˜00; tram_ra.d}

processor 00 { ˜IO, , ˜01, ˜02; }
processor 01 { ˜00, , , ˜03; run -e /helios/lib/fs fs scsi; }
processor 02 { , ˜00, ˜03, ˜04; run /helios/lib/lock; }
processor 03 { ˜02, ˜01, , ˜05; }
processor 04 { , ˜02, ˜05, ˜06; }
processor 05 { ˜04, ˜03, , ˜07; }
processor 06 { , ˜04, ˜07, ; }
processor 07 { ˜06, ˜05, , ; }
processor IO { ˜00; IO }

}

In this map the network as a whole is given the name /Cluster. The network
consists of nine processors. One of these, /Cluster/IO, is an I/O processor. The
other eight, which are /Cluster/00--/Cluster/07, are assumed to be Trans-
puters. In addition there is one line indicating the hardware facilities available to the
network server for resetting processors in the network.

Looking at the individual processors in more detail, all processors are shown with
their link connections. Consider processor 00: link 0 is connected to the I/O processor;
link 1 is not connected; link 2 is connected to processor 01; and link 3 is connected to
processor 02. The connections for the other processors are specified in the same way.
In addition, when processor 01 is booted up the network server will run the program
/helios/lib/fs on that processor, using the arguments specified with the same syntax as
the initrc file.

The resource map shown here is fairly simple, as is the network it represents. The
full syntax of resource maps is given in section 2.4, and section 2.5 contains resource
maps for a wide range of networks.

The startns program reads in the resource map and a separate configuration file
nsrc, starts up the network server, and sends the information to the network server.
The nsrc file controls whether or not optional facilities such as password checking
are enabled. The network server installs itself as the server /ns, receives the network
details from startns, initialises any machine-specific hardware such as link switches,
and boots up the network. The network server proceeds to monitor the network for
failures and handles requests such as allocating a set of processors to a user.

The network server, like all Helios servers, understands the General Server Proto-
col. This means that commands such as ls will work on it. In particular, the command
ls -l /ns might give the following results.

f r-------- 103 257 Mon Apr 2 16:19:20 1990 00
f r-------- 103 257 Mon Apr 2 16:19:23 1990 01
f r-------- 103 257 Mon Apr 2 16:19:23 1990 02
f r-------- 103 257 Mon Apr 2 16:19:24 1990 03
f r-------- 104 257 Mon Apr 2 16:19:24 1990 04

2.2. THE COMPONENTS OF HELIOS 23

f r-------- 0 257 Mon Apr 2 16:19:24 1990 05
f r-------- 103 257 Mon Apr 2 17:34:54 1990 06
f r-------- 0 257 Mon Apr 2 16:19:25 1990 07
f r-------- 0 259 Mon Apr 2 16:19:19 1990 IO

The /ns directory contains an entry for every processor in the network. Please note
that the object /Cluster/00/ns/01 is different from the processor /Cluster/01. The for-
mer merely provides a convenient way of performing certain operations on the latter.
This is reflected in the object types shown in the first column, type file, whereas a real
processor is actually a directory of servers.

The next column indicates the direct access ordinary users have to these objects,
which is very little. In a multi-user environment it is essential that users cannot reset
or reboot other users’ processors. More subtly, they are not allowed to reset their own
processors if this involves disconnecting part of the network, and clearly protection
mechanisms like this are useful even in a single-user environment. A user’s Task Force
Manager may have greater access to certain processors, and that user’s applications can
use these greater access rights when using networking library calls.

The third column is the account number, indicating who currently owns which
processor. This account number corresponds to somebody’s user id as extracted from
the password file (see the section on the Session Manager below.) In this example all
processors with account 103 are currently ‘owned’ by user Mary, and the processors
with account 0 are currently in the system pool of free processors.

The next column usually refers to the size of an object. The ‘size’ of a processor
is a rather dubious concept: 7.2 cm2 is not very useful information. Hence this field
is actually used to store the current state of the processor. This state encodes various
bits of information. The bottom byte indicates the processor purpose, for example
whether it is an I/O processor, a normal Helios processor, a processor reserved for
use by the system, or something else. The top three bytes encode the current state of
the processor, for example whether or not it is running. Rather than forcing users to
interpret this information by decoding the bits Helios provides a command network
which, given the show option, will display the current state of the network.

The fifth column is a date stamp corresponding to the time when that processor
was last booted or rebooted. Note that processors 00 and IO were booted within a
short time of each other – the boot time of an I/O processor is the time when the I/O
server started running. Then there is a short delay before the other processors are
booted, corresponding to the time it takes for the network server to start up. Processor
06 has a much later boot time, which indicates that at about that time processor 06
crashed and was rebooted.

The network server is responsible for administering the network. That is a large
job, and the network server is a fairly large program. In the interests of modularity
there are separate programs, the Session Manager and the Task Force Manager, to ad-
minister users’ sessions. In a network there will be a single network server responsible
for administering the network. There will also be a single Session Manager, responsi-
ble for all users. There may be a number of Task Force Managers, one for every user
currently logged in.

24 CHAPTER 2. NETWORKS

2.2.7 The Session Manager

In addition to the network server, the startns program starts up the Session Manager
which is responsible for administering all users’ sessions. When the Session Manager
installs itself in the name table as /sm, the init program detects this and the initrc
command waitfor /sm succeeds. init now executes the newuser command to start
a user session, by interacting with the Session Manager. If the nsrc configuration
file indicates that no password verification is required, the Session Manager does not
generate ‘login’ and ‘password’ prompts. Creating a new session involves starting up
another program, the Task Force Manager, as described later in this section. The
Session Manager is a Helios server, like the network server, and hence it can be listed
with the ls command. Typical output might look like this.

d r- z- 0 0 Mon Apr 2 16:19:22 1990 Windows/
f r- 103 1 Mon Apr 2 16:19:28 1990 mary
f r- 104 1 Mon Apr 2 16:30:03 1990 jon
f r- 103 1 Mon Apr 2 17:10:52 1990 mary.1

The first entry in the directory is Windows. This is a subdirectory, holding details
of all the windows currently known to the Session Manager on which it should accept
user sessions. The newuser command can be used to register a window with the
Session Manager.

The next three entries indicate the users currently logged in. User Mary first logged
in shortly after the network was booted, as a result of the newuser command in the
initrc file. About ten minutes later user Jon logged in through a different windowing
system. For example, if the processor network is connected to an ethernet then user
Jon may have logged in through a telnet session. Some time later user Mary logged
in again, through a different windowing system. In order to maintain the uniqueness
of all names in the network the Session Manager had to append a number to the name
Mary for this second session, or there would have been two objects /sm/mary. Cre-
ating a new session always involves checking the password file, which is called /he-
lios/etc/passwd, even if password checking is not enabled, because that file contains
other information relevant to the session. A typical line in the password file might be:

mary::103:0:mary smith:/helios/users/mary:/helios/bin/shell

The number 103 indicates a unique user identifier, which is used in several other
places within the networking software. The column /helios/users/mary spec-
ifies the home directory for that user, and the final column indicates the command to
run for that user when the session starts up, in this case the Helios shell.

In a listing of the Session Manager the various fields have the following meanings.
All sessions are of type file, and users are unable to delete each other’s sessions. The
account field indicates the user identifier, obtained from the password file. The size
field does not make much sense: it is hard for a processor to work out that the user is
1.80 metres tall, and again this information is of little use. The time stamp indicates
when the user logged in.

There are various ways of starting a new user session. The conventional way is
to log in by using a window. However, this window may be in an I/O processor, or
on a dumb terminal, or it may be a telnet session for an ethernet login. Alternatively,

2.2. THE COMPONENTS OF HELIOS 25

a session may have to be created to support remote execution of commands, using
the Unix rsh command, for example. All these cases involve creating a new entry in
the /sm directory, and the code to do this is built into various utilities. In the initrc
file used for this example, there is a newuser command. The Session Manager will
start up a separate program, the Task Force Manager, to handle an individual user’s
requirements.

2.2.8 The Task Force Manager

The initrc command

run -e /helios/bin/newuser newuser mary

registers the current window with the Session Manager, causing a new entry to appear
in the subdirectory /sm/Windows. In all such windows the Session Manager will run
the login program to let people start a new session. In this case a user name has been
given as the argument to newuser, so the first time that login is run it will default to
that user. Depending on the nsrc file there may or may not be a prompt for a password.
Once login has all the information needed to create a session for a particular user, it
causes a Task Force Manager to be started for that user. The current window will be
used as the output window for diagnostic and error information, and eventually login
will start up a shell running in that window. By this point the password file will have
been consulted, so the user’s home directory and the particular shell to execute will be
known.

The Task Force Manager is another Helios server. It will install itself in the name
table as /mary, or whatever the user name happens to be. The server contains a
number of subdirectories: domain and tfm; again these can be listed with ls.

The command ls -l /mary/domainmight give the following output.

f rw- - - - - - -103 257 Mon Apr 2 16:19:24 1990 00
f rw- - - - - d- 103 257 Mon Apr 2 16:19:23 1990 01
f rw- - - - - d- 103 257 Mon Apr 2 16:19:23 1990 02
f rw- - - - - d- 103 257 Mon Apr 2 16:19:24 1990 03
f rw- - - - - d- 103 257 Mon Apr 2 16:19:24 1990 04

The /domain directory contains the various processors currently owned by the
user. The fields have the same meaning as in the /ns directory of the network server.
The term ‘owned’ may be inappropriate, since the processors are actually on loan from
the system pool and will be returned to that pool when the user has finished with them.
A user’s domain of processors will grow and shrink as required. If an application needs
more resources than are available in the current domain the Task Force Manager will
request additional resources from the network server, and return these resources when
they are no longer required. In addition there is a domain command which may be
used to perform operations such as pre-allocating a group of processors. In a single-
user environment it often makes sense to pre-allocate all processors, and this could be
done with the command:

domain get /01 /02 /03 /04 /05 /06 /07

26 CHAPTER 2. NETWORKS

It is not necessary to allocate processor 00 in this way, because this processor
(probably) runs the user’s Task Force Manager and hence is automatically part of that
user’s domain. The remaining processors start off in the system pool. The domain
command can be used with different arguments to release processors back to the sys-
tem pool or to get further information.

A listing of the /tfm directory might give the following information.

t rw----da 0 0 Mon Apr 2 16:19:24 1990 shell.1
t rw----da 0 0 Mon Apr 2 16:19:48 1990 shell.6
t rw----da 0 0 Mon Apr 2 18:10:42 1990 ls.82
d rw----da 0 88 Mon Apr 2 18:10:32 1990 pi.78/

The /tfm directory lists the tasks and task forces which the Task Force Manager
is currently running on behalf of the user. There are three single programs, two shells
and the ls program, and there is one task force or collection of programs. Each entry
has an extension; for example, the first shell was the first program run on behalf of that
user, and the second shell was the sixth program.

The first shell in the /tfm directory is created by the login program, when the
user’s session is created. In fact login will execute whatever program is specified in
the password file, but this will almost certainly be a shell. The shell is started up with
a capability for the Task Force Manager, and after the usual shell startup a prompt will
be displayed. The user is now able to type in commands, and can run applications.
Essentially this completes the Helios bootstrap process.

When the user logs out, the first shell will terminate. The login program will be
informed about this, because it started up the shell. It can now terminate, causing the
Session Manager to run another login program in the same window. Also, the user’s
Task Force Manager will terminate and release all resources back to the system pool.

2.2.9 Summary of the bootstrap process

The whole bootstrap process can be summarised as follows:

1. The I/O server boots a Nucleus into the root processor, or a ROM bootstrap
causes a Nucleus to start up.

2. The Nucleus initialises itself and runs the init program.

3. The init program reads the initrc file and runs startns.

4. startns runs the network server and the Session Manager.

5. The network server boots up the network.

6. Simultaneously init runs the newuser command.

7. newuser registers the window with the Session Manager.

8. The Session Manager runs login inside the window.

9. login creates a new session, causing a Task Force Manager to be started, and
then runs the login shell inside that Task Force Manager.

2.3. SOME EXAMPLE NETWORKS 27

10. The user gets a shell prompt and can start executing commands. The Task Force
Manager obtains resources from the network server as required, and returns
these back to the system when they become free.

11. After a period of time, the user logs out from the login shell.

12. The Task Force Manager terminates, releasing resources back to the free pool.

13. The login program terminates, and is restarted by the Session Manager.

14. Another login prompt appears in the window.

2.3 Some example networks

This section describes a range of Transputer networks, and outlines the software re-
quired and its configuration. The networks range from single-processor systems to
multi-user networks. Section 2.5 describes how to configure each of the networks. It
is hoped that the reader will recognise at least one of these possible networks as the
appropriate one for them.

2.3.1 Single-processor embedded systems

��

�

��

�

��
��

�
�
��

�
�
����
��

��

��
��
��

Figure 2.5 Single-processor embedded systems

For single-processor embedded system applications, the processor is used to control a
piece of hardware such as a robot arm or a video recorder.

For such an application there is little point in having an operating system at run-
time. Operating systems tend to need a hard disc for I/O, and they use a considerable
amount of memory. Instead the processor will boot from ROM when it is powered up,
and the entire application is held in this ROM. The application will be implemented
with a standalone system such as occam or Helios Standalone C. However, there is a
question of how this software is developed in the first place, and having an operating
system during the development stage may be a distinct advantage. During development
the target processor would be part of a normal network using one of the configurations
described later in this section, and it would be booted from a link. ROM code would
be produced as a final stage.

28 CHAPTER 2. NETWORKS

2.3.2 Single-processor workstation

00

�

�

�

	

Ethernet

�

Figure 2.6 A single-processor workstation

A single processor may be equipped with sufficient I/O hardware to produce a com-
plete workstation. The processor would boot from ROM on ‘power-up’, and load
a Nucleus from the hard disc. This Nucleus would contain the filing system. The
Nucleus can now start up the init program as before. The initrc file would start up
software to interact with an ethernet device, giving conventional local area network
capability. Keyboard and mouse servers should start up to interact with those devices,
and an X window server could follow to give a high resolution graphics display.

Much of the Helios networking software is no longer required, since there is only
one processor in the network. There is little point in starting up the Helios network
server or to have a per-user Task Force Manager. To protect users from each other
Helios insists that every user has one processor. This is because some processors, such
as the Transputer, do not have memory management hardware, thus allowing users’
programs running on the same processor to corrupt one another. Hence in this single-
processor network it will not be possible to log into the machine over the ethernet. It
is necessary to start a user session for the workstation’s owner, so a Session Manager
must be run. It may be configured to require password checking or not. The Session
Manager will start up a shell session for the user, but not a Task Force Manager. There
should be a separate user id such as shutdown which, instead of running a shell,
causes the hard disc to be synchronised and so allows the workstation to be shut down
safely.

Some or all of the links on this processor will be free. Hence it is possible to
connect this workstation into a larger network to produce one of the configurations
described later in this section. With this configuration there is potential for catastrophe.
If the user gets the configuration files seriously wrong, the machine may not boot up.
The same is true if the filing system is badly corrupted, or if the Nucleus is held on
the root sector of the hard disc. There are various solutions to this problem. One
approach is to support an alternative floppy disc bootstrap mechanism instead of the
hard disc bootstrap, typically by pressing a switch or holding down a key when the
machine is turned on. This will give a minimal system which should allow the user
to perform any necessary repairs. Another more complicated approach is to have an
ethernet bootstrap facility. A third approach is to connect a working Helios system to
the broken one, boot the processor through a link, and repair the broken system with
the working one. All three approaches will require considerable expertise.

2.3. SOME EXAMPLE NETWORKS 29

2.3.3 Workstation with I/O processor

It is possible to build a system with similar functionality to the workstation by reusing
some existing hardware. Typically the user might start with an IBM PC or compatible
and plug in a Transputer card, with just one Transputer. Such a network would rely on
the PC for all its I/O, both file I/O and screen I/O. An upgrade might involve adding a
second Transputer with graphics hardware, and running the X window system on this
processor. The PC’s screen would be used only for error logging, for debugging, and
for generating ‘beeps’, although the PC’s keyboard, mouse and hard disc are still re-
quired. The next upgrade is likely to be a hard disc, probably with an SCSI interface, to
avoid the bottleneck of the PC’s link interface. This would also provide a secure filing
system, with multi-user protection, rather than the unprotected filing system of the PC.
The final upgrade is likely to be an ethernet connection, giving similar functionality to
the standalone workstation described in the previous section.

The gradual approach has advantages and disadvantages. The individual stages are
likely to be cheaper than buying a complete workstation at once, but the end result is
likely to be more expensive. Every time an addition is made the system configuration
will have to be changed, which may be a minor cause of headaches. The workstation
will probably come fully configured, apart from the details of user ids, passwords,
home directories, and so on. The PC is still usable for conventional software such as
spreadsheets and word processing packages, unlike the workstation.

The software is essentially the same as for the workstation. In this case the I/O
processor will do the bootstrap rather than a piece of ROM code, and initially the
host filing system will be used rather than the Helios filing system, but these do not
significantly affect the configuration of the networking software. It should be noted
that it is not possible to build a secure system with just the PC filing system. The
various system files which must be secure, such as the password file, could be changed
simply by leaving Helios and editing them under MS-DOS. To build a secure system,
rather desirable for a multi-user environment, the Helios filing system must run within
the network.

2.3.4 Workstation for developing parallel software

00

�

�

�

�

Figure 2.7 A workstation for developing parallel software

In the description of the single-processor workstation it was mentioned that there is
no point in running all of the networking software on a single-processor system. This
is not always true. Some parallel programming systems, notably the Helios CDL,
allow parallel software to be developed on a single processor and then moved to a
multi-processor system without change, provided the official guidelines are followed.

30 CHAPTER 2. NETWORKS

Testing parallel software requires all of the networking software to be present since,
for example, the Helios shell does not know much about task forces or collections of
programs, and how to map these onto a network. Such knowledge is built into the
Task Force Manager, and should not be duplicated unless absolutely necessary (in the
interests of memory economy as well as for other reasons).

2.3.5 A small network

0001

02

03

�

�

�

	

Figure 2.8 A small network

The next level of complexity is to change from a single-processor network to a small
network, of perhaps four processors. There are two main ways of organising such a
network. The first approach is not to use the networking software because the network
is too small to make it worthwhile. This has the advantage of greatly reducing the
amount of configuring. Helios provides commands which allow bootstrap of other
processors without the need for networking software, and these commands could be
executed from the initrc or the shell’s login files. It should be noted that with certain
types of hardware it is fairly difficult to initialise the hardware correctly, and hence this
option may not be viable.

The second approach for a small network is to run the networking software, con-
figured as a single-user system. This allows all the networking software to be run on
the same processor, saving some memory. The detailed configuration will be similar
to the next network.

2.3.6 A fairly small single-user network

00

01

02

03

04

05

06

07

�

�

�

	

Figure 2.9 A fairly small single-user network

Once the network grows past a certain size, booting by hand is less reliable. Hence
the user must run the networking software to boot up the network. As the number of

2.3. SOME EXAMPLE NETWORKS 31

processors increases it becomes more important that the network is monitored auto-
matically for failures. Also, it becomes less likely that the network will not be used to
execute parallel software, and the relative overhead of running the networking software
becomes quite small.

2.3.7 A network with configuration hardware

Link Switch

00

01

02

03

04

05

06

07

�

�

�

	

Figure 2.10 A network with configuration hardware

The networks shown so far are assumed to have hard-wired links. Connections be-
tween processors may be fixed permanently because that is the design of the board.
The connections may involve manipulating pieces of wire. A different type of hard-
ware uses a link switch. Some or all of the links of the various processors enter the
link switch, which must be programmed to make appropriate connections. In such a
network the resource map which describes the network to the network server takes on
a new meaning. Instead of specifying what the network actually looks like, it spec-
ifies what it should look like. The network server initialises the link switch and sets
up the desired network. This involves going through a hardware-specific interface.
It will be difficult to boot up such a network without a network server, because the
configuration hardware is complex. Supporting link configuration adds significantly
to the complexity of the networking software. By default, link configuration is only
used when the network server starts up. Helios makes no attempt to support automatic
dynamic reconfiguration in response to workload or to help map a problem onto a net-
work. Instead the network is assumed to be static. Since the Helios Kernel implements
automatic message routing, the need for dynamic reconfiguration is usually extremely
small.

32 CHAPTER 2. NETWORKS

2.3.8 A single-user supercomputer

root

files

00

01

02

03

10

11

12

13

20

21

22

23

�

�

�

	

Figure 2.11 A single-user supercomputer

In software terms there is little difference between booting up eight processors in a
network and booting up 64, except that the latter may take several seconds more. Al-
locating 64 processors to just one user is fairly expensive in financial terms, but can
make sense for ‘compute intensive’ jobs. On a 64-processor network, automatic de-
tection of failures is essential because it can take a long time for a user to detect that
one processor has stopped working. Hence the network server must run continuously.
Such a large network will be used only for running parallel software, so a Task Force
Manager is also essential.

2.3.9 Several single-user systems

00

01

00

01

02

03

10

11

04

05

20

21

06

07

10

11

00

01

02

03

�

�

�

	

�

�

�

	

�

�

�

	

Figure 2.12 Several single-user systems

Given an array of 64 processors it is possible to have perhaps four user networks of
16 processors each, with no overlap at all between the networks. This is a safe way
of managing the network, since the users have no way of interfering with each other’s
networks. However, it may be an inefficient way of using the resource. If a user is
currently making use of just two of the 16 processors the remaining 14 are idle and not
accessible to any of the other users. To reallocate the resources between the users, so
that some get more processors, will involve a considerable amount of work: (1) Ter-
minate some or all current sessions to ensure that the network is idle. (2) Reconfigure

2.3. SOME EXAMPLE NETWORKS 33

the network with the link switches to the desired allocation. (3) Change the resource
maps which define every user’s network. (4) Reboot. There is a further complication:
changing the resource maps usually involves a Helios session.

Configuring such a system is essentially a case of having four separate sets of
single-user configuration files. In addition the controlling software, which is provided
by the hardware manufacturer rather than being part of Helios, must be set up correctly.
This is specific to the implementation.

2.3.10 A single-user process control system

Processors designed for multiprocessing, such as the Transputer, can be very useful in a
process control system, because they combine processing power and communication in
one package. Care must be taken with communication, such as using suitably shielded
cables and adequate buffering, or using optical connections instead of electrical ones,
but such hardware details do not affect the software or the configuration.

When the network is powered up suitable software must be run on all the proces-
sors, which can be done by specifying the programs in the resource map. The network
server will boot up the network and run all those programs. Furthermore, if a processor
crashes the network server will attempt to reboot it and restart the software, without
the need for any user intervention. Fault tolerance will be important, so the network
will have to be strongly interconnected to allow continued communication even in the
presence of crashed processors.

The network must contain either an I/O processor or a processor booting from
ROM, to get everything started. There must be a filing system from which the various
pieces of software can be loaded, and a display to give monitoring information. High
resolution graphics may be inappropriate for some process control applications, so
the display may be just a terminal attached to a serial line. The monitoring software
may explicitly monitor the other programs in the network. Alternatively it may be
implemented as a Helios server, with the various programs acting as clients.

For many process control applications a single-user system is all that is required.
In fact the network may even be configured as a zero user network, with all the soft-
ware started up automatically by the network server and the init program, and with no
user sessions. This network may well be merged into a larger network, providing an
integrated system within say a whole factory rather than just on part of one factory
floor. In the interests of fault tolerance, the system should still be designed as small
networks booting up separately and then connecting, to avoid a single central service
responsible for everything. Within this larger network, it may be desirable to have a
multi-user system.

34 CHAPTER 2. NETWORKS

2.3.11 A small multi-user network

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

�

�

�

	

terminal
�

�

�

	

terminal
�

�

�

	

Figure 2.13 A small multi-user network

In the networks described so far there has been at most one active user at any one time,
although different users could log in at different times. Adding multiple users involves
considerable complications at the software level, but few changes to the configuration
files.

Consider the network shown in Figure 2.13. There is a network of perhaps eight
or sixteen processors, booted by a PC I/O processor. Attached to this I/O processor
are two or more ordinary terminals, using the PC’s serial ports. The intention is to
boot up the network from the I/O processor and then allow multiple users to log in
using the dumb terminals. Alternatively the I/O processor may be equipped with some
local area network hardware such as ethernet, and users may wish to log into Helios
remotely over such a network. There may not be an I/O processor. The system may
consist of a standalone workstation with an ethernet connection and perhaps a serial
line to give a system console for error messages. The users have to share the network
in a fair manner, which will need a certain amount of cooperation between them.

Sharing a network fairly means that processors should be obtained from the system
pool when required, and released back to the system pool when free again. Users
should be discouraged from pre-allocating large domains of processors, since those
processors would no longer be usable by others. Recovery from errors also becomes
more important in a multi-user environment, since users should be inconvenienced as
little as possible by the mistakes of others. Hence in a multi-user network it is essential
to have a network server running continuously. To allow users to log out and in at any
time the Session Manager must also run continuously. Finally, every user will be given
a separate Task Force Manager to administrate that session. Since processors have to
be allocated from the system pool and released again, these Task Force Managers
must also run continuously. A side effect of this is that multi-user configurations will
use up more of the available resources, including processor memory, than single-user
configurations. The I/O processor has a special ability in such a network. Without
an I/O server Helios will be unable to access the serial lines of the host, so the I/O
server must not exit while other users are logged in. Furthermore the I/O server must
boot up the first processor, and has the ability to reboot this processor at any time.
This could be unfortunate if other users are still logged in. The recommended way
to avoid these problems is to treat the I/O processor as a system console, which is

2.3. SOME EXAMPLE NETWORKS 35

used for administration rather than for user sessions. All user sessions go through the
terminals. Of course there is nothing in Helios to stop users from ignoring this advice
and using both the I/O processor and the terminals for sessions.

2.3.12 Two connected single-user networks

00

02

04

06

01

03

07

09

00

02

04

06

01

03

07

09

�

�

�

	

�

�

�

	

Figure 2.14 Two connected single-user networks

In the case of two separate networks, perhaps plugged into separate I/O processors,
the users may want to connect their networks together to exchange data, rather than to
share all of the network resources including the processors. The networks are booted
up separately, as single-user networks. The link connecting them should be declared
as a special external link in the network resource maps, so that the network server will
know that there may be a Helios network at the other end of the link. To connect the
networks involves running a program to enable the connecting link in one of the net-
works. If the networks are already connected, this will be a ‘no-op’. The networks can
be disconnected again by running another program to disable the connecting link. The
exact commands differ, depending on whether a network server is currently running,
but since the operation involves simple networking it is easier if the network server is
running.

There is a potential problem with naming the two networks. If both users give
their network the same name, such as /Cluster, the naming system becomes am-
biguous. There will probably be two processors called /Cluster/00, two called
/Cluster/IO, and so on. The users must give their networks separate names. One
network could be called /maryNet, the other /jonNet. The naming tree would
now look something like Figure 2.15.

/helios/ns

/IO /00

/maryNet

/helios/ns

/IO /00

/jonNet
��
�

��
�

Figure 2.15 Multiple connected networks

User Jon could access a file /maryNet/IO/c/work/test.c, with no doubt
as to the location of this file. Of course users may not have access to all of the others’
resources. The Helios filing system enforces a protection mechanism and, if a user
does not have a suitable capability, a particular file may not be accessible.

36 CHAPTER 2. NETWORKS

In this configuration it is not possible to use a processor in another user’s network.
If one of the networks has been configured to support multiple users the user can log
into that network over the link and use processors in the remote network, through a
separate session using the same window. The user cannot run an application distributed
over processors in more than one network.

2.3.13 A large multi-user network

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

Console

�

�

�

	

files root

�

�

�

	

�

�

�

	

�

�

�

	

tom1

pat4

pat3

pat2

pat1

Figure 2.16 A large multi-user network

Given a large backbone of processors it is possible to build a powerful multi-user
system. When the network is powered up, the bulk of it is booted, and the network
server and Session Manager continue running. The bootstrap can involve either a
ROM boot or an I/O processor, with the error logging going to a system console. This
console is used only for maintaining the network, not for user sessions.

There are various ways in which users can use this network, illustrated in Figure
2.16. On the left is an I/O processor with just a link adapter, no processor. The I/O
server on that processor is configured so that it never attempts to boot up the processor
attached to its link adapter. It enables the link, and waits for something to happen. The
resource map used to boot up the bulk of the network should indicate an I/O processor
at the other end of this link. When the network server detects that the link is enabled, it
will locate a window server at the other end of the link and inform the Session Manager
that a user is waiting to log in. The Session Manager does the rest, starting up a Task
Force Manager for that user and so on. When the user logs out or terminates the I/O
server, the session will be terminated.

In the middle is an I/O processor with one processor attached. The I/O server boots
this processor with a Nucleus and the init program starts running. A network server
is started to initialise this small network, but there is no need for a Session Manager.
Once the network has been initialised the joinnet command can be used to enable
the link to the main network and make the small network part of the main one. It is
now possible to run the newuser command to register the window with the Session
Manager. The processor tom1 in the small network will only be allocated to sessions

2.3. SOME EXAMPLE NETWORKS 37

started from that network, and will not be accessible to other users.
The third approach has a small network rather than a single processor. The con-

figuration is the same as for the second: a network server is run to boot up the small
network; then the joinnet command is used to make this small network part of the
main machine.

A standalone workstation can be used instead of an I/O processor for the second
and third case, using exactly the same configuration, although a standalone workstation
consisting of a link adapter but no processor or I/O processor does not make sense.

2.3.14 A mainframe computer

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

Console

�

�

�

	

root

files

� �

term

terminal
�

�

�

	

terminal
�

�

�

	

ether

Ethernet

�

�

�

	

pat4

pat3

pat2

pat1

Figure 2.17 A mainframe computer

The large multi-user network described in the previous section, with a central reliable
backbone of processors and a central network server and Session Manager can be
extended to give a large and powerful system. There is no technical reason why it
could not be expanded to several hundred processors, with a number of fast discs, tape
streamers for backup purposes, and one or more ethernet connections. In addition
to logging in through I/O processors or standalone workstations the network could
support serial line terminals, ethernet logins (possibly from remote X window system
terminals), or even dial-up logins, if a serial port and a modem are added. Such a
network provides much the same facilities as a traditional mainframe.

2.3.15 Networked mainframe computers

There is one main problem with the mainframe approach to building networks. They
rely on a single network server to allocate resources between users, and the network

38 CHAPTER 2. NETWORKS

server is a single program running on just one processor. The workload of the network
server depends on two things:

1. The number of users, which will affect the rate at which requests come in, and

2. The size of the network, which will affect the amount of work to be done for each
request. When a certain number of users and a certain number of processors
is exceeded, the network server will become a bottleneck. At present there is
insufficient data to determine when this will happen.

2.4 The real world

The previous section described various networks which, at least in theory, can be built
quite easily with Transputers. In practice most Helios users purchase off the shelf
hardware, and this will have built-in limitations which may make it unsuitable for
certain applications.

This section describes four different systems, representing different suppliers
of Transputer hardware: the Inmos TRAM system, the Parsytec MultiCluster and
SuperCluster5 systems, the Telmat T.Node6 and the Meiko Computing Surface. These
systems differ significantly in the hardware used to reset processors, the configuration
hardware, and so on. The purchase price of the hardware also varies considerably, but
that topic is not considered further here.

Given a network of processors, a common question is how to interconnect them
conveniently in a way that is appropriate for the application or applications desired. A
correct interconnection may be more important for a small network, where commu-
nication costs may have to be minimised if the application is to run efficiently. For a
larger network, particularly a multi-user network, attempting to optimise the intercon-
nections is less important and requires more effort. This section outlines the topic of
network interconnections.

2.4.1 Different hardware

This section describes four different hardware systems, with different strengths and
weaknesses. These have a significant effect on the networking software, and on the
suitability of the hardware for different applications.

2.4.2 Inmos

Inmos, as the manufacturer of the Transputer, have a strong influence on the industry
as a whole. In 1987 Inmos introduced the TRAM system, an ‘industry standard’ for
building hardware based on Transputers. The TRAM system has since been adopted by
a number of other manufacturers. However, by 1987 several other manufacturers had
already implemented their own Transputer systems which are not compatible with the
TRAM scheme, and which have taken a major share of the market place. In addition,

5Parsytec, MultiCluster and SuperCluster are trademarks of Parsytec GmbH.
6Telmat and T.Node are trademarks of Telmat Informatique

2.4. THE REAL WORLD 39

the TRAM scheme has a number of weaknesses which makes it inappropriate for many
applications.

The idea behind the TRAM scheme is quite simple. Manufacturers produce TRAM
modules, small or medium sized circuit boards typically with one Transputer and some
memory. These modules can be plugged into a TRAM motherboard, to build a net-
work of processors. A typical motherboard might have between five and sixteen slots,
and a module can use up anything from one to eight slots. In addition to processing
modules with just a Transputer and memory, it is possible to have specialised mod-
ules with such features as graphics displays, SCSI peripheral interfaces, and ethernet
connections. The various modules are connected together automatically in a simple
pipeline. Consider the network of Figure 2.18.

The motherboard has ten slots, like the Inmos B008 board. It is filled with six
modules. There is a size four module occupying slots 0, 4, 7 and 3, say the Inmos
B417 module with a T800 and four megabytes of memory. Then there are four size
one modules, in slots 1, 2, 5 and 6, say four Inmos B411 modules each with a T800
and one megabyte. Finally there is a size two SCSI module such as the Inmos B422,
with a T222 and a SCSI interface. Jumpers will be required on the first module, to
avoid breaking the link pipeline.

Motherboard

Slots 1 5 6 2 0 4 7 3 8 9

01 03 04 02 00

�

�

�

	

00 01 02 03 04

Figure 2.18 A single-TRAM motherboard

Link 0 of the first module goes to the I/O processor. Link 2 of the first module goes to
link 1 of the second module, link 2 of the second module is connected to link 1 of the
third module, and so on. In addition some motherboards have a link switch to allow the
remaining links of each module to be connected according to the user’s requirements.

It is possible to chain together several TRAM motherboards, to produce a larger
network. To achieve this the tail of the pipeline, link 2 of the last module, goes through
an external connector into the head of the next pipeline (link 1 of the first module on
the second board). Usually this will require some soldering on the patch area of the
second board. Inmos produce the B211 Transputer Evaluation Module, a rack which
can take up to ten TRAM motherboards such as the B012, each of which has sixteen
slots for TRAM modules. Clearly it is possible to build very large networks with
TRAM modules. It should be remembered that the recommended minimum amount
of memory on a processor running Helios is one megabyte, even though there are
TRAM modules with much less memory.

The flexibility of the TRAM scheme and the availability of a wide range of differ-
ent modules are its main advantages. However it suffers from two great disadvantages,
both related to the reset scheme. The root processor, occupying slot 0 of the first board,
can be reset from the I/O processor. The remaining processors can be reset in one of
two ways, usually depending on the state of a jumper. The first way is to reset all

40 CHAPTER 2. NETWORKS

processors at the same time from the I/O processor, so that when Helios starts up all
processors are in a reset state. The second way is to give the root processor subsys-
tem control. This means that the root processor can perform a global reset, resetting
all other processors in the network. For Helios, neither approach is particularly use-
ful. If the network is to have any reasonable degree of fault tolerance, the networking
software must be able to recover from crashed processors by isolating them and then
rebooting them. Isolating is still possible, if the network connectivity has not been
broken. However, rebooting is impossible without the ability to reset individual pro-
cessors. The networking software cannot recover until all processors in the network,
apart from the root processor, have crashed and should be reset anyway. Before this
happens the user is likely to have lost patience and rebooted the whole network from
the I/O processor.

The second problem with the reset scheme is the way in which it is asserted. This
is done by poking a 32-bit integer 0 into address 0x00000000. Unfortunately, consider
the following piece of poor quality but fairly typical C code.

char *pointer = malloc(128);
memset(pointer, ’ ’, 128);

Most of the time this piece of code will work fine. However, if the processor happens
to be short of memory the call to malloc() will return NULL, which is the same as
address 0x00000000. Hence the call to memset will activate the subsystem reset, if it is
running on the root processor, and reset every other processor in the network. This will
be rather confusing for the average user, at least until it has happened half a dozen times
and the symptoms can be recognised instantly. Furthermore the circumstances which
caused the problem (running out of memory when the program executes on the root
processor) may not occur very often. These problems could have been avoided very
easily, although at a slight additional hardware cost, by choosing a different address
such as 0x70000000.

The lack of an individual processor reset facility and the ease with which the re-
set can be asserted accidentally make the TRAM system an unlikely choice for large
networks. However a small number of TRAM modules can be combined to produce a
workstation, with or without an I/O processor. A typical collection would be a SCSI
module, an ethernet module, a graphics module, and possibly one processor module
for the root processor. For a standalone workstation it would be necessary to add a
ROM bootstrap module and probably an RS232 module with two serial ports, one for
a mouse and one for a keyboard. Such a workstation could be connected into a larger
network such as a Parsytec SuperCluster or a Telmat T.Node, to achieve the required
processing capability. The various processors within the workstation would run mainly
or only system software, such as the filing system or the X window system server. This
reduces or eliminates the possibility of a crash on one of these processors, which would
require the rebooting of the whole workstation (but not the larger network).

2.4.3 Parsytec

Parsytec GmbH have been working on Transputer systems since 1985. They supply
two main systems: the MultiCluster, aimed mainly at industrial applications; and the
SuperCluster, aimed more at the supercomputer market. In fact the two systems are

2.4. THE REAL WORLD 41

hardware compatible, and it is possible to take MultiCluster boards and plug them into
part of a SuperCluster.

The MultiCluster series involves one or more heavy duty racks linked together, and
a range of plug in boards. These include processing boards such as the MTM-2, with
two Transputers each with one megabyte; I/O boards such as the GDS graphics display
and the MSC mass storage board with its SCSI interface; and interface boards such as
the BBK-V2 VME bus bridgehead. Host interface boards are available for a range
of machines, including PCs and Suns. RS422 link buffering is supported as standard,
for medium to long distance communication between processors. In the context of an
industrial application, the interconnections between the processors are usually hard-
wired using cables plugged in to the MultiCluster backplane. Once the network is
up and running it should stay up and running for a long time without changing the
software or the configuration. Cables tend to be more reliable than a crossbar switch,
reducing the possibility of an error. A typical SuperCluster system is shown in Figure
2.19.

The basic unit of a SuperCluster is known as a computing cluster. This con-
tains 16 processors, usually T800s because the system is aimed at supercomputing use
which needs floating point arithmetic. Each cluster also contains a network config-
uration unit which has the link switches needed to configure its part of the network.
The 16 processors in a cluster have a total of 64 links, which can be connected in any
way. In addition, 32 of these links can be taken outside the cluster, to a higher-level
configuration unit which allows the clusters to be interconnected. The smallest com-
mercially available SuperCluster has four of these computing clusters, giving a total of
64 processors. Several of these can be combined to produce a larger network.

In addition to the computing clusters, a SuperCluster machine contains a system
services cluster. Any of the MultiCluster boards, including the MSC with its SCSI
disc interface, can be

Network Configuration Units

System Services Cluster

Figure 2.19 A Parsytec SuperCluster

plugged into this cluster to provide the required I/O facilities. External workstations
and host processors can be connected here as well.

42 CHAPTER 2. NETWORKS

An important aspect of the Parsytec architecture is the reset scheme. Unlike the
Inmos TRAM scheme, every processor can be reset individually. However, unlike the
Telmat T.Node and the Meiko Computing Surface this is achieved without having a
central control bus. Instead every processor is able to reset any of its four neighbours.
This reset facility is supported by all the processors in the SuperCluster and by all
MultiCluster boards, giving a consistent way of booting up any network built from
Parsytec hardware. This distributed reset scheme is, in theory, ideal for fault tolerant
networks since error recovery can start from anywhere. A critical requirement for
fault tolerant networks is the duplication of all critical software components, and the
network server is one of these. With Parsytec hardware it should be possible to run
several network servers in different parts of the network: even if a processor running
one network server is crashed, for any reason, the other network servers can recover
from this. At the time of writing, this facility is not yet supported.

The Parsytec distributed reset scheme does, however, have disadvantages. It is not
particularly secure. Any reasonably competent first-year student or similar hacker can
produce a worm program that resets the processors on all four links and duplicates
itself down all four links. Such a worm could spread through any network within sec-
onds, wiping out all the networking software before the latter knows what is happening
and can attempt to recover. For some applications this makes the machine more suited
to the ‘Several single-user systems’ network described in section 2.2, where user net-
works are physically isolated from each other and hence cannot interfere with each
other.

The Parsytec hardware supports a wide range of I/O facilities and networks of an
arbitrary size, with a consistent reset scheme throughout the network. This makes it
satisfactory for most applications. In theory it is ideal for fault tolerant applications
although at present not much software makes use of this. The disadvantages are a lack
of security, which may be important for some multi-user networks, and reset problems
when mixing Helios and native nodes.

2.4.4 Telmat

The Supernode architecture provides a building block for producing large processor
networks. It was developed under project P10850 funded by the Commission of the
European Community Esprit program. The Telmat T.Node is a realisation of this ar-
chitecture, manufactured by Telmat Informatique.

Every T.Node building block contains a reconfigurable link switch mounted di-
rectly on the backplane. There are seven plug in card slots per block. Two of these
slots are used for worker modules, each with eight T800 processors and memory. A
third slot is used for a controller card, responsible for configuring the building block
and resetting processors. Two additional slots can be used for connections to other
T.Node building blocks, or may be used to house additional processor cards. The re-
maining two slots are for special cards. Possibilities include a memory card, with one
processor and up to sixteen megabytes of memory, and a disc card with a SCSI inter-
face. There is a Control Bus for resetting processors and various other functions. A
typical network of these building blocks is shown in Figure 2.20.

2.4. THE REAL WORLD 43

Link Switch

bus

Controller

Link Switch

bus

Controller Internode
Controller

Internode Control Bus

Figure 2.20 T.Node building blocks

Two T.Node building blocks can be combined to produce a Tandem.Node whose
workers are fully interconnected through the link switches. Tandem.Nodes can have
up to 64 worker Transputers. Larger machines based on the T.Node building block are
known as Mega.Nodes. These can have up to 1024 processors in a fully reconfigurable
network. This involves a control hierarchy, in particular an Internode Control bus in
addition to the Control bus inside every T.Node building block.

Unlike other hardware, the T.Node link switch is not a full crossbar switch. It is
possible to realise any desired network connectivity, but not every topology. For ex-
ample, the link switch always allows processors 05 and 10 to be connected, but might
not allow link 0 of 05 to be connected to link 1 of 10. This does not affect the inner
workings of Helios, which depend only on the connectivity. It has a side effect on the
network specification contained in the resource map, /helios/etc/default.map which
usually defines the topology. When running on a T.Node the internal representation of
the resource map is modified to give the same connectivity but an achievable topology,
before any attempt is made to boot the network.

In addition to the link switch, every processor in a building block is connected to
a control bus. This bus is used by the controller card for resetting processors within
the block, and gives an individual reset facility over all processors. The bus also pro-
vides a fairly low-bandwidth communication path between the processors and the con-
troller card, and several other facilities. In a network of building blocks the controller
cards are connected through an internode control bus, with a supervisor internode
controller. Essentially this internode controller has complete reset and configuration
control over the entire network, and the Helios network server interacts with it to give
the required functionality.

Like all hardware, the T.Node has advantages and disadvantages. It is very suit-
able for building medium-sized and large networks of processors, forming the network
backbone. Individual reset of all processors is available, and furthermore access to the
internode controller can be restricted so that ordinary users do not have any way of
activating the resets directly. This makes the network more secure in a multi-user

44 CHAPTER 2. NETWORKS

environment. The resets go through a bus, so there are no problems resetting native
nodes. There is a negative side. Having centralised control makes the network less
suitable for fault tolerant applications, because there is no sensible way of having mul-
tiple network servers and recovering if one of the network servers is crashed.

If the software on the internode controller goes wrong the whole network will
have to be rebooted. Also, the size of a typical T.Node building block, with at least
18 processors, makes it less suitable for producing workstations. Instead a typical
network would have other workstations or I/O processors connected to the T.Node
building blocks.

2.4.5 Meiko

The final of the four major systems is the Meiko Computing Surface. Meiko’s Comput-
ing surface has been developed since 1985. It is a scalable multiprocessor architecture
with a performance range from workstation to supercomputer.

The Meiko Surface differs from the Parsytec SuperCluster and the Telmat T.Node
in that there is no basic building block. Instead a Surface is built up from one or
more modules, essentially racks capable of holding different numbers of boards which
can be interconnected to produce larger networks. There is a wide choice of boards
including computing elements, display cards, mass storage cards with a SCSI interface,
and so on. Various different host interface boards are available, the most important
being for the Sun3 and Sun4. All the Transputer links go into the module backplane,
and may be hardwired or connected through a link switch. A heuristic algorithm is
used to attempt to achieve the required topology, and this should succeed for nearly
every topology.

Like the T.Node the Meiko Computing Surface is based around a control bus,
the Supervisor Bus. This supports individual reset of processors and low bandwidth
communication. Every module should contain a Local Host board, providing control
over all the processors in that module. The various local hosts in a network should
be chained together in another bus, controlled by the network Module Master. The
Helios network server interacts with this Module Master to achieve the required func-
tionality.

Unlike the Parsytec and Telmat machines, the Meiko Surface comes with its own
system software CS Tools. Helios is an optional extra, which runs alongside CS Tools.
The normal way of using CS Tools is to develop the software on the host machine, usu-
ally a Sun, including cross-compiling on the host. When it is time to run the application
a domain of processors is obtained, and the software is booted into these processors.
The system is integrated into the host environment. For example, when the application
in the Surface opens a file, a request is sent to the host to perform this operation. The
integration extends even to debugging facilities. For example, it is possible to com-
pile the Surface application with debugging enabled and then use the dbx program on
the Sun. This approach differs significantly from Helios, where the network of pro-
cessors is continuously running the operating system, and applications execute under
the operating system. In particular, all software development including compiling and
debugging happens under Helios.

CS Tools does impose a number of restrictions. In particular, a domain of proces-
sors obtained from the system cannot overlap with other domains so it is not possible

2.4. THE REAL WORLD 45

to build a multi-user Helios network. Instead a Computing Surface network behaves
like the ‘Several single-user systems’ network described in section 2.3.9, with the ad-
ditional possibility that some of the single-user systems may not be running Helios.

The Meiko Computing Surface has a centralised individual reset like the T.Node,
and hence it has the same advantages and disadvantages when it comes to security and
fault tolerance. In theory the minimum size of a network is two processors, one local
host and one computing element, so the Surface could be used to build a workstation
with a small network. In practice the minimum machine involves four processors.
Arbitrary topologies are available, unlike the T.Node. The other criterion, which may
or may not be important depending on the user’s requirements, is that the network is
not controlled entirely by Helios.

2.4.6 Handling different hardware

This section has described the four most important commercial architectures. Helios
supports all four architectures, with an additional but limited capability for mixing
different hardware, using one set of networking software. Other hardware can be sup-
ported as well, usually without modifying the networking software.

Any network is either homogeneous (which means that all the hardware has the
same control facilities) or consists of a number of subnetworks with different control
facilities. The network server achieves control over a homogeneous network or sub-
network by loading a device driver. A Helios device driver is a piece of code loaded
dynamically, usually to provide an interface between the hardware and the hardware-
independent software. For example, the X window system server loads a device driver
to manipulate video memory and colour look-up tables. The network server loads a
device driver or several device drivers to manipulate the network control hardware. At
present there are two different types of network device drivers, one to control the reset
hardware and one to control the link configuration hardware. The following device
drivers are available:

• null ra.d a reset/analyse driver for when no reset hardware is available.

• tram ra.d the reset/analyse driver for the TRAM reset scheme.

• pa ra.d the reset driver for the Parsytec scheme.

• telmat r.d the Telmat T.Node reset driver.

• telmat c.d the Telmat T.Node link configuration driver.

• rte ra.d the Meiko computing surface reset driver.

• rte c.d the Meiko computing surface link configuration driver.

The network resource map /helios/etc/default.map defines the device driver or
drivers to use for the current network. Please note that some of these drivers are actu-
ally owned by the appropriate hardware manufacturers and are not shipped as standard
with Helios.

For Helios to run on networks which are not based on one of the four architectures
described above, it is usually necessary to produce a new device driver or drivers. In

46 CHAPTER 2. NETWORKS

fact, for a small network it is possible not to specify a device driver and merely ensure
that the whole network is reset before starting the networking software. Obviously
without a device driver the networking software’s ability to recover from errors will be
limited.

For a homogeneous network a single device driver will usually suffice. For mixed
networks device drivers can be used within the homogeneous networks, but there is a
problem at the boundaries. The resource map syntax allows the user to specify reset
facilities over and above what is provided by the device driver. For example, consider
the network in Figure 2.21.

Tram
Motherboard

Slots 1 5 6 2 0 4 7 3 8 9

01 00

�

�

�

	

�

�

�

�

�

�

Megaframe

�

�

�

	

00 01 02

03

04

05

06

07

Figure 2.21 A mixed network

Processors 00 and 01 are TRAM modules on a suitable motherboard, and the
remaining processors are part of a Parsytec MultiCluster. The TRAM reset is passed
on to the first processor in the megaframe, so that whenever the global reset is asserted
on processor 00 this affects processor 01, the other TRAM module, and processor
02, the first MultiCluster processor. The Parsytec reset scheme can be used on the
remaining processors. Clearly such a network is ‘bootable’, but describing it in a
resource map is difficult. Section 2.5 describes how it can be done for many networks.

2.4.7 Mapping task forces onto a network

In a task force each component task can execute on a separate processor, with the
communication going over the processor links. A typical application might be a farm,
with a master program (M), a number of worker programs (Wn), and a load balancer
(lb) to distribute the workload. Such a farm is shown in Figure 2.22.

2.4. THE REAL WORLD 47

M lb

W4

W3

W2

W1

�
�
�
�
��

�
�
�
�

Figure 2.22 A farm application

The ideal way to run such a task force is to assign a separate processor to every
component task, with the links between the processors matching the communication
between the components. For the farm, this would require a network topology as
shown in Figure 2.23.

00

05

01

02

04

03

�
�

��

M

W4

lb

W1

W3

W2

�
�
�
�
�
�

Figure 2.23 The ideal network topology for a farm

However, there is a small problem with this network. Processor 01 is used for
the load balancer, which communicates with five other programs, and hence in an
ideal network the processor would need five links. This is difficult with the current
generation of Transputers. Instead the application must be mapped onto a real network,
in such a way as to minimise the communication overheads. This means reducing
the number of processors that messages have to be routed through, since this affects
both the communication bandwidth and the CPU time available on the intermediate
processors. Consider the network in Figure 2.24.

The right hand mapping is significantly better than the left hand mapping, because
the average ‘distance’ between the load balancer and the worker components is re-
duced from two links to 1.5.

48 CHAPTER 2. NETWORKS

M

lb

W2

W1

W4

W3

W1

W2

M

lb

W3

W4

Figure 2.24 Two different mappings

2.4.8 Possible topologies

The networks that can be achieved depend mainly on the number of available links per
processor. With just two links the choice is very limited: either a pipeline or a ring, as
shown in Figure 2.25. With three links the choice widens. (See Figure 2.26.)

00 01 02 03 00 01 02

03

040506

07

Figure 2.25 Two connections per processor

00 01 02 03

04

05

06070809

�
�
�
�
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
��

00 01

0203

04 05

0607

03 04 05 06

01 02

00
��
�

��
�

���� ����

Figure 2.26 Three connections per processor

Both the chordal ring and the tree can be expanded to arbitrarily sized networks. In
the cube all the available links are used, so it is impossible even to add an I/O processor.
The chordal ring and the cube offer a degree of fault tolerance, in that the failure of
any one node will not break the connectivity of the network. In the tree topology, any
failure except in the bottom or leaf nodes will disconnect part of the network.

With four links, the number of possible network topologies becomes very large.
Common networks include a simple mesh or a mesh with wrap around and a four
dimensional hypercube, as shown in Figure 2.27.

00 01 02 03

04 05 06 07

08 09 10 11

00 01 02 03

04 05 06 07

08 09 10 11

�

�

�

�

�

�

	

�

	

�

	

�

� � � � ��

�� �� ��

2.4. THE REAL WORLD 49

Figure 2.27 Four connections per processor

There are many other topologies such as cube connected cycles, lenses, and hy-
pertrees, all with strengths and weaknesses. Given six links, it would be possible to
build three-dimensional meshes, six-dimensional hypercubes with 64 processors, and
systolic arrays. The choice of network topologies is very large, but does not help with
the basic question: which topology is suitable for the application ?

2.4.9 Task force connectivity

Many applications have a fairly low connectivity. For example, a pipe line of tasks has
just two communication channels between every component task. Such a task force
can be mapped efficiently onto many different network topologies, as shown in Figure
2.28.

00 01 02 03

04 05 06 07

08 09 10 11

P1 P2 P3 P4

P8 P7 P6 P5

P9 P10 P11 P12

Figure 2.28 Mapping a pipeline of tasks

Other applications have a high connectivity. A farm with 64 workers requires a
load balancer communicating with 65 other tasks. For such applications the exact
network topology may not matter much, assuming all the processors’ links are used,
and it is far more important to place the load balancer and master components in a
sensible place in the network. A mesh, preferably with partial or full wrap around,
will give satisfactory results for most applications.

In between these extremes is the case where the connectivity of the task force is
close to the connectivity of the network. For example, in an image processing appli-
cation, the task force often takes the form of a two dimensional array of component
tasks and a mesh with the same dimensions as the task force is usually the optimal
network topology. For such applications the question arises as to whether or not the
communication overheads are a significant factor in the efficiency of the task force.
If every task spends 99 per cent of its time calculating rather than communicating, it
will be more cost effective to attempt to optimise the calculation rather than modify
the network topology to reduce the communication costs.

50 CHAPTER 2. NETWORKS

2.4.10 Other considerations

In addition to the nature of the task force, there are other practical considerations before
deciding on a network topology. The actual hardware must not be forgotten. If the links
are hard wired by tracks on a printed circuit board, nothing can change the topology.
If the links are hard wired by sections of cable, wiring up a complex topology such as
a hypercube cannot be recommended. If the hardware contains link switches, which
allow the network to be configured to any desired topology, matters become more
manageable but are still complicated.

With a large network, producing a resource map can be difficult. This is greatly
simplified if the network has a very regular structure. For regular structures, and
particularly for meshes, resource maps can be generated automatically or semi-
automatically. The expected gains in performance when using a less standard topology
may have to be considerable to warrant the effort of producing the required resource
maps.

In a single-user network it is fairly easy to boot up the network with the required
topology, by substituting a different resource map. This is not true in a multi-user
network, where the underlying topology is decided by the network administrator and
users merely borrow processors from the system pool.

2.4.11 Summary

In an ideal world networks would always match the topology of the application. In an
almost ideal world, networks could be made to match the topology of the application.
There is a wide range of possible topologies, offering hours of fun, but in the real
world a user has to consider several questions before changing the network topology
to match the application.

• Does the task force topology map ‘satisfactorily’ on to the existing network?
The user has to define ‘satisfactorily’ in this context.

• Is communication a bottleneck for the application?

• Can the communication costs be reduced significantly by changing the network?

• Can the existing hardware cope with the desired connectivity?

• Must the application run unchanged on a different network, with different and
less flexible hardware?

• In a single-user system, will the application be run often enough or for long
enough to make the production of a new resource map worthwhile?

Experience has shown that a simple mesh, preferably with partial or complete wrap
around, is satisfactory for nearly all cases and is easy to use.

2.5 Network commands

The bulk of the Helios networking software consists of three programs: the network
server to administer the network, the Session Manager to handle all users and the Task

2.5. NETWORK COMMANDS 51

Force Manager, which handles a single user’s session. None of these commands are
run directly by the user. However there are various commands which interact with
these programs and which allow users to exert greater control over the network. This
section describes these commands.

The commands divide into a number of categories.

• startns must be used to start networking software.

• findns, findsm and findtfm may be used to locate a particular server in a net-
work.

• rboot, pa rboot, clink, pa reset, and tr reset are used when booting networks
by hand.

• dlink, elink, plink and lstatus can be used to examine and change link modes.
These commands are used mainly to connect and disconnect networks.

• joinnet is used to connect into a backbone of processors.

• domain is used to administer a user’s domain of processors.

• newuser starts up a new user session.

• rmgen is used to compile network resource maps.

• stopio and rebootio are used to interact with I/O servers.

• write and wall allow communication between users.

• who and users list the users currently logged in.

• whoami displays the current user name.

• diag tfm and diag ns control debugging options inside a Task Force Manager
and the Network Server.

• uptime shows how long the network has been running.

• ps gives information about which programs are running on processors in the
network.

• loaded gives information about what code is loaded into processors in the net-
work.

• network can be used to examine the current state of the network.

• login is used to start a new session.

Full information on all these commands can be found in The Helios Encyclopaedia
or by using the online help facility.

52 CHAPTER 2. NETWORKS

2.6 Configuration files

The number of Helios configuration files which affect networking is considerable.
They tend to be rather confusing to a user, particularly to a user new to Helios, not
least because of the differences in syntax. This section attempts to eliminate some of
the confusion, by giving details of the following configuration files:

• The host.con configuration file is read by the I/O server when it starts up. The
file contains a list of options for the I/O server.

• The initrc file is read by the init program on the root processor, during the initial
bootstrap. The file contains a list of commands using a format specific to init.

• The nsrc file is read by the networking software. It contains a list of options, not
commands.

• The .login file is read by a user’s login shell, the first shell run on behalf of that
user, which is usually started by the Helios Session Manager. The file contains
shell commands.

• The .cshrc file is read by all shells started by a user, whether directly or indi-
rectly. The file contains shell commands.

• The .logout file is read by a user’s login shell when it terminates, which happens
when the user logs out. It contains shell commands.

• Resource maps are used to describe a network of processors. They are written
in a language specially designed for this purpose.

In addition to these configuration files there are a number of programs and de-
vice drivers. Some of the programs, the network server, the Session Manager and the
Task Force Manager, are run by other programs or in response to events. Others such
as startns and newuser, are commands executed by the user, possibly interactively
through a shell, possibly as part of a file of commands such as initrc or the various
shell resource files. The device drivers such as tram ra.d and pa ra.d, complement
the networking software by separating hardware-specific code for controlling the re-
set and link configuration hardware from the hardware-independent networking code.
These hardware-specific device drivers may require additional information from other
configuration files.

2.6.1 host.con

The host.con file is read by the Helios I/O server when it starts up, and contains a list
of options for the I/O server. Typical entries might look like this:

helios_directory = c:\helios
Server_windows
This is a comment
link_base = 0x100

2.6. CONFIGURATION FILES 53

Lines beginning with a # are comments, and are ignored. Other lines can contain
a flag, for example the Server windows line is a flag enabling windowing in the I/O
server; alternatively they may specify a string or a number, for a particular option; for
example, the first line specifies the string c:\helios for the option helios directory.

Four options in the host.con file are important when configuring the network :

1. root processor

2. io processor

3. bootlink

4. no bootstrap

The first two control the initial processor names. Under Helios processors have
names just like other objects, for example /00 and /IO. Processors must be given
these names when they are booted (as soon as they ‘exist’ in the Helios world). Since
the I/O server is responsible for ‘creating’ the I/O processor within the Helios world
and for booting up the root processor, it must supply these names. The default names
are /00 and /IO, but alternatives can be provided in the host.con file.

root_processor = /maryRoot
io_processor = /maryPC

When booting a processor, that processor must also be supplied with an initial link
configuration, specifying which links are not connected, which are connected to active
Helios nodes, and so on. Usually the network server will provide this information.
However, the root processor must be booted up with a link configuration by the I/O
server. The assumption is made that all but one of the links will be not connected,
the exception being the link to the I/O processor which must be active. On nearly all
Transputer hardware this link is link 0, and hence the I/O server will default to this.
For the few exceptions, the bootlink option can be used to specify an alternative, for
example:

bootlink = 2

When the I/O server is used to initiate the bootstrap of a network, it is important
that the resource map describing the network matches the options used by the I/O
server. If the resource map indicates that the root processor is called /00, and the I/O
server has called it /maryRoot, the network will not boot up correctly or at all.

The final option, enable link, is used if the I/O processor is not attached to its
own private Transputer. Instead it is equipped merely with a link adapter, and this link
adapter is used to connect into an existing network. The enable link option prevents
the I/O server from booting or rebooting a Transputer, and forces it instead to enable
the link connecting it to the network.

A complete description of the host.con options can be found in chapter 8, The I/O
server.

54 CHAPTER 2. NETWORKS

2.6.2 initrc

All installations of Helios involve booting a Nucleus into one processor, as the first
stage. What should happen next is not so clear. A large network used to control a fac-
tory floor has different needs from a scientific supercomputer, which is also different
from a single-user single-processor workstation. One way to get around this is to use
a different Nucleus for different applications, and sometimes this has to be done. For
example, in a single-processor workstation the Nucleus must incorporate the Helios
filing system, but in a network with an I/O processor and no additional hard disc this
would waste memory. The alternative and more flexible approach is to read a textual
resource file. On the root processor, and only on the root processor, the Nucleus will
start up a separate program /helios/lib/init, which reads and executes commands from
the text file /helios/etc/initrc.

In theory having a separate init program with its own parser, its own command
syntax, and so on, is unnecessary. A shell could have been used instead. There are a
number of reasons why this approach was not taken in Helios.

• Using a shell can be overkill. A shell provides a great many facilities not needed
during the bootstrap stage, such as interactive command line editing.

• All of the shell would have to be loaded into memory, including the bits that are
not needed. Also, the shell requires the C and Posix libraries, so these would
have to be loaded as well. This would be rather inefficient and could cause
memory fragmentation problems. The current init program is less than 3K in
size, and does not need these libraries.

• A shell requires a fairly stable environment, in terms of a console window and
reliable file I/O. This may not be available during the Helios bootstrap stage, for
example a console window might not exist until the X window system has been
started up.

• The requirements of a bootstrap stage are different from those of a shell. In
particular it is rather important to have support for detecting the presence and
absence of servers or other objects, and for waiting for such an object to appear.

A typical initrc file might look like this.

#
This is a comment line
#
First, set up the windowing system
ifabsent /window run -e /helios/lib/window window
console /window console
#
Then start the networking software
run -e /helios/bin/startns startns -r /helios/etc/default.map
#
Wait for the Session Manager to be active
waitfor /sm
#
And start a user session
run -e /helios/bin/newuser newuser mary

2.6. CONFIGURATION FILES 55

As with the host.con file, lines beginning with a # are interpreted as comments.
Otherwise the file contains a list of commands, with one command per line. The init
program understands the following commands:

• run to execute another program.

• ifabsent to check for the absence of an object.

• ifpresent to check for the presence of an object.

• waitfor to suspend the init program until an object exists.

• auto to enter a name into the name table.

• console to specify the current console.

In order to run, most programs need various pieces of information in their environ-
ment which are sent by the parent program, in this case the init program.

1. Standard I/O streams stdin, stdout, stderr in C, or units 5 and 6 in Fortran.

2. A current directory.

3. A vector of arguments, possibly empty.

4. A set of environment strings which may be used to store any additional infor-
mation.

When init runs other programs the standard streams are initially set up to be the
error logging server /logger, which is usually provided by the I/O server. The current
directory is set to /helios, which must be present because the init program is /he-
lios/lib/init and the initrc file is /helios/etc/initrc. The arguments are provided by the
run command, and the set of environment strings is empty. The syntax of run is as
follows:

run [-e] [-w] <command name> [argument 0] [argument 1] ...

There are two optional arguments which must come before the command name.
The first, -e, causes init to send an environment to the specified program. It is possible
to produce programs which do not require an environment, for example the Helios ram
disc, but these are the exception rather than the rule. The -w option causes init to wait
until the program has terminated. By default init will continue as soon as the program
starts running, and init itself will terminate as soon as the last statement in the initrc
file has been executed. Following these optional arguments comes the command name,
which must be a complete path name.

If the -e option is used to indicate that an environment should be sent, then the
command name must be followed by one or more arguments. The zeroth argument is
conventionally the program’s name. However, some programs such as login use this
argument to determine that the program was started by the bootstrap process rather
than from a shell. The login program checks that this argument is ‘-’ rather than
login, for example. The zeroth argument may be followed by additional arguments if
desired. All programs run by init run on the root processor. To execute programs on
remote processors the remote command can be used, for example:

56 CHAPTER 2. NETWORKS

run -e /helios/bin/remote remote -d 01 /helios/lib/fs raw

This would run the remote command on the root processor, sending it an environ-
ment because it is an ordinary program rather than a special system program. Argu-
ment zero is remote, quite reasonable since that command like most others does not
distinguish between running during the bootstrap phase and running in a user session.
The additional arguments are: -d for detach, to indicate that remote should not wait
for the program to terminate; 01 for the target processor; /helios/lib/fs for the program
to execute; and raw as an argument for that program.

The reader should be aware that when the network is running in a protected mode
using remote may fail. The remote processor will be protected such that no user other
than the current owner can access it, and the init program does not have any special
privileges for executing programs. Whether or not a network is running in protected
mode is controlled by the nsrc file. Usually it is better to make use of run commands
inside the resource map, which avoids these problems. The remaining commands
understood by init are rather more simple. The console command is used to specify
alternative standard streams for subsequent run commands. The exact syntax is as
follows:

console <server name> <window name>

First init will attempt to locate the specified server. It is assumed that this provides
a terminal window interface, but that is not essential. Next it will attempt to create
the specified window if any, and if successful this window will be used for standard
streams from now on. Typical ways of using the command are:

console /window mywindow
console /termserver console

The first command creates a new window mywindow within the server /window.
The second creates a new window console within the server /termserver.

The ifabsent and ifpresent commands are the only conditions which can be used
in an initrc file. Both commands take as their first argument the name of an object,
which might be a server name, a file name, a processor name, or any other object
within the Helios world. This is followed by another initrc command, usually but not
always a run command. In the case of ifabsent this second command will be executed
if and only if the specified object does not exist. In the case of ifpresent the command
will be executed if the specified object does currently exist. Typical ways of using
these commands are:

ifabsent /fs run -e /helios/lib/fs fs raw
ifabsent /lock auto /lock
ifpresent /helios/lockfile run -e /helios/bin/rm rm /helios/lockfile

The waitfor command is used to suspend the init program until an object exists.
init will attempt to locate the object at intervals of one second. The command is
usually used to wait for a server to start up or for a processor to be booted, but is not
restricted to this. For example, a previous program might create a particular file when
it has done a certain amount of work, and the waitfor command can be used to wait
until that file exists.

2.6. CONFIGURATION FILES 57

waitfor /sm
waitfor /Cluster/07
waitfor /helios/lockfile

The auto command is used to create an entry in the name table. Certain Helios
servers such as the ram disc and the null device are loaded automatically as soon as
an attempt is made to access them. This is achieved by creating a suitable entry in the
processor’s name table, and the auto command can be used to do this. auto takes a
single argument, the name of the server. For example:

auto /lock

would enter the name /lock in the root processor’s name table, and cause the program
called /helios/lib/lock to be run automatically when any attempt is made to access the
lock server. The server is started up without an environment, so it is unlikely to be
particularly complicated. Helios does this automatically for the /ram, /pipe, /fifo and
/null servers on every processor.

2.6.3 .login, .cshrc, and .logout

The normal user interface used with Helios is a shell, or a number of shells in separate
windows. These shells read in a set of files containing shell commands, which may
be useful when configuring the networking software. The .cshrc file is read by every
shell when it starts up, and users can start up any number of shells either explicitly
or implicitly as the result of other commands. Hence the .cshrc file is not very useful
for networking purposes. However the .login file is read only by the first shell to be
started for a user, the login shell. Similarly the .logout file is read only by the login
shell. Hence these provide a fairly simple way of executing networking commands on
a per-session basis. In a single-user environment it may be desirable to obtain all the
processors in the network as soon as the bootstrap process has been completed and a
user session has been started. This can be achieved by a call to the domain program
in the .login file.

domain get /00 /01 /02 /03 /04 /05 /06 /07

Even in a multi-user environment, it is often desirable to pre-allocate a small num-
ber of processors.

domain get 2

This command would attempt to obtain two processors satisfying the default require-
ments. The .login file is particularly useful for the special user shutdown. When a
user logs in with that user id, in order to shut down the network, Helios will start up a
Task Force Manager and a shell for that session as usual. Hence the .login file will be
executed in the directory /helios/users/shutdown. For a simple network, this
file might contain a single line.

stopio /maryPC

58 CHAPTER 2. NETWORKS

This runs the stopio program, making it send a terminate message to the I/O server
running on processor /maryPC. If there is only a single I/O processor in the network
then this suffices for shutting down the network, and the I/O processor will return to the
host operating system. For more complicated multi-user networks it may be desirable
to have a more complicated file.

wall << end
The system is going down in five minutes.
end
sleep 240
wall << end
One more minute until the system goes down.
end
sleep 60
wall << end
The system is now going down
end
sleep 5
stopio /jonPC
stopio /nickPC
termfs /fs
stopio /BootPC

Alternatively, it may be desirable to start up a normal shell session, execute some
of these commands interactively to give other users a chance to request a delay before
the shutdown occurs, and perform the final shutdown commands in the .logout file.

2.6.4 nsrc

The nsrc file contains a list of options for the networking software, like the host.con
file which has a list of options for the I/O server. The nsrc file is read by the startns
program when networking software is started up, and passed in the environment to
the network server and/or Session Manager. By default startns reads the file /he-
lios/etc/nsrc, but an alternative filename can be specified on the command line. A
typical nsrc file might look like this:

#
This is a comment
#
single_user
#password_checking
#processor_protection
#no_taskforce_manager
share_root_processor
#root_processor =/06
waitfor_network
preload_netagent

Again, the # symbol can be used to indicate a comment. It is also rather useful when
disabling or re-enabling an option, because it means that there is only one character to
be added or deleted. The various options have the following meanings.

no taskforce manager

2.6. CONFIGURATION FILES 59

In a single-user system with a network of just one or a small number of proces-
sors, having a Task Force Manager for that user may not be necessary. However
it may still be useful to have a Session Manager to allow multiple users to make
use of the network at different times, or to enforce password checking. With
the no taskforce manager option the Session Manager will not start up a Task
Force Manager when the user logs in. Instead it will execute the default com-
mand from the password file, usually a shell, on the root processor.

In a multi-user system, using this option allows several users to log in and share
the same processor. Hence a multi-user system is possible even if there is only
one processor in the network, but this is not recommended.

password checking

In a given network it may or may not be desirable to force users to quote
passwords when they start a session. If passwords are in use then the pass-
word checking option must be enabled. Please note that password checking
must be enabled or disabled on a global basis. When an ordinary user logs in,
they may not need a password if there is no entry in the password file. When a
new user is added to the system, the system administrator could decide whether
or not to give them a password.

preload netagent

The network server frequently needs to perform a complicated operation on var-
ious processors in the network, such as cleaning out unnecessary libraries from
the Loader when a processor is returned to the system free pool by a Task Force
Manager. To do such jobs the network server will run a little program, /he-
lios/lib/netagent, on the required processor. For small networks there is very
little overhead in loading this program off disc every time it is required. For
large networks loading off disc is inefficient and it is better to keep the network
agent permanently loaded in memory. To do this, the preload netagent option
should be used.

processor protection

Helios can run either in a protected mode or in an open mode. In a protected
mode users will be completely unable to access each other’s processors, or pro-
cessors in the system pool, unless the current owner explicitly gives access. In an
open mode users can access each other’s processors explicitly, unless the owner
has denied access to all other users. However, users must force programs to run
on each other’s processors. The difference between the two modes can be illus-
trated with the remote command. In protected mode attempts to remotely access
a processor will fail, unless that processor is currently in the user’s domain or the
user has been given a capability for that processor by its owner. In open mode
attempts to execute commands remotely will succeed, unless the owner of the
processor has explicitly denied access to the processor. The domain command
can be used to set protection modes on processors.

root processor = /Net/ClusterA/06

60 CHAPTER 2. NETWORKS

For very complicated networks the networking software may occasionally have
difficulty working out on which processor it is supposed to run the network
server and Session Manager. Should this happen, it may be necessary to give
the full name of the root processor in the nsrc file. This option need not be
used unless the networking software produces an error message that it cannot
determine the root processor.

share root processor

In a single-user system the question arises as to whether the Task Force Manager
can run on the same processor as the network server and Session Manager (the
root processor) or must run on a different one. Note that the login shell will
also run on this processor. The only reason for not sharing the root processor
is a shortage of memory. In a multi-user network the network server always
reserves its own processor, and never allows users to access this processor.

single user

By default a Helios network is assumed to be a multi-user network. Multi-
user networks are more restrictive than single-user ones, because in a multi-user
environment the networking software has to take care to protect users from each
other. Hence, for example, the network server cannot be made to exit in a multi-
user environment. The single user option can be used to put the network into
the less secure mode. The option must be enabled by the user.

waitfor network

When initialising a network there are two important stages: booting up the net-
work; and starting user sessions. It is not possible to start a user session until
the network has been fully booted. Attempting to log in before then will give an
error message, insufficient network resources available. For small networks
the time taken for booting the network is comparable to the time taken to start
up the Session Manager, register the current window, and run login. Hence the
initialisation process can continue while the network server is booting up the
network, and everything is ready at about the same time. For large networks
this is not true. The time taken to boot up a network can be considerable, and
hence there can be a significant delay between the networking software start-
ing up and the time when a user is able to login. To provide synchronisation,
the waitfor network option can be used. This option delays the startup of the
Session Manager until the whole network has been booted, and hence no login
prompts will appear until the network is fully booted.

2.6.5 Network resource maps

A network resource map is a text file describing the available network hardware. Net-
works can be very complicated, and hence a special language is used to allow users
to specify their networks. Helios comes with a resource map compiler rmgen which
parses the resource maps, performs validation checks, and produces a binary object
file which is used by the networking software. By convention the textual form is given
the suffix .rm and the binary form the suffix .map.

2.6. CONFIGURATION FILES 61

In theory producing textual resource maps is not the only way to specify a net-
work. Other possible techniques are: a graphical editor which allows users to draw the
network; a worm program that explores an existing network; and network generators
that can specify standard topologies automatically. Unfortunately all these approaches
have disadvantages. A graphical editor will be tied to a particular graphics system,
probably the X window system, that may not be available on the user’s hardware. A
worm program can fail if the network supports link configuration, because most pro-
cessors cannot be accessed until the networking software has set up the links. Also with
distributed reset schemes such as the Parsytec one, triggering a worm in a multi-user
environment can be disastrous. Generating network topologies automatically is fine,
but does not supply the required information about reset and configuration facilities,
nor can it specify that say a file server should be run automatically on a particular pro-
cessor that is equipped with a SCSI interface. Textual resource maps, though perhaps
more difficult to use, provide greater functionality. Consider the network of Figure
2.29.

00

01

02

03

04

05

06

07

�

�

�

�

Figure 2.29 A simple network

A resource map for this might be:

This is a comment
network /Cluster {

Reset { driver; ˜00; tram_ra.d}

processor 00 { ˜IO, , ˜01, ˜02; }
processor 01 { ˜00, , , ˜03; run -e /helios/lib/fs fs scsi; }
processor 02 { , ˜00, ˜03, ˜04; run /helios/lib/lock; }
processor 03 { ˜02, ˜01, , ˜05; }
processor 04 { , ˜02, ˜05, ˜06; }
processor 05 { ˜04, ˜03, , ˜07; }
processor 06 { , ˜04, ˜07, ; }
processor 07 { ˜06, ˜05, , ; }
processor IO { ˜00; IO }

}

Resource maps may contain the following information:

• The network name, or a hierarchy of network names.

• Descriptions of the processors.

62 CHAPTER 2. NETWORKS

• Specification of the reset driver.

• Specification of the configuration driver.

• Additional reset facilities that might be available.

In addition lines beginning with a # are treated as comments and ignored. Blank
space is also ignored, and resource maps are not case sensitive except when specifying
names.

Network names and hierarchies

A resource map must contain the following:

network <name> { <network description> }

Any data following the closing curly bracket is ignored. The keyword subnet is an
alias for
network. A name can consist of any combination of letters, digits, and the under-
score character (). Names can be up to 31 characters long, and are case sensitive.
Hence network /Cluster is different from network /cluster. Names must not
match with any of the resource map syntax keywords. For most networks there is no
need for a hierarchy of network names. However, with mixed networks containing
different reset schemes it may be useful. For example,

network /Cluster {

processor 00 { ˜IO, , ˜01, ˜02; }

subnet /subnetA {
reset { driver; ˜00; tram_ra.d }
processor 01 { /Cluster/00, , , ˜03;

run -e /helios/lib/fs fs scsi; }
processor 02 { , /Cluster/00, ˜03, /Cluster/subnetB/04;

run /helios/lib/lock; }
processor 03 { ˜02, ˜01, , /Cluster/subnetB/05; }

}

subnet /subnetB {
reset {driver; ; pa_ra.d }
processor 04 { , /Cluster/subnetA/02, ˜05, ˜06; }
processor 05 { ˜04, /Cluster/subnetA/03, , ˜07; }
processor 06 { , ˜04, ˜07, ; }
processor 07 { ˜06, ˜05, , ; }

}

processor IO { ˜00; IO }
}

In this network processors 00 and IO are at the top level. Processors 01, 02, and
03 are in /Cluster/subnetA, and controlled with one reset driver. The remain-
ing processors are to be found in /Cluster/subnetB, and are controlled with a
different reset driver. The naming tree for such a network is shown in Figure 2.30.

2.6. CONFIGURATION FILES 63

/00 /IO /01 /02 /04 /06

/subnetA /subnetB

/Cluster

�
�
�
�

�
�
�
�

���
���

���

		
		

		
���

���
�

Figure 2.30 Hierarchical network names

Inside the network server, the /ns directory would contain two objects 00 and
IO, and two subdirectories clusterA and clusterB. These subdirectories would
contain the appropriate processor objects. In fact it is unnecessary to give unique
network names to the subnetwork names. The subnets can be left unnamed, simply by
using curly brackets.

With this second syntax the naming tree is straightforward again. There is one
network level, one processor level, and a server level within the processors. Similarly,
the network server’s /ns directory would contain all processors at the top level, without
any subdirectories.

network /Cluster {

processor 00 { ˜IO, , ˜01, ˜02; }
{

reset { driver; ˜00; tram_ra.d }
processor 01 { ˜00, , , ˜03;

run -e /helios/lib/fs fs scsi; }
processor 02 { , ˜00, ˜03, ˜04;

run /helios/lib/lock; }
processor 03 { ˜02, ˜01, , ˜05; }

}
{

reset {driver; ; pa_ra.d }
processor 04 { , ˜02, ˜05, ˜06; }
processor 05 { ˜04, ˜03, , ˜07; }
processor 06 { , ˜04, ˜07, ; }
processor 07 { ˜06, ˜05, , ; }

}
processor IO { ˜00; IO }

}

The two resource maps have exactly the same effect, but the first syntax gives
longer processor and server names. Hence for most networks the second syntax is
preferable, if only because it involves less typing. For both resource maps there would
be only one network server in the network, usually running on processor 00. This
network server would have two device drivers loaded, tram ra.d and pa ra.d.

Processor connectivity

Inside a given network or subnetwork the resource map should contain one or more
processor descriptions, and possibly details of the networking hardware. A processor

64 CHAPTER 2. NETWORKS

description takes the following form:

processor <name> { <connections>; <options> }

An example might be:

processor 00 { ˜IO, ,˜02,˜03; System }

The keyword terminal can be used as an alias for processor. Again, the name can be
a combination of letters, digits, and the underscore and character up to 31 characters
long. The name is case sensitive. A typical list of connections would be:

˜01, /Cluster/subnetB/02, Ext, ;

This indicates that link 0 of the processor is connected to a processor 01 at the same
level of the network hierarchy. The ˜ character is short for the current network or
subnetwork name. If the processor has a full name /Cluster/xx, then this means
that ˜01 is equivalent to /Cluster/01. If the network has a hierarchy of network
names and the full processor name is /Cluster/subnetA/00 then this means
that the shorthand ˜01 will be equivalent to /Cluster/subnetA/01. It is always
possible to use the fully expanded form in place of the shorthand form. Link 1 is
connected to processor /Cluster/subnetB/02. That processor has a different
network base name from the current processor, so the ˜ shorthand cannot be used. Link
2 is an external link. This means that there may be another processor running Helios
or a Helios network at the other end of the link, now or at a future stage. Hence the
network server puts the link into pending state, waiting for the other side to connect in.
This can happen when a user in the remote network uses the elink or clink commands.
Links not specified in the resource map as external ones can be put into pending mode
explicitly, using the plink or clink -p commands. Link 3 is shown as not connected.
Following the link connection there may be an optional number enclosed in square
brackets.

˜01[1], ˜01[2], Ext[12], ;

There are two connections between the current processor and processor 01. The extra
numbers in the square brackets indicate the destination link on the remote processor,
so link 0 of this processor is connected to link 1 of the remote processor. In the case of
external links the meaning is different. The number is used only with certain machines
such as the Telmat T.Node, to indicate which external connector on the backplane
of the machine should be used. Since this connection has to be made through the
electronic switch it is important to specify exactly which connector to use.

If there is an I/O processor at the other end of a link with just a link adapter,
then when the I/O server is started up on that processor it will merely enable the link.
The network server must distinguish this case from another Helios network enabling
the link, because the action required is different. Hence the I/O processor must be
specified in the resource map, instead of leaving the link as an external one.

For most hardware the network resource map specifies the actual topology of the
network. If the resource map indicates that link 0 of a processor is connected to another
processor, then that connection really exists. It may be hard-wired, or it may be set
up by the networking software using a link switch. However, given hardware with
restricted link switching such as the Telmat T.Node this may not be true. If the resource
map indicates that link 0 of a processor is connected to another processor then a link
will be connected to that processor, but it does not have to be link 0.

2.6. CONFIGURATION FILES 65

Processor options

Following the link connections in a processor description there can be a number of
additional options. The various options should be separated by semi-colons and ter-
minated with the curly bracket that finishes the processor description. The following
options are available.

• A mode field. This can be used to specify one of four processor modes.

1. Helios. The default. This is a normal processor which can be allocated to
users for running applications.

2. IO. An I/O processor. I/O processors cannot be used for running applica-
tions. Also, I/O processors are never booted by the network server. There
is usually one I/O processor responsible for performing the first stage of
the network bootstrap, and additional ones connect into the network.

3. System. The processor is reserved for use by the system. It cannot be
allocated to users, and hence it is usually impossible to run applications
there. In an unprotected network programs can be placed explicitly using
the remote command. System mode is usually used with the run option to
run just one program such as a file server on that processor.

4. Native. This processor should never be booted, and will not be used by
Helios. It may be necessary to incorporate it into the resource map in
order to make the link connections, if the hardware includes a link switch.

The processor mode can be specified simply by listing it.

processor 00 { ˜IO, ˜01, , ; System; }
processor 01 { ˜00 , , , ; Helios; }

• A processor type. This is used to control the default Nucleus to be booted into
the appropriate processor, and the bootstrap mechanism. Once the processor is
up and running the network server will verify that the processor type specified
is correct, and if necessary it will give warnings. The real processor type rather
than the specified one will be used when allocating processors, so if a user re-
quests four T800s that is what will be supplied, no matter what the resource map
says. The processors recognised by rmgen are:

1. T800, T805, T414, T425, T400, these are actually equivalent because the
same bootstrap mechanism and the same default Nucleus is used for all of
them.

2. T212, for 16-bit processors. Helios cannot run on a 16-bit processor, so
these processors must always be native ones.

3. 680x0, used with Helios running on any of the 680x0 family.

4. ARM, for Helios running on any version of the ARM7.

5. i860, for Helios running on any version of the i860.

6. T9000, in preparation for the Inmos T9000.

7. 320C40, in preparation for the Texas Instruments8 TMS 320C40
7Trademark of Acorn Computers Ltd
8Trademark of Texas Instruments, Inc.

66 CHAPTER 2. NETWORKS

The ptype keyword should be used to specify the processor type. In this context
processor can be used as an alias. Typical examples are:

processor 00 { ˜IO, ˜01, , ; ptype T800 }
processor 01 { ˜00, , , ; ptype T400 }

• A memory size. With most hardware Helios is perfectly capable of working
out how much memory there is on a processor, and the network server will
obtain this information when the processor has been booted. However, with
some hardware the memory map may be arranged strangely. In particular there
are graphics boards with one or several megabytes of normal processor memory,
immediately followed by a megabyte or so of video memory. It is extremely
difficult for software to distinguish between the types of memory, so Helios will
use video memory for its memory allocation. The resulting display can be very
interesting but is not usually what is desired. Helios can be made to skip the
phase determining the memory size, by specifying the actual amount of memory
in the resource map. For the root processor this must be done in the host.con
file, using the transputer memory option. Memory sizes can be specified in
hex, decimal or octal.

processor 01 { ˜00, , ˜02, ; memory 1048576 }
processor 02 { ˜01, , , ; memory 0x100000 }

• A Nucleus. In most networks the standard Helios Nucleus, /helios/lib/nucleus,
should be booted into every processor in the network. This Nucleus should be
present already on the processor doing the booting, so there is no need to fetch
it off disc every time. However, in very special cases it may be necessary to
boot a different Nucleus into the processor and hence the networking software
provides an option.

processor 01 { ˜00, , , ; nucleus /helios/lib/nucleus.fs }

For processors other than Transputers the argument is an arbitrary string inter-
preted by the appropriate bootstrap software. Usually, but not always, this will
be a file name.

• Programs to run on that processor. The network server can be made to run
software automatically on particular processors, using the run option. Once the
programs are up and running the network server ignores them, so it does not
matter whether or not they exit. Hence the facility is useful for ‘once only’
initialisation programs and for permanent servers. If the processor has to be
rebooted, the program will be run again. Any number of programs can be run in
this way. The syntax is the same as used by the initrc file.

processor 01 { ˜00, , , ˜03; System;
run -e /helios/lib/fs fs raw }

processor 02 { , ˜00, ˜03, ˜04 ; run /helios/lib/lock }

2.6. CONFIGURATION FILES 67

This facility provides a fairly simple way of starting up a network such that all
the software required runs as soon as possible. However, the initrc file is used
to run programs on the root processor whereas the resource map makes it easy
to run programs on particular processors. The programs are executed as soon as
the processor has been booted, so they can be used by network device drivers if
required. This is useful when booting mixed networks.

• Additional attributes. The options described so far should suffice for most
networks. However, to give users maximum flexibility it is possible to define
arbitrary string attributes as well. These strings are not used directly by the net-
working software. However, it is possible to request processors with a specific
attribute and the networking software will try to find one. Typical examples
might be:

processor 01 { ˜00, , , ˜03; attrib 30Mhz }

domain get "{ attrib 30Mhz }"

Reset and configuration drivers

Performing resets in a homogeneous network is fairly easy. Device drivers are avail-
able for the most common hardware architectures, and these can be specified in the
resource map. Link configuration drivers can be specified in the same way.

Reset { driver; ˜00; tram_ra.d }
Configure { driver; ; telmat_c.d }

Drivers are specified by the keywords Reset or Configure, depending on the driver
purpose. By convention, reset drivers end with ra.d or r.d, and configuration drivers
end with c.d. Following the keyword are three arguments, enclosed in curly brackets.
The first argument should be the keyword driver. In the case of Reset this first argu-
ment may be a list of processors. The second argument is a string of some sort, that
will be passed to the device driver. Usually this string is the processor in the network
that has the actual reset hardware attached, but device drivers are free to interpret the
string in any way. The final argument is the device driver file name. This can be an
absolute file name, for example /c/drivers/myrst ra.d, but by default refers
to a file in the /helios/lib directory. Within a given network or subnetwork there may
be only one device driver, and the network server will invoke this device driver for the
processors in this network. For example,

Network /Cluster {
Reset { driver; ; pa_ra.d }

subnet /subnetA {
Reset { driver; ˜06; tram_ra.d }

}

subnet /subnetB {
Reset { driver; ; telmat_r.d }

}
}

68 CHAPTER 2. NETWORKS

Processors at the top level are controlled using the Parsytec reset driver. Processors
within subnetA are controlled using the TRAM reset driver, and the network server
will never attempt to reset these using the Parsytec scheme. The TRAM reset driver
will be passed the string /Cluster/subnetA/06, presumably the processor equipped
with the TRAM subsystem control hardware. Similarly processors in subnetB are
controlled only using the Telmat scheme.

The following device drivers are available at present.

1. tram ra.d, the reset driver for the Inmos TRAM scheme. The only facility sup-
ported by this driver is a global reset of all processors under its control. The
driver can take an optional argument specifying the processor with the subsys-
tem control hardware, defaulting to the root processor. In mixed networks it may
be necessary to specify a processor other than the default.

2. pa ra.d, the reset driver for the Parsytec reset scheme. This supports an indi-
vidual reset for all processors that currently have active Helios neighbours. No
argument is required.

3. telmat r.d, the reset driver for the Telmat T.Node which is supplied by Telmat
Informatique. It supports an individual reset for all processors.

4. telmat c.d, the configuration driver for the Telmat T.Node, again supplied by
Telmat Informatique.

5. rte ra.d, a reset driver for use on the Meiko Computing Surface. This driver
does not require any additional arguments.

6. rte c.d, a configuration driver for the Meiko Computing Surface. Again this
driver does not require any additional arguments.

Reset drivers only work within a subnet. This causes problems in mixed networks.
If the Parsytec scheme is used within one subnet then it is necessary to reset one
processor within this subnet in order to reset and boot the rest. This processor must be
reset without using the Parsytec reset scheme, since the processors outside the subnet
do not support it. Hardware can usually be rearranged to give reset on this processor,
possibly with a bit of soldering, but the network server needs to be informed about
this. The user can specify commands which, when run on a particular processor, reset
one or more other processors to support such mixed. networks.

Mixed networks and additional resets

To support mixed networks, networks containing hardware supplied by more than one
manufacturer and using different reset schemes, users can specify additional reset fa-
cilities in the resource map. The syntax is similar to that for reset drivers, but specifies
one or more processors, instead of the keyword driver, as the first argument. The sec-
ond argument gives the processor on which the reset command is to be executed. If
omitted the command will be executed on the root processor. The third argument is
the actual command, using the same syntax as the initrc file and the run option in a
processor description.

2.6. CONFIGURATION FILES 69

Reset { ˜01, ˜02, ˜03; ˜00; run -e tr_reset tr_reset}

This line specifies that running the tr reset program on processor 00 will reset pro-
cessors 01, 02, and 03. Similarly,

Reset { ˜05; ˜04; run -e pa_reset pa_reset 3 }

specifies that it is possible to reset processor 05 individually by executing the pa reset
command on processor 04. To illustrate the way this can be used in practice, consider
Figure 2.31.

Tram
Motherboard

Slots 1 5 6 2 0 4 7 3 8 9

01 00

�

�

�

	

�

�

�

�

�

�

Megaframe

�

�

�

	

00 01 02

03

04

05

06

07

Figure 2.31 A mixed network

Processors 00 and 01 are TRAM modules on a suitable motherboard, and the
remaining processors are part of a Parsytec MultiCluster. The TRAM reset is passed
on to the first processor in the megaframe, so that whenever the global reset is asserted
on processor 00 this affects processor 01, the other TRAM module, and processor
02, the first MultiCluster processor. The Parsytec reset scheme can be used on the
remaining processors.

A possible resource map for this is:

Network /SlightlyUnusual {
Reset { ˜01, ˜02; ; run -e tr_reset tr_reset }

processor 00 { ˜IO, , ˜01, ; }
processor 01 { , ˜00, ˜02, ; }
{ Reset { driver; ; pa_ra.d}

processor 02 { , ˜01, ˜03, ˜04; }
processor 03 { ˜02, , , ˜05; }
processor 04 { , ˜02, ˜05, ˜06; }
processor 05 { ˜04, ˜03, , ˜07; }
processor 06 { , ˜04, ˜07, ; }
processor 07 { ˜06, ˜05, , ; }

}
processor IO { ˜00; IO }

}

No reset driver is specified for the top level. In fact the tram ra.d driver could
have been specified but this would not have given any greater flexibility. Using the

70 CHAPTER 2. NETWORKS

tr reset program on the root processor will reset processors 01 and 02. There is an
unnamed subnet containing processors 02 to 07, and the Parsytec reset driver can be
used within this subnet. This resource map describes the available reset hardware, and
allows the network server to boot up such a network reliably.

Another common mixed subnet would be a Telmat T.Node as the network back-
bone, but with a TRAM based workstation as the front-end. Assuming a similar topol-
ogy to the above, the resource map would be:

Network /Possibility {
Reset { ˜01, ˜02; ; run -e tr_reset tr_reset }

processor 00 { ˜IO, , ˜01, ; }
processor 01 { , ˜00, ˜02, ; }
{ Reset { driver; ; telmat_r.d }

Configure { driver; ; telmat_c.d }

processor 02 { , ˜01, ˜03, ˜04;
run -e /helios/lib/tcontrol tcontrol }

processor 03 { ˜02, , , ˜05; }
processor 04 { , ˜02, ˜05, ˜06; }
processor 05 { ˜04, ˜03, , ˜07; }
processor 06 { , ˜04, ˜07, ; }
processor 07 { ˜06, ˜05, , ; }

}
processor IO { ˜00; IO }

}

Now the Telmat reset and configuration drivers will be used within the unnamed
subnet, and in addition the tcontrol program will be executed on processor 02 as
soon as it is booted. This tcontrol program is a server to interface to the internode
controller, and is accessed by the device drivers.

A third network might have perhaps ten Parsytec Transputers making up the work-
station and some additional processors, attached to a Telmat T.Node. The resource
map for that would be something like:

Network /VeryConfused {
Reset { ˜10; ˜09; run -e /helios/netbin/pa_reset pa_reset 2 }

{ Reset { driver; ; pa_ra.d }
processor 00 { ... }
processor 01 { ... }

...
processor 09 { ... }

}
{ Reset { driver; ; telmat_ra.d }

Configure { driver; ; telmat_c.d }
processor 10 { ...; run -e /helios/netbin/tcontrol tcontrol }
processor 11 { ... }
processor 12 { ... }

}
processor IO { ˜00; IO }

}

2.6. CONFIGURATION FILES 71

There is an individual reset available for processor IO, using the pa reset program.
Processors 00 to 09 are controlled using the Parsytec reset driver. Processors 10
onwards are controlled using the Telmat reset and configuration drivers. Provided that
adequate hardware reset facilities are available it should be possible to define them in
the resource map. The standard hardware reset programs supplied with Helios will
suffice for most of the networks, but users can write their own if needed.

Formal syntax

An outline of the formal syntax of resource maps is shown below. Lexical tokens are
enclosed in quotes, and are not case sensitive. Optional items are enclosed in square
brackets.

<Resource Map> ::= ’network’ <address> ’{’ <network> |
’subnet’ <address> ’{’ <network>

<network> ::= ’}’ |
’reset’ <reset> <network> |
’configure <configure> <network> |
’processor’ <processor> <network> |
’terminal’ <processor> <network> |
’{’ <network> |
’network’ <address> ’{’ <network> |
’subnet’ <address> ’{’ <network>

<reset> ::= ’{’ ’driver’ ’;’ [string] ’;’ <file> ’}’ |
’{’ <list> ’;’ <proc_id> ’;’ ’run’ <command>

<configure> ::= ’{’ ’driver’ ’;’ [string] ’;’ <file> ’}’

<processor> ::= <name> ’{’ <list> ’;’ <description>

<description> ::= ’}’ |
’;’ <description> |
’helios’ <description> |
’system’ <description> |
’native’ <description> |
’IO’ <description> |
’ptype’ <ptype> <description> |
’processor’ <ptype> <description> |
’memory’ <size> <description> |
’nucleus’ <file> <description> |
’run’ <command> <description> |
’attrib’ <string> <description>

<ptype> ::= ’T800’ | ’T414’ | ’T425’ | ’T400’ |
’T212’ | ’T222’ | ’M212’ |
’ARM’ | ’i860’ | ’68000’ | ’T9000’ | ’320C40’

<list> ::= <proc_id> [’,’ <list>]

72 CHAPTER 2. NETWORKS

<proc_id> ::= ’˜’ <name> | <fullname>

<address> ::= ’/’ <name>

<fullname> ::= ’/’ <name> [<fullname>]

<file> ::= <fullname>

<command> ::= [-e] <string> [string] [string] ...

<string> ::= a sequence of characters

<size> ::= a number in hex, decimal, or octal

<name> ::= a sequence of letters, digits, and underscores
not exceeding 31 characters

2.7 Configuring networks

Section 2.3 described many different types of processor networks that can be used with
Helios, giving an outline of what is required but no details of the commands or con-
figuration files. Section 2.4 explained why networking can be difficult, because of the
range of hardware available. Section 2.5 described the various networking commands
that can be used. Section 2.6 gave details of the configuration files. This section will
repeat most of the networks of section 2.3, this time giving details of how to configure
all the networks. Where a network’s configuration is similar to a previous one only
the differences will be given. It is hoped that the reader will recognise at least one
of the networks as the appropriate one, given the available hardware and the user’s
requirements.

2.7.1 Single-processor workstation

00

�

�

�

	

Ethernet

�

Figure 2.32 A single-processor workstation

A single processor may be equipped with a ROM bootstrap mechanism, a hard disc,
a graphics display, an ethernet connection, keyboard, and mouse, to give a complete
single-processor workstation. There is no need for a network server, since there is only
one processor, and there is no need for a Task Force Manager to administer the user’s
domain of processors and run programs within that domain.

2.7. CONFIGURING NETWORKS 73

There is no I/O processor, and hence no I/O server, so the host.con file is not used.
The next configuration file is the initrc file. As a result of the ROM bootstrap the
filing system must start up and interact with the hard disc, which will be followed by
the Nucleus running the init program. A possible initrc file might be:

#
Get the X server and Terminal emulator up
run -e /helios/bin/xhelios -newXrc=/helios/etc/Xrc
run -e /helios/lib/window window
Direct output to one of these windows
waitfor /window
console /window console
#
The user now has a chance to see what is happening
#
The mouse and keyboard are attached to serial ports
run -e /helios/lib/rs232 rs232 com1.8250.10000000 com2.8250.10000008
run -e /helios/lib/keyboard keyboard /rs232/com1
run -e /helios/lib/mouse mouse /rs232/com2
#
Ethernet software should be next. This involves the TCP/IP
server and the internet daemon
run -e /helios/lib/tcpip tcpip jon 91.0.0.111
run -e /helios/lib/inetd inetd
#
Start up a Session Manager, but not a network server
run -e /helios/bin/startns startns -nons
waitfor /sm
#
and create a user session
run -e /helios/bin/newuser newuser

The hardware is started up step by step, in order of importance. The hard disc
must be running already, or the system would not have got this far. Screen output is
the next most important because until a terminal system is up there is no way to output
diagnostics to the user. This requires the X server, with a specification of the Xrc
configuration file to use. If the initrc file is changed such that the X server is not run
then the machine will not be able to display any output. This is unfortunate, because
the machine is now unusable. Usually the only good reason for changing the initrc file
is to support additional hardware, an infrequent occurrence, and the user will have to
be careful.

In addition to the X server it is necessary to start up the terminal emulator, which is
a client of X. By default the X server simply initialises and clears the screen, displays
a mouse cursor, and waits for clients to connect in. The terminal emulator is a Helios
server that installs itself in the name table as /window, and waits for its clients. The
console command creates a new terminal window, and redirects the initrc output to
this window. The terminal emulator interacts with the X server to make this window
visible. It is now possible for the user to get diagnostic information.

In addition to a graphical output device the X server needs keyboard and mouse
inputs. These devices could be plugged into serial ports attached to the Transputer. The

74 CHAPTER 2. NETWORKS

initrc file runs an rs232 server to control these serial ports, and mouse and keyboard
servers which interact with the rs232 server. Next come the commands to start up the
ethernet software, including all the TCP/IP support and the required daemons. The
ethernet software will read some configuration files of its own to specify appropriate
options.

All the hardware has now been accounted for, so it is possible for a user to log in.
Logging in requires a Session Manager, so the startns command is used. The -nons
option suppresses starting up the network server, since there is nothing for it to do.
Without a network server there is no need to worry about the -r option or the resource
map. The Session Manager will start up after a short delay, and then the newuser
command is used to create a new session. No name is specified, so the user has to type
in a name. Depending on the nsrc file, a password will be required as well. If desired
the initrc line could read:

run -e /helios/bin/newuser newuser mary

If password checking is not enabled a session will be created for user mary. If
password checking is enabled the login program will echo this name and prompt for
the password. One of the user ids should be shutdown, to terminate all the software,
synchronise the hard disc, and allow the workstation to be powered down without loss
of data.

The next file to consider is the nsrc file. This would be something like:

#
This is a comment
#
single_user
#password_checking
#processor_protection
no_taskforce_manager
share_root_processor
#root_processor = /00
#waitfor_network
#preload_netagent

The network is a single-user network. There is only one processor and every user in
a network needs at least one processor. Password checking is disabled. Some op-
tions, such as the waitfor network and processor protection options, are only in-
terpreted by the network server, and no network server is run in this network. The
no taskforce manager line forces the Session Manager to start up a shell on the local
processor, rather than to start up a Task Force Manager for the user and create a shell
within its /tfm directory.

It may be desirable to separate the window used for hardware diagnostics from the
first window used for the user session. This can be done very easily. The first console
statement should be replaced by:

console /window diagnostics

and just before the newuser command there should be a line

console /window console

2.7. CONFIGURING NETWORKS 75

to create a second window for the user’s session. Please note that under the X window
system it is necessary to run a separate Window Manager program to allow position-
ing and repositioning of windows. The Ultrix9 Window Manager or uwm, and the
TAB Window Manager or twm, are shipped with the Helios X window system, but
various other Window Managers exist.

There is no need to write a network resource map, since this is used only by a
network server and no network server is started up. The other important file to consider
is the .logout file for user shutdown. This must contain commands to shut down the
whole network cleanly. For this machine shutting down means synchronising and
terminating the file server.

termfs /fs
echo Disks synched
echo The system may be powered down.

2.7.2 Workstation with I/O processor

00

Ethernet

�

�

�

�

�

�

�

�

�

Figure 2.33 A workstation with I/O processor

It is possible to build a Transputer workstation based around an I/O processor such
as a PC. The network can start off with just the PC and one processor, and can be
expanded gradually. An I/O server must be run on the I/O processor, so a host.con file
is required. Amongst the options might be:

The host.con file
Server_windows
logging_destination = both
#root_processor = /tom
#io_processor = /pc
#bootlink = 2
#no_bootstrap

The Server windows option causes the I/O server to provide a /window server,
so this does not have to be run on the root processor. The error logger is configured
to send all its output to a file and to the I/O processor’s screen. The default processor
names /00 and /IO are used, and the I/O processor is connected to link 0 of the
root processor. The I/O server must boot up the root processor rather than attempt to
connect into a running network. The first initrc file might be something like:

9Trademark of Digital Equipment Corporation

76 CHAPTER 2. NETWORKS

#
Run a Session Manager
run -e /helios/bin/startns startns -nons
Create a console window
console /window console
And start a session
run -e /helios/bin/newuser newuser mary

A Session Manager is started up, using the I/O server’s error logger for its diagnostics
output. Then a window is created, and a user session is started up. The same nsrc file
can be used as with the standalone workstation. As the network is expanded the initrc
file can be changed to allow for it. For example, when a graphics display is added the
following lines could be added before creating the console window.10

ifabsent /window run -e /helios/bin/xhelios xhelios
ifabsent /window run -e /helios/lib/window window

If the Server windows option in the host.con file is enabled a /window server will
already exist, so there is no need to run X. If the option is disabled then the above lines
would start up the X server and the terminal emulator. At times it may be useful not to
run X, if an application needs a lot of memory, and a single line change to the host.con
file achieves this. Please note that with some I/O processors, notably PCs, it will be
necessary to enable the Xsupport option of the host.con file as well.

When a SCSI interface is added a file server could be started up by adding the
command

run -e /helios/lib/fs fs scsitram 3

indicating that the file server should interact with a SCSI TRAM module on link 3.
It might be necessary to run the tr reset command first to reset this TRAM module.
When an ethernet interface is added the tcpip and inetd commands could be added
to the initrc file. The user is unlikely to add serial ports for the mouse and keyboard,
since these can usually be provided by the I/O processor.

The nsrc file for this configuration is the same as for a stand-alone workstation.
The presence or absence of an I/O processor has no significant effect on the configu-
ration of the Session Manager, which is the only part of the networking software that
is running.

Given that there is an I/O processor, there are two possible things to do when a
user logs out. The first is to put up another login prompt. In this case logging in
as shutdown would cause a terminate message to be sent to the I/O server, as well
as synchronising the hard disc and disconnecting the ethernet. The second is to shut
down the system as soon as the user logs out, including terminating the I/O server,
which means that the code in shutdown’s .login file is moved to the user’s .logout
file. Exactly the same work must be done to shut down the system.

termfs /fs
stopio /IO

10In practice adding a graphics display would require a second processor rather than plugging more
hardware into the root processor

2.7. CONFIGURING NETWORKS 77

2.7.3 Workstation for developing parallel software

00

�

�

�

�

Figure 2.34 A workstation for developing parallel software

Usually there is no point in running all the networking software on a single-processor
system. The Session Manager is required to get a user session started, but the network
server and Task Force Manager are redundant. However, with some parallel program-
ming systems including the Helios CDL it is possible to develop software on a single
processor and run it unchanged on multiple processors. To test the software it is nec-
essary to start up a network server and run a Task Force Manager. The initrc line used
to start the networking software should be changed to:

run -e /helios/bin/startns startns -r /helios/etc/default.map

This will cause startns to run a network server as well as a Session Manager. The
-r options is used to inform the network server that it is running in a network that has
not yet been booted. Strictly speaking it is redundant in this single-processor system
because there is nothing else to boot, but as soon as another Transputer is added it
would be essential. The resource map is held in the file /helios/etc/default.map. The
text form of this might look like the following:

Network /Cluster {
processor 00 { ˜IO, , , ; run -e /helios/lib/fs fs scsitram 1 }
processor IO { ˜00; IO }

}

If desired the T222 on the SCSI TRAM module could be specified in the resource
map as a native processor, but there is little point in doing so. It is possible to use
names other than 00 and IO, provided the host.con names match the ones in the
resource map.

root_processor = /tom
io_processor = /pc

Network /Cluster {
processor tom { ˜pc, , , ; run -e /helios/lib/fs fs scsitram 1}
processor pc { ˜tom; IO }

}

There is no need to specify a reset driver or a configuration driver, since there are
no other processors to boot up. It will be necessary to change one line in the nsrc
file. Because a Task Force Manager is required to test the parallel software, the option

78 CHAPTER 2. NETWORKS

no taskforce manager should be disabled. This will stop the Session Manager simply
running a shell on the root processor, as happens in the previous two networks. The
network is still a single-user system, with no need for password checking. The time
taken for the network server to initialise the two processors is very small, so there is
no need to wait for the network before the Session Manager is run and sessions can be
started.

The options for shutting down the system are the same as before. It is necessary to
synchronise and terminate the file server, if it is running in the network, and to send a
terminate message to the I/O processor. This can be done either in a user’s .logout file
or in the .login file for user shutdown.

2.7.4 A small network

0001

02

03

�

�

�

	

Figure 2.35 A small network

As with the previous two networks, the I/O processor will boot up the root processor
and the init program will start running. Then the remaining three processors should be
booted. There are two ways to do this.

1. Do the booting ‘by hand.’

2. Run the networking software.

The network can be booted manually from the initrc file if desired. The three
processors may or may not have to be reset, depending on whether or not resetting the
root processor from the I/O processor acts as a global reset. If no reset is required the
following commands can be used. 11

run -e /helios/lib/rboot rboot 1 /00 /01 0032
run -e /helios/lib/rboot rboot 2 /00 /02 2203
run -e /helios/lib/rboot rboot 3 /00 /03 0220

This will automatically enable the cross links. Alternatively the clink command could
be used.

run -e /helios/bin/remote remote 01 clink 2 -p
run -e /helios/bin/remote remote 02 clink 1 -e

11See The Helios Encyclopaedia for a fuller explanation of manual booting using rboot.

2.7. CONFIGURING NETWORKS 79

The clink command has to be run on the processor with the link that has to be
changed. Hence the remote command is required. If not all processors are attached to
the root processor it is still possible to perform a manual bootstrap, again by using the
remote command.

run -e /helios/lib/rboot rboot 1 /00 /01 0002
waitfor /01
run -e /helios/bin/remote remote 01 rboot 2 /01 /02 3200
waitfor /02
run -e /helios/bin/remote remote 02 rboot 3 /02 /03 0320
run -e /helios/lib/clink clink 2 -e
run -e /helios/lib/clink clink 3 -e

Note that the root processor is booted up with all but one of its links on a ‘not con-
nected’ setting, the exception being the link to the I/O processor. Hence it is necessary
to enable the cross links from processor 00 to 02 and 03, after these have been booted.

If the processors are not automatically reset, more work must be done. If the
TRAM reset scheme is in use the tr reset program should be run before attempting
the bootstrap of the other three processors.

run -e /helios/lib/tr_reset tr_reset
run -e /helios/lib/rboot rboot 1 /00 /01 0032
...

If the Parsytec scheme is in use the pa reset program can be used. It is desirable to
use the pa rboot program instead of rboot, since the former is specifically designed
for booting Parsytec hardware.

run -e /helios/lib/pa_reset 1
run -e /helios/lib/pa_reset 2
run -e /helios/lib/pa_reset 3
run -e /helios/lib/pa_rboot 1 /00 /01 0032
run -e /helios/lib/pa_rboot 2 /00 /02 2203
run -e /helios/lib/pa_rboot 3 /00 /03 0220

Even when booting by hand it is still necessary to run a Session Manager to create
a user session. This can be done using startns and the -nons option, as before. In
the nsrc file the no taskforce manager option should be enabled, because there is no
network server and hence the Task Force Manager cannot obtain a domain of proces-
sors. This prevents the user from running parallel software automatically. However,
the remote program can be used to run programs explicitly on specific processors.

For booting by hand, the nsrc file and the various ways of shutting down the system
are the same. The options need to be changed only if it is intended to run a network
server. If booting by hand is considered too difficult, it is possible to run a network
server instead. It may or may not be desirable to force this network server to exit.

80 CHAPTER 2. NETWORKS

2.7.5 A fairly small single-user network

00

01

02

03

04

05

06

07

�

�

�

	

Figure 2.36 A fairly small single-user network

Adding more processors actually makes it easier to decide how to configure the system.
For a network this size booting by hand, although still possible, becomes excessively
tedious. Hence a network server must be used to boot up the network. The initrc file
for such a network might be:

#
Run the network server and Session Manager
run -e /helios/bin/startns startns -r /helios/etc/default.map
#
Run X windows if necessary
ifabsent /window run -e /helios/bin/xhelios xhelios
ifabsent /window run -e /helios/lib/window window
ifabsent /window waitfor /window
#
Create a console
console /window console
#
And start a user session
run -e /helios/bin/newuser newuser

Both the network server and the Session Manager are started up, with their diagnostic
output going to the error logger of the I/O server. If the I/O server does not contain a
/window server then the X window system is booted up and the terminal emulator is
started. A console window is created, and a session is run within that window. The
newuser command is not given a user name, so the Session Manager will prompt for
one. The network resource map for this might look something like this.

Network /Mynet {
Reset { driver; ; pa_ra.d }

processor 00 { ˜IO, , ˜01, ˜02; run /helios/lib/lock }
processor 01 { ˜00, , ˜03, ; }
processor 02 { , ˜00, ˜03, ˜04; }
processor 03 { ˜02, ˜01, , ˜05; }
processor 04 { , ˜02, ˜05, ˜06; }
processor 05 { ˜04, ˜03, , ˜07; }
processor 06 { , ˜04, ˜07, ; }
processor 07 { ˜06, ˜05, , ; }

processor IO { ˜00; IO }
}

2.7. CONFIGURING NETWORKS 81

The resource map is quite straightforward. The network is assumed to be homoge-
neous, using the Parsytec reset scheme. If it contained hardware supplied by different
manufacturers using different reset schemes, giving a mixed network, the resource map
would have to be more complicated. This was discussed in detail in section 2.6. The
only ‘complication’ in this resource map is running a lock server on the root proces-
sor. This program is a simple Helios server not requiring an environment, so the run
command is not given the -e option and no arguments can be passed. An alternative
resource map would be:

Network /MyNet {
Reset { driver; ; tram_ra.d }

processor tom { ˜pc, , ˜lisa, ˜dick; run /helios/lib/lock }
processor lisa { ˜tom, , , ˜sarah; }
processor dick { , ˜tom, ˜sarah, ˜harry; }
processor sarah { ˜dick, ˜lisa, , ˜susan; }
processor harry { , ˜dick, ˜susan, ˜fred; }
processor susan { ˜harry, ˜sarah, , ˜emma; }
processor fred { , ˜harry, ˜emma, , ; }
processor emma { ˜fred, ˜susan, , ; }

processor pc { ˜tom; IO }
}

With this resource map the host.con file must contain the following lines:

root_processor = /tom
io_processor = /pc

or the network will fail to boot up. The nsrc file for this network might be something
like the following.

single_user
#password_checking
#processor_protection
#no_taskforce_manager
share_root_processor
#root_processor = /tom
#waitfor_network
#preload_netagent

The network is put into single-user mode with a shared root processor. No pass-
words are required, possibly because the network does not have a separate hard disc
for the Helios filing system and hence the password file cannot be protected in any
case. Processors are not protected since this option is useful only in a multi-user en-
vironment. The network is still quite small, so there is little need for preloading the
network agent or to delay sessions until the network is fully initialised.

A Task Force Manager is needed for running most parallel software, including
Helios CDL. However, if the user can make do with the facilities provided by the
remote and wsh commands, to run programs on particular processors, then the option
no taskforce manager could be enabled. This would make the Session Manager start

82 CHAPTER 2. NETWORKS

a shell on the root processor, rather than start a Task Force Manager /mary for user
Mary, and run the shell in /mary/tfm as a simple task force.

The share root processor option may be important if a Task Force Manager is
started, otherwise the option is ignored. When the Session Manager creates a new
session it needs to obtain one processor from the system pool for running that session’s
Task Force Manager. In a multi-user network the root processor is always reserved for
use by the system, so another processor will be allocated. However in a single-user
network it may or may not be desirable to allow the root processor to be allocated. If
the share root processor option is enabled then the root processor will be allocated,
otherwise it is reserved for use by the network server and Session Manager. Unless
the root processor is low on memory, for example because the network server has to
administer a very large network or because the X server or the filing system is running
there, it is usual to enable this option. Assuming that a Task Force Manager is run, the
user could pre-allocate all processors to that user’s domain. Typically this is done in
the .login file.

domain get /00 /01 /02 /03 /04 /05 /06 /07

This allocates all processors to the user’s domain. The processors will be returned
to the system pool automatically when the user logs out and the Task Force Manager
terminates. Once the network grows past a certain size specifying all the processors in
the domain get command becomes tedious, and it may be easier to use a template.

domain get 8

This would request eight processors with no restrictions on the processors, and the
network happens to have exactly eight processors. Shutting down the network happens
in much the same way as before. This can happen either in a user’s .logout file or in
the .login file for user shutdown.

2.7.6 A network with configuration hardware

Link Switch

00

01

02

03

04

05

06

07

�

�

�

	

Figure 2.37 A network with configuration hardware

Adding a link switch to the hardware makes very little difference to the network con-
figuration. All of the previous section is still relevant, and one line should be added
to the network resource map to specify a device driver for controlling the link switch.
Only the network server needs to know about the presence or absence of a link switch,
because it is responsible for programming the switch. All other software can ignore it.

2.7. CONFIGURING NETWORKS 83

Network /Cluster {
Reset { driver; ; telmat_r.d }
Configure { driver; ; telmat_c.d }

processor 00 { ˜IO, , ˜01, ˜02; run /helios/lib/lock }
processor 01 { ˜00, , ˜03, ; }
processor 02 { , ˜00, ˜03, ˜04; }
processor 03 { ˜02, ˜01, , ˜05; }
processor 04 { , ˜02, ˜05, ˜06; }
processor 05 { ˜04, ˜03, , ˜07; }
processor 06 { , ˜04, ˜07, ; }
processor 07 { ˜06, ˜05, , ; }

processor IO { ˜00; IO }
}

2.7.7 A single-user supercomputer

root

files

00

01

02

03

10

11

12

13

20

21

22

23

�

�

�

	

Figure 2.38 A single-user supercomputer

Adding large numbers of processors to the network does not affect the initrc file in
any way. A typical resource map for this network would be:

Network /net {
Reset { driver; ; pa_ra.d}
Configure { driver; ; pa_c.d}

processor root { ˜IO, , ˜files, ˜00; System }
processor files { ˜root, , , ˜01; System;

run -e /helios/lib/fs fs MSC 2 }
processor 00 { , ˜root, ˜01, ˜10; }
processor 01 { ˜00, ˜files, ˜02, ˜11; }

...

processor IO { ˜root; IO }
}

The first two processors are given the mode System instead of the default mode Helios.
This means that the processor cannot be allocated to the user’s domain, and hence the

84 CHAPTER 2. NETWORKS

user’s Task Force Manager will not run programs there. In an unprotected network,
a single-user system does not require protection of processors. The user could still
explicitly run programs on these processors with the remote and wsh commands. With
very large networks the network server will need a considerable amount of memory,
and hence there may not be much left on the root processor. The second processor is
only used to run the filing system. Treating it as a system processor means that the
file server can use all available memory as a cache, and cannot be crashed, or its cache
corrupted by a user program.

Several of the options in the nsrc file are affected. First, the user will
almost certainly want a Task Force Manager to distribute programs, so the
no taskforce manager option must be disabled. Second, the share root processor
option will be ignored because the root processor is reserved for use by the system.
This means that the network server will not allocate the processor to any user, not even
for running a Task Force Manager. For large networks it is highly desirable to pre-load
the network agent, to reduce disc accesses. Also it will take time to boot up a very
large network, so it is desirable to wait for the network. The nsrc file should look
something like this.

single_user
#password_checking
#processor_protection
#no_taskforce_manager
#share_root_processor
#root_processor = /tom
waitfor_network
preload_netagent

In the .login file it is still desirable to obtain all processors in the network. A
suitable command might be:

domain get 64

which would get any 64 processors. Shutting down the network will be the same as
before.

2.7.8 Several single-user systems

Given a large array of processors, users can be allocated their own smaller networks,
without overlap. This is a safe way of administering the system because users do not
interfere with each other’s networks. However, it can be an inefficient use of resources.
There will be an underlying administrative system, usually not controlled by Helios,
to allocate processors to users’ networks. Management of this underlying system is
hardware-dependent.

Configuring such a system involves separate sets of configuration files, each sim-
ilar to one of the previous single-user networks. For example, the user in the bottom
left of the diagram could have the following resource map.

Network /Net {
Reset { driver; ; rte_ra.d }
Configure { driver; ; rte_c.d }

2.7. CONFIGURING NETWORKS 85

processor 00 { ˜IO, , ˜01, ˜02; }
... ...

}

00

01

00

01

02

03

10

11

04

05

20

21

06

07

10

11

00

01

02

03

�

�

�

	

�

�

�

	

�

�

�

	

Figure 2.39 Several single-user systems

2.7.9 A process control system

The networking requirements of a process control system are very different from any
of the previous networks. It is necessary to run a network server to boot up the network,
and possibly to run various control programs on the different processors. The network
server should continue running, monitoring the network, rebooting crashed processors,
and running the control programs again on these rebooted processors. A typical initrc
file might look like this.

#
Run the rs232 server, and a terminal server to talk to it
run -e /helios/lib/rs232 rs232 com1.8250.10000000
run -e /helios/lib/terminal terminal /rs232/com1
waitfor /terminal
#
Create a console window on that terminal for network diagnostics
console /terminal NetDiagnostics
#
Run the network server only
run -e /helios/bin/startns -r -nosm /helios/etc/floor1c.map
#
And run a monitor program in another window
console /terminal Monitor
run -e /helios/process/monitor monitor floor1c

To get console output a terminal server is started up, interacting with a serial line. The
network server is run in one window, and a process monitor program is run in another.
There is no need to run a Session Manager, since no user session is required. The
monitor program may be an output only device, or it may allow interaction through
a keyboard or quite possibly another input device. A resource map for this network
might look something like this.

86 CHAPTER 2. NETWORKS

Network /floor1c {
Reset { driver; ; pa_ra.d }

processor 00 { ext, ext, ˜01, ˜03; }
processor 01 { ˜00, ˜02, ˜04, ˜03;

run -e /helios/process/arm.Mk4 arm.Mk4 job72 }
processor 02 { ˜03, ˜01, , ˜04;

run -e /helios/process/TempGauge TempGauge mon12 }
processor 04 { ˜01, ˜02, , ˜03;

run -e /helios/process/arm.Mk4 arm.Mk4 job89 }
processor 03 { ˜00, ˜01, ˜02, ˜04;

run -e /helios/process/PressGauge PressGauge mon43 }
}

Two of the root processor’s links are declared as external ones, giving the option of
having a larger network interacting with this small one to give remote monitoring
and control facilities. The Network is made to run one program on every processor,
representing the various jobs to be done by this network. In fact the network server
could be made to start several jobs on every processor, simply by giving more run
commands. Most of the nsrc options are redundant, because there are never any users
in this network. A suitable nsrc file might be:

#single_user
#password_checking
#processor_protection
#no_taskforce_manager
#share_root_processor
#root_processor = /tom
#waitfor_network
preload_netagent

With no user sessions shutting down, the network must be arranged differently.
It is no longer possible to put suitable commands into a .logout file or in the .login
file for user shutdown, because these files are never used. Instead there must be an
alternative way to shut down the network, for example through the monitor program.
In a typical factory environment it is usually necessary to consider very carefully the
exact order in which to shut down the network and hence the machinery, to avoid
accidents.

2.7. CONFIGURING NETWORKS 87

2.7.10 A small multi-user network

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

�

�

�

	

terminal
�

�

�

	

terminal
�

�

�

	

Figure 2.40 A small multi-user network

Configuring a small multi-user network involves several changes to the initial boot-
strap. Usually the Helios file server must be started up as soon as possible so that
the networking software can use a protected file system. This can be done by using
a special Nucleus which incorporates a file server, so that the file server runs as soon
as the first processor is booted. It may be desirable to suppress the /helios server that
normally runs inside the I/O server, using host.con options in the I/O server. Chapter
8, The I/O server, should be consulted for more details. Suitable entries might include:

system_image = ˜/lib/nucleus.fs
no_helios

The first command in the initrc file will usually start up the networking software.

run -e /fs/bin/startns startns -r

Both a network server and a Session Manager are required. While the network
is being booted, it is possible to start terminal servers to cope with the two dumb
terminals.

run -e /helios/lib/terminal terminal Term1 rs232 /IO/rs232/com1
run -e /helios/lib/terminal terminal Term2 rs232 /IO/rs232/com2

It is now necessary to wait for the Session Manager to be ready. Once that happens
it is possible to create and register suitable windows.

waitfor /sm
console /Term1 User
run -e /helios/bin/newuser newuser
console /Term2 User
run -e /helios/bin/newuser newuser

If desired it is also possible to run a session on the I/O processor, but this is not
necessarily safe. In particular, if the I/O processor crashes or is rebooted for some
reason, the users logged in through the dumb terminals are also affected.

The resource map for this multi-user network is slightly different than for the
single-user network, because a special Nucleus is running on the first processor. This
Nucleus should not be used on any of the other processors, because these do not have
the required hardware to run the file server.

88 CHAPTER 2. NETWORKS

Network /Net {
processor 00 { ... ; nucleus /helios/lib/nucleus.fs }
processor 01 { ... }

}

Since the system has changed from single-user to multi-user, the network configu-
ration file nsrc needs important changes. A suitable nsrc file might look like this:

#single_user
#password_checking
processor_protection
#no_taskforce_manager
#share_root_processor
#root_processor = /tom
waitfor_network
preload_netagent

The network is no longer single-user and this affects the configuration. The sin-
gle user option must be disabled, or the Session Manager will refuse to start more than
one session. Password checking is still optional. Processor protection is now desirable,
to stop users accessing each other’s processors. Use of the no taskforce manager op-
tion is conceivable but unlikely: this would cause both users’ shells to run on the root
processor, which is dangerous, and there would be no easy way to exploit the network
facilities. Sharing the root processor is no longer possible: in a multi-user network the
network server and Session Manager run on a reserved processor, inaccessible to users.
It is desirable to wait for the whole network to be booted before starting sessions, since
the dumb terminals may have no obvious way to work out when the network has been
booted. Depending on the size of the network, it may be desirable to pre-load the
network agent. Individual users may wish to pre-allocate some processors when they
login, by using the domain command in their .login file.

domain get 2

Shutting down the network should involve logging in as user shutdown, so that
all users can log out first. The terminals connected to Helios may be in different rooms,
so it may not be easy to work out who is logged in and where. A .login file for user
shutdownmight be:

wall << end
The system is going down in five minutes.
end
sleep 240
wall << end
One more minute until the system goes down.
end
sleep 60
wall << end
The system is now going down !
end
sleep 5
termfs /fs
stopio /PC

2.7. CONFIGURING NETWORKS 89

2.7.11 Two connected single-user networks

00

02

04

06

01

03

07

09

00

02

04

06

01

03

07

09

�

�

�

	

�

�

�

	

Figure 2.41 Two connected single-user networks

It is possible to connect together two or more networks merely to allow an exchange of
data, rather than to share processors which is rather more difficult. The two networks
should be configured separately as either single-user or multi-user networks, similar to
the ones described previously. The only difference with these previous networks is in
the resource map: the connecting link should be declared as external.

Network /jonNet {
Reset { driver; ; tram_ra.d }

processor 00 { ˜IO, ˜01, ˜02, ext; }
... ...

}

Network /maryNet {
Reset { driver; ; pa_ra.d }

processor 00 { ˜IO, ext, ˜02, ˜01; }
... ...

}

Given this resource map user Jon could enable the connecting link with the command

elink /00 3

if there is a network server running in that network, or with the command

remote 00 clink 3 -e

User Mary could enable the connecting link in much the same way. The link could
be disabled again with the command.

dlink /00 3

It is very important that the two networks have different names. If both networks
are called /Cluster network names would become ambiguous: there would be two
processors called /Cluster/00, and so on. Hence in the resource maps given above
the two networks are called /jonNet and /maryNet. Given a connected network
the users will be able to access each other’s resources subject to any protection that may

90 CHAPTER 2. NETWORKS

be installed. For example, user Jon could access the file /maryNet/IO/c/test.c,
a file on the remote hard disc. Whether or not it is possible to execute programs
in the remote network depends on the processor protection option of the nsrc files.
If processor protection is disabled then user Jon could execute a command remotely
using:

remote /maryNet/02 ls

However, the networking software will never place a program in a remote network
automatically. For many networks, allowing this remote execution facility is desirable,
because it gives the users greater flexibility. When shutting down a network it may be
desirable to include another command to disable the connecting link. For example, the
.login file for user shutdownmight now look something like this:

dlink /00 3
stopio

2.7.12 A large multi-user network

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

Console

�

�

�

	

files root

�

�

�

	

�

�

�

	

�

�

�

	

tom1

pat4

pat3

pat2

pat1

Figure 2.42 A large multi-user network

Building a large, reliable multi-user system usually requires a reliable backbone of
processors, with its own system console. Several I/O processors or workstations are
connected to this backbone. The network backbone is booted up and should not be
rebooted during normal operation. It may have to be taken down occasionally for
essential system maintenance or to add new system software or new hardware support.
In extreme cases the network may have reached a state where the networking software
cannot recover and the whole network has to be rebooted, for example when a worm
program has flooded the network and crashed the network server.

There are various different sets of configuration files for such a network. First,
there is a set for the network backbone. Then there are separate sets for every I/O
processor and workstation connected to this backbone. The backbone’s initrc file is
fairly simple.

2.7. CONFIGURING NETWORKS 91

#
Run the network server and Session Manager
run -e /helios/bin/startns startns -r /helios/etc/backbone.map
Create a console window
console /window console
And start a session
run -e /helios/bin/newuser newuser operator

The networking software is started up from the console, probably an I/O processor,
and diagnostic output is sent to the I/O server’s error logger. It is assumed that the
host.con file has the following entries.

Server_windows
logging_destination = both
root_processor = /root
io_processor = /console
bootlink = 2

Multiple windows are enabled inside the I/O processor, because the console does not
need any fancy graphics output. Diagnostic output sent to the error logger will be
recorded in a file and displayed on the I/O processor’s screen. The root and I/O pro-
cessors are given appropriate names. According to the diagram, link 2 of the root pro-
cessor is connected to the I/O processor, but this is mainly for artistic reasons. Once
the networking software has been started a session is created for the user operator.
This is a normal shell session, but should be used for system maintenance rather than
for running applications.

There is no particular reason why the system console should be a standard I/O
processor. It could be a standalone workstation with a graphics display, booting from
ROM. Alternatively it might a Transputer with a serial port, and a dumb terminal
attached to this port. For these two cases the root processor will need its own hard
disc, and the filing system should be started during the ROM bootstrap. Part of the
resource map for this backbone would look something like this:

Network /Network {
Reset { driver; ; telmat_r.d }
Configure { driver; ; telmat_c.d }

processor root { , ˜files, ˜console, ˜00; System }
processor files { , , ,˜root; System;

run -e /helios/lib/fs fs scsi }
processor console { ˜root; IO }

processor 00 { ˜pc1, ˜root, ˜01, ˜10; }
...

processor pc1 { ˜00; IO }
...

processor 20 { ext[3], ˜10, ˜21, ˜30; }
...

processor 40 { ext[4], ˜30, ˜41, ˜50; }
...

}

92 CHAPTER 2. NETWORKS

Typically the backbone would consist of a Parsytec SuperCluster, a Telmat T.Node,
a Meiko Computing Surface, or a mixture of these. The resource map has to specify
the appropriate drivers. The root processor and the filing system processor run as
System processors, so that they will not be allocated to users. Processor 00 is shown
as connected to another I/O processor, pc1. When an I/O server starts up on that
I/O processor it should enable the connecting link. Usually the Nucleus on 00 will
detect this and send a message to the network server. When an I/O processor connects
to a network the network server will automatically locate a /window server in that
processor and start a new session. Processors 20 and 40 are listed with external links,
indicating that at a future stage there may be a processor or a network at the other end
of the link. The nsrc file for the backbone would be something like this:

#single_user
#password_checking
processor_protection
#no_taskforce_manager
#share_root_processor
#root_processor = /tom
waitfor_network
preload_netagent

This is the same nsrc file as for other multi-user networks. The size of the network has
little or no effect on the nsrc, only on the resource map. Typically the .login file for the
operator would start up one or more monitoring programs, in different windows. Also,
there would be one or more interactive shells for system maintenance. The .logout file
could contain commands to shut down the network, since running a network without
an operator may not be a good idea. This could replace the work normally done in the
.login file for user shutdown.

In addition to the network backbone the diagram shows three ways of connecting
into the network. On the left is a single I/O processor with just a link adapter, no
Transputer. When the I/O server runs on that processor it should not attempt to boot
up a Transputer. Instead it should enable the link into the network. To achieve this,
the enable link option should be enabled in the host.con file. Some time later, in
about a second or two, the network server detects this, locates a /window server inside
the I/O processor, creates a window, and creates a new session within that window.
The Session Manager prompts for a login name and password. When the user logs out
another prompt is displayed. If the I/O server terminates the network server detects this
and takes appropriate action, stopping the Session Manager from running login inside
the I/O server’s window, and possibly aborting a session that might still be running
from inside that I/O server.

In the middle is an I/O processor with a single processor. Alternatively it could
be a standalone workstation with a hard disc and graphics display. This processor is
booted up normally, by the I/O server or from ROM. On the right is a small network of
processors. Both machines start up in much the same way. The initrc file might look
like this.

#
Initrc file for connecting into a larger network
#
Run X windows if necessary

2.7. CONFIGURING NETWORKS 93

ifabsent /window run -e /helios/bin/xhelios xhelios
ifabsent /window run -e /helios/lib/window window
ifabsent /window waitfor /window
console /window console
#
Start a network server, but no Session Manager. Wait for the
network server to perform its initialisation
run -e -w /helios/bin/startns startns -r /helios/etc/outside.map
#
Now join the larger network
run -e -w /helios/bin/joinnet joinnet tom1 2
#
And register the window with the backbone’s network server, to
start a session
run -e /helios/bin/newuser newuser tom

The resource maps used to boot the two small networks are fairly standard, al-
though care has to be taken with the names used. The resource map for Tom’s network
might be:

Network /TomNet {
Processor tom1 { ˜TomPC, , ext, ; }
Processor TomPC { ˜tom1; IO }

}

Pat’s resource map might be something like this:

Network /PatNet {
Processor pat1 { ˜PatPC, , ˜pat2, ˜pat3; }
Processor pat2 { ˜pat1, , , ˜pat4; }
Processor pat3 { , ˜pat1, ˜pat4, ; }
Processor pat4 { ˜pat3, ˜pat2, , ; }
Processor PatPC { ˜pat1; IO }

}

The nsrc file for both networks might look like this.

#single_user
#password_checking
processor_protection
#no_taskforce_manager
#share_root_processor
#root_processor = /tom
waitfor_network
preload_netagent

Since no Session Manager is run inside the small network, options like single user
and password checking are ignored. These options are useful only for the Session
Manager, and the only Session Manager in the network runs in the main backbone.
Once the network server has booted up and initialised the small external network it
is necessary to connect into the main network. This is the purpose of the joinnet
command, which takes two arguments, describing the processor and link connected to
the backbone. It contacts the local network server, then it tries to enable the link to the
network backbone, and searches the backbone for another network server. The local

94 CHAPTER 2. NETWORKS

network server is then made to surrender control of its processors to the remote one,
and will exit. The main network server in the backbone now knows about the external
processors, and can allocate these to users logged in through the external network. For
safety reasons these processors will not be allocated to other users. Once the external
network has been joined with the main network it is possible to register windows and
start sessions with the newuser command.

2.7.13 A mainframe computer

There is no essential difference between a ‘mainframe’ computer and the large multi-
user network of the previous section. Once a multi-user network reaches a certain size
and has a sufficient amount of attached I/O hardware, thinking of it as a mainframe
rather than an ordinary processor network gives the right frame of mind for admin-
istering it. For example, a traditional mainframe requires one or more full-time or
part-time operators with responsibility for the day to day running of the machine, in-
cluding making tape backups. Also, a traditional mainframe requires a room of its own
with suitable air conditioning. A large processor network will generate considerable
heat, just like a mainframe, so a separate room may be appropriate.

The only difference between configuring this mainframe and the multi-user net-
work of the previous section is the amount of software to be started up to handle
the varied hardware. The mainframe has multiple discs and a tape drive, rather than a
single disc drive. It has dumb terminals attached to serial ports, so the networking soft-
ware must start up /rs232 servers and /terminal servers. There is ethernet hardware,
so run low-level software to interact with this hardware and higher-level daemons, to
allow for file transfer, remote logins, and so on. Usually this software can be started
up conveniently with run commands in the resource map.

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

Console

�

�

�

	

root

files

� �

term

terminal
�

�

�

	

terminal
�

�

�

	

ether

Ethernet

�

�

�

	

pat4

pat3

pat2

pat1

Figure 2.43 A mainframe computer

2.7. CONFIGURING NETWORKS 95

2.7.14 Networked mainframe computers

To network mainframes together, simply specify the connecting links as external links
in the resource map, and enable them automatically at the end of the initrc file. Main-
frames are normally networked together on a permanent basis, rather than enabled and
disabled when required, because the networking software will not know when a user
needs access to a remote facility. When shutting down a machine it is polite to disable
the links, but not essential.

96

Chapter 3

Programming under Helios

The purpose of this chapter is to provide a description of the mechanics of program-
ming under Helios. It makes no attempt to teach programming itself, and the reader
is assumed to be familiar with concepts such as stack, calling conventions, program
modules, and the like. Instead this chapter describes how existing programs can be
compiled under Helios to produce executables.

This chapter concentrates on programs written in the C language, because this is
the language used for most Helios applications. Most of the chapter should be appli-
cable to other languages such as Fortran, Pascal, and Modula 2. Since these languages
are not part of the standard Helios package the language specific documentation should
also be consulted.

Section 3.1 gives a basic introduction to the programming tools. Experienced pro-
grammers may find it tedious, but the information should suffice for most users.

Section 3.2 gives more detailed information about the programming tools, and
in particular it describes the underlying programs. In addition this section describes
libraries, what they are for and which ones are available. A distinction is made between
Scanned and Resident (Shared) libraries, and an example is given on how to produce
a Scanned library. This section also describes some of the other tools available under
Helios to help programmers, and a brief description of the actual compilation process.

Section 3.3 gives a description of some of the servers available under Helios, start-
ing with a general description of how to interact with different servers and giving a
description of some of the more common ones.

The final section of this chapter, section 3.4, is a tutorial. It explains how to use
the Helios protection mechanism to protect your files from other users, and how you
can then use it to give other users limited access to your files.

3.1 Simple programming

This section describes the basic tools available under Helios to support programming.
First the compiler driver is introduced, and is used to compile some simple programs.
For non-trivial programs it is desirable to let the system perform the administrative
side of compilation, and the make utility is useful for this. Finally there is a summary
of the various types of file likely to be encountered during programming, and how they
can be compiled.

97

98 CHAPTER 3. PROGRAMMING UNDER HELIOS

3.1.1 A simple program

Consider the following C program.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

puts("Hello world");
return(EXIT_SUCCESS);

}

Before anything can be done with this program it has to be typed in and written to
a file. Usually this involves invoking an editor of some sort. Helios comes with the
Micro Emacs editor as standard, and this is described in detail in The Helios Micro
Emacs Guide.1 Various other editors are also available under Helios.

When the program has been typed in it must be given a filename; for example,
hello.c. The first part, hello, reflects the purpose of the program. The suffix, .c, spec-
ifies the type of the file, in this case a C program. This suffix is used by tools such as
the compiler driver to work out what to do with the file.

Given a typed-in program, it is necessary to turn it into an executable binary by
compiling and linking it. Compiling translates the machine-independent C program
into a machine specific intermediate file. Linking means taking this intermediate file,
adding some start-up code and various libraries provided by the system, and producing
an executable file. Doing this can be tedious, so Helios provides a compiler driver
program to do all the complicated bits. To invoke this compiler driver the following
command line could be used.

c hello.c

c is the compiler driver. It is similar to the command cc on most Unix systems, and the
options are usually identical. Given a single argument ending in a .c suffix it assumes
that this argument refers to a file containing a C program. This program is passed
through the C compiler to produce an intermediate assembler file. This assembler file
is then linked with some initialisation code, the C library, and various other libraries
needed by the program. Finally a binary executable is written to the file a.out, and
typing in the command a.out to the shell will execute this file and cause the text Hello
world to appear on the screen. During the compilation process the compiler will
display a copyright message, giving amongst other things the version of the compiler,
and often the compiler will give some warnings about your program. For the example
program the compiler will warn you that the variables argc and argv are not used. A
quick examination of the actual program will show that this is correct, the variables
are not used, but for this program it does not matter.

3.1.2 Driver options

There is rather more to the compiler driver than just compiling a “Hello world” pro-
gram. Some of the more useful command line options are given below.

1Published by Distributed Software Ltd.

3.1. SIMPLE PROGRAMMING 99

-help Simply typing in the command c -help will cause the compiler driver to list
the current options. These options include the type of source files recog-
nised, for example .c for C programs and .f for Fortran programs. Next
there are a number of command line options, with almost every letter of the
alphabet used for one option or another, both the upper case and the lower
case version of the letter. Finally there is a set of environment strings which
can be used to override some of the defaults built into the compiler driver.

-o It is possible to specify a particular file to hold the final binary program. For
example, given the command line

c -o hello hello.c

the compiler driver will compile and link the program hello.c as before, but
the binary executable will be written to the file hello instead of to a.out.

-g This option is used to compile the program for debugging. It is useful only if
you have a copy of the Helios debugger. Please consult the Helios debugger
manual for more information.

-D is used to pre-define some options for the C preprocessor. For example,
consider the following command line.

c -DTesting -Ddebugflags=17 hello.c

This is equivalent to having the following two lines at the start of the C
program.

#define Testing
#define debugflags 17

-I can be used to make the C compiler search a particular directory for the
C header files. By default the compiler will search the current directory,
followed by the main include directory /helios/include. Suppose that there
is an /include server running somewhere in the network, which can be used
to read header files without accessing a disc. To use this include disc, the
following command line can be used.

c -I/include -o hello hello.c

-O is used to enable optimisation within the compiler and the linker. When
optimisation is used the final binary program is likely to run faster. In addi-
tion the program may be smaller than it would otherwise be, but that is not
guaranteed. Producing an optimised binary will take longer, possibly a lot
longer, than producing an unoptimised binary.

-T is used to specify the type of processor on which the binary object is meant
to run. Options include -T4 to compile for a T414 Transputer, and -T8 to
compile for a T800 Transputer. The processor types supported are subject
to change at any time, but c -help should list the currently supported proces-
sors.

100 CHAPTER 3. PROGRAMMING UNDER HELIOS

The above list accounts for less than a quarter of the command line options avail-
able in the compiler driver. In addition there are a number of environment variables
used to override defaults built into the compiler driver. For example the default name
of the binary executable is a.out, if the user does not specify another file with the -o
option. There is an environment variable OBJNAME which can be used to change the
default from a.out to something else. Consider the following two commands:

setenv OBJNAME binary
c hello.c

This causes the compiler driver to generate the file binary as the executable binary
program, instead of a.out. Typing the name binary would execute the program and
display the text Hello world.

The exact options understood by the compiler driver are subject to change at any
time, as Helios development continues and more processors are supported. Also, many
of the options are of little or no interest to the majority of users. Hence this chapter
does not give a complete list of all options, merely the ones most likely to be needed by
a typical user. Instead the -help option can be used to determine the options understood
by the current version of the driver, or the Helios Encyclopaedia can be consulted.

3.1.3 Multiple modules

The “Hello world” example used earlier consisted of just one source file. This is fine
for simple programs, but many programs are so large that they should be split into
a number of different source files or modules. Having multiple modules makes the
linking process more complicated and hence slows that down. However, compiling a
small file takes less time than compiling a large one. Deciding when and how to split a
large program into separate modules should always be left to individual programmers.
To show how to use the compiler driver with separate modules, consider the following
two files.

main.c

#include <stdlib.h>

extern void say_hello(void);

int main(int argc, char **argv)
{

say_hello();
return(EXIT_SUCCESS);

}

io.c

#include <stdio.h>

void say_hello()
{

puts("Hello world.");
}

3.1. SIMPLE PROGRAMMING 101

The simplest way to compile these two modules together is to specify both of them on
the command line, for example:

c -o hello main.c io.c

The compiler driver will put module main.c through the compiler, generating two
warnings about unused variables as before. Then it will put module io.c through the
compiler. Finally it will link the resulting object files together to produce the binary
executable hello. This is simple. A problem occurs when just one of the source files is
changed, because using exactly the same command line will cause the compiler driver
to put both source files through the compiler again.

To avoid this problem it is necessary to make use of intermediate files. If you
examine the directory after the above command you would find two extra files, main.o
and io.o. These are intermediate object files which can be passed to the linker. To
rebuild the binary executable using the two object files, the following command line
can be used.

c -o hello main.o io.o

Since all the file names passed as arguments to the compiler driver end with the .o
suffix, the compiler driver can work out that none of the files need to be compiled and
hence it will invoke the linker. Suppose that one of the files needs to be recompiled but
the other one does not. A command line to do this is:

c -o hello main.c io.o

One of the file arguments ends with .c and hence the compiler driver will invoke
the compiler for this file. The resulting main.o object file will be linked with the other
object file and various standard libraries to produce the binary executable. This extends
naturally to any number of source and object files.

When there are several source files it may be easier to recompile one file to the
intermediate object form, and then link all the .o files together in a separate command.
For example if the programmer changes just one file out of six then it is inefficient to
recompile all six. The compiler driver has a -c option to produce intermediate object
files. For example, the following command lines may be used to rebuild the program
from scratch.

c -c main.c
c -c io.c
c -o hello main.o io.o

3.1.4 Make

Using the compiler driver to build programs is fine for simple programs with just one
of a small number of modules. For more complicated programs it becomes tedious,
inefficient because the user has to remember to recompile files when appropriate, and
dangerous because it is easy to forget one of the files. However, the basic job required
is fairly simple: given a set of sources, recompile any that have changed since the
last compilation; then link together all the objects that have been changed. All this

102 CHAPTER 3. PROGRAMMING UNDER HELIOS

administration is tedious, and can be left to the computer. A tool which can be used
for this is the make utility.

Consider an example. There is a program teatime, comprising the sources
assam.c, water.c, sugar.c, cream.c, scones.c, and jam.c. In addition
there is a header file teapot.h which is used by the source files assam.c and
water.c. The make utility needs to know what the target program is, what it de-
pends on, and similar information. To do this it reads a separate file, makefile. For
this application a suitable makefile is:

teatime: assam.o water.o sugar.o cream.o scones.o jam.o
c -o teatime assam.o water.o sugar.o cream.o scones.o jam.o

assam.o: assam.c teapot.h
c -c assam.c

water.o: water.c teapot.h
c -c water.c

sugar.o : sugar.c
c -c sugar.c

cream.o : cream.c
c -c cream.c

scones.o: scones.c
c -c scones.c

jam.o: jam.c
c -c jam.c

These lines all have the same format. First there is a target, indicating something
that the make program should produce. This target is usually, but not always, a file.
Following the target is a colon :, and then a list of dependencies. These indicate the
objects that must exist before the target can be made, and each such dependency is
usually listed in the makefile as another target. On the next line, and starting with a
tab character, there is a command which the make program should execute to build
the target. These commands are ordinary commands, as you would type in at the shell
prompt or possibly put into a shell script. The first target in the makefile is special, it
is the default target which will be made unless make is specifically instructed to build
some other target. The combination of target, dependencies, and commands is usually
referred to a rule.

Referring to the example makefile, the default target is teatime. Before this
target can be made the make program has to build the targets assam.o, water.o,
and so on. Once all the object files have been made it is possible to build the teatime
program by invoking the compiler driver, as per the command line. The second target
assam.o is required to build the default target. This second target depends on two
files, assam.c and teapot.h, and can be built by invoking the compiler driver on
the .c file.

So how does this work in practice? Assume that the source files exist, that the
makefile has been typed in, but that nothing has been compiled yet. To get the job
started, just use the make command without any arguments. make will read the make-
file, determine the default target, and note that all the object files need making first.
There are rules for making all the object files. Hence make would invoke the compiler

3.1. SIMPLE PROGRAMMING 103

driver for all the source files, one by one, and then the compiler driver would be in-
voked a last time to link the objects together and produce the executable program. If
something goes wrong halfway through the make, for example if one of the files could
not be compiled because of a typing mistake, then the make would be aborted at that
point.

Now suppose that the programmer makes a small change to the module scones.c
and needs to rebuild it. All that the programmer has to do is type make again. The
program reads the makefile again, works out the default target, and hence the depen-
dencies. The first dependency is on assam.o. This object file in turn depends on two
other files, assam.c and teapot.h. However, these two sources have not changed
since the last time that assam.owas created: make examines the file system to work
out which files were changed and when, so it can work out such things. Since the
sources have not changed there is no need to recompile them. When scones.o is
examined make will discover that the dependency file scones.c has changed since
scones.o was last updated, and hence this file will be recompiled. This will result
in a file scones.o which has changed since the last time teatime was produced,
so it is necessary to remake the default target by relinking the objects.

If the programmer changes the file teapot.h everything becomes a bit more
complicated. Since teapot.h is a dependency for both assam.o and water.o,
both these targets will be remade by executing the appropriate commands. Subse-
quently, the default target, teatime, has to be remade by executing the linking com-
mand.

Variables

The make utility is more powerful than described so far. The first useful extra facility
is the use of variables. In the first rule of the makefile there are two identical lists of
object files. This is inefficient, because the details must be typed in twice. It is also
slightly dangerous, because the two lists might get out of step as the software is being
developed. To avoid this problem a variable could be used.

objects = assam.o water.o sugar.o cream.o scones.o jam.o

teatime: $(objects)
c -o teatime $(objects)

The first line declares a variable objects, and this variable is assigned a text string
containing the six object names. Variables are always text strings, as the make utility
does not have the concept of variable types such as integer, double precision numbers,
or anything like that. This first line is not a make rule, because it does not follow the
syntax for rules: target, colon, dependencies, commands.

The next line is a rule. It defines the default target teatime as before, and then
uses the objects variable for the dependencies. The syntax $(x) means “Insert the
value of variable x”. This is different from depending on target x: if the rule said
that teatime depended on x without the brackets, make would assume that it had to
create target x first; since there is no rule for making target x, this would produce an
error message. After the dependencies comes the command used to rebuild the current
target, and again this can use the objects variable.

104 CHAPTER 3. PROGRAMMING UNDER HELIOS

In addition to your own variables, make pre-defines a number of useful variables
for you. These are used mainly to make it easier to write the commands needed to build
the targets. All pre-defined variables consist of a $ character followed by something
else.

$@ is equivalent to the target of the current rule. For example, the first rule in the
makefile can be written as follows.

teatime: $(objects)
c -o $@ $(objects)

When the make program comes to execute the command it will substitute the
current target, teatime, in place of $@, and then it will substitute the user’s
variable objects to give the list of objects files.

$ˆ is equivalent to all the dependencies for the current rule. For example, the rule to
rebuild the object file scones.o can be written as:

scones.o: scones.c
c -c $ˆ

In this case there is only a single dependency file, scones.c, so the make
program will substitute this name for $ˆ.

$< is similar to $ˆ, but refers to the first dependency only. This is useful for the file
assam.o, which has a dependency on a header file as well as the C source file:
using $ˆ would result in an attempt to compile the header file. A suitable rule
for building assam.o would be:

assam.o: assam.c teapot.h
c -c $<

$* stands for the target name without its suffix. For example, if the target of the rule
is called assam.o then the variable $* is equivalent to assam. This variable is
occasionally useful when manipulating suffixes in a fairly unusual way. Details
of such suffixes are given later on. For example, the following rule can be used
to build an object file together with its associated assembler file, should this be
required for some reason.

scones.o: scones.c
c -S $<
c -c $*.s

The first command is used to compile the C program to give the corresponding
assembler file, scones.s, without producing the object file. The second line
is used to produce the object file. Since the current target is scones.o the
variable $* is set to scones and hence the second line invokes the compiler
driver with argument scones.s.

3.1. SIMPLE PROGRAMMING 105

$? is a variable defining which of the current target’s dependencies had changed. It
is used mainly for reporting during the progress of a make, or when the makefile
is not working as expected. For example, consider the following:

assam.o: assam.c teapot.h
echo Rebuilding $@ because $? has changed
c -c assam.c

Complicated lines

Building programs can get very complicated, so the lines in a makefile can become
equally complicated. For this reason makefiles can have comments, just like ordinary
sources. In a makefile comments are introduced by a hash symbol, just like in shell
scripts. Comment lines are ignored completely by the make program.

#
Makefile for the subsystem "teatime"
This is component 16.30 of project "daily schedule"
Author: A. Programmer
#

For large systems it is possible that some text does not fit into one line of the
makefile. make uses the same approach as the shell, a backslash character \ indicates
that the current line really continues on to the next one. For example, the following
lists some objects for a more complicated system.

high_tea = darjeeling water honey cream lemon cakes biscuits \
scones jam crumpets silver_spoons china \
cucumber_sandwiches and lots of other things

Note that the last line does not use a backslash character, because there is no point in
continuing the line on to the following blank line. In the commands section of a rule,
it is possible to give several different commands.

assam.o: assam.c teapot.h
c -S $<
c -c $*.s

The first command compiles the source file called assam.c to produce an assem-
bler file assam.s. The second command takes this assembler file and turns it into
an object file called assam.o. Note that there is no backslash character between the
commands. If a backslash character were used then make would merge the two com-
mand lines into a single line, giving c -S assam.c c -c assam.s: this will
not have the desired effect, instead it will cause the compiler driver to produce an error
message and abort.

Default rules

Taking the original makefile of some pages back, but using the facilities described so
far, we would get a file like the following.

#
There will be some comments at the start of the file.
#

106 CHAPTER 3. PROGRAMMING UNDER HELIOS

These are the modules required for the teatime program
objects = assam.o water.o sugar.o cream.o scones.o jam.o

The default target is the program teatime
teatime: $(objects)

c -o $@ $ˆ

These rules recompile the various modules needed by teatime
assam.o: assam.c teapot.h

c -c $<
water.o: water.c teapot.h

c -c $<
sugar.o: sugar.c

c -c $ˆ
cream.o: cream.c

c -c $<
scones.o: scones.c

c -c $ˆ
jam.o: jam.c

c -c $<

Note that $< can often be used instead of $ˆ, but not the other way around. Most of
the commands in this makefile are identical, and it is silly to duplicate the commands
every time. make has a mechanism for defining default rules, for example the default
way to create an object file from a C source file is to invoke the compiler driver with
the -c option. More specifically, make can be given rules on how to turn a file with
one suffix into a file with a different suffix. The first step is to specify which suffixes
should be recognised by the make program.

.SUFFIXES:

.SUFFIXES: .c .f .o

Most make programs require two lines in the makefile for this. The first line
eliminates any suffixes which might be built into the make program, because it is not
usually clear whether the built-in ones are correct, or even what they are. The second
line defines the suffixes used by this makefile. In the example, make is told to recog-
nise three suffixes, for C and Fortran sources and for the object files, but any number
of suffixes can be given. Default rules involve a special target name constructed from
the two suffixes. There should not be a dependency, and the command name should
use the various built-in variables where possible. For example, the following defines a
default rule for changing a file with a .c suffix into one with a .o suffix.

.c.o:
c -c $*.c

Constructing similar rules for other types of compilation is relatively easy, and a
list of such rules is given at the end of this section. To tell make to use the default rule
to build a target, just specify the target and the dependencies without a command.

assam.o: assam.c teapot.h

3.1. SIMPLE PROGRAMMING 107

water.o: water.c teapot.h
sugar.o: sugar.c
cream.o: cream.c
scones.o: scones.c
jam.o: jam.c

In fact makefiles can be even simpler than this. The last four lines are redundant
because make will automatically use default rules under certain circumstances. Sup-
pose make needs to build the target X.o. The following conditions must be met:

1. There is no specific rule for building target X.o

2. There is a default rule for building .o files from .c files

3. There is a file X.C

If all conditions are met then make will automatically use the default rule. The
whole makefile now looks something like this.

#
Simplified makefile for building the teatime system
#
.SUFFIXES:
.SUFFIXES: .c .o

.c.o:
c -c $*.c

objects = assam.o water.o sugar.o cream.o scones.o jam.o

teatime: $(objects)
c -o $@ $(objects)

assam.o: assam.c teapot.h
water.o: water.c teapot.h

It is still necessary to have rules for the two object files assam.o and water.o
because these depend on a separate header file as well as on the source file. If these
dependencies were not part of the makefile then the two objects would not be remade
if the header file were changed, which was one of the reasons for using make in the
first place.

Multiple targets

Usually there is only one makefile per directory. If a directory is to contain multiple
programs then it must be possible to build multiple targets with a single makefile. For
example, suppose a given directory is used to build three programs: coffee_break,
lunch, and teatime. Unless told otherwise, make treats the first ordinary rule in
the makefile as the default target it is supposed to make. This default target need not
refer to a real file. For example, the following makefile achieves the required results.

108 CHAPTER 3. PROGRAMMING UNDER HELIOS

default: coffee_break lunch teatime

coffee_break: $(coffee_objects)
c -o $@ $(coffee_objects)

lunch: $(lunch_objects)
c -o $@ $(lunch_objects)

teatime: $(teatime_objects)
c -o $@ $(teatime_objects)

The first target in the makefile is now something called default. To build this target,
make must first build three subsidiary targets. Since make is not given any rules
for making the main target from its three components, it will never generate a file
default. This is, in fact, exactly the behaviour that is required.

On the make command line it is possible to specify exactly which target is sup-
posed to make. For example suppose that the programmer needs to rebuild program
lunch, but not the other two programs. Using the command line make lunch
causes make to ignore any targets except lunch, and whatever subsidiary targets are
needed to build that one. It is also possible to have some special targets: consider the
following makefile entry.

clean:
rm $(coffee_objects) $(lunch_objects) $(teatime_objects)

This should not be the first rule in the makefile, since the default action should not be
deleting the intermediate files. Also this rule should not be a subsidiary target of any
other rule, so that it does not get invoked by mistake. Instead the rule will be ignored
completely unless the user types make clean. Similar extra rules are commonly
used for backing up, installing software, and other administrative chores.

Arguments to make

The make program can take various command line options, as shown below. The
Helios Encyclopaedia and the on-line help system may give further information if
necessary.

-f <filename> allows the user to specify a makefile other than the default, which
is makefile in the current directory. This is used mainly when
experimenting with the makefile, by copying the working makefile
to a temporary one and changing and using this temporary one. To
use this option the following command line can be used.

make -f makefile.tmp

-i causes make to ignore errors produced by the various commands it
runs. Normally when a command in the makefile fails, for example
when a compiler encounters a serious error, the make program
detects this and aborts the whole job. The -i option would allow
make to continue in spite of such errors. This can be dangerous,
and the option should be used with care.

3.1. SIMPLE PROGRAMMING 109

-n causes make to list the commands it would execute to build the
target, without actually executing them.

-q is used mainly with shell scripts. The make program reads the
makefile and checks the default target. If any commands must be
executed then make would return an error. Otherwise make would
exit with success. No commands are actually executed, and no
output is produced. For example the following shell script checks
whether or not a make is required, and if so it generates some mes-
sages first. The shell variable cwd is used here to display the cur-
rent directory.

make -q
if ($status == 1) then
echo Make in $cwd, some work is required
echo Please go and drink a cup of coffee
make

else
echo Make: the target is up to date

endif

-s runs the make program in silent mode. By default the program
will display the commands it is because to execute before actually
running them. This option prevents this. It is not very useful be-
cause commands like the C compiler will generate a considerable
amount of output anyway.

-t is used to touch a target, rather than build one. The time stamp
associated with the default target or the one specified is changed
as if the target had just been rebuilt. This is used mainly when
debugging makefiles to avoid excessive recompilations.

Any other arguments will be interpreted as the targets which are supposed to be
produced instead of the default target. For example, the following command line

make -n coffee_break lunch

will cause make to show the commands it would execute in order to build the targets
called coffee_break and lunch, without actually executing these commands.

Different make programs

Helios comes with two different make programs. The first one, /helios/bin/make, is
a conventional version of the utility which supports the features described so far and
nothing else. This version suffices for most programming needs. The second program
is a port of GnuMake, a much more powerful utility suitable for very big applications.
This second program is held in the file /helios/local/bin/gmake.

The facilities provided by GnuMake come at a price. The program is almost eight
times larger than the simple make utility and it needs a lot more memory at run-time.
Hence, on machines which have fairly small amounts of memory use of GnuMake
should be avoided.

110 CHAPTER 3. PROGRAMMING UNDER HELIOS

3.1.5 Common suffixes

Programs written in C are conventionally given the suffix .c. The suffixes used for
other languages and for intermediate files are as follows.

.a is used for source files to the assembler macro preprocessor AMPP, used
mainly for advanced programming such as building device drivers and
Resident libraries.

.a is also used for some libraries. For example, the file /helios/lib/libX11.a
is the main X Window System library. Such libraries always start with
lib and are used only for linking: they are not passed as sources to the
compiler driver. Hence there is little possibility of confusion.

.bcp is used for programs written in the BCPL language.

.c is used for C programs.

.cpp is commonly used for programs written in C++. Other common suffixes
for this include .cxx, .c++, and .C.

.d suffixes refer to device drivers, which are special types of program.

.def is the suffix for another type of library.

.f refers to programs written in Fortran.

.h is a C header file. The standard header files can be found in the directory
/helios/include and its subdirectories.

.i is used for C files which have been passed through the C preprocessor but
have not been compiled. This can be achieved with the -E option of the
compiler driver. It is also used for special binaries that can be embedded
in the Nucleus.

.lib is another way of describing libraries. The name xyz.lib is equivalent
to libxyz.a, but the file name is more likely to fit into the naming limits
imposed by certain filing systems.

.m is a macro include file used by AMPP programs. The standard macro
include files can be found in the directory /helios/include/ampp.

.mod is used for Modula-2 programs.

.o files are object files produced by the assembler, which can be passed
through the linker to give executable programs.

.p files are another type of object file usually generated when building device
drivers and Resident libraries.

.pas files are Pascal sources.

3.2. MORE ADVANCED PROGRAMMING 111

.s is the input to the Helios assembler. Such files are rarely written, but are
produced by the C compiler and by AMPP and then passed through the
assembler to produce .o files.

The table below shows the most useful commands for compiling programs.

From To Command
X.c X.o c -c X.c
X.o X executable c -o X X.o
X.f X.o c -c X.f
X.a X.o c -c X.a
X.mod X.o c -c X.mod
X.c X.s c -S X.c
X.s X.o c -c X.s
X.c X.i c -E X.c
X.c X.p c -m -c -o X.p X.c
X.a X.p c -c -oX.p X.c

The corresponding makefile rules are:

.suffixes:

.suffixes: .a .c .f .mod .i .s .o .p

.a.c:
c -S $*.a

.a.o:
c -c $*.a

.a.p:
c -c $*.p

.c.s:
c -S $*.c

.c.o:
c -c $*.c

.c.p:
c -m -c -o $*.p $*.c

.f.o:
c -c $*.f

.mod.o:
c -c $*.mod

.c.i:
c -E $*.c

.s.o:
c -c $*.s

3.2 More advanced programming

This section describes three things. Firstly, it describes libraries: what they are for;
what types there are; the main ones available under Helios; and how to produce your
own. Secondly, it describes some of the other tools available to help programmers.
Thirdly, it gives a more detailed description of the compilation process, indicating
the work that has to be done by the compiler driver and explaining some of the less

112 CHAPTER 3. PROGRAMMING UNDER HELIOS

obvious options that are available. This section is aimed at more advanced users who
need facilities not described so far.

3.2.1 Libraries

The purpose of libraries is to make programming easier. For example, a typical appli-
cation program usually needs to read and write some files. If the application program-
mer had to worry about individual disc blocks or about the exact hardware registers
which must be poked to access a particular kind of disc, then very few programs would
be written. Instead, the operating system provides some library routines to perform file
I/O, allowing the programmer to concentrate on the application. Application programs
must be linked with these libraries after the compilation stage, in order to produce the
final executable program.

A considerable number of libraries are available for Helios, either as part of the
standard product or as optional extras. The following list is not exhaustive – new
libraries are added regularly as Helios development continues – but it contains the
more common ones. Some of the descriptions refer to specific routines, and further
details of these can be found either in the Helios Encyclopaedia or in the on-line help
system.

1. The C library is used by most C programs. It contains a wide range of routines
varying from fopen() to access a file to strtol() to manipulate strings.

2. The Fortran library is another language library, like the C one. There are also
libraries for Pascal, Modula2, BCPL, and so on. Language libraries are usually
mutually exclusive, in other words it is not possible to link a program with both
the C library and the Fortran library.

3. The Posix library is an implementation of the IEEE standard 1003.1-1988 Stan-
dard Operating System Interface for Computer Environments. The standard de-
fines an operating system interface for Unix-style systems. It includes routines
like execve() to run another program, and getpwentry() to check the contents of
the system’s password file. For a variety of reasons concerning the architecture
of the Transputer and other processors without memory management facilities,
the Posix library cannot be fully conformant to the standard for these proces-
sors. More details can be found in chapter 5, Compatibility. The Posix library
is at a lower level than the language libraries. In fact most language libraries are
built on top of the Posix library, so for example any C program can access Posix
library routines automatically.

4. The System library exists at a lower level still. Helios is based on the client-
server model: for an application to do anything other than pure computation it
must interact with a server; to read a file it must interact with a file server; to
create a lock it can interact with a lock server; to display graphics on a suitable
display it must interact with a graphics server, usually the one supplied with the
X window system. The System library is used to perform standard interactions
with the majority of servers. Additional libraries may exist for specific interac-
tions, for example to display graphics. The System library is part of the Helios
Nucleus.

3.2. MORE ADVANCED PROGRAMMING 113

5. The Kernel is the lowest level accessible to application programmers. It pro-
vides routines which inherently need to interact closely with the hardware. For
example the Kernel has routines Wait() and Signal() to act on semaphores and
provide synchronisation between threads. The Kernel also provides the message
passing routines used by the higher-level software, particularly the System li-
brary, but use of these routines should be avoided by application programmers.
The Kernel is part of the Nucleus.

6. The Utility library is also part of the Nucleus, and provides miscellaneous rou-
tines needed inside the Nucleus that did not logically belong anywhere else.
These routine include strlen() and similar string operations, Fork() to start a
new thread within the current program, and IOdebug() for very low-level de-
bugging.

7. The Server library is the final library embedded in the Nucleus. Its purpose is
to facilitate the writing of Helios servers, and it is described in more detail in
chapter 12, Writing servers. In addition to these four libraries the Nucleus con-
tains two programs, the Processor Manager and the Loader. This is illustrated in
Figure 3.1.

X

Figure 3.1: The library hierarchy

8. The X library provides a programmer’s interface to the X server. It is comple-
mented by various other libraries for the X toolkit, widgets, Motif2, and so on.
This is the main graphics facility supported by Helios.

9. The PC graphics library provides some basic graphics facilities, using a VGA
or similar display on a host PC. It is a cheap alternative to X, but only offers a
fraction of the functionality.

10. The Windows 3 library provides an alternative windowing system and graph-
ics library for use with Microsoft Windows version 3.0. The graphics being
displayed on the host PC’s screen.

11. The BSD3 compatibility library contains some routines provided by BSD 4.3
Unix systems that are not part of the Posix standard. These routines are provided
to assist in porting programs to Helios.

12. Similarly, Helios contains curses and termcap libraries to improve Unix compat-
ibility. Existing Unix systems need to cope with many different terminal types,
for example VT100 terminals attached to serial ports or Xterm windows on an X
display. All these terminals need different control sequences to clear the screen,

2Trademark of Open Software Foundation, Inc.
3Berkeley Software Distribution

114 CHAPTER 3. PROGRAMMING UNDER HELIOS

move the cursor to a specific location, and so on. To achieve hardware indepen-
dence for application programs Unix provides the curses and termcap libraries.
Under Helios these are redundant, since Helios ensures that all terminals accept
exactly the same sequences. Nevertheless, these libraries are provided to cope
with existing programs that use them.

13. The Debugger library is linked with programs that have been compiled for de-
bugging, provided the Helios debugger is part of your system. This library inter-
acts with the debugging server tla. Its routines are never called from user code,
as compilers generate the calls automatically.

14. The Fault library is used for interpreting Helios error codes. For communication
between clients and servers Helios uses 32-bit integers to encode requests and
replies. For example, the integer 0xCA06800C is an error code generated by
the I/O server indicating that a file is missing. The Fault library provides various
routines to interpret such numbers, the most important being Fault() which takes
a number and turns it into a string that contains a description of the error in
English.

15. The Floating Point libraries are used to perform certain floating point operations.
There are different versions for the different types of processor. For example
fplib.t4 is used for T414, T400, and T425 Transputers which do not have a
built-in floating point unit, and hence these libraries must do the arithmetic the
hard way.

16. The Resource Management library provides an application programmer inter-
face to the network of processors. It allows programmers to write applications
that examine the network, manipulate processors, execute parallel applications,
and so on. It is described in more detail in chapter 7, The Resource Management
library.

Types of library

The usual place for holding libraries is in the directory /helios/lib. Examining this
directory can be somewhat confusing, because there are rather a lot of files with rather
a lot of different suffixes.

The first type of library is the Resident or Shared library. A Resident library is a
separate piece of code which is loaded into memory upon demand. For example, a typ-
ical C program is linked with the C library and the Posix library amongst other things.
These two libraries could be embedded into the binary of every C program, which
means that every C program would have about 50K of code inside it. Since the direc-
tory /helios/bin contains over 100 such programs the system would use five megabytes
just to hold duplicate copies of the C and Posix libraries. This is nonsensical.

Resident libraries provide an alternative. When a program is linked with a Resident
library the library code does not get embedded in the binary object. Instead the binary
object contains a description of the Resident library, its name and how to use it. When
the program is executed the system detects that it uses one or more Resident libraries,
and these libraries are loaded into memory. If there are several programs running on

3.2. MORE ADVANCED PROGRAMMING 115

the same processor needing the same Resident library then only one copy of the library
will be loaded, and this will be shared by the various programs.

For example, suppose that the user runs a shell on an empty processor using the
command wsh 01. The shell is linked with the C library and the Posix library, both
of which are resident. Hence when the shell is executed the system detects that both
of these libraries are now needed, and they will be loaded into memory automatically.
The shell can now use these libraries as if they were embedded in the binary object,
just like any other piece of code.

Helios Resident libraries have a .def file associated with them. For example, the
/helios/lib directory contains files clib.def and posix.def. This .def file defines the
library and contains all the information needed to link with the library. In addition there
are files clib and posix. These are the library objects themselves, in other words they
are the pieces of code loaded by the system when needed. Only the library definition
files are needed for linking.

There are several .def files which do not appear to have a corresponding object
file. They are as follows: Kernel.def, syslib.def, util.def and servlib.def. These four
libraries are part of the Helios Nucleus and hence they are always loaded in memory,
so there is no need to have separate object files.

Resident libraries can be very useful, particularly for system programmers. How-
ever, building them is rather complicated (a full explanation of how to do so can be
found in chapter 16, Program representation and calling conventions). Hence Helios
also supports a different type of library: the Scanned library. When a program is
linked with a Scanned library the linker extracts the parts of the library needed by the
program, and adds these to the final binary program. The Scanned libraries shipped
with Helios include bsd.lib, curses.lib, and termcap.lib. For example, suppose an ap-
plication program uses the popen() routine. This routine is in the BSD compatibility
library bsd.lib, so the program has to be linked with this library. This library, however,
contains over 50K of code of which only a small part is needed for popen(). Hence
during the linking process most of the library will be discarded as unnecessary, and
the final program does not contain all of the code. The code that implements popen()
itself is embedded in the final program, and is not part of a Resident library loaded
dynamically.

Consider an example. There is a Helios command network which can be used
to examine the current state of a network of processors. This program contains the
following parts:

Program network
ResRef Kernel
ResRef SysLib
ResRef ServLib
ResRef Util
ResRef FpLib
ResRef Posix
ResRef Clib
Module network.c
Module popen.c
Module string.c
Module signal.c
Module nuprtnet.c
ResRef RmLib

116 CHAPTER 3. PROGRAMMING UNDER HELIOS

At the start of the binary object there will be a header identifying the program and
containing some information needed by the system when the program is being loaded,
such as its stack size. The program contains Resident library references or ResRefs
for eight libraries, and the system has to ensure that all of these are in memory when
the program starts up, loading them off disc if necessary. The libraries themselves are
not part of the binary object, only references to them. The next part is the module net-
work.c, which forms the main part of the program. This is the code actually written by
the programmer, and there may be several such modules. Then there are three modules
popen.c, string.c and signal.c which are part of the BSD compatibility library. That
is a Scanned library, so the linker extracted the bits it needed and discarded the rest.
The module nuprtnet.c also comes from a Scanned library, a private one written by
the programmer.

Suppose that at some moment in time two programs are being executed on the
same processor: network and domain. Figure 3.2 illustrates the bits of code loaded
into memory.

X

Figure 3.2: Code in memory

There is only one copy of the C library and of all the other Resident libraries,
shared by the two programs. There are two copies of module popen.c in memory
because that module comes from a Scanned library, and hence the module is actually
part of the binary program.

Linking with libraries

Given all these libraries it is necessary to know how to link programs with them. By de-
fault programs are linked automatically with the libraries they are likely to need. For
example, every C program is linked automatically with the C, Posix, floating point,
fault, server, utility, system, and Kernel libraries. However, the linker is intelligent
enough to only link libraries that are referenced by other code modules into the ex-
ecutable file it produces. So, if a program does not make use of any Server library
calls, the binary program will not contain the corresponding Resident library refer-
ence. Some libraries, for example the Kernel, are needed by higher-level libraries so
these are nearly always included.

Linking with most other libraries is fairly easy. The following command line links
a program with both the X and the Resource Management libraries.

c -o drawmap -lX -lRm drawmap.c

The -l argument specifies a library to be linked with. The compiler driver will
automatically search for something that matches with the library name. For example,
-lRm would match with Rmlib.def, Rm.def, Rm.lib, libRm.a, and so on. In other
words the compiler driver ensures that the library is found and the user does not need
to supply the full name.

3.2. MORE ADVANCED PROGRAMMING 117

The BSD library is a special case. It is not possible to combine BSD compatibility
with the full Posix standard, so the user has to decide whether to use BSD or not.
Typically, the BSD library would be used when porting existing programs, but not
when writing new programs from scratch. To use the BSD library the option -D_BSD
should be used, for example:

c -oprogram -D_BSD program.c -lX

Below is a table of the various libraries and how to link with them. The first
column gives the name of the library. The second column gives the option for the
compiler driver which should be used. The third column gives a brief description of
the library’s purpose.

Library How to link Purpose
Kernel automatic basic part of Nucleus
Syslib automatic client-server interaction
Util automatic miscellaneous Nucleus routines
Servlib automatic building Helios servers
Fault automatic interpreting Helios error codes
Posix automatic main Unix library
Floating Point automatic arithmetic on different processors
Language automatic C, Fortran, Pascal etc. libraries
X -lX interaction with X graphics server
PC graphics -lPCgraph simple graphics library
BSD -D_BSD BSD Unix compatibility
Curses -lcurses Unix-style screen control
Termcap -ltermcap terminal characteristics
Debugger -g use the Helios source-level debugger
Resource Management -lRm control of the processor network

If a programmer builds his or her own Scanned libraries then these should not nor-
mally be exported to /helios/lib. The compiler driver can be made to search directories
other than the default /helios/lib with a command line option. For example, the follow-
ing line can be used to link with the library matrix.lib held in a separate subdirectory
../mathlibs.

c -o calc -L../mathlibs -lmatrix calc.c

Building Scanned libraries

Libraries can be very useful things so experienced programmers will normally want
to produce their own. Building Resident libraries is rather complicated (see chapter
16, Program representation and calling conventions). Such libraries are normally pro-
duced only by system programmers. On the other hand, building Scanned libraries is
easy.

Suppose a maths library has four different modules: fourier.c, matrix.c and also
integral.c and simuleqn.c. (Remember that a module normally equals a source file.)
The makefile to turn these into a library would look something like this.

Makefile for the maths library

.suffixes:

118 CHAPTER 3. PROGRAMMING UNDER HELIOS

.suffixes: .c .o

.c.o:
c -c $*.c

objects = fourier.o matrix.o integral.o simuleqn.o

maths.lib : $(objects)
c -o$@ -j $ˆ

The -j option to the compiler driver instructs it to take the specified object files and
turn them into a Scanned library. This library can now be used as any other library,
with -lmaths.

Some guidelines should be observed when designing Scanned libraries. Most im-
portantly, parts of Scanned libraries are included on a per module basis. If the ap-
plication program needs just one routine in a module of a Scanned library then all of
that module gets included. Hence Scanned libraries consisting of a small number of
large modules tend to be inefficient. In theory every single routine should have its own
module, but maintaining large numbers of small source files is difficult. Hence the
approach normally taken is to split the library into closely-related modules, where all
of the routines relating to a particular area are put into the same module.

For example, the BSD compatibility library contains the following modules, amongst
others.

1. getopt.c to parse program arguments.

2. inetaddr.c for manipulating internet and socket addresses.

3. popen.c holding the popen() and pclose() routine.

4. syslog.c for writing to the system log.

5. fileio.c for certain file I/O operations.

Suppose a program uses popen() and pclose(). This means the binary object would
include the third module listed above, but not any of the others. If pclose() had been
put into a different module then the final binary object would need to incorporate two
BSD modules instead of one, and hence it would be larger. For most libraries, the
programmer need not be too concerned about the above, because the libraries will split
quite sensibly into modules anyway. However, occasionally a small amount of effort in
library design will result in significant improvements in the library usage, and produce
smaller binary objects.

3.2.2 Other tools

So far the only tools described have been the compiler driver c and the two make
utilities. Various other tools are available to help programmers, and this subsection
describes a few of them.

3.2. MORE ADVANCED PROGRAMMING 119

CDL

The CDL compiler can be used when developing parallel programs. It is described in
detail in chapter 4, CDL, and will not be discussed further here.

RCS

The RCS system can be used for controlling complex software systems. It can keep
track of when source files were changed, who changed them, and why the change was
necessary. Hence if a system suddenly stops working the programmers can find out
what has changed to cause this, and find out whether the changes introduced a bug or
simply revealed a bug that had been lurking in the software. A typical software system
goes through many different versions and releases during its lifetime, and RCS allows
the programmers to work out exactly which files were used to build a specific release.

For fairly simple systems implemented by just one programmer RCS is not usually
worthwhile. If multiple programmers are involved in producing the system then some
sort of control mechanism is essential, and RCS serves this need.

AMPP

The AMPP program is a macro pre-processor. It takes a piece of text and transforms
it to a different piece of text using certain rules, which can be defined dynamically. Its
main purpose is for writing programs in assembler language, because it can take care
of tedious jobs such as putting the right return instruction at the end of every routine.
However, it could be used more generally for any system that needs to transform text
files.

include

Compiling programs can take a long time. Various factors affect the amount of time
taken:

1. The compiler and other tools may need to be loaded off disc. See the description
of cache below to avoid this.

2. The source code has to be loaded off disc, and the binary has to be written to
disc. This cannot be avoided.

3. The code has to be compiled, and this involves some computation by the com-
piling processor. This cannot be avoided.

4. Any header files needed by the program have to be loaded off disc. For many
programs the header files are actually significantly larger than the program itself,
and reading in the header files controls the speed of the compilation.

To speed up compilations Helios has an include disc, a server somewhat like the
RAM disc which contains all the system header files. These files are read-only. This
means that the header files are permanently in memory, and hence disc I/O is avoided.
The compiler driver will automatically use the include disc if one is loaded somewhere
in the network of processors. It should be installed by the system administrator, and

120 CHAPTER 3. PROGRAMMING UNDER HELIOS

typically it gets started automatically on a system processor by running it from the net-
work resource map. For more information, please consult the help system for include
and buildinc.

cache

The other problem with compiling software is having to load programs off disc. To
avoid this, it is possible to cache useful programs on a processor, typically from the
resource map. For example, the system administrator might put the following into the
resource map.

Processor 07 { ˜05, ˜06, ˜08, ˜09; System;
run -e /helios/bin/cache cache cc asm make ampp emacs ls more;

Cached programs will not always be used automatically. To force the system to
use the cached versions of the program the cache should be added to the shell’s search
path in the user’s .cshrc file.

set path=(/07/loader . /helios/bin /helios/local/bin)

If all the useful tools are cached, and if an include disc is loaded, then compilation
times can be greatly reduced. Obviously this does involve a cost in terms of processor
memory, so the techniques are useful only if one or more processors in the network
has enough spare memory.

map

map is a simple processor monitoring utility. It can be used to display a processor’s
memory map, cpu usage, link statistics, and message port usage. When things go
wrong it provides a simple way of determining whether the problem is lack of memory
or something else. It can also be used to get a rough idea of a program’s performance
and what bottlenecks may exist. map is useful only on a single processor, and there are
other utilities such as domain and network to examine what is going on in a network
of processors.

bison

A common requirement in programming is to read in a text file of some sort, where
the text file has a specific syntax. A compiler is the obvious example, where the syntax
is that of the programming language, but it is not the only example. A raytracing
application might read a description of the various objects in the picture from a text
file. A text processor reads plain text interspersed with control sequences. Much of a
typical parser can be generated automatically, and bison is a public domain tool which
can help with this. In theory the programmer merely specifies the syntax used in the
file, and bison generates the parser program. In practice everything is, of course, a bit
more complicated but for many jobs using bison can save time.

3.2. MORE ADVANCED PROGRAMMING 121

flex

bison only forms half of a parsing system. The parser produced by bison accepts
tokens. For example, in the C language if and while are keywords which generate
specific tokens. Taking a sequence of bytes as found in a file and turning this into a
sequence of tokens is the responsibility of a lexical analyser, and the flex program can
be used to generate such lexical analysers automatically.

cc

The compiler driver c is a relatively simple program. It does not compile programs
itself. Instead it works out what has to be done, which files must be compiled to
produce which assembler files, and which of these assembler files must be linked with
the right libraries to produce an executable program. The actual compilation is done
by a separate program cc, which takes a text file containing a C program and produces
an assembler output file. Later on in this subsection there is a description of how to
use cc directly, avoiding the compiler driver.

asm

The assembler asm is also invoked automatically by the compiler driver to do certain
jobs. It can take an assembler source file, generated by a compiler, by AMPP, or very
occasionally by a user, and turns this into a binary version. The assembler file usually
has a .s suffix, and the output produced has a .o suffix. The source file is significantly
larger than the binary file, and hence keeping these .s files is costly in terms of disc
usage.

On Transputer based systems the asm program serves a second purpose. It can
take assembler files, either as text .s files or binary .o files, and it can link these with
start-up code and the relevant libraries to produce an executable program. Hence asm
acts as the Transputer linker as well as the assembler.

objed

objed is an object program editor which can be used to examine binary executables
and change some of the characteristics. It can take various options plus the file name
of the executable. The -i option can be used to obtain relevant information about the
program.

% objed -i /helios/bin/ls
Image size = 5384
Object type is Program
Name is ’ls’
Stacksize = 20000
Heapsize = 4000

The image size is an indication of the size of the program. In addition there will
be a small header at the start of the file, typically another 12 bytes. Typical types
are program and module, module referring to a Resident library. Every program has a
name embedded in it. When the program starts up the initial stack for the main program
is set to 20000 bytes. If the program generates a stack overflow message then this has

122 CHAPTER 3. PROGRAMMING UNDER HELIOS

to be increased. The initial heap size is set to 4000 bytes. Hence the program is given
4000 bytes for dynamic memory allocation when it starts up, for use by malloc() and
similar routines. Should the program need more than these 4000 bytes then another
4000 bytes chunk will be allocated dynamically, if there is enough free memory in
the processor. If the program should attempt to allocate more than 4000 bytes then a
suitable chunk will be allocated directly from the system pool, bypassing the program’s
current heap. For applications that use a lot of dynamic memory allocation it may
be desirable to increase the heap size. In addition, it may be possible to tune this
heap size to match the actual allocation requirements of the application; this helps to
reduce memory fragmentation. To change stack and heap size once a program has
been compiled, objed can be used.

objed -s50000 -h100000 myprogram

At compile time the compiler driver can be given suitable options.

c -o myprogram myprogram.c -s10000 -h100000

In addition objed allows programmers to examine their programs and in particular
which Resident libraries and which parts of Scanned libraries have been included. This
is achieved with the -m option.

% objed -m /helios/bin/network
Program : network slot 8 version 1001 size 120 datasize 0
ResRef : Kernel slot 1 version 2000
ResRef : SysLib slot 2 version 1000
ResRef : ServLib slot 3 version 1000
ResRef : Util slot 4 version 1000
ResRef : FpLib slot 5 version 1000
ResRef : Posix slot 6 version 1000
ResRef : Clib slot 7 version 1000
Module : network.c slot 9 version 1 size 5580 datasize 172
Module : popen.c slot 10 version 1 size 672 datasize 13
Module : string.c slot 11 version 1 size 700 datasize 7
Module : signal.c slot 12 version 1 size 424 datasize 5
Module : nuprtnet.c slot 13 version 1 size 2640 datasize 6
ResRef : RmLib slot 24 version 1000

ResRef refers to a Resident library. Module refers to part of the user’s code or to
part of a Scanned library. For modules the size indicates the size of the binary code
of that module, and datasize indicates the amount of static data used by that module in
4-byte words.

3.2.3 Manual compilation

In addition to the compiler driver c Helios has two other utilities, cc and asm, which
are used to build programs. These two programs are invoked automatically by the
compiler driver. cc is the actual C compiler, it takes some C source code and compiles
it to produce intermediate assembler code. asm serves two purposes. Firstly, it can act
as a simple assembler, taking textual assembler code as produced by the compiler or
by some other means, and turning it into binary object files. Secondly, on Transputer

3.2. MORE ADVANCED PROGRAMMING 123

versions of Helios, it can take these binary object files and link them with start-up code
and the necessary libraries to produce executable programs.

There are three reasons why explicit use of the compiler and assembler may be
necessary.

1. In the early days of Helios the c compiler driver did not exist so all programming
had to go through the compiler and assembler directly. Hence for historical
reasons there are still makefiles that use the compiler and assembler directly
instead of going through the compiler driver.

2. The compiler driver involves a small overhead. Typically it requires about 40K
of memory to run, so if memory is tight then a compilation might fail because it
goes through the compiler driver. Also, it is slightly less efficient to go through
the compiler driver, because it involves running an extra program.

3. Some compiler and assembler options are not supported by c.

For these reasons, programmers may occasionally find themselves using the compiler
and assembler directly, and this subsection explains how to use these programs.

The compiler

The C compiler cc takes a single C module and converts it to an assembler file. In the
simplest case the command line would be something like this.

cc test.c -s test.s

The output file produced is an assembler text file and hence it has a .s suffix rather than
the .o suffix for object files. The command line options include:

-d is used to pre-define macros, rather like -D option of the compiler driver. It can be
used in two ways.

c test.c -s test.s -dSystem12
c test.c -s test.s -dSystem=12

The first defines the constant System12 but does not give it a value. Hence it
can be used by #ifdef and similar constructs but not by #if. The second
defines the constant System and gives it the value 12, so this can be used for
both types of pre-processor test. By default the compiler driver automatically
pre-defines three constants, and any makefile using the compiler directly should
also pre-define these three.

cc test.c -s test.s -d__HELIOS -d__TRAN -d__HELIOSTRAN

Some of the Helios header files check for these constants and programs are un-
likely to compile correctly if these constants are not defined. Another important
constant is called -d_BSD to indicate whether or not the program is being com-
piled for Berkeley compatibility.

124 CHAPTER 3. PROGRAMMING UNDER HELIOS

-i is used to specify the include file search path, in other words the directories to
be searched for header files. With the compiler it is possible to specify different
search paths for header files included by #include ”header.h” and #include<header.h>.
The -i option is used for include files inside double quotes. All the include di-
rectories should be listed as a single string.

cc test.c -s test.s -d__HELIOS -d__TRAN -d__HELIOSTRAN \
-i,/include/,/helios/include/

When a header file is supposed to be included the C compiler works as follows.
If the name specifies an absolute filename, for example

#include "/helios/include/stdio.h"

then the search path is ignored. Otherwise the compiler takes the search path
and, for every entry, appends the specified name to the directory name. For
example, if the header file to be included is "header.h" then the compiler
would search for it in the current directory (the result of appending header.h
to an empty string), then it would search for /include/header.h, and fi-
nally /helios/include/header.h. Note that it is important that all the
real directories specified in the search path end with a / character, or appending
the header name will generate gibberish.

-j is like -i but is used for include files enclosed in <> characters. It is used in exactly
the same way.

-w, -e, and -f control various options in the compiler such as which warning and error
messages are suppressed. These do not affect the actual code produced. More
information can be found in the help entry for cc.

-t can be used to specify a particular Transputer processor. The recognised options
include -t8 to compile for T800 or similar processors with a built-in floating
point unit, -t4 for a T414, and -t5 for a T425 or other processor without the
built-in floating point unit but with the dup, bytblt, and similar instructions.
The default is -t4 because under Helios a program compiled for the T414 can
run on any processor.

-s is used to specify the output file for the compiler. This will be an assembler text
file.

-p is used to pass pragmas to the compiler. Pragmas are system specific options to
the compiler. Usually they should not be put into source code because different
compilers will have a different set of pragmas. The -p string should be followed
by a letter and a number. For example, if the option -ps0 is given then this is
equivalent to the following line in the C code.

#pragma -s0

The most useful pragmas are:

3.2. MORE ADVANCED PROGRAMMING 125

1. -ps1 can be used to disable stack checking. This will result in a small
decrease in code size and a small speed-up. On Transputers there is no
hardware facility for detecting stack overflows and the associated memory
corruption. Hence the compiler puts extra code into the program to do the
checks in software. Clearly, disabling these checks should be done only
once a program has been fully debugged.

2. -pf0 is used to disable the vector stack. This may be necessary when pro-
ducing Resident libraries. A description of the vector stack mechanism is
given in chapter 16, Program representation and calling conventions.

3. -pg0 can be used to suppress the putting of names into the binary code. By
default the C compiler will put the names of all routines in the code pro-
duced and this can be used by, for example, the stack error handling. Sup-
pressing this will result in reduced code size and possibly a small speed-up,
but again it should not be used until the program has been fully debugged.

-l is used when building Resident libraries and device drivers. It stops the compiler
from outputting code for certain things including module headers, calling stubs,
and static data declarations. More information is given in chapter 16, Program
representation and calling conventions.

asm

The asm program can be used in two main ways. First it can take one or more assem-
bler text files and produce the binary object files. A command line to do this is:

asm -p -o module.o module.s

The -p argument specifies that no linking should take place. The assembler text file
module.s is transformed into a binary file module.o containing the same information,
but using up rather less file space. Multiple source modules can be specified. If so then
the assembler produces a single binary file containing the different modules. This is
used by the compiler driver to build Scanned libraries.

asm -p -omaths.lib matrix.s fourier.o integral.o simuleqn.s

Note that the assembler can take a mixture of text .s files and binary .o files. The
latter are unchanged, but are now incorporated into the single binary file. To invoke
the asm program as a linker a command line like the following should be used.

asm -o a.out /helios/lib/c0.o program.o -l/helios/lib/helios.lib \
-l/helios/lib/c.lib -l/helios/lib/bsd.lib

Since no -p argument is given the assembler will attempt to link the various parts
together to produce an executable program. The first of these must be some start-up
code. Unless there is some start-up code at a known fixed location within the binary
file the system cannot start the program. For C programs the normal start-up code
is held within the file /helios/lib/c0.o, which calls the routine main() inside the C
library. Once the C library has initialised itself it will call main() inside the user’s
program, and the user’s code can now be executed. Languages other than C will have

126 CHAPTER 3. PROGRAMMING UNDER HELIOS

their own versions of this file. In addition there is a file /helios/lib/s0.o for use by
special programs which do not need the C library.

The start-up code is normally followed by the user’s own code, as one or more
modules. Any number of modules can be given. Finally the necessary libraries are
included. helios.lib includes the Kernel, System library, Utility library, Server library,
Fault library, Floating Point library, and Posix library. This is normally used for all
programs irrespective of the language. c.lib contains the C library only, so this is used
only when linking C programs. Again other languages will have their equivalents. The
assembler has a number of other options.

-v puts the assembler into verbose mode. This causes it to report progress at
regular intervals, and produce a summary at the end.

-f specifies a fast link. This means that the assembler should attempt to optimise
the output produced, hopefully speeding up the code and reducing its size.
This optimisation can take a long time for big programs. This facility is used
by the -O option of the compiler driver.

s0.o

By default every C program is linked automatically with the C library, because in the
vast majority of cases this is what is required. Occasionally it may be necessary or
desirable to avoid using the C library. One reason would be if the target program
is to run on a processor with very little memory, for example 512K. Another reason
would be for writing simple Helios servers, which should use up as little memory
as possible because they run continuously. Writing such programs can be difficult,
as the application programmer must take care to avoid using any C library routines,
which is a somewhat unusual way of programming. For example it no longer possible
to use stdin, stdout, fprintf(), or anything similar. Only the following C routines
can be used: strlen(), strcpy(), strncpy(), strcat(), strncat(), strcmp(), strncmp(),
memset(), memcpy(), setjmp(), or longjmp().

For such special needs Helios is shipped with an alternative piece of start-up code,
namely /helios/lib/s0.o. Instead of calling _main() in the C library, this code calls
main() in the user’s program immediately. Note that the system cannot perform any
initialisation on behalf of the program, so the program has to do more work than is
usual. To link such a program the following command line can be used.

asm -v -f -olockserv /helios/lib/s0.o lockserv.o \
-l/helios/lib/helios.lib

If the application programmer chooses to use the Posix library but not the C library
the initialisation is relatively easy. The Posix library contains a routine _posix_init()
which can do most of the work. The program should start with code something like
this:

#include <unistd.h>

int main(void)

3.2. MORE ADVANCED PROGRAMMING 127

{ int argc;
char **argv;

{ char **argv1;
argv = argv1 = _posix_init();
for (argc = 0; *argv1 != (char *) NULL; argc++, argv1++);

}

/* The normal user program starts here. */
}

Using the Posix library but not the C library saves some overhead, but not all. It
is possible to write applications that rely only on the libraries built into the Nucleus:
the Kernel, System library, Server library and Utility library. This would save another
30K of memory, but leaves the programmer with even fewer library routines available.
The start-up for such a program might look something like this.

#include <syslib.h>
#include <task.h>

int main(void)
{ Environ env;

if (GetEnv(MyTask->Port, &env) < Err_Null)
{ IOdebug("MyProgram: failed to receive environment");

Exit(0x100);
}

}

The environment block env will contain pointers to various vectors, including Strv
for the program’s standard streams, Envv for the environment strings, and Argv for
the program’s arguments. All of these vectors are terminated by a NULL pointer.

Occasionally, particularly for basic system servers such as the RAM disc, it may
be desirable to start programs without an environment at all. This is possible from
the initrc file or from the network resource map. For example the following two lines
from an initrc file start up two programs, one with an environment and one without.

run /helios/lib/lockserv
run -e /helios/bin/startns startns default.map

The first line runs a lock server without an environment at all. Hence the lock server
does not receive any arguments, environment strings, standard streams, or anything
else: everything must be done the hard way. The second line runs the startns program
with a full environment including the arguments specified on the command line, and
environment strings and standard streams inherited from the init program. Note that if
a program is written to not receive an environment at all then it cannot be started from
a shell, because the shell will always attempt to send an environment.

Start-up for programs that do not accept an environment is very easy. main() is
called without any arguments, and the program should not call getenv(). The program

128 CHAPTER 3. PROGRAMMING UNDER HELIOS

is limited in what it can do; for example, it does not have a current directory so it
cannot perform file I/O in this directory.

3.3 Servers

This section describes the various ways of interacting with servers. Essentially there
are three ways of interacting with servers. The first is from the command line, for
example:

myprog >& /logger

This would execute the program myprog and send the output to the logger server.
Many Helios servers work in much the same way; for example, it is possible to use a
command like this to redirect output to a file in a filing system or in a RAM disc, to a
window, to the null server, to the error logger, and so on. However, it is not possible
to redirect output to, for example, the mouse server because there is no reason for a
mouse server to read data.

The second way is through C library or Posix library calls, from inside the user’s
application. Essentially this uses mechanisms defined by existing standards to perform
I/O. For example, the following piece of code opens a file and writes to it.

FILE *str = fopen("hello", "w");
fputs("Goodbye\n", str);

The third mechanism involves using Helios specific facilities. For example, exist-
ing Unix standards do not describe how a mouse behaves, so a mechanism has been
implemented which is suitable for the sort of hardware that typically runs Helios. If
application programmers use these mechanisms then their code will not be portable to
systems other than Helios. On the other hand, for some applications this is unavoid-
able.

This section begins with a summary of the Posix library I/O routines, which will
suffice for the majority of applications. Next it gives a description of the System li-
brary routines, indicating the similarities and differences compared to the Posix library.
Finally there are descriptions of some of the more common servers available under He-
lios: file systems; the /window server; the /rs232 server; the /centronics server; the
/mouse and /keyboard servers; the various networking servers; the Nucleus /tasks and
/loader; the null server; the error logger; the real-time /clock server; the lock server;
the raw disc server; X windows; and pipe and socket I/O.

3.3.1 Posix facilities

The Posix library provides a wide range of I/O facilities. In fact it has to support all
the I/O facilities that Unix systems might use. Some Posix routines operate on named
objects, for example the unlink() routine acts on one specific named object. Other
routines operate only on open files and require a file descriptor, for example read() can
be used to read data from an open file or server. File descriptors are simple integers
starting at 0. Detailed information on specific routines can be found in the online help
system or in the Helios Encyclopaedia. The most useful routines in the first category
are:

3.3. SERVERS 129

open() is used to open a stream to a named file or server, creating/truncating the object
depending on the exact open mode used. It returns a file descriptor that can be
used by routines such as read() and select().

opendir() is like open() but acts on a directory instead of a file.

creat() is similar to open(), and is used to create or truncate a file or server. It returns
a file descriptor.

mkdir() is like creat() but creates a directory instead of a file.

unlink() is used to delete a file, provided the application has sufficient access to the
file. The way it interacts with servers depends very much on the server. For
example, deleting the error logger clears its memory, but deleting the mouse has
no effect.

rmdir() is like unlink() but acts on directories rather than files. It is rarely useful for
anything other than file systems.

rename() can be used to change the name of a file or object. Note that renaming a
file is not the same as moving it. Renaming it is usually permitted only within
one directory and cannot be used to move a file from one directory to another.
Similarly renaming cannot be used to move a file from one file system to another.
Such operations should be implemented by making a copy of the file and then
deleting the original.

link() is used to create a symbolic link, in other words an entry in the naming tree
which actually refers to some other object elsewhere in the naming tree. It is
only useful inside file systems.

access() can be used to examine an application’s current access rights to a file or
server. Please note that the Helios protection mechanisms are not the same as
those assumed by the Posix standard, so the information returned by this routine
is not necessarily completely accurate. For more details please see chapter 5,
Compatibility.

stat() fills in a struct stat data structure with various pieces of information about the
file or server, such as its type, its size, and the time when it was last changed.
This is used by, for example, ls -l to obtain additional information about a spe-
cific object.

getcwd() fills in a buffer with the name of the current directory. This allows applica-
tions to change the current directory with chdir() and restore it later on.

chdir() changes the current directory to that specified. After a call to chdir() any
relative pathnames (that is, ones not beginning with a slash character /), are
relative to the new current directory.

ctermid() puts the name of the current controlling terminal, usually the application’s
current window, into the specified buffer.

130 CHAPTER 3. PROGRAMMING UNDER HELIOS

pipe() takes as argument an array of two file descriptors. The routine creates a new
pipe, with one end allowing read-only access and the other end write-only ac-
cess. File descriptors for these two ends are put into the array. Typically this
routine is called just before starting another program with vfork() and execve(),
to allow the new child program to interact with its parent.

socket() bind(), accept(), connect() and a considerable number of related routines are
used for interacting with sockets, a Unix compatible mechanism for interaction
between programs. Typically these routines are used for interaction between a
client and a server on two different machines attached to the same internet, but
the routines can be used more generally.

The most useful routines acting on existing file descriptions are:

close() terminates a stream connection to a file or server that was produced by open()
or
create().

closedir() applies the same operation to an open directory.

readdir() and rewinddir() interact with an open directory to extract the data.

read() attempts to obtain data from an open file or server.

write() attempts to send data to an open file or server.

lseek() can be used to control the position within the file for the next read() or write()
operation. Usually this routine has no effect on servers.

select() is available to determine whether various streams, either to files or to servers,
have data to be read or can accept more data from a write.

dup() duplicates an existing file descriptor, returning a new integer.

dup2() is rather more useful. It attempts to take an existing file descriptor and open
a second stream to the object. This second stream should use the file descriptor
specified as the second argument. A typical use for this would be inside the child
process produced by vfork(), to overwrite the standard input and output streams
of the child with pipes to the parent.

isatty() takes a file descriptor as argument and checks whether or not the stream
corresponds to an interactive stream such as a window or a serial line. This
is particularly useful to check the nature of the streams inherited through the
environment, for example to check that a particular stream really does refer to a
window and has not been redirected to or from a file.

ttyname() can be used on interactive streams to determine the name of the stream. It
is like ctermid() but can be used on any interactive file descriptor.

fstat() is like stat() but operates on an open file descriptor rather than on a named
object. The information produced is usually the same, except that fstat() is
more likely to give an accurate file size than stat() with some servers.

3.3. SERVERS 131

fileno() takes a C stream, in other words a FILE pointer such as stdin, stdout, or
stderr, and extracts the underlying Posix file descriptor.

fdopen() performs the inverse operation to fileno(), taking a Posix file descriptor and
turning it into a C FILE * stream.

cfgetospeed() cfsetospeed(), cfgetispeed(), cfsetispeed(), tcgetattr(), and tcsetattr()
can be used to control window and RS232 servers.

3.3.2 System library facilities

The System library uses three different types of data. Like the Posix library it uses
names of files and servers. However the System library routines do not operate on
names in isolation. Instead the various routines always involve a context of some sort,
and contexts are specified by Object data structures. Also, instead of using integer file
descriptors to represent open streams the System library uses Stream data structures.
The following code fragment indicates two ways of opening a stream to an existing
file in the current directory.

int fd = open("data", O_RDONLY);

Object *current_dir = cdobj(); /* get from environment */
Stream *str = Open(current_dir, "data", O_ReadOnly);

In practice the Posix library always uses the current directory as the context Object.
The System library is more flexible in that various different context Objects are pos-
sible. These contexts can be obtained dynamically by calls to Locate() or Create(),
or they may be inherited through the environment through the Objv vector. A C pro-
gram’s environment can be obtained through the getenviron() call.

Both the Object and the Stream data structures are to be found in the header
file called /helios/include/syslib.h. The names used in System library calls can be
absolute, in other words beginning with a slash character /, or relative to the context
Object. All of the main routines acting on names require a context Object, with the
exception of Locate(). The purpose of the context being also to define the access rights
of the application, and unless a suitable context is provided the application will have
only default access to the file or server. Similarly if an absolute pathname is used
then the application will have only default access. This default access may or may not
suffice for the application’s requirements.

The following code fragment illustrates the use of System library calls to create a
new text window, as is done by the run and wsh commands.

Object *create_window(char *name)
{ Environ *env = getenviron();
Object *window_server = env->Objv[OV_CServer];
Object *new_window =Create(window_server, name, Type_Stream, 0,

Null(BYTE));

return(new_window);
}

132 CHAPTER 3. PROGRAMMING UNDER HELIOS

The routine extracts a context Object for the current window server from the envi-
ronment, and creates a new entry in the /window directory. This new entry is equiva-
lent to a new window, so another window will actually pop up on the screen. A stream
to this new window can now be opened in order to write to the window or read data
from that window. Alternatively the window can be removed from the screen by a call
to Delete(). The main routines in the System library acting on Objects and names are:

Locate() can be used in two ways. If it is given an absolute pathname, with or without
a context, then it checks whether the file or server exists and returns a suitable
Object. The application will have only default access, for example it might not
be able to delete the file. Alternatively the routine can be given a context such as
the current directory and a relative pathname, and it will return an Object with
suitable access.

Create() returns an Object like Locate(), but it is used to create a new file or alter-
natively to truncate an existing one. The exact behaviour depends on the file
system or server. For example, attempting to Create() a file that already exists
is equivalent to truncating it. Attempting to Create() a window that has the same
name as an existing window will succeed, and the window server will actually
create a new window which has a modified name. For example, if a user exe-
cutes the wsh command twice in a row then there will be two Create requests
for a window called shell and the window server will create two new windows
shell and shell.1. Note that the System library Create() is somewhat different
from the Posix library creat(), which is just a modified version of open().

Open() is used to establish a stream connection, and it will return a Stream struc-
ture that can be used for calls to Read(), Write() and so on. Like the Posix
open() routine there are various different open modes including O_ReadOnly,
O_Truncate, and O_Create.

ObjectInfo() is the System library’s equivalent to stat(), but the information produced
is somewhat different. Similarly there are routines Link(), Delete(), and Re-
name() which perform the obvious actions.

ServerInfo() can be used to get additional information about a server. For example,
applied to a file server it gives disc usage statistics, and applied to a processor it
gives performance statistics.

SetDate() can be used to change the time stamps associated with a file. It is used by
the touch() command.

Protect() Refine() and Revoke() are used to implement the Helios protection mecha-
nisms.

The routines operating on streams tend to be similar to the Posix ones. The fol-
lowing table indicates the equivalents.

3.3. SERVERS 133

System library Posix equivalent
Read() read()
Write() write()
Seek() lseek()
Close() close()
GetFileSize() fstat()
GetAttributes() tcgetattr()
SetAttributes() tcsetattr()
SelectStream() select()

The System library’s equivalent to the isatty() routine is to examine the Flags field
of the Stream structure. In addition the System library provides a considerable number
of other routines that are useful.

EnableEvents(), Acknowledge() and NegAcknowledge() are used to interact with
servers
such as mice that generate real time data. An example is given in section 3.3.7
on the mouse server.

Socket(), Bind(), Listen(), Accept(), and Connect() are the System library equiva-
lents of the Posix routines for manipulating sockets.

Load() and Execute() can be used to start programs on the local processor or on a
specific processor. These are normally used only by system programs. Applica-
tion programs should use the Posix library’s vfork() and execve() routines for
executing a single program, and the Resource Management library for executing
parallel applications.

SendSignal(), InitProgramInfo(), and GetProgramInfo() can be used to interact with
a running program. SendEnv() and GetEnv() manipulate program environ-
ments. Again these should not normally be used except in system programs.

Malloc() and Free() are the System library’s equivalent of the Posix memory manage-
ment routines. They offer no advantages over the Posix routines but are useful
for writing certain applications that are not linked with the Posix or C libraries,
as described in the previous section.

Exit() can be used to force a program termination. It works at a lower level than the C
library’s exit() routine, bypassing the C library tidying up code. In particular, if
Exit() is used instead of exit() then the application’s buffers may not get flushed
and hence the output files may be incomplete.

MachineName() can be used to determine the full name of the current processor.

AddAttribute(), IsAnAttribute() and similar routines manipulate window and serial
line attributes in a more general way than the Posix mechanisms. These are
described in more detail in section 3.3.4 on the /window server, below.

The vast majority of applications should not attempt to use the System library. Its
main purpose is to support higher-level facilities such as the Posix and C libraries.

134 CHAPTER 3. PROGRAMMING UNDER HELIOS

3.3.3 File systems

Helios has a wide range of servers offering file I/O of some sort. The main ones are
listed below.

1. The Helios file system can be used on processors in the network with suitable
hardware, for example a SCSI hard disc. This is the main file system supported
by Helios, and in particular it supports symbolic links and the full Helios protec-
tion mechanism. The file system can also be used with raw disc servers attached
to a host machine, typically a spare partition on a PC.

2. NFS permits Helios to access remote file systems over the ethernet. NFS is
designed around the Unix file access model so this system does not support
Helios capabilities.

3. Unix I/O servers attached to the network allow access to any disc drives attached
to the Unix workstation, as well as NFS drives mounted on that workstation. The
same limitations apply as for NFS.

4. PC I/O servers allow access to the MS-DOS file system, usually including floppy
disc drives. The MS-DOS file system is limited in many respects, in particular it
can only support filenames of eleven characters, three of them in the suffix. File
names are not case sensitive and the server will automatically translate names to
lower case. Symbolic links and protection are not supported at all. Text files are
held in a slightly different format, using two characters at the end of every line
instead of one, and Language libraries such as the C library must translate data
between these formats when it is read or written. Given an open Stream structure
to a file it is possible to check whether or not it is on an MS-DOS compatible
filing system, as shown below.

#include <nonansi.h>
#include <stdio.h>
#include <syslib.h>

bool is_file_msdos(FILE *str)
{ Stream *stream = Heliosno(str);
/* convert from C library to system library descriptor */
if (stream->Flags & Flags_MSdos)
return(TRUE);

else
return(FALSE);

}

5. The MS-DOS compatible disc server allows Helios to use floppy or hard disc
hardware attached directly to a processor in the network. This server supports
only MS-DOS compatible discs so it is subject to the same limitations as a disc
in the I/O server.

6. Every processor in the network can run a RAM disc and this is loaded automat-
ically on demand. RAM discs provide fairly fast I/O, but obviously the data is

3.3. SERVERS 135

not preserved if the machine is switched off or rebooted. RAM discs provide
the same functionality as the Helios file system, including symbolic links and
protection.

7. ROM discs are used occasionally in stand-alone systems without a host pro-
cessor which boot a Nucleus from EPROM or from disc. The ROM disc may
contain various useful configuration files, allowing the system to start up fully.
ROM discs are read-only, and to change the files it is necessary to rebuild the
ROM disc and then incorporate it into a new Nucleus. This Nucleus then has to
be blown into EPROM or put on the appropriate location of the hard disc.

8. The include disc provides a read-only file system containing the Helios header
files, and is designed to speed up compilation.

File systems essentially all look alike, providing a directory hierarchy with files as
the leaf nodes. They permit files and directories to be opened, examined, read, closed,
and so on. Usually writing to a file is also permitted. Some file systems support more
advanced facilities such as symbolic links and full multi-user protection.

3.3.4 The /window server

After file I/O in its various forms, the most common type of server used under Helios
is the window server. A typical window supports 80 columns and 25 rows of text
output with various special escape sequences to perform operations such as clearing
the screen or moving the cursor to a particular location. Shells, editors, and most of
the commands supplied with Helios expect to run inside such text windows.

Helios provides multiple windows wherever possible. If it is possible to display
real windows on the screen, for example on a bit-mapped display running the X win-
dow system, then every Helios window corresponds to a separate graphics window on
the screen. If the underlying display provides only text output then Helios can still
provide multiple windows. At any one time only one window will be visible, but one
or more hot keys can be used to switch between windows and bring another one to the
front. Typical keys used for hot-key switching include Alt-F1 and Alt-F2 in the PC I/O
Server, and PageUp/PageDown in the tty server.

A /window server is a directory containing entries for every window. Usually it
is provided in the I/O server, either on a PC or in a Unix workstation. There is also a
tty server /tty.0, /tty.1 and so on which is used, typically, when logging in to Helios
over the ethernet. Occasionally there will be a /console server which supports only a
single window rather than a collection of windows. The exact server used does not
matter since they all behave in the same way, defined below. Programs inherit the
information they need to interact with the window server through their environment,
just like details of the current directory and the user’s session are inherited. There is a
command tty which displays the name of the current window. At the Posix level, the
ctermid() routine provides the same facility.

Creating new windows

Because Helios provides multiple windows wherever possible, it must be able to create
and delete windows. Normally this is done with the wsh and run commands rather

136 CHAPTER 3. PROGRAMMING UNDER HELIOS

than from inside user’s applications, but the facilities are available if desired. The
following code fragment illustrates how it can be done.

/* display a message on an empty window for a few seconds */
void write_to_new_window(char *message)
{ Environ *env = getenviron();

Object *CServer = env->Objv[OV_CServer];
Object *window;
Stream *str;

window = Create(CServer, "Message", Type_Stream, 0, Null(BYTE));
if (window == Null(Object))
{ fputs("Error: failed to create new window.\n", stderr);

return;
}

str = Open(window, Null(char), O_ReadWrite);
if (str == Null(Stream))
{ fputs("Error: failed to open new window.\n", stderr);

return;
}

(void) Write(str, message, strlen(message), -1);
Delay(10 * OneSec);

Close(str);
Delete(window, Null(char));
Close(window);

}

When the application has finished with the window and all streams to it have been
closed then the window can be deleted. This can be done from inside the application
or using the rm command. It is not possible to delete a window if there are still open
streams to it.

Executing a program inside the new window is slightly more difficult, as it is nec-
essary to patch the environment for the child program. If this is done using Posix
vfork() and execve() then it should be done inside the child process, directly after the
vfork(), by overwriting parts of the environment returned by getenviron(). If it is done
with Helios calls then the environment has to be built manually anyway. The relevant
fields that must be manipulated are the OV_Console entry of the object vector, and the
first three entries in the streams vector which are the program’s standard I/O streams.

Console modes

Windows can be complicated servers to program because they need to operate in a va-
riety of different ways. For example, when a shell or an editor needs to read data from
the keyboard these expect to get the data one character at a time, and the characters
should not be echoed. On the other hand if the cat program is used to take some data
from a keyboard and redirect it to a file then the program expects to receive its data a
whole line at a time and, even it wanted to do so, it would not be able to echo the char-
acters until a whole line had been typed in. To support all the different requirements

3.3. SERVERS 137

windows can be put into various different modes.

Echo mode means that the window server should echo characters typed in to a partic-
ular window. This is enabled by default and some applications such as editors
will need to disable this mode.

Pause is used to enable CTRL-S and CTRL-Q handling and is enabled by default.
Hence if a big file is displayed on the screen then the user can type CTRL-S
to suspend output for a file and CTRL-Q to resume it later. Again applications
such as editors need to disable this mode because they use these keys as input.

RawInput determines whether characters are read one character at a time or a whole
line at a time. The default is cooked input, in other words line at a time. In
cooked mode the window server also takes care of operations such as backspace
to delete a character. The application does not receive any data until a whole
line has been typed in, terminated by the return key. The input mode controls
the character produced by the return key. In raw mode the return key produces a
carriage return character ’\r’, hex 0x0D. In cooked mode the return key marks
the end of a record, and hence it returns a linefeed character ’\n’, hex 0x0A.

RawOutput is less useful. By default a window is in cooked output mode which
means that any linefeed characters ’\n’ , hex 0x0A, are translated into carriage-
return/linefeed pairs. In raw output mode a linefeed character simply moves the
cursor down one line, scrolling if necessary, but leaves the horizontal position
unchanged.

IgnoreBreak controls some of the behaviour of the CTRL-C key. By default this
option is disabled. If an application enables it then the CTRL-C key will be
ignored completely, which may be useful occasionally.

BreakInterrupt is enabled by default. If enabled then hitting the CTRL-C key will
generate an asynchronous event, probably resulting in the current application
being sent a SIGINT signal and terminating. Applications such as editors need
to disable this mode or they will be unable to process this key.

The Posix and System libraries have similar mechanisms for controlling window
modes, based on an attributes structure. The following code fragment illustrates the
Posix way of disabling echoing on the standard input stream.

#include <termios.h>

void disable_echo(void)
{ struct termios attr;

if (!isatty(0))
{ fputs("Fatal: standard input has been redirected.\n", stderr);

exit(EXIT_FAILURE);
}

tcgetattr(0, &attr);
attr.c_lflag &= ˜ECHO;

138 CHAPTER 3. PROGRAMMING UNDER HELIOS

tcsetattr(0, &attr);
}

The tcgetattr() routine extracts the current window attributes into a termios struc-
ture. These attributes can now be modified locally, and then they can be installed in
the window server by a call to tcsetattr(). The termios structure contains four fields
defining the screen mode: c_oflag, c_iflag, c_cflag, and c_lflag. At the Posix level,
applications need to check these four sets of flags explicitly and set or clear individual
bits. The following table shows which Helios screen modes correspond to which flags
in the termios structure.

Mode Posix name Flag
Echo ECHO c_lflag
Pause IXON c_iflag
RawInput not ICANNON c_lflag
RawOutput not OPOST c_oflag
IgnoreBreak IGNBRK c_iflag
BreakInterrupt BRKINT c_iflag

Note that the flags used by Posix to control raw input and output have the inverse
meaning to the Helios ones, so for example to set raw input mode it is necessary to
clear the ICANNON bit. Equivalent code to clear the echo console mode using only
Helios code is shown below.

#include <syslib.h>
#include <attrib.h>
#include <nonansi.h>

void disable_echo(void)
{ Attributes attr;

Stream *str = Heliosno(stdin);

if ((str->Flags & Flags_Interactive) == 0)
{ fputs("Fatal: standard input has been redirected.\n", stderr);

exit(EXIT_FAILURE);
}

GetAttributes(str, &attr);
RemoveAttribute(&attr, ConsoleEcho);
SetAttributes(str, &attr);

}

The equivalent routines to tcgetattr() and tcsetattr() are GetAttributes() and the
routine SetAttributes(). The resulting attribute information should not be examined
or changed directly. Instead the System library provides various routines to do this:

IsAnAttribute() returns TRUE if the specified attribute is enabled, FALSE otherwise.

AddAttribute() enables one specific attribute.

RemoveAttribute() disables one specific attribute.

3.3. SERVERS 139

The recognised Helios attributes for windows are: ConsoleEcho, ConsolePause
and also ConsoleIgnoreBreak, ConsoleBreakInterrupt, ConsoleRawInput and Con-
soleRawOutput. Using the System library has the advantage that the programmer
need not worry about which field of the attributes structure holds the relevant bit, but
it does mean that attributes can be manipulated only one at a time.

Screen size

Text windows come in various sizes. Usually they are all 80 columns wide, but heights
vary from 20 rows to 25 and higher. Hence there must be some way of determining
the current window size, and this is handled by an extension to the attributes system.

At the Posix level, the termios structure contains two fields c_min and c_time.
The first contains the current number of rows, in other words the screen height. The
second contains the number of columns, the screen width. At the System library level,
the Attribute structure contains fields Min and Time with the same meanings. The
following code fragment obtains the current screen size.

void find_screen_size(int *rows, int *columns)
{ Stream *str = Heliosno(stdin);

Attribute attr;

GetAttributes(str, &attr);

*rows = attr.Min;

*cols = attr.Time;
}

Usually the size of a window is fixed and it is not necessary for applications to cope
with resizable windows. Helios does not have a mechanism for informing applications
that the window size has changed. If an application needs to cope with such changes
then it must check the current window size at regular intervals, typically in a separate
thread that is Fork()ed off.

Output sequences

When an ordinary ASCII character is written to the screen it appears at the current
cursor position, which is advanced one column. If a character is written into the final
column then the cursor stays in that column. However, writing a second character
without outputting a carriage return or linefeed will cause an implicit wrap (the cursor
is moved to the first column of the next row, scrolling if necessary, before the second
character gets written). This behaviour ensures that it is possible to write a character
into the bottom right-hand corner of the screen. There are a number of special output
characters such as linefeed.

0x07 , ’\a’, the bell character. Outputting this will produce an alert of some sort. It
depends on the window server exactly how this alert is implemented. If suitable
hardware is available then the bell character will actually cause a bell to be rung.
Alternatively the alert might cause the screen to flash.

0x08 , ’\b’, the backspace character. If the cursor is already in the left-most column
then outputting this character has no effect. Otherwise the cursor is moved left

140 CHAPTER 3. PROGRAMMING UNDER HELIOS

one column, without overwriting the character that used to be there. To erase a
character the sequence "\b \b" can be used.

0x09 , ’\t’, the tab character. This moves the cursor horizontally to the next tabbing
position. Helios defines the tabbing positions to be eight characters apart at all
times. If a tab character moves the cursor past the last column on the current
row then the cursor will automatically move to the first column of the next line,
scrolling if necessary.

0x0A , ’\n’, the linefeed character. This has different effects depending on whether
the window is currently in raw output mode or in cooked output mode. In raw
mode a linefeed character moves the cursor down to the next row, without chang-
ing the column position. If necessary this will cause the window to scroll. In
cooked mode a linefeed character will cause the cursor to move to the first col-
umn of the next row, in other words both column and row positions are affected.

0x0B , ’\v’, the vertical tab character. If the cursor is already in the top row then
this character has no effect. Otherwise it moves the cursor up one row, leaving
the column position unchanged.

0x0C , ’\f’, the form feed character. This character clears the screen, leaving the
cursor position in the top left corner.

0x0D , ’\r’, the carriage return character. This moves the cursor to the first column
of the current row. If the cursor is already in the first column then this character
has no effect.

In addition Helios windows accept a number of special escape sequences, based
on the ANSI standard x3.64-1979 Additional controls for use with American national
standard code for information interchange. These sequences all start with a control
sequence introducer or CSI. There are two types of CSI. The first consists of single
character 0x9B. The second consists of two characters, escape 0x1B, followed by ’[’
0x5B. Both CSIs have the same effect. This CSI may be followed by some data,
consisting of numbers separated by semicolons. The sequence is terminated by a single
character which specifies the exact operation. For example, to move the cursor to a
particular position on the screen the following code fragment could be used.

void move_cursor(int row, int column)
{ printf("%c%d;%dH", 0x9B, row, column);

fflush(stdout);
}

Note that the CSI is output as a single character whereas the row and column
numbers are output as plain text. The following escape sequences are supported.

cursor up 0x9B [n] A moves the cursor n rows up, leaving the column position
unchanged. If this would take the cursor past the top of the screen then it sticks
at the top, and the screen does not scroll down.

cursor down 0x9B [n] B moves the cursor n rows down, leaving the column po-
sition unchanged. This will cause the screen to scroll if necessary.

3.3. SERVERS 141

cursor right 0x9B [n] C moves the cursor n columns to the right, but not past the
last
column.

cursor left 0x9B [n] D moves the cursor n columns to the left, but not past the
first column.

cursor on 0x9B [n] E moves the cursor n lines down and to the first column. The
screen will scroll up if necessary.

cursor back 0x9B [n] F moves the cursor n lines up and to the first column. The
screen will not scroll down.

move cursor 0x9B [m] ; [n] H moves the cursor to row m column n. The top
left corner of the screen has coordinates (1,1).

erase screen 0x9B J erases all characters on the current row starting at and includ-
ing the current cursor position. In addition it erases all characters on subsequent
rows. If the cursor is currently in the top left corner then this sequence erases
the whole screen, like the form feed character.

erase line 0x9B K erases all characters on the current row starting at and including
the current cursor position. Other rows are not affected.

insert line 0x9B L inserts a blank row at the current cursor position. Rows below
the current cursor position scroll down and the bottom row is lost completely.
The current cursor position remains unchanged.

delete line 0x9B M deletes the current row. All rows below the current cursor posi-
tion scroll up, and the bottom row becomes blank. The current cursor position
remains unchanged.

insert characters 0x9B [n] @ inserts n characters at the current cursor position.
The characters currently below and to the right of the cursor are shifted right,
and the ones on the right-hand side are lost. The current cursor position and the
other rows are not affected.

delete characters 0x9B [n] P deletes n characters starting at the current cursor
position. The remaining characters on the current row are shifted left, and blank
characters are placed in the right-most columns. The current cursor position and
other rows remain unchanged.

scroll up 0x9B [n] S scrolls the whole screen up n rows. Blank lines are inserted
at the bottom of the screen.

scroll down 0x9B [n] T scrolls the whole screen down n rows. Blank lines are
inserted at the top of the screen.

set rendition 0x9B [n] m can be used to affect the way characters are displayed on
the screen. Currently the only features supported are 7 to enable inverse video
and 0 to disable inverse video.

142 CHAPTER 3. PROGRAMMING UNDER HELIOS

For all escape sequences that take arguments, if no digits are specified then the
window server will default to the value 1.

Input sequences

Window servers usually provide input from a keyboard as well as output to a screen.
The majority of keys will generate the expected ASCII characters. For example press-
ing key a will generate the byte 0x61, which can then be read by an application in the
usual way.

Some keys such as the function keys do not have associated ASCII values. These
keys generate byte sequences similar to the output escape sequences, consisting of a
control sequence introducer which is always the character 0x9B, followed by one or
more extra characters. The following sequences are commonly available.

For example, pressing function key 5 would generate a sequence of three bytes:
the control sequence introducer 0x9B; the ASCII character 4, 0x34; and the tilde char-
acter ˜ 0x7E. Helios runs on a wide range of hardware with a corresponding variety
of keyboards. Applications should avoid relying on particular keys such as PageUp
and PageDown because these may not always be available. For example MicroEmacs
supports CTRL-B, CTRL-F, CTRL-N, and CTRL-P as alternatives for the four arrow
keys in case the arrow keys do not work. See the following table for a list of keys and
the sequences they generate.

Key Sequence
Up arrow 0x9B A
Down arrow 0x9B B
Right arrow 0x9B C
Left arrow 0x9B D
Help 0x9B ? ˜
Undo 0x9B 1 z
Home 0x9B H
End 0x9B 2 z
PageUp 0x9B 3z
PageDown 0x9B 4z
Insert 0x9B @
F1 0x9B 0 ˜
F2 0x9B 1 ˜
F3 0x9B 2 ˜
F4 0x9B 3 ˜
F5 0x9B 4 ˜
F6 0x9B 5 ˜
F7 0x9B 6 ˜
F8 0x9B 7 ˜
F9 0x9B 8 ˜
F10 0x9B 9 ˜

Special events

Occasionally an event occurs that should bypass the normal flow of events. For exam-
ple, if the user presses the CTRL-C key then that user expects the current application
to terminate immediately, and not wait for all previously typed keys to be processed.
To cope with such requirements Helios provides an asynchronous event mechanism.
In the case of the window server the only supported event is a CTRL-C break event.

3.3. SERVERS 143

Usually the shell intercepts all such events and ensures that the appropriate action is
taken, which usually means sending a SIGINT signal to the current foreground appli-
cation. Hence application programmers do not need to worry about special window
events.

Subsection 3.3.7 on the mouse and keyboard server gives an example code frag-
ment illustrating the use of the events mechanism. Should an application need to
intercept console events then it can use similar code, substituting Event_Break for
Event_Mouse.

3.3.5 The /rs232 server

Even with modern bit-mapped displays there are still uses for serial RS232 lines. Con-
ventional dumb terminals can be attached to such serial ports and, using the tty server
to provide multiple windows, it is possible to have additional users logged in to the
Helios machine through these terminals. Another use involves a terminal emulator to
login to a different machine from Helios, as an alternative to the ethernet mechanisms.
A third use is to control a dial-up modem.

Typically an RS232 server needs to cope with more than one port. For example, a
common add-on card for a Transputer system would have eight RS232 lines to connect
to dumb terminals. Hence the /rs232 server is implemented as a directory containing
a number of ports, which can be viewed with the ls command just like any other di-
rectory. There will always be one entry in the directory, called default. Hence an
application program can always open /rs232/default, without needing to know what
the ports are actually called. If the server supports more than one port (for example,
com1 and com2), then there will be three entries in the directory called default, com1
and com2. There will be some way of configuring the RS232 server so that default
maps onto either com1 or com2. Also, it is possible to rename either com1 or com2 to
default to change the default port dynamically. The following three shell commands
would make com1 the default port.

% pushd /rs232
% mv com1 default
% popd

For example, a user runs the public domain communications utility kermit to con-
nect to a remote machine. Kermit opens the server /rs232/default unless instructed
otherwise, and the RS232 server has been configured to map default onto com2. Hence
the user attempts to connect through com2. However, if it is necessary to connect
through com1 occasionally then the user can write a shell script which renames com1
to default, runs kermit, and then renames com2 to default again to restore the system.
Alternatively the -l option to kermit could be used to explicitly specify the port.

Once an application has opened a stream to an RS232 port, the port can be recon-
figured to suit particular needs. In this they are similar to windows. Just as a window
may need to be set to raw input mode to suit the needs of a particular application, so
do RS232 ports. The same termios and Attributes mechanisms are used, but with a
different set of modes. Also, serial ports can operate at a variety of different baud rates
or speeds, and they can generate asynchronous events such as modem rings.

144 CHAPTER 3. PROGRAMMING UNDER HELIOS

Baud rates

RS232 lines can operate at a number of different speeds or baud rates. In theory an
RS232 line should cope with different baud rates for sending and receiving data, but
not all hardware can support this. For example, the 8250 UART chip used in the IBM
PC and compatibles can cope with only a single baud rate for both input and output.
In such a case only the input speed is used, and the output speed is ignored.

At the Posix level, the routines cfgetispeed() and cfgetospeed() can be used to
determine the current baud rates. The Helios equivalents are GetInputSpeed() and
GetOutputSpeed(). Similarly there are Posix routines cfsetispeed() and cfsetospeed(),
and Helios routines called SetInputSpeed() and SetOutputSpeed(), to change the
baud rates. The recognised baud rates are:

Baud rate Posix name Helios name
50 B50 RS232_B50
75 B75 RS232_B75
110 B110 RS232_B110
134 B134 RS232_B134
150 B150 RS232_B150
200 B200 RS232_B200
300 B300 RS232_B300
1200 B1200 RS232_B1200
1800 B1800 RS232_B1800
2400 B2400 RS232_B2400
4800 B4800 RS232_B4800
9600 B9600 RS232_B9600
19200 B19200 RS232_B19200
38400 B38400 RS232_B38400

Not all hardware can cope with all the baud rates, particularly 19200 baud and
38400 baud, and if an attempt is made to set the baud rate to an illegal value then the
serial port will use some default instead. To detect this, the application should check
the attributes again after installing a new set.

Incoming and outgoing data

Data is sent and received in units of characters which may vary in size from 5 to
8 bits. This size excludes the optional parity bit, described below. The modes for
controlling the size are: Csize_5, Csize_6, Csize_7 and Csize_8. Only one data
size can be active at any one time, so to change the data size it is necessary to remove
the current size from the termios or Attributes structure and then insert the new size.
Determining the current size may involve checking up to four bits at the Posix level, or
up to four calls to IsAnAttribute(). The usual character sizes are 8 bits without parity
or 7 bits with parity.

Data is transmitted as a single start bit, followed by the character, an optional parity
bit, and either one or two stop bits. To choose between one and two stop bits, you
should use the Cstopb mode: if set, the RS232 port will use two stop bits; otherwise
it will use only one.

3.3. SERVERS 145

Flow control

Flow control has to be used between the sending and receiving ends of an RS232 line
to control the rate at which data is sent. The recommended approach to flow control
is XON/XOFF. When the sender is transmitting data too quickly and the receiver is
unable to process it quickly enough, usually because its client is not reading the data,
the receiver must suspend the sender for a while to avoid overflowing its buffer. This
is done by sending a single XOFF character. When the receiver is ready for more data,
it should send an XON character. After sending the XOFF character, there may be
some delay before the sender gets a chance to process it so the receiver must be able
to buffer at least another 128 characters.

To control XON/XOFF flow control there are two modes. First, IXON controls
XON/XOFF on output. If this mode is set and the application is writing down the serial
line, then the other side can suspend the write by sending an XOFF character. If the
mode is not set then the XON/XOFF characters may be read by the application. Note
that there may be some considerable delay between the port receiving the XON/XOFF
character and the application reading it, so applications should not normally perform
their own XON/XOFF handling. The second mode is IXOFF and controls XON/XOFF
on input. If this mode is set and the port is receiving data faster than the application is
reading it, then the port can send XOFF characters to the other side. If the attribute is
not set then the port may overflow its buffers, and data will be lost irretrievably. Data
may also be lost irretrievably if the other side is ill-behaved and continues to send data
after an XOFF.

The alternative approach to handshaking is to use the modem status lines. If the
Clocal mode is set then these lines are ignored. If the mode is not set then the server
will use the handshake lines to the best of its ability. However, the exact operation of
these handshake lines is not well-defined and different pieces of hardware are likely
to disagree about their interpretation. Under Helios the Data Terminal Ready (DTR)
line should be kept high whilst there is an outstanding read to be satisfied, allowing
the other side to continue to send data; also, while there is an outstanding write the
Request To Send (RTS) line should be kept high, and the server will send data when
the other side asserts the Clear To Send (CTS) line. However, RS232 servers are free
to interpret these handshaking lines in different ways or ignore them completely, if this
is appropriate for the hardware.

Parity

No less than six modes control the parity behaviour of an RS232 line. The first mode
is ParEnb: if this mode is set then the server will use either odd or even parity on both
input and output. Note that it is not possible to use parity on input but not on output
or vice versa, because little if any hardware supports it. If the mode is not set then
no parity is used, which means that the application does not need to worry about the
various parity errors.

The next mode is Istrip. If this mode is set then all data received from the RS232
line is stripped to the bottom seven bits. This is useful if the application is unsure
whether the other side is using seven bits with parity or eight bits without parity, be-
cause it ensures that at least seven bits are correct assuming no transmission errors. If

146 CHAPTER 3. PROGRAMMING UNDER HELIOS

the mode is not set then the top bit is not stripped.
The ParOdd mode is useful only if parity has been enabled: if set, odd parity will

be used; otherwise even parity is used.
The remaining parity modes control the detection of parity errors on input. Note

that the server cannot take any action if there are parity errors on output because this
can be detected only at the other side, and higher levels of protocol must take recovery
action. The attribute InPck controls whether it is the client or the server that should
notice parity errors: if the attribute is not set then any data received with parity errors
is sent to the application program as usual (in effect, the server ignores the parity
error) otherwise the server takes some recovery action depending on modes IgnPar
and ParMrk. If the IgnPar mode is set and the server detects a parity error then the
data received in error is discarded; otherwise some special characters are placed in the
read stream, depending on the remaining attribute, ParMrk. If that attribute is not set
then the data received in error will be replaced by a single byte 0x00, and it is up to
the application to work out whether this 0x00 is the result of a parity error or some
real data. If the ParMrk attribute is set then a parity error will generate two bytes,
a byte 0xFF followed by a byte 0x00; this can lead to ambiguity if a character 0xFF
is received correctly, possible only if the Istrip attribute is not set, so in that case a
character 0xFF received correctly is placed in the read stream as two bytes 0xFF 0xFF.

Consider the following example: an RS232 port is configured with 7-bit characters,
ParEnb, ParOdd, InPck, ParMrk, not IgnPar, and not Istrip; the data received is
the byte 00111001. Parity is enabled so the first bit (that is, a 0) is the parity bit.
However, odd parity is in use and there are an even number of 1s in the byte, so a
parity error of some sort has occurred. InPck is enabled, so the parity error should be
handled by the RS232 server rather than by the application. Since IgnPar is not set,
the data received should not be thrown away, but instead placed in the read stream as
a special sequence. Because ParMrk is set the data placed in the read stream will be
two bytes, 0xFF followed by 0x00. When the application discovers a byte 0xFF in the
read stream, and the next byte is an 0x00 rather than an 0xFF, this means that a parity
error has occurred and it can take whatever recovery action is appropriate.

There is a related error code: if the RS232 server is kept sufficiently busy that it
cannot handle the incoming data as it arrives, and some data is lost before the server
had a chance to buffer it, an overrun error has occurred; this is indicated to the appli-
cation as the sequence 0xFF 0x01.

Break signals

A break signal occurs when the voltage on the RS232 line drops to 0 for a time, and
is usually generated when one of the sides wishes to drop the connection. First, the
application must be able to generate a break signal. There are two ways to do this: it
can set the baud rate to B0 or RS232_B0 (the output baud rate if separate baud rates
are supported on input and output, otherwise the input baud rate), in which case the
server will reset the baud rate to its default value afterwards; alternatively, if the HupCl
attribute is set and the stream to the RS232 port is closed then the server will generate
a break signal automatically. Typically this mechanism is used to shut down a modem
at the end of a session.

The second problem is the detection of a break signal. There are two attributes to

3.3. SERVERS 147

control this. The first is IgnoreBreak: if this is set, any break signals are ignored com-
pletely; otherwise the behaviour is determined by the next attribute. If BreakInterrupt
is not set then a break signal causes a byte 0x00 to be inserted in the read stream, and
the application must distinguish this byte 0x00 from a transmitted byte 0x00 or a byte
0x00 generated by parity errors given the appropriate attributes. If BreakInterrupt
is set, the server will send a break event to an event handler if the application has in-
stalled one; if the application has not installed an event handler, the break is ignored.
To install such an event handler the application should use an EnableEvents() call
with Event_RS232Break as one of the arguments. Subsection 3.3.7 on the mouse
and keyboard servers gives an example of how to use the EnableEvents() mechanism.

Modem interrupts

One of the lines specified in the RS232 protocol is Ring Indicator (RI). This is used
mainly by dial-up modems, to inform an application that somebody is trying to dial
in. To detect such events, the application should install an event handler by calling
EnableEvents() with Event_ModemRing as one of the arguments.

The default configuration

The default configuration for a Helios RS232 port is as follows: 9600 baud for both
input and output; 8 bits per character, and one stop bit; parity and Istrip disabled;
XON/XOFF flow control enabled on both input and output with hardware handshaking
disabled; break interrupts enabled, but the client has to install an event handler; HupCl
disabled. This configuration should work correctly on all implementations.

Mode names

The following table gives the names and fields associated with the various RS232
modes, for both Posix and Helios calls.

Mode Posix name Posix field Helios attribute
Csize_5 CS5 c_cflag RS232_Csize_5
Csize_6 CS6 c_cflag RS232_Csize_6
Csize_7 CS7 c_cflag RS232_Csize_7
Csize_8 CS8 c_cflag RS232_Csize_8
Cstopb CSTOPB c_cflag RS232_Cstopb
IXON IXON c_iflag RS232_IXON
IXOFF IXOFF c_iflag RS232_IXOFF
Clocal CLOCAL c_cflag RS232_CLocal
ParEnb PARENB c_cflag RS232_ParEnb
Istrip ISTRIP c_iflag RS232_Istrip
ParOdd PARODD c_cflag RS232_ParOdd
InPck INPCK c_iflag RS232_InPck
IgnPar IGNPAR c_iflag RS232_IgnPar
ParMrk PARMRK c_iflag RS232_ParMrk
HupCl HUPCL c_cflag RS232_HupCl
IgnoreBreak IGNBRK c_iflag RS232_IgnoreBreak
BreakInterrupt BRKINT c_iflag RS232_BreakInterrupt

148 CHAPTER 3. PROGRAMMING UNDER HELIOS

Examples

Suppose an application needs to open an RS232 port, either the one specified or the
default one. This port should operate with 8-bit characters, XON/XOFF flow control,
and ignoring break events. The application does not know what parity to use so the
8-bit is stripped off and parity errors are ignored. The port should operate at 9600 baud
in both directions. The following two code fragments show how this can be done at
the Posix and at the Helios level.

int open_port(char *name)
{ int fd;

struct termios trm;

fd = open((name == NULL) ? "/rs232/default" : name, O_RDWR);
if (fd < 0)
{ fputs("open_port: failed to open rs232 port.\n", stderr);

return(-1);
}

tcgetattr(fd, &trm);
trm.c_cflag &= ˜(CS5 | CS6 | CS7 | CSTOPB | CLOCAL | PARENB |

HUPCL)
trm.c_cflag |= (CS8);
trm.c_iflag &= ˜(INPCK | PARMRK | BRKINT);
trm.c_iflag |= (IXON | IXOFF | ISTRIP | IGNBRK);
tcsetinputspeed(&trm, B9600);
tcsetoutputspeed(&trm, B9600);
tcsetattr(fd, &trm);

return(fd);
}

Stream *open_port(char *name)
{ Object *port;

Stream *result;
Attributes attr;

if (name == Null(char)) name = "/rs232/default";

port = Locate(Null(Object), name);
if (port == Null(Object))
{ fprintf(stderr, "open_port: cannot find %s\n", name);

return(Null(Stream));
}

result = Open(port, Null(char), O_ReadWrite);
if (result == Null(Stream))
{ char buf[80];

Fault(Result2(port), buf, 80);
fprintf(stderr, "open_port: failed to open %s, fault %s\n",

port->Name, buf);

3.3. SERVERS 149

Close(port);
return(Null(Stream));

}

Close(port);

GetAttributes(result, &attr);
RemoveAttribute(&attr, RS232_Csize_5);
RemoveAttribute(&attr, RS232_Csize_6);
RemoveAttribute(&attr, RS232_Csize_7);
AddAttribute(&attr, RS232_Csize_8);
RemoveAttribute(&attr, RS232_Cstopb);
RemoveAttribute(&attr, RS232_CLocal);
RemoveAttribute(&attr, RS232_ParEnb);
RemoveAttribute(&attr, RS232_HupCl);
RemoveAttribute(&attr, RS232_InPck);
RemoveAttribute(&attr, RS232_ParMrk);
RemoveAttribute(&attr, RS232_BreakInterrupt);
AddAttribute(&attr, RS232_IXON);
AddAttribute(&attr, RS232_IXOFF);
AddAttribute(&attr, RS232_Istrip);
AddAttribute(&attr, RS232_IgnoreBreak);
SetInputSpeed(&attr, RS232_B9600);
SetOutputSpeed(&attr, RS232_B9600);
SetAttributes(result, &attr);

return(result);
}

3.3.6 The centronics server

In addition to serial RS232 ports, some hardware, notably PC I/O processors, can
be equipped with parallel centronics ports. These ports are much easier to control
because centronics ports work at a single speed and there are no configuration options.
The /centronics server consists of a simple directory. This will always contain an
entry default, like the RS232 server. If there are more than one parallel ports then
the directory will contain additional entries for every port. Again the server usually
provides some mechanism for specifying the initial default, and this default can be
changed dynamically.

% pushd /centronics
% ls
default lpt1 lpt2
% mv lpt2 default
% popd

A centronics server provides only a simple transport service. Typically the server
would be used by a higher-level printer spooler which is responsible for queueing
users’ print jobs.

150 CHAPTER 3. PROGRAMMING UNDER HELIOS

3.3.7 Mouse and keyboard servers

Some servers, notably a mouse, can generate data rapidly. This data may need to
be transmitted from the processor with the mouse hardware to the processor using it,
typically the processor running the X windows server. If each piece of data were to
be read separately then this would require two messages through the network, a read
request and a reply from the mouse server. This could consume a large proportion
of the available communications bandwidth, significantly slowing down file I/O and
users’ parallel applications. To avoid this Helios has an alternative mechanism, the
event system. Essentially an application such as the X server registers its interest in
one or more types of event with the server. Until this registration is cancelled the server
will now send all such events directly to the application, without any further requests.
For example, the mouse server will automatically send any mouse events directly to
the X server without having to be asked.

Another use for the event mechanism is to handle asynchronous events. For exam-
ple, suppose the user presses the CTRL-C key to abort the current foreground applica-
tion. In a strictly synchronous mode this would have no effect until all previous keys
had been read in and processed, and the CTRL-C key itself had been read in. This is
rather unsatisfactory. Hence under Helios the CTRL-C key can cause an asynchronous
event to be sent by the window server to whichever application has registered itself,
usually the shell.

The main routine used with the events mechanism is EnableEvents(). This routine
acts on an open stream and sends a message to the server. It takes a second argument,
the type of event to enable. The routine returns a message port which should be used
for low-level message passing.

The following code fragment illustrates the use of the event mechanism to receive
mouse movements:

#include <ioevents.h>

extern void handle_mouse_event(IOEvent *);

void start_mouse(char *name)
{ Object *server;

Stream *str;
BYTE buffer[IOCDataMax];
MCB message;
Port incoming;
int rc, i;

if (name == Null(char)) name = "/mouse";

server = Locate(Null(Object), name);
if (server == Null(Object))
{ fprintf(stderr, "start_mouse: cannot find %s\n", name);

exit(EXIT_FAILURE);
}

str = Open(server, Null(char), O_ReadWrite);
if (str == Null(Stream))
{ Fault(Result2(server), buffer, IOCDataMax);

3.3. SERVERS 151

fprintf(stderr, "start_mouse: failed to open %s, fault %s\n",
server->Name, buffer);

Close(server);
exit(EXIT_FAILURE);

}

Close(server);

incoming = EnableEvents(str, Event_Mouse);
if (incoming == NullPort)
{ Fault(buf, Result2(str), IOCDataMax);

fprintf(stderr,
"start_mouse: failed to enable mouse %s, fault %s\n",
str->Name, buffer);

exit(EXIT_FAILURE);
}

forever
{ message.Data = buffer;

message.Timeout = -1;
message.MsgHdr.Dest = incoming;

rc = GetMsg(&message);
if (rc < 0)
{ if (((rc & EC_Mask) == EC_Error) ||

((rc & EC_Mask) == EC_Fatal))
break;
else
continue;

}

for (i = 0; i < MsgHdr.DataSize; i += Mouse_EventSize)
{ IOEvent *event = (IOEvent *) &(buffer[i]);

handle_mouse_event(event);
}

}

/* This is reached only if there is a serious error, */
/* if another program has grabbed the mouse port. */

Fault(rc, buffer, IOCDataMax);
fprintf(stderr, "start_mouse: lost contact with %s, fault %s\n",

str->Name, buffer);
Close(str);
exit(EXIT_FAILURE);

}

In theory several events can actually be packed together into one single message
of up to IOCDataMax bytes. This is certainly possible with mouse and raw keyboard
servers. It is unlikely to happen when using the window server’s Event_Break or with
the RS232 server’s Event_RS232Break or Event_ModemRing. The event structure
contains various bits of information. Full details of these can be found in the header
files ioevents.h. For the mouse server the important fields are:

152 CHAPTER 3. PROGRAMMING UNDER HELIOS

event->Mouse.X a 16-bit integer giving the new horizontal position of the mouse.
This integer can take values in the range 0-32767, and if the mouse is moved
too far in one direction this number will wrap. The number is not meant to
refer to a real screen position. However, because the number is absolute rather
than relative it allows the application to recover quickly from any lost event
messages: a lost message simply results in a slightly abrupt jump rather than a
smooth cursor movement.

event->Mouse.Y is another 16-bit integer giving the new vertical position of the
mouse. It has the same behaviour as the X coordinate.

event->Mouse.Buttons reflects any changes to the mouse buttons state. It can take
various different values such as Buttons_left_Down, all defined in the header
file ioevents.h, describing the change to the button state.

The raw keyboard server is needed by systems such as X which need to do all
their own keyboard handling. Normally when a key is pressed the window server will
immediately generate a single ASCII character. If the key is held down then, after
a short delay, the window server will start auto-repeating. When the key is released
the auto-repeat stops but no further data is generated. With a window server it is not
possible to work out which shift keys, control keys, Alt keys, and so on are currently
held down.

The data supplied by a window server does not suffice for X. Under X it is possible
to hold down a shift key and press a mouse button at the same time, and this may have
a different effect from simply pressing the mouse button by itself. Hence the X server
must be informed as soon as a shift key is pressed, and again as soon as the key is
released. To achieve this Helios has a raw keyboard server /keyboard which generates
events, just like the mouse events. The keyboard event structure contains two useful
fields:

event->Keyboard.Key is a scancode for the key. In general this will bear no relation
to the ASCII values normally associated with that key, and the application will
need its own tables to convert scan codes to ASCII.

event->Keyboard.What is set to either Keys_KeyUp or to Keys_keyDown. It in-
dicates whether the key has been pressed or released.

The mouse and keyboard servers are not normally accessed directly by application
programmers. Instead they are used by higher-level graphics software such as the
X server, and application programs should interact with this higher-level software,
typically through the X library, to obtain mouse and keyboard data.

3.3.8 Networking servers

The Helios networking software includes various servers: the Network server or /ns
controls the network as a whole; the Session Manager or /sm controls the various users
logged in to the Helios machine; there is a Task Force Manager associated with every
user’s session, with a name derived from the user name and two subdirectories tfm and
domain.

3.3. SERVERS 153

The networking servers support some simple operations. For example, it is possi-
ble to list the contents of the /ns directory with the ls command to find out the names
of all the processors and subnetworks in the machine. Similarly the /sm directory can
be listed to give details of the various users logged in. For anything more complex the
networking software comes with its own Interface library, the Resource Management
library. Applications should go through this library rather than interact with the servers
directly.

3.3.9 /tasks and /loader

These servers are part of the Helios Nucleus, so they are present on every processor.
Between them they permit program execution on the processor. Usually this happens
automatically by executing a shell command or CDL script, using vfork() and ex-
ecve() in the Posix library, or using the routines in the Resource Management library.
Accessing /tasks and /loader directly is not usually possible (these servers are pro-
tected). On the rare occasion that direct access is possible and desirable, the following
code fragment indicates how this may be achieved.

#include <syslib.h>

Stream *run_program(Object *processor, Object *program)
{ Object *procman = Locate(processor, "tasks");

Object *loader = Locate(processor, "loader");
Object *code = Load(loader, program);
Object *exec = Execute(procman, code);
Stream *progstream = Open(exec, Null(char), O_ReadWrite);
Environ env;
Environ *myenv = getenviron();
char argv[4];
Object *objv[OV_End + 1];

env.Strv = myenv->Strv; /* inherit standard streams */
env.Objv = objv;
env.Envv = myenv->Envv; /* inherit environment strings */
env.Argv = argv;

argv[0] = objname(program->Name);
argv[1] = "Hello";
argv[2] = "world";
argv[3] = Null(char);

objv[OV_Cdir] = myenv->Objv[OV_Cdir];
objv[OV_Task] = exec;
objv[OV_Code] = code;
objv[OV_Source] = program;
objv[OV_Parent] = myenv->Objv[OV_Task];
objv[OV_Home] = myenv->Objv[OV_Home];
objv[OV_Console] = myenv->Objv[OV_Console];
objv[OV_CServer] = myenv->Objv[OV_CServer];
objv[OV_Session] = myenv->Objv[OV_Session];
objv[OV_TFM] = myenv->Objv[OV_TFM];
objv[OV_TForce] = myenv->Objv[OV_TForce];

154 CHAPTER 3. PROGRAMMING UNDER HELIOS

objv[OV_End] = Null(Object);

SendEnv(progstream->Server, &env);

Close(exec);
Close(code);
Close(loader);
Close(procman);
return(progstream);

}

Obviously in a real program it would be necessary to test for errors throughout the
above code fragment to cope with running out of memory or any of the other possible
failures. The routine returns a stream to the executing program which could be used
for InitProgramInfo() and GetProgramInfo(), or alternatively for SendSignal(), but
not for both.

3.3.10 The null server

The /null server is a very simple server. It is loaded on demand into any processor,
so there is no need to start it explicitly from the initrc file or from the network re-
source map. The /null server can be opened like any file. Data written to the server
is discarded. Any attempt to read from the server will return end-of-file immediately.
Typically the server is used only from the command line as a way of discarding output
while retaining diagnostics. For example the following command compiles a program,
discarding the assembler file produced as output but leaving the diagnostics messages
on the screen.

% cc -D__HELIOS -D__TRAN -D__HELIOSTRAN hello.c > /null
Helios C 2.03 15/01/91
(c) Copyright 1988-91 Perihelion Software Ltd.
All rights reserved.
...

3.3.11 The error logger

The error logger /logger is designed to provide an emergency debugging facility. The
server is fairly simple and as independent as possible, so that even if other parts of
Helios are failing then it should still be possible to access the error logger. Care must
be taken not to abuse it. Typically any data written to the logger appears on the system
console so that the system administrator is informed and can take appropriate action.
Hence it should be used mainly for data that the system administrator needs to know
about.

Within a single-user environment the user is effectively the system administrator,
so these guidelines can be relaxed somewhat. In particular in such an environment it is
possible to use the error logger to help debug applications. Any such debugging code
should be removed from the final product, or the application may be unsuitable for a
multi-user environment.

3.3. SERVERS 155

The error logger is primarily a write-only server. An application can open a stream
to /logger and write to it. Alternatively the BSD compatibility library provides a rou-
tine syslog() that can be used. In addition Helios provides two routines IOdebug() and
IOputs() which interact directly with the error logger by low-level message passing,
bypassing the streams mechanism of the System library. The error logger completely
ignores file positions when writing data, and any data written is always appended to
the end. This prevents accidental or deliberate overwriting of previously logged infor-
mation.

Where possible the error logger will buffer some or all of the data written to it. If
a convenient and reliable filing system is available then it can be made to use a file
for this buffer, and the amount of data held is limited by the size of the filing system.
Alternatively the error logger could buffer a fixed amount of data in memory, typically
10K, and overwrite old data when it runs out of buffer space. The data in the buffer can
be retrieved simply by opening a stream to /logger and reading it, typically through
cat or more from the command line. If an editor is used to examine the contents of
the logger’s buffer then care must be taken not to write the data back at the end of the
editing session, or the whole contents of the buffer will be appended to the end of the
logger.

Occasionally it may be desirable to clear the contents of the buffer, and this can be
done simply by deleting it, for example by the command rm /logger. This delete does
not terminate the server, it merely empties the buffer.

The exact behaviour of the error logger depends on its implementation. If it is part
of the I/O Server then it can use the host’s filing system as a buffer. The logger can be
configured from the host.con file and at run-time using keyboard control sequences to
send its data to the screen only, to a file in the host filing system, or to both. On the
other hand, if the error logger runs as a separate server within the Helios network then
it will use a buffer in memory to hold the data. In addition it can be configured to use
a user-defined device driver and/or to send data to some other stream, typically a file
or a window.

3.3.12 Real-time clock

Some networks may provide a clock service to determine the current time. Helios
networks do not normally have a battery-backed clock attached to every processor.
Hence every processor receives the current time when it is booted up, and maintains its
own software clock as accurately as possible. After a while it is possible for the various
processors to have slightly different ideas about the current time, with a possible drift
of several seconds, but experience to date indicates that this is not a problem for the
vast majority of applications. Should an application need a highly accurate time value
it can examine the /clock server. From the command line this can be done as follows:

% ls -l /clock
v rwe---da 0 0 Tue Apr 16 15:11:16 1991 clock

Alternatively the Posix stat() or the System library ObjectInfo() routines can be
used. The /clock device normally does have a battery-backed hardware clock asso-
ciated with it so it can use hardware to maintain an accurate time value. However,
accessing the clock server involves at least one request and reply message which may

156 CHAPTER 3. PROGRAMMING UNDER HELIOS

have be routed through the network, with potentially an unpredictable delay, so even
this technique will not give a completely accurate time.

Very occasionally it may be necessary to reset the hardware clock, for example
because the batteries had to be changed. This may not always be possible from Helios.
For example, if Helios is hosted from a Unix workstation such as a Sun then the clock
can only be set by the super user on that Sun. If the clock can be set then the date
command may be used to achieve this: please see the Helios Encyclopaedia or the
online help system for details. Alternatively it could be done from inside a user’s
application using the System library’s SetDate() routine.

3.3.13 The lock server

The Helios lock server can be run in a network to permit locking of resources between
different applications. To avoid ambiguity there should only ever be one lock server
in a network, and typically this would be run from either the initrc file or from the
network resource map. Essentially the lock server provides only two facilities: create
named lock and delete named lock. The following code fragments give routines which
interact with the lock server.

bool Lock(char *name)
{ Object *lock_server = Locate(Null(Object), "/lock");

Object *lock;

if (lock_server == Null(Object))
{ fputs("Lock: there is no lock server in this network.\n",

stderr);
exit(EXIT_FAILURE);

}

lock = Create(lock_server, name, Type_Stream, 0, Null(BYTE));
Close(lock_server);
if (lock == Null(Object))
return(FALSE);
else
{ Close(lock);

return(TRUE);
}

}

void Unlock(char *name)
{ Object *lock_server = Locate(Null(Object), "/lock");

Object *lock = Locate(lock_server, name);

(void) Delete(lock, Null(char));
Close(lock);
Close(lock_server);

}

The first routine attempts to create the named lock, returning TRUE for success or
FALSE for failure. The probable cause of failure is that there is already a lock with

3.3. SERVERS 157

that name, although other failures such lack of memory in the lock server are also
possible. The second routine removes the named lock.

3.3.14 Raw disc servers

The /rawdisk server provides raw access to one or more hard discs. A raw disc server
has no file system, directory structure, or anything else. It appears as a simple file
of, perhaps, 40 megabytes. This file can be read from or written to only in blocks of
512 bytes, in other words the sector size. Typically a raw disc server can be used to
implement a higher-level filing system. For example in a PC hosted system one or
more spare partitions on the PC hard disc can be turned into raw disc drives, and the
Helios file system can then be run using these partitions. Another possible use for a
raw disc server is for applications which require very rapid I/O, such as databases, and
which can organise the whole disc themselves to meet the application’s requirements.

A /rawdisk server is a directory of one or more partitions. Each partition is treated
completely separately, so for example it is possible to run the Helios filing system in
one partition /rawdisk/0 and use a second partition /rawdisk/1 for an application such
as a database. The partitions are named 0, 1, and so on.

ObjectInfo() on a raw disc partition gives the size of the partition in sectors rather
than in bytes, each sector being 512 bytes. The same information is produced by Posix
stat() and fstat(). For example the ls command might produce the following output.

% ls -l /rawdisk
2 Entries
f rw----da 0 41668 Tue Apr 16 09:53:16 1991 0
f rw----da 0 20834 Tue Apr 16 09:53:16 1991 1

In this case the /rawdisk server contains two partitions 0 and 1, and these have size
of 20 Mbytes and 10 Mbytes respectively. The sizes are given in sectors rather than in
bytes because this information is likely to be clearer.

The stream operations supported by the rawdisk server are read(), write(), lseek(),
and close(). I/O must always involve multiples of 512 bytes, for example it is illegal
to attempt to read 1000 bytes.

3.3.15 The X window system

To interact with an X server application programs should use the X library, and pos-
sibly higher-level libraries such as the toolkit, the Widget library, Motif, and so on.
Applications should never interact directly with the X server, for example by opening
sockets and writing to it. For more information on X see the Helios X window system
manual.

3.3.16 Pipe and socket I/O

There are two correct ways to create a pipe. The first involves letting the system do it
for you. For example, when starting a parallel application using CDL or the Resource
Management library, the system will automatically create the necessary pipes and the
individual programs will inherit these files in their environment. Similarly executing

158 CHAPTER 3. PROGRAMMING UNDER HELIOS

the command ps all | more causes the shell to create the pipe, and the two programs
inherit this pipe in their environments. The second correct way is to use the Posix
library’s pipe() routine shortly before executing a child program. The child program
inherits the pipe in its environment. This is illustrated by the following code fragment.

/* Run a child program, and return a C FILE pointer */
/* that corresponds to a pipe to that child’s standard */
/* input. The child program is identified by the first */
/* entry in the argument vector. */

FILE *run_child(char **argv)
{ int pipe_descriptors[2];

FILE *result;
int pid;

pipe(pipe_descriptors); /* create the two ends of the pipe */

pid = vfork();
if (pid == 0)
{ /* Executing in the child process */

/* Make a copy of the pipe’s read-only end. */
dup2(pipe_descriptors[0], 0); /* overwriting stdin */

/* and close the unnecessary file descriptors */
close(pipe_descriptors[0]);
close(pipe_descriptors[1]);

/* finally start the child program. */
execvp(argv[0], argv);

}
else
{ /* Executing in the parent process. */

/* Turn the write-end of the pipe into a C */
/* FILE * stream. */

result = fdopen(pipe_descriptors[1], "w");
/* and close the unnecessary file descriptor. */

close(pipe_descriptors[0]);
return(result);

}
}

To use a pipe the application should call the Posix library’s read(), write(), close()
and select() routines. Pipes are not quite synchronous, so if one end writes to a pipe
before the other end reads then a small amount of data can be buffered by the system.
The exact size of the buffer is not defined. Using language-level I/O on pipes, for ex-
ample the C library’s fprint() routine, is fine provided communication is one way only,
in other words if the application involves a simple pipeline. For a more complicated
arrangement language-level I/O can give problems in some cases because the C library
itself will perform some buffering. This subject is discussed in more detail in the CDL
chapter.

The correct way to use sockets, either within a Helios network or over the ethernet,
is to use the Posix calls socket(), accept(), connect(), and so on. System library
equivalents are available if necessary, but these provide little or no extra functionality.
The socket calls return file descriptors which should be used in the same way as pipe

3.4. PROTECTION: A TUTORIAL 159

file descriptors. See chapter 6, Communication and Performance, for a more complete
description of pipe and socket usage.

3.4 Protection: a tutorial

This tutorial show how you can use the Helios protection mechanism to protect your
files from other users, and how you can then use it to give other users limited access to
your files. It takes the form of an example session which may be followed by the reader
at his own machine. Only the Helios File Server and the /ram server can support the
full protection mechanism. For simplicity this tutorial uses only the /ram server so
you can follow it on your own machine even if you do not have the file server.

We will start by moving into the ram server and creating two user directories:

% cd /ram
% mkdir dale bob

We now change the prompt in this shell and start another shell in another window:

% set prompt="dale: "
dale: wsh

In the new window we also change the prompt, and also change our current direc-
tory:

% set prompt="bob: "
bob: cd bob

Now go back to the first window. If you are using the PC window system you can
do this with ALT-F1, if you are using Windows 3, your host is a SUN workstation, or
if you are using the Helios X Window server, you should move the mouse and click
on the window. In the latter cases you should now rearrange your windows so you can
see both at once. From now on the window you should type the commands to will be
indicated by the prompt.

We start by moving into the appropriate user directory, and print out the /ram
server’s access matrix:

dale: cd dale
dale: matrix /ram
d rwv----a:rw-x----:rw--y---:r----z-- ram

The matrix command simply prints out the access matrix associated with the file or
directory given, in this case /ram (from now on the word object will be used where it
does not matter whether we are talking about a file or a directory, or even some other
object like a processor, pipe, task or task force). The matrix can be thought of as an
array of bits, eight wide by four deep, making 32 bits in all. The matrix for /ram is:

column: r w v x y z d a
row v: 1 1 1 - - - - 1
row x: 1 1 - 1 - - - -
row y: 1 1 - - 1 - - -
row z: 1 - - - - 1 - -

160 CHAPTER 3. PROGRAMMING UNDER HELIOS

Each of the four rows is named by one of the letters v, x, y and z. Each of the eight
columns corresponds to an access right, and is also named by letters. Four of the
columns have the same meaning in all objects: r for read access, w for write access, d
for the right to delete the object, and a for the right to alter the object’s access matrix.
The remaining four columns depend on the type of the object to which the matrix is
attached. For files, only one of these columns is used, and is used to denote execute
permission, with the letter e. For directories the remaining four columns correspond
to the four matrix rows, v, x, y and z. These are used to select which rows of the
matrices attached to objects inside the directory will be used to control access to those
objects; exactly how this works will be shown later.

In the output of the matrix command shown above the letter d indicates that this
is a directory. Following this it prints each row of the matrix out in the order v, x, y
and z separated by colons. The bits set in each row are shown by the letters which
correspond to the columns they occupy; unset bits are shown by a hyphen. Hence, in
this matrix, the /ram server has bits set in the v row to give read, write and alter access
to the directory itself, and v access to objects inside the directory. When typing in a
matrix, or any set of access rights, it is not necessary to follow this format exactly. The
hyphens may be left out, and the column letters may be given in any order. So, the
matrix above may be written as awrv:wxr:ryw:zrwithout confusion.

We can change the access matrix of an object with the chmod command:

dale: chmod v=rz x=rza y=rz /ram
dale: matrix /ram
d r----z--:r----z-a:r----z--:r----z-- ram

The arguments to chmod are similar to the arguments of the UNIX command of
the same name. The argument v=rz alters the v row of the matrix to just have bits set
in the r and z columns. The same effect could have been achieved with the sequence
v-wva v+z which causes the w v and a bits to be cleared and the z bit to be set.4

The access matrix controls the access rights that users have over objects just like
the mode bits in UNIX. The four rows may be though of as corresponding to similar
access classes, where the v row controls the owner’s access rights, the z row controls
the access rights of the general public, and the x and y rows can perform the same job
as the group rights. However, unlike UNIX modes, the access rights a user gets are not
fixed only by the matrix in the object, but can also be influenced by it parent directory,
and any other directory the user must pass through to access the object.

As an example, let us create a file and look at its access matrix:

dale: echo "The owls are not what they seem" >audrey
dale: matrix audrey
f rw----da:rw----d-:rw------:r------- audrey

This is the default matrix for any file, it gives the owner full access rights while the
other classes get successively fewer rights until the general public can only read it.

Directories also have a default matrix:

dale: matrix .
d rwv---da:rw-x--d-:rw--y---:r----z-- ram

4See the Helios Encyclopaedia entry for chmod for more details.

3.4. PROTECTION: A TUTORIAL 161

As far as the r, w, d and a bits are concerned, this follows the same pattern as for
files. Additionally, each row in the matrix has its own corresponding bit set (so the v
row has a bit set in the v column). This simply propagates the same access rights down
into the objects in this directory. So, the directory owner, whose rights are controlled
by the v row, will also have his rights controlled by the v row in the matrices of the
objects inside the directory.

A user’s current access rights to any object can be examined using the access
command:

dale: access .
d rwv---da /00/ram/dale
dale: access audrey
f rw----da /00/ram/dale/audrey

This produces output similar to matrix except that only one set of access rights
are printed out and not four matrix rows. Here, the user has full access to both his cur-
rent directory and to the file audrey. However, if the same commands are executed,
on the same objects, but using a different way of naming the objects, a different result
will be seen:

dale: access /ram/dale
d r----z-- /00/ram/dale
dale: access /ram/dale/audrey
f r------- /00/ram/dale/audrey

By using absolute path names, rather than naming them relative to the current
directory, we get only the public access rights. The reason for this is that we changed
the matrix of /ram to contain only r and z bits in all its rows. This means that whatever
we started with, our access rights to the /ram directory will always be just rz:

dale: access /ram
d r----z-- /00/ram

The r bit means that we are only allowed to read the directory, we are not allowed
to create new entries, delete it, or change its matrix. The z bit means that for any
entries in the directory /ram, we can only have the access rights contained in their
z matrix rows. In the directory dale this row is r----z--, so we get exactly the
same set of rights as for /ram, and in particular, we only get z access rights to the file
audrey, whose z matrix row is r-------, meaning that we can only read it.

The reason why we get different access results is that the Helios shell possesses a
capability for the directory dale. A capability is a set of access rights for a particular
object. The shell’s capability for the directory dale forms part of its current directory
(which can be changed with the cd command). Whenever the shell runs a command
it passes this capability on to it. The access rights to any object named relative to
the current directory are calculated relative to the set of rights stored in the capability.
Whenever a capability for an object is obtained, it effectively takes a snapshot of the
access rights which are then in force. If the matrix is subsequently changed, this does
not affect the rights stored in the capability, which are still enforced.

In our example the shell’s capability for dale contain the rights rwv---da, ex-
actly the contents of the matrix’s v row (which is where it came from). Because the
v bit is set, access to objects within dale will use their v matrix rows, so access to
audrey is rw----da which is exactly what we saw earlier. However, if a program

162 CHAPTER 3. PROGRAMMING UNDER HELIOS

has a capability for an object, its access rights are derived only from the capability and
not from the matrix in that object at all. So, if we change the matrix attached to dale,
we will not affect the shell’s access rights at all, but we will affect the rights of other
users:

dale: chmod v-rwd x-d z-rz .
dale: matrix .
d --v----a:rw-x----:rw--y---:-------- dale
dale: access .
d rwv---da /00/ram/dale
dale: access /ram/dale
could not locate /ram/dale: c6040000

Here we remove some rights from the matrix, yet our access to dale has remained the
same. In particular, note that while all d bits have been removed from the matrix, we
still have d access to dale. We have also taken the opportunity to remove all bits in
the z row of dale’s matrix. Because /ram restricts all accesses to just the z category,
this eliminates all external access rights to dale.

Meanwhile, in the other window, that shell has a capability for directory bob but
has no access to directory dale or any of its contents:

bob: access .
d rwv---da /00/ram/bob
bob: mkdir laura
bob: access laura
d rwv---da /00/ram/bob/laura
bob: access /ram/dale
could not locate /ram/dale: c6040000
bob: access /ram/dale/audrey
could not locate /ram/dale: c6040000

The directory bob can also be protected against the outside world:

bob: chmod z-rz .
bob: matrix .
d rwv---da:rw-x--d-:rw--y---:-------- bob

Now neither bob nor dale is accessible from the outside. This can be shown as
follows:

bob: shell
% cd /helios
% ls /ram
/bob /dale
% access /ram/bob /ram/dale
ls: could not locate /ram/bob - c6040000
ls: could not locate /ram/dale - c6040000
% exit
bob: access .
d rwv---da /00/ram/bob

It is necessary to create a new shell because the original shell’s capability is now the
only access route to bob, and the cd command would have destroyed it. The new shell
does destroy its copy, and thus cannot ever access bob again. Only when the new shell
is exited and the original shell used can access be regained to bob.

3.4. PROTECTION: A TUTORIAL 163

So far we have seen how access matrices can be used to control access rights
to objects, and how users may protect their directories against outside access. The
other side of the coin is to allow users to share information in a controlled way. The
mechanism for doing this is for one user to pass the other a capability for the object to
be shared.

A capability is normally stored in an internal form by Helios, it may be converted
into a printable string by the refine command:

bob: refine laura
@hmnnmfocamhedhmg/00/ram/bob/laura

The result of the refine command is a string which starts with an @ character,
encodes the capability in the next 16 characters, and ends with the full name of the
object. This may be used almost everywhere a file name may be used and effectively
bypasses any access matrices to give direct access to the object. (Note that the string
you will get will look different from the one shown above).

The refine command gets its name from the fact that it can alter the access rights
carried in the capability. To do this it takes an option argument similar to that given
to chmod except that since it is changing only one set of access rights it needs no row
letter (see the Helios Encyclopaedia for more details). We can see how this works as
follows:

bob: access ‘refine laura‘
d rwv---da /00/ram/bob/laura
bob: access ‘refine =rx laura‘
d r--x---- /00/ram/bob/laura

In the first command the standard access rights are encoded in the string produced
by refine. In the second example the access rights are set to rx, which is confirmed
by the access command.

Now that a suitable capability has been manufactured, it is necessary to transfer
it to dale. Since the directory dale is inaccessible, it is not possible to transfer it
directly. A simple option would be for user bob to print out or write down the string
and pass it to user dale who could then type it in. An equivalent is to put it somewhere
they can both access. For the sake of this example we will use a fifo.

bob: refine =rx laura >/fifo/to.dale
bob: echo "leland did it" >laura/dream

Here we generate the encoded capability string and write it out to a fifo. Before
leaving bob, we put the information he wants to share into the directory laura.

Back with dale, we can see that the information is ready for us by examining the
fifo server:

dale: ls /fifo
to.dale
dale: cat /fifo/to.dale > from.bob
dale: cat from.bob
@jaapjncioahedhmg/00/ram/bob/laura

We start by copying the fifo into a local file. The contents of this file is simply the
string produced by refine. It can be used as it stands from the shell:

164 CHAPTER 3. PROGRAMMING UNDER HELIOS

dale: ls ‘cat from.bob‘
dream

A more convenient way of using it, however, is to use it to create a symbolic link.
A symbolic link is nothing more than a capability stored in the file system. It can then
be used just like a normal file or directory and access through it is totally transparent
to the user.

A symbolic link is created with the ln command:

dale: ln ‘cat from.bob‘ laura
dale: ls
audrey from.bob laura@

In listings symbolic links are terminated with an @ character to distinguish them,
this character should never actually be typed.

Now, user dale can access directory laura in the normal way:

dale: access laura
d r--x---- /00/ram/bob/laura
dale: ls laura
dream
dale: access laura/dream
f rw----d- /00/ram/bob/laura/dream
dale: cat laura/dream
leland did it

Because bob gave dale a capability with just the r and x bits set, dale is only
allowed to read the directory laura, and has x access to objects within it. Hence, the
access rights to laura/dream show only rw----d- which is the x row of that
file’s matrix. Like the shell’s current directory capability, this symbolic link capability
is independent of any subsequent alterations to the access matrix of laura by user
bob, but bob can still affect dale’s rights to objects within the directory laura by
changing their matrices. For example, bob can stop dale reading laura/dream as
follows:

bob: chmod x= laura/dream

This sets the x row of the matrix of laura/dream to all zeros, so if dale repeats
his last command:

dale: cat laura/dream
cat: Can’t find ‘laura/dream‘

So far we have restricted ourselves to using just one of the access classes v, x, y
or z. However, the access rights allow any combination of these four bits to be set in a
capability or a matrix row. It is therefore possible for a matrix row to specify a totally
different access class for entries inside the directory to that for the directory itself.

For example, suppose user bob has a change of character and wants all users to
be able to both read and write all his files and directories. Rather than go through
his entire file space altering the z row of all his matrices, he can do this simply by
changing the z row of his home directory:

bob: chmod z=rwy .
bob: matrix .
d rwv---da:rw-x--d-:rw--y---:rw--y--- bob
bob: access /ram/bob/laura
d rw--y--- /00/ram/bob/laura

3.4. PROTECTION: A TUTORIAL 165

Now the z row of bob allows read and write access, but it also selects y access, not
z, to objects within the directory. So the access rights to laura are now rw--y---.
Effectively, the y matrix row for all objects in bob’s file space now controls public
access and not the z row.

It is also possible to select more than one matrix row, for example:

bob: chmod z+x .
bob: matrix .
d rwv---da:rw-x--d-:rw--y---:rw-xy--- bob
bob: access /ram/bob/laura
d rw-xy-d- /00/ram/bob/laura

Now, public access to bob selects both the x and y rows from the matrices of
subentries. When more than one row is selected, the access rights from each rows are
simply combined. In this case public access to laura contains rw-x--d- from the
x row and rw--y--- from the y row.

This ends this example session. You will need to reboot your system if you want to
use the /ram server again since it is irrevocably protected. A more detailed technical
description of the protection mechanism may be found in chapter 14, Protection.

166

Chapter 4

CDL

The Component Distribution Language, or CDL, the language which enables you to
carry out parallel programming under Helios, is described in this chapter. The pur-
pose of CDL is to provide a high-level approach to parallel programming, where the
programmer defines the program components and their relative interconnections and
allows Helios to take care of the actual distribution of these components over the avail-
able physical resources.

This chapter contains six sections. Section 4.1 describes the underlying model
behind the design of CDL. Section 4.2 describes the language syntax and explains how
to execute your parallel programs. Section 4.3 provides some detailed examples and
programming guidelines. Section 4.4 tells you about CDL farms and how to balance
the workload between components. Section 4.5 is devoted to miscellaneous problems
and design issues. Appendix B provides additional reference material (the allocation
of streams).

4.1 The CSP model for parallel programming

There are a number of different models of parallel programming. Different models
may be appropriate for different applications, or may be better suited to different hard-
ware. Communicating Sequential Processes or CSP is possibly the most popular at
present: in addition to the Helios CDL language, Transputers in general and the occam
language in particular are based on it. The basic idea is very simple. An application is
decomposed into a number of smaller parts, or processes. Each process receives data
from a source (which is usually another process), does some work on it, and outputs
the results to one or more other processes.

Figure 4.1 illustrates such an application, consisting of eight black boxes or ‘se-
quential processes’. Each box obtains data from one or more sources, manipulates this
data, and outputs results to one or more other boxes. Parallelism is possible because
each of these black boxes can run on a different processor. The boxes interact with
each other only through the communication channels.

The occam language implements this scheme at a low level: every black box corre-
sponds to a single Transputer process, and every communication channel corresponds
to an occam channel. Some of these channels are actually Transputer links, so that
the process is communicating with a process on an adjacent Transputer. Note that the

167

168 CHAPTER 4. CDL

data
from
file

output
device

� � � �
�

���
�

�
���

�
���

� �
���

�
�

Figure 4.1 CSP

user has to allocate processes to Transputers and specify the interconnecting channels
correctly, using the placement facility, which causes problems if the network size or
topology changes. If the user is forced to work out the placement, performance is im-
proved. This is because the user will generally have quite a good knowledge of what
data will be transferred across the channels. The occam language can be thought of as
a low-level approach to parallelism , allowing the user to get optimal performance at
the cost of greater programming effort.

The Helios approach is to work at a much higher level. Under Helios every black
box is known as a task, and the application as a whole is known as a task force. Each
task is a separate program, compiled and linked separately, and quite possibly de-
bugged separately. The individual tasks may be written in any appropriate or preferred
language. In a given task force some tasks might be written in C, others in FORTRAN,
others still in Pascal or any other language. If the tasks agree on what data to com-
municate, there is no problem. In theory it is also possible to run different parts of a
task force on different types of processors for example, to run all the tasks requiring
integer arithmetic only on T414s and all the ones requiring floating point on T800s.
Eventually this could be generalised so that one part of the task force runs on, for ex-
ample, a network of Intel 1 i860s and another part of the task force runs on a network
of Transputers. This assumes that there is a communication facility between the two
networks which has sufficient bandwidth. Communication between tasks takes place
over Unix style pipes, which are set up automatically by the Task Force Manager when
the task force is executed. This means that the standard I/O calls can be used for the
communication between tasks, and there is no need to add new language constructs to
support parallelism.

The purpose of the CDL language is to allow the user to specify a task force. This
includes all the component tasks in the task force, the various communication paths
between them, for example the pipes to be created, and the particular requirements
of individual tasks. The CDL language allows the user to specify task forces of an
arbitrary topology. Normally the task force is completely independent of the size and
topology of the Transputer network. Helios takes care of mapping the task force onto
the available resources. The user can choose to do part or all of the mapping by hand,
modifying the CDL script appropriately if the network changes.

1Registered trademark of the Intel Corporation

4.2. THE CDL LANGUAGE 169

�

�

� �

�

�� � � ��
��

�
��

�

�

�
��

�

Figure 4.2 Tasks and processes

There is one other point which is worth noting. Consider the two black boxes in
Figure 4.2. The one on the left represents an ordinary sequential task with one input
and two outputs. The task on the right consists of five separate Transputer processes
(Helios threads), all within the same task and hence on the same processor. Both
boxes take the same input and produce the same two outputs. As far as the task force
as a whole is concerned, the two are indistinguishable. Under Helios, threads can be
Fork()ed off dynamically, if required.

4.2 The CDL language

This section describes the various constructs available in the CDL language, and how
to execute task forces defined using CDL. Like most languages CDL is best taught by
example. A typical CDL script might look like this:

component master { memory 500000; }

master (<> slave, <> slave, <> slave, <> slave)

This CDL script defines a task force of five tasks. This includes a program called
master and four invocations of the program called slave. The task force is depicted in
Figure 4.3. Each task is a component of the task force. In the following discussion, the
terms task, program and component are synonymous. The CDL script consists of two
parts: the component declaration(s) and the task force definition. The former describes
requirements of particular components in the task force. The latter describes the task
force as a whole, that is, how the components interact.

A simple introduction to CDL can be found in the Helios Parallel Programming
Tutorial.2

4.2.1 How to execute task forces

The Helios Task Force Manager is the program responsible for mapping and executing
task forces. This program is a Helios Server, which obeys the General Server Protocol
and hence some of the standard commands can be used on it. For example, ls /tfm
would list all the task forces currently running, and rm /tfm/job.6 can be used

2Published by Distributed Software Limited.

170 CHAPTER 4. CDL

component master { memory 500000; }

master (<> slave, <> slave,

<> slave, <> slave) master

slave

slave

slave

slave
�

�

�

�

����

Figure 4.3 A simple task force

to attempt to kill off a task force: whether or not it will succeed depends mostly on
the programs making up the task force. There are two ways in which the user can
interact with the Task Force Manager to execute new task forces: the shell and the
CDL compiler.

There are two types of binary object to consider: programs and compiled task
forces. A program is produced by, for example, compiling a C program. A compiled
task force can be produced by running the CDL compiler on a CDL script. The Helios
shell can operate in two modes: a Unix mode and a CDL mode. In the Unix mode
the shell behaves like the Unix C shell, and any commands are executed on the same
processor as the shell. These commands must be simple programs, not compiled task
forces. To switch from Unix to CDL mode and vice versa the user should use set cdl
and unset cdl. It is possible to have multiple shells running at the same time, each in
a separate window, with some shells running in Unix mode and others in CDL mode.

In CDL mode the shell will send all commands, whether programs or compiled
task forces, to the Task Force Manager for execution, and in this way the workload is
spread over the available network. In addition, in CDL mode the shell understands a
subset of the CDL language, which means that programs can be combined using the
pipe, subordinate and parallel constructors (but not the interleave constructor). Nei-
ther replicators nor component declarations are available, so this facility is limited.
However, in the case of a command like

cc test.c | asm -p -o test.o

the C compiler and the assembler would run on separate processors in parallel, if
enough processors were available. Typically such commands would be found in a
makefile. To define a non-trivial task force the user should produce a text file, the CDL
script, and invoke the CDL compiler on this file. This CDL compiler is an ordinary
command like the C compiler or the assembler and takes the following arguments:

cdl <options> <source file> <‘compile time’ arguments>

4.2. THE CDL LANGUAGE 171

with the following options :

[-i] [-l listfile] [-n] [-c] [-o outfile]

The compiler takes a CDL script as input, defaulting to stdin if no source file is
specified. Given the -n option the compiler will only parse the file, and not compile it.
If neither the -c nor the -o option is given, the compiler will execute the resulting binary
immediately. If the -c option is given, the compiler will not execute the binary object,
but write it to stdout instead. If the -o option is given, the binary object will be written
to the output file specified. The -i option is used to make the compiler produce a fully
expanded listing of the compiled CDL script, giving details of all the components and
the streams on which they communicate. This listing will be sent to the stderr stream.
The -l option is similar, but makes the listing go to the file specified. Please note that
all the CDL compiler options must come before the source file, in order to distinguish
them from the compile time arguments. If the binary object produced by the CDL
compiler is written to a file this file may be executed directly from the shell, if the
CDL flag is set in that shell. This can be used to avoid recompiling the CDL script
every time you want to run a task force. Many CDL scripts take the following format:

#! /helios/bin/cdl

master [10] ||| slave

This file can be used as input to the CDL compiler since in CDL lines beginning
with a # sign are treated as comments . It can also be used as a shell script. The shell
recognises the #! sequence at the start of the file and executes the command following
it, /helios/bin/cdl, using the rest of the file as the standard input to the CDL compiler.
No -o option is given so the resulting binary will be executed immediately. If the
shell’s CDL flag has not been set the CDL compiler will run on the same processor
as the shell, but the resulting task force will be sent to the Task Force Manager for
distributing over the network. If the CDL flag has been set the CDL compiler will
itself be executed as a simple task force, running on any suitable processor within the
network.

4.2.2 The task force definition

The CDL language defines four parallel constructors: |, <>, ˆˆ, |||. The pipe
constructor | defines a uni-directional pipeline between two programs.

A | B A B�

The subordinate constructor <> defines a bi-directional pipeline, that is to say,
there is a pipe from task A to task B, and another pipe from B to A.

A <> B A B��

172 CHAPTER 4. CDL

The parallel constructor ˆˆ defines no communication between the two programs.
Of course the two programs may set up a communication channel themselves. For
example, one program might write to a file and the other could read the file. Commu-
nication pipes could also be set up through the component declarations.

A ˆˆ B A B

The interleave constructor ||| is used mainly in conjunction with the replicator
facility discussed below, to construct farms. It involves the automatic insertion of an
additional component: the load balancer.

A ||| B A lb B�� ��

It is possible to combine the CDL constructors to produce more complicated task
forces, for example:

A <> B <> C A B C
�� ��

It is possible to have branches off the main left to right chain, for example:

A (<> B) | C (<> D, | E) | F

B

A

D

C

E

F

�
�

�

�
�

�

�

Here (<> B) and (<> D, | E) are known as auxiliary lists. A more compli-
cated example would be:

A (<> B, <> C (| D)) |
E (<> (F <> G)) | H

B

A

C D

F

E

G

H

�
�

�
�

�

�

�
���

�

4.2. THE CDL LANGUAGE 173

Each constructor has a unique precedence. The order of precedence is ˆˆ ||| | <>.
<> has the highest precedence and ˆˆ has the lowest. For example: the task force
A <> B | C is equivalent to (A <> B) | C and not A <> (B | C).

Similarly, A <> B | C ˆˆ D | E is equivalent to

((A <> B) | C) ˆˆ (D | E)

B

A C D E

�
�

� �

In addition to the task force constructors, it is possible to use Unix style redirection
in the task force.

(A < input) | (B > output)

file
‘input’

file
‘output’A B� � �

Here component A takes its standard input from a file, and component B writes its
standard output to a file. These redirections must not contradict the communication
specified by the main definition. For example:

(A > output) | (B < input)

Here the standard output of A is defined to go to the output file as well as to a pipe,
and the standard input of B is defined to come from an input file as well as from a pipe.
The CDL compiler will object, because it will think that this is invalid. In addition
to the standard redirections < for input, > for output, and >> for output in append
mode, the CDL language supports < | for input from named pipe and > | for output
from named pipe. For example, the following constitutes a task force in the form of a
ring.

(A <|loop) | B | (B >|loop)

A B B� � �

‘loop’

Normally when the CDL script specifies a pipe it is unnamed, and the CDL com-
piler will automatically generate a unique name. However, named pipes can always be
used as an alternative. For example, the following two task forces are equivalent.

A | B | C ≡ (A >|pipe1) ˆˆ (B <|pipe1 >|pipe2) ˆˆ (C <|pipe2)

A B C� �
‘pipe1’ ‘pipe2’

174 CHAPTER 4. CDL

From the above it should be clear that CDL provides a very powerful way of spec-
ifying the parallelism in a task force, and it is fairly easy for users to become confused
as to the best way to specify a particular topology. There are a number of ways to
proceed. First, the CDL compiler’s -i option makes it display information about ex-
actly what it has compiled (which may not be what you thought it had compiled).
Second, the component declaration part of the CDL script may be used to specify the
connecting streams instead of the task force definition.

4.2.3 Allocation of streams

So far this chapter has described how the CDL constructors may be used to combine
component programs to give a task force, with pipes connecting the components. This
subsection describes how the components can access these pipes.

First consider an ordinary C program. Every C program has three standard streams
at the C library level: stdin, stdout, stderr. At the Posix level, these correspond to
file descriptors 0, 1, and 2; there are also underlying Helios streams accessible through
the Heliosno() and fdstream() calls, but these are rarely needed by the application
program. Other languages may need more or fewer standard file descriptors. For
example, FORTRAN has standard streams corresponding to units 5 and 6. CDL allows
for up to four standard streams, Posix file descriptors 0–3 with file descriptor 3 not
currently used by any language, and will use additional streams from 4 onwards. Now
whenever a user runs an application, whether a simple program or a task force, that
application inherits an environment from its parent which is usually the shell. This
environment includes the application’s current directory, some global arguments, some
environment strings, and standard streams. These streams usually refer to the current
window, which means that if the application reads from stdin it expects the user to type
something at the keyboard, and if the application writes to stdout or stderr the data
should appear in the window. It is important that task forces can access the window
just like ordinary programs, but the question arises as to which component(s) of the
task force can do so. Consider the following task forces.

A | B

For compatibility with Unix, the standard output of program A goes to the pipe
and the standard input for program B comes from the pipe. Stdin for A is usually
a console stream, as is stdout for B and stderr for both components.

A <> B

Here component B is a subordinate of component A, that is, A is considered to
be the senior of the two. Hence stdin, stdout, and stderr for A all correspond
to console streams. Additional file descriptors are used for the pipes: A can read
from file descriptor 4 to get data from the pipe, and write to file descriptor 5.

4.2. THE CDL LANGUAGE 175

File descriptor C stream Used for
0 stdin console I/O
1 stdout console I/O
2 stderr console I/O
3 not used in C
4 undefined input from pipe
5 undefined output to pipe

Component B is the junior one, and hence its stdin and stdout streams do not
need to refer to the console. In fact it would be wrong for the stdin to refer to the
console. This would imply two programs reading from the same window, with
possible confusion as to which key presses go where. It is still very useful for
component B to have an error stream. Hence the stream allocation for B looks
like this:

File descriptor Used for
0 input from pipe
1 output to pipe
2 error output to console

A ˆˆ B

This defines no communication between the two components. Hence both pro-
grams inherit all their standard streams from the environment, which means that
stdin, stdout and stderr for both programs will correspond to the console. It is
assumed that the application is sensible, and that the two programs do not both
try to read the keyboard.

A <> B <> C

Again, component A is considered to be the senior one requiring access to the
console. Component B now has four pipe streams instead of two. The allocation
of streams for all components is:

FD component A component B component C
0 console input from A input from B
1 console output to A output to B
2 console console console
3 unused unused
4 input from B input from C
5 output to B output to C

A ||| C

This is equivalent to A <> B <> C, with B being the load balancer. The
pattern should now be fairly clear. All components have access to stderr, file
descriptor 2, for debugging output. Additional file descriptors are allocated as

176 CHAPTER 4. CDL

required starting with file descriptor 4. Inputs always correspond to even file
descriptors, and outputs correspond to odd file descriptors.

The precedence of constructors affects the allocation of streams. For example,
consider the task force A | B <> C. The subordinate constructor has a higher prece-
dence so the task force is equivalent to A | (B <> C). When allocating streams the
subordinate constructor is handled first, and then the pipe. The complete allocation is:

File descriptor component A component B component C
0 console input from A input from B
1 output to B console output to B
2 console console console
3 unused unused unused
4 output to C
5 input from C

Next we should consider auxiliary lists. Consider the following:

A (| B, <> C, | D)
A

B

D

C

�

�
��

There are two uni-directional pipes from component A to other components, and
clearly it is not possible for both to use the standard output of A. To avoid confusion,
stream allocation for such auxiliary lists always starts at file descriptor 4, never using
the standard output. This allows something like:

A (| B, <> C, | D) | E A

B D

C

E
	
	

�
��

�

�
�

The allocation of streams can become complicated. Consider the following:

4.2. THE CDL LANGUAGE 177

A (| B, <> (C | D)) | E <> (F | G) A

B

CD

E

F

G

�

�
��

�

	
	

�
���

�
���

It may seem unlikely that any real task application would require such a topol-
ogy, but CDL allows it. However, working out the exact stream allocation for such a
task force is difficult and hence the CDL compiler’s -i option will make it display the
standard streams. Appendix B gives the formal rules for stream allocation. As an al-
ternative, it is possible to specify a component’s streams in the component declaration
part of the CDL script.

4.2.4 Component declarations

The task force definition part of a CDL script specifies the task force as a whole. It
is also necessary to specify additional details for particular components, for example
to tell the Task Force Manager that a particular component must run on a T800 and
not just on any processor. This is the purpose of the component declarations. The
following CDL script is a typical example:

#
These are the component declarations
#
component master { processor T800; memory 500000; }
component slave { memory 200000; }
component display { attrib frame_store; }

this is the task force definition
master (<> slave, <> slave, <> slave) | display

The master program must run on a T800 with at least 500,000 bytes of memory.
The slave programs require 200,000 bytes each, and the display program must run on a
processor which has been given the user defined frame store attribute in the resource
map. Note that all three invocations of the slave program share the slave component
declaration. There are six useful fields in a component declaration: code, processor,
puid, attrib, memory, and streams. The code field specifies the actual program to
execute. For example,

component master { code /c/usr/bin/mandel; }

specifies that the program in file /c/usr/bin/mandel should be used for the component
master. By default the component name must correspond to a program in the current
search path. For example: if the shell’s current search path (inherited by the CDL com-
piler through the environment string PATH), is (/helios/bin .), then the CDL compiler

178 CHAPTER 4. CDL

would search through the directory /helios/bin and then through the current directory
for the program(s) specified.

The processor field may be used to specify the type of processor on which the
component can run. For the Transputer version of Helios, the recognised processor
types are T800, T414, and ANY. The default is ANY. The puid field may be used
to specify a particular processor in the network using the full network address, for
example /Cluster/02. This allows the users themselves to map all or part of the
task force. Of course using this facility makes the task force dependent on the network.
If the processor changes to /net/subnetA/02 for example, the CDL script would
have to be changed and recompiled. The attrib field is entirely under the user’s control.
It is possible to give processors attributes in the resource map, and to force components
onto particular processors by specifying the attributes. For example, if the resource
map contains the following two entries:

terminal 05 { ˜03, ˜04, ˜06, ˜07; attrib A1; attrib A2; }
terminal 06 { ˜04, ˜05, ˜07, ˜08; attrib A1; }

and a CDL script contains the following component declarations:

component p1 { attrib A1; }
component p2 { attrib A2; }

Component p1 could run on either 05 or 06, but p2 can only run on 05. Depending
on the network loading and the rest of the network and task force it is possible that
both components would be mapped onto 05, since this solution satisfies the user’s
specification. The memory field may be used to specify the minimum amount of
memory that must be available on a processor if it is to run there. The streams field
may be used to explicitly specify some of the streams on which a component is to
communicate, extending the communication set up by the task force definition. For
example:

component A { streams , >| s0, ; }
component B { streams <| s0, >| s1, ; }
component C { streams <| s1, , ; }

A ˆˆ B ˆˆ C

A B C� �
‘s0’ ‘s1’

is equivalent to A | B | C. Component A has the usual streams for Posix file descrip-
tors 0 and 2, but file descriptor 1 now corresponds to a named pipe. Component B has
file descriptors 0 and 1 redefined to be named pipes, but file descriptor 2 remains un-
changed. Note that commas are used as place holders. The entries in the streams field
must not conflict with the streams specified by the task force definition, for example:

4.2. THE CDL LANGUAGE 179

component A { streams , >|mystream, ; }

A | B

is illegal because file descriptor 1 of component A is used for two separate pipes.
The possible forms of stream redirection are the same as in the task force definition:

> for output to a named object, < for input from a named object, >> for appended
output, > | for output to a named pipe and < | for input from a named pipe. Any
number of streams may be specified. It is not essential to follow the convention of
using even file descriptors as inputs and odd file descriptors as outputs, but sticking to
this convention may avoid confusion.

Certain task force topologies cannot be defined easily (or at all) using just a task
force definition. However, any topology can be specified using a combination of the
streams fields in the component declarations and a simplified task force definition. For
example,

A B

C

D

E
��

�

�

�
�

�
�

�

�

A possible CDL script for this is:

component C { streams , , , , <| s0, >| s1; }
component D { streams , , , , <| s2, >| s3; }
component E { streams <|s1, >|s0, <| s3, >| s2; }

(A <> B (<> C, <> D)) ˆˆ E

4.2.5 Replicators

So far this section has described task forces consisting of a small number of compo-
nents, all different. In practice most task forces consist of a single controller or master
task, a number of worker or slave tasks, and possibly some specialised tasks for oper-
ations such as graphics I/O. The syntax described so far allows the user to specify a
pipeline of perhaps a hundred components, but typing it in is rather tedious. To help the
user to specify task forces where a component is repeated, the CDL language provides
a facility known as replication. In fact there are two forms: pre-replicators which
appear before a constructor and post-replicators which appear after a constructor. The
following illustrate pre-replicators.

A [3] | B ≡ A | B | B | B

A B B B� � �

180 CHAPTER 4. CDL

A [3] <> B ≡ A <> B <> B <> B

A B B B� � �� � �

A [3] ˆˆ B ≡ A ˆˆ B ˆˆ B ˆˆ B

A B B B

A [3] ||| B

≡

A <> lb 3 (<> B, <> B, <> B)

A lb

B

B

B

�� ��

�

�

�

�

Using replicators with the interleave constructor is particularly interesting. The
master component only interacts with the load balancer, and this interaction is inde-
pendent of the number of slaves. Similarly a given slave component only interacts
with the load balancer. This means that the task force can be run with any number of
slaves simply by changing the CDL script, without changing the code for the master
and slave components. Replicators can be used in more complicated task forces, for
example:

A [3] | (B (,[2] <> C)) | D

A

C

B

C

C

B

C

C

B

C

D� � � �

��

��

��

��

��

��

The use of pre-replicators in auxiliary lists is limited in the current release of CDL.
If a pre-replicator is required there can be no other components in the auxiliary list
and the replicator must be preceded by a comma. Post-replicators can be used without
these restrictions. The pre-replicators shown so far, when expanded, define a sub task
force as well as the communication for this sub task force. Thus in the definition
A [2] <> B the replicator expands to a sub task force B <> B, and it specifies
how this sub task force interacts with the rest of the task force, which means that
component A post-replicators define only a sub task force, and not the communication
with this sub task force.

| [3] A ≡ A | A | A A A A� �

4.2. THE CDL LANGUAGE 181

<> [3] A ≡ A <> A <> A A A A
� �� �

ˆˆ [3] A ≡ A ˆˆ A ˆˆ A A A A

||| [3] A

≡

lb 3 (<> A, <> A, <> A)

lb

A

A

A

��

�

�

�

�

Post-replicators may be used to define exactly the same task forces as pre-replicators.

A [3] | B == A | (| [3] B)

A [3] <> B == A <> (<> [3] B)

A [3] ˆˆ B == A ˆˆ (ˆˆ [3] B)

A [3] ||| B == A <> (||| [3] B)

However, many common task force topologies can be described much more easily
using post-replicators. For example, consider a ring:

A B B B B B� � � � �

�

Using a post-replicator this task force can be defined by:

A <> (| [5] B)

The sub task force (| [5] B) is a simple pipeline, and this pipeline as a whole
is a subordinate of component A. Hence the standard input of the pipeline comes from
A, and the standard output of the pipeline goes to A. Post-replicators can also be used
to define alternative farm topologies:

182 CHAPTER 4. CDL

A | (||| [3] B) | C

B B B

A lb C� �

�

�

�

�

�

�

or even:

A [3] ||| (<> [3] B)

A lb

B

B

B

B

B

B

B

B

B

�� ��

�

�

�

�

�� ��

�� ��

�� ��

4.2.6 Replicated component declarations

Given a task force definition involving replicators, for example: A [5] | B, all five
instances of component B would share a single component declaration. This is accept-
able in most cases, for example if the purpose of the component declaration is simply
to specify the memory requirements or the processor types. However, if the compo-
nent declaration defines additional streams for the component in question then every
component must be defined uniquely. CDL provides a way of specifying subscripts
for the replicated components. For example,

A [i < 5] | B{i} == A | B{0} | B{1} | B{2} | B{3} | B{4}

Using these subscripts it is possible to define topologies like this:

A B B B C

D

� � � �

�
�

���

component B[i] { streams , , , , ,>| x{i}; }

component D { streams , , , , <| x{0}, , <| x{1}, , <| x{2}; }

A [i < 3] | B{i} | C (<> D)

The sub task force which is being replicated may contain other replicators , and
this means that the iteration variable may be defined several times. Replicators are
always expanded starting at the innermost level. For example,

4.2. THE CDL LANGUAGE 183

| [i<2, j<2] (a{i,j} <> (|[i<3] b{i,j}))

expands to

(a{0,0} <> (b{0,0} | b{1, 0} | b{2, 0})) |
(a{0,1} <> (b{0,1} | b{1, 1} | b{2, 1})) |
(a{1,0} <> (b{0,0} | b{1, 0} | b{2, 0})) |
(a{1,1} <> (b{0,1} | b{1, 1} | b{2, 1}))

b{2, 0}

b{1, 0}

b{0, 0}

a{0, 0}

b{2, 1}

b{1, 1}

b{0, 1}

a{0, 1}

b{2, 0}

b{1, 0}

b{0, 0}

a{1, 0}

b{2, 1}

b{1, 1}

b{0, 1}

a{1, 1}� � �

�
��

�

�

��� �
��

�

�

��� �
��

�

�

��� �
��

�

�

���

Of course in the above definition there are two components with the name b{0, 0},
two with the name b{1, 0}, and so on. This makes it impossible to use a component
declaration for b{i, j} which involves streams. Multi-dimensional indices are permit-
ted, allowing arrays of components. For example, for an image processing or graphics
application each component might be responsible for part of the image, and each com-
ponent would have to interact with its four neighbours to resolve border conditions.
Typically there would be a single controller component responsible for actually dis-
playing the final output and interacting with the user. Consider the following topology,
which uses wrap around to resolve the edge conditions:

B{0, 3}

B{0, 2}

B{0, 1}

B{0, 0}

B{1, 3}

B{1, 2}

B{1, 1}

B{1, 0}

B{2, 3}

B{2, 2}

B{2, 1}

B{2, 0}

B{3, 3}

B{3, 2}

B{3, 1}

B{3, 0}

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

A CDL script which implements this topology is:

184 CHAPTER 4. CDL

component B[i, j] {
streams , , , ,

<| right{i, j}, >| right{i, (j + 1) % 4},
<| left{i, (j + 1) %4}, >| left{i, j},
<| down{i, j}, >| down{(i + 1) % 4, j},
<| up{(i+1) % 4, j}, >| up{i, j}

; }

A (,[i < 4, j < 4] <> B{i,j})

For example, component B{1, 2} has the following streams:

B{ 1, 2}
�
�

�
�

�
�

�
�

up{2, 2} down{2, 2}

up{1, 2} down{1, 2}

right{1, 2} right{1, 3}
left{1, 2} left{1, 3}

Use of the remainder operator % is used to provide the desired wrap around.

B{0, 0}
��

���� ��

up{1, 0} down{1, 0}

up{0, 0} down{0, 0}
right{0, 0} right{0, 1}
left{0, 0} left{0, 1} B{0, 3}

��

���� ��

up{1, 3} down{1, 3}

up{0, 3} down{0, 3}
right{0, 3} right{0, 0}
left{0, 3} left{0, 0}

The expressions used for stream subscripts are written in standard arithmetic for-
mat and may contain integers, subscript names, the standard binary operands +, −, ∗
and %, the unary operands + and −, and parentheses.

4.2.7 The environment

Whenever a program or a task force is executed it receives an environment from its
parent, usually the shell. This environment contains four types of information: the cur-
rent directory, the environment strings, the standard streams, and the argument vector.
When the Task Force Manager executes the various components of the task force it
must send an environment to every component, based partly on the CDL script and
partly on the environment sent to the task force as a whole. The current directory and
the environment strings are straightforward. Every component of the task force simply
inherits these from the parent. Therefore a task force consisting of a single component
(the ls command) would list the current directory just like the ls command itself.

The allocation of streams has already been discussed. For a task force A <> B,
component A inherits its streams for file descriptors 0, 1, and 2 from the environment

4.2. THE CDL LANGUAGE 185

and has additional streams for file descriptors 4 and 5. Component B uses file de-
scriptors 0 and 1 for the pipes, and inherits 2 from the environment. Suppose that
this task force is compiled to a binary file called job, and the user types the command
job < infile > outfile. The exact stream allocation would be:

A B
0 input from infile input from pipe
1 output to outfile output to pipe
2 output to window output to window
3 not used
4 input from pipe
5 output to pipe

Conversely, if the task force definition was (A < file1) <> B and the same
command was used as above, the input redirection for infile would have no effect be-
cause none of the components inherit standard input from the environment. There is
a subtlety if the task force definition contains redirections. For example, if the task
force definition is (A < file1) <> B then component A takes its standard input
from the file file1 in the directory where the task force was compiled, which is usu-
ally (but not always) the directory in which the task force is executed. The arguments
passed to the various components in the task force can be divided into three groups:
constant arguments, ‘compile time’ arguments and ‘run time’ arguments; These are
best illustrated by an example. Consider the following CDL script.

component A { code xx; }

(A 5 $1) ˆˆ (B $1 $2 \$1) ˆˆ (C \$3)

Here component A has a constant argument 5 plus the first ‘compile time’ argument,
which means that the CDL compiler will substitute the first ‘compile time’ argument
for every occurrence of the string $1. Component B has two ‘compile time’ arguments
and the first ‘run time’ argument, so the Task Force Manager will substitute the first
‘run time’ argument for every occurrence of the string \$1. Component C is given the
third ‘run time’ argument. Suppose the CDL script is compiled with the command

cdl -o test test.cdl xx 123

and the resulting binary is executed with the command

test 456 yy 789

then the arguments passed to all the components will be:

A B C
argv[0] A B C
argv[1] 5 xx 789
argv[2] xx 123
argv[3] 456

186 CHAPTER 4. CDL

Note that the second ‘run time’ argument is discarded because none of the components
use it. Also note that argument zero (conventionally the program name) which is
passed to all the components, is in fact the component name. ‘Run time’ arguments
only make sense if the CDL script is compiled to a file and the resulting binary is
executed. If the CDL compiler executes the resulting binary immediately there is no
way of supplying ‘run time’ arguments.

4.2.8 Arguments and replicators

When using replicators in a CDL script it is possible to use ‘compile time’ arguments
to specify the size of the task force. For example, given the following task force
definition,

A [$1] ||| B

and the command line,

cdl test.cdl 5

the CDL compiler would produce a farm with five worker components, and this farm
would be executed immediately. Note that with the current release of the software the
size of the task force must be specified at ‘compile time’. For example the task force
definition A [\$1] ||| B is illegal because the CDL compiler does not know the size
of the task force: \$1 is a ‘run time’ argument.

If the CDL script reads:

#! /helios/bin/cdl

A [$1] ||| B

then it is possible to execute the command test.cdl 10 to execute a farm with 10
workers. This approach appears to give ‘run time’ control over the size of the task
force, although of course there is an implicit invocation of the CDL compiler When
using named replicators it is possible to pass the current value of the replicator to every
component. For example,

| [i < 3] (B %i) == (B 0) | (B 1) | (B 2)

This can be used to tell every component its place within the pipeline. ‘Compile time’
arguments can also be used in component declarations. For example, consider the two
dimensional array of tasks defined earlier. It is possible to change the size of the array
both horizontally and vertically at ‘compile time’, using the following CDL script:

component B[i, j] {
streams , , , ,

<| right{i, j}, >| right{i, (j + 1) % $1},
<| left{i, (j + 1) % $1}, >| left{i, j},
<| down{i, j}, >| down{(i + 1) % $2, j},
<| up{(i+1) % $2, j}, >| up{i, j}

; }

A (,[i < $2, j < $1] <> (B{i,j} %i %j))

If this script is compiled using the command

cdl -o test test.cdl 16 8

this would produce an array of 128 components, 16 horizontally and 8 vertically, with
every component being given its vertical and horizontal offsets.

4.3. AN EXAMPLE AS EASY AS PI 187

π =

∫ 1

0

4.0

1.0 + x2
dx

�

�

1

2

3

4

1

y

x

� �
�

�
�

�
�

�
�

�

Figure 4.4 The value of π

4.2.9 Signals and termination

To conclude this section, it is necessary to explain what happens in terms of signals and
termination of tasks and the task force as a whole. Signals are fairly straightforward.
If a signal is sent to the task force as a whole, for example a SIGINT signal if the user
presses CTRL-C to abort the task force, this signal is sent to every component in the
task force. Unless the application has installed its own signal handling, the system
signal handling routines will terminate every component and the task force as a whole
will be terminated.

Another important signal to consider is SIGPIPE. This signal is likely to occur
if one of the components terminates abruptly and closes its pipes, while other com-
ponents are attempting to write to these pipes. Reading such a pipe would produce
an ‘end of file’ result. The default handling for a SIGPIPE signal is to terminate the
component. Hence if one component terminates abruptly this is likely to cause a chain
reaction and terminate other components (possibly the entire task force). This should
not be considered a reliable way of terminating a task force.

A task force has terminated when all the components in that task force have ter-
minated, normally or abnormally. The recommended way to cause termination is for
the controller task to send a terminate message to the rest of the task force. If all the
components exit without an error code, that is, with a return code of 0, then the task
force as a whole will give a return code of 0. If any of the components exit with an
error code (a value other than 0), or as the result of a signal, then the task force as a
whole will exit with an error code.

4.3 An example as easy as PI

4.3.1 A simple problem

The previous section described the CDL language in detail, explaining how it can be
used to combine component programs into a task force. This section gives a complete
example of parallel programming with CDL, concentrating on how to write the com-
ponent programs. The example involves estimating the value of π by approximating
an integral. (Figure 4.4.)

One way of approximating the area under the curve is to split this area into rectan-
gles and add the areas of the rectangles, as shown in Figure 4.5. In theory the larger the
number of rectangles the better the approximation. In practice digital computers have

188 CHAPTER 4. CDL

�

�

1

2

3

4

1

y

x

Figure 4.5 Approximating π

a limited precision, with even double precision floating point arithmetic providing only
52 bits of accuracy. Beyond a certain point rounding errors will become more signifi-
cant than the increased precision obtained from a larger number of intervals. Since this
is intended to be an example of parallel programming rather than numerical analysis,
such errors will not be considered any further.

4.3.2 How to parallelise the problem

Solving this problem in ‘parallel’ rather than ‘sequential’ is quite straightforward. Ev-
ery interval, that is, every small rectangle which contributes to the total area can be
evaluated independently from every other interval. In a fine grained parallel solution
every interval could be calculated by a separate component, but that would be point-
less. Every component would do a tiny bit of arithmetic, communicate its result, and
exit. The cost of loading the components from disc and starting them, the cost of
the communication, and of tidying up after the components have exited, would be far
greater than the cost of doing the calculation. Instead every component should calcu-
late a large number of intervals. If there are ten processors it would make sense to have
ten components, each calculating perhaps 100,000 intervals, giving a total of a million
intervals.

The task force can be split into a single controller and a number of workers. The
controller is responsible for setting up the workers and for interacting with the user.
The workers are responsible for doing the actual arithmetic. It is necessary to consider
the possible topologies, and there are two main candidates: a ring and a non-load-
balanced farm. These are shown in Figure 4.6. There is little point in having a load-
balanced farm since the controller can ensure that all the workers do exactly the same
amount of work.

4.3.3 The ring

The CDL script for a ring would be:

control <> (| [$1] worker)

Note that the number of workers is determined by a compile time argument. The
control component writes to the start of the worker pipeline using file descriptor 5, and
reads from the end of the pipeline using file descriptor 4. Each worker reads from file
descriptor 0 and writes to file descriptor 1. The first steps are to determine the number

4.3. AN EXAMPLE AS EASY AS PI 189

control

worker worker worker

worker worker� �

�
��

� control

worker

worker

worker

��

�

�

�

�

Figure 4.6 Possible topologies

of worker components and to initialise every worker so that it knows its position in the
pipeline and the length of the pipeline. One way of doing this is to add arguments to
the CDL script and to have every component examine its arguments:

CDL script : (control $1) <> (| [i<$1] (worker %i $1))

controller : int number_workers = atoi(argv[1]);

worker : int position = atoi(argv[1]);
int number_workers = atoi(argv[2]);

An alternative approach involves the components working these things out by com-
munication. This is particularly appropriate if the language has few or no facilities for
examining the arguments passed to a program. The controller starts by writing a num-
ber 0 to the start of the pipeline. The first worker in the pipeline now knows that its
position is 0, adds 1 to this value, and writes it to the next worker. Eventually the
last worker writes a value back to the controller, and this value is the length of the
pipeline. The controller circulates this value through the pipeline, and every worker is
now partially initialised.

controller :
int number_workers = 0;

write(5, (BYTE *) &number_workers, sizeof(int));
read(4, (BYTE *) &number_workers, sizeof(int));

printf("Pi controller: number of workers is %d.\n",
number_workers);

write(5, (BYTE *) &number_workers, sizeof(int));
read(4, (BYTE *) &number_workers, sizeof(int));

worker :
int number_workers, position, temp;

read(0, (BYTE *) &position, sizeof(int));
temp = position + 1;
write(1, (BYTE *) &temp, sizeof(int));

190 CHAPTER 4. CDL

read(0, (BYTE *) &number_workers, sizeof(int));
write(1, (BYTE *) &number_workers, sizeof(int));

Note that the code above uses Posix I/O calls read() and write(). The reasons for
this, the various alternatives, and doing this I/O in another language such as FORTRAN
will be discussed later. The remaining piece of information needed by the controller
and all the workers is the number of intervals each worker should calculate. This could
be passed as a run-time argument.

CDL script : control \$1 <> (| [$1] worker)

controller : int intervals = atoi(argv[1]);

Alternatively the controller could ask the user. The controller’s standard streams
stdin, stdout, and stderr, are inherited from the environment and hence they should
still refer to the console.

controller :
printf("Number of intervals per worker ? ");
fflush(stdout);
scanf("%d", &intervals);

This information must be sent to every worker.

controller :
write(5, (BYTE *) &intervals, sizeof(int));
read(4, (BYTE *) &intervals, sizeof(int));

worker :
read(0, (BYTE *) &intervals, sizeof(int));
write(1, (BYTE *) &intervals, sizeof(int));

Now, consider the fourth worker in a pipeline of 5. The first value read in will
have been 3, giving its position in the pipeline, and the worker will have passed 4 to
the next one. The second value will have been 5, giving the length of the pipeline.
If the user specified 100000 intervals per worker this would have been the third value
read. Using these values the worker can determine that it should calculate the areas of
100000 rectangles in the range 0.6 to 0.8. The following code does this:

worker :
double width, sum, tmp;
int first, current, last;

width = 1.0 / (intervals * number_workers);
first = position * intervals;
last = first + intervals;
sum = 0.0;

for (current = first; current < last; current++)
{ tmp = ((double) current + 0.5) * width;

sum = sum + width * (4.0 / (1.0 + tmp * tmp));
}

4.3. AN EXAMPLE AS EASY AS PI 191

The above worker evaluates intervals 300,000 to 399,999, each of width 0.000002.
The first rectangle has a centre point at 0.600001, a height of (4.0/(1 + 0.60000012))
= 2.941173875 . . . , and hence an area of 0.000005882. . . . This is added to the current
total. The next rectangle is centred at 0.600003, and so on.

The final problem is how to collect all the partial results produced by the workers
and add them together. This can be done by sending a partial sum through the pipeline:
the controller sends an initial value 0.0 into the pipeline; every worker reads the current
partial sum, adds its result, and sends it to the next worker; finally the controller can
read in the result.

controller :
double total = 0.0;

write(5, (BYTE *) &total, sizeof(double));
read(4, (BYTE *) &total, sizeof(double));

worker :
double total;

read(0, (BYTE *) &total, sizeof(double));
total = total + sum;
write(1, (BYTE *) &total, sizeof(double));

It remains for the controller to print out the value of π, and some statistics. Every
interval involves eight floating point operations: conversion from integer to double;
adding 0.5; multiplying by width; squaring; adding 1.0; dividing into 4.0; multiply-
ing by width; and a final addition. There are some other floating point operations in
every worker, but these are not in the central loop so they can be ignored. Using the
number of intervals it is possible to estimate the floating point performance of the task
force. Another useful statistic is the proportion of time spent communicating rather
than calculating. Putting all this together gives the following two programs.

The controller

#include <helios.h>
#include <stdio.h>
#include <posix.h>
#include <nonansi.h>

int main(void)
{ int number_workers, intervals;

double total;
int comm_start, comm_end, comp_start, comp_end;

number_workers = 0;
write(5, (BYTE *) &number_workers, sizeof(int));
read(4, (BYTE *) &number_workers, sizeof(int));

printf("Pi controller: the number of workers is %d.\n",
number_workers);

192 CHAPTER 4. CDL

write(5, (BYTE *) &number_workers, sizeof(int));
read(4, (BYTE *) &number_workers, sizeof(int));

printf("Number of intervals per worker ? ");
fflush(stdout);
scanf("%d", &intervals);
printf("Evaluating a total of %d intervals.\n",

number_workers * intervals);

comm_start = _cputime();
write(5, (BYTE *) &intervals, sizeof(int));
read(4, (BYTE *) &intervals, sizeof(int));
comm_end = _cputime();

total = 0.0;
comp_start = _cputime();
write(5, (BYTE *) &total, sizeof(double));
read(4, (BYTE *) &total, sizeof(double));
comp_end = _cputime();

printf("\nCalculated value of pi is %.14f.\n", total);
printf("Computation time is %.3f seconds.\n",

((double)(comp_end - comp_start)) / 100.0);
printf("Communication time around ring is %.3f seconds.\n",

((double) comm_end - comm_start) / 100.0);
printf("Rating is approximately %d flops.\n", (int)

(100.0 * 8.0 * (double)(number_workers * intervals) /
(double)(comp_end - comp_start)));

return(0);
}

The worker

#include <helios.h>
#include <stdio.h>
#include <posix.h>

double eval(int position, int number_workers, int intervals);

int main(void)
{ int position, number_workers, temp, intervals;

double sum, total;

/* get the worker’s position in the pipeline */
read(0, (BYTE *) &position, sizeof(int));
temp = position + 1;
write(1, (BYTE *) &temp, sizeof(int));

/* get the length of the pipeline */
read(0, (BYTE *) &number_workers, sizeof(int));
write(1, (BYTE *) &number_workers, sizeof(int));

4.3. AN EXAMPLE AS EASY AS PI 193

/* get the number of intervals per worker */
read(0, (BYTE *) &intervals, sizeof(int));
write(1, (BYTE *) &intervals, sizeof(int));

sum = eval(position, number_workers, intervals);

read(0, (BYTE *) &total, sizeof(double));
total = total + sum;
write(1, (BYTE *) &total, sizeof(double));
return(0);

}

double eval(int position, int number_workers, int intervals)
{ int first, current, last;

double width, sum, tmp;

sum = 0.0;
width = 1.0 / (double) (number_workers * intervals);
first = position * intervals;
last = first + intervals;

for (current = first; current < last; current++)
{ tmp = (0.5 + (double) current) * width;

sum = sum + width * (4.0 / (1.0 + tmp * tmp));
}
return(sum);

}

4.3.4 A farm topology

For the pi problem an alternative task force topology is a farm, as shown in Figure
4.7. The controller task can ensure that every component receives the same amount of
work, so there is no need for a load-balancing component. At the time of writing CDL
has no syntax for such a farm, but all the workers can be treated as auxiliaries of the
controller giving the following CDL script:

CDL script control (<> worker, <> worker, <> worker)

or, using replicators,

CDL script control (, [$1] <> worker)

There is no simple way for the controller to determine the number of workers at
run-time, so this value should be passed as an argument. In addition, the number of
intervals per worker can be passed as a run-time argument.

CDL script control $1 \$1 (,[$1] <> worker)

controller int number_workers = atoi(argv[1]);
int intervals = atoi(argv[2]);

194 CHAPTER 4. CDL

control

worker

worker

worker

��

�

�

�

�

Figure 4.7 A farm topology

As before the controller should now write the initialisation data to all the workers.
This can be done as three separate writes: position, number workers, and intervals.
It can be done more efficiently as a single write of a data structure.

typedef struct pi_data {
int position;
int number_workers;
int intervals;

} pi_data;

Consider the stream allocation in this task force. Every worker is a subordinate of
the controller, so it reads from file descriptor 0 and writes to file descriptor 1. All the
workers are auxiliaries of the controller, so stream allocation in the controller starts at
file descriptor 4. The following macros can be used.

controller
#define to_worker(i) (5 + i + i)
#define from_worker(i) (4 + i + i)

The workers can now be initialised by the following code:

controller
pi_data data;
int i;

data.number_workers = number_workers;
data.intervals = intervals;

for (i = 0; i < number_workers; i++)
{ data.position = i;

write(to_worker(i), (BYTE *) &data, sizeof(pi_data));
}

worker
pi_data data;
double result;

read(0, (BYTE *) &data, sizeof(pi_data));
result = eval(data.position, data.number_workers,

data.intervals);

4.3. AN EXAMPLE AS EASY AS PI 195

Collecting the results is straightforward.

controller
double total, tmp;

total = 0.0;
for (i = 0; i < number_workers; i++)
{ read(from_worker(i), (BYTE *) &tmp, sizeof(double));

total = total + tmp;
}

worker
write(1, (BYTE *) &result, sizeof(double));

Putting all the above together, we end up with the following two programs.

The controller

#include <helios.h>
#include <stdio.h>
#include <posix.h>
#include <stdlib.h>

typedef struct pi_data {
int position;
int number_workers;
int intervals;

} pi_data;

#define to_worker(i) (5 + i + i)
#define from_worker(i) (4 + i + i)

int main(int argc, char **argv)
{ pi_data data;

int i;
double result, temp;
int number_workers = atoi(argv[1]);
int intervals = atoi(argv[2]);

data.number_workers = number_workers;
data.intervals = intervals;

for (i = 0; i < data.number_workers; i++)
{ data.position = i;

write(to_worker(i), (BYTE *) &data, sizeof(pi_data));
}

printf("Pi : evaluating %d intervals on %d workers.\n",
number_workers * intervals, number_workers);

result = 0.0;
for (i = 0; i < number_workers; i++)
{ read(from_worker(i), (BYTE *) &temp, sizeof(double));

196 CHAPTER 4. CDL

result = result + temp;
}

printf("\nCalculated value of pi is %.14f.\n", result);

return(0);
}

The worker

#include <helios.h>
#include <stdio.h>
#include <posix.h>
#include <stdlib.h>

typedef struct pi_data {
int position;
int number_workers;
int intervals;

} pi_data;

double eval(int position, int number_workers, int intervals);

int main(void)
{ pi_data data;

double result;

read(0, (BYTE *) &data, sizeof(pi_data));

result = eval(data.position, data.number_workers,
data.intervals);

write(1, (BYTE *) &result, sizeof(double));

return(0);
}

double eval(int position, int number_workers, int intervals)
{ int first, current, last;

double width, sum, tmp;

sum = 0.0;
width = 1.0 / (double) (number_workers * intervals);
first = position * intervals;
last = first + intervals
for (current = first; current < last; current++)
{ tmp = (0.5 + (double) current) * width;

sum = sum + width * (4.0 / (1.0 + tmp * tmp));
}
return(sum);

}

4.3. AN EXAMPLE AS EASY AS PI 197

4.3.5 Different levels of communication

The two versions of the pi task force described above both use Posix-level I/O calls
for the communication between components. This subsection describes the different
levels of I/O available under Helios. The lowest level of I/O is provided by System
library calls:

result = Read(Stream *stream, byte *buffer, word amount,
word timeout);

result = Write(Stream *stream, byte *buffer, word amount,
word timeout);

These functions and the Stream structure are defined in the header file syslib.h.
All Helios I/O occurs through these routines, directly or indirectly. The routines take
a buffer and a buffer size: the contents of the buffer are entirely up to the application.
The next level of I/O is the Posix level, using the library calls:

result = read(int file_descriptor, byte *buff, word amount);
result = write(int file_descriptor, byte *buff, word amount);

Essentially Posix I/O is equivalent to Helios I/O using an infinite timeout. Every
Posix file descriptor has an underlying Helios stream. For many applications timeouts
are irrelevant and there is no need to use the underlying Helios calls. The highest level
of I/O is the language level. In FORTRAN this corresponds to READ and WRITE
statements. The C language has a large number of I/O routines: printf(), scanf(),
vfprintf(), fgetc(), fgets(), fputc(), fputs(), gets(), puts(), fread(), fwrite(), feof(),
fflush(), setvbuf(), to name just a few.

There is a very important difference between system and Posix I/O on the one
hand, and language-level I/O on the other: the first two are unbuffered; the latter is
buffered. If an application uses a Posix write() call for 10 bytes, this write takes place
immediately. If it is a write to a file the data is sent to the file server immediately:
depending on the implementation of the file server, this may store the data in a cache
or it may perform some physical disc activity. On the other hand, if the application
uses C library calls to transfer the 10 bytes this data would be put into a buffer by the
C library: the data would not be sent to the file server until either the buffer had filled
up, or the stream was closed possibly because of a program exit, or the application
used the fflush() call to explicitly flush the buffer. For many applications buffered I/O
is extremely desirable because it greatly reduces the number of actual I/O operations
that take place: one operation per buffer instead of one operation per piece of data.

Now consider how this affects a simple task force: A <> B. Component A writes
50 bytes of data to B, which simply echoes it back. Using C library routines this might
be coded as:

component A : fwrite(buffer, 1, 50, out_stream);
fread(buffer, 1, 50, in_stream);

component B : fread(buffer, 1, 50, stdin);
fwrite(buffer, 1, 50, stdout);

198 CHAPTER 4. CDL

This would not work. The fwrite() in component A would simply copy the data into a
buffer, and the data would not be sent onto component B. Hence component B never
receives the data and cannot echo it back. The task force is now in a state of deadlock,
because of the buffered I/O. On the other hand, using Posix-level I/O routines:

component A : write(5, buffer, 50);
read(4, buffer, 50);

component B : read(0, buffer, 50);
write(1, buffer, 50);

Posix I/O is not buffered, so a write() of 50 bytes really does cause the 50 bytes to
be transferred immediately, and component B can read() the data without problems.
For a simple pipeline buffering is not important. Consider:

cc test.c | asm -p -o test.o

Both the compiler and the assembler use buffered I/O. Hence no data is transferred
between the two programs until the C compiler has filled up the buffer, typically with
1K of data. However, the assembler will be waiting patiently suspended on a read()
until the data is available. There is no feedback from the assembler to the compiler, so
there is no possibility of a deadlock. This explains why ordinary utilities can be used
in pipelines but not in a more complicated topology.

Some languages provide adequate I/O facilities to allow components to interact
correctly, but others do not. FORTRAN I/O is still based around punched cards and
line printers, and there are no facilities in the language to manipulate the buffering.
Hence FORTRAN components of a task force must always use Posix calls for their
I/O. These are illustrated later in this section, using a FORTRAN version of the pi ring
example. The C language is much better equipped, and in particular the following calls
may be found useful:

fflush(FILE *)

This routine flushes an output buffer, which means that it causes all the data in the
buffer to be sent immediately.

setvbuf(FILE *, buffer, mode, size)
setbuf(FILE *, buffer)

These routines allow the application to specify the buffering to be used. Note that
they may only be used once on a stream, and must be used before any I/O takes place.
The mode in setvbuf() can be unbuffered, line-buffered, or fully buffered with the
specified buffer size. In unbuffered mode every byte is transferred immediately, so
that no buffering takes place: this mode is very inefficient for most applications. Line-
buffered mode is intended for interaction with terminals, not for interaction with pipes.
Fully-buffered mode allows the user to specify the buffer size: if the component always
reads or writes data using just one size, this size can be used as the buffer size to give
the desired effect.

It should be noted that C I/O always goes through the buffers, which causes a
significant overhead compared with Posix or system I/O. In practice it is unusual for a
task force component to use anything other than the Posix calls for its interaction with
other components.

4.3. AN EXAMPLE AS EASY AS PI 199

4.3.6 More about pipe I/O

So far the rules for accessing pipes under Helios have not been discussed. When a
component program starts up it receives an environment from its parent, usually the
Task Force Manager. Helios Stream structures are set up for all the streams passed in
the environment, and Posix file descriptors are allocated to these streams. The library
start-up will not actually open the streams: this is delayed until the program actually
uses the stream. For example, in a typical task force all components will inherit a
stream to the console as the standard error stream, file descriptor 2. However, under
normal circumstances this error stream will not be used, so opening the stream as soon
as the environment is received is a waste of resources. As far as the application is
concerned, this delayed opening is transparent.

All the environment streams will be available at the Posix and Helios levels. In ad-
dition, some of them will be opened at the language level. For example, in C the library
start-up will initialise C FILE structures for stdin, stdout and stderr corresponding
to the first three file descriptors. Additional file descriptors passed in the environment
will not be opened at the C level: it is likely that they will not be used at the C level,
and there is little point in using up the space for the FILE structures. Furthermore, the
C library has a limit of 20 open C streams at any one time. If an application wishes to
use file descriptor 4 as a C stream, for example, the library routine fdopen() may be
used to convert a Posix file descriptor into a C FILE * pointer.

At any one time only two components may access a pipe, one for writing and
one for reading. This I/O is synchronous. When an application writes to a pipe it is
suspended until the write has completed. When an application reads from a pipe it is
suspended until data is available. Note that this is asymmetric. If the writer sends 10
bytes and the reader reads 5, the writer remains suspended until the rest of the data
is read but the read returns immediately with the first 5 bytes. If the reader reads 15
bytes, the write completes immediately and the read completes with just 10 bytes: the
reader does not remain suspended until all the 15 bytes are available. If it is desired to
have asynchronous I/O additional processes can be Fork()ed off to perform the I/O.

If the writer closes the pipe, possibly as a side effect of program termination, any
further reads on that pipe will return end-of-file. However, if the reader has closed the
pipe when the writer tries to send data this is an error which will generate a SIGPIPE
signal.

4.3.7 Running the task force

There are a few additional points worth discussing regarding this task force. The first
involves the problem of distributing the problem over a real network. As it stands,
the controller task performs mainly communication rather than calculation. Whilst the
pipeline of workers is calculating, the controller is suspended. This means that the
controller could run on the same processor as one of the workers, without affecting the
performance. Given n free processors in the network, the task force should consist of
n workers and one controller.

A problem arises. As far as the Task Force Manager is concerned the controller
and the workers are equal: it is not given any information to tell it otherwise. It has the
job of putting (n + 1) components on n processors. This means that the Task Force

200 CHAPTER 4. CDL

Manager is as likely to put two workers on the same processor with the controller
on a processor by itself, as to put a worker on the same processor as the controller.
Having two workers on the same processor will halve the speed of both components,
and without a load-balancing component this means that the speed of the task force as
a whole is halved.

One solution is to overload the network. If every processor is given at least three
workers, the difference in performance between a good mapping and a bad mapping is
much less. This approach is particularly suitable in a load-balanced farm. A disadvan-
tage of this approach is that it increases the amount of communication.

An alternative solution is to give Task Force Manager more information about the
task force. One way is to explicitly place the controller and one worker on the same
processor.

component control { puid /Cluster/00; }
component worker0 { code worker; puid /Cluster/00; }

control <> (worker0 [$1] | worker)

Another approach is to use the memory attribute. Suppose that every processor
in the network has one megabyte, and this information is supplied to the Task Force
Manager using the resource map. If the Task Force Manager is told that every worker
needs 600K of memory, it believes that it is impossible to put two workers on the same
processor. Hence it would have to put a worker on the same processor as the controller.

component worker { memory 600000; }

control <> (| [$1] worker)

A third solution is to make the controller do the same amount of work as the work-
ers. This is relatively simple. The controller can install itself as the first worker during
the initialisation stage, simply by sending an integer 1 to the start of the pipeline instead
of 0. On an n-processor network the task force would now consist of (n − 1) workers
and a controller, all doing the same amount of work.

During the initial runs the performance of the task force may be disappointing, par-
ticularly compared with the official performance rating of a Transputer. The first point
to consider is the target processor: the task force performs floating point arithmetic, so
if it is compiled for a T414 but runs on T800s the floating point unit will not be used
efficiently. If the network is a mixture of T800s and T414 it becomes more difficult.
It is possible to have two types of worker binary, one compiled for a T414 and one
compiled for a T800, and use both workers in the task force. Clearly it is necessary to
specify the processor type in the CDL script. On a network with four T414s and four
T800s, a suitable CDL script might be:

component worker.t4 { processor T414; }
component worker.t8 { processor T800; }

control <> ((| [4] worker.t4) | (| [16] worker.t8))

This should run four workers on every T800, using the floating point unit efficiently,
and one worker on every T414, hopefully balancing the workload equally between

4.3. AN EXAMPLE AS EASY AS PI 201

the two types of processor. Some experimentation may be required to get the balance
exactly right.

It should be noted that the official performance statistics for Transputers are based
on having both program and data in the fast internal memory. Normally under Helios
external memory will be used, and this makes a significant difference to the perfor-
mance. The amount of internal memory on a Transputer is limited: it may be inad-
equate even for a program’s current data area, and it will certainly be inadequate for
the code of a non-trivial program. If it is desired to make use of internal memory,
Helios provides the Accelerate() and AccelerateCode() functions to move the current
program stack into internal memory and to place program code into internal memory.
The reader is referred to the Helios Encyclopaedia and online help system for further
details.

4.3.8 FORTRAN task forces

Producing parallel task forces with CDL is independent of the language used to imple-
ment the individual components. The same CDL script can be used irrespective of the
language(s) used to implement the components, provided that the language provides
access to the Posix file descriptors set up by the Task Force Manager. It is possible for
the controller to be written in C, and the worker in FORTRAN or Pascal. It is even
possible to have the controller in C, some workers in C, some in FORTRAN, and some
in Pascal:

ccontrol <> ((| [$1] cworker) |
(| [$2] fworker) |
(| [$3] pworker))

The reader is referred to the appropriate language manual for details of the I/O
facilities provided. The FORTRAN programs below are written using the Meiko 3

FORTRAN compiler. This provides library routines POS WRITE and POS READ
to access the Posix library routines. To perform FORTRAN I/O with the neighbours,
units 30 onwards map onto the Posix file descriptors. Thus a WRITE(31,∗) statement
would perform buffered I/O to Posix file descriptor 1. The I/O facilities provided by
FORTRAN are inadequate for any task force more complicated than a pipeline, be-
cause of the buffering problems already discussed. Meiko FORTRAN provides access
to the component’s arguments using a GETPARAMETERS() function.

The controller

PROGRAM CONTROL

INTEGER WORKERS, INTERVALS
DOUBLE PRECISION TOTAL

WORKERS = 0
CALL POS_WRITE(5, WORKERS, 4)
CALL POS_READ(4, WORKERS, 4)

3Meiko is a trademark of Meiko Limited

202 CHAPTER 4. CDL

WRITE(*, 10) WORKERS
10 FORMAT (’ Pi : the number of workers is ’, I4)

CALL POS_WRITE(5, WORKERS, 4)
CALL POS_READ(4, WORKERS, 4)

WRITE(*, 20)
20 FORMAT (’ Number of intervals per worker ? ’)

READ(*, *) INTERVALS

CALL POS_WRITE(5, INTERVALS, 4)
CALL POS_READ(4, INTERVALS, 4)

TOTAL = 0.0
CALL POS_WRITE(5, TOTAL, 8)
CALL POS_READ(4, TOTAL, 8)

WRITE(*,30) TOTAL
30 FORMAT (’ Calculated value of pi is ’, F16.14)

END

The worker

PROGRAM WORKER

INTEGER WORKERS, INTERVALS, POSITION, TEMP
DOUBLE PRECISION TOTAL, SUM
INTEGER FIRST, CURRENT, LAST
DOUBLE PRECISION WIDTH, TMP

CALL POS_READ(0, POSITION, 4)
TEMP = POSITION + 1
CALL POS_WRITE(1, TEMP, 4)

CALL POS_READ(0, WORKERS, 4)
CALL POS_WRITE(1, WORKERS, 4)

CALL POS_READ(0, INTERVALS, 4)
CALL POS_WRITE(1, INTERVALS, 4)

SUM = 0.0
WIDTH = 1.0D0 / (WORKERS * INTERVALS)
FIRST = POSITION * INTERVALS
LAST = FIRST + INTERVALS

DO 100 CURRENT = FIRST,LAST-1,1
TMP = (CURRENT + 0.5D0) * WIDTH
SUM = SUM + WIDTH * (4.0D0 / (1.0D0 + TMP * TMP))

100 CONTINUE

4.3. AN EXAMPLE AS EASY AS PI 203

CALL POS_READ(0, TOTAL, 8)
TOTAL = TOTAL + SUM
CALL POS_WRITE(1, TOTAL, 8)

END

4.3.9 Pascal task forces

To end this section, here are the same task force components written in Prospero Pas-
cal. For more details of the facilities used, please refer to the Pascal manual.

The controller

PROGRAM control(input, out);

FUNCTION _read(hand:integer; place:integer; amount:integer):
integer;EXTERNAL;

FUNCTION _write(hand:integer;place:integer;amount:integer):
integer;EXTERNAL;

VAR number_workers, intervals, junk:integer;
total:longreal;

BEGIN
number_workers := 0;
junk := _write(5, addr(number_workers), 4);
junk := _read(4, addr(number_workers), 4);

writeln(’Pi : the number of workers is ’,
number_workers);

junk := _write(5, addr(number_workers), 4);
junk := _read(4, addr(number_workers), 4);

write(’Number of intervals per worker ? ’);
readln(intervals);
write(’Evaluating a total of ’);
writeln(number_workers * intervals,’ intervals’);

junk := _write(5, addr(intervals), 4);
junk :=_read(4, addr(intervals), 4);

total := 0.0D0;
junk := _write(5, addr(total), 8);
junk := _read(4, addr(total), 8);

writeln(’Calculated value of pi is ’, total:16:14);
END.

The worker

PROGRAM worker(input, out);

204 CHAPTER 4. CDL

FUNCTION _read(hand:integer; place:integer; amount:integer):
integer;EXTERNAL;

FUNCTION _write(hand:integer;place:integer;amount:integer):
integer;EXTERNAL;

{ the evaluation routine }
FUNCTION eval(position, workers, intervals : integer):

longreal;
VAR

first, current, last : integer;
width, sum, tmp : longreal;

BEGIN
sum := 0.0D0;
width := 1.0D0 / (workers * intervals);
first := position * intervals;
last := first + intervals;

for current := first to (last - 1) do
BEGIN

tmp := (0.5D0 + current) * width;
sum := sum +

width * (4.0D0 / (1.0D0 + tmp * tmp));
END;

eval := sum;
END;

{ the main routine }
VAR position, number_workers, intervals,

junk, temp:integer;
total, sum:longreal;

BEGIN
junk := _read(0, addr(position), 4);
temp := position + 1;
junk := _write(1, addr(temp), 4);

junk := _read(0, addr(number_workers), 4);
junk := _write(1, addr(number_workers), 4);

junk := _read(0, addr(intervals), 4);
junk := _write(1, addr(intervals), 4);

sum := eval(position, number_workers, intervals);

junk := _read(0, addr(total), 8);
total := total + sum;
junk := _write(1, addr(total), 8);

END.

4.4. CDL FARMS AND LOAD BALANCING 205

4.4 CDL farms and load balancing

In the pi example described in the previous section the task force had no need of a load
balancing component The problem could be divided into a number of smaller jobs, all
requiring the same amount of CPU time. Every worker could be given one of the jobs,
thus ensuring that all the workers and hence all the processors in the network were
kept busy.

Many problems can be parallelised without load balancing, like the pi example.
Other problems are not suitable for simple load balancing, particularly if the individ-
ual jobs are not independent and the workers need to communicate with each other.
Nevertheless, for many applications and under many circumstances a load balancing
component is essential or very desirable. Consider a ray tracing program. One pixel
might just display empty space, while an adjacent pixel might involve rays bounc-
ing off a hundred objects. There is no way of predicting in advance how much work
might be required for a given pixel. Another problem occurs if the network is hetero-
geneous or shared. If a task force involves floating point arithmetic and the network
has a mixture of T414s and T800s, the latter should do most of the work. In a multi-
user environment with a shared pool of perhaps 64 processors, one user might start
a 64 component task force whilst a neighbour starts up 16 components. The result-
ing performance will be unpredictable, probably unrepeatable, and almost certainly
disappointing unless load balancing is being used.

One other advantage of load balanced task forces should be mentioned at this point.
They tend to be very easy to write, because the chore of distributing the workload
amongst an arbitrary number of workers is handled by a standard component, the load
balancer.

This section introduces the reader to programming farms, the main task force
topology which uses load balancing. It starts with a description of the communication
between the master and worker components and the load balancer, with an example
task force. Next the inner workings of a simple load balancing component are de-
scribed, in addition to ways in which this program might be modified for particular
applications. The sources of this load balancer are shipped with Helios.

4.4.1 A simple farm

The CDL syntax for a simple farm is

master [3] ||| worker

as shown in Figure 4.8.
The master components send jobs, in the form of packets, to the load balancer. A

packet contains all the information needed to perform the required calculations. The
load balancer reads in packets from the master, checks whether any of the slaves are
free, and if so the packet is sent to that slave. All of the slave components read in one
job packet, process it, send back a reply packet, and read in the next job. The load
balancer continuously reads reply packets from the workers and sends them back to
the master.

This scheme provides load balancing without needing any information about the
application. If the task force has been mapped so that two workers are mapped onto

206 CHAPTER 4. CDL

master [3] ||| worker
master lb

worker

worker

worker

�� ��

�

�

�

�

Figure 4.8 A simple farm

one processor, and a third worker has a processor to itself, the first two will work at half
speed. The third worker will be able to process packets twice as fast, so it will receive
twice as many packets as each of the other two. Therefore it receives the same number
of packets as the other two together, and the two processors both handle exactly the
same number of packets and are kept equally busy.

What exactly is a packet? In general both job packets and reply packets can contain
an arbitrary amount of data, to be read in by the other side. However, the amount of
data must be known by the other side before it can be read in. The solution is to split
the packet into two parts: a fixed size header, and a variable size data field whose size
is contained in the header.

typedef struct LB_HEADER {
word size;
word control;

} LB_HEADER;

First, consider the slave. This component must execute a loop, as described below.

forever
read packet header
allocate space for data, if necessary
read rest of data
perform calculation
construct reply packet header
send packet header and packet data

The master is slightly more complicated. It must send out enough packets to keep all
the workers busy, but not so many that the load balancer runs out of memory in trying
to buffer them. In addition it must read back reply packets from the load balancer as
quickly as possible. The simplest way to achieve this is to have two separate processes,
one generating job packets as quickly as the load balancer will accept them, the other
reading reply packets from the load balancer as quickly as they are produced (see
Figure 4.9).

PAR
writer : loop

generate job
initialise packet header
send packet to load balancer

4.4. CDL FARMS AND LOAD BALANCING 207

master lb

worker

worker

worker

R

W

�
� �� ��

�

�

�

�

Figure 4.9 Two processes

reader : loop
read packet header
allocate space for data, if necessary
read packet data
process the result, (write it to a file)

Now consider how to apply this to a particular problem. Given a range of numbers
a–b where 1, 000, 000, 000 < a < b < 2, 000, 000, 000, find the integer in this range
with the largest number of factors. The range of numbers will be at least 100,000. For
a number x, the number of factors can be evaluated by the following code:

worker : int root = square_root(x);
int number_factors = 2;

for (i = 2; i <= root; i++)
if (x % i == 0)
number_factors += 2;

/* do not count an exact root twice */
if (root * root == x)
number_factors -= 1;

Consider the size of a job very carefully. The above loop will be executed at most
44721 times, since

√
2, 000, 000, 000 = 44721. Therefore the amount of work per

number is small. To get the right balance between the computation time per packet
and the communication overheads, every job should be a set of numbers, perhaps 100,
giving at least 1000 packets in total.

What exactly should the packets contain? A job packet sent by the master to the
workers must contain the set of 100 numbers to be handled as part of that job. This
can be done by sending the first number in that set. The following code can be used.

master, writer process :

typedef struct job_data {
LB_HEADER header;
int start;

} job_data;

208 CHAPTER 4. CDL

job_data data;
int i;

data.header.control = 0;
data.header.size = sizeof(int);

for (i = base; i < end; i+= 100)
{ data.start = i;

write(5, (BYTE *) &data, sizeof(job_data));
}

The load balancer is a subordinate of the master, so file descriptors 4 and 5 are
used for communication. The job packet is sent as a single 12 byte structure. In fact
the load balancer will read in the header so that it knows the amount of data to come
(in this case another 4 bytes), and then it will read in this data. Because of the way the
pipe protocols work this does not cause any confusion. The write() will be suspended
until the load balancer has read in all 12 bytes.

Next, consider the worker. Every worker is a subordinate of the load balancer, so
file descriptors 0 and 1 are used for communication.

worker :
job_data data;

read(0, (BYTE *) &data, sizeof(job_data));

Strictly speaking the worker should read in the packet header and then the data.
In practice the load balancer always writes packets all at once. The final result that
the task force computes is the number with the greatest number of factors. Therefore
the reply packet returned by the worker must contain the number within its current job
with the greatest number of factors, together with the count. The master can compare
this with the best result to date.

master, reader :

typedef struct reply_data {
LB_HEADER header;
int best;
int count;

} reply_data;

reply_data data;
int i, best, count = -1;

for (i = base; i < end; i += 100)
{ read(4, (BYTE *) &data, sizeof(reply_data));

if (data.count > count)
{ best = data.best; count = data.count; }

}

printf("The winner, with a score of %d, is %d.\n",
count, best);

4.4. CDL FARMS AND LOAD BALANCING 209

Note that the reader process reads exactly the same number of packets as the writer
process sends out. For less trivial applications the two processes might synchronise,
so that the writer does not start the next run of jobs until the current run has been
completed.

Neither the load balancer nor the workers have any way of knowing when the last
data packet has been sent. Therefore these programs will not exit, and the task force
as a whole will not exit. To avoid this the master component should send a special
‘terminate’ packet, which the load balancer will broadcast to all workers before exiting.
Every worker should check every packet to see if it is this special terminate packet, and
if so the worker should exit.

Combining all the above, we get the following:

The CDL script

master \$1 \$2 [$1] ||| worker

The master

#include <helios.h>
#include <stdio.h>
#include <stdlib.h>
#include <posix.h>
#include <lb.h>
#include <sem.h>
#include <nonansi.h>

typedef struct job_data {
LB_HEADER header;
int start;

} job_data;

typedef struct reply_data {
LB_HEADER header;
int best;
int count;

} reply_data;

int base, end;
Semaphore finished;

static void reader_process(void);
static void writer_process(void);

int main(int argc, char **argv)
{ LB_HEADER terminate;

base = atoi(argv[1]);
end = atoi(argv[2]);

InitSemaphore(&finished, 0);

210 CHAPTER 4. CDL

unless(Fork(2000, &reader_process, 0))
{ fprintf(stderr, "Unable to fork off reader process.\n");

exit(1);
}

writer_process(); /* send all the job packets */

Wait(&finished); /* signalled by the reader process */

terminate.control = LB_MASTER + Fn_Terminate;
terminate.size = 0;
write(5, (BYTE *) &terminate, sizeof(LB_HEADER));
return(0);

}

static void writer_process(void)
{ job_data data;

int i;

data.header.control = 0;
data.header.size = sizeof(int);
for (i = base; i < end; i+= 100)
{ data.start = i;

write(5, (BYTE *) &data, sizeof(job_data));
}

}

static void reader_process(void)
{ reply_data data;

int i, best, count = -1;

for (i = base; i < end; i+= 100)
{ read(4, (BYTE *) &data, sizeof(reply_data));

if (data.count > count)
{ best = data.best; count = data.count; }

}

printf("The winner, with a score of %d, is %d.\n",
count, best);

Signal(&finished);
}

The worker

#include <helios.h>
#include <stdio.h>
#include <stdlib.h>
#include <posix.h>
#include <lb.h>
#include <sem.h>
#include <nonansi.h>
typedef struct job_data {

4.4. CDL FARMS AND LOAD BALANCING 211

LB_HEADER header;
int start;

} job_data;

typedef struct reply_data {
LB_HEADER header;
int best;
int count;

} reply_data;

static void process_job(job_data *, reply_data *);
static int square_root(int);

int main(void)
{ job_data job;

reply_data reply;

forever
{ read(0, (BYTE *) &job, sizeof(job_data));

if ((job.header.control & LB_FN) == Fn_Terminate)
exit(0);

process_job(&job, &reply);
reply.header.control = 0;
reply.header.size = sizeof(reply_data) -

sizeof(LB_HEADER);
write(1, (BYTE *) &reply, sizeof(reply_data));

}

return(0);
}
static void process_job(job_data *job, reply_data *reply)
{ int x, i, root, number_factors;

reply->count = -1;

for (x = job->start; x < job->start + 100; x++)
{ number_factors = 2;

root = square_root(x);

for (i = 2; i <= root; i++)
if (x % i == 0)
number_factors += 2;

if (root * root == x)
number_factors--;

if (number_factors > reply->count)
{ reply->count = number_factors;

reply->best = x;
}

}
}

212 CHAPTER 4. CDL

/* evaluate a square root without using floating point */
/* five iterations of the Newton-Raphson method with a */
/* starting point of sqrt(1,500,000,000) will suffice */

static int square_root(int x)
{ int estimate = 38730, i;

for (i = 0; i < 5; i++)
estimate = (estimate + (x / estimate)) / 2;

return(estimate);
}

4.4.2 A simple load balancer

master

R

W�

�

�

�

� �

�

�

�

�

�

�
�
���
�
�
����

worker

worker

worker
�

�
��

�
�

Figure 4.10 Processes in the load balancer

The previous subsection gave an example of a simple farm. However, to make
efficient use of farms it is necessary to understand the inner workings of the load
balancing component, and possibly to modify the program to suit the application. The
sources of the load balancer are shipped with Helios.

At any one time the load balancer must be ready to read in new job packets from
the master, and reply packets from some or all of the workers. Simultaneous inputs
from different sources can be handled conveniently by separate processes (see Figure
4.10).

A worker component goes through the following loop.

forever
wait for a job packet to be sent
read the packet
process the job
send the reply packet

It is convenient for the load balancer processes interacting with the workers to use
a similar loop.

forever
wait for a job packet to be available
send the packet to the worker
wait for and read the reply packet
pass the reply on to the master

4.4. CDL FARMS AND LOAD BALANCING 213

It is a good idea to have an input buffer of new job packets, waiting to be sent to the
workers. If a worker finishes its current job a new one will be available immediately
to be sent to that worker. Assuming that the master can generate job packets much
faster than a worker can process a packet, the largest buffer size that makes sense is
one packet per worker. Even if all the workers were to finish their current job at the
same time they could all be sent a new job immediately. The master should then have
enough time to refill the buffer.

If the master component cannot generate jobs fast enough to keep the workers
busy, the farm is unbalanced and some of the workers will be idle, wasting valuable
processors. This is particularly important in a multi-user environment. Suppose that a
problem involves n packets, to be evaluated on x workers. Every worker can handle
y packets per second, and the master can generate z packets per second. The workers
can process a total of (x ∗ y) packets per second, so for a balanced farm we must have:
z >= (x ∗ y), or x <= (z/y). The values of y and z can be estimated by using some
simple tests, giving an approximate idea of the number of workers that can be used
sensibly. If too many workers are used then the master component is a bottleneck, and
some of the workers are idle.

It is possible that the rate at which jobs can be generated varies as the run proceeds.
For parts of the run the master can generate packets much faster than they can be
processed, whilst for other parts of the run the master takes too much time. Under
these circumstances it makes sense to increase the size of the input buffer in the load
balancer to a larger number than the number of workers in the task force.

Another possible bottleneck arises if the master component cannot read back the
reply packets as quickly as they are generated. Again, if x is the number of workers, y
the rate at which workers can generate reply packets, and z the rate at which the master
component can read reply packets, the largest farm that makes sense is: x = z/y. If
the rate z varies, it may make sense to have some buffering for the reply packets. This
buffer can be incorporated into the master component, as shown in Figure 4.11.

master

W�

���R

�

�

� �

�

�

�

�

�

�
�
���
�
�
����

worker

worker

worker
�

�
��

�
�

Figure 4.11 Buffering in the master

Consider the load balancer in this scheme. With x worker components, the load bal-
ancer contains (n + 1) processes. All of these access the input table, and all but one
access the single stream back to the master. These are shared resources which must be
protected by semaphores table lock and master lock. In addition, it is useful to have
two counting semaphores controlling the table usage. The process reading from the
master is suspended automatically if there is no space left in the input table, and this
in turn suspends the writer process in the master component when it tries to send its

214 CHAPTER 4. CDL

master

R

W�

�

�

� �

� �

�

��
��
��

worker

worker

worker
�

�
��

�
�

Figure 4.12 Buffering in the load balancer

next job packet. The processes interacting with the workers are suspended if there are
no new jobs in the input table, leaving the worker components idle.

In the load balancer all the interact with worker() processes must send the reply
packets to the master themselves. This means that these processes are performing pipe
I/O, or even that these processes are suspended on a semaphore waiting to do pipe
I/O, whilst the corresponding worker components are idle waiting for their next job
packets. Depending on how quickly the master reads the reply packets, this may or
may not affect performance significantly. One solution is to add an output buffer to the
load balancer, matching the input buffer, as shown in Figure 4.12.

Given this output buffer, it is a relatively small change to add some new control
packets which the master component can send to modify the load balancer’s behaviour.
One control packet could change the size of the input table, reducing it if the load
balancer runs out of memory in buffering too many packets, or increasing it to allow
for variations in the rate at which job packets can be produced. Another control packet
could change the size of the output table, increasing it to allow for variations in the
rate at which reply packets are handled. This eliminates any need for buffering in the
master component. A very intelligent load balancer could monitor the rates at which
the master produced job packets and collected reply packets, adjusting the buffer sizes
as required.

This brings us to the concept of control packets generally. The simple load balancer
only supports two special control packets: ‘terminate’ and ‘broadcast’. The ‘terminate’
packet requires no additional data. It is implemented simply as a broadcast of the
terminate packet to all the workers, followed by the load balancer exiting. The workers
are not expected to send a reply to the terminate packet. A broadcast packet can be
used to send an arbitrary amount of data to all the workers. For example, in a ray
tracing application all the workers must be initialised with details of all the objects in
the picture being ray traced. This is done as a simple broadcast, with details of all the
objects held in the data vector. The worker component should recognise this special
broadcast packet and handle it as appropriate. While a task force is running it may be
necessary to send many broadcasts. For example, to raytrace a completely different
picture, or to raytrace the current picture from a different angle.

Broadcasting a packet involves synchronisation. The broadcast cannot be sent un-
til all the previous job packets have been handled, because these must be processed
with the old broadcast data. This can be implemented by waiting for all the workers to
be idle and the table to be empty. A special broadcast packet is inserted into the table.

4.4. CDL FARMS AND LOAD BALANCING 215

Whenever a process such as interact with worker() detects this packet it suspends
itself until it is reactivated by the process interacting with the master. This is imple-
mented using the broadcast master and broadcast slave semaphores. Broadcasting
could be implemented more efficiently but with considerable effort, by sending the
broadcast packet and the new jobs to a worker as soon as possible.

Many other control packets are possible, and it may well be worthwhile to add
these to the load balancer if it makes the other components easier to write. Some of
the possibilities that spring to mind are as follows.

sync packet

This is returned to the master when all the current jobs have been finished, leav-
ing the workers idle. It can be used to inform the reader process in the master
component that the end of the run has been reached.

worker count

The load balancer sends a reply packet indicating the number of workers in the
farm.

to worker

This could be sent by the master to direct the packet to one particular worker,
rather than to the next free worker.

set input buffer

This could be used by the master component to control the buffering in the load
balancer.

set output buffer

This is similar to set input buffer.

job packet size

This tells the load balancer about the size of job packets, so that it does not need
to do any dynamic allocation every time a packet arrives. A special number,
-1 for example, could be used to reset the load balancer to packets of variable
length.

reply packet size

This is a similar facility for the reply packets.

Users can implement any control packets they choose. The LB HEADER structure
contains a 32 bit control field, whose interpretation is entirely up to the components.
There is no need to follow the current encoding scheme, if this seems inappropriate.
Different applications have different requirements for the load balancing component,
and the program is intended merely as a basis on which users can build.

216 CHAPTER 4. CDL

4.4.3 More about packets

When designing a task force with a farm topology, the critical design decision will be
the nature of the job packets. There is a very important relationship between the cost
of small packets and the need for a large number of packets. Again, consider a ray
tracing application, with a picture size of 512 ∗ 512 pixels. One approach would be to
make every pixel a separate job, thus generating 262,144 jobs. Each job involves 4 lots
of pipe I/O: from master to load balancer, from load balancer to worker, from worker
back to load balancer and from load balancer back to master. Therefore if every pixel
is a separate job, over a million lots of pipe I/O is involved, and this will be a lengthy
process.

Another approach would be to have every scanline as a separate job, giving 512
jobs. If the number of workers is fairly small, perhaps 10, every worker would have to
process about 50 jobs which should allow for sensible load balancing. Conversely, with
100 workers each worker would have only 5 packets. Under the worst circumstances,
calculation on the 512th scanline would start just as scanlines 412–511 have been
handled, leaving 99 workers idle while the other one is processing scanline 512. These
worst circumstances can arise irrespective of the size of the job and the number of
workers, but they become more serious as the size of each job increases.

It is not possible to give any rules for the amount of work per packet compared
with the amount of communication and the number of workers. In general, it should
be easy to experiment and produce a good compromise given a particular application
and processor network. In the ray tracing example, it should be fairly easy to measure
the performance for jobs consisting of 1, 4, 16, 64, 128, 256 and 512 pixels with little
change to the programs. It is likely that the number of workers that can be used sensibly
is small, as low as 5 or 10 perhaps (even on a 1024 processor network), because the
master component is a bottleneck. Of course, if the optimal solution is to have 14
workers, a load balancer, and the master, then it is possible to run 64 of these task
forces simultaneously on the 1024 processor network and get optimal performance
from the entire network.

One other point must be noted. In general, the packets returned to the master will
not be in the same order as the packets sent out by the master, because some of the
jobs may require more time than others or because some of the workers can operate
faster than others. Therefore the reply packet must always contain some information
which allows the master component to identify it. This might be a sequence number,
or it might be the screen coordinates of the pixels calculated during the current job.

4.4.4 Advanced farms

So far this section has discussed simple farms, consisting of one master component,
one load balancer, and an arbitrary number of workers. For certain applications other
topologies might be appropriate. For example, it may be desirable to have more than
one load balancer, as shown in Figure 4.13.

This might be useful if the packet size is large, and a single load balancer is unable
to buffer the nine packets in a simple farm. Of course the above topology forces the
master component to distribute the jobs equally between the three load balancers. An
alternative solution is to have a hierarchy of load balancers (see Figure 4.14).

4.4. CDL FARMS AND LOAD BALANCING 217

master

lb

lb

lb��

�

�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

��

�

�

�

�

Figure 4.13 Multiple load balancers

master big lb

lb

lb

lb
�� ��

�

�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

��

�

�

�

�

Figure 4.14 Hierarchy of load balancers

218 CHAPTER 4. CDL

master

R

W�

�

��
��
��

worker

worker

worker
�

�
��

�
�

Figure 4.15 Built-in load balancer

A different version of the load balancer would be required in the middle. It would
have to know that its three subordinate load balancers all had three workers, and hence
that they could all receive and process three job packets immediately and buffer another
three. It would have to take care not to fill up the buffer in a subordinate load balancer
if the workers of another subordinate load balancer were idle. Note that the middle
load balancer is given two arguments: the number of subordinate load balancers and
the number of workers per subordinate. Therefore it is possible to produce a single
load balancer which could operate in either position, simply by examining the number
of arguments. Also note that exactly the same worker program can be used with all
these configurations.

One more possibility should be considered. In a simple farm all packets involve
four lots of pipe I/O as discussed earlier. This can be reduced to just two lots of pipe
I/O by merging the master component and the load balancer. The writer process in the
master, instead of sending a packet to the load balancer, now adds it to the input table.
Similarly, the reader process in the master, instead of reading packets from the load
balancer, takes them from the end of the output table. This creates the scheme shown
in Figure 4.15.

The worth of the performance gain with this merger depends on the application.
If the cost of communication is higher than the cost of computation, the merger may
make the parallelisation worthwhile. If the cost of computation is much larger, the
gains are not worthwhile.

4.5 Odds and ends

The reader can now produce task forces by using the information and the examples in
the previous sections. However, there are a few points left that should be discussed.
Firstly, there is a more detailed description of the relationship between computation
and communication, together with the problems of bottlenecks. Secondly, the possible
problems encountered with workers are mentioned. Thirdly, the possibility of pro-
ducing a parallel server is discussed, using a number crunching server as an example.
Fourthly, the possibility of using message passing rather than pipe read() and write()
calls is discussed. Finally, there is a program illustrating message passing between
components, rather than Posix read() and write() calls.

4.5. ODDS AND ENDS 219

�

�
processors

throughput

Figure 4.16 The throughput curve

4.5.1 Communication versus computation

When solving a problem in parallel, two types of cost must be considered. First of
all there is the computation. If one processor can solve a problem in x seconds,
then n processors should be able to do exactly the same amount of computation in
(x/n) seconds. The n processors are doing useful work for (x/n) seconds. This as-
sumes that the amount of computation can be split up in some way, so that the different
processors can all do part of the computation.

The processors must exchange data if they are to carry out the computation. It is
necessary to split up the data and transfer it from one processor to another. This com-
bined cost is the communication cost. If the problem was solved on a single processor,
the communication cost would be zero. Therefore all of the communication cost is an
overhead.

There is a third cost: installation. This term applies to mapping the task force onto
the available processors, loading the components from the disc into these processors,
reading initial data from disc, writing final results to disc, etc. If the task force is
going to be used only a few times, the extra cost of producing a parallel rather than
a sequential solution must also be considered. For many task forces the installation
cost will be negligible compared with the other two, but there are always exceptions.
Installation cost will not be considered further here.

For a given amount of computation, as the number of processors used increases,
the amount of computation done per processor must decrease. Also, the amount of
communication will increase. Hence the proportion of time usefully spent will de-
crease. There are two parameters to consider. First, the computation throughput per
second (the amount of real work done) (see Figure 4.16).

When the number of processors increases to a certain level, the throughput will ac-
tually decrease because the increase in communication is more than the computation
done by the extra processors. It never makes sense to have so many processors that
the throughput actually decreases. A closely related parameter is ‘speed up’. This is
a measure of the throughput on n processors compared with the throughput on 1 pro-
cessor, the speed up achieved by having a parallel rather than sequential solution. The
second parameter is the efficiency, which is the throughput per processor. This mea-
sures how much time is spent usefully on every processor, the time spent computing
divided by the total time spent computing and communicating (see Figure 4.17).

On a single processor the efficiency is 100%, and this drops as the number of pro-
cessors (and hence the communication) increases. The throughput for n processors is
n ∗ efficiency(n). The turning point for throughput occurs when (n ∗ efficiency(n)) >

220 CHAPTER 4. CDL

�

�
processors

efficiency

Figure 4.17 The efficiency curve

((n + 1)∗ efficiency(n + 1)).

For some applications the efficiency and throughput curves might not be smooth.
For example, an application might be quite efficient with 16 workers in a 4 ∗ 4 array, or
with 20 workers in a 5 ∗ 4 array, but give poor performance with 17, 18 or 19 workers.

For a small number of processors, the throughput rises quickly. This has an im-
portant consequence. Given a 16 processor network, the throughput of a single task
force will be less than the combined throughput of two task forces, both running on 8
processors. The most efficient use of the network can be achieved by having 16 task
forces, all on one processor. Of course it will take longer to calculate these 16 results
than it would take to calculate a single result on 16 processors, and it is necessary to
strike a balance between the response time and efficient use of the network.

The exact slope of the throughput curve depends very much on the application. For
some applications it is possible to maintain high efficiency even with many thousands
of processors. For other applications the throughput is actually reduced by having even
two processors. (The communication overheads are such that with two processors each
operates at less than 50% efficiency.) For any given application it is difficult to esti-
mate the throughput curve in advance with any degree of accuracy, but some simple
experiments should give a good idea. There are various ways in which the commu-
nication costs can be reduced. The first way is to reduce the number of packets sent,
by increasing the amount of work per packet. This solution is particularly appropriate
for a farm. It is not always applicable if the amount of communication is determined
by the problem. Thus in image processing it is possible to have a two-dimensional
array of workers, with every worker needing to communicate with its neighbours to
deal with the boundary conditions. This communication is implicit in the problem,
and cannot be reduced in any way.

The second way to reduce the communication cost is to send a few large packets
instead of many small ones. The cost for a single-pipe I/O can be divided into a fixed
latency cost, to do any I/O at all, and a variable cost proportional to the amount of
data. Sending one large packet instead of 10 small ones saves 9 ∗ latency cost. As
an example consider the following transfer rates achieved for pipe I/O between two
processors 4 links apart, for different packet sizes.

4.5. ODDS AND ENDS 221

Packet Size (bytes) Transfer Rate (Kb/s)
4 2
64 38
2048 507
65536 1372

It would take almost 3.5 seconds to transfer 128K of data across 4 links using 64-
byte packets. Using two 64K packets the transfer could be achieved in a fraction of a
second.

It should be noted that the above measurements were made in an otherwise idle
network. Computation will not usually affect the time taken for communication, be-
cause under Helios the former will run at low priority whilst communication occurs at
high priority. However, if many components are communicating over the same set of
links then these will affect each other adversely.

Again it is not always possible to adjust the size of the packets to get better per-
formance, because this size is determined by the problem. The third way to improve
performance (possibly the most important) is to identify and attempt to remove any
bottlenecks. These were discussed in some detail in the previous section. Not all bot-
tlenecks can be eliminated, and if so this will severely limit the number of processors
that can be used. To detect bottlenecks it is necessary to experiment, using perfor-
mance monitoring code in the various components.

The final way of improving efficiency may seem obvious but is often overlooked.
Make the components themselves more efficient. If a programming trick cuts 10% off
an inner loop in a sequential program, exactly the same trick will make the worker
components of a task force more efficient. The saving will not be the full 10% because
of the communication costs, but there will be a saving none the less.

4.5.2 Problems with worker components

In a typical network there might be a 4 megabyte root processor with some addi-
tional 1 megabyte processors. Quite often the master component requires more than
1 megabyte, and so the CDL script will place it on the root processor, for example by
specifying its memory requirements. The workers must run on the 1 megabyte proces-
sors. These processors really have just one megabyte, and it is remarkable how quickly
that can be filled up. Consider the following innocuous FORTRAN statement.

DOUBLE PRECISION MATRIX[256,256]

Such a statement will give no problems at all on a traditional mainframe with a virtual
memory system, where portions of the matrix can be swapped out to disc whenever
necessary. On a Transputer this statement would use up 256 ∗ 256 ∗ 8 bytes, or half of
the 1 megabyte attached to the processor. If we also consider the rest of the memory
required by the program data, the program code, the space required for the various
libraries including approximately 100K for the FORTRAN library, and some space
for the operating system, 1 megabyte may not be enough. Applications where every
worker really needs so much memory may not be appropriate for the Transputer hard-
ware in use, and there is nothing that Helios or any other operating system can do about

222 CHAPTER 4. CDL

this. Of course it may well be possible to modify the application. If the matrix is a
sparse one, with perhaps just a few thousand actual values instead of the 64K possible,
it can be stored and processed in appropriate data structures without using so much
memory.

The other common problem with task forces is that the worker components try
to do their own I/O, instead of passing results back to the master component. For
example, consider a task force of 100 components all trying to access a file on disc.
If the Transputer network is hosted by a PC then MS-DOS 4 imposes a limit of 20
open files for all of the processors. On a Sun host the limit is 64, but still less than the
application demands. Hence the application will fail because of a design error. Even
worse, it may work perfectly on a small processor network with just 10 components
and fail just when the time comes to demonstrate the application on a larger network,
for reasons that are not immediately obvious, or it may fail if the application is moved
to a slightly different environment.

Limits on the number of open files are not the only limits to consider. Suppose
that every one of the workers writes a log to the standard error stream, which happens
to be a window in the I/O Server running on a PC. With 10 workers this means 10
open streams to the I/O Server, all using up a significant amount of memory. With
100 workers, a PC I/O Server will run out of memory long before 100 streams can be
opened. After all, the PC I/O Server is running in at most 640K of memory, which
is less than the minimum of a megabyte attached to a typical Transputer. Again, the
application will fail for reasons not immediately obvious if attempts are made to run it
on a larger network or in a different environment.

If every worker tries to interact with the Helios X window system server the prob-
lem is slightly different. The X server may be running on a processor with sufficient
memory to cope with a large number of connections. However, every worker would
require the X library, about 128K, and possibly the X Toolkit library and the Widget
library at 64K each. As a result 256K out of the megabyte available would be used up
just for these libraries, quite possibly not leaving enough memory to do the real work.

Apart from the improper use of resources described above, there is another good
reason why worker components should not perform any I/O. The Helios Task Force
Manager is responsible for mapping the components onto the available network in an
efficient way, trying to minimise the distance between communicating components. If
all the workers spend their time doing I/O which is not related to the inter-component
communication, the Task Force Manager will not have allowed for that and the effort
spent trying to achieve an efficient mapping will have been wasted. The rule is that
workers should communicate only with other components in the task force. Any real
I/O should be left to the master component if possible.

4.5.3 Parallel servers

The Helios parallel operating system is based on a client-server model. To perform
certain types of work, an application or client sends a message to a server, which
may be on the same processor or it may be anywhere else in the network, and this
server program does the real work. Under Helios it is possible to produce a server

4MS-DOS is a registered trademark of the Microsoft Corporation

4.5. ODDS AND ENDS 223

Program

Library Server lb

worker

worker

worker

�� ��

�

���

�

�

Figure 4.18 A parallel server

which is a task force. For example, consider a number crunching library on a single-
processor machine which is used by many existing applications. Rather than rewrite all
the applications to work in parallel, the library is turned into client code of a number
crunching server. Suppose the application performs a library call for a complicated
matrix operation. The library sends a request to the number crunching server, with all
the data, and the server performs the work on multiple processors. When the work
has been done the server returns the result to the library, which returns control to the
application (see Figure 4.18).

The master component of the task force installs itself as a Helios server, in the
standard way. When the library needs to access the server it opens a stream to the
server, transfers all the required control information and data using this stream, and
receives the results over this stream. The server accepts multiple open requests from
different clients and receives jobs from these clients. Each job is evaluated using some
or all of the workers, and the results are returned to the client. The advantage of the
scheme is that the existing applications run unchanged.

Not all numerical problems can be solved using this approach. First of all this
approach is less efficient than parallelising the actual applications, because there is
additional communication overhead between the library and the server. Second, not
all standard library routines can be handled in this way. In particular, if the application
passes the address of a compiled function to a library routine, perhaps a routine for
evaluating an integral, then there is no easy way of passing this function to a server on
a remote processor, and certainly not to all the workers. A string representation of the
function might be used, which could be interpreted or compiled in all the workers, but
this is only possible for relatively simple functions and it means that the applications
would have to be changed. However, there is no reason why the numerical library
could not handle such routines on the local processor, whilst passing other calls to the
remote server.

224

Chapter 5

Compatibility

5.1 Introduction

This chapter covers the compatibility of Helios with various actual and de facto stan-
dards, and the porting of programs to Helios. The baseline for Helios compatibility
is Unix, in its various flavours. The intention is to make the porting of a program to
Helios almost as easy as porting it from one type of Unix to another. The emphasis
here is to aid the portability of application programs rather than system programs.
Code which makes unreasonably detailed assumptions about the operating system it
is using will not port directly. However, depending on the assumptions made, such
system programs can be ported with few changes.

5.2 Unix compatibility

There are almost as many different forms of Unix as there are hardware vendors. How-
ever, some standards are emerging, and it is to these that any compatibility measures
must adhere. The two explicit standards are POSIX (IEEE 1003.1-1988) and X/OPEN.
There are also two de facto standards: System V.4 and BSD4.3. The former has the
might of AT&T behind it and the latter is most widely used in the academic and scien-
tific establishments, where Helios is most used. It must be emphasised that POSIX and
X/OPEN merely codify current Unix practice. They are not generic operating system
interface standards. These standards are currently converging, and whilst a common
subset based on POSIX will probably emerge, features not covered by the standard
will still be implemented in widely differing ways.

The model of computation under Unix is of a group of single-threaded processes
all executing on a single processor. The Helios model consists of a group of multi-
threaded tasks distributed across several different processors. Also, in Unix all operat-
ing system functions, such as the file system, terminal I/O or Resource Management,
are performed by a single Kernel. In Helios these functions are distributed amongst
several Kernels and servers. The result of this is that the Unix model is seriously in-
adequate for describing programming under Helios, and it makes a number of basic
assumptions which are not true in a distributed environment. The following sections
describe some of these inadequacies, and how Helios deals with them.

225

226 CHAPTER 5. COMPATIBILITY

5.3 File handle sharing

Under Unix the file descriptors of a process are small integers which index a per-
process Kernel table of pointers to globally shared file handles. These handles contain,
amongst other things, the current file position. A dup() operation merely copies the
pointer. A fork() will copy the pointer table, but not the handles. This means that
every access to a particular open file, whether it is through duplicated descriptors in
the same process or through the same descriptor in different processes, will use the
same file handle. In particular, all such descriptors share the same file position, so a
read or write through one descriptor will affect the position of the next read or write
through another descriptor.

Under Helios, the task accessing a file and the server which contains it will almost
always be on different processors. If the task creates a child, this may be on a third
processor. Without shared memory between the processors, there is no possibility of
maintaining a shared file handle, and each client has its own file position. This means
that reads and writes made from different tasks are independent.

One of the design aims for Helios was to make it fault tolerant. To achieve this it
must be possible for a client to continue running across a crash and to restart all of the
servers it is using. In the same way, a server should not be affected by the failure of any
of its clients. This has been achieved by making servers stateless, and maintaining with
the client any state information required for access to an object. If the server crashes
and restarts, the client can continue because no state has been lost. If the client crashes,
all state relating to that session is lost with it, and the server does not need to take
recovery action. For these reasons, the obvious approach of keeping the file position in
the server, which would preserve Unix file handle sharing semantics, is unacceptable.
Fortunately, few applications exploit this feature of Unix, so compatibility is seldom a
problem. The Posix library implements the correct semantics in the case of dup(), but
not in the case of fork()/exec().

5.4 fork()

On a single processor with memory management hardware, fork() is a conceptually
simple mechanism for creating new processes. However, depending on the processor
architecture, available memory and swapping strategy, it can be complex and expen-
sive to implement. In most cases this effort is wasted, since the new child almost im-
mediately executes an exec() call which destroys the entire address space which was
so expensively duplicated. For this reason, BSD introduced the vfork() call, which
does not duplicate the address space of the process, but only its Kernel environment
(current directory, file descriptors, process/group/user ids, etc). The new child uses its
parent’s address space until it executes an exec() call or an exit() call, and the parent
is suspended during this period. This allows the child to manipulate the Kernel envi-
ronment, move file descriptors, and change user or directory, before executing another
program.

Clearly there are problems in the implementation of fork() in the environment in
which Helios operates. The most fundamental problem is that the T400 and T800
series Transputers do not have any memory management hardware. If all the memory

5.4. FORK() 227

belonging to a particular process was duplicated locally, it would not occupy the same
range of addresses, and any pointers would still point back to the original memory. It
might be possible to duplicate the process into another processor, at the correct position
but the likelihood of finding a processor with exactly the right range of addresses free
is slim.

For the above reason alone, fork() is impossible to implement. However, there
are further, more fundamental problems, with the whole concept of fork() as a process
creation mechanism. In an environment where processes are internally multi-threaded,
the fork() operation is called by only one thread. The execution state of the other
threads is indeterminate. What should be done with these threads? One alternative
is to duplicate all threads into the new process. This then raises the problem of what
happens to threads which are blocked in, or about to execute system calls which should
not, or cannot, be executed in the new process. The only other alternative is to duplicate
only the thread which called fork(). This raises a problem with process-local Resource
Management. If a thread holds a resource in the parent, that resource will never be
released in the child, because the thread which should release it has not been duplicated
into the child. Both of the options described above would require considerable effort
on the part of the programmer to deal with the consequences of a fork().

Unix fork() also has problems in a distributed environment. In a distributed sys-
tem, process creation is the ideal point at which to decide in which processor a process
should execute. Unix fork() is potentially expensive even in a uniprocessor. It would
become totally unacceptable if the entire process state and address space needed to be
copied to another processor as well. A distribution decision could also be made when
exec() is called. This is more acceptable, since the address space is to be replaced
and the process state is at its minimum. However, there are still problems with this.
The new process is created in the Kernel of one processor, which must then transfer
it to another, yet it must retain some information for the benefit of the parent process.
Such a mechanism still incurs the cost of creating a new process address space, only
to destroy it soon afterwards. A process which exec()s without forking will move yet
again, introducing a further indirection between it and its parent.

Another main use of fork() is to create a new thread of control in the existing
program. This is usually necessary to overcome the purely sequential nature of Unix
processes and perform some form of multiplexing. This is most frequently present in
programs written before select() (or poll() in System V) was introduced. The multi-
threading introduced by this mechanism is of limited use since the processes have
disjoint address spaces, and any communication between them must be achieved by
using signals or pipes which were set up before the fork(). This is more adequately
catered for by the use of process-internal threads. When a standard for internal multi-
threading emerges (POSIX 1003.4 is working towards such a standard), this use of
fork() can be expected to cease.

Another use of fork() is by programs such as mailers and printer daemons to con-
tinue processing in the background. In this case, the program forks a child and then
terminates. The original parent, which is usually a shell, sees its child finish and can
continue. Meanwhile, the grandchild can do the job in the background without forcing
the user to wait for it to finish. This is better dealt with by an explicit detach() call,
which is a more portable mechanism, and can be implemented much more cheaply
than by using fork().

228 CHAPTER 5. COMPATIBILITY

The obvious conclusion is that fork() is not appropriate for process creation in a
multi-threaded, distributed environment. The only function of fork() which cannot be
provided by other, more efficient and more powerful, mechanisms is its role in running
new programs. It is undeniably attractive to be able to manipulate the environment
of a new program before it is entered by means of normal C code between fork()
and exec() calls. This is the major use of the call, and it must be retained if Unix
compatibility is to be preserved. For this reason, vfork() is retained in Helios solely
as a prefix to exec(), to allow this environment manipulation to take place. The same
restrictions apply to Helios vfork() as to the BSD version. The child may not return
from the calling procedure, and it must terminate with exec() or exit(). For source
compatibility, fork() is defined as a macro which executes vfork().

5.5 Signals

In Unix, a signal is delivered to a process by invoking a signal handling procedure
on the top of the stack of the process. This is possible because the Kernel explicitly
schedules processes, and it is aware of all process states at all times. Transputer ver-
sions of Helios use the processor’s scheduler, and have no direct involvement in either
the creation or the scheduling of processes. For this reason, Helios is unable to deliver
signal handlers onto the top of the stack of a process, because it has no way of knowing
where this is.

Helios delivers signals to a separate signal delivery process. This means that sig-
nal handlers will execute in parallel with the other threads in the process. It also
means that the Unix practice of exiting a signal handler by longjumping back to some
recovery code will not work. To preserve such behaviour, the Posix library allows sig-
nal handlers to be marked as synchronous or asynchronous. An asynchronous signal
handler is called in the signal delivery process. A synchronous signal is only called
when the Posix library is entered. By default, SIGABRT, SIGHUP, SIGINT, SIGKILL,
SIGQUIT and SIGTERM only are delivered asynchronously. If a user signal handler
is installed for any of these it reverts to being called synchronously. Only if the han-
dler is installed using sigaction() with the SA ASYNC bit set in the flags will the user
handler be called asynchronously. This does not guarantee that the longjump trick
mentioned earlier will work in a multi-threaded program, but it will work in a Unix
compatible single-threaded program.

Like fork(), Unix signal handling has fundamental problems in a multi-threaded
distributed environment which are not related to Helios or to the Transputer. Signals
are used for three purposes in Unix.

1. Reporting synchronous hardware traps such as SIGSEGV, SIGKILL and
SIGFPE.

2. Reporting asynchronous events sent explicitly by other processes, or the system,
such as SIGINT, SIGABRT, and SIGHUP, etc.

3. Reporting asynchronous events which are used to multiplex a single thread be-
tween several activities. Signals in this class are SIGCHLD, SIGALRM, SIGIO
etc.

5.5. SIGNALS 229

The synchronous signals are associated with the thread which causes the hardware
trap. In a multi-threaded environment, there are two alternatives for handling these. In
the first option, the signal is delivered directly to the faulting thread. The problem with
this is that the thread may have corrupted its stack, and this may be the reason why it
trapped. In the second option, the thread is suspended and the signal is delivered to
another nominated thread, together with the original thread’s state. The signal handler
can then inspect and modify the trapped thread, and possibly resume it. This could
become highly machine specific, and it is at variance with current practice, although
it is used by MACH and Topaz. There is no standard practice at present, although the
first option is preferable for the sake of compatibility. Currently there is no mechanism
for raising these traps on the Transputer, so the Transputer version of Helios does not
support these signals.

Of the two types of asynchronous signal, the provision of multi-threading elimi-
nates the need for the second class, although they will need to be supported for the sake
of compatibility. The alternatives for handling asynchronous signals are as follows.

1. Deliver all signals to all threads.

2. Deliver all signals to a nominated thread.

3. Deliver each signal to a thread nominated on a per-signal basis.

4. Introduce a function which suspends the calling thread until one of a specified
set of
signals is pending.

5. Create a new thread for each signal as it is delivered.

6. Deliver all signals to a special signal handling thread.

7. Deliver each signal to an arbitrary thread.

Clearly option one leads to chaos, option two is close to current practice, option three
results in contention between threads over the single per-process signal mask, and op-
tion four is too different from current practice. Option five is the mechanism used in
Helios until version 1.2, and options six and seven are combined in the signal mecha-
nism for Helios version 1.2 onwards.

The POSIX 1003.4 Realtime Extensions Committee in Draft 8 (August 1989) has
chosen option two, where the nominated thread is always the initial thread of the pro-
cess, since it is backwards compatible with existing systems. However, the committee
has documented a function called sigwait() to implement option four, in the hope of
encouraging its use and eventual standardization. The advantages of this mechanism
are that it removes all restrictions on the signal handling code, it allows multiple signals
to be handled simultaneously, and it allows different signals to be handled at different
priority levels. With multi-threading, there is no longer any need for signals to be
treated analogously to interrupts, and a more controlled mechanism for handling them
is preferable.

230 CHAPTER 5. COMPATIBILITY

5.6 Process identifiers

The single Unix Kernel is in sole control of all processes in its system, and it can
choose process ids which are unique. In Helios, there is an arbitrary number of pro-
cessors, each running a different Kernel. It is impossible to ensure that any particular
process id is unique throughout the entire system. Posix restricts pid t to being a signed
integer type. This means that conventional mechanisms for concatenating site id with
a site unique value will rapidly run out of bits. If, as in Helios, subnetwork may be
disconnected and reconnected at will, the system must cope with the possibility that
previously disjoint networks are using the same set of process ids. Also, a primary de-
sign objective of Helios was that all objects should have textual names with meaning in
human terms, rather than arbitrary ‘magic numbers’. For this reason, all running tasks
are entered in the /tasks directory, with a name derived from the name of the program
in use.

In the Helios Posix library, the process ids returned by getpid(), vfork() and
wait(), which should be supplied as arguments to kill() and waitpid(), are entirely
local to the calling task. They are used merely as tokens by the library, to represent
internal data structures. The process id of any task is 42, and its parent is 41. Each new
invocation of vfork() yields a monotonically increasing sequence starting from 43. Be-
tween vfork() and exec(), getpid() returns the new value and getppid() returns 42. A
task may only wait() for or kill() its own children through the Posix library. Control
may be exercised over other tasks by means of the Helios mechanisms, particularly
SendSignal().

5.7 User and group identifiers

Protection of resources in Unix is achieved by assigning an owner’s user identifier and
a group identifier to all objects. Access rights for the owner, for the group members
and for the general public are also stored. In the same way, processes are given user
and group ids. When a process attempts to operate on an object, the identifiers are
compared and, depending on the results, the appropriate set of access rights is used
to determine whether the operation is allowed. This mechanism relies on the Kernel
to protect the identifiers stored with objects and processes against tampering. This is
achieved by storing them outside any process address space, and by closely control-
ling the functions which manipulate them. Helios for the T400 and T800 series of
Transputer has no memory protection, so cannot prevent users from tampering with
their user identifiers. However, as already mentioned, there are fundamental flaws in
the Unix mechanism which make it unsuitable for a distributed system. In brief, to
duplicate the Unix mechanism in a distributed system requires a centralised user au-
thentication server which must be consulted before every operation on every protected
object, to validate the user. This slows down all operations and vastly complicates the
implementation of all servers. It is a centralised system, with all the consequent prob-
lems of reliability, and it could become a serious bottleneck. If a user could fake an
authentication server, the whole system would be open to them.

The Helios mechanism for resource protection and access controls is based on
encrypted capabilities. This is a distributed system, and the implementation of the

5.8. BSD COMPATIBILITY 231

protection mechanism is entirely in the hands of the servers containing the protected
objects. Consequently, the overheads are minimal, and there is no problem with relia-
bility beyond that of the original server. Users cannot fake a capability in the same way
as they can fake a user id. The first is a 64 bit number chosen from a sparse number
space, and the second is listed in the password file. No special means of storing the
capabilities is needed in the operating system. They can be stored in user memory, and
the user can gain no advantage by tampering with them.

In choosing a protection mechanism which is suited to a distributed system rather
than to Unix emulation, a large degree of compatibility has been sacrificed in this
area. However, experience suggests that, with the exception of a few system programs,
portable Unix programs do not manipulate their own ids, or object user and group
ids. A simple translation between Unix access modes and Helios access matrices is
sufficient to support programs like tar and even NFS.

The Helios Posix library from version 1.2 stores a single user and group id for a
task which can be manipulated with the usual calls. Unix programs normally have
both real and effective user and group ids, but since the only mechanism for making
these different is the set-user-id option on executable programs, which Helios does not
support, there is no need to store both. Similar advantage has been taken of the Posix
option to define the number of subsidiary group ids as zero, so nothing need be stored.

Normally Helios does not pass the uid and gid from parent to child, since they
serve no useful function. However, if the environment variables UID and GID are
set when a program is entered, uid and gid are set from them. The values of these
variables must be 8 digit hexadecimal numbers. In the same way, the current uid and
gid will be passed on by exec() to any child programs if these variables exist.

5.8 BSD compatibility

A new addition in Helios version 1.2 was a Berkeley Unix compatibility library. This
is a link library of routines which have been written while porting a number of public
domain programs. These routines are a mixture of code written by Perihelion, pub-
lic domain sources and a few genuine BSD sources. Again, the emphasis here is on
minimising changes to source code rather than complete emulation of BSD. No doc-
umentation is supplied for these routines. They are all documented by Berkeley. The
following is a list of the contents of this library.

alloca() bcmp() bcopy() bzero()
closelog() ffs() ftruncate() getopt()
getpass() getw() getwd() index()
inet_addr() inet_lnaof() inet_makeaddr() inet_netof()
inet_network() inet_ntoa() initgroups() insque()
ioctl() mktemp() openlog() pclose()
perror() popen() psignal() putw()
rcmd() readlink() readv() remque()
rexec() rindex() rresvport() ruserok()
seekdir() setegid() seteuid() setgroups()
setlinebuf() setlogmask() setrgid() setruid()
sigblock() sigpause() sigsetmask() sigstack()
sigvec() strcasecmp() strncasecmp() syslog()

232 CHAPTER 5. COMPATIBILITY

telldir() truncate() writev()

The library also contains the following variables or tables.

sys_errlist sys_nerr sys_siglist

For implementation purposes, the following routines are in the Posix library.

getdtablesize() gettimeofday() lstat()

wait2() wait3()

Some extra headers have been added to the include directories to support BSD
compatibility. These are listed below.

sgtty.h strings.h sys/dir.h sys/errno.h
sys/file.h sys/ioctl.h sys/param.h sys/resource.h
sys/time.h sys/ttychars.h sys/ttydev.h sys/un.h
varargs.h

BSD compatibility features have been added to the following existing headers.

errno.h fcntl.h pwd.h signal.h
stdio.h string.h sys/stat.h sys/types.h
sys/wait.h unistd.h

The BSD compatibility features in the existing headers are only enabled if the
macro BSD is defined. The BSD only headers will generate an error message if they
are included when BSD has not been defined. Care must be taken when mixing Posix
and BSD specific code, because the headers redefine some things for the BSD option.

The support for ioctl() is limited. For terminals it is implemented on top of the
Posix termios system, and it only implements the common features. The most com-
monly used attributes: RAW, ECHO and TANDEM are implemented. The ability to
change the special characters is not currently implemented. All ioctls to internet sock-
ets are implemented with the exception of SIOCGIFCONF. The following ioctls each
correspond to their BSD equivalent.

FIONREAD FIONBIO TIOCGETD TIOCGETP
TIOCSETP TIOCSETN TIOCFLUSH TIOCGETC
TIOCLSET TIOCLGET TIOCGPGRP TIOCSPGRP
TIOCGLTC TIOCSTOP TIOCSTART TIOCGWINSZ
TIOCOUTQ

Some of these (TIOCFLUSH for instance) simply call the equivalent Posix routine,
which may not be implemented. Those ioctls mentioned in the headers but not in this
list will do nothing, and return zero.

5.9. PORTING TECHNIQUES 233

5.9 Porting techniques

This section gives some helpful hints on porting programs to Helios. It only covers
programs written in C for Unix, although programs written in C for the PC, Amiga,
Atari ST and even the Macintosh should port as easily if they make few machine
specific assumptions. Programs which are genuinely written for portability present
few problems. In many cases they simply need to be compiled and linked.

There are two potential areas of difficulty in porting a program: the C language,
and system functionality. The Helios C compiler is ANSI standard, while most Unix
programs are written to K&R standard. The ANSI standard includes the K&R features
for compatibility, but some of these are known as ‘deprecated’ features, and their use is
discouraged. An example of this is the use of a function declaration without giving any
argument types. These deprecated features all generate warning messages, but they can
be turned off with the -w flag to the compiler. In version 1.3 of Helios, the C compiler
driver can take the flag -wA to turn off all optional warning and error messages. This
is recommended on all K&R style programs.

CAUTION: This option can sometimes suppress too many error messages, in par-
ticular the message concerning the use of nested comments.

Once the sources of a program have been compiled, they must be linked. Putting
aside references to library code for a moment, there is a potential problem with linking
the parts of a program together. This problem arises from the practice of declaring all
references to a variable as extern, without explicitly defining it and allocating storage.
The Unix linker is then responsible for allocating the storage in the data part of the
final program image. Under Helios, all programs are composed of modules which
export a set of variables and functions to their peers. If there is no definition of a
variable, it cannot be allocated to a module, and therefore it does not fit the Helios
model. There are two simple solutions to this problem. The first is to selectively
remove the extern directive from one declaration of the variable, thus allocating it to
that module. The second solution is to add an extra source file containing definitions
for all such variables. The advantage of this is that the original sources need not be
altered. Fortunately, it appears that few Unix programmers use this feature, and most
take a modular view of their programs, with explicit definitions and clearly defined
interfaces.

The remaining area of difficulty is in system functionality. A program written
purely in terms of the runtime system should have no problems, but such programs are
rare. More frequently, programs use a number of Unix system calls. Portable programs
will have conditional compilation for different Unix systems. If this is the case, try the
POSIX option, if it exists. Otherwise, try -wA -D BSD in the compilation, and -lbsd
when linking with the C compiler driver. This has been found to work for a large
number of programs.

If some routines are still undefined, your only option is to write them. It is prefer-
able to add some stubs to implement the missing functions, rather than to change
the sources. If it becomes necessary to change the sources in any way, ensure that
the change is made in conditional compilation flags. The C compiler defines the
macro STDC for marking ANSI C code. The compiler driver defines the macros

HELIOS, proc and HELIOSproc, where proc is one of the processor types:
TRAN, ARM, i860 etc.

234 CHAPTER 5. COMPATIBILITY

The only area where significant changes may be needed is in the use of fork(). If
it is used as a prefix to exec(), nothing need be done, although you must ensure that
fork() is called at the same level as, or at a higher fork() level in the calling tree than
exec(). It is not permitted to call a procedure to call fork(). If the fork() is used to
detach the program from its invoker, it must be removed and the invocation must be
altered. This may be as simple as writing an alias or a shell script to call the program
in the background. When a fork() is used to obtain a new thread, it can usually be
replaced easily by using internal threads. Care must be taken with any assumptions
made about the separation of the process address spaces.

There are five further problems when porting code. The first problem is that Helios
does not provide a version of the Bourne shell, so utilities and programs which rely
on it will not necessarily work. The second problem is that file system limitations
can seriously affect the ease of porting large pieces of code. In particular, if Helios is
hosted by the MS-DOS or TOS filing systems, then the eight character filename, three
character extension case insensitivity limitations can cause problems, as can the lack
of hard or symbolic links.

The third problem is with function name clashes. Helios has its own specific sys-
tem call names which differ from Unix system calls, so the function names of ap-
plication programs can clash with Helios system function names such as Malloc(),
Exit(), etc. The fourth problem is with changed socket domains. Programmers using
socket should note that the AF UNIX domain does not exist. Instead, they should
use AF HELIOS. Also, Helios sockets do not need to be unlinked before or after use,
since they are not created into the filing system, whereas Unix sockets are so created.

The fifth problem is with memory corruption. The greatest problem encountered
when porting Unix code will be the lack of memory protection in a Helios environment.
Such practices as using memory after it has been freed, accessing negative elements of
arrays and placing large arrays on the stack can all cause programs to crash.

5.10 Multi-threaded library access

Helios is designed to be a multi-threaded system. Unfortunately, the standards for the
C library and the Posix library were not designed as such. This means that you must
be careful when using these libraries in a multi-threaded environment.

The ANSI C library contains no interlocks, so simultaneous calls into it are not
protected from interference. However, if no common data structures are used, two
threads can call C library routines simultaneously. For example, I/O on different FILE
structures is quite safe, but calling printf() from two threads simultaneously can pro-
duce unpredictable results. The use of the Helios system call IOdebug() to produce
debugging output is recommended. This lack of interlocking is largely a result of the
implementation of many C library functions as macros, particularly getc() and putc().
They are implemented in this way for the sake of speed. To call procedures to claim
and release interlocks on data structures would defeat the purpose.

The Posix library is almost entirely procedural, so it is possible to perform some
interlocking. In general it is safe to call most Posix routines simultaneously from
several threads. Problems may arise where routines are defined to use static data areas,
for example: getpwnam(), ctermid() and so on. Such areas are allocated once per

5.10. MULTI-THREADED LIBRARY ACCESS 235

task, and not on a per-thread basis. Similarly, errno is a single variable for the entire
task, so errors in two threads simultaneously may result in the loss of one error code.
The Helios system libraries are totally reentrant, with full interlocking on all Streams
and Objects. This means that they are always safe to use in all situations.

236

Chapter 6

Communication and performance

6.1 Communication

Helios runs on a wide variety of system configurations. The only assumptions made
about the underlying hardware is that it comprises a network of processors that are
inter-connected by some means. The physical connection medium can assume various
forms – for example, serial links or ethernet.

Typically, Helios runs on Transputer networks. As described in the networks chap-
ter, the fundamental features of the T400 and T800 series Transputer are a 16 or 32-
bit processor (CPU) and high-speed communication links that provide point-to-point
inter-processor connections. These components reside on a single chip and can op-
erate concurrently. The IMS T414 Transputer is an example of this basic model –
other special purpose members of the Transputer family feature additional circuitry,
microcode and interfaces that support specific tasks (for example, disc and memory
controllers). The IMS T800 includes an on-chip floating-point unit (FPU). The CPU,
memory, communications links and FPU all share a 32-bit data and address bus. An
external memory interface is provided to allow access to additional, off-chip memory.

This chapter concerns the communication mechanisms provided by Helios, and it
is therefore worthwhile to briefly examine the underlying hardware communications
system. The Transputer has a number of serial links (typically 4) that provide full du-
plex, synchronous inter-processor communications. Each link has an input and output
channel. A connection between two Transputers is implemented by connecting these
channels through a pair of uni-directional signal lines.

Data that is sent along a links output channel is acknowledged on the input channel,
and synchronisation is implemented by a handshaking technique. The IMS T800 al-
lows messages to be pre-acknowledged, and each of the links are capable of maximum
uni- and bi-directional data rates of 1740 and 2350 Kbytes per second respectively (see
the Inmos handbook for further details).1 The fact that each link has its own DMA con-
troller means that any specific link can operate independently and in parallel with the
other links, the CPU and the FPU. Communication, therefore, does not involve proces-
sor overhead. Networks of Transputers can be configured through the communications
links to specific topologies – for example, a pipe, ring, mesh or hypercube.

1Transputer Reference Manual published by Prentice Hall, ISBN 0-13-929001-X

237

238 CHAPTER 6. COMMUNICATION AND PERFORMANCE

Message routing is not supported by current Transputer hardware.2 This does not
pose a problem when communicating between adjacent, directly linked Transputers
– data can be simply sent and received over the connecting link. If, however, the
data must traverse a number of intermediate processors, the message must be suitably
routed. Message routing must be explicitly provided as a function of the software
running on each Transputer.

The foundation of the Helios communication system is a message passing mech-
anism resident within the Kernel. Message passing is implemented by means of two
Kernel primitive operations, PutMsg() and GetMsg(). It is important to note, however,
that these routines are not reliable – they do not provide error detection or recovery,
and there is no guarantee that messages will arrive at their respective destinations.
Messages can become ‘lost’, for example if a processor in the network crashes, or if
there is insufficient buffer space in an intermediate processor for a message. Mes-
sage routes can become unusable if, for example, one or more intermediate processors
are switched into a native mode, requiring a higher-level reconnection operation. Al-
though the probability of messages not reaching their intended destinations is low, it
is obviously essential to provide higher-level communication mechanisms that ensure
some degree of reliability. Under Helios, these higher-level mechanisms take the form
of pipes and sockets – these mechanisms support reliable, fault tolerant inter-process
communications.

This chapter describes the use of Helios pipes and sockets. The utilisation of the
low-level message passing primitives is also explained, although it is stressed that
the use of these routines is not encouraged. The remainder of the chapter focuses
on performance issues, and examines the extent to which the functionality of Helios
compromises the raw computational and communications capabilities of the under-
lying hardware. There is a cost in terms of processing overhead associated with the
provision of operating system services such as transparent and fault tolerant commu-
nications, and it is obviously crucial to be aware of the magnitude of this cost. It is
shown by a series of experiments that Helios imposes a negligible amount of compu-
tational overhead, and that the message passing mechanism is highly efficient. For the
sake of completeness, a short overview of the Helios model is included below.

6.1.1 Helios overview

The Helios parallel operating system is based on the Communicating Sequential Pro-
cesses model of parallel programming.3 Application programs are composed of tasks
which communicate with each other to complete the application’s objective. Tasks
may be run on one processor or distributed between several processors. A collection
of related tasks is called a task force and it is the responsibility of a Task Force Man-
ager to map and load a task force onto the Helios network. Task forces can be executed
either directly from the shell or by using the Helios Component Distribution Language
(CDL), which defines how tasks are connected and mapped.

Typically a Helios processing node consists of a high performance processor, local

2The IMS T9000 series supports message routing through the internal VCP (Virtual Channel Process)
and external C104 packet routing switch(es).

3Communicating Sequential Processes, C.A.R. Hoare. Published by Prentice Hall. ISBN 0-13
153271-5, ISBN 0-13-153289-8 PBK.

6.1. COMMUNICATION 239

memory, and communication channels to other processors. Each Helios node runs
a small Nucleus containing a Kernel, basic libraries, Process Manager and Loader.
Additional services such as an X window system server, debugger server, and TCP/IP
server may be added to any node on the Helios network; these services are, however,
optional.

6.1.2 Pipes

Pipes are the most commonly used high-level communication facility in Helios. This
is because Helios provides various means of automatically setting up pipes when run-
ning programs, without requiring any effort on the programmer’s part. For exam-
ple, the shell command ls -l | more will run the two programs ls and more in
such a way that the two programs can communicate immediately over the connecting
pipe. Similarly the CDL script master [10] ||| slave will run twelve pro-
grams connected in a farm topology such that all the required communication pipes
exist by the time the programs start up.

The conventional way of communicating over pipes is with the Posix read(),
write() and select() calls.

result = write(1, buffer, sizeof(Packet));
result = read(0, buffer, sizeof(Packet));
result = select(n, reads, writes, exceptions, timeout);

The exact means of calling the Posix routines vary from language to language. For
example, when programming in C the routines can be called directly. When program-
ming in Fortran there are jacket routines POS READ() and POS WRITE(). In addi-
tion the pipes may be used through language-level I/O facilities such as the standard
I/O library supported by C, with its printf() and related routines. When programming
at the language-level it may be necessary to cope with any buffering that is performed
automatically at these higher levels. Chapter 4, CDL, describes this topic in more
detail. Language-level I/O usually ends up going through the Posix library calls.

The Posix file descriptors 0, 1 and so on all have underlying Helios Stream struc-
tures, and the Posix calls utilise the System library routines Read() and Write() with
these stream structures. Application programmers can make use of these lower-level
routines if desired, but they do not offer any greater functionality than the Posix calls
and only a small amount of performance benefit. Helios provides a routine fdstream()
which, given a file descriptor, returns the underlying stream structure.

Read() and Write() calls acting on pipes, whether called directly or through Posix
calls, are implemented using message passing directly from one program to another
without going through an intermediate server. Pipes provide a reliable point to point
communication facility, with automatic recovery from failures such as lost messages
and broken message routes. It does not matter whether the two ends of the pipe are
on the same processor or on different processors. Data written into a pipe can be read
from the pipe at the other end in exactly the same order, and will not be discarded. To
achieve this reliability, a protocol is implemented on top of the basic message passing,
and additional threads are Fork()’ed off automatically by the system to maintain the
pipe in a consistent state irrespective of the behaviour of the applications, for example

240 CHAPTER 6. COMMUNICATION AND PERFORMANCE

to cope with one side writing to a pipe before the other side is ready to read. This
involves some overhead, as described later in this chapter.

The behaviour of pipes is fairly straightforward: one end of a pipe writes to it, and
the other end reads from it. Nevertheless, there are a few subtleties:

1. The initial pipe connection happens when both programs attempt to perform
some I/O on the pipe. Hence the first pipe I/O operation takes somewhat longer
than subsequent ones.

2. A read operation need not return the amount of data requested. Even if one
end of the pipe performs a write of 100K and the other end performs a read for
100K it is not guaranteed that the entire amount will be transferred in one go,
because the data may have to be split into several messages. To cope with this it
is usually desirable to make use of a fullread() routine, defined as follows:

bool full_read(int fd, char *buff, int amount)
{ int result;
while (amount > 0)
{ result = read(fd, buff, amount);

if (result <= 0) return(FALSE);
amount -= result;
buff += result;

}
return(TRUE);

}

3. A call to read() will return the amount of data actually read, if successful. It
will return 0 if the end of the file has been reached, in other words if the other
end of the pipe has closed the stream or terminated. It will return −1 to indicate
an error. The above fullread() routine loops as long as data is being transferred,
succeeding if all of the requested data has been read and failing if an error occurs
or the pipe is closed.

4. For many applications it is desirable to ensure that both ends of the pipe ex-
change the same amount of data. Typically this is achieved by enforcing a simple
application-specific protocol. For example, when using the Helios load balancer,
pipe communication always involves a fixed size packet header and a variable
size amount of data, with the size of the data held in the packet.

5. Write operations usually do not return until the entire amount of data has been
transferred. Even this is not guaranteed, because certain events such as asyn-
chronous signals may interrupt a call to write(). Hence applications may need
to use a fullwrite() routine as well as a fullread() routine.

6. If the reader end of a pipe closes the stream or terminates then any attempts to
write to the pipe will fail, and will cause a SIGPIPE signal.

7. Pipes can be used bi-directionally, in other words a program can both read from
and write to the same pipe. However it is essential that the two ends of the pipe
agree on the current operation, in other words if both ends attempt to write at the

6.1. COMMUNICATION 241

same time the results are undefined. To avoid such problems it is recommended
that most pipes are used uni-directionally.

If two programs are already running and they are not yet connected by a pipe then
it is difficult to establish a new pipe between them. Instead the socket calls described
later should be used. If a program needs to run another program, usually referred to
as a child program, and it needs to communicate with that child through a pipe then
this is possible. The simplest way to do this is with the popen() and pclose() routines
provided in the BSD compatibility library.

FILE *to_child = popen("child_program", "w");
int fd = fileno(to_child);

/*interact with the child using file descriptor fd */

pclose(to_child);

The popen() routine runs the specified program such that the program’s standard input
stream, file descriptor 0, is a pipe back to the parent. The C library to child pointer
refers to the other end of this pipe, allowing the parent program to interact with the
child. The call to pclose() closes the pipe and hence the child can no longer read from
the pipe; this will normally cause the child to exit. If the second argument to popen()
is "r" instead of "w" then the child’s program standard output stream, file descriptor
1, is used instead of the standard input stream.

If the popen() routine is too high-level for the application’s requirements then it is
possible to achieve the same effect with the Posix calls pipe(), vfork(), and execvp().
However, there is a restriction when passing pipes on from parent to child. At any
one time any given pipe may be in use by only two programs. The pipe() call creates a
single pipe, and provides two file descriptors for this pipe. One of these file descriptors
should be used in the parent, and the other in the child. It is necessary to ensure that
the extra file descriptor is closed. This is illustrated by the following code fragment:

int simple_popen(char *program, char **argv)
{ int pdes[2], pid;

if (pipe(pdes) < 0) return(-1);

if ((pid = vfork()) == 0)
{ /* In child */

dup2(pdes[0], 0);
close(pdes[0]);
close(pdes[1]);
execvp(program, argv);
_exit(1);

}

/* In parent */
close(pdes[0]);
return(pdes[1]);

}

242 CHAPTER 6. COMMUNICATION AND PERFORMANCE

The first file descriptor, pdes[0], is used only in the child program. It replaces
the standard input stream for that program using a call to dup2(). The parent program
used pdes[1] as the file descriptor to be used for communicating with the child. All
unnecessary file descriptors are closed.

If the parent program will start more than one child then it is necessary to ensure
that the child processes do not inherit file descriptors for the same pipe, since this
would break the rule that a pipe may be used only by two programs. The following
line achieves this:

fcntl(pdes[1], F_SETFD, FD_CLOEXEC);

6.1.3 Sockets

If two programs need to communicate with each other but are not yet connected by a
pipe then it is necessary to establish a connection between them dynamically. The rec-
ommended way to do this is through the socket library calls. Sockets are more general
than pipes, for example they allow communication between programs running on dif-
ferent machines connected only through ethernet or a similar network, and furthermore
it is not necessary for both machines to be running Helios. The usual Unix networking
software such as NFS, rlogin, ftp, and so on, is implemented using sockets.

First, this section describes how it is possible for two Helios programs to estab-
lish a socket connection which behaves in exactly the same way as the pipes described
already. Next a description is given of the extra work involved in establishing a connec-
tion with a program running on a remote machine, which may or may not be running
Helios. Finally some of the various socket options are described.

Unlike pipes, sockets are not symmetrical. It is not possible for both programs to
call exactly the same routines to establish a connection between them. Instead one of
the program must become a receiver and the other a sender, and the application pro-
grammer must decide somehow which one is which. Note that the programs cannot
communicate with each other first to establish which one should be the receiver, since
if the programs were able to communicate already it would not be necessary to estab-
lish a socket connection. Within the context of Unix networking software this does not
matter; usually the receiver program is a server or daemon, and the sender is a client.
The work that has to be done by the receiver is shown below:

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/hel.h>

#define Socket_Name "SomeMagicString"

...
struct sockaddr_hel socket_addr;
int addr_len = sizeof(socket_addr);
int srv_socket, client_socket;

srv_socket = socket(AF_HELIOS, SOCK_STREAM, 0);
if (srv_socket < 0) /* error */
...

6.1. COMMUNICATION 243

socket_addr.sh_family = AF_HELIOS;
strcpy(socket_addr.sh_path, Socket_Name);
if (bind(srv_socket, (struct sockaddr *)

&socket_addr, addr_len) < 0)
/* error */

...
if (listen(srv_socket, 1) < 0) /* error */
...
client_socket = accept(srv_socket, (struct sockaddr *)

&socket_addr, &addr_len);
if (client_socket < 0) /* error */
...
/* Interact with other program using */
/* file descriptor client_socket */

close(client_socket); /* when finished */

Most programmers do not need to know exactly what all this code does, since it
can be put into a library and forgotten about. Nevertheless a brief description may be
useful:

1. The first call to socket() creates a socket which, essentially, just initialises some
data structures that can be used for subsequent operations. The routine returns a
file descriptor, but this file descriptor cannot be used for reading or writing.

2. The socket is defined to be internal to the Helios network, in other words it
cannot be used to access a remote program over the ethernet. The socket is a
stream socket, and hence it will behave just like a pipe once the connection is
fully established.

3. It is necessary to register the socket with the system, before other programs can
interact with it. This is the purpose of the bind() routine. The second argument
to bind() gives the identity of this socket, using a data structure containing a
textual name. The name should be specific to this application and should not
overlap with socket names used by other, unrelated, applications.

4. The call to listen() informs the system that other programs are now permitted to
connect to this socket.

5. The accept() routine waits for other programs to connect to this socket. It re-
turns another file descriptor which can be used for read() and write() opera-
tions, allowing communication with the other program in exactly the same way
as communication over pipes.

6. Instead of the call to accept() it is possible to use select(), with srv socket as
one of the file descriptors in the Read vector. The select() routine will return
when another application attempts to connect to that socket. This technique is
typically used by Unix daemons which need to service requests from several
clients, by reading the request data from appropriate sockets, while at the same
time accepting connections from new clients.

244 CHAPTER 6. COMMUNICATION AND PERFORMANCE

The other side of the socket responsible for connecting to the receiver is more
simple.

struct sockaddr_hel socket_addr;
int addr_len = sizeof(socket_addr);
int client_socket;

client_socket = socket(AF_HELIOS, SOCK_STREAM, 0);
if (client_socket < 0) /* error */

socket_addr.sh_family = AF_HELIOS;
strcpy(socket_addr.sh_path, Socket_Name);

while (connect(client_socket, (struct sockaddr *)
&socket_addr, addr_len) < 0)

{ fputs("Sender: trying to connect socket...\n", stderr);
sleep(2);

}

/* Interact with other program using */
/* file descriptor client_socket */

close(client_socket); /* when finished */

1. The sender program must also create a socket with the right characteristic, so
that it can connect to the other program. The call to socket() returns a file de-
scriptor, but this cannot be used yet for I/O operations.

2. The call to connect() matches the call to accept() in the receiver program. The
second argument identifies the socket to connect to, again by using a unique
name. Both programs must use the same name.

3. connect() may not succeed immediately, if the receiver has not yet called lis-
ten(), bind() and accept(). Hence the above code loops until the connection is
established.

4. The accept() routine in the receiver returned a new file descriptor which is used
for communication. The connect() routine, rather confusingly, turns the existing
file descriptor into something that can be used for communication.

Once the two programs have performed the above steps they both have a file de-
scriptor that can be used for communication. This file descriptor behaves in exactly
the same way as the pipes described earlier, and the same restrictions about reading
and writing operations apply.

Two aspects of the above code make it specific to communication within a sin-
gle Helios machine: the address family type AF HELIOS and the socket address
structure sockaddr hel. For socket based communication over the ethernet it is nec-
essary to change the use of both of these. The address family should be AF INET,
and the socket address structure should be sockaddr in as defined in the header file
/helios/include/netinet/in.h. The contents of an internet address structure is different

6.1. COMMUNICATION 245

to a Helios address structure: instead of specifying a simple string the address con-
tains two numbers, a service number and a host number. To avoid embedding these
numbers in binaries there are library routines which extract the information from the
system configuration files /helios/etc/hosts and /helios/etc/services.

Suppose a program wishes to establish itself as a socket for the service “hydra”.
Typically this program would be a networking daemon. The code required would look
something like this:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

...
struct sockaddr_in socket_addr;
int addr_len = sizeof(socket_addr);
int srv_socket, client_socket;
struct servent *sp;

srv_socket = socket(AF_INET, SOCK_STREAM, 0);
if (srv_socket < 0) /* error */
...
sp = getservbyname("hydra", "tcp");
if (sp == NULL) /* error */

memset(&socket_addr, 0, addr_len);
socket_addr.sin_addr.s_addr = INADDR_ANY;
socket_addr.sin_port = sp->s_port;
socket_addr.sin_family = AF_INET;
if (bind(srv_socket, (struct sockaddr *)

&socket_addr, addr_len) < 0)
/* error */

if (listen(srv_socket, 1) < 0) /* error */

client_socket = accept(srv_socket, (struct sockaddr *)
&socket_addr, &addr_len);

if (client_socket < 0) /* error */

/* Interact with other program using */
/* file descriptor client_socket */

close(client_socket); /* when finished */

The differences between this and the previous example are the use of AF INET
and the contents of the address structure. Note that when binding a socket it is not
necessary to specify the machine to which the socket should be bound, since it must
always be the local machine. For the sender side things are rather different, and it is
necessary to look up the name of the target machine as well as the port number.

struct sockaddr_in socket_addr;
int addr_len = sizeof(socket_addr);
int client_socket;

246 CHAPTER 6. COMMUNICATION AND PERFORMANCE

struct servent *sp;
struct hostent *hp;

client_socket = socket(AF_INET, SOCK_STREAM, 0);
if (client_socket < 0) /* error */

sp = getservbyname("hydra", "tcp");
if (sp == NULL) /* error */

hp = gethostbyname(<machine-name>);
if (hp == NULL) /* error */

memset(&socket_addr, 0, addr_len);
memcpy(&socket_addr.sin_addr, hp->h_addr, hp->h_length);
socket_addr.sin_family = AF_INET;
socket_addr.sin_port = sp->s_port;

while (connect(client_socket, (struct sockaddr *) socket_addr,
addr_len) < 0)

{ fputs("Sender: trying to connect socket...\n", stderr);
sleep(2);

}

/* Interact with other program using */
/* file descriptor client_socket */

close(client_socket); /* when finished */

If the appropriate entries for the target machine name or the service name are miss-
ing from the configuration files hosts or services then the routines gethostbyname()
and getservbyname() will fail. These files are held in the /helios/etc directory under
Helios and they are held under the /usr/etc directory under Unix. Once the socket
connection has been established, the file descriptors can be used in exactly the same
way as those for pipes. The sockets described so far have all been stream sockets. In
fact there are several different types of sockets:

tcp or SOCK STREAM sockets provide reliable point to point communication, like
pipes.

udp or SOCK DGRAM sockets provide a datagram service. Such a service provides
unreliable communication. When a program performs a write operation the en-
tire data is packed into a single message, if possible, and sent off as one message.
This message may or may not arrive at its destination, it may arrive more than
once, and it may arrive out of order relative to other messages.

raw or SOCK RAW sockets exist to provide direct access to the underlying commu-
nication hardware. When using the Helios family of sockets these are equivalent
to message passing, and it is possible to extract message ports from the appro-
priate Stream structures if applications need to perform message passing.

To make use of the different types of sockets it is necessary to change two parts
of the above code fragments: in the call to socket() the desired socket type should

6.1. COMMUNICATION 247

be specified, instead of SOCK STREAM; in the call to getservbyname() the second
argument should be "tcp", "udp" or "raw" as desired.

6.1.4 Message passing

The foundation of all Helios communications is direct message passing. Message
passing is the lowest level of communication. The higher-level communication mech-
anisms are built on top of this, and feature protocols that provide aspects such reliabil-
ity and portability. Typically, users need not concern themselves with message passing
as this is handled internally by Helios. Indeed, although message passing is more ef-
ficient than the higher-level communication mechanisms, its use is not encouraged.
This is because message passing makes no provision for error detection and recovery.
At this level of communication, there is no guarantee that messages will reach their
intended destinations and although the probability of a message getting lost is small,
it does nevertheless exist. Message passing should therefore only be considered in cir-
cumstances where communication speed is critical and, importantly, where reliability
is not crucial. In all other cases, use should be made of pipes or sockets in conjunc-
tion with higher-level library routines that feature built-in error detection and recovery
facilities (Posix read() and write(), or Helios Read and Write()).

There are two message passing primitives, GetMsg() and PutMsg(). Both of these
routines take as their argument a pointer to a message control block (MCB) :

typedef struct MCB {
MsgHdr MsgHdr; /* message header buffer */
word Timeout; /* message timeout */
word *Control; /* pointer to control buffer */
byte *Data; /* pointer to data buffer */

} MCB;

MsgHdr is defined as follows :

typedef struct MsgHdr {
unsigned short DataSize; /* 16 bit data size */
unsigned char ContSize; /* control vector size */
unsigned char Flags; /* flag byte */
Port Dest; /* destination port descriptor */
Port Reply; /* reply port descriptor */
word FnRc; /* function/return code */

} MsgHdr;

PutMsg() and GetMsg() respectively transmit and receive the contents of the
MCB on the ports defined within the message header. A timeout is associated with
the implementation of both routines. If the message header is not delivered or received
within the specified duration, the entire transfer fails. Message passing is described
more completely in chapter 9, The Kernel.

A simple example of message passing is given in appendix C. The program is
designed to measure the rate of data transmission between two processes (a sender and
a receiver) which communicate using the PutMsg() and GetMsg() primitives. The
connection between the sender and receiver is established using raw sockets in the
typical asymetric client/server fashion. The receiver (server) creates a socket, binds an
address to it and it then listens for and accepts a connection from the sender (client).

248 CHAPTER 6. COMMUNICATION AND PERFORMANCE

The processes then loop for a number of iterations, transmitting a series of messages
of varying lengths to each other.

It is useful to isolate and identify the components of the program that are involved
in the message passing process. As shown below, these components are actually sim-
ple. The sender and receiver both make use of two MCBs, txmcb and rxmcb, the
contents of which are sent and received on the ports identified by tx and rx. The
mapping between the respective destination and reply ports is established as follows :

/* Sender */ /* Receiver */
tx = fdstream(sock)->Server ; tx = fdstream(msg_sock)->Server ;
rx = fdstream(sock)->Reply ; rx = fdstream(msg_sock)->Reply ;

The control and data vectors within the MCBs must be initialised prior to use, and,
in particular, the destination and reply port descriptors set. This is performed using the
InitMCB() procedure :

InitMCB (&txmcb, MsgHdr_Flags_preserve, tx, NullPort, 0) ;
InitMCB (&rxmcb, MsgHdr_Flags_preserve, rx, NullPort, 0) ;

InitMCB() also sets the value of MCB.Timeout to IOCTimeout (20 seconds).
The data field of the MCB is a pointer to a data buffer. This buffer either contains

the information to be transmitted, or is used to store the incoming message. The data
and size fields must be set accordingly :

txmcb.Data =
rxmcb.Data = buf ;
rxmcb.MsgHdr.DataSize =
txmcb.MsgHdr.DataSize = buf_size ;

Finally, pointers to the respective MCBs are passed to PutMsg() and GetMsg() to
effect the data transfer :

PutMsg(&txmcb) ;
GetMsg(&rxmcb) ;

As stated above, it is necessary to build protocols on top of the message passing
primitives to provide fault tolerance and reliability. These protocols do, of course,
impose processing overheads. The effects of these overheads on the performance of
Helios are examined in the following section.

6.2 Performance

The raw performance of multi-processor message passing machines is dependent upon
the computational speed of each processor, and the bandwidth and latency of inter-
processor communication. The provision of operating system services, such as trans-
parent message routing, imposes some degree of processing overhead. There is an
obvious and unavoidable trade-off between functionality and performance – aspects
such as ease of programming and portability can only be provided at the risk of ob-
scuring the available processing power.

This chapter examines the extent to which the functionality of Helios affects the
two performance criteria indicated above – computation and communication. These

6.2. PERFORMANCE 249

aspects are investigated by a series of experiments designed to evaluate the overhead
of running computationally and communications intensive application programs un-
der Helios. It is shown that Helios imposes a negligible amount of computational
overhead, and that the message passing mechanism is highly efficient.

Computational performance is evaluated using the standard Whetstone and Dhrys-
tone benchmarks. The communications performance is examined at the various levels
provided under Helios (from low-level message passing primitive operations through
to Posix library function calls). At each level, the respective inter-process data trans-
mission rates are analysed, illustrating the gains in performance that can be attained at
the expense of functionality and portability. The effects of routing messages through
intermediate nodes is also considered, highlighting the efficiency of the Helios mes-
sage passing mechanism.

Finally, the extraction of performance data from the Helios Kernel is described for
users who desire to obtain run-time performance statistics.

Helios runs on a wide variety of different processors and communications hard-
ware. Performance figures will, quite naturally, differ with respect to specific hard-
ware technologies. The aim here is to help Helios users achieve the maximum from
whatever hardware technology is being used. The performance analysis conducted in
this chapter pertains to a typical system against which other systems may be easily
compared.

6.2.1 Test conditions

The benchmarks given in this chapter were performed using medium performance
Transputers (20MHz IMS T800C-G20S with access to 1 Mbyte of 4 cycle (200 ns)
external RAM). The link speeds of the processors were set at 20 Mbits/second. For
systems using newer technologies with faster processor speeds, memory interfaces,
or better communication bandwidth, the benchmark figures may be extrapolated or
repeated using the test methods described in this chapter.

The processor network used for performance testing comprised a root Transputer
linked to a pipeline of Transputers. The test programs were executed on the pipeline,
and the root Transputer was responsible for running various system services. The
programs were all coded in C, compiled using version 2.01 of the Helios C compiler,
and run under Helios version 1.2.1.

6.2.2 Computational benchmarks

The computational benchmarks used consist of the standard Dhrystone and Whetstone
tests. Although the merits of these tests are debatable for measuring processor power,
they are useful in demonstrating techniques for improving speed. Each benchmark was
repeated four times and each time the level of performance was increased by adding
an extra enhancement.

Test 1 Standard benchmark with stack checking.

Test 2 Stack checking disabled.

Test 3 Fast on-chip RAM used (Transputer feature).

250 CHAPTER 6. COMMUNICATION AND PERFORMANCE

Benchmark Test 1 Test 2 Test 3 Test 4
Whetstones 1,205,200 1,219,600 1,636,300 1,638,500
Dhrystones 3,600 3,868 5,555 5,539

Table 6.1: Computational benchmarks

Test 4 Standalone environment (no Nucleus).

The tests shown in Table 6.1 illustrate the relative effects on the performance of
a program using different environments, and should only be taken as the benchmarks
for the specific type of hardware used in the test.

Stack checking is performed on the entry of each new procedure. Programs which
call procedures infrequently will have little benefit from the removal of the check. The
dhrystone benchmark attempts to be a representative program in the ratio of procedure
calls to computation. Removing stack checking from this program (Test 2) improved
the speed by just under 8%. This would only be recommended for fully debugged
programs. Unchecked stack overflow could potentially destroy system memory. If a
program uses any recursive functions then it is probably best never to disable stack
checking.

Fast ‘on-chip’ RAM is a feature of most Transputers and may be utilised from He-
lios by using the Accelerate() system routine. This places the stack of a function in
fast memory. Prior to use, the memory must be allocated using AllocFast(). The per-
formance increase can often be dramatic. Fast memory is a scarce resource, however,
and should be used carefully to obtain optimum performance. Normally only compu-
tationally intensive functions should be accelerated. For all fast memory test results in
Table 6.1, Test 3, 1.5 Kbytes from the available 4 Kbytes of fast memory was used.
Not all processors which run Helios have fast memory. To ensure portability of the
code, calls like Accelerate() should be conditionally compiled.

Test 4 runs the benchmark programs on a standalone processor. This is a processor
which does not run the Helios Nucleus and is usually called a native node. Library
functions are linked into the program by a standalone linker and the resulting code
is booted into native nodes by a bootstrap utility. There are several reasons why a
standalone may be used: there may be only a limited amount of memory, the program
may need total control of all processor resources, or the user may want maximum
performance.

The benchmark figures show that only a very small performance increase can be
obtained, less than 0.2%! The conclusion from this is that the basic operating system
maintenance takes little computational power away from an application. The main
reason why this figure is so low is because scheduling is effectively performed by the
Transputer hardware rather than by a software executive. This may not be the case
for other processors. However, all processor technologies running as standalone will
benefit from single-thread execution and the absence of message routing tasks.

6.2. PERFORMANCE 251

6.2.3 Communication benchmarks

A limiting factor in efforts to achieve high performance and processor efficiency on
processor networks is that of communication. The rate of computation is significantly
higher than that of communication – communication is consequently a potential perfor-
mance bottle-neck. It is therefore important that the overhead imposed by an operating
system on communications performance be kept to a minimum.

Helios provides four levels of communication. The lowest level is used in the Nu-
cleus: PutMsg() and GetMsg() are the message passing primitives that provide the
basis of all Helios communication. The level above this is provided by System library
functions Read() and Write(). These calls operate on streams and have timeouts as-
sociated with each requested transaction. At the next level are the Posix read() and
write() functions. Calls to the Posix functions are based on Posix file descriptors. The
highest level of communication is at the language level; here, the range and calling
conventions depend on the programming language used.

In this section, communication performance is investigated at the message pass-
ing, System and Posix levels. At each level, the respective rates of inter-process data
transfer are evaluated between processes residing on

1. Adjacent processors.

2. Processors separated by varying link distances.

3. The same processor.

To provide a comparison for the respective performance figures, the experiments
were also implemented using direct link utilisation (that is, directly transmitting mes-
sages over the physical links through in-line calls to assembler macros). For the sake
of clarity, the following notation is used to refer to each of the above message passing
mechanisms :

Direct Direct link usage using in-line assembler macros.
Primitive Message passing primitives (GetMsg() and PutMsg()).
System System library functions (Read() and Write()).
Posix Posix library functions (read(), write()).

The full code listings and results of the experiments conducted in this section are
located in appendix C.

As described previously, the test network was configured in a pipeline, and a task
force of two components (the sender and the receiver) was used to measure the time
to transmit a message to a node and reflect it back again. The need to utilise two-way
transmission is evident when one considers that the clocks on the individual processors
are not synchronised. It is consequently not possible to obtain a direct measurement
of the time taken to perform uni-directional message transmission. Two-way message
transmission was therefore performed, and the total transmission time halved. This is
illustrated in Figure 6.1.

Inter-processor communication

Inter-processor message transmission times over Transputer links are characterised by
a relationship of the form :

252 CHAPTER 6. COMMUNICATION AND PERFORMANCE

P0 P1 Pn−2 Pn−1

� �

� �

�

�

�

�

tstart

tend

message time from P0 to Pn−1 = tstart−tend
2

Figure 6.1: Bi-directional message transmission

ttotal = tinit + N.ttx, where

ttotal = message transmission time
tinit = message initialisation or setup time
N = number of bytes in message
ttx = transmission time for 1 byte

The tinit is independent of the message length. The number of processor cycles
required to transmit a message comprising w words is 2w + 19. A T800 Transputer
running at 20 MHz executes 19 cycles in 0.95 microseconds – this figure is conse-
quently a lower bound for tinit. A minimum value for ttx can likewise be established.
The maximum uni-directional data rate attainable on 20 Mbit/second Transputer links
is 1740 Kbytes/second. This corresponds to a ttx value of 0.5612 microseconds.

In this section, values for tinit and ttx are derived with respect to each of the Helios
communication mechanisms. It will be seen that, at each level of communication, ttx
is closely related to the physical link bandwidth. The value of tinit, however, increases
with the level of communication – there is a definite trade-off between performance
and functionality. To investigate the performance of data transmission between two
directly connected processors, the sender and receiver processes were placed on adja-
cent nodes in the pipeline. The transmission times for messages of various sizes are
shown in Table 6.2. The rate of data transmission in Kbytes/seconds is also depicted.

The transmission times listed in Table 6.2 are characterised by the following rela-
tionship :

ttotal = toverhead + tinit + N.ttx, where

toverhead = loop overhead on each test iteration
= 1.686 microseconds

Linear regression can be applied with respect to the values of ttotal and N given in
Table 6.2 to derive a relationship of the form ttotal = A + BN. These relationships are
shown below, with the correlation coefficient (r) obtained in each case :

Direct ttotal = 3.869263 + 0.563853.N (r = 1.000000)
Primitive ttotal = 126.120129 + 0.562684.N (r = 1.000000)
System ttotal = 1446.708396 + 0.567681.N (r = 0.999956)
Posix ttotal = 1461.421142 + 0.567642.N (r = 0.999956)

6.2. PERFORMANCE 253

Direct Primitive System Posix
N ttotal Rate ttotal Rate ttotal Rate ttotal Rate
1 5 195 125 7 1430 0 1440 0
2 10 195 125 15 1405 1 1415 1
4 5 781 130 30 1400 2 1415 2
8 10 781 130 60 1405 5 1420 5

16 10 1562 135 115 1410 11 1420 11
32 20 1562 145 215 1410 22 1425 21
64 40 1562 160 390 1420 44 1435 43

128 75 1666 195 641 1435 87 1450 86
256 145 1724 270 925 1465 170 1480 168
512 290 1724 415 1204 1675 298 1700 294

1024 580 1724 705 1418 2185 457 2200 454
2048 1160 1724 1280 1562 2760 724 2775 720
4096 2315 1727 2430 1646 3915 1021 3925 1019
8192 4625 1729 4735 1689 6215 1287 6230 1284

16384 9245 1730 9350 1711 10825 1478 10845 1475
32768 18480 1731 18565 1723 20040 1596 20055 1595
65535 36955 1731 37000 1729 38605 1657 38615 1657

Table 6.2: Data transmission times and rates with respect to message size

N = message size (bytes)
ttotal = transmission time (microseconds)
Rate = transmission rate (Kbytes/second)

Level of communication tinit ttx
Direct 2.18 0.5639
Primitive 124.43 0.5627
System 1445.02 0.5677
Posix 1459.74 0.5676

Table 6.3: Derived tinit and ttx values (microseconds)

Table 6.3 shows the corresponding values for tinit (given by A – toverhead) and
ttx (equivalent to B). The value ttx closely relates to the bandwidth of the intercon-
necting hardware. It is interesting to note that the lowest ttx value is associated with
Primitive and not Direct communication as one would expect – the difference is,
however, negligible. As stated previously, the maximum uni-directional data rate that
can be attained on 20 Mbit/second Transputer links is 1740 Kbytes/second. Helios
achieves a maximum transfer rate that closely approaches this physical maximum –
1729 Kbytes/second.

To place the performance figures of Table 6.2 in perspective, the respective rates of
transmission are shown graphically in Figure 6.2. In this graph, and where applicable
to the other graphs in this section, the Posix curve is plotted with the System curve as
the respective coordinates are almost identical.

These graphs exhibit a number of observable features upon which some comment
is appropriate. Firstly, it is evident that although the basic shape of the curves is sim-
ilar, they differ widely with respect to their displacement along the horizontal axis.
Obviously, this is directly attributable to the respective tinit (constant) components as-
sociated with each of the functions. Secondly, it can be seen that the transmission of

254 CHAPTER 6. COMMUNICATION AND PERFORMANCE

�

�

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200

1400

1600

1800

Log2(No. of bytes)

Transfer
rate

(Kbytes/sec)

�: Direct
�: Primitive
◦: System / Posix

�

�

�
� � � � � �

� �
�

�

�

�

�
� �

◦ ◦ ◦ ◦
◦

◦

◦

◦

◦

Figure 6.2: Rates of data transmission with respect to message size

6.2. PERFORMANCE 255

small messages is inefficient. As previously indicated the value of tinit is independent
of the message size; consequently, it is more efficient to transmit a single large message
than a number of smaller ones. The third noticeable attribute of the graph is that the
respective rates of transmission all converge towards a maximum rate. This maximum
rate is dictated by the physical link bandwidth, and it can only be approached when the
messages are sufficiently large for tinit to become negligible. It is interesting to note
that, with respect to messages of this size (16K or more), the actual communication
mechanism is immaterial; there is little difference between the use of message passing
primitive operations and higher-level library routines.

The effect of the C004 link switch on data transmission

The IMS C004 link switch is a programmable crossbar switch that can be used to
electronically configure Transputer networks. Routing data through the C004 (as op-
posed to utilising directly connected Transputer links) incurs a 1.75 bit time delay.
It is of interest to ascertain the effect of the C004 on the performance of the Helios
communication mechanisms. Figure 6.3 illustrates the rates of data communication
(Kbytes/second) attained using message passing primitives (PutMsg() and GetMsg())
between two Transputers that were

1. Directly linked and

2. Connected through a C004 link switch.

It is evident from Figure 6.3 that the effect of the C004 link switch on the rate
of communication is far from negligible. The overhead imposed by the link switch
increases with the size of the message. In the worst case (64 Kbyte message), trans-
mission through the C004 is 23 % slower than sending data over directly connected
links.

Through-routing message transmission

Another important aspect of inter-processor communication is the effect of routing
messages through intermediate nodes. Figure 6.4 shows the rates of communication
associated with the transmission of a 64 Kbyte message from a source to a destination
node through varying numbers of intermediate processors.

The Primitive and System / Posix curves indicate a rather steep drop in perfor-
mance as soon as messages are through-routed through a second processor (2 inter-
mediate links). However, the addition of further intermediate links does not lead to
significant performance degradation.

Conversely, the appalling performance exhibited by the Direct curve as more links
are traversed is striking, and requires some comment. The test program used to eval-
uate the performance associated with direct link usage over intermediate nodes was
implemented such that each node would receive the message in its entirety before send-
ing it on. It is a well established fact that “pipelining” message transmission through
intermediate nodes has a tremendous effect on the overall rate of transmission. This
technique entails breaking up the message into smaller packets which are then received
and transmitted concurrently at each intermediate node (this is made possible by the

256 CHAPTER 6. COMMUNICATION AND PERFORMANCE

�

�

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200

1400

1600

1800

Log2(No. of Bytes)

Transfer
rate

(Kbytes/sec)

�: Direct Links
�: C004 Connection

� �
�

�

�

�

�
� �

� �
�

�

�

�

�
� �

Figure 6.3: Effect of C004 link switch on rate of data transmission

6.2. PERFORMANCE 257

�

�

0 1 2 3 4 5 6 7
200

400

600

800

1000

1200

1400

1600

1800

No. of intermediate links

Transfer
rate

(Kbytes/sec) �: Primitive
◦: System / Posix
�: Direct

�

� � � � � �

◦

◦ ◦ ◦ ◦ ◦ ◦

�

�

�
�

� � �

Figure 6.4: Rates of data transmission (64 Kbyte message) with respect to number of
intermediate links

258 CHAPTER 6. COMMUNICATION AND PERFORMANCE

System Posix
Message Size Software Hardware Software Hardware

(bytes) Channels Links Channels Links
1 0 0 0 0
2 1 1 1 1
4 2 2 2 2
8 4 5 4 5

16 9 11 9 11
32 19 22 18 21
64 37 44 37 43

128 75 87 74 86
256 148 170 145 168
512 288 298 283 294

1024 529 457 520 454

Table 6.4: Rates of transmission using system and posix routines (Kbytes/second)

fact that Transputer links have their own DMA controllers and hence can operate in
parallel). Message pipelining was, however, deliberately not implemented. Instead,
the objective was to provide a comparison against which the effect of message pipelin-
ing as implemented (transparently) under Helios could be observed.

The results depicted in Figure 6.4 are largely self-evident. Helios takes full advan-
tage of message pipelining by splitting up messages into packets of an optimal size
(the minimum transfer size that is cost effective in terms of link setup overhead). The
Kernel then reads in new packets at the same time as sending on the previous ones.
The packets are received and transmitted concurrently by the intermediate nodes.

Internal communication

Pipes not only form a communication channel between processes on different proces-
sors, but also between processes on the same processor. The programmer interface is
identical but the transfer medium is shared memory rather than hardware links.

Figure 6.5 shows the rates of data transmission attained using the GetMsg() and
PutMsg() primitives between two processes residing on

1. The same processor (communicating through memory).

2. Adjacent processors (communicating over physical links).

As one would expect, the bandwidth is dramatically higher (9.23 Mbytes per sec-
ond maximum) for message transmission through local memory. However, what is
gained in transfer rate may be lost if both communicating processes are competing for
the computational power of the processor.

This is clearly evident with regard to the transmission of small messages using
the higher-level System and Posix calls. Data transmission rates between processes
residing on the same and adjacent processors attained through the System (Read() and
Write()) and Posix (read() and write()) library routines are shown in Table 6.4.

These figures indicate that, for messages of less than 1 Kbyte, it is faster to com-
municate over a physical link than through memory. This is due to the implementation

6.2. PERFORMANCE 259

�

�

0 2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Log2(No. of Bytes)

Transfer
rate

(Kbytes/sec)

�: Software Channels
�: Hardware Links

� � �
�

�

�

�

� �

� � �
�

�
� � � �

Figure 6.5: Rates of data transmission over software channels and hardware links

260 CHAPTER 6. COMMUNICATION AND PERFORMANCE

of the pipe protocol. The operation of this protocol requires some degree of com-
putational overhead, carried out at each end of the pipe by separate system threads.
Therefore the passage of data through the pipe requires several suspensions and re-
sumptions of both the user and pipe worker processes through semaphores and mes-
sage exchanges. When the ends of the pipe are on different processors much of this
protocol processing can be carried out in parallel by the two processors. However,
when both ends are on the same processor, they must share CPU time and therefore
get in each other’s way. Since the relative protocol processing cost for small data trans-
fers is large anyway, this only makes things worse, hence the lower performance for
local pipes. However, as the data transfer size increases, the relative cost of the proto-
col processing becomes smaller and the local pipe soon overtakes the remote one as a
result of the higher message transfer rate.

Observations

The Helios communications mechanism is highly efficient. There is little overhead
associated with the use of primitive message passing operations, and it is possible to
achieve rates of data transmission that approach the limits imposed by the link hard-
ware.

For applications that require fault tolerant communications, Helios provides
higher-level library routines with built-in error detection and recovery. Although these
routines impose a communications overhead, this is not prohibitive. Indeed it has been
shown that, with regard to the transmission of large messages, the performance asso-
ciated with the respective communications mechanisms is fundamentally identical.

Finally, the implementation of data transmission through intermediate nodes takes
full advantage of the parallel capabilities of the communications hardware.

The decision concerning which communication mechanism to use is obviously
application specific. It is important, however, to bear in mind the trade-offs between
performance and functionality.

6.2.4 Obtaining performance data from Helios

During normal operation, Helios monitors its own performance and maintains a record.
Users wishing to access run-time performance statistics may do so with a ServerInfo
request to the processor’s tasks directory. The following procedure can be used to
retrieve the relevant information to a named processor :

int getstats(char *name, ProcStats *pstats)
{

char pname[100];
Object *proc;
int err;

strcpy(pname,"/");
strcat(pname,name);
strcat(pname,"/tasks");

proc = Locate(NULL,pname);
if(proc == NULL) return FALSE;

6.2. PERFORMANCE 261

err = ServerInfo(proc,pstats);
Close(proc);
return err>=0;

}

On successful completion, the ProcStats structure will have been filled with status
information from the processor. This structure, which may be found in <root.h>,
comprises the following fields :

262 CHAPTER 6. COMMUNICATION AND PERFORMANCE

Type The processor type. Currently 414, 425, 800, 801 or 805.

Load The average load on the processor. This ranges from 0 to about 2000
and it is a time averaged estimate of the number of microseconds for
which each currently running process has been scheduled.

Latency A time averaged estimate in microseconds of how long a high priority
process would wait on the run queue.

MaxLatency The maximum latency seen.

MemMax The total size of the available system memory pool in bytes.

MemFree The number of bytes currently available in the system memory pool.

LocalTraffic The total size of all messages exchanged between local processes.

Buffered The total size of all messages buffered pending delivery by the Kernel.

Errors The number of times the processor error flags have been set.

Events The number of times the processor event channel has been triggered.

NLinks The number of links this processor has, and the number of structures
in the following Link vector.

Link A vector of NLinks sixteen-byte structures, each of which contains
the following fields:

Conf is a LinkConf structure showing the state of the link.

In is the number of bytes received from the link.

Out is the number of bytes transmitted through the link.

Lost is the total sizes of all the messages received but destroyed as a
result of congestion.

Name The current network name of the processor. The exact offset of this
field depends upon the value of NLinks.

Chapter 7

The Resource Management library

7.1 Introduction

This chapter describes the Helios Resource Management library. The purpose of this
library is to make a Helios network of processors readily accessible to advanced ap-
plication programmers, and in particular to permit task forces to be run within the
network. It can be considered to be an extension to the Helios CDL language, giving
more control to any applications that need it. The chapter assumes familiarity with
Helios networking and the CDL language. Typical jobs that can be performed with the
Resource Management library include:

1. The examination of the current network, and the use of the information provided,
for example by displaying it on a screen.

2. The construction of the binary resource map used by the Helios networking
software.

3. The construction and execution of a task force.

4. The mapping of a task force onto the current network, and its execution.

7.2 The Resource Management library

There are many different ways of looking at computer systems. One approach treats the
hardware as a set of facilities or resources. These are controlled by system software,
which makes them available to end-user application software and hence to the users
of the system.

For example, consider a hard disc. At one level, a hard disc consists of one or
more platters coated with a suitable magnetic material, spinning around a common
axis, together with a number of heads capable of detecting and changing the magnetic
state of the platters. At a slightly higher level, a hard disc consists of a number of disc
blocks, subdivided into sectors and tracks, with each disc block holding typically 512
bytes of data. The application programmer sees the disc as a hierarchical collection
of files. Depending on the application the end user might see word processing doc-
uments, pretty pictures of an engineering design, or a speadsheet for the company’s

263

264 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

accounts. System software sits between the hardware and the application program: it
is responsible for taking the collection of disc blocks, turning them into a hierarchical
filing system, and making this filing system readily accessible to application programs.
This is illustrated in Figure 7.1.

��

��

��

��

	

��

��

��

��

��

�
��

�
��

�
��

�
��
�
��

helios users

bin libroot guest shutdown

� �

� �

�
��

�
��
�
��

��

��

� �

Hardware

Disc blocks

Hierarchical filing system

Application software

End user

Figure 7.1: The system hierarchy

When designing an operating system interface for hardware, two things have to be
considered. First a model is needed, which abstracts away from the hardware without
losing hardware functionality. Second a set of library routines is needed to allow ac-
cess to this model. Again consider the hard disc. The abstract model defines two main
primitive objects (files and directories), which can be manipulated by application pro-
grams. This means that application programmers lose some functionality, for example
they cannot control where on the disc their data is held nor optimise the disc organi-
sation for their application. On Unix systems the appropriate library calls are open(),
read(), write(), close() and so on. The exact implementation of the system software,

7.2. THE RESOURCE MANAGEMENT LIBRARY 265

the filing system itself, is not important provided it implements the model and provides
the library routines. Details such as cache size and the disc block allocation strategy
affect performance, but not (usually) the application programmer.

Where appropriate the system software should implement existing standards. Thus
the interface to a hardware graphics display should usually be the X window system,
unless there are very good reasons why this is unsuitable. Other graphics standards
such as GKS can be implemented on top of X. The interface to a processor’s memory
is provided by the routines malloc(), free(), and realloc(). The interface to a filing
system is provided by the Unix file I/O routines.

In multi-processor or distributed processor machines there are two relatively new
hardware facilities: the network of processors, and the communication hardware be-
tween the processors. The purpose of processors is to run programs, so the system
software must provide some way of running programs on the various processors in the
network. The purpose of communication hardware such as an ethernet or Transputer
links is to let programs communicate with each other. The Resource Management li-
brary is the interface provided by the system software for the first of these, control over
the network of processors.

It can be argued that existing Unix standards already have library routines to do the
work of the Resource Management library: fork(), execve() and so on. However, these
routines are designed for single- processor systems rather than the target hardware of
multi-processor and distributed processor machines. Controlling a collection of pro-
cessors is rather more complicated than controlling a single processor, and application
programmers need much more flexibility than is provided by the Unix routines.

7.2.1 The abstract model

As with all system software an abstract model is required to model the hardware:
the network of processors. The Resource Management library defines seven basic
primitives.

1. Processor: something which can do work.

2. Network: a collection of processors.

3. Link: a connection between processors.

4. Task: a program which can be run on a processor.

5. Task force: a collection of tasks.

6. Channel: a connection between tasks.

7. Session: a collection of tasks and task forces.

Processors

In most networks it is fairly obvious what the processors are: the Transputer, the i860,
the 680x0, etc. They have certain characteristics:

266 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

1. Processors are of a given type, for example they may be T800, i860 or a number
of other types.

2. Processors have a purpose. Some processors may be reserved for use by the
system, while others are available to users’ sessions. Some processors may be
dedicated to performing I/O or routing messages. Some processors run the He-
lios Nucleus in addition to the user programs, relying on the system software
to control message routing, memory management and so on. Other processors
such as native processors, for example, contain no system software at all and
leave the application full access to all the processor’s hardware.

3. Processors have a certain amount of memory. More interestingly, they have an
address space. For processors without virtual memory, including Transputers,
this address space is the amount of physical memory attached to the processor,
for example four megabytes. For processors with virtual memory four gigabytes
is more likely.

4. Processors have a current state. For example, a processor may have crashed
recently because an application program wrote over the wrong piece of memory.

5. A processor should have at least one piece of hardware allowing it to communi-
cate with other processors. This hardware may or may not be connected at any
one moment in time.

6. Processors may currently be allocated to a user, or they may be in a free pool.

7. Processors usually have a logical id. This logical id can be separate from the
physical id which specifies where in the system the processor resides.

8. The system software may have partial or full control over the processor. In par-
ticular, depending on the hardware in use the system software may or may not be
able to reset processors or reconfigure the connections between the processors.

9. Processors may have any number of other characteristics, for example an at-
tached signal processing chip.

For example, consider the simple network in Figure 7.2.

1. Most of the processors are the T800 type, except for /IO which is an 80286.

2. Most of the processors are available to users. /IO is dedicated to performing I/O
operations only. /00 may be reserved for system software.

3. All processors of the T800 type have two megabytes of memory.

4. All the processors are currently running normally.

5. The T800 processors each have four links allowing them to communicate. The
I/O processor has a single link allowing it to communicate with just one other
processor.

7.2. THE RESOURCE MANAGEMENT LIBRARY 267

00

01

02

03

04

05

06

07

�

�

�

�

Figure 7.2: A simple network

6. In a single-user network like the one shown it is likely that most processors are
permanently allocated to one user.

7. The processors’ logical ids are the strings IO, 00, 01 and so on.

8. Processor 01 has an attached SCSI hard disc unit.

Networks

Some sort of data structure is needed to collect processors together. This is known as
a network. In theory a network can contain any number of processors. It must be
emphasised that the term network does not necessarily refer to every processor in the
system. For example, if a particular user currently has processors 00, 01 and 02 allo-
cated then these three processors form a network: they are a collection of processors.

The majority of networks will not contain any form of hierarchy: there is just one
network, and all relevant processors are inside this network. However at times it may
be convenient to subdivide a collection of processors into smaller groups or subnet-
works. This can be achieved by having subnetworks, as shown in Figure 7.3. For
example, if the machine contains hardware produced by various different manufactur-
ers with incompatible reset schemes then it may be desirable to have separate subnets
for each scheme.

Links

In the Resource Management library a link is simply a connection between two pro-
cessors. Links can take many forms, including:

1. A high-speed serial RS232 line.

2. Shared memory between two processors, for example between an i860 and a
Transputer.

3. A connection into a hardware routing network.

4. An internet TCP stream socket across an ethernet.

268 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

��
��
��

�
��
�
��

�
�

��

��
��
��
�

�
��

��
��

�
/Net

/00 /IO /Subnet

/01 /02 /03 ...

Figure 7.3: Subnetworks

5. A lower-level ethernet connection permitting broadcasts and so on.

6. A Transputer link.

For example, consider a Transputer which has a shared memory interface to an
i860. The i860 has just one link, the shared memory. The Transputer has five links,
the four Transputer links implemented on-chip plus the shared memory. The first four
links will be quite easy to use, whereas the fifth link will need some extra software.

Connections between processors can be divided into two types. Some connections
are point-to-point, for example a Transputer link, a TCP socket, or an RS232 line.
Other connections allow a processor to communicate with many other processors us-
ing a single piece of hardware. For example routing chips allow every processor to
communicate with every other processor attached to the router. An ethernet can allow
every processor to communicate with every other processor attached to the ethernet.
Representing point-to-point connections only is relatively easy, as the resulting net-
work is a simple graph with the processors as vertices and the links as edges. This is
shown in Figure 7.4.

IO

00

01

02

03

04

05

06

07

�

�

�

�

�

�

�

�

�

Figure 7.4: A network as a graph

Representing many to many connections is more complicated. One approach is to
treat a routing network as a large number of point-to-point connections. Thus if the
router connects sixteen processors then each processor might be considered to have
fifteen point-to-point connections to other processors. This does not work for large

7.2. THE RESOURCE MANAGEMENT LIBRARY 269

numbers of processors, because the number of connections becomes unmanageable.
An alternative approach is to treat a router as a special type of processor. All the ‘real’
processors have one connection to the router processor, and the router processor has
many connections to many processors. This is shown in Figure 7.5.

00 01 02 03

04

05060708

09 Router

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

Figure 7.5: A network with a router

Some processor connections may go outside the hardware administered by the
Resource Management library. For example, if a network is based around an ethernet,
there may be a gateway to another network, and to the external world as a whole. To
cope with this the library has the concept of external links.

Tasks

Processors exist in order to run applications. This means that it is necessary to have
a representation of applications, and in particular applications that can be distributed
over a network of processors. Applications consist of one or more tasks, communi-
cating with each other to achieve parallelism, and interacting with the outside world
to obtain data and produce results. A single task runs on a single processor, but a
processor may run more than one task.

Like processors, tasks have certain characteristics.

1. They are compiled for a particular processor or set of processors. For example,
a task could be compiled to run on just T800 processors, or on any Transputer.
In future, with the advent of architecture neutral distribution formats, it may be
possible to have binary files that run on any processor.

2. Tasks are associated with a specific piece of code, usually held in a filing system.
Each distinct task may be associated with a separate file. Alternatively a single
file might hold the code for all the tasks in a task force.

3. Tasks may run alongside system software, which means they get the benefits
of automatic message routing, memory management and so on. Alternatively
tasks may run on native processors with full access to all the hardware facilities

270 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

and the associated problems. If native tasks are used, only one task can run on a
processor. If system software is present, this may support multiple tasks running
on a single processor.

4. Tasks have a certain memory requirement. This may be so small that it can be ig-
nored. Alternatively a task may need most of a processor’s memory, preventing
that processor from running any other tasks.

5. Tasks may have specific hardware requirements, for example they may need a
particular signal processing chip.

Task forces

To exploit multiple processors it is necessary to have multiple tasks distributed over
the processors. As with processors a data structure is needed to collect tasks together,
and this structure is known as the task force. As with networks, a hierarchy of sub task
forces is permitted. For example, Figure 7.6 represents a task force in the form of a
farm. There is a master task, a load balancer task, and there are a number of worker
tasks.

M lb

W4

W3

W2

W1

� �

�

�

�

�

	
	
	
	
		

�
�
�
�

Figure 7.6: A farm task force

Channels

Just as a processor is connected by one or more links to other processors, a task is
connected by one or more channels to other tasks. Like links, channels are numbered
from 0 onwards. The channel numbers are in fact equivalent to Unix file descriptors.
Hence channel 0 corresponds to Unix’s stdin stream, channel 1 corresponds to stdout
and so on. Some channels may be used for interaction with the outside world, for
example to write data to a disc, and such channels are known as external channels.
In Figure 7.6 there are two channels between the master and the load balancer, one
for communication in each direction. There are also two channels between the load
balancer and each worker.

7.3. OUTLINE OF THE LIBRARY CALLS 271

Sessions

The Resource Management library assumes that the processor network may be shared
by multiple users. Every processor running system software can run multiple tasks,
with the system software taking care of sharing the processor between the tasks. At
present the library assumes that a processor cannot be shared by more than one user,
but this restriction may be relaxed in a future version. If a network can have multiple
users it is necessary to define some things about a user’s session, and the way that the
processors are shared.

1. The Resource Management library is used to control a fixed number of pro-
cessors in the machine. There may be additional processors but these are not
accessible through the library. The collection of processors administered by the
library is known as the Network, with a capital letter N.

2. At any one moment in time a subset of the Network may have been allocated
to a particular session, and this subset is known as the session’s domain. A
processor can be in only one domain.

3. Processors can be added to a user’s domain at any time. They can also be re-
moved from the user’s domain provided they are not currently running any ap-
plication software.

4. Some processors in the Network may be reserved for use by the system software
and hence cannot be allocated. For example, a processor running a file server
would normally be reserved to protect the file server program from accidental or
deliberate corruption. Any processors not reserved and not currently allocated
to a domain are in the free pool.

5. A user may run one or more applications inside the domain of processors associ-
ated with their session. A processor may be used by more than one application.

In future there may be some extensions to the Resource Management library. These
might include routines to create and abort sessions, and to perform various types of
accounting.

7.3 Outline of the library calls

This section outlines the calls provided by the Resource Management library. There
are a considerable number of these calls, so they are grouped together in the following
sections:

272 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

1. Programming conventions. 8. Executing a task.
2. Constructing a network. 9. Executing a task force.
3. Examining a network. 10. Modifying a network.
4. Obtaining a network. 11. File I/O.
5. Constructing a task force. 12. Error handling.
6. Examining a task force. 13. Miscellaneous.
7. A program’s environment.

The sort of job for which the Resource Management library might be used is as
follows. There is an existing application in the form of a task force, written in For-
tran or another language. It is necessary to execute this task force subject to certain
restrictions, and in particular the task force must be mapped carefully onto the ex-
isting network. One approach is to use a CDL script describing the task force, but
this may not suffice for a variety of reasons. Instead the user can write an additional
control program, linked with the Resource Management library, to run the task force.
This program can be as simple or as complicated as required, and supersedes the CDL
compiler.

7.3.1 Programming conventions

The Resource Management library must not conflict with any existing libraries, either
System libraries or User libraries. In particular it is essential that the library does not
use any routine names that clash with existing names, thus preventing the library from
being linked with existing programs. To do this various conventions must be adopted,
and these are described in this section. Only a C interface to the library is defined in
this chapter, although interfaces to other languages should be straightforward. For C
programmers there is a new system header file:

#include <rmlib.h>

All routine names start with the two letters Rm, to guarantee that the name is
unique. These two letters are usually followed by a verb specifying the operation to be
performed, starting with a capital letter. This verb is followed by a noun indicating the
kind of object on which the operation is to be performed. There may be an additional
field if more information is needed. For example, the routine to find out how much
memory a particular processor has takes the following form:

unsigned long int RmGetProcessorMemory(RmProcessor);

Similarly, the routine to break a processor link is:

int RmBreakLink(RmProcessor, int);

All constants defined by the library take a similar form. They start with the two let-
ters Rm, then an additional letter indicating the nature of the constant, an underscore,
and the actual name. For example, the error code indicating that one of the arguments
passed was an invalid link number is:

7.3. OUTLINE OF THE LIBRARY CALLS 273

#define RmE_BadLink <some number>

Similarly, the constant indicating a processor type takes the form:

#define RmT_T9000 <some number>

Similar naming conventions have been adopted in the past, for example by the X
window system. All X library routines and constants start with the letter X. X toolkit
routines start with Xt, and the X Athena Widget library uses Xaw. The library has
four main data structures: for processors, networks, tasks, and task forces. The layout
of these data structures is not known to the programmer, it is internal to the library.
The library header file defines four data types which are probably, but not necessarily,
pointers to the internal data structures.

1. RmProcessor

2. RmNetwork

3. RmTask

4. RmTaskforce

The library has its own error codes, independent of the error codes used by other
systems. It is based on the Unix error code model: there is a global variable RmErrno,
which is set to one of a small number of error codes. When an error occurs this variable
is set to a suitable code. In addition some of the library routines return error codes
when appropriate.

7.3.2 Building a network

The first operation which can be performed by the Resource Management library in-
volves building an internal representation of a network. Consider the network in Fig-
ure 7.7.

00

01

02

03

04

05

06

07

�

�

�

�

Figure 7.7: Another simple network

Building the representation involves three stages: building the processors, collect-
ing the processors together in a network and making the links between the processors.

274 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

Building the processors

The following piece of code is used to build a representation of the root processor, 00.

RmProcessor Proc00 = RmNewProcessor();

RmSetProcessorId(Proc00, "00");
RmSetProcessorType(Proc00, RmT_T800);
RmSetProcessorMemory(Proc00, 4 * 1024 * 1024);
RmSetProcessorPurpose(Proc00, RmP_System | RmP_Normal);
RmAddProcessorAttribute(Proc00, "scsi");

First of all, a new data structure is allocated, and then the library returns an object
of the type RmProcessor. This might be a pointer to the actual data structure. It could
also be an index into a pre-allocated table of these data structures, or some more exotic
object. Since Proc00 will only be used for further calls into the library, its exact data
type does not matter. The inverse action is RmFreeProcessor().

Assuming that there was enough free memory to allocate the data structure, and
that for simplicity this section ignores the possible error conditions, some of the details
for this processor can now be filled in. The processor name, type, and memory size
are relatively straightforward. The purpose is the result of using or on two pieces of
information. The first is either RmP System or RmP User, indicating whether the
processor is reserved for use by the system software or whether it can be allocated to
users. The second piece of information should be one of the following.

1. RmP Normal. This processor runs some system software to perform basic pro-
cessor administration, for example message routing and memory allocation.

2. RmP Native. This processor does not run any system software, and hence all
the hardware resources are accessible to application software. However, the
application software is responsible for administering all the hardware.

3. RmP IO. This processor is reserved for performing I/O operations and is in-
capable of running any application software. It may still be allocated to users
as a means of preventing other users from accessing facilities provided by that
processor.

4. RmP Router. This processor is reserved for routing messages. This routing
may be performed directly by the hardware, for example a routing chip or an
ethernet. Alternatively the network may contain a backbone of cheap processors
such as 16 bit Transputers to perform message routing without going through
processors running application software.

For example, the processor /IO in the network would have the purpose

RmP_User | RmP_IO

and processor /01 would have the purpose

RmP_User | RmP_Normal

7.3. OUTLINE OF THE LIBRARY CALLS 275

In general a processor’s purpose is fixed. The only change that the software may
allow is from normal to native mode, and back to normal when the application has
finished. Any other changes will tend to involve significant changes to the system
configuration files, and hence shutting down and rebooting the machine.

The final routine, RmAddProcessorAttribute(), is used for other attributes such
as attached signal processing chips. In this case the scsi attribute indicates that the
processor has an SCSI disc interface unit. Such information must be stored with the
network because applications may need it: a mapping program might choose to map
an I/O intensive task to a processor near the one with the disc interface. Because of the
varied hardware available, little can be done about defining the format of these strings.
As a general rule, attributes should take either the form xx, a simple string, or the form
yy=zz, specifying both a name and a value. This value may be a number or just another
string. Should it be necessary to remove an attribute, there is an inverse routine called
RmRemoveProcessorAttribute().

Collecting the processors in a network

To create a network, processors have to be collected together in a data structure. The
following code achieves this:

RmNetwork network = RmNewNetwork();

RmSetNetworkId(network, "example");
RmAddheadProcessor(network, Proc00);
RmPostinsertProcessor(Proc00, Proc01);
RmPreinsertProcessor(Proc01, ProcIO);
RmAddtailProcessor(network, Proc02);
RmAddtailProcessor(network, Proc03);

...

Effectively the processors are held in a linked list, although the network data struc-
ture will contain more information than just a list header. Processors can be added to
the head or tail of the list, or inserted before or after processors already in the data
structure. Hence the above code would leave the processors in the order shown in
Figure 7.8.

� � � � �00 IO 01 02 ...� � � � ��

�

�

�

�

/Net� �

Figure 7.8: Processor ordering within a network

If subnetworks are required, the same routines may be used.

RmNetwork whole_net = RmNewNetwork();

276 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

RmNetwork subnet = RmNewNetwork();

RmAddtailProcessor(whole_net, Proc00);
RmAddtailProcessor(whole_net, ProcIO);
RmAddtailProcessor(whole_net, (RmProcessor) subnet);
RmAddtailProcessor(subnet, Proc01);
RmAddtailProcessor(subnet, Proc02);
RmAddtailProcessor(subnet, Proc03);

...

��
��
��

�
��
�
��

�
�

��

��
��
��
�

�
��

��
��

�
/Net

/00 /IO /Subnet

/01 /02 /03 ...

Figure 7.9: A processor tree

This would give a tree as shown in Figure 7.9. The system does not attach any particu-
lar significance to the order of processors within a network, but an application might do
so. For example, an application might choose to order processors depending on how
suitable they are for running a particular application. The routine to remove processors
from a network is:

RmProcessor RmRemoveProcessor(RmProcessor);

The routine returns the RmProcessor value itself, or NULL for failure. This can be
useful, for example:

RmAddtailProcessor(new_network, RmRemoveProcessor(proc));

This line removes a processor from its current network and adds it to a new one. There
is another routine, RmFreeNetwork(), which releases a network and all the processors
contained within it.

Making the connecting links

Just one routine is needed to establish the connections between the processors. This is
shown by the following code.

RmMakeLink(Proc00, 0, ProcIO, 0);
RmMakeLink(Proc00, 2, Proc01, 0);
RmMakeLink(Proc00, 3, Proc02, 1);
RmMakeLink(Proc01, 3, Proc03, 1);
RmMakeLink(Proc02, 2, Proc03, 0);
RmMakeLink(Proc02, 3, Proc04, 1);

...

7.3. OUTLINE OF THE LIBRARY CALLS 277

The routine takes four arguments: two processors and two link numbers. Note that it
affects two processors simultaneously. Making a link from processor 00 to processor
IO also makes a link from processor IO to processor 00. To specify external links
there is a constant which can be substituted for the second processor.

RmMakeLink(Proc00, 1, RmM_ExternalProcessor, 1);

The exact meaning of the link number for external processors depends on the sys-
tem. Typically this link number identifies a specific connector on the machine. For
example a Transputer system may have eight link connections coming out of the back-
plane, allowing other machines to be connected to it through links, with the link num-
ber identifying the connector. If a link is not connected, this can be specified explicitly
as shown below. However by default the library assumes that all links are not con-
nected so this is not usually necessary.

RmMakeLink(Proc00, 1, (RmProcesssor) NULL, 0);

Another constant is available if desired.

RmMakeLink(Proc00, 1, RmM_NoProcessor, 0);

Once a link has been made it can be broken again by using another routine.

RmBreakLink(Proc00, 2);

Again, breaking a link is symmetrical. The processors at both ends of the link are
affected, although only one of the processors has to be specified.

7.3.3 Examining a network

The usefulness of constructing a network is limited. A rather more interesting job is
examining an existing network. There are three types of networks worth examining:
the whole Network (all processors in the current machine that can be controlled by the
library); the user’s domain of processors and a network obtained by the application.

Getting information

There are four routines which can be used to get details of the whole Network and the
user’s domain:

RmNetwork RmGetNetwork();
int RmLastChangeNetwork(void);
RmNetwork RmGetDomain();
int RmLastChangeDomain(void);

The first routine obtains a copy of the current Network so that it can be examined by an
application. In a multi-user, multi-processor, multi-tasking system the Network may
change at any time, but RmGetNetwork() gives a current snapshot of the Network. To
find out whether or not there has been a recent change to the Network another routine
provides a time stamp. The Network is said to have changed under the following
conditions:

1. One or more processors have been allocated to a user.

2. One or more processors have been returned to the free pool.

278 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

3. Processors have changed from normal to native mode, or vice versa, affecting
message routing.

4. The Network topology has changed because an application has reconfigured the
connections between processors it has obtained.

5. A fault has been detected, for example a processor crash.

Any applications that rely on up to date information about the network can check the
time stamp at regular intervals. Similar routines are available to obtain a copy of the
current domain and an appropriate time stamp.

Walking through the linked list of processors

Given that the processors in a network are held in a linked list, some routines must be
needed to walk through this list and generally to find out what is in the list.

1. RmProcessor RmFirstProcessor(RmNetwork);

This routine returns the first processor or subnetwork in the specified network,
in other words the head of the list.

2. RmProcessor RmLastProcessor(RmNetwork);

This routine returns the last processor or subnetwork.

3. RmProcessor RmNextProcessor(RmProcessor);
RmProcessor RmPreviousProcessor(RmProcessor);

Given the head or the tail of the list, these two routines can be used to move
forwards or backwards through the linked list. When the end is reached these
routines return NULL.

4. bool RmIsProcessor(RmProcessor);
bool RmIsNetwork(RmProcessor);

These two routines can be used to check whether or not an entry in the linked
list is a processor or a subnet.

5. bool RmIsNetworkEmpty(RmNetwork);

This routine returns true if the specified network does not contain any processors
or subnetworks.

6. int RmSizeofNetwork(RmNetwork);

This routine returns the number of processors and subnetworks in the specified
network, without recursing down into the subnetworks.

7. int RmCountProcessors(RmNetwork);

This routine returns the total number of processors in the specified network in-
cluding all its subnets. If the routine returns the same value as RmSizeofNet-
work(), the network being examined does not contain any subnetworks.

7.3. OUTLINE OF THE LIBRARY CALLS 279

8. RmNetwork RmParentNetwork(RmProcessor);

Given a processor or subnetwork this routine returns the parent network. If the
argument passed is the root of the network tree, the routine returns NULL.

9. RmNetwork RmRootNetwork(RmProcessor);

Given any processor or subnetwork this routine returns the root of the network
tree.

List walking routines provided by the library

Walking through the list of processors in a network is a very common operation, and
the library provides a number of routines to make it easier. The application program-
mer using the library can write routines of the form:

int fn(RmProcessor processor, ...);

This function can be passed as an argument to the library’s list walking routines, which
apply the function to the contents of a network passed as argument. The routine is
specified as having a variable number of arguments, which is somewhat specific to
the C language. To facilitate defining other language interfaces, the library does not
guarantee to pass more than three integer-sized arguments.

1. int RmApplyNetwork(RmNetwork, fn, ...);

This routine applies the specified function to all the processors and subnetworks
in the specified network, without recursing into the subnetworks. At most three
integer-sized arguments should be passed after the function. The routine returns
the sum of the results of applying the function to all entries.

2. int RmApplyProcessors(RmNetwork, fn, ...);

This routine is similar to the above, differing only in the way subnetworks are
handled. The first routine applies the function to any subnetworks, without re-
cursing down to processors inside the subnetworks. Hence the user-supplied
function should check whether it has been passed a processor or a subnetwork
as an argument, before it attempts to process the argument. The second routine
does not apply the user-defined function to subnetworks, but implicitly recurses
down into the subnetworks.

3. int RmSearchNetwork(RmNetwork, fn, ...);

The apply routines always act on every object in the network passed as an argu-
ment. An alternative requirement is searching the network, applying the function
to successive entries until a suitable one is found. This routine applies the func-
tion to successive entries until the function returns a non-zero result. The routine
then returns this non-zero result. Typically this result would be the RmProces-
sor value itself.

4. int RmSearchProcessors(RmNetwork, fn, ...);

This routine is similar to the previous one, but recurses into subnetworks rather
than applying the function to the subnetworks.

280 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

Some examples may prove useful at this point. This code counts the number of
T800 processors in a network.

int walk_fn1(RmProcessor processor, ...)
{ if (RmGetProcessorType(processor) == RmT_T800)

return(1);
else
return(0);

}

int main(void)
{ RmNetwork Network = RmGetNetwork();

printf("Number of T800 in the current network is %d.\n",
RmApplyProcessors(network, &walk_fn1));

}

RmApplyProcessors() is used so that all processors inside subnetworks are counted
as well. Similar code using RmApplyNetwork() would look like this:

int walk_fn2(RmProcessor processor, ...)
{ if (RmIsNetwork(processor))

return(RmApplyNetwork((RmNetwork) processor, &walk_fn2));
if (RmGetProcessorType(processor) == RmT_T800)
return(1);

else
return(0);

}

int main(void)
{ RmNetwork Network = RmGetNetwork();

printf("Number of T800 in the current network is %d.\n",
RmApplyNetwork(Network, &walk_fn2));

}

A third example finds the first processor of a specified type.

int search_fn1(RmProcessor processor, ...)
{ va_list args;

int processor_type;

va_start(args, processor);
processor_type = va_arg(args, int);
va_end(args);

if (RmGetProcessorType(processor) == processor_type)
return((int) processor);

else
return(0);

}

int main(void)

7.3. OUTLINE OF THE LIBRARY CALLS 281

{ RmNetwork Network = RmGetNetwork();
RmProcessor result;

result = (RmProcessor)
RmSearchProcessors(Network, &search_fn1, RmT_T9000);

if (result == (RmProcessor) NULL)
puts("There are no T9000 in this network.");

else
printf("The first T9000 in the network is %s\n",

RmGetProcessorId(result));
}

Examining a processor

The routines described so far can be used to get hold of the processors in a network.
Another set is required to examine the actual processors, and most of these are straight-
forward.

1. const char *RmGetProcessorId(RmProcessor)

2. int RmGetProcessorType(RmProcessor);

3. unsigned long RmGetProcessorMemory(RmProcessor);

4. int RmGetProcessorPurpose(RmProcessor);

5. int RmGetProcessorState(RmProcessor);

6. int RmGetProcessorOwner(RmProcessor);

7. const char *RmWhoIs(int);

8. int RmWhoAmI(void);

9. int RmGetProcessorControl(RmProcessor);

10. bool RmTestProcessorAttribute(RmProcessor, char *);

11. int RmCountProcessorAttributes(RmProcessor);

12. int RmListProcessorAttributes(RmProcessor, char **);

13. const char *RmGetProcessorAttribute(RmProcessor, char *);

The processor purpose again consists of two fields. There is one field to control
whether the processor is reserved for use by the system, or whether the processor is
available to users. The other field specifies the processor’s role in the network. A
constant is available to isolate this second field.

int purpose = RmGetProcessorPurpose(proc);

printf("Processor %s : ", RmGetProcessorId(proc));
if (purpose & RmP_System)
fputs("system, ", stdout);

else
fputs("user, ", stdout);

switch(purpose & RmP_Mask)
{ case RmP_Normal : puts("normal"); break;

case RmP_Native : puts("native"); break;

282 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

case RmP_Router : puts("router"); break;
case RmP_IO : puts("I/O"); break;
default : puts("unknown"); break;

}

The processor state consists of a number of flags including the following:

1. RmS Reset. The processor is believed to be reset.

2. RmS Running. The processor is currently running the default software, pro-
viding message routing, memory management and so on.

3. RmS Suspicious. There may be a problem with this processor, for example it
has failed to receive a message down a link.

4. RmS Crashed. The processor appears to have crashed with all communication
failing.

5. RmS Dead. The processor has crashed and the system was unable to recover it.
This might happen because the hardware does not provide sufficient control over
the processor, particularly an individual reset, or because of a hardware failure.

The routine RmGetProcessorOwner() returns the current owner of the processor,
if any. The number returned is likely to be the same as the Unix user identifier, but
this is not essential. There are two special identifiers: RmO System specifies that the
processor is reserved for use by the system software; RmO FreePool specifies that
the processor is currently free, and has not been allocated to any user’s domain. The
routine RmWhoAmI() returns a user identifier for the current session. The routine
RmWhoIs() takes a user identifier and translates it into a string. The routine RmGet-
ProcessorControl() returns a word indicating the amount of control which the system
software has over this processor. Again, this word consists of a number of flags:

1. RmC Native. The system may be able to switch this processor into native mode,
removing any system software currenly running on it. This is not always possi-
ble, for example a network might consist of a number of existing Unix worksta-
tions attached to an ethernet, and it is not usually possible to stop Unix running
on such processors.

2. RmC Reset. The system can definitely reset the target processor.

3. RmC PossibleReset. The system may be able to reset the target processor, but
it cannot guarantee it. Unfortunately this is possible with some hardware.

4. RmC FixedMapping. The mapping of the logical processors administered by
the Resource Management library onto the physical processors inside the box is
fixed. This is important in systems which support link switching.

5. RmC FixedLinks. The processor links are fixed and cannot be reconfigured.
If this bit is clear, some of the links can be reconfigured, but not necessarily all
links.

7.3. OUTLINE OF THE LIBRARY CALLS 283

The final four routines examine the additional processor attributes that may be de-
fined, to indicate facilities like signal processing chips or disc interface units. The
first, RmTestProcessorAttribute(), checks if the string provided is one of the known
attributes. The second routine, RmCountProcessorAttributes(), returns the number
of attributes for this processor, which may be zero. To find all the attributes, a suit-
able array should be allocated and this is filled in by the routine RmListProcessorAt-
tributes(). The final routine searches for strings of the form aa=bb. If the application
gives the string aa, the routine returns the string bb. The use of these routines is illus-
trated by the following code fragment.

if (RmTestProcessorAttribute(proc, "scsi"))
{ char *drive_count = RmGetProcessorAttribute(proc, "drive_count");
int no_drives;
if (drive_count == NULL)
no_drives = 1;

else
no_drives = atoi(drive_count);

printf("Processor %s has a SCSI unit with %d drives\n",
RmGetProcessorId(proc), no_drives);

}
int number_attribs = RmCountProcessorAttributes(proc);

if (number_attribs > 0)
{ char **attrib_table = malloc(number_attribs * sizeof(char *));
int i;
char *id = RmGetProcessorId(proc);

RmListProcessorAttributes(proc, attrib_table);
for (i = 0; i < number_attribs; i++)
printf("Processor %s has attribute %s\n", id,

attrib_table[i]);

free(attrib_table);
}

Examining links

Given a network of processors it is useful to be able to work out which processor is
connected by which links to which other processors. There are two routines for this
purpose. The first is:

int RmCountLinks(RmProcessor);

This routine simply returns the number of links attached to this processor. The
second routine is better:

RmProcessor RmFollowLink(RmProcessor, int link, int *destlink);

Given a processor and a link number on that processor, the library follows the link
to the other side and returns the connecting processor. The third argument should be
a pointer to an integer variable, which is filled in with the destination link number. If
the specified link is not connected, the routine returns the value NULL. The library

284 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

defines a constant RmM NoProcessor, equivalent to NULL. If the specified link is
connected to something outside the network containing the processor, the routine re-
turns RmM ExternalProcessor. This can be quite common. For example, when
examining a user’s domain any connection to a processor inside the Network but not
allocated to the domain will be external to the domain. The following code fragment
illustrates the use of this routine.

int number_links = RmCountLinks(proc);
int i;
RmProcessor neighbour;
int destlink;

for (i = 0; i < number_links; i++)
{ neighbour = RmFollowLink(proc, i, &destlink);

if (neighbour == RmM_NoProcessor)
{ printf("link %d is not connected.\n", i);
continue;

}
if (neighbour == RmM_ExternalProcessor)
{ printf("link %d goes outside this network.\n", i);
continue;

}
printf("link %d is connected to link %d of processor %s\n",

i, destlink, RmGetProcessorId(neighbour));
}

7.3.4 Obtaining a network

If a network is to be shared by multiple users and multiple applications per user, there
must be some mechanism to prevent tasks from being run without authorisation, for
example on another user’s processor. This is fairly easy. All processors to be used by
an application must be obtained first.

A user’s domain is the set of processors obtained by any applications running in
the user’s session and not yet returned to the free pool. A given processor can only
be in one domain, in other words allocated to only one user. A processor inside a
domain can be allocated to more than one application, subject to some restrictions. An
application can run more than one task in a processor it has obtained, again subject to
some restrictions.

Actually obtaining the processors

There are two main ways of obtaining access to processors. The first method is to
construct a template describing the application’s requirements, for example sixteen
T800 processors with at least four megabytes of memory. The system software will
perform some pattern matching between the template and the available processors,
and if a suitable match is found, those processors are obtained. The second method
is to examine an existing network, either the whole Network or the current user’s
domain, choose some specific processors, and attempt to obtain them. The first of
these approaches tends to involve less code because constructing a template network

7.3. OUTLINE OF THE LIBRARY CALLS 285

is quite easy. The second method involves more code, but gives greater control. The
following routines are used to obtain and release processors.

1. RmProcessor RmObtainProcessor(RmProcessor);

Given an RmProcessor value, which may correspond to either an existing pro-
cessor or a newly created template, this routine returns a new RmProcessor
value or NULL. The returned processor is now owned by the application, and
can be used for running applications.

2. int RmReleaseProcessor(RmProcessor);

If a processor is no longer needed and is not running any user tasks, this routine
releases the application’s ownership of the processor. This may involve returning
the processor to the free pool, depending on whether or not other applications
are using it. Normally any resources obtained by an application will be released
automatically when it exits, but this routine gives greater control.

3. RmNetwork RmObtainNetwork(RmNetwork, bool exact);

Given a network template describing the application’s requirements, this routine
attempts to get access to a suitable matching set of processors. Alternatively
the template might consist of a copy of an existing network, for example that
obtained by RmGetDomain(), with the unwanted processors removed. The
second argument specifies whether the routine should succeed only if an exact
match is found for all the processors in the template, or whether a partial match
will suffice.

4. RmNetwork RmObtainProcessors(int, RmProcessor *, bool);

When attempting to obtain some existing processors it is usually convenient to
search through the existing network and fill in a table, rather than build a new
network to serve as a template for RmObtainNetwork(). This routine takes a
table size, a pointer to a table of RmProcessor values, and a boolean to indicate
whether or not partial success will suffice.

5. int RmReleaseNetwork(RmNetwork);

Again, any network of processors obtained by an application will be released
automatically when that application exits, but this routine enables applications
to change their resources easily at any time.

6. bool RmIsFree(RmProcessor, bool exclusive);

When examining an existing network of processors it is necessary to know
whether or not a processor can be obtained. One way is to check whether it
is in the free pool or in the user’s current domain, which can be done with rou-
tines already described. However the examination routines act on a local copy
of the network or a subset of the network, which may be out of date. Hence this
routine performs a spot-check on the specified processor to determine whether
or not it can be obtained at present. Of course the routine cannot guarantee
that the processor can be obtained, because some other application may obtain
the processor a fraction of a second after the spot check. The second argument
depends on whether the application needs exclusive access to the processor or
whether it is willing to share the processor with other applications.

286 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

Administering the obtained processors

Another four routines are useful to administer the controlled processors, but they
merely involve administering the local data structures.

1. RmProcessor RmFindMatchingProcessor(RmProcessor, RmNetwork);

When a network is obtained by specifying a template of, for example, four T800
and four T9000, it is necessary to find out which processor in the template was
matched with which processor in the obtained network. This routine can be used
to follow the mapping. The processor argument should correspond to part of the
template which is used in the call to RmObtainNetwork() or RmObtainPro-
cessors(), and the network argument should be the result of that routine. The
return value is NULL if no match was found for that processor, or the matching
processor.

2. int RmMergeNetworks(RmNetwork neta, RmNetwork netb);

Suppose that an application obtains two or more different networks of proces-
sors. For example, halfway through a run it may decide that it needs another
sixteen processors. Rather than keeping all the different sets of obtained proces-
sors in separate RmNetwork structures it is usually desirable to maintain only
one, and merge newly obtained networks into the current set. This routine takes
all the processors in set netb, merges them into set neta, and leaves netb devoid
of processors.

3. RmNetwork RmGetNetworkHierarchy(void);

If the application obtains its processors using RmObtainProcessor(), that is to
say one at a time rather than getting sets of processors at a time, usually these
processors should still be collected together into a network. This can be a newly
created RmNetwork. However, using a new structure might cause confusion
because the resulting network of obtained processors does not match the subnet
hierarchy of the global Network. Hence it may be preferable to obtain a copy of
the Network hierarchy: just the subnetworks and not the processors, and have
the library insert any obtained processors into the right position in the library.

4. int RmInsertProcessor(RmNetwork, RmProcessor);

Given a newly obtained processor and a network matching the Network hierar-
chy, this routine inserts the processor into the correct position in the hierarchy.

Sharing processors

Applications may need finer control over processor allocation than is provided by the
routines described so far. For example, an application may require exclusive access
to the processors they have obtained while others are willing to share processors with
other applications (although not with other users). The following routines control this.

int RmSetProcessorShareable(RmProcessor);
int RmSetProcessorExclusive(RmProcessor);
int RmIsProcessorShareable(RmProcessor);
int RmIsProcessorExclusive(RmProcessor);

7.3. OUTLINE OF THE LIBRARY CALLS 287

The first two routines may be be applied to the template processors used for the actual
obtain calls, and provide information for the system software to help it perform the
required matching. For example, if an application specifies that one of the processors
in the template of the requirements should be exclusive, the system will not match
this with any processors already allocated to other applications. Furthermore, once
the processor has been obtained the system will not allocate it to other applications.
Alternatively, the first two routines may be applied to processors already obtained.

For example, an application may need exclusive access to a processor during the
first part of a run, but is then willing to share the processor with other applications.
Changing a processor from shared to exclusive may fail if another application was
also given access to the processor while it was still shared. The final two routines can
be used to test the current allocation strategy for a processor. To avoid total confusion,
a given processor cannot be allocated twice to the same application.

Administering the domain

The administration of a user’s domain needs some additional routines. In particular, an
application may need to obtain some processors from the free pool, implicitly adding
them to the user’s domain, then to mark them as sticky and release the processors.
Normally, releasing processors would cause them to leave the domain and return to the
free pool, but in this case they would remain in the user’s domain until a subsequent
application marks them as no longer sticky. There are four routines to control this.
These routines are unlikely to be used by user-written applications, but will be used by
utilities provided with the system.

int RmSetProcessorPermanent(RmProcessor);
int RmSetProcessorTemporary(RmProcessor);
bool RmIsProcessorPermanent(RmProcessor);
bool RmIsProcessorTemporary(RmProcessor);

7.3.5 Constructing a task force

In the Resource Management library, networks consist of processors connected by
point to point links. Similarly, task forces consist of tasks connected by point-to-
point channels. Hence, not surprisingly, the routines to construct a task force are very
similar to the routines to construct a processor network. Obviously there are significant
differences between processors and the programs that run on them, so the routines are
not identical. As an example, consider the task force shown in Figure 7.10. The
task force is a simple farm. There is a master component or task M, a load balancing
component lb, and there are a number of worker components W.

Building the tasks

The following code fragment can be used to build the master component.

RmTask master = RmNewTask();

RmSetTaskId(master, "master");
RmSetTaskType(master, RmT_T414);
RmSetTaskNormal(master);

288 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

M lb

W4

W3

W2

W1

	
	
	
	
	
	
	
		

�
�
�

�
�
�

Figure 7.10: A simple task force

RmSetTaskMemory(master, 2 * 1024 * 1024);
RmSetTaskCode(master, "../bin/master");

The routines available for creating tasks are:

1. RmTask RmNewTask(void);

This routine returns a new RmTask value. Again this may be a pointer, an index
into a table, or something else. The task data structure can only be manipulated
indirectly, through the library. There is an inverse routine, RmFreeTask().

2. int RmSetTaskId(RmTask, char *);

This routine fills in the task identifier. Usually, but not necessarily, this will be
related to the name of the file holding the program.

3. int RmSetTaskMemory(RmTask, unsigned long);

This specifies the memory requirements of the program. It is important when
the application lets the system map the task, rather than performing its own
mapping.

4. int RmSetTaskCode(RmTask, char *filename);

A task is associated with a piece of binary code, which usually resides on a disc.
This routine associates the task with a particular file name.

5. int RmSetTaskType(RmTask, int);

This routine specifies the processor type needed by the program. It is used when
the application lets the system map a task force onto the available network. For

7.3. OUTLINE OF THE LIBRARY CALLS 289

flexibility some additional routines are provided to find out the processor type,
given a file name.

6. int RmGetProgramType(char *);

Given a file name this routine returns an integer describing the type of processor
that can be used to run this program.

7. int RmSetTaskNative(RmTask);

This routine is used to specify that the task should be run on a native processor
only, in the absence of any system software. The task will need full access to all
the hardware resources, and cannot share the processor with any other tasks.

8. int RmSetTaskNormal(RmTask);

This routine specifies that the task should run on a processor with the normal
system software, providing message routing and other facilities. Also, such a
task can usually share the processor with other tasks.

9. int RmAddTaskAttribute(RmTask, char *);

This routine is used to associate an arbitrary string with the task. If the sys-
tem is responsible for mapping the task onto the available network, the string is
assumed to define some special hardware facility that must be available on the
target processor. There is an inverse routine, RmRemoveTaskAttribute().

10. int RmAddTaskArgument(RmTask, int, char *);

This is described later, in the subsection on program environments.

Collecting the tasks in a task force

Collecting tasks together into a task force is almost identical to collecting processors
together in a network.

Networks Task forces
RmNewNetwork() RmNewTaskforce()
RmFreeNetwork() RmFreeTaskforce()
RmSetNetworkId() RmSetTaskforceId()
RmAddtailProcessor() RmAddtailTask()
RmAddheadProcessor() RmAddheadTask()
RmPreinsertProcessor() RmPreinsertTask()
RmPostinsertProcessor() RmPostinsertTask()
RmRemoveProcessor() RmRemoveTask()

For example, the following code fragment collects together the various tasks of the
farm shown earlier.

RmTaskforce farm = RmNewTaskforce();

RmSetTaskforceId(farm, "mandelbrot");
RmAddtailTask(farm, master);

290 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

RmAddtailTask(farm, load_balancer);
for (i = 0; i < number_workers; i++)
RmAddtailTask(farm, worker[i]);

Making the connecting channels

Within a network the processors are connected by point-to-point links. Similarly,
within a task force the tasks are connected by point-to-point channels. Links within
a processor are identified by numbers starting from 0. Similarly channels between
tasks are identified by numbers starting from 0. These channels are in fact identi-
cal to the conventional Unix file descriptors, so channel 0 corresponds to a program’s
standard input stream stdin. More details of this can be found in chapter 4 on the
component distribution language, CDL. The routine for creating links between proces-
sors is RmMakeLink(). Similarly the routine for making channels between tasks is
RmMakeChannel(). The following code fragment establishes all the channels for the
farm example.

RmMakeChannel(master, 5, load_balancer, 0);
RmMakeChannel(load_balancer, 1, master, 4);

for (i = 0; i < number_workers; i++)
{ RmMakeChannel(load_balancer, 5 + (2 * i), worker[i], 0);

RmMakeChannel(worker[i], 1, load_balancer, 4 + (2 * i));
}

In this code fragment the conventional direction of Unix file descriptors is preserved.
For example the first line connects an extra output file descriptor within the master
component to the standard input of the load balancer, and the second line connects
the standard output of the load balancer to an extra input file descriptor in the master
component. In practice channels are bi-directional, so the following two lines are
totally equivalent:

RmMakeChannel(master, 4, load_balancer, 1);
RmMakeChannel(load_balancer, 1, master, 4);

External channels correspond to file descriptors not used for communicating with
other tasks. For example, by default, channel 3 of every task is an external channel
corresponding to the standard error stream stderr. It is possible to redirect certain
channels to particular files or named devices. For example, the following command
line:

ls -l > listing

can be implemented using the following code fragment:

RmTask ls = RmNewTask();

RmSetTaskId(ls, "ls");
RmSetTaskCode(ls, "/helios/bin/ls");
RmSetTaskArgument(ls, 1, "-l");
RmConnectChannelToFile(ls, 1, "listing", O_WRONLY);

7.3. OUTLINE OF THE LIBRARY CALLS 291

The final argument should be a conventional Unix open mode.
The routine to break a channel is:

RmBreakChannel(RmTask, int);

Again this routine is symmetrical and affects both ends of the channel.

7.3.6 Examining a task force

Again, the routines available for examining a task force are very similar to the routines
for examining a network. The following table indicates one to one matches.

Network Taskforce
RmGetNetworkId() RmGetTaskforceId
RmFirstProcessor() RmFirstTask()
RmLastProcessor() RmLastTask()
RmNextProcessor() RmNextTask()
RmPreviousProcessor() RmPreviousTask()
RmIsNetworkEmpty() RmIsTaskforceEmpty()
RmSizeofNetwork() RmSizeofTaskforce()
RmCountProcessors() RmCountTasks()
RmParentNetwork() RmParentTaskforce()
RmRootNetwork() RmRootTaskforce()
RmApplyNetwork() RmApplyTaskforce()
RmSearchNetwork() RmSearchTaskforce()
RmApplyProcessors() RmApplyTasks()
RmSearchProcessors() RmSearchTasks()
RmCountLinks() RmCountChannels()
RmFollowLink() RmFollowChannel()
RmGetProcessorMemory() RmGetTaskMemory()
RmGetProcessorId() RmGetTaskId()
RmGetProcessorType() RmGetTaskType()
RmTestProcessorAttribute() RmTestTaskAttribute()
RmCountProcessorAttributes() RmCountTaskAttributes()
RmListProcessorAttributes() RmListTaskAttributes()
RmGetProcessorAttribute() RmGetTaskAttribute()
RmIsProcessor() RmIsTask()
RmIsNetwork() RmIsTaskforce()

In addition there are a number of routines specific to tasks and task forces.

1. bool RmIsTaskNative(RmTask);
bool RmIsTaskNormal(RmTask);

These routines check whether a specific task should run on a native processor or
not.

2. const char *RmGetTaskCode(RmTask);

This routine returns the name of the file containing the code for this task.

3. const char *RmGetTaskArgument(RmTask, int);
int RmCountTaskArguments(RmTask);

These are described below in section 7.3.7 on a program’s environment.

292 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

4. const char *RmFollowChannelToFile(RmTask, int, int *);

If a call to RmFollowChannel() returns the constant RmM ExternalChannel,
this channel is in fact connected to a file or a named device. The name can be
obtained by this library routine. The third argument should be a pointer to a
suitable integer value, which will be set to the Unix open mode.

7.3.7 A program’s environment

A native task executes without any operating system support. It cannot perform file
I/O, display graphics, read data from a keyboard, and so on except by communicating
through its processor’s links to reach a server program which can perform those oper-
ations. Hence concepts such as a current directory are irrelevant to native tasks, which
are said to operate without an environment. However, conventional programs do have
an environment consisting of the following pieces of information:

1. One or more argument strings argv[]. For example, when the ls command is
executed with the command line

ls -l doc

the ls program is given three arguments. The first argument is ls, the id of the
program. The second and third arguments are -l and doc.

2. Some environment strings. A typical environment string might be

TERM=ansi

3. Standard streams. Usually these refer to the current terminal, but standard
streams may be redirected.

4. A context of miscellaneous items of information. This includes a current direc-
tory, protection information such as user id and group id, a controlling terminal,
signal processing information and so on.

Consider the Unix execve() family of routines, which are used to start other pro-
grams. When one of the Unix routines is used the newly started program inherits
its context and standard streams from its parent. The environment strings are usu-
ally inherited. The arguments to the new program are supplied by the library routine.
The routines provided by the Resource Management library to execute tasks and task
forces are similar. The context, standard streams, and environment strings are always
inherited. The arguments are passed on. However, a task force with a large number
of component tasks is rather different from a simple program such as ls, so the ac-
tual rules are somewhat more complicated. Consider the following example. The user
types the following command:

mapfarm 10 100000 200000 > log

The mapfarm program is a user application linked with the Resource Management
library. It examines the current network and obtains some suitable processors. Then
it constructs a task force consisting of a master, load balancer, and ten workers like
the first argument. This task force is mapped onto the obtained processors, attempting

7.3. OUTLINE OF THE LIBRARY CALLS 293

to produce an efficient mapping. This mapped task force is then executed with two
arguments, 100000 and 200000. The Unix file descriptors for the mapfarm program
are as follows:

File descriptor C equivalent where to/from
0 stdin terminal
1 stdout file log
2 stderr terminal

The master component of the farm has channels 4 and 5 connected to the load
balancer. The remaining channels are inherited from the parent, which in this case is
the mapfarm program.

File descriptor C equivalent where to/from
0 stdin terminal
1 stdout file log
2 stderr terminal
3 not used
4 from load balancer
5 to load balancer

For the load balancer, standard input and output are connected to the master com-
ponent. Channels 4 onwards are connected to the various workers.

File descriptor C equivalent where to/from
0 stdin from master
1 stdout to master
2 stderr terminal
3 not used
4 from worker 0
5 to worker 0
6 from worker 1
7 to worker 1

... ...

For the worker components, all workers have the same channel allocation. Channel
0 comes from the load balancer, channel 1 goes to the load balancer, and the rest are
inherited from the parent.

File descriptor C equivalent where to/from
0 stdin from load balancer
1 stdout to load balancer
2 stderr terminal

294 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

Note: the destination of each component and of each channel in the task force is
inherited from the parent program, unless a channel has been redirected using Rm-
Makechannel() or RmConnectChannelToFile().

The mapfarm program is given three arguments: 10 for the number of workers and
100000 and 200000 for the parameters of the job. It is necessary to pass the number
of workers on to the load balancer, and the job parameters to the master component.
The worker components do not need any arguments. The simple way is to build all
arguments into the task force data structure, using the code below. Please note that
argv[] refers to the arguments passed to the mapfarm program.

RmSetTaskArgument(load_balancer, 1, argv[1]);
RmSetTaskArgument(master, 1, argv[2]);
RmSetTaskArgument(master, 2, argv[3]);

Note that the argument numbers start at one, not zero, because conventionally argu-
ment zero is reserved for the program name, or in Resource Management library terms
the task id. The arguments passed to the various tasks can be examined by two other
routines:

const char *RmGetTaskArgument(RmTask, int);
int RmCountTaskArguments(RmTask);

For example, counting the arguments for the load balancer task would return the value
2: argument 0 is the task id, and argument 1 is a string corresponding to the number of
workers. Getting argument 0 is equivalent to getting the task id, and getting any other
argument returns the appropriate string.

An alternative way is to use inheritance. Previously all arguments were built into
the task force structure. The task force as a whole does not have to be given any
arguments. Consider a scenario where a complex task force is constructed and mapped,
written to a file, and then has to be executed a number of times with different arguments
every time. It is possible to give these arguments to the task force as a whole, and have
a way for the component tasks to inherit a suitable subset. To do this special strings
can be used. For example,

RmSetTaskArgument(load_balancer, 1, "$1");
RmSetTaskArgument(master, 1, "$2");
RmSetTaskArgument(master, 2, "$3");

This specifies that the load balancer inherits the first argument passed to the task force
as a whole, and the master inherits arguments two and three. Any task force argument
can be inherited by any number (including zero) of component tasks.

7.3.8 Executing a task

Once a task has been constructed in memory, the simplest way to execute it is:

RmTask RmExecuteTask(NULL, RmTask, char **argv);

This routine causes the system to execute the specified task on a suitable processor,
possibly the one running the current program, and passes this task the array of ar-
guments. This array is filtered as described in the previous subsection. The routine
returns a new copy of the task structure which can be used for the remaining task
execution commands. An alternative version of this routine is:

RmTask RmExecuteTask(RmProcessor, RmTask, char **argv);

7.3. OUTLINE OF THE LIBRARY CALLS 295

This permits the application to run a task on a specific processor that it has obtained.
Essentially this gives the functionality of the Helios remote command. Other routines
relating to task execution are:

1. int RmWaitforTask(RmTask);

This routine is roughly equivalent to the Posix waitpid() routines. It waits for the
specified task to terminate, normally or abnormally, and returns the task return
code.

2. int RmWaitforTasks(int, RmTask *);

Given a table of tasks and a count of the number of tasks this routine waits for
one of the tasks to stop running and returns its return code.

3. bool RmIsTaskRunning(RmTask);

When the previous routine returns, this one can be used to find out which one of
the various tasks in the table terminated. In practice there are timing problems:
two tasks might have terminated at approximately the same time; one of these
would have caused the return of RmWaitforTasks(), but both tasks would be
listed as non-running by the time the application examines the table.

4. int RmGetTaskReturncode(RmTask);

Once a task has finished running, this routine can be used to retrieve its return
code.

5. int RmSendTaskSignal(RmTask, int);

While a program is running, the conventional Unix way to control it is by send-
ing it signals. Useful signals include SIGINT for user attention, SIGKILL to
force program termination, and SIGUSR1 for user-defined operations.

6. int RmLeaveTask(RmTask);

This routine has no real Unix equivalent. It detaches the specified task from the
current program, so that the current program can exit without affecting the task.
The task will continue running in the background until it terminates normally.

7.3.9 Executing a task force

The routines for executing whole task forces are very similar to those for executing
single tasks.

1. RmTaskforce RmExecuteTaskforce(NULL, RmTaskforce, char **);

This routine causes the system to attempt to map the task force onto the ex-
isting network, obtaining processors as required, and then execute it with the
arguments specified. Note that the system makes no guarantee at all about the
mapping quality, so the performance of the task force may not be optimal.

2. RmTaskforce RmExecuteTaskforce(RmNetwork, RmTaskforce, char **);

This routine causes a mapped task force to be executed in a network of obtained
processors, with the given arguments. It is not necessary for every component

296 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

task to be mapped onto an obtained processor as the system will take care of the
remaining ones, but again the system makes no guarantee about the quality of
the mapping. The routines for mapping tasks onto processors are listed below.

3. int RmWaitforTaskforce(RmTaskforce);

Given an executing task force this routine waits for the whole task force to ter-
minate. A task force is said to have terminated when all of its component tasks
have terminated or have been aborted in some way. The return code for a task
force is zero if all component tasks have terminated with a zero return code,
otherwise it is the return code of the first task to terminate with a non-zero re-
sult. The routine RmWaitforTasks() may be used (with suitable casting) for
task forces or a mixture of tasks and task forces, as desired.

4. bool RmIsTaskforceRunning(RmTaskforce);

This routine returns true if any of the task force components are still running,
false otherwise. Alternatively the RmIsTaskRunning() routine can be applied
to any of the component tasks.

5. int RmGetTaskforceReturncode(RmTaskforce);

Once a task force has stopped running, this routine can be used to retrieve the
return code.

6. int RmSendTaskforceSignal(RmTaskforce, int);

This routine is used to send the signal to all component tasks in the task force.

7. int RmLeaveTaskforce(RmTaskforce);

This routine can be used to leave the task force running in the background, while
the current program exits.

The execute routine returns a new RmTaskforce structure for the executing task
force, which is different from the RmTaskforce template used in the call. This can
be quite useful, for example an application might construct a single task force tem-
plate and then execute this several times with different arguments. As the calculations
progress, some of the executing task forces might be aborted because they are failing
in some way, while new task forces might be started up with some refined data. An-
other reason for keeping the template task force and the executing task force separate
is to enforce some protection: it does not make much sense to send a signal to a task
force that is not yet executing; also, changing a task force while it is running is rather
more involved than changing a simple template.

Note: the the current version of the library prevents the changing of task forces
while they are running.

7.3.10 Mapping a task force

The previous subsection showed how a task force that had been fully or partially
mapped onto a network of processors could then be executed. This subsection de-
scribes how the mapping can be done. The mapping of tasks onto processors is essen-
tially one to one. A given component task in a task force can be mapped onto only one
processor. It must be mapped onto a processor before the task can be executed, either
by the user’s application or by the system software. The basic routine to do this is:

7.3. OUTLINE OF THE LIBRARY CALLS 297

int RmMapTask(RmProcessor, RmTask);

Given an existing processor and a task that is not yet executing, this routine asso-
ciates the task with the processor. Before the task, or the task force which contains it,
can be executed the processor must be obtained. To undo the mapping, the following
routine can be used:

int RmUnmapTask(RmTask);

Given a network of processors, you can find out which processor a task is mapped
onto.

RmProcessor RmFollowTaskMapping(RmNetwork, RmTask);

For example, the following technique is possible:

1. Construct the target task force.

2. Examine the global network, and choose a set of processors which provide an
efficient mapping of the task force onto the network. This can be very expensive.
Remove any processors that are not required.

3. Map the task force onto the network.

4. Save both the network and the task force to a file.

Later, whenever the task force must be executed:

1. Read the network and the task force from the file.

2. Obtain the processors specified in the network.

3. Execute the task force in the obtained network.

This procedure will fail unless all the processors in the optimal network are avail-
able when the task force has to be executed. The probability of this is difficult to
estimate. For a large system with tens of users logged in the chances of a specific set
of processors all being available are small. On the other hand, if such a system can
also run batch jobs overnight with only one or two batch jobs sharing the network, the
chances are quite good.

7.3.11 Modifying a network

Having the Helios Nucleus present on every processor tends to make the writing of
application programs much easier, because Helios takes care of fairly complex jobs
such as message routing. It also has disadvantages. In particular, the system software
takes over all the Transputer links and adds an overhead to all communication.

Some applications need full access to all the processor hardware, and cannot run
efficiently unless they can take over all the processor links and use all of the available
bandwidth. Such applications have to run on native processors, which do not have
any system software at all. Also, some existing languages such as occam are designed
to run only on native processors. To cope with these the Resource Management library
provides facilities for controlling native processors.

298 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

Note: there is a strong argument that as processors become more complicated, for
example an i860 with on-board memory management hardware, it becomes much more
difficult to run code without any system software. Hence the use of native networks
will decline. However, with the current generation of Transputers, and possibly also
the T9000, native processors are important.

At any one time a network may contain several groups of processors running in
native mode, with the remainder running Helios normally. Care must be taken when
switching processors to native mode because there is a chance that parts of the network
will become disconnected from each other. Essentially the facilities provided are as
follows:

1. Obtain a network of processors suitable for running in native mode. If a template
is used for one of the obtain routines, rather than details of existing processors,
some or all of the processors may have had their purpose set to RmP Native.
This causes the system to attempt to find a set of processors suitable for switch-
ing into native mode. The system takes into account both the hardware facilities
available for controlling the processors and the current connectivity of the net-
work.

2. Switch one or more processors into native mode. This involves a number of
steps:

(a) Check that this would not cause the network to become disconnected. The
system cannot assume that the user’s controlling program is well behaved.

(b) Disable any links connecting the native processors to the rest of the net-
work. The system will automatically start re-routing messages. The system
will not respond to any data coming from native processors, so as far as the
native network is concerned it is completely isolated.

(c) Cause the Nucleus to terminate on the native processors.

3. Reset one or more processors, to prepare them for running native code. Pro-
cessors can be reset any number of times, in order to run different standalone
programs.

4. Reconfigure the links between the native processors, subject to hardware re-
strictions, in order to make the native network topology match the application
topology.

5. Reboot native processors when the program has finished with them.

6. Automatically clean up native processors if the program exits without rebooting
and releasing the native processors.

The routines to switch some processors from normal to native mode are:

int RmSetNetworkNative(RmNetwork);
int RmSetProcessorsNative(int count, RmProcessor *);

These routines only affect those processors which have their purpose set to RmP Native.
It is quite common to have one processor running under the system software, acting as
a server program of some sort, and booting the native code into its network. Similar
routines are used to reset processors:

7.3. OUTLINE OF THE LIBRARY CALLS 299

int RmResetNetwork(RmNetwork);
int RmResetProcessors(int count, RmProcessor *);

Once again, these routines will only affect those processors which have their pur-
pose set to RmP Native. The first version is useful when the native code is first booted
into the native network. The second is useful when some of the native processors have
to be reset in order to run a different native code. The rebooting of processors involves
much the same code.

int RmRebootNetwork(RmNetwork);
int RmRebootProcessors(int, RmProcessor *);

It is somewhat more complicated to reconfigure links. Once a program has ob-
tained a network and switched it to native mode, it can attempt to reconfigure the links.
To do this it must first modify its copy of the network, using routines RmBreakLink()
and RmMakeLink(), to establish the new topology. Then it calls one of the following
routines:

int RmReconfigureNetwork(RmNetwork, bool, bool);
int RmReconfigureProcessors(int, RmProcessor, bool, bool);

Two additional boolean arguments are provided. The first describes how strictly
the system should interpret the connections in the network:

1. FALSE. Suppose processor a, link x, is supposed to be connected to processor
b, link y. If the first boolean argument is false, the routine succeeds if a link
of processor a is connected to a link of processor b. This establishes the basic
connections between the processor, but not the exact connections.

2. TRUE. Suppose processor a, link x,, is supposed to go to processor b, link y.
The routine will succeed only if exactly that connection can be made.

Some hardware provides full switching, whereby any link of any processor can be
connected to any link of any other processor. However there is a lot of hardware which
supports only limited switching. For example links 0 and 2 of all processors can be
connected to each other in any way, links 1 and 3 can be connected in any way, but it
is not possible to connect a link 0 to a link 1 or link 3.

The second boolean argument controls the logical to physical mapping of proces-
sors. If two physical processors are not currently executing any code, or are executing
identical code, and all their links are about to be reconfigured, it is possible to switch
a physical processor from one logical processor to another. This can be extended to
any number of processors. If the second argument is TRUE, the logical to physical
mapping of processors must be preserved, for example because code is still running
on some of the processors. If the second argument is FALSE, the system software is
allowed to change the logical to physical mapping if this is necessary.

Irrespective of whether the reconfiguration calls fail completely, succeed by re-
arranging some of the specified links if permitted, or succeed completely, the various
connections will be updated by the routine to reflect the new state of the machine. To
undo a link reconfiguration, the library provides two routines.

int RmRevertNetwork(RmNetwork);
int RmRevertProcessors(int, RmProcessor *);

300 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

These routines attempt to revert the processors’ connections to their default setup.
This is not always possible. For example, in the original setup link x of processor a
might have been connected to link y of processor b. Processor a has been allocated to
one application, and its links were reconfigured such that the connection to processor
b was broken. Processor b has been allocated to a different application and its links
have also been reconfigured. Even if the connections for processor a are supposed to
revert to the default state, the connection to processor b cannot be made again until
that processor’s links should also revert.

Given the possible limitations in link switching, it can be desirable to test the
possibility of making one or more links before actually changing the configuration.
This is possible without having obtained the processors in connection, for example if
the program needs to allocate a group of processors which it knows it can reconfigure
as desired. The routines for this are:

bool RmIsLinkPossible(RmProcessor, int, RmProcessor, int);
bool RmIsNetworkPossible(RmNetwork, bool, bool);
bool RmAreProcessorsPossible(int, RmProcessor *, bool, bool);

The first routine tests a single link, and the other two test a whole network. The two
boolean arguments are the same as for RmReconfigureNetwork().

7.3.12 File I/O

To avoid unnecessary recalculation it is desirable to be able to save data to a file and
retrieve it later. For example, a program might be used once to map a complex task
force onto a network and write the resulting mapping to a file. Another program can
then use this file repeatedly to obtain the processors and execute the task force. There is
a problem with this: since the actual data structures used by the Resource Management
library are not known to the application programmer, it is the library that has to perform
the file I/O. Hence there are a number of routines to do this.

1. int RmWrite(char *filename, RmNetwork, RmTaskforce);

This routine opens the specified file and writes the network and the task force
to this file. Either of the network or the task force, but not both, can be NULL.
This routine is used by the Helios resource map compiler rmgen to produce the
binary resource map. The file is closed at the end of the operation.

2. int RmRead(char *filename, RmNetwork *, RmTaskforce *);

This routine opens the specified file for reading and extracts a network and a
task force. If the RmNetwork pointer argument is NULL, any network in the
file is skipped, otherwise the pointer is filled in. If a non-NULL pointer is used
but the file does not contain a network, the pointer will be filled in with NULL.
The same applies to the task force.

3. int RmWritefd(int fd, RmNetwork, RmTaskforce);
int RmReadfd(int fd, RmNetwork *, RmTaskforce);

These two routines are similar to the previous ones but instead of a filename
argument they take a Unix file descriptor as argument. Hence the network and

7.3. OUTLINE OF THE LIBRARY CALLS 301

task force can be made part of a file rather than a whole file. Alternatively
the network and task force can be shipped between programs through pipes or
sockets subject to protection restrictions: if an obtained processor is shipped
from one program to a second, this second program does not have access to the
processor.

4. int RmWritefdNetwork(int fd, RmNetwork);
int RmReadfdNetwork(int fd, RmNetwork *);
int RmWritefdTaskforce(int fd, RmTaskforce);
int RmReadfdTaskforce(int fd, RmTaskforce *);

These routines are similar but apply to networks only or to task forces only, not
to both networks and task forces.

5. int RmWritefdProcessor(int fd, RmProcessor);
int RmReadfdProcessor(int fd, RmProcessor *);
int RmWritefdTask(int fd, RmTask);
int RmReadfdTask(int fd, RmTask *);

Instead of affecting a whole network with all its processors, or a whole task
force with all its component tasks, these four routines apply to single processors
or single tasks.

6. int RmWritefdNetworkOnly(int fd, RmNetwork);
int RmReadfdNetworkOnly(int fd, RmNetwork *);
int RmWritefdTaskforceOnly(int fd, RmTaskforce);
int RmReadfdTaskforceOnly(int fd, RmTaskforce *);

These routines are available to perform I/O on the network or task force struc-
tures only, without automatically performing I/O on the processors contained by
the network or the tasks contained by the task force.

7.3.13 Miscellaneous

For some applications it is necessary to associate some additional data with every
object controlled by the Resource Management library. For example, given a task it
may be desirable to store the most suitable processor to date for running that task. The
library permits two additional integer-sized data values to be associated with every
object.

int RmSetProcessorPrivate(RmProcessor, int);
int RmGetProcessorPrivate(RmProcessor);
int RmSetProcessorPrivate2(RmProcessor, int);
int RmGetProcessorPrivate2(RmProcessor);
int RmSetNetworkPrivate(RmProcessor, int);
int RmGetNetworkPrivate(RmProcessor);
int RmSetNetworkPrivate2(RmProcessor, int);
int RmGetNetworkPrivate2(RmProcessor);
int RmSetTaskPrivate(RmProcessor, int);
int RmGetTaskPrivate(RmProcessor);
int RmSetTaskPrivate2(RmProcessor, int);
int RmGetTaskPrivate2(RmProcessor);
int RmSetTaskforcePrivate(RmProcessor, int);
int RmGetTaskforcePrivate(RmProcessor);

302 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

int RmSetTaskforcePrivate2(RmProcessor, int);
int RmGetTaskforcePrivate2(RmProcessor);

It is common practice to use a pointer to an application-specific data structure as
the private value, allowing arbitrary data to be associated with the object.

7.3.14 Error handling

The Resource Management library has its own error handling system. This is based
around a small number of error codes, which are simple integers like the Unix error
codes. The library has an integer variable RmErrno which is set to one of the codes
when an error occurs. The available error codes are given in the header file rmlib.h,
but include the following.

1. RmE Success. The operation was successful. This number is always 0.

2. RmE NotProcessor. An argument passed to the routine was not a valid Rm-
Processor value.

3. RmE NotNetwork. An argument was not a valid RmNetwork value.

4. RmE NotTask. An argument was not a valid RmTask value.

5. RmE NotTaskforce. An argument was not a valid RmTaskforce structure.

6. RmE WrongNetwork. A network argument was inappropriate. For example,
an attempt was made to connect a processor in one network to a processor in a
different network.

7. RmE WrongTaskforce. A task force argument was inappropriate. For exam-
ple, an attempt was made to connect a task in one task force to a task in a
different task force.

8. RmE InUse. A particular object is currently in use. For example, an attempt
might be made to release a processor while the program still has a task running
on that processor.

9. RmE Corruption. Some corruption of the library’s data structures has been
detected.

10. RmE BadArgument. One of the arguments was invalid. For example, a pro-
cessor type used in a call to RmSetProcessorType() was a number not corre-
sponding to any known processors.

11. RmE ReadOnly. An attempt was made to write to a file to which the program
does not have access.

12. RmE NoMemory. The local processor does not have enough memory to per-
form the requested operation.

13. RmE NotFound. A search failed, for example a search is made for a particular
processor attribute which did not match any of the existing attributes.

7.4. EXAMPLE PROGRAMS 303

Many of the library routines return an error code, or RmE Success to indicate
success. The value of RmE Success is defined to be zero, so that a non-zero return
code indicates an error. When an error occurs the error code is usually stored with the
object, in addition to being returned. This allows the error code to be retrieved at a
later stage. It is particularly useful when an operation on a collection of objects has
failed. For example, suppose a program attempts to execute a mapped task force but
two of the component tasks cannot be started because there is insufficient memory on
the target processor. The routine can return at most one error code, so it can be difficult
to analyse what happened after a failure. Storing the various error codes with the tasks
allows the program to search the task force after a failure and find out which tasks
could not be started and why. The routines for extracting and clearing error codes in
an object are:

int RmGetProcessorError(RmProcessor);
int RmClearProcessorError(RmProcessor);
int RmGetNetworkError(RmNetwork);
int RmClearNetworkError(RmNetwork);
int RmGetTaskError(RmTask);
int RmClearTaskError(RmTask);
int RmGetTaskforceError(RmTaskforce);
int RmClearTaskforceError(RmTaskforce);

A final routine is provided to map the error codes onto strings. This is useful when
producing diagnostics.

const char *RmMapErrorToString(int);

7.4 Example programs

This section gives two example programs to illustrate the use of the Resource Man-
agement library. Full sources of these and other examples are shipped with the Helios
system, in the directory /helios/users/guest/examples/rmlib.

The first example program is owners, which performs basically the same function
as the network owners command. It examines the current network state and displays
usage information about the network.

The second program is mappipe. This program can be used to map pipeline task
forces optimally in an arbitrary network. The program constructs a task force in the
form of a pipeline. Then it obtains a copy of the current network and searches this
network for a set of processors connected in a pipeline of the required length. Finally
it executes the task force in this pipeline of processors. This program illustrates one of
the ways in which user applications can attempt to solve the mapping problem.

7.5 Owners

In a multi-user network the various processors can be owned by various different users
at any one time. In addition some of the processors may be in the free pool, and others
may be reserved for use by the system. The owners program is a cut-down version of
the network owners command. Its operation is defined as follows.

304 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

1. A data structure is needed to hold details of the various users, including the user
id and the number of processors currently owned. There can be any number of
users so these details are best held in a linked list. The following data structure
is used:

typedef struct OwnerDetails {
Node Node;
int Owner;
int Count;

} OwnerDetails;

A static variable OwnerList is a linked list holding all the individual user list
nodes. Helios supplies various useful linked list routines automatically, and
these are defined in the header file queue.h.

2. A copy of the current network state is obtained from the Network server, so that
this copy can be analysed.

3. A routine is applied to every processor in the network, to update the owners list.

4. The results in the owner list are displayed.

This program can be compiled with the command line shown below. The other
programs in this section can be compiled in much the same way.

c -oowners -lRm owners.c

The first part of the program would look something like this:

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <queue.h>
#include <rmlib.h>

typedef struct OwnerDetails {
Node Node;
int Owner;
int Count;

} OwnerDetails;

static List OwnerList;
static int NumberProcessors;
static int NetworkWalk(RmProcessor Processor, ...);
static WORD ShowOwners(Node *node, WORD arg);
static WORD MatchOwner(Node *node, WORD arg);

int main(void)
{ RmNetwork Network;

InitList(&(OwnerList));
/* Get details of the current network into local memory */

7.5. OWNERS 305

Network = RmGetNetwork();

NumberProcessors = RmCountProcessors(Network);
/* Walk down the current network examining every processor */
/* Build the ownership list as the program goes along. */

(void) RmApplyProcessors(Network, &NetworkWalk);
/* Output the results by walking down the owner list. */

(void) WalkList(&OwnerList, &ShowOwners);
return(EXIT_SUCCESS);

}

This part is rather straightforward. A number of C header files are needed to avoid
compilation warnings or errors. The data structure used to hold the results is defined,
and two static variables are declared. The first variable is a linked list to hold the vari-
ous user nodes. The second variable is a count of all the processors in the network so
that the final display of results can print out percentages as well as absolute numbers.
Next there are three function declarations. The first is used as an argument to RmAp-
plyProcessors(), and the next two are used as arguments to the Kernel’s list walking
routines.

Routine main() does very little. The linked list has to be initialised before it can
be used, or memory corruption will result. The Resource Management library is used
to obtain a copy of the current network state. This is then examined using two more
RmLib calls, and finally the results are displayed.

The routine NetworkWalk() is applied to every processor in the network. It ex-
tracts the current owner of the processor, which might be a real user, the network’s free
pool, or the system itself. Then it examines the list of currently known owners using
one of the Kernel’s list walking routines. If the program has already encountered a pro-
cessor owned by the same user, there will be an existing OwnerDetails structure that
can be updated. Otherwise a new structure must be obtained dynamically, initialised,
and added to the list of currently known users.

/* This routine is called for every processor in the network. */
static int NetworkWalk(RmProcessor Processor, ...)
{ int Owner;

OwnerDetails *details;

/* Get the current processor owner, and see if this owner */
/* is already known. */

Owner = RmGetProcessorOwner(Processor);
details = (OwnerDetails *)

SearchList(&OwnerList, &MatchOwner, Owner);

/* If the user is already known, the search will have */
/* found an OwnerDetails structure that can be updated. */
/* Else a new structure must be allocated and initialised. */

if (details != (OwnerDetails *) NULL)
details->Count++;
else
{ details = (OwnerDetails *) malloc(sizeof(OwnerDetails));

306 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

details->Owner = Owner;
details->Count = 1;
AddTail(&(OwnerList), &(details->Node));

}

return(0);
}

Given an owner identifier returned by RmGetProcessorOwner() it is necessary to
check whether or not this owner has been encountered already. If so, there will be a list
node with a matching identifier, so it is necessary to search the list of known owners
for this identifier. The Kernel’s SearchList() routine can be used for this.

/* Match a processor’s owner with an entry in the current */
/* list of owners. */

static WORD MatchOwner(Node *node, WORD arg)
{ OwnerDetails *details = (OwnerDetails *) node;

if (details->Owner == arg)
return(1);
else
return(0);

}

Finally, once every processor in the network has been processed, it is necessary to
output the results. This is achieved by walking down the list of owners that have been
encountered and printing out a suitable line. The information held in the OwnerDe-
tails data structure is an integer user identifier, but the Resource Management library
contains a routine to translate this to a text string. The routine below displays this
string, a count of the number of owned processors which is assumed to be less than a
thousand, and a percentage of the network. Note that this percentage is approximate
as no attempt is made to cope with rounding errors, and hence the total number of
processors may not add up to 100 percent.

/* Print out the results of the search. */
static WORD ShowOwners(Node *node, WORD arg)
{ OwnerDetails *details = (OwnerDetails *) node;

printf("%-10s : %3d processors, %2d%% of the network\n",
RmWhoIs(details->Owner), details->Count,
(details->Count * 100) / NumberProcessors);

return(0);
}

The network command contains essentially this code to handle the owners option. It is
slightly more advanced in that it treats I/O processors and router processors separately,
but that feature could be added fairly easily to the program.

7.6 Mappipe

One of the most important problems in parallel programming is the mapping problem.
Given a task force (a collection of tasks or programs that communicate with each

7.6. MAPPIPE 307

other) and given a network or collection of processors that are connected in some
arbitrary topology, work out which tasks to put on to which processors. Usually it is
necessary to match the channel connections between the component tasks as closely
as possible with the link connections between the processors. For example, if a task A
communicates with three other tasks, the task force should be mapped so that the three
other tasks are on processors connected directly to the processor running task A.

For the general case, solving the mapping problem is very difficult. Specifically,
the problem is NP-complete: adding one more task to the task force, or one more
processor to the network, could double the time taken to perform the mapping. This
means that the time taken to do a mapping becomes very long for all but trivial prob-
lems, and it is necessary to use heuristics in order to get a mapping that is reasonably
efficient, but not optimal, within a reasonable time.

00 01 02 03

04 05 06 07

08 09 10 11

� � � �

� � � �

� � � �

Head W1 W2 W3

W7 W6 W5 W4

W8 W9 W10 W11

Figure 7.11: Mapping a pipeline of tasks

Under Helios, solving the mapping problem is mostly a user problem. The Task
Force Manager does have a simple mapping algorithm built-in, and hence it can run
user task forces without any extra effort on the user’s part. However, the Task Force
Manager makes no guarantees about performance and it is possible that the default
mapping is not optimal for the application. One of the jobs of the Resource Man-
agement library is to permit users to produce their own mapping algorithms, typically
tuned specifically to one task force topology. The mappipe program gives an example
of how this could be done. It can be used for task forces in the form of a pipeline,
which have a special program at the start of the pipeline and then a number of work-
ers. It is necessary to find a set of processors also connected in a pipeline. This is
illustrated in Figure 7.11. The diagram illustrates a pipeline of twelve tasks, with one
program as the head and eleven workers. This pipeline is mapped onto a network of 12
processors in an optimal fashion, because there is a separate link to handle the traffic
for each channel. A mapping such as this could be achieved by running mappipe with
the argument 12.

The initial part of mappipe is shown below.

308 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <queue.h>
#include <rmlib.h>

static RmTaskforce build_taskforce(int);
static RmNetwork obtain_network(RmTaskforce);
static int execute_taskforce(RmNetwork, RmTaskforce);

int main(int argc, char **argv)
{ RmTaskforce pipeline;

RmNetwork processors;
int number_tasks;

number_tasks = atoi(argv[1]);

pipeline = build_taskforce(number_tasks);

processors = obtain_network(pipeline);

return(execute_taskforce(processors, pipeline));
}

Again there is the usual set of header files which must be included, followed by a
number of forward declarations. The real work is done in three separate routines. The
first constructs an RmTaskforce structure representing the application to be executed.
The second does most of the work, examining the network for a set of processors
meeting the requirements, obtaining these processors, and specifying which parts of
the application should run where. The final routine simply executes the task force and
waits for it to finish. Of course a full program should check for failures such as being
unable to map the pipeline onto the current network.

The code that constructs the task force is shown below.

static RmTaskforce build_taskforce(int number_tasks)
{ RmTaskforce result = RmNewTaskforce();

RmTask previous, current;
int i;

RmSetTaskforceId(result, "pipeline");

previous = RmNewTask();
RmSetTaskId(previous, "start");
RmSetTaskCode(previous, "/helios/bin/ps");
RmAddTaskArgument(previous, 1, "all");
RmAddtailTask(result, previous);

for (i = 1; i < number_tasks; i++)
{ char buf[16];

current = RmNewTask();
sprintf(buf, "worker%d", i);

7.6. MAPPIPE 309

RmSetTaskId(current, buf);
RmSetTaskCode(current, "/helios/bin/cat");
RmAddtailTask(result, current);
RmMakeChannel(previous, 1, current, 0);
previous = current;

}
return(result);

}

The component tasks have to be held in an RmTaskforce structure which is al-
located and given an arbitrary name. Then an RmTask structure is allocated for the
head of the pipeline, and this is added to the task force. In this example the head of the
pipeline is the program ps, and it is given a single argument all. Of course in practice
the head of the pipeline would be a user program, probably passed as an extra argu-
ment to the mappipe program. Finally the various workers are built and added to the
pipeline. These workers currently consist of the program cat but again a user program
would normally be substituted here. For every worker the standard input stream is
connected to the standard output of the previous worker.

Building the task force pipeline is relatively easy. Finding a matching pipeline of
processors is not so easy. The basic algorithm is as follows:

1. Work out how big the pipeline of processors should be.

2. Build an RmNetwork data structure to hold the obtained network, plus an addi-
tional vector.

3. Obtain a copy of the current state of the network from the Network server. With-
out this information it is not possible to perform a sensible mapping because the
program has no idea about the network topology, which processor is currently
free and so on.

4. Check that the network is big enough to run the pipeline. Attempting to map 65
programs in a 64-processor network is doomed to failure, but it might take the
mapping program a long time to work this out.

5. Find a possible starting place for the pipeline. This must be a processor which
has not been tried before and which must meet certain requirements, for example
it must be a T800 with at least one megabyte of memory.

6. An attempt is made to obtain the starting place. Note that by the time the search
reaches this processor it may not be possible to obtain the processor anymore
because another user may have claimed it. The copy of the network obtained
earlier was a snap-shot which may become out of date at any time.

7. A vector is used to hold the pipeline of processors as it is being built. The starting
place is put at the start of the pipeline. Then a call is made to add_to_pipeline()
which looks for processors connected to the current starting place and adds them
to the pipeline. This routine is recursive and does the main job of the network
search.

310 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

8. If add_to_pipeline() succeeds, the whole pipeline has been obtained. It is now
possible to map the task force on to the pipeline of processors, so that it can be
executed.

9. If the pipeline cannot be built from this starting place, it is necessary to try again
with a different processor, releasing any resources.

typedef struct {
RmProcessor Template;
RmProcessor Obtained;

} ProcessorVector;

static bool add_to_pipeline(RmNetwork, ProcessorVector *,
int, int);

static int find_starting_place(RmProcessor, ...);
static void map_taskforce(ProcessorVector *, RmTaskforce);

static RmNetwork obtain_network(RmTaskforce taskforce)
{ RmNetwork result;

ProcessorVector *vector;
int number_processors;
RmNetwork whole_network;
RmProcessor starting_place;

number_processors = RmCountTasks(taskforce);
vector = Malloc(number_processors * sizeof(ProcessorVector));

result = RmNewNetwork();
RmSetNetworkId(result, "Obtained");

whole_network = RmGetNetwork();

if (RmCountProcessors(whole_network) < number_processors)
{ fputs("mappipe: not enough processors in the network.\n",

stderr);
exit(EXIT_FAILURE);

}

for (starting_place = (RmProcessor)
RmSearchProcessors(whole_network, &find_starting_place);

starting_place != (RmProcessor) NULL;
starting_place = (RmProcessor)

RmSearchProcessors(whole_network, &find_starting_place))
{ vector[0].Template = starting_place;

vector[0].Obtained = RmObtainProcessor(starting_place);
if (vector[0].Obtained == (RmProcessor) NULL) continue;
RmAddtailProcessor(result, vector[0].Obtained);

/* If this recursive call succeeds, the whole */
/* pipeline has been mapped */

if (add_to_pipeline(result, vector, 1, number_processors))
{ map_taskforce(vector, taskforce);

7.6. MAPPIPE 311

return(result);
}

/* Failure, clean up and try another starting place */
RmRemoveProcessor(vector[0].Obtained);
RmReleaseProcessor(vector[0].Obtained);
RmFreeProcessor(vector[0].Obtained);

}

return((RmNetwork) NULL);
}

One of the problems in a mapping program is finding somewhere to start. This
routine is applied to every processor in the network, every time around the main loop,
to check whether or not the processor is suitable. Several requirements must be met.

1. The processor must not have been used as a starting place before. The private
field functions are used to keep track of this.

2. In this example a starting processor should be a T800 with at least one megabyte
of memory. The exact requirements are specific to the application.

3. The processor must be an ordinary Helios processor, not a native processor or
an I/O processor.

4. The processor should be in the free pool at the moment. In fact this restriction is
too severe because it does not allow for processors already in the user’s domain,
but that is a minor complication.

If the current processor is a suitable starting place, its private field is updated to
reflect this, to ensure that it will not be used as a starting place at some future time.

static int find_starting_place(RmProcessor processor, ...)
{

if ((RmGetProcessorPrivate(processor) != 0) ||
(RmGetProcessorType(processor) != RmT_T800) ||
(RmGetProcessorMemory(processor) < 0x100000) ||
((RmGetProcessorPurpose(processor) & RmP_Mask)

!= RmP_Helios) ||
(RmGetProcessorOwner(processor) != RmO_FreePool))

return(0);

RmSetProcessorPrivate(processor, 1);
return((int) processor);

}

The main search routine of the mappipe program is add to pipeline(). This rou-
tine is called when there are one more processors already in the pipeline and it is
necessary to find the next one.

312 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

1. If the end of the pipeline has been reached, the search has completed success-
fully and the application can be run.

2. Otherwise check the various neighbours of the processor currently at the end of
the vector.

3. If a link is not connected or goes to a processor in another network ignore it.

4. If the neighbour at the end of a link does not meet the requirements of the various
workers, ignore it.

5. If the neighbour is already in the pipeline ignore it, because it is undesirable to
run two workers on the same processor.

6. If the neighbour cannot be obtained, for example because another user has ob-
tained it while the search has been going on, ignore it.

7. Add the processor to the end of the pipeline and call this routine recursively, to
find the next processor in the pipeline. If the rest of the search succeeds, the
whole search has succeeded. Otherwise it is necessary to undo some work, try
the next neighbour if any, and finally report failure.

Clearly this search mechanism is not very useful except for the pipelines. It could be
extended to rings by adding a test at the end of the pipeline, to ensure that the final
processor is adjacent to the first one. Grids, farms, and other topologies would need
very different search algorithms.

static bool add_to_pipeline(RmNetwork result,
ProcessorVector *vector, int position, int max)

{ RmProcessor previous = vector[position - 1].Template;
int number_links = RmCountLinks(previous);
int i, j, destlink;
RmProcessor neighbour;

if (position == max) return(TRUE);

for (i = 0; i < number_links; i++)
{ neighbour = RmFollowLink(previous, i, &destlink);

if ((neighbour == RmM_NoProcessor) ||
(neighbour == RmM_ExternalProcessor))

continue;

if ((RmGetProcessorType(neighbour) != RmT_T800) ||
(RmGetProcessorMemory(neighbour) < 0x100000) ||
((RmGetProcessorPurpose(neighbour) & RmP_Mask)

!= RmP_Helios) ||
(RmGetProcessorOwner(neighbour) != RmO_FreePool))

continue;

for (j = 0; j < position; j++)
if (neighbour == vector[j].Template)

7.6. MAPPIPE 313

goto skip;

vector[position].Template = neighbour;
vector[position].Obtained = RmObtainProcessor(neighbour);
if (vector[position].Obtained == (RmProcessor) NULL)
continue;

RmAddtailProcessor(result, vector[position].Obtained);
if (add_to_pipeline(result, vector, position + 1, max))
return(TRUE);

RmRemoveProcessor(vector[position].Obtained);
RmReleaseProcessor(vector[position].Obtained);
RmFreeProcessor(vector[position].Obtained);

skip:
continue;

}

return(FALSE);
}

Once all the required processors have been obtained it is possible to map the task
force onto the processors. The processors have been put into a vector, and the tasks
have been placed in the right order inside the task force. Hence the mapping is rela-
tively straightforward, and simply involves walking down the component tasks within
the task force.

static void map_taskforce(ProcessorVector *vector,
RmTaskforce taskforce)

{ RmTask task = RmFirstTask(taskforce);
int i = 0;

for (; task != (RmTask) NULL; task = RmNextTask(task))
{ printf("Mapped task %s onto processor %s\n", RmGetTaskId(task),

RmGetProcessorId(vector[i++].Obtained));
RmMapTask(vector[i].Obtained, task);

}
}

Finally it is necessary to execute the task force. The most important conditions
have been met: a suitable processor has been obtained from the system for every com-
ponent task; the processors and the tasks have been collected together into the right
data structures; the tasks have all been mapped onto processors. Hence the description
of the application and processors can now be passed on to the Task Force Manager, so
that the application can be run.

static int execute_taskforce(RmNetwork processors,
RmTaskforce taskforce)

{ RmTaskforce running;

running = RmExecuteTaskforce(processors, taskforce, Null(char *));
if (running == (RmTaskforce) NULL)

314 CHAPTER 7. THE RESOURCE MANAGEMENT LIBRARY

fprintf(stderr, "mappipe: failed to run taskforce, fault %s\n",
RmMapErrorToString(RmErrno));

else
RmWaitforTaskforce(running);

}

There are many areas where this program could be improved. At present it performs
an exhaustive search of the network, even if there is no way for the task force to be
executed. A useful initial test would be to see whether or not there are enough free
processors in the network matching the application’s requirements, simply by checking
every processor once and removing processors that do not match the requirements.
Removing these processors might result in various disconnected networks. Hence it
could be worthwhile to calculate one or more minimum spanning trees to find out
the largest collection of processors that are connected. Currently if a search fails to
obtain a processor once it may try to obtain the same processor again later. Marking
such processors using the private fields may produce a significant increase in speed.
However, such improvements would result in a program too complex to use as an
example here.

Chapter 8

The I/O server

8.1 Introduction

At the time of writing, nearly all Helios networks consist of one or more processors
which are plugged into some existing host computer, such as a Unix workstation, an
IBM PC or compatible equipment. The processors are usually equipped with little
or no input/output hardware of their own. Instead most I/O must go through the host
computer. To boot up the network, a program is run on this host computer which resets
the network, sends a Nucleus down a link, and performs I/O for all processors in the
network. Under Helios this program is known as the I/O server.

The Helios I/O server runs on many different computers, ranging from 8086 based
PC clones to Unix workstations equipped with fast hard discs, ethernet connections,
high resolution displays running the X window system, and so on. Approximately 80
to 90 percent of the I/O server source code is the same for all computers, the remainder
being machine specific. In particular every attempt has been made to keep the user
interface similar on all machines, while still making full use of the available hardware
facilities. This chapter describes in detail the PC and Sun versions of the I/O server,
but most of it is also applicable to other versions.

It begins with a general description of I/O in computers, ranging from mainframes
to personal computers. This is followed by details of typical Transputer hardware, and
an outline of the Helios client server model.

There is a general description of the I/O server, including details of the command
line options, the host.con configuration file, and the debugging facilities. The I/O
server is a very flexible piece of software, and this is to give users some idea of what
can be achieved.

The I/O server has an inbuilt Transputer debugger, which allows experienced users
to perform post-mortem analysis when a Transputer crashes. This debugger is aimed
primarily at experienced users and in particular at Helios system programmers, but
its facilities are available to all users who want them. There is a description of the
debugger, its various commands and their uses.

There are detailed descriptions of the PC and Sun I/O servers respectively. Other
versions of the I/O server should be supplied with their own documentation, giving
any machine specific details. Readers should be aware that some parts of this docu-
mentation are quite complicated, usually because the underlying hardware itself can

315

316 CHAPTER 8. THE I/O SERVER

be complicated, but most users will not need to understand how the hardware works in
great detail.

Appendix A gives a short summary of the various debugging options of the I/O
server, and a list of the options of the configuration file which can be produced by the
I/O server.

8.2 The role of the I/O server

This section describes the role of the I/O server in a Helios network. Firstly, how
input/output is handled in more traditional machines, and what hardware is actually
available. Then, a typical Helios network is described. There is also an explanation of
the Helios client-server model, which is fundamental to your understanding of the I/O
server.

8.3 I/O in more conventional machines

Before the 1980s, the dominant types of computers were mainframes and minis. Typi-
cally these were powerful single-processor machines, which were equipped with large,
fast, hard discs, tape systems, and perhaps a machine for punched cards.

Many mainframes were used primarily for batch jobs, with little or no user inter-
action. Others were equipped with dumb terminals. Most of the input and output was
actually handled by front end processors, to avoid overloading the central processor
with interrupts for every key. These would buffer whole lines from the terminals be-
fore reactivating the user’s session in the central processor. Ordinary users had very
little control over the hardware. Figure 8.1 illustrates this sort of machine.

Mainframe

Front
end

processor

Front
end

processor

��
�
��

�
��

�
��

�
�� ��

Terminal lines

� �

Cooling

�

Figure 8.1 A mainframe computer

The first personal computer was launched in 1975. There was no screen, no key-
board, no disc for permanent storage, and certainly no programming language or oper-
ating system. However, it could sit comfortably on a desk and did not require a special
computer room. It was of little practical use, unless you were a computer enthusiast.

8.3. I/O IN MORE CONVENTIONAL MACHINES 317

During the next few years more powerful processors were developed. In particular,
Intel1 released the 8086 in 1978 and Motorola 2 released the 68000 in 1979. These
16-bit processors were significantly more powerful than the previous 8-bit processors,
and they are used as the basis for present day personal computers.

Some of the personal computers now available are the IBM PC, AT and compat-
ibles, the Commodore Amiga 3, the Apple Macintosh 4 and the Atari 5 ST. Although
they each have different operating systems, all the machines share certain characteris-
tics. These characteristics must be provided for in the design of the Helios I/O server.

1. There is an initial ROM bootstrap to initialise the main processor and various
pieces of hardware.

2. The machine is equipped with at least one floppy disc drive and there is the
option of a hard disc.

3. Following the ROM bootstrap an operating system is read from the disc (either
floppy disc or hard disc).

4. The machine is equipped with its own display, capable of using at least 25 rows
by 80 columns, and in some cases providing a graphic mouse driver user inter-
face.

5. Also included in the package is a keyboard, one or more serial ports, one or
more parallel printer ports, and often a mouse.

6. There are usually a number of expansion slots, to allow users to plug in extra
hardware.

All the hardware is managed either by the operating system or by additional pro-
grams such as device drivers, which can be loaded on top of the operating system.
In particular, when extra I/O hardware is plugged into an expansion slot, another de-
vice driver is added to the system configuration. However, the operating system does
not always provide access to all the facilities of the I/O hardware or allow maximum
throughput. On most machines, users’ applications can take over control of the I/O
hardware from the operating system and drive the hardware directly, not necessarily
by ‘legal’ means. A typical personal computer is illustrated in Figure 8.2.

Present day personal computers are now more powerful than early mainframes.
There is also a third type of computer, the workstation, and this has a processing capa-
bility less than a mainframe. Typical workstations run some dialect of the Unix oper-
ating system. The standard hardware of a workstation includes a hard disc, keyboard,
ethernet connection, two serial ports, a mouse, and often a high resolution display. The
display usually runs the X window system or another windowing system. A worksta-
tion still boots from ROM and then reads operating system code from disc or from the
ethernet. All I/O is handled by the operating system, and it is very difficult to access
hardware directly in a user application. A typical workstation is shown in Figure 8.3.

1Registered trademark of Intel Corporation
2Trademark of Motorola, Inc.
3Registered trademark of Commodore-Amiga, Inc.
4Registered trademarks of Apple Computers, Inc.
5Trademark of Atari Corporation

318 CHAPTER 8. THE I/O SERVER

�

�

�

�

centronics
rs232

Figure 8.2 A personal computer

�

�

�

�

� �

Workstation
Ether

�

Figure 8.3 A workstation

Helios is not machine dependent. The I/O server must therefore be able to deal
with the operating systems and I/O hardware of many different types of computer. For
this reason, it must be extremely adaptable. The I/O server can be configured in many
different ways, depending on the user’s particular configuration.

8.3.1 Transputer hardware

The Inmos T414 Transputer was launched in September 1985, followed by the T800
in 1987. These could have been used as the basis for a new personal computer or
workstation. Instead, Inmos produced ‘evaluation boards’ like the B004, designed to
plug into existing computers. These existing computers are known as host computers
or I/O processors.

The B004 is equipped with a single Transputer, a megabyte of memory, and a link
adapter which allows the PC host to interact with the Transputer over a Transputer link.
The board has no I/O facilities of its own: it relies on the host. This affects the I/O
performance, since the link adapter is slow. If the link I/O code is tuned, code transfer
rates of 200 Kbytes per second can be achieved, but this is slower than communication
between Transputers. Designing Transputer boards like the B004 is easy, because of
the small number of components involved. Many manufacturers have produced such
boards for IBM PCs and compatibles, Sun workstations, other Unix workstations, the
Commodore Amiga, and other popular machines. Some boards have more memory
than others, some have special hardware instead of a standard link adapter to achieve
greater transfer rates, and some cost more than others. Essentially there is very little
difference. A Transputer network based on such a board is shown in Figure 8.4. The
I/O processor shown in Figure 8.4 is in a PC, but it could be in any of the machines

8.3. I/O IN MORE CONVENTIONAL MACHINES 319

mentioned earlier.
The I/O processor is connected by a link adapter to the root Transputer identified

as 00. Some boards contain more than one Transputer. Others, such as the Inmos
B008 board allow Transputer modules (trams) to be plugged in. Larger networks have
separate external racks of processors, such as the Parsytec SuperCluster or Telmat
T.Node.

00

01

02

03

04

05

06

07

�

�

�

�

Figure 8.4 Simple network

00

01

02

03

04

05

06

07

IO

Figure 8.5 A simple network

The I/O server runs on the I/O processor and provides I/O services for the net-
work processors in the system. Comparing input/output through an I/O server with
input/output on a mainframe or personal computer is useful. To some extent the I/O
processor may be thought of as a front end processor for a more powerful machine,
which in this case is a processor network rather than a mainframe. The hardware fa-
cilities provided by the I/O processor are the same as those of a personal computer
or workstation, including serial lines and mice. However, user applications run on
a completely different processor, so they have absolutely no way to access the host
computer’s I/O hardware directly. Instead the I/O server must supply sufficient flexi-
bility to meet all possible application requirements. With a device like a serial line this
means supporting modem ring signals and various baud rates, not just simple reading
and writing of data.

320 CHAPTER 8. THE I/O SERVER

To avoid the bottleneck of the single link adapter there is a trend towards moving
I/O facilities into the processor network. Transputer graphics modules can provide
high resolution displays and the T800 and T425 ‘block move’ instructions allow fast
graphics operations. Disc modules with SCSI interfaces allow hard discs and tape
units to be plugged into the network. Ethernet modules enable the processor network
to become part of a local area network (see Figure 8.6).

00

01

02

03

04

05

Ethernet

�

�

�

�

�

�

�

�

�

Figure 8.6 A more complicated network

It is important to remember that Helios is a general purpose operating system, and
is not Transputer specific. At the time of writing Helios already runs on the Acorn
ARM and on the Motorola 68020, as well as Transputers. From now on the term
‘processor’ will be used to refer to any processor in a Helios network running Helios,
not necessarily a Transputer. The I/O processor, or processors, are also part of the
Helios network, but run the I/O server rather than Helios.

8.3.2 The role of the I/O server

The exact role of the I/O server can now be explained. The I/O server runs on the
host computer or I/O processor, and makes it behave just like any other processor
in the network, although it only has one link. The I/O processor has a name like
any other processor, which is usually /Cluster/IO. At the lowest level, it accepts and
generates the protocols on the link (a task carried out by link guardians within the
Helios Nucleus). At a higher level, it accepts and responds to search requests from
other processors in the system. On the other processors, this task is carried out by
the link IOC controllers of the Processor Manager. In addition to the functions of
the link IOC controller, the I/O server accepts a number of special messages, such as
IOdebug() requests. 6

At a higher level still, the I/O processor (/Cluster/IO) contains a number of dif-
ferent servers: file servers, a window server, an error logging server, and so on. These
servers behave like any other server in the Helios network, accepting messages accord-
ing to the General Server Protocol and sending back suitable replies. Apart from the

6IOdebug() is a low-level debugging routine which works by sending messages directly to the I/O
server. It works at a much lower level than C library printf() routines, and hence is more likely to work
in spite of such problems as memory corruption.

8.3. I/O IN MORE CONVENTIONAL MACHINES 321

response time, clients cannot distinguish between a service provided by the I/O server
and a service inside the rest of the network.

The I/O server has one other useful function: it performs the initial bootstrap of
the root processor. Once the root processor has been booted the I/O server becomes
a passive object, responding only to requests from the rest of the network rather than
generating messages. All ‘intelligent’ programs, shells, utilities and user applications
run inside the network and not on the I/O processor.

The exact services provided by the I/O server vary from machine to machine. The
following list is for the PC version of the I/O server, but it is quite typical.

1. /helios. This is a file server containing the main Helios system files. This server
usually contains the subdirectories bin for the default set of utilities, lib for the
system’s internal files, etc for configuration files, and include for C header files.
All Helios networks contain at least one of these servers.

2. /logger. This is an error logging service. Depending on the configuration of the
I/O server, data sent to the /logger device will be displayed on the PC screen or
written to a file for later inspection (or both).

3. /window. This is a windowing server supporting multiple text windows on a
standard 25 by 80 character display, with a hot key switching mechanism to
move from one window to the next. These windows are usually referred to as
pseudo-windows or server windows.

4. /clock. The I/O processor is usually equipped with a battery-backed real time
clock (unlike the other processors in the network). This server allows Helios
clients to access the real time clock.

5. /pc. This provides a limited communication facility between a program running
on the PC and programs running in the Helios network.

6. /centronics. This allows access to the PC’s parallel ports.

7. /rs232. This allows access to the PC’s serial ports.

8. /printers. This allows access to printers generally (parallel and serial printers).

9. /mouse. This is an interface to a mouse device driver on the PC side, allowing
most PC mice to be used.

10. /keyboard. This is a raw keyboard device. Reading data from a window server
gives standard ASCII input, with the window server dealing with input process-
ing, such as auto repeat. The raw keyboard device generates events whenever a
key is pressed or released. For example, when reading from a window server,
pressing and releasing the space bar generates a single character 0x20. Hold-
ing the space bar a long time would generate a number of 0x20 characters, as
the auto repeat starts up. With the raw keyboard device, pressing the space bar
generates a single event, scancode 0x39 down. Holding the space bar has no
effect, but releasing it again generates the event scancode 0x39 up.

11. /a. A file server to provide access to the floppy disc a:.

322 CHAPTER 8. THE I/O SERVER

12. /b. A file server to provide access to the floppy disc b:.

13. /c. A file server for the c: partition of the hard disc.

14. /d. A file server for the d: partition.

15. /rawdisk. A low-level file server which allows Helios applications (usually the
Helios file server) to read and write disc blocks directly.

Comprehensive details of the servers provided by specific implementations of the
I/O server can be found in the PC I/O server section, in the Sun I/O server section, or
in the release notes for any other version of the I/O server.

8.4 The I/O server options

With most implementations of the Helios I/O server the I/O server is run by executing
the command server on the host computer. The server command may be the I/O server
itself, or it may be a shell script or other program that causes the I/O server to be run.
The purpose of this section is to describe the common features of most versions of the
I/O server.

1. The server command line options.

2. The host.con configuration file.

3. The debugging facilities.

There are reference summaries of these features in appendix A.

8.4.1 The command line

The command line options for the server command are:

server [-a] [-<debugflags>] [-d] [-e] [-C config file]
[-c config file] [+<options>] [nucleus]

The -a option

The -a option enables all debugging options in the I/O server. This is not necessarily a
good idea, since there are rather a lot of them.

8.4.2 Debug options

Individual debugging options can be enabled by giving a simple list, using one letter
per debugging option. For example, the command

server -biq

enables the bootstrap, the initialisation, and termination options. Three of the debug-
ging options: delete, communications, and errors, which use the letters d, c, and e
respectively, cannot be enabled by themselves because the letters clash with the other
command line arguments. For example, the command:

8.4. THE I/O SERVER OPTIONS 323

server -d

runs the I/O server in its built-in debugger mode, rather than in normal mode with the
delete option enabled.

The -d option

The -d option is used to run the built-in debugger rather than the normal I/O server.

The -e option

An -e argument can be used to enable a link connected to a network already running
Helios, rather than boot up a processor. It is similar to the enable link option in the
host.con configuration file.

The -c or -C option

The -c or -C options can be used to specify a particular configuration file. The config-
uration file gives Helios details about the network and host computer. By default the
I/O server reads the configuration file host.con from the current directory. The -c op-
tion is particularly useful when combined with shell aliases. The following are typical
examples:

alias helios1 "/usr/helios/server -c/users/root/helios/host.1"
alias helios2 "/usr/helios/server -C /users/root/helios/host.2"

These lines define two ways of starting up Helios from anywhere in the host filing
system, using two different configuration files host.1 and host.2. One line might start
up Helios with the X window system server running in the processor network and the
other might use pseudo windows running in the I/O processor.

Configuration options

The host.con file is one of the most important configuration files in Helios, and tends
to be edited frequently when a user is setting up a working environment. To ease this
process slightly the command line can be used to add host.con entries. For example,
the command line:

server +Server_windows

runs the I/O server as if the flag Server windows has been added to the host.con file.
If the option was in the configuration file anyway then the command line addition has
no effect.

The command line can also be used to override options in the configuration file. If
the host.con file had the following line:

Helios_directory = c:\helios

and the command line was

server +Helios_directory=c:\helios.new

then the command line option takes precedence and the directory c:\helios.new
will be used.

324 CHAPTER 8. THE I/O SERVER

The Nucleus option

The final option specifies the Nucleus to be used when booting up the root processor,
overriding the default entry in the host.con file. Hence the following two commands
are equivalent.

server /usr/helios/lib/nucleus.dbg
server +system_image=/usr/helios/lib/nucleus.dbg

This option is used mainly by system programmers who can produce their own ver-
sions of the Helios Nucleus, and is of little or no interest to ordinary users.

8.4.3 The host.con file

After processing the command line arguments the I/O server reads in a configuration
file. Most of the I/O server’s flexibility comes from this configuration file. By default
the file host.con in the current directory is used, but an alternative can be specified on
the command line using the -c or -C option. The configuration file is an ordinary text
file containing flags and variables, one per line. Typical lines might look like this:

This is a comment
Server_windows
Helios_directory = /usr/helios

As with most Helios configuration files, comment lines have a hash character
in the first column followed by arbitrary text. The second line enables the flag
Server windows, and the third line gives the variable Helios directory the value
/usr/helios. The exact meanings of most of the various flags and variables are given
below. A summary is given in Appendix A.

The understood format

The I/O server reads the configuration file according to the following rules:

1. Each option must be on a single line.

2. All white space on the line is ignored.

3. The names of flags and variables are not case sensitive, so all the following lines
are equivalent.

root_processor = /tom
RoOt_ProcessoR =/tom
root_PROCESSOR= /tom

4. The values of variables may be case sensitive, depending on the host computer’s
operating system.

For example, consider the following:

helios_directory = /usr/helios
helios_directory = /usr/Helios

8.4. THE I/O SERVER OPTIONS 325

These lines would be typical of a configuration file for a Unix version of the I/O
server. Since the Unix filing system is case sensitive, the two values are very
different. On the other hand, consider the equivalent under MS-DOS.

helios_directory = c:\helios
helios_directory = c:\Helios

Since the MS-DOS filing system is not case sensitive, the two lines are equiva-
lent.

5. Numerical variables may be given in decimal, hexadecimal or octal. The fol-
lowing three lines are equivalent.

transputer_memory = 1048576
transputer_memory = 0x10000
transputer_memory = 04000000

Some of the variables in the configuration file refer to system files that tend to be
relative to the Helios directory. For example, the system image option gives the file
containing the Nucleus to be booted into the root processor. Usually this is the file
lib/nucleus inside the Helios directory. The tilde character (˜) can be used to give a
filename that is relative to the Helios directory.

helios_directory = /usr/helios
system_image = ˜/lib/nucleus

or under MS-DOS,

helios_directory = c:\helios
system_image = ˜\lib\nucleus

Use of the tilde character is not compulsory, so the last line could also read

system_image = c:\helios\lib\nucleus

Machine details

The configuration file must have two entries: host and box. The first identifies the
particular host computer or I/O processor, for example:

host = PC
host = Sun4

Since the I/O server was compiled for a particular machine, the entry is redundant
in most, but not all versions. It must always be present, to provide a partial guarantee
that the configuration file is sensible.

The box option identifies the particular board or box plugged into the I/O proces-
sor. Some versions of the I/O server only support a single board. For example, the
Sun386 version of the I/O server only supports a B008 or compatible board accessed
through the KPar device driver. Other versions of the I/O server can support various
different boards in one binary file. For example, the PC server can support the B004
board and compatibles, the B008 board with DMA, the Meiko MK026 interface, and
the Cesius board. Typical host.con entries would look like this.

box = B008
box = MCP10000

326 CHAPTER 8. THE I/O SERVER

The Helios directory

In nearly all installations the I/O server must support a /helios file server. This has
the subdirectories bin, lib, etc, include, and so on. This is very useful. Consider
the C compiler, which must locate the standard header files such as stdio.h A search
path for these header files can be provided on the command line, but the compiler can
default to /helios/include. Every Helios installation is guaranteed to have this directory
somewhere in the network, irrespective of whether the host computer is a PC, a Sun,
or an alternative machine, so /helios/include is a sensible default.

The value of the helios directory should be a directory name for the local machine.
For example, a typical entry in a Unix version would be:

helios_directory = /usr/helios

whereas under MS-DOS the entry would be

helios_directory = c:\helios

Certain entries in the configuration file may refer to files relative to the helios directory
and the tilde character being used to indicate this. In such a case, the correct directory
separator character must be used. The following two lines show Unix and MS-DOS
versions.

system_image = ˜/lib/nucleus
system_image = ˜\lib\nucleus

The message limit

Clients and servers interact by passing messages. Although this is transparent to the
normal programmer who can use conventional library calls such as open() and fopen(),
the I/O server must accept and reply to messages. Helios defines a particular message
format: a message header consisting of 16 bytes; a control vector of up to 255 words;
and a data vector of up to 65535 bytes. Most messages are quite small, no more
than eight words in the control vector and 512 bytes in the data vector. However,
handling large numbers of small messages is much less efficient than handling a few
large messages. Hence for file I/O and other activities which require high bandwidth,
messages should be as large as possible.

In the I/O server this causes a problem. Consider the PC version, which has to run
on a 640K host machine. Of this 640K typically 150K will be used by MS-DOS, extra
device drivers, local area network support, ‘terminate and stay resident’ programs, etc.
The I/O server itself is about 140K of binary code, leaving at most 350K for data.
Usually at least 100K of this is used for the I/O server’s static data and stacks, leaving
250K for message buffers and handling actual requests from the Helios network. Given
these limits it does not make sense to have more than one 64K message buffer in the
system, leaving 180K for the I/O server’s internal workings. This suffices for most
operations. The I/O server has been written carefully to ensure that only one message
buffer is needed. However, if the user installs more device drivers than usual (perhaps
300K instead of 150K), the I/O server becomes short of memory. The code size, static
data requirements, and so on, are fixed. Hence the only easy way to gain extra memory
is to reduce the message buffer size from its maximum of 64K to a smaller value, such
as 5K. This will slow down file I/O because that must take place in smaller segments,

8.4. THE I/O SERVER OPTIONS 327

but it should give the user a working system. Of course if the user installs 400K of
device drivers then the I/O server cannot run at all. The size of the message buffer is
controlled by an option in the configuration file.

Message_limit = 60000

The lower limit is set to 1000, the default value is 2000, and the upper limit on most
machines is 65535. The PC version has a different upper limit of 64000, to cope with
the segmented architecture of the 8086 chip.

Multiple windows

To create a user session it is necessary to have a window server. This window server
provides multiple text windows rather than a window, icon, mouse and pointer inter-
face. In X window terminology, a Helios window server is a terminal emulator, not
to be confused with the X concept of a Window Manager. A Helios window server
always provides multiple windows, one way or another.

There are several different types of window server under Helios. One implementa-
tion runs under the X window system, where every window is a separate entity on the
screen. Another version can be provided by the I/O server, where only one window
is visible at any one time but the user can switch between windows using a hot key
mechanism. These windows are known as server windows, because the first imple-
mentation was part of the I/O server. A similar window server is used for remote logins
over an ethernet.

On most machines the I/O processor is equipped with its own screen and keyboard.
If the processor network does not have any other displays, particularly high resolution
graphics displays, then this screen must be used as the main output and hence the
window server should be run inside the I/O processor, as part of the I/O server. If there
is a high resolution display in the network, it makes sense to run a window server on
this rather than in the I/O processor. This option is controlled by a host.con flag.

Server_windows

If this flag is given in the configuration file or on the command line then the I/O server
will provide a window server. Otherwise it will provide only a /console device, which
is essentially a simple window. The main purpose of this device is to ring the bell:
the high resolution display in the Helios network is unlikely to be equipped with any
sound facilities, so programs like the X server can write bell characters to the /console
device.

Exactly how the I/O server implements multiple windows depends on the imple-
mentation. The standard PC version only supports server windows of 25 by 80 char-
acters. The Sun version is more flexible. When running SunView, multiple SunView
windows will be used. Otherwise the I/O server assumes that the user is logged in
through a dumb terminal or over a network, and will use server windows. As far as
Helios is concerned all /window servers behave in the same way, and it does not matter
how the windows actually appear to the user.

When server windows are used, the I/O server creates its own window, called He-
lios Server, which is not accessible to applications running under Helios. This window

328 CHAPTER 8. THE I/O SERVER

is used to display the I/O server’s copyright messages and for most debugging mes-
sages. By default whenever data is written to this window it is popped to the front, on
the assumption that the user will want to see error and debugging messages as soon
as possible. The user then has to use the hot key mechanism to get back to the win-
dow in which he or she was working. There are times when this is a nuisance, so the
configuration file has a flag to disable it.

Server_windows_nopop

In addition one of the debugging facilities can be used to enable or disable the
‘nopop’ mode, as described below.

Processor names

In a Helios network every processor needs its own name. Usually the I/O processor
is given the name /IO, and the root processor is given the name /00. The names are
used by all the processors in maintaining a logical map of the system in an internal
name table. A processor is given its name when it is booted up and this name cannot
be changed without rebooting the processor and cleaning out name tables in every
other processor, which is a difficult operation. The I/O server is usually responsible
for booting up the root processor and maintaining a name for the I/O processor, and
will default to the names /00 and /IO. If desired, the user can override these defaults
by modifying the configuration file.

root_processor = /tom
io_processor = /harry_pc

When booting up a network of processors the user has to provide a network re-
source map giving details of all processors including names. It is important that the
names used in the resource map for the root and I/O processors match the names in the
host.con file.

The error logger

The I/O server provides an error logging server, /logger. When Helios starts up this
device is used as the initial destination for error messages and progress reports. The
I/O server can do various different things with data written to the logger device. By
default the data is written into the I/O server’s own window, which may pop to the
front as described above. Alternatively the data may be written into a file, or it may
be written both to the window and to a file. One of the debugging facilities described
below can be used to change the destination of the logger device. In addition there are
two useful configuration file options.

logging_destination = file
logfile = /users/root/helios/logbook

The first line indicates the default logging destination, and the value should be one
of the keywords screen, file, or both. The default is screen. The second line names
the file to be used when sending data to a file. By default the I/O server will use the
file logfile in the current directory.

A typical use of the error logger is as follows.

8.4. THE I/O SERVER OPTIONS 329

1. Switch the logging destination to file only, or to both file and screen.

2. Perform some operation that is being debugged, which sends data to the error
logger directly or indirectly. Possible ways include using the IOdebug() library
routine or enabling some debugging option in the I/O server.

3. Switch the logging destination back to screen only.

4. Examine the log at leisure, for example by using the command cat /logger

5. Clean out the log using the command rm /logger, and repeat until the bug has
been found.

Alternatively when the I/O server exits, any data written to the /logger device will
end up in the log file, and can be examined using whatever tools are available in the
host environment. The log file will be cleared when the I/O server is run again.

Disabling servers

Most of the time users will want to have all of the servers that the I/O server can
provide. In some cases the I/O server already provides options for disabling servers
or choosing between servers. For example, the Server windows option gives users
the choice between having a /window server and a /console server. The I/O server
contains a more general mechanism to suppress any server: prefix the server name
with the string no and add the resulting flag to the configuration file.

no_clock
no_helios

There are various reasons for suppressing servers in this way. One is to save memory,
eliminating a server that is unused reduces the I/O server’s initial memory require-
ments. Another is when initialising a server such as the /rs232 device causes a crash,
because of hardware incompatibility. This tends to happen on PC systems. Some
servers should not be suppressed on the I/O processor unless there is an alternative
elsewhere in the network (particularly the /helios server).

8.4.4 Root Transputer bootstrap

Booting up the root Transputer in a network is a complex process and requires the
following stages:

1. Reset the root Transputer, and possibly the rest of the network if the hardware is
set up that way.

2. Check that there appears to be a Transputer at the other end. This involves
poking one location in the Transputer’s memory, then peeking it to check that
the value is correct.

3. Perform the initial bootstrap, sending in the file nboot.i. This is a very small
program, less than 256 bytes because of limits imposed by the Transputer boot-
strap mechanism. It does some hardware initialisation such as clearing the ‘halt
on error’ flag, and then accepts further requests.

330 CHAPTER 8. THE I/O SERVER

4. Send in a request for accepting the system image or Nucleus, followed by the
Nucleus itself. This Nucleus is the basic part of Helios, containing the Kernel,
System library, Server library, Utility library, Processor Manager, and Loader.

5. The Kernel starts up and needs some additional configuration information such
as the current time and the name of the processor. This information is known as
the configuration vector and is generated and sent by the I/O server.

6. There is now a short delay while the rest of the Nucleus initialises itself. As part
of this initialisation the root processor will send a byte 0xF0 followed by another
eleven bytes, and the I/O server has to send back a twelve byte package.

7. Helios has now booted into the root processor and will start sending requests
to the I/O server and to individual servers. The I/O server becomes passive,
accepting requests and replying to them, but not generating its own requests.

There are various configuration file options that can be used to define elements of this
process.

bootfile = ˜/lib/nboot.i
system_image = ˜/lib/nucleus
processor_memory = 0x180000
bootlink = 1

The first option defines the bootstrap utility to be used, the little program (less than
256 bytes) that performs the hardware initialisation and accepts the Nucleus. Usually
this is held in the file /helios/lib/nboot.i. The tilde character can be used to indicate
that the file is relative to the helios directory. In an MS-DOS environment the backslash
character should be used instead of the forward slash.

bootfile = ˜\lib\nboot.i

This option is of interest only to very advanced system programmers. The next option
defines the system image or Nucleus to be sent into the root processor. Usually this is
the file /helios/lib/nucleus, but there are a number of different nuclei serving different
purposes. For example, there is a Nucleus which contains all of the Helios file server as
well, so that Helios can immediately access a hard disc attached to the root processor.

In most cases the Helios Kernel has no difficulty determining how much memory
there is on a processor. However there are some processors where there is strange
hardware at the end of normal memory, such as video memory, reset hardware, or spe-
cial I/O hardware. In these cases the Kernel may become confused and attempt to use
this extra hardware as normal memory, generally with unfortunate results. Hence the
configuration file variable processor memory allows the user to specify the amount
of memory on the root processor. This size is sent with the configuration vector to
the Kernel, and stops the Kernel from exploring memory to find out how much there
is. No attempt is made to validate the variable, so if the host.con file specifies more
memory than is actually present the system will crash.

On the majority of Transputer boards the link adapter connecting the processor
network to the I/O processor is attached to link zero of the root processor. There are

8.4. THE I/O SERVER OPTIONS 331

exceptions, for example the Transtech 7 MCP1000 board uses link one instead. The
configuration vector sent by the the I/O server to the Kernel indicates the initial state
of the various links on the root processor. To build this information correctly the I/O
server must know which root processor link connects to the I/O processor, and the
bootlink variable allows the user to specify this.

Note: if the bootlink variable is not set correctly and the I/O processor is not
connected to link 0 of the root processor, Helios is unlikely to boot up.

Booting other root processors

Helios is a general purpose operating system, not specific to the Transputer. The I/O
server can be used to boot up a number of processors other than Transputers, although
Transputers are the default. The first host.con option allows users to specify a proces-
sor type other than a Transputer.

target_processor = ARM

Recognised processor types are T414, T800, T425, T400, ARM, i860, 68000 and
320C40. These define the default bootstrap options. In addition it is possible to sup-
press various parts of the bootstrap process described above by setting the following
flags in the host.con file.

no reset target Disables Transputer reset.

no check processor Disables the check that the root processor is a Transputer.

no bootstrap Disables initial bootstrap with code file nboot.i and hardware initiali-
sation.

no image Disables the download of the system Nucleus.

no config Disables sending configuration information.

no sync Disables the synchronisation sequence.

If the flags listed above are enabled, they will suppress the following options (in
the order of the list above): resetting the processor; poking and peeking the proces-
sor to check that it exists; sending the bootstrap utility nboot.i; sending the system
image; sending the configuration vector; and waiting for the byte 0xF0, the initial syn-
chronisation. These options suffice for most systems where the root processor and
I/O processor communicate through a link adapter or similar mechanism, but if your
hardware is very different, it will require a completely different bootstrap mechanism.

Booting without a root processor

In some multi-user networks the main processor network is booted up from a sep-
arate system console. Individual users have their own I/O processors but these are
equipped only with a link adapter, not with a separate root processor. In this case the
I/O server should connect into the network, rather than perform any bootstrap. This
can be achieved by the following host.con flag.

7Trademark of Transtech Devices Limited

332 CHAPTER 8. THE I/O SERVER

enable_link

This option is similar to the command line -e option. However -e only applies
when the I/O server first starts up, and a subsequent I/O server restart will cause a
normal bootstrap. The enable link option is permanent, and the I/O server will never
perform a bootstrap.

The enable link option allows the I/O server to be connected to a processor which
is already booted, although the link must be reset before it can be used with certain
boards. Unfortunately there is no standard procedure on a PC to simply reset the link.
The only way to reset the link adapter is to use the reset target option, which resets
the whole board, so the user must ensure that this does not also reset the processor.

8.4.5 Special actions

Depending on the implementation the I/O server responds to either three or four special
actions.

1. Reboot causes the I/O server to shut down all existing streams that have been
opened by Helios clients, closing files. It then reboots the root processor. A
reboot is not permitted if the enable link option is defined in the configuration
file because that option specifies that the I/O server should never attempt to boot
up a processor. Rebooting will not cause the configuration file to be re-read. If
that is desired the I/O server should be made to exit and then restarted.

2. Exit causes the I/O server to shut down all existing streams as before, and then
terminate.

3. Status should cause the I/O server to display a message

Server alive and well. Logging goes to screen.

If no message is displayed within about five seconds then the I/O server has
hung up for some reason, probably when reading from or writing to the link and
because a program in the processor network has overwritten some important
piece of memory. Usually it will be necessary to abort the I/O server program
or even reboot the I/O processor.

4. Debugger causes the I/O server to shut down and then enter the built-in debug-
ger, as described in the next subsection. It is not available in all versions of the
I/O server.

Different versions of the I/O server have different ways of triggering these actions.
In the PC Server combinations of the control and shift keys with a function key are
used. For example, to cause a reboot the user can hold down the control and shift keys
and then press function key F10. This key combination is most unlikely to happen by
chance, but can be achieved fairly easily. When running on a Sun, using either Sun-
View or the X window system, the I/O server will display a panel with debug buttons
for all these activities. When using a dumb terminal user defined key sequences can
be used to trigger the special actions. Two of the special actions, exit and reboot, can

8.4. THE I/O SERVER OPTIONS 333

be triggered from the Transputer network. There are commands stopio and rebootio
to achieve this. If server windows are in use then there will be another two or three
special action keys or key sequences.

1. Switch to next window.

2. Switch to previous window.

3. Redraw current window (only supported if it is likely that other programs may
send data to the screen, corrupting the display).

8.4.6 Debugging facilities

In simple Helios networks most if not all input/output goes through the I/O server.
Potentially this allows for some very powerful tracing. Using a fairly small amount
of code in the I/O server it is possible to generate a debug message whenever a file
is read, whenever a timeout occurs, and so on. The debugging message is sent to the
error logging device described above, so it can be sent to screen, to a file, or to both.

When the I/O processor has a graphical interface, such as SunView, the main panel
will have a pop-up menu allowing users to enable or disable debugging options. Oth-
erwise key combinations or key sequences are used. For example, in the PC version
of the I/O server, holding down the control and shift keys and then pressing the m
key toggles the message debugging option. Associated with every debugging option
is a single letter. This letter may be given on the command line to enable various
debugging options as the I/O server starts up. For example,

server -mn

starts up the I/O server with message and name debugging enabled. Most debugging
options are vaguely ‘mnemonic’. For example, message debugging is associated with
the letter m.

Some of the debugging facilities are aimed at system programmers, and in par-
ticular the Helios developers, rather than ordinary users. These can still be use-
ful to ordinary users, but it may require more effort to understand the output pro-
duced. Where relevant the descriptions below refer to system header files such as
/helios/include/codes.h, which should contain all the required information. The fol-
lowing debugging options are defined at present. There are unlikely to be any additions
to the list since there are no unused letters left in the alphabet.

A All. On the command line this enables all debugging. Since there is a lot of debug-
ging (a typical startup and login sequence generates 75K or more), this option
should only be used when the system is known not to work. Toggling the option
at run time can have two different effects: if no debugging options are currently
enabled then all of them are enabled; otherwise all debugging options are dis-
abled.

B Boot. This gives details of the bootstrap sequence. The output that should be pro-
duced is something like:

334 CHAPTER 8. THE I/O SERVER

Loading system image c:\helios\lib\nucleus.dbg
Resetting link and processor.
Sending bootstrap, size is 212
Sending system image (77028 bytes)...
Sending 4096 bytes at 7bd90024
Sending 4096 bytes at 8bd90024

...
Sending 3300 bytes at 8bd96d70
Sending configuration ...
Waiting for sync byte from Kernel
Received a byte F0
Booted.

This output matches the bootstrap sequence described earlier, although exact
details may differ depending on factors such as the size of the Nucleus.

C Communication line debugging. When transmitting data down serial lines this de-
bugging option may, depending on the version, generate progress reports. Typi-
cal progress reports would look like this:

RS232 write : written 60 of 1024 bytes
RS232 read : read 12 of 80 bytes

Different versions of the I/O server may generalise this debugging option to
other devices which behave in similar ways, such as Centronics and similar
printer ports or Midi ports.

D Delete. This option gives debugging information whenever a file or directory is
being deleted. It is particularly useful when performing recursive deletes that
seem to be taking rather longer than expected, because it allows the user to
verify quickly that the files being deleted are the ones that are supposed to be
deleted. Typical messages produced by this debugging option are:

Delete request for unknown object /users/root/helios/tmp/junk
Deleting file /users/root/helios/tmp/junk
Deleting directory /users/root/helios/tmp

Note that the messages give the local file name, not the Helios file name.

E Errors. Clients interact with the servers inside the I/O server by sending requests,
and the servers reply with messages indicating either success or an error . The
error is encoded into a 32-bit integer, as follows:

Bit 31 Bit 0
1 CC SSSSS GGGGGGGG EEEEEEEEEEEEEEEE

All error codes have their top bit set, to indicate that they are errors. The next two
bits indicate the severity of the error, from recoverable to fatal. Then there are
five bits giving the subsystem code, the part of Helios that generated the error.
For the I/O server this is always the subsystem SS IOProc. The next eight bits
give details of the error group or type of error, such as insufficient memory to

8.4. THE I/O SERVER OPTIONS 335

perform the operation or object in use. The final 16 bits give some information
on the type of object affected, such as a file or a program. Enabling the errors
debugging option causes the I/O server to give a message whenever some server
sends back an error code. A typical message would be:

Error : fn ca06800c

This error code means: error from I/O server, unknown file. In other words
Helios tried to access a file that did not exist. The Helios shell has a built-in
fault command that interprets such messages, so typing in:

fault ca06800c

would give a description of the fault. Programs can use the Helios Fault library
to turn error codes into strings. The header file

/helios/include/codes.h

defines the current error codes and related information.

The error debugging option is a restricted form of the message option described
below. It only gives information about the error code, not about the request
which caused it.

F File I/O. This debugging option generates messages for miscellaneous file I/O ac-
tivities (such as renaming files) which are not sufficiently important to require a
specific debugging option. Typical debugging messages include:

Creating/truncating file c:\junkfile
Creating directory c:\tmp
ObjectInfo request for c:\cshrc
Rename request received
Renaming c:\junk1 to c:\junk2
SetDate request for c:\work\lock.c
ServerInfo request received for c:\

Most of these messages are fairly obvious. The ObjectInfo request is used for
getting specific information about an object, such as its size, and is used by
programs like ls. The SetDate request is used by the touch command to change
the time stamp of a file, typically in association with make utilities. ServerInfo
is used by the df command to determine how big a disc is and how much of its
available space has been used.

G Graphics. The output produced by this option depends entirely on the implementa-
tion of the I/O server and the type of graphics supported. Usually no output is
produced at all.

H Hard disc. This option is used in conjunction with the ‘rawdisk’ device. A
‘rawdisk’ behaves like a single file of perhaps twenty megabytes, and appli-
cations can write chunks of 5K or so at 512 byte boundaries. In other words, a
rawdisk device allows the Helios file server to read and write sectors of the disc,
without going through the host filing system. Typical messages produced are:

336 CHAPTER 8. THE I/O SERVER

Rawdisk : open
Rawdisk : close
Rawdisk : seek to 10200
Rawdisk : GetSize request, size is 1400000
R : not on sector boundary
R : not whole number of sectors
R : past end of disk
R : @ 10200, 4 sectors
R : hardware error
W : @ 10200, 6 sectors

The size of the hard disc and the offsets are given in hexadecimal numbers.

I Initialisation. This debugging option gives information as the I/O server initialises
all its servers. Typical output for a PC version of the I/O server would be:

Initialising device IO.
Initialising device helios.
Initialising device logger.
Initialising device window.
Initialising device clock.
Initialising device pc.
Initialising device rs232.
Initialising device centronics.
Initialising device printers.
Initialising device a.
Initialising device b.
Initialising device c.
Server successfully initialised.

If, for example, the no logger flag is set in the configuration file, the message
‘Initialising device logger’ will still appear, but the device will terminate during
its initialisation sequence. The information produced by this debugging option
can be very useful when the system fails to boot, and the host computer has
crashed completely and needs to be rebooted. For example, if the I/O server
gets as far as the message ‘Initialising device rs232’ but no further, then it is
fairly certain that the configuration file entries for the rs232 device are wrong.

J Directory I/O. This debugging option gives information when a client opens and
reads directories in the host filing system. Typical messages produced are:

Reading directory c:\helios\bin
There are 68 entries in the directory
Directory read for /helios/bin : 440 bytes at 0
Directory read for /helios/bin : 440 bytes at 440
Directory read for /helios/bin : 440 bytes at 880
...
Closing directory /helios/bin

Every entry in a directory takes up 44 bytes, using the structure DirEntry de-
fined in the header file /helios/include/syslib.h. Hence in the example the client
is reading ten directory entries at a time, and after sufficient practice the user
will recognise this behaviour as typical of the Helios shell.

8.4. THE I/O SERVER OPTIONS 337

K Keyboard. This option generates information for all keyboard input, whether read-
ing conventional keys through the /console or /window devices or obtaining
scancode events through the /keyboard device. The former generates message
like:

Read char 0x20 from Shell.1

This gives the hex code for the keyboard character, which in this case is a space,
and the name of the window. The message merely says that the character is now
known to the I/O server, not that it has been passed on to Helios. There may not
be a client currently reading data from that window, in which case the I/O server
will buffer keyboard data. Alternatively the window may be in a cooked input
mode (processing and buffering input), in which case no data can be sent until
the user has pressed the return key. The messages produced by the raw keyboard
device are rather different:

Sending raw keyboard event : 39 down
Sending raw keyboard event : 39 up

These messages are generated when the data is actually sent to the appropriate
client, not when the I/O server detects that a key has been pressed or released.

L Logger. This option allows users to switch the current logging destination. It is a
very useful option, so when the I/O server provides a graphical interface there
is usually a special button to activate this option. Triggering this option should
generate one of three messages:

Switching logging to file only.
Switching logging to file and screen.
Switching logging to screen only.

A fairly typical way of using the error logger is to have the default destination
as the screen. To investigate a problem the user changes the destination to file
only, enables suitable debugging options, reproduces the problem, and switches
the destination back to screen only. The log file can now be examined at leisure
without leaving Helios, for example by using the command cat /logger, or after
leaving Helios if desired. Under Helios it is possible to empty the error logger
by using the command rm /logger.

M Message debugging. In a system like Helios where clients and servers interact
by passing messages it is useful to report every single message that passes be-
tween the Helios network and the I/O server. However, considerable expertise is
required to understand the output. Consider the following simple transaction.

Request: fn 30, for 2 from c0010234, csize 5, dsize 17
Reply : fn 0, port c0010234, csize 6, dsize 20

338 CHAPTER 8. THE I/O SERVER

There is an incoming message, function code 30, for message port 2 from the
message port c0010234, with a control vector of five words and a data vector of
17 bytes. The I/O server replies with a function code 0, to the reply port of the
incoming request, with a control vector of 6 words and a data vector of 20 bytes.
This may appear to be meaningless. However, the following information can be
obtained:

1. The destination port of the reply corresponds to the source port of the re-
quest. This allows requests and replies to be matched up, which is rather
useful because the I/O server can have several requests outstanding at any
one time.

2. The destination port of the request is 2. This information is useful only
when the I/O server first starts up. The I/O server starts allocating message
ports at 1, and simply increments this number every time a new message
port is required. Every server and every stream needs its own message port.
The information obtained from the initialisation debugging (shown in the
example on the I option) now reveals that device /IO must have message
port 1, and device /helios has message port 2. Hence the request is being
sent to the /helios server.

3. The request had a function code of 30. Looking this up in the header file
codes.h would reveal that this function code is FG Locate, so the client is
looking for something, probably a file.

4. The header file gsp.h defines the message format for the locate request,
and this does indeed involve a control vector of 5 words. The size of the
data vector depends on the name of the object being accessed.

5. The reply had a function code of 0, which according to codes.h is the
constant called Err Null indicating success. Hence the object that the
client is trying to access really does exist.

6. The header file gsp.h defines the format for the reply message to a locate
request, and this does involve a control vector of 6 words.

Hence both the request and the reply appear to make sense, and with a little
effort the user should have a good idea of what is going on. Hopefully the other
debugging options would allow the user to get exactly the same information in
a simpler format, but message debugging is available when needed.

N Names. This option causes the I/O server’s name handling routines to produce
debugging messages. Typical examples would be:

Context /IO/helios/lib, name Clib, rest helios/lib
IOname is helios/lib/Clib

When Helios clients access an object they tend to do so within some context.
For example, when a C program calls fopen("myfile", "r") the context is
the program’s current directory. This context is very important in a protected
environment because it is used to validate access to the target object. In the
example given the context directory is /IO/helios/lib.

8.4. THE I/O SERVER OPTIONS 339

The second field, the name, indicates what object is being accessed relative to
the context. In the example this is the file Clib within the context /IO/helios/lib.
The third field indicates how much of the name has been handled before reaching
the I/O server. In this case the string /IO had been interpreted already before the
message arrived at the I/O server. The final IOname value gives the full name
of the object within the I/O server. This name is then translated into a machine
specific name such as c:\helios\lib\clib before the actual file access takes
place.

There are times when the context is NULL. For example, when a program at-
tempts to open the file /helios/include/stdio.h the context is empty, because that
file is absolute rather than relative to the current directory. Similarly the context
can refer to the whole object rather than a directory containing the object, in
which case the name is NULL. Usually these details are of little interest, and all
that matters is the name of the actual object being accessed.

O Open. This option gives messages whenever a file is opened. Typical messages
are:

Supposed to open /users/root/helios/tmp/junkfile
File not found
Failed to open

The first message indicates that the I/O server is about to open a file. Since doing
this might conceivably crash or hang the I/O server, the message is given before
the attempt is made. The second message indicates that the file did not exist and
the message did not involve automatically creating a non-existent file, (the Posix
O CREAT bit was not set). The third message indicates that the underlying host
filing system refused to open the file, for an unspecified reason.

P Non-mnemonically, the letter P is used for Close debugging. This option gives a
message whenever a file is closed.

Supposed to close helios/lib/Clib

Q Quit debugging. When the I/O server terminates this may produce some or all of
the following messages.

Shutting down streams and servers.
Streams and servers shut down.
Restoring devices.
Freeing configuration information.
Tidying debugger.
Tidying bootstrap.
Terminating logger.
Server exiting.

This option is not particularly useful, but is supplied for completeness. Note
that the error logger is shut down as part of the quitting process, so some of the
messages are sent directly to the I/O processor’s screen rather than to the error
logger and hence cannot be redirected to a logfile.

340 CHAPTER 8. THE I/O SERVER

R Read debugging. This gives information whenever a file is read.

Supposed to read 1024 bytes at 4096
in helios/include/stdio.h
Having to seek to 4096 from 2048
Returning 712 bytes

The first message gives the amount of data to read, the position within the file
to read it from, and the file itself. The second message is unlikely to be seen,
but indicates that the application and the client have lost synchronisation. The
Helios protocols are designed to be fault tolerant and they will recover automat-
ically from such errors. The final message indicates the amount of data actually
read, which may be less than the amount requested when the end of the file has
been reached.

S Search debugging gives information about distributed search messages that reach
the I/O server. When a client tries to access a particular server, for example /he-
lios, and that server has not yet been accessed from that processor, then Helios
will generate a distributed search throughout the network for the server. Some
of these messages may reach the I/O server, which may have a server of the
specified name. Typical messages produced by this debugging option are:

Distributed search for /01 : unknown server
Distributed search for /helios : found, server is 2
Distributed search for /01/helios : wrong network address

The first and last distributed searches fail as far as the I/O server is concerned,
although hopefully some other processor in the Helios network will be able to
satisfy the search request. The second distributed search succeeds. The number
2 is the message port for the specified server, which may be matched up with
the ports listed with the message debugging option.

T Timeouts. Some devices such as windows and serial lines support timed I/O. A typ-
ical request might be to read 80 bytes in at most 20 seconds. Timeout debugging
can be used to find out exactly when a timeout occurs.

Timeout in stream window/console

U Nopop. This option is used in conjunction with the Server windows windowing
system and its hot key switching mechanism. The I/O server has its own window,
and by default this window pops up to the front whenever data is written to it. A
host.con option Server windows nopop can be used to suppress this popping
by default. In addition the current mode can be toggled, enabling or disabling
nopop, using this debugging option.

V OpenReply. FG Locate, FG Create, and FG Open, which are three of the most
important requests in Helios, expect the same format for the reply message. This
is the IOCReply1 structure defined in the header file gsp.h. Most of the contents
of this reply message can be displayed using the OpenReply debugging option.

8.4. THE I/O SERVER OPTIONS 341

FormOpenReply : name /IO/c/doc/ioserver/chap2.tex
: type 12, flags 20020000, access c7

For the meanings of the various fields, please see the header file.

W Write debugging. This is very similar to Read debugging.

Supposed to write 1024 bytes at 4096 in helios/tmp/xx
Having to seek to 4096 from 2048

X Resources. This option gives a snapshot of what is happening inside the I/O server.
Typical output might be:

Open streams are : window/console, window/console
There are 13 devices, 2 open streams, and 0 other coroutines

The first line lists all the streams currently open to the I/O server. The next line
counts the number of servers, the number of open streams and the number of
coroutines. Coroutines are similar to Transputer processes but are uninterrupt-
able. The number of other coroutines is likely to be zero, but may be non-zero
when a large write to a window or serial line has been XOFF-ed.

Some implementations of the I/O server perform their own memory manage-
ment rather than rely on system calls, because the I/O server can do it faster or
more reliably. The PC implementation is one. If so then the resource debugging
option also gives details of memory allocation inside the I/O server.

In the small memory pool there are 3 nodes giving 13480 bytes
In the big memory pool there are 6 nodes giving 162576 bytes

The memory allocation code maintains two separate heaps, one for small bits
of memory of less than 250 bytes, another for larger chunks. These are known
as the small and big pools respectively. The number of nodes is an indication
of memory fragmentation inside the I/O server, the more nodes the greater the
fragmentation. The final value indicates the amount of memory left inside the
pool. If either the small or big pool runs low on memory, requests sent to the
I/O server may fail because of insufficient memory.

Y List. In a non-graphical environment such as a PC this is potentially the most useful
debugging option. It gives a list of all the other options.

Available debugging options are : a = all
b : boot c : serial d : delete e : errors
f : file I/O g : graphics h : raw disk i : init
j : directory k : keyboard l : logger m : messages
n : names o : open p : close q : quit
r : read s : search t : timeouts u : nopop
v : open reply w : write x : resources y : list
z : reconfigure

342 CHAPTER 8. THE I/O SERVER

Z Reconfigure. This debugging option causes the I/O server to re-read the host.con
configuration file. This is not as useful as might appear. Many of the options
are tested only when the I/O server first starts up, so reconfiguring has no effect
on these. Others are tested only when the I/O server activates all its servers,
so a reboot is required for the new configuration to have an effect. Only a few
options are checked while the I/O server is up and running. Nevertheless, the
option is available when required.

8.4.7 The built-in debugger

Debugging tools and facilities are essential when producing software. The range of
tools and facilities is considerable.

1. Source-level debuggers are useful for applications software. These allow the
programmer to examine the source as it is being executed, and generally pro-
vide powerful facilities such as breakpoints, single stepping, watch statements,
and so on. Such a source-level debugger is available under Helios. These de-
buggers require support in the compiler, in particular a special option to compile
for debugging. Hardware support for debugging is often desirable but not es-
sential. The debugger will only work on top of an existing system, which must
be reliable. Hence source-level debuggers cannot usually be used for debugging
system software.

2. If no source-level debugger is available then the approach usually taken is to
embed extra statements in the code. Typically these are fprintf() statements,
sending text messages to the standard error stream. Using C library routines like
fprintf() is not always sensible, because the C library itself may be corrupted by
the bug and hence the expected text will not appear. To overcome this problem
Helios provides a lower-level routine IOdebug(), which has a similar syntax to
printf() but is more likely to make the data visible to the user.

3. Particularly when programming in a language like C, one of the more common
causes of problems is using invalid pointers. A pointer may be used before it
has been initialised, so that it points to some random location in memory. On
some machines, but not on Transputers, invalid pointers can be detected and
the machine can give a core dump. This core dump contains full details of the
program, but not of the rest of the system.

4. In the absence of suitable hardware, some limited debugging can still take place.
In particular, if the processor can be reset then effectively the user can get a
snapshot of what the processor was doing at the time. The whole processor
has to be examined, not just the one program being debugged. Performing this
operation is the purpose of the I/O server’s built-in debugger.

The I/O server’s built-in debugger is specific to the Transputer, and cannot be used
with other processors. To use it sensibly requires considerable understanding of the in-
ner workings of the Transputer and of Helios. Its main use is for system programmers.

8.4. THE I/O SERVER OPTIONS 343

Where to look

The main facility provided by the built-in debugger is examining memory. Since the
whole processor has to be examined, the user needs to know where to look. This
subsection describes the memory layout of the Transputer and the location of some of
the main Helios data structures. It assumes that the processor has been booted from a
link, a reasonable assumption for most Helios systems.

In a network of processors it is usually possible to examine the root processor
only, because this is the only one that can be reset by the I/O server. The debugger
does contain some support for examining remote processors if these can be reset.

Reserved locations

Transputer memory begins at location 0x80000000, at least for the 32-bit processors
that are likely to run Helios. At the bottom of memory are some reserved locations,
used by the Transputer hardware (see the table below).

Location Purpose
80000000 Link 0 Output
80000004 Link 1 Output
80000008 Link 2 Output
8000000C Link 3 Output
80000010 Link 0 Input
80000014 Link 1 Input
80000018 Link 2 Input
8000001C Link 3 Input
80000020 Event line
80000024 Timer (high priority)
80000028 Timer (low priority)
8000002C Saved workspace pointer
80000030 Saved instruction pointer
80000034 Saved A register
80000038 Saved B register
8000003C Saved C register
80000040 Saved status register
80000044 Saved E register
80000048 2-d block move
... support
8000006F

The first eight words give information about what is happening on the specified link. If
the word contains 0x80000000 then the link is idle. Under Helios the output links are
usually idle, unless the processor was reset in the middle of a link transfer. For those
links which are connected to other processors running Helios, the input link is usually
set to some value other than 0x80000000 because Helios has link guardian processes
continually monitoring the links for traffic. The actual value in these words is a pointer
to a location on the stack of the process doing the link I/O, and examining memory in
the vicinity of this location may provide useful information.

The next location is for the event line. The Helios Kernel continually monitors the
event line, although very little hardware makes use of it. The Kernel provides routines
SetEvent() and RemEvent() so that applications can make use of the event line.

344 CHAPTER 8. THE I/O SERVER

There are two timer pointers, one for high priority processes and one for low pri-
ority ones. These will point to the next process (or rather to a location on the stack of
the next process) to be woken up by a timeout.

When a Transputer switches from running a low priority process to a high priority
one, details of the low priority process are saved at the bottom of memory. Typically
this would happen when a timer goes off or when some data arrives on a link, reac-
tivating a high priority Kernel process. If the user’s program is the only application
running on that processor then there is a good chance that the saved low priority pro-
cess describes the user’s application.

On-chip memory

Between location 0x80000000 and location 0x80001000 is the Transputer’s ‘on-chip’
static memory (the T414 only has 2K of this memory, not 4K). When a processor is
booted up the bootstrap program /helios/lib/nboot.i is placed at location 0x80000070.
This program may be examined if desired.

nboot.i reads in a Nucleus starting at off-chip memory, location 0x80001000. This
consists of a single word, the size of the Nucleus, followed by a number of self relative
pointers to the components of the Nucleus: Kernel, System library, Server library,
Utility library, nboot.i, Processor Manager, and Loader. The Nucleus typically takes
up between 84 and 100K of memory. During its initialisation phase the Kernel reads
a configuration vector from the link, into location 0x80000200. The structure of this
configuration vector is defined in the header file

/helios/include/config.h.

By default Helios does not make use of the ‘on-chip’ memory. There are routines
called AllocFast() and Accelerate() to allow applications to make use of this memory,
if desired. If this happens then the memory containing nboot.i and the configuration
vector may be overwritten, but Helios no longer needs these.

The root data structure

Every Helios processor maintains a root data structure which can be accessed by all
the components of the I/O server. This is the RootStruct data structure, defined in the
header file

/helios/include/root.h

The system normally places this structure immediately after the Nucleus itself. This
means that the data structure can be found by indirecting through the self relative
pointer at location 0x80001000, which holds the size of the Nucleus.

To understand the root data structure it is necessary to examine several other header
files as well. For example, the root structure contains various Pools, which are defined
in the header file memory.h. The LinkInfo structure is defined in link.h. With a little
effort, most of the processor’s workings can be determined in this way.

8.4. THE I/O SERVER OPTIONS 345

The bulk of memory

After the end of the root data structure comes the main memory, which is used by
Helios for such tasks as loading programs and allocating stacks and heaps. Memory
allocation starts at the top of memory going downwards. While Helios is still up and
running the mem command can be used to determine which program owns which bit
of memory, and to some extent what it is used for.

The trace vector

At the very end of memory the Kernel maintains a private data area known as the trace
vector. The Kernel contains a routine Trace() which can be used to put some data
into this trace vector, three words, to be exact. The data in the trace vector can then be
examined while the processor is being debugged. Typically the first word is a magic
number indicating the source of the trace message, and the other two words give actual
debugging information. This approach is the lowest level of debugging, and generally
it is used only when debugging the Nucleus.

Available commands

This subsection describes the various commands available inside the debugger, and
the next subsection illustrates how these commands are used in a typical session. The
debugger can be activated in various ways. First the I/O server can be run with the -d
option, which means that it will enter debugging mode immediately rather than boot
up Helios. Second, once Helios is up and running there will be some machine specific
way of switching to the debugger. On a PC this can be done by pressing the control
key, then the shift key, and finally the F7 key. On a Sun it can be done by clicking on
the Debugger button.

The main facility provided by the I/O server is examining memory. Hexadecimal
is used for this, because it is usually the most appropriate notation. Occasionally the
user will have to type in a memory address, and memory starts at 0x80000000 so in
theory the user would have to type in eight digits every time. In practice the debugger
maintains a base value, and all addresses are relative to this base. For example, to
examine location 0x80001000 the user simply types 1000, and the debugger automat-
ically adds the memory base. To move to an absolute address the hash symbol can be
used. For example, the user could also type #80001000 to produce the same effect.

Memory may be displayed either as bytes or as words. Words are usually used
when examining pointers and integers, but bytes are more useful when examining text
strings and so on. There are commands to switch between the two modes.

Most of the commands simply move around in memory. These can be activated
by pressing a single key, for example pressing the ‘.’(full stop) key will move to the
next frame of memory. Other commands involve typing in a whole string and pressing
return.

Examining memory

By default the debugger will display one frame of memory at a time, either as bytes
or as words. Initially a frame is sixteen bytes, but this can be changed with the :

346 CHAPTER 8. THE I/O SERVER

command. The following single key commands are available.

RETURN Redisplay the current frame
. Move to the next frame
, Move to the previous frame
; Disassemble the current frame
’ Move to the next frame and disassemble it
> Move to the next word
< Move to the previous word
[Indirect through an absolute pointer
] Pop a previous address off the stack
{ Indirect through a self relative pointer

Most of the commands should be straightforward. Disassembling may produce
strange output if the current frame falls on an unfortunate boundary in the code, but
this is unlikely. The debugger understands two types of pointers. The normal type is an
‘absolute’ pointer, where a variable holds a pointer to another variable. For example,
the root data structure contains the field:

word *Tracevec;

This means that there is a variable inside the data structure containing another value
such as
0x801ff000, a fixed address in the machine. Self relative pointers contain a value
which is an offset from the address of the self relative pointer. They are much less
common than absolute pointers. The most important example is at the start of the
Nucleus, location 0x80001000. This value contains the size of the Nucleus (60K, for
example) and the root data structure immediately follows the Nucleus. Hence the root
is at location 0x80001000 + 60K, and can be reached by a self relative indirection
when the current frame is at 0x80001000.

The debugger maintains a stack of all indirections, allowing the user to go back to
a previous pointer. For example, the frame is currently at the root data structure and
the user types [to indirect to the trace vector. The old address is pushed onto the stack,
and the frame moves to the trace vector. To get back to the root structure the user can
simply type], without having the remember the actual address of this structure. There
are a number of related commands that take a single number as argument.

+ n Move forward n bytes
- n Move back n bytes
: n Set the frame size to n bytes
= n Poke the value n

For example, typing in : 32 at the debugger prompt will change the current
frame size from 16 bytes to 32.

Note: there is one other single character command: pressing the escape key is
equivalent to issuing the command explore. The next thing to be done is to type in
fully the more powerful commands.

8.4. THE I/O SERVER OPTIONS 347

analyse

This command will analyse the root processor. This is a special form of reset. When
the analyse signal is asserted the root processor will continue operation for a number
of cycles, and then halt when it reaches a suitable descheduling point. Some of the
processor state information can then be extracted. The analyse command is rarely
used directly, because it is invoked automatically during the explore command.

base

This command may be used to change the base address from 0x80000000 (its default
value). It is useful occasionally when debugging a piece of hardware which has been
memory-mapped. For example, let us suppose that there is some graphics hardware
at the location 0xC0000000 which the user is trying to access. One way, though not
necessarily the best way, is to run the debugger and change the base address. The
hardware can then be examined and poked. The following commands might be used
for this.

base #C0000000 ; change the base address
= 0 ; poke this address with value 0
+ 12 ; move 12 bytes forwards
= 1 ; poke this address with value 1

Please note that the debugger only supports poking whole integers at integer aligned
addresses, because that is all that is supported by the Transputer hardware.

bytes

The debugger can work in two modes when displaying memory. In words mode it
displays primarily 32-bit words of information. In bytes mode it displays primarily
single bytes. This command can be used to switch from words mode back to bytes
mode.

clear

This command sends a little program into the root processor to clear memory. In
particular, all memory from the base location to the current position is cleared. This
command may be useful if memory has become too cluttered with old information
and the user wants to clear it all before rebooting Helios. A typical way of using the
command is:

1ff000 ; move to near the end of memory
clear ; and clear it all

cmp

This command compares the Nucleus currently held in the root processor’s memory
with the Nucleus as held on disc. If any differences are found then a program has
caused some serious memory corruption and has overwritten part of the Nucleus code.
Typical output that might be produced is:

348 CHAPTER 8. THE I/O SERVER

80001500: 00000000 != 60bf7332

This means that the value at location 0x80001500 should be 0x60bf7332, but is actu-
ally 0. All this command can tell you is that memory has been corrupted, not which
bit of which program did so.

dump

When a Transputer has been analysed a little worm program can be sent into it to find
out what it was up to at the time. This is the purpose of the dump command. The
information is stored locally, and can be displayed with the info command. dump is
rarely used explicitly, since the explore command does it automatically.

explore

The explore command performs three separate actions. First, it analyses the root pro-
cessor as per the analyse command. Second it sends a little program into the processor
to explore its state, as per the dump command. Finally it gives details of the results
as per the info command. This command is used mainly when Helios has already run
and the user has switched to the debugger. Since speed is important (the faster the pro-
cessor can be explored, the more likely it is that the information is useful) the escape
key can be used as a short-hand for typing the whole command. The output produced
typically looks something like this:

Iptr : 80002838
Wptr : 800fe028
BootLink : 80000010
Output links : 800e8cec 80000000 80000000 80000000
Input links : 800fdd40 80000000 800fd110 800fcd00
Event channel: 800fc11c
Timer Queues : hi 800fc510 lo 800fc91c
Save Area : W 80000001 I 800042f6 A 800c20c4 B 8000162a

C 800c19c4 S 00000000 E fff14bc0
Hi Pri Queue : head 80000000 tail 800fe324
Lo Pri Queue : head 80000000 tail 800fc91c

The first three words give status information about what the processor was doing just
before it was analysed. In this case it was executing code somewhere inside the Nu-
cleus, so it will be difficult to find out anything useful from that. The remaining infor-
mation was described in the subsection on reserved locations earlier. Important things
to note are that the root processor was attempting to send data to the I/O processor at
the time, and there were Helios processors at the end of links 0, 2 and 3. The timer and
queue information may be investigated further.

go

The go command boots up Helios into the root processor but does not respond to
messages which that processor is attempting to send. This may be useful when inves-
tigating a Nucleus that does not boot up correctly. The command may be aborted by
hitting the escape key, which causes another explore.

8.4. THE I/O SERVER OPTIONS 349

info

The info command displays information that was produced by the dump or explore
command earlier. It is invoked automatically at the end of explore, but the information
may be redisplayed by issuing this command. The output produced is the same as for
explore.

load

This command loads the system image from the disc into memory. This happens
automatically when the cmp or go commands are used.

quit

The quit command is used to exit the I/O server and return to the host operating system.

reset

The reset command is used to reset the root processor. This is necessary if the proces-
sor’s memory is to be examined. Please note that a processor does not necessarily stay
reset. In particular, if a neighbouring Transputer sends data down the link while the
processor is reset then this data will be interpreted as a bootstrap. The user will notice
that the I/O server takes a long time to respond to key presses while it still attempts to
access the processor, and the processor should be reset again using this command.

server

This command may be used to leave debugging mode, reboot Helios, and enter normal
I/O server mode again.

settrace

The Helios Kernel maintains a small area of memory near the top of memory, known
as the trace vector. This area is usually accessed through the root data structure, so
the debugger has no problem finding it. However, if the root data structure has been
corrupted then the normal trace command will fail. In that case it is necessary to
explicitly set the address of the trace vector:

settrace ff000

The trace vector takes up four kilobytes from the end of memory, so for a one megabyte
processor it would start at 0x800ff000, for a two megabyte processor it would be at
0x801ff000, and so on.

trace

If there is any information in the trace vector then this command will display it. If
some application has called the Kernel Trace() routine with arguments 0x55, 0x66,
and 0x77, then the output will be something like:

Regs: T = 00012345 W = 80fee820 I = 80002324
A = 00000055 B = 00000066 C = 00000077

350 CHAPTER 8. THE I/O SERVER

The command gives a time stamp, details of the stack pointer when Trace() was called
as well as the piece of code that called it, and the three arguments to the routine. Note
that the trace vector is only 4K, so if there are too many trace statements then the vector
will wrap around and somewhere in the data displayed there may be a discontinuity.
The timestamps can be used to work out the order in which the data was added to the
trace vector.

words

This routine switches the debugger from bytes mode to words mode, as described in
the subsection on the bytes command.

xp

This routine provides limited support for debugging remote processors. It works by
running a small program in the root processor which forwards all debugging messages
to the specified link. For example, suppose the network consists of three processors
00, 01, and 02, with link 2 of processor 00 going into link 1 of processor 01, and with
link 2 of processor 01 going into link 1 of processor 02, giving the usual processor
pipeline. The following commands might be used to debug processor 02.

xp 2 ; now debug 01, at the end of link 2 of 00
xp 2 ; now debug 02, at the end of link 2 of 01

This technique will work only if all the processors are reset, because it is not possible
to use the debugger unless the target processor is reset. Also, it works by running
little programs in all the intermediate processors. Hence if the user types the reset
command then the root processor will be reset, it will stop running the little program,
and the user is back to debugging the root processor.

An example session

This subsection describes a short debugging session. Assume that Helios was booted
up normally, suspended at a shell prompt waiting for keyboard input, and the user
switched to debugger mode. On a PC this could be done by pressing the control key,
then the shift key, and finally the F7 key. On a Sun it can be done by clicking on the
debugger button. The display might look something like this:

Helios PC Transputer Debugger V3.83 21.3.90
Copyright (C) Perihelion Software Ltd. 1987-1990
All rights reserved.

The debugger is now waiting for some keyboard input, and the most useful thing to
do is to explore what the processor was up to. This can be done by typing the explore
command or by pressing the escape key. For example:

Explore
Saving low memory...
Sending bootstrap...
Restoring low memory...
Iptr : 800028bb

8.4. THE I/O SERVER OPTIONS 351

Wptr : 800fe028
BootLink : 80000010
Output links : 80000000 80000000 80000000 80000000
Input links : 800fdd40 80000000 800fd110 800fcd00
Event channel: 800fc11c Timer Queues : hi 800fc510 lo 800fc91c
Save Area : W 80000001 I 800042f6 A 800c20c4 B 8000162a

C 800c19c4 S 00000000 E fff14bc0
Hi Pri Queue : head 80000000 tail 800fe324
Lo Pri Queue : head 80000000 tail 800fc91c

Exploring involves running a small program inside the processor, and it is desir-
able that this does not corrupt the current state. Hence a small amount of memory
has to be saved before running the program and restored afterwards. The information
shown is not particularly useful. The processor was currently executing a process in
the Nucleus. Since all applications were idle this is to be expected, as there are no
other active processes. There was no link output traffic, but there were link guardian
processes on three of the links implying that there were other Helios processors con-
nected to these. The next stage is to start looking at some memory. The current frame
can be displayed by pressing the return key, which produces information such as the
following example:

80000000: 00 00 00 80 00 00 00 80 ˆ@ˆ@ˆ@ .ˆ@ˆ@ˆ@ .
80000008: 00 00 00 80 00 00 00 80 ˆ@ˆ@ˆ@ .ˆ@ˆ@ˆ@ .

This shows the current memory address on the left, the contents of this memory in
the middle, and the equivalent in ASCII characters (if defined) on the right. The cur-
rent display mode is bytes. It can be changed to words simply by typing the words
command.

words
80000000: 80000000 80000000 ˆ@ˆ@ˆ@ .ˆ@ˆ@ˆ@ .
80000008: 80000000 80000000 ˆ@ˆ@ˆ@ .ˆ@ˆ@ˆ@ .

To move to the next frame, type a ‘.’

.
80000010: 800fdd40 80000000 @ .ˆO .ˆ@ˆ@ˆ@ .
80000018: 800fd110 800fcd00 ˆP .ˆO .ˆ@ .ˆO .

These addresses correspond to the input links, and give the same values as were
listed earlier by the explore command. Various commands can be used to alter the
display.

:8
80000010: 800fdd40 80000000 @ .ˆO .ˆ@ˆ@ˆ@ .
,
80000008: 80000000 80000000 ˆ@ˆ@ˆ@ .ˆ@ˆ@ˆ@ .
>
8000000c: 80000000 800fdd40 ˆ@ˆ@ˆ@ . @ .ˆO .
+4
80000010: 800fdd40 80000000 @ .ˆO .ˆ@ˆ@ˆ@ .

According to the information produced by the explore command, the old instruc-
tion pointer was at 0x800028bb. This information could be shown again if necessary
by typing the info command. To examine the code at this location it is necessary to
move to that location and disassemble it.

352 CHAPTER 8. THE I/O SERVER

28bb
800028bb: 75d5f222 76d3f474 " . . u t . . v
;
800028bb: 22 f2 ldtimer
800028bd: d5 stl 00000005
800028be: 75 ldl 00000005
800028bf: 74 ldl 00000004
800028c0: f4 diff
800028c1: d3 stl 00000003
800028c2: 76 ldl 00000006

If the user knows Transputer assembler language it may be possible to work out
roughly what piece of code is being executed. This is made easier by the fact that the
Helios C compiler normally puts function names into the binary program just before
the code of the function, unless this has been suppressed with the -g0 pragma. Hence
by moving backwards through the code the user should eventually come back to a
plain string, visible in the ASCII display on the right, identifying the function. This
does not work with the Helios Nucleus or any Helios libraries, because these have been
compiled with the special pragma to save memory.

It may be useful to see if there is anything in the trace vector. This is unlikely
unless something has gone very seriously wrong and the Kernel could not recover, or
unless some application contains its own calls to Trace(). If there is nothing in the
trace vector then the command will simply redisplay the current frame. Another useful
check is cmp to see if the Nucleus has been corrupted. This may take a while, since it
has to read a file from the disc and compare it with the processor’s memory one integer
at a time.

trace
800028bb: 75d5f222 76d3f474 " . . u t . . v
cmp
comparison finished
800028bb: 75d5f222 76d3f474 " . . u t . . v

Just to prove that cmp does work, it is possible to corrupt the system image in
memory by poking it.

1500
80001500: 3273bf60 c03070d0 ‘ . s 2 . p 0 .
= 0
80001500: 00000000 c03070d0 ˆ@ˆ@ˆ@ˆ@ . p 0 .
cmp
80001500: 00000000 != 60bf7332
comparison finished.

Finally, the root data structure can be examined. First it has to be found. This is
done by moving to location 80001000 and indirecting through a self relative pointer
(see below).

#80001000
80001000: 0000d764 00000020 d .ˆ@ˆ@ ˆ@ˆ@ˆ@
{
8000e764: 00000000 800fefb0 ˆ@ˆ@ˆ@ˆ@ . .ˆO .

8.4. THE I/O SERVER OPTIONS 353

According to the root.h header file the data structure contains a pointer to a set of
pointers to the LinkInfo structure, as defined in link.h.

typedef struct LinkInfo{
byte Flags; /* flag byte */
byte Mode; /* link mode/type */
byte State; /* link state */
byte Id; /* link id used in ports etc */
Channel *TxChan; /* address of tx channel */
Channel *RxChan; /* address of reception channel */
struct Id *TxUser; /* pointer to user of tx channel */
struct Id *RxUser; /* pointer to user of rx channel */
word MsgsIn; /* number of input messages */
word MsgsOut; /* number of output messages */
struct Id *TxQueue; /* queue of waiting transmitters */
struct Id *RxId; /* current message receiver */
word spare1[2]; /* unused space */
struct Id *Sync; /* synchronisation point */
Port LocalIOCPort; /* port to be used by our LinkIOC */
Port RemoteIOCPort; /* flag byte */
word incarnation; /* remote processor’s incarnation no. */
word MsgsLost; /* messages lost/destroyed */
word spare2[2]; /* unused space */

} LinkInfo;

It is possible to move to this structure element and indirect through it, remembering
that all numbers are in hexadecimal.

+10
8000e774: 800fddc0 ffffffff . .ˆO
[
800fddc0: 800fddd4 800fde1c . .ˆO .ˆ\ .ˆO .
[
800fddd4: 00030270 80000000 pˆBˆCˆ@ˆ@ˆ@ˆ@ .

Comparing this information with the LinkInfo structure indicates that this is link 0,
state running, mode intelligent, and the link has the parent, ioproc, and debug flags
set (remember that the debugger is currently showing words rather than bytes). The
output channel is at 0x80000000 as expected. All indirections are put onto the stack
so it is possible to move back to the previous table and go to the next link.

]
800fddc0: 800fddd4 800fde1c . .ˆO .ˆ\ .ˆO .
>
800fddc4: 800fde1c 800fde64 ˆ\ .ˆO . d .ˆO .
[
800fde1c: 01060000 80000004 ˆ@ˆ@ˆFˆAˆDˆ@ˆ@ .

This shows the LinkInfo structure for link 1, state dead, mode not connected, and
no flags set. The output channel for this link is at location 0x80000004. The above
example session has illustrated most of the features of the debugger.

354 CHAPTER 8. THE I/O SERVER

8.5 The PC I/O server

PC Transputer boards such as the Inmos B008 board are among the most popular
platforms for running Helios. Hence the PC version is one of the most important im-
plementations of the I/O server. Unfortunately the PC I/O server may have to work in
a fairly hostile environment. First, it has to work under MS-DOS and in the segmented
architecture of the Intel 80x86 processor, yet provide access to all of the standard I/O
facilities of a PC. Second, it has to work alongside hardware extensions to the standard
PC such as local area network cards, and software such as device drivers that interact
with the extra hardware. Third, there may be a number of other programs, particularly
‘terminate and stay resident’ utilities, in the PC at the same time that may get acti-
vated at unfortunate moments and play havoc with the I/O server’s normal operation.
Fourth, the I/O server has to work within the memory limit of a standard PC, 640K
minus space for MS-DOS and other software that the user has installed.

Note: for these reasons, the PC I/O server is not guaranteed to run on all PCs,
ATs, and their clones. It is not guaranteed to run on machines that have had extra
hardware facilities installed. It is not guaranteed to coexist with any software other
than MS-DOS, including hardware specific device drivers. However, all reasonable
care has been taken to ensure that the I/O server runs on as many different machines
as possible.

The PC version of the I/O server is shipped as a single program, server.exe, which
is the I/O server itself. There is a separate utility makedisk.exe, described in the
subsection on the /rawdisk device below. This section describes various facilities and
options that are specific to the PC I/O server.

8.5.1 Hardware

The configuration file option specifying the host computer can be set to either PC or
AT.

host = AT

In the original release of the PC I/O server, choosing between these affected certain
delay loops. A PC host was assumed to run at less than 12MHz, and an AT host faster
than 12MHz. In the current version the I/O server ignores this variable. The processor
box definition can take one of four values: B004, B008, MK026, and Cesius.

box = B008

The B004 interface is based on the Inmos C012 link adapter, but does not support
DMA. The I/O server interacts with the link adapter by polling the C012 chip in a
very tight loop. The B008 interface is similar but does have DMA. However, on most
machines DMA is actually slower than the polling loop. Whether or not DMA will
be used depends on a separate flag dma channel, described below. Most Transputer
boards produced by other companies are compatible with either the B004 or the B008.
An exception is the the Meiko MK026 card, a link adapter card that allowed users to
connect a Computing Surface to a PC. The Cesius card is produced by Meiko. It has
an MK026 style link adapter and one Transputer. In most cases specifying one of these
four boards will suffice. Unfortunately there are always exceptions. The first problem

8.5. THE PC I/O SERVER 355

arises if the Transputer board is set up at a non-standard address within the PC’s I/O
address space. The default values are as follows.

Board Address
B004 0x150
B008 0x150

MK026 0x100
Cesius 0x180

If the Transputer board is set to a different address, the configuration file variable
link_base should be used:

link_base = 0x150

If the board specified is a B008 it is possible to enable DMA. This requires speci-
fying the dma channel, usually a number between zero and three. The hardware docu-
mentation should be consulted for further details.

dma_channel = 1

The I/O server does not make use of any interrupts generated by the link adapter
hardware. There are two additional variables in the configuration file that affect the
link hardware,
reset_timeout and analyse_timeout. It is very rare for users to have to change these,
and some understanding of the exact workings of a Transputer is required. When boot-
ing up or debugging processors it is necessary to reset and analyse them by asserting
a chip signal, waiting a while, and then releasing the signal. The I/O server contains
some very simple code to do this. The following is used for resetting.

assert signal
mov cx, <reset_timeout>

wait:
loop wait
release signal
loop <reset_timeout> times

Analyse is similar:

assert analyse
loop <analyse_timeout> times
assert reset
loop <reset_timeout> times
release reset
loop <reset_timeout> times
release analyse
loop <reset_timeout> times

A problem arises because different machines may need different values for the de-
lay count. In theory a 25MHz machine needs four times the delay of a 6MHz machine,
yet the I/O server should run on both. On the other hand, spending an excessive amount
of time looping simply causes unnecessary delay. In practice the I/O server uses values

356 CHAPTER 8. THE I/O SERVER

of 8000 for reset_timeout and 4000 for analyse_ timeout, and these appear to work
on all machines without causing an unacceptable delay. Should problems arise in this
area then the delay counts can be modified by the user. However, it is unlikely that
problems will be encountered in this area.

8.5.2 Special keys

The PC version of the I/O server has two types of special keys. First, when the server
windows system is running the keys Alt-F1 and Alt-F2 are used to switch windows.
To switch to the next window, hold down the Alt key and press function key 1. To
switch to the previous window hold down the Alt key and press function key 2. If the
server windows system in not running then these keys can be read by a program under
Helios.

The PC I/O server does not have a special key for refreshing the current window
because in the single tasking environment of MS-DOS it is difficult for any program
other than the I/O server to write to the screen and thus corrupt the current window.
When the raw keyboard device is enabled the Alt-F1 and Alt-F2 combinations stop
working. Hence it is not possible to have multiple windows on the PC side and si-
multaneously run the Helios X window system, because the X Server requires raw
keyboard events. The other type of special key is used for the debugging options and
for the four special actions: reboot, exit, status, and debugger. This requires holding
down a control and a shift key at the same time, and then pressing another (speci-
fied) key. For example: to enable or disable message debugging the user should press
CTRL-SHIFT-M, since the letter M is associated with message debugging. For the four
special actions, function keys are used (see the table below).

Action Key
Reboot control-shift-F10

Exit control-shift-F9
Status control-shift-F8

Debugger control-shift-F7

On some PCs not all combinations of shift and control keys are detected correctly
by the underlying system software. For example, pressing the left control key and the
right shift key may not work as expected. To date, every machine has had at least one
combination of control and shift keys that worked reliably, but some experimenting
may be necessary.

The control-shift combinations will continue to work even when the raw keyboard
is enabled. Furthermore, some of the key presses are actually stripped out. For ex-
ample, the user may be running the X window system and want to enable the Open
debugging option. This means pressing down the shift key, the control key, and the O
key, then releasing these keys in the reverse order. Pressing the shift key will generate
a key-down event, as will pressing the control key. Pressing the o key will enable the
debugging option, but will not generate a key event. Releasing the o key has no effect.
Releasing the control and shift keys will generate two key-up events.

8.5. THE PC I/O SERVER 357

8.5.3 File I/O

The PC I/O server provides the standard /helios file server, mapped onto a directory
in the PC’s filing system. In addition there are servers /a, /b, /c, /d and so on for the
various disc drives and partitions. Hence the Helios command

ls -l /c/users

gives similar information to the MS-DOS command

dir c:\users

There is a problem with floppy discs on PCs. All PCs appear to come with two
floppy drives a: and b:, even if there is only one real floppy. This is achieved by
mapping two logical disc drives onto one physical disc drive. Accessing the wrong
floppy produces the following message.

Insert diskette for drive B: and press any key when ready.

Now consider what may happen under Helios, when the user tries to access the
server /b. MS-DOS would give the same error message and suspend the I/O server
until it detects a key press. Hence the I/O server stops responding to requests from the
Helios network, and after a while Helios will decide that the I/O processor has crashed
and will stop using it. Since the user interacts with Helios through the I/O processor,
the Helios network is no longer accessible for the user.

A fast user could recover from this error by putting in the right floppy disc and hit-
ting a key. Unfortunately if the user is running the X window system in the Transputer
network and the X server has taken over the PC’s keyboard, through the /keyboard
device, then the I/O server will intercept all key presses through its interrupt handling
routines and MS-DOS will never detect a key. Hence there is no way for the system to
recover.

Unfortunately MS-DOS does not provide a simple and reliable way of determining
whether there are two separate floppy disc drives or only one. There is a system call:

get peripheral equipment list

at interrupt 0x11, but the values returned do not appear to be correct on all machines.

Defining available floppy disc drives

It is the user’s responsibility to specify which floppy disc drives should be accessible
from Helios, with a configuration file option.

floppies = a
floppies = ab

If no floppies variable is defined in the configuration file then it will not be possible
to access drives a: and b: from Helios. If only drive a: is specified in the configuration
file then there will be a server /a but no server /b. If both drives are specified with the
floppies variable then both servers will exist.

Certain local area network systems, notably PC-NFS, cause a different problem.
When installed these create pseudo-drives e:, f:, and so on all the way to v:. These

358 CHAPTER 8. THE I/O SERVER

drives are not actually used unless the user explicitly mounts them as network drives.
Unfortunately the I/O server has no simple way of distinguishing these pseudo-drives
from real drives, so normally the I/O server would create servers /e, /f, and so on. Every
server requires a certain amount of memory, so clearly this is wasteful. To avoid this
waste, the PC I/O server only creates servers for drives that are not empty. Hence if the
PC is equipped with a real disc partition e:, but no file has been into this partition, then
the I/O server will not create a server /e and the partition will not be accessible from
Helios. To avoid this problem, simply copy one file into the empty partition before
running the I/O server.

There is a problem with text files under MS-DOS. In a Unix or similar system,
linefeed characters are used to split lines of text. A single character is perfectly ade-
quate for this job. Unfortunately under MS-DOS two characters are used, a carriage
return character and a linefeed. Programs running under MS-DOS, including PC edi-
tors, will use the extra carriage return character. Also, such programs may put CTRL-Z
characters at the end of the file to indicate ‘end-of-file’.

Helios prefers to use the Unix system of a single linefeed character to split two
lines of text. However, it is still very desirable to be able to read text files produced
under MS-DOS from Helios, and vice versa. To cope with this Helios distinguishes
between text file I/O and binary file I/O, and between MS-DOS style filing systems
and normal filing systems. At the Helios System library level and at the Posix library
level, all file I/O is in binary mode. At the C library level, applications have the choice
of operating in text or binary mode:

FILE *text_stream = fopen("myfile", "r");
FILE *binary_stream = fopen("myfile", "rb");

Some Helios commands work in binary mode. For example, the command:

cp /helios/include/stdio.h /ram/stdio.h

does a binary copy of an MS-DOS format text file into a normal filing system, leaving
the spurious carriage returns in place. Examining the file will show up the carriage
characters. Binary mode must be used when transferring true binary files such as
programs. There is a separate command: tcp, to copy text files, stripping out the
unwanted characters.

Although the Helios C library and other Language libraries are capable of stripping
out the spurious characters in MS-DOS format text files, inherently this involves a
small overhead. If the PC is used primarily or entirely in order to run Helios, it may
make sense to switch all files to a Unix mode and inform Helios to treat the PC drives
as normal Unix drives rather than MS-DOS style drives. This is achieved with the
host.con flag:

unix_fileio

Before enabling this option it is necessary to convert all text files on the PC from
MS-DOS format to normal format, usually with the xlatecr command. If the option is
enabled before all text files are converted then the remainder may cause problems. This
is particularly true of system configuration files such as /helios/etc/initrc. To interact
with the MS-DOS filing system the PC I/O server uses normal MS-DOS system calls,
interrupt 0x21.

8.5. THE PC I/O SERVER 359

8.5.4 Multiple windows

The PC I/O server implements the usual server windows interface. The I/O server
assumes it runs in a 25 rows by 80 columns text mode, and allows any number of text
windows of this size subject to memory limitations. The keys used to switch between
windows are Alt-F1 to switch to the next window and Alt-F2 to switch to the previous
window. All output to the screen goes through the PC BIOS calls, using interrupt 0x10.
These have proved portable across all types of PC and give an acceptable performance.
There is no need to install the MS-DOS ansi.sys screen driver in order to run the I/O
server. Reading the keyboard is done through the keyboard BIOS routines, interrupt
0x16.

8.5.5 The error logger

The PC I/O server implements the standard error logger device. When error logging
goes to the screen it is handled by the same code as for the window server described
above, and output goes through the BIOS routines at interrupt 0x10. When error log-
ging goes to a file it uses the MS-DOS system routines at interrupt 0x21.

8.5.6 The clock device

The PC I/O server implements the standard clock device. In the PC implementation
this clock device can be written, so Helios applications are able to change the time and
date maintained by the I/O server. The I/O server uses the MS-DOS system call at
interrupt 0x21, function codes 0x2A, 0x2B, 0x2C, and 0x2D, to interact with the PC’s
clock.

8.5.7 X window system support

When running the X window system in the Helios network the X server will need
access to a mouse and keyboard device. The PC I/O server can provide these devices
through /mouse and
/keyboard servers, if desired. However, the default PC installation of Helios does not
include the X window system so by default these servers do not exist. To enable these
servers it is necessary to set a flag in the configuration file Xsupport.

The raw keyboard device works by taking over the PC’s keyboard interrupt vector
0x09 and interacting directly with the keyboard chip. This prevents the PC BIOS
and MS-DOS from detecting any keyboard presses, for example the caps-lock key
will no longer light up the keyboard ‘LED’ and the key sequence CTRL-ALT-DEL
will no longer cause a reboot. (The reset button should still work, and so should
powering down the PC.) It will not be possible to read keyboard data from the /window
or /console devices, and it will not be possible to switch windows. However, the
various CTRL-SHIFT key pressing sequences such as CTRL-SHIFT-F9 to exit the I/O
server, will still work, and exiting will restore the PC to its normal state. There are no
configuration options for the raw keyboard device.

When using a keyboard other than a standard UK QWERTY keyboard another
problem may arise. Different keyboards tend to use the same scancodes for shift keys,
control keys, and so on. This is not true for letters. For example, when the I/O server

360 CHAPTER 8. THE I/O SERVER

detects scancode 0x11 down, this corresponds to character w on a QWERTY keyboard
but character z on a French AZERTY keyboard. When the raw keyboard device is
not enabled this does not cause any problems, since the BIOS routines perform the
scancode translation. Otherwise the I/O server assumes that a QWERTY keyboard is
in use. If a French AZERTY keyboard is attached then when not running the X window
system, CTRL-SHIFT-Z will cause the configuration file to be reread. When the X
window system is being used CTRL-SHIFT-Z will toggle write debugging, because
the I/O server assumes that the key pressed is w.

The raw keyboard device relies on a PC with standard hardware, in terms of the
chips used and so on. Hence it is possible that the device does not work correctly on
some PCs, because of subtle or unsubtle differences in the hardware. The mouse device
is more complicated, because there are various different PC mice. For portability the
PC I/O server does not interact with the mouse hardware directly. Instead the user has
to install the mouse device driver that (usually) comes with the mouse hardware before
running the I/O server. The I/O server is designed to interact with the Microsoft mouse
device driver, but most other device drivers are compatible with this.

When using serial mouse devices there may be a clash between the mouse driver
and the I/O server code to drive the serial lines. This is described in section 8.5.8.
There are two configuration file options to control the sensitivity of the PC mouse.
Mouse sensitivity causes two problems. First, how much mouse movement should
correspond to a single unit movement? If a tiny movement of the mouse corresponds
to a single unit then accurate positioning becomes difficult. If a large movement cor-
responds to a single unit then it takes a long time to move the mouse cursor from one
side of the screen to the other. Second, how many such units should be accumulated
before they are packed into a message and sent off into the Helios network? If an
event message is generated for every unit of movement then the link between the I/O
processor and the root processor can be saturated very easily. If an event message is
generated only for a large number of movement units, accurate positioning is difficult.
The configuration file options are:

mouse_divisor = 5
mouse_resolution = 1

The mouse_divisor variable controls the amount of mouse movement corresponding
to a single unit. The mouse_resolution variable corresponds to the number of units
that have to be recorded before an event message is generated. The default for both
variables is one.

8.5.8 Serial ports

Typical PCs are equipped with one or more serial or RS232 ports, known as COM1:,
COM2:, and so on. These serve several purposes: dumb terminals can be hooked
into the PC; the PC can be used as a dumb terminal to some other machine such as
a Unix workstation; a serial printer can be attached to the PC; a serial mouse can be
plugged into the PC; a dial-up modem may be connected; or some other hardware
can be attached. Most of these should also be possible from Helios, so the PC I/O
server must provide support for the RS232 hardware and allow Helios applications to
access the RS232 ports. The /rs232 hardware only provides a transport layer. If data

8.5. THE PC I/O SERVER 361

is written to, say, /rs232/default then it will be sent out of the appropriate serial port.
Higher-level software such as printer spoolers or terminal drivers should be used to
perform any higher-level formatting that may be required.

There is a problem with supporting RS232 hardware, because the support that is
provided by MS-DOS and the lower-level BIOS facilities is not sufficiently powerful
to meet the requirements of non-trivial applications. Hence the I/O server has to take
full control of the serial line chips (the 8250 UARTs) and the appropriate interrupt
lines. Like the raw keyboard device this relies on having fairly standard hardware in
the PC, and hence there may be some PCs where the /rs232 server does not work as
expected or at all. It is even possible that when the I/O server attempts to access the
RS232 hardware it will crash, because the hardware does not behave as expected. To
avoid this problem the /rs232 server is disabled by default, and the I/O server will only
support this device if the following variable is specified in the configuration file.

rs232_ports = 1,2

This line specifies that the serial lines for COM1: and COM2: should both be acces-
sible from Helios. It is possible to restrict access to just one port or to any number of
ports.

rs232_ports = 1
rs232_ports = 2,3,5,6,7

Unless the user actually needs to make use of the serial lines from Helios, it is
usually easier to comment out this variable and not have the /rs232 server.

The assumptions made by the I/O server are as follows.

1. Every serial port is controlled by an 8250 UART or a compatible chip

2. The COM1: port is at I/O address 0x03f8

3. The COM2: port is at I/O address 0x02f8

4. The user has to supply the addresses of any other ports in the configuration file

5. Either interrupt vector 0x0B (usually COM2:) or interrupt vector 0x0C (usually
COM1:) may be used for any of the ports, so the I/O server has to check all
UARTs to see which one(s) interrupted

If the PC is equipped with more than the usual one or two serial ports then the I/O
server has no simple way of finding out where these ports are located. Hence the user
has to supply the base addresses in the configuration file.

rs232_ports = 1,3,4
com3_base = 0x300
com4_base = 0x308

Usually the /rs232 server takes over both interrupt vectors 0x0B and 0x0C, no mat-
ter which ports are specified. This can cause problems when a serial mouse is attached
to one of the ports, because the mouse driver expects to receive interrupts. Consider the
case where the mouse is attached to COM2: and the user’s Helios application needs
to access COM1:. It is necessary to limit the I/O server to interrupt vector 0x0C only,
(the interrupt vector for COM1:). The following configuration file entry achieves this.

362 CHAPTER 8. THE I/O SERVER

rs232_interrupt = 1

Setting the variable to two means that the I/O server will only take over interrupt
vector 0x0B, corresponding to COM2:. If in doubt the user can experiment. There is
a 50 percent chance that the user will guess right first time. It is possible to imagine
configurations where the I/O server’s configuration cannot cope. For example, ports 1
and 3 could be hooked to interrupt vector 0x0C, ports 2 and 4 to interrupt vector 0x0B,
and the user has attached a serial mouse to port 2. There is no easy way by which the
user can exploit both the serial mouse and port 4 from Helios.

The PC /rs232 server behaves like a standard Helios RS232 device. If only one
port is accessible from Helios then the /rs232 directory will contain a single entry,
default. If two ports are specified in the configuration file, say COM1 and COM2,
then the /rs232 directory will contain three entries: default, com1, and com2. The
default entry will be equivalent to either the com1 or the com2 entry, and it is possible
to use the mv command or the Rename() library routine to change the default. By
default the first port which is accessible or named in the configuration file will also be
the default port (usually com1). However, it is possible to specify an alternative in the
configuration file.

rs232_ports = 1,2
default_rs232 = 2

Both COM1 and COM2 are accessible from Helios, so normally default is equivalent
to COM1. The second line changes the default to COM2.

8.5.9 Parallel ports and printers

In addition to the serial ports, the I/O server also provides access to the parallel or
Centronics ports. In this case the BIOS routines provided by the PC are sufficiently
powerful to allow the I/O server to drive the hardware, and there is no need to interact
directly with the hardware. This makes configuration much easier. A typical PC has
one or more Centronics ports, known as LPT1:, LPT2:, and so on. There is a system
call to allow the I/O server to find out how many ports there are, and there is no
need to interact with the chip(s) controlling the ports, so there is no equivalent to the
rs232_ports variable in the configuration file. Instead the I/O server always provides
a /centronics server, unless explicitly suppressed with the no_centronics flag or the
PC does not have any parallel ports. A typical /centronics server would contain three
entries: default, lpt1, and lpt2. Following the form of the serial lines, the default
entry is equivalent to one of the others, usually lpt1, but a configuration file entry can
change the default.

default_centronics = lpt2

The /printers device is a combination of all serial and parallel ports. On a typical
PC the /printers device would contain entries default, com1, lpt1, and lpt2, meaning
that the PC is equipped with one serial printer and two parallel printers. The /printers
server contains the same entries as the /rs232 and /centronics servers put together,
so if a serial port is not accessible through the /rs232 server it will not be accessible
through the /printers server either. As with the /rs232 and /centronics server it is
possible to specify the default printer in the configuration file.

8.5. THE PC I/O SERVER 363

default_printer = com2
default_centronics = lpt1

Both the /centronics and /printers devices only provide a transport layer. If data is
written to the device /centronics/lpt2 it should come out of the corresponding parallel
port unchanged. Higher-level software such as printer spoolers are responsible for
performing any formatting that may be required.

8.5.10 The rawdisk device

Most of the time, any file I/O performed using the PC hard disc or floppies makes
use of the underlying MS-DOS filing system. MS-DOS takes care of allocating disc
blocks when required, maintaining the directory structure, and so on. In any PC Helios
installation there must be at least one disc drive or partition that is maintained by MS-
DOS, so that the I/O server can be run from that partition. There is an alternative
to using MS-DOS as the underlying filing system for at least some of the user’s file
I/O requirements, and that is using the /rawdisk device. Suppose the user has a 40
megabyte hard disc, formatted as a 32 megabyte c: partition and an 8 megabyte d:
partition. In this case it is possible to turn partition d: into a Helios rawdisk, and read
and write disc sectors directly bypassing the MS-DOS filing system. This avoids the
overheads of MS-DOS, but leaves all the work of organising the hard disc to the user’s
application. Usually this would be the Helios filing system, but it does not have to be.

For example, the user’s application generates a table of 6 megabytes during its
initialisation phase and then needs to access this table as quickly as possible. This
table does not fit into any processor’s memory, so it has to be stored on disc. Once
the application has finished the table can be deleted. For maximum performance the
user could turn the d: partition into a rawdisk of 8 megabytes. The application opens a
stream to /rawdisk/0 and writes the table of 6 megabytes to it, using up 12288 sectors
of 512 bytes each. The application can then seek to a particular sector on the disc
by seeking within the rawdisk device, and read that sector or a number of sectors off
disc. The MS-DOS filing system is not involved in any of this, so the whole table is
guaranteed to be continuous on disc and there are no overheads in writing or reading
the data. A given disc drive or partition cannot be used by MS-DOS and as a rawdisk
device at the same time. To turn an MS-DOS drive or partition into a rawdisk device
it is necessary to use the makedisk command. This causes any data on the drive to
be lost or, rather, to be very difficult to access. After use of makedisk MS-DOS will
no longer be able to write data to that drive. As far as the MS-DOS filing system is
concerned the drive does not contain any files, but all available disc sectors have been
used up. To make the drive usable again by MS-DOS it will have to be reformatted,
using either the format or the fdisk commands. Again, this will cause any data on the
disc to be lost. The makedisk command is shipped with the standard Helios product.
It should be invoked with a single argument, the letter of the drive or partition to be
modified, for example

makedisk a

When invoked it will produce output such as:

364 CHAPTER 8. THE I/O SERVER

Disc statistics :
The following information must be put in the devinfo file.

sectorsize 512
sectors 17
tracks 9
cylinders 272

About to convert disk to raw format.
This will erase all data on the disk.

Press return to continue, or ctrl-C to abort.

The disc statistics information is used for configuring the file server to use the
rawdisk device. The user is given one last chance to abort the process, if desired. For
safety reasons the makedisk command refuses to modify the c: partition of the hard
disc, because in most installations this is the boot disc for the whole PC. Please note
that some of the sectors near the start of the partition or disc will not be accessible from
Helios, since these sectors must still be understood by the MS-DOS filing system to
stop it writing to the disc. Once one or more discs or drives have been converted to raw
format the I/O server should be informed about them. This is done with a configuration
file variable:

rawdisk_drive = da

This means that the device /rawdisk/0 corresponds to drive d:, and /rawdisk/1 to drive
a:.

8.5.11 The /pc device

The PC I/O server only provides access to the devices which are available on most PCs,
and this suffices for nearly all users. To access other hardware it is usually necessary to
purchase and modify the I/O server sources. However, there is a very limited facility
by which users can install a ‘terminate and stay resident’ program before running the
I/O server, and then activate this program from a Helios application. That application
should open a stream to a device /IO/pc, and then perform message passing on the
resulting stream. When the I/O server receives such a message it will invoke software
interrupt 0x60, which should be the user’s program. When the interrupt returns the I/O
server will send back a reply message. Consider an example program to do this. First,
the Transputer side:

/**
*** This program illustrates how to activate trap 0x60

*** on an IBM PC or compatible. This allows you to

*** install your own Resident modules and access them

*** from Helios, (to control devices not supported

*** by the standard Helios server).

**/
#include <stdio.h>
#include <stdlib.h>
#include <syslib.h>

8.5. THE PC I/O SERVER 365

#include <message.h>

int main(void)
{ MCB mcb; /* for message passing */

Object *IO;
Stream *stream;
Port reply_port;
WORD result;
int i, j;

/* First, find the server */
IO = Locate(NULL, "/pc");
if (IO == Null(Object))
{ printf("Unable to locate /pc - exiting.\n");

exit(1);
}

/* Second, open a Stream to that server */
stream = Open(IO, "/pc", O_ReadOnly);
if (stream == Null(Stream))
{ printf("Unable to open /pc - exiting\n");

Close(IO);
exit(1);

}
/* Get a reply port for message passing */

reply_port = NewPort();
if (reply_port == NullPort)
{ printf("Unable to get reply port - exiting\n");

Close(IO);
exit(1);

}
/* Fill in a message structure */

mcb.MsgHdr.DataSize = 0;
mcb.MsgHdr.ContSize = 0;
mcb.MsgHdr.Flags = MsgHdr_Flags_preserve;
mcb.MsgHdr.Dest = stream->Server;
mcb.MsgHdr.Reply = reply_port;
mcb.MsgHdr.FnRc = 0x20765432;
mcb.Data = Null(BYTE);
mcb.Control = Null(WORD);
mcb.Timeout = 10 * OneSec;

/* Try to send the message */
result = PutMsg(&mcb);
if (result != 0)

{ fprintf(stderr, "PutMsg returned %lx\n", result);
Close(IO);
Close(stream);
FreePort(reply_port);
return(result);

}

/* and wait for the reply */

366 CHAPTER 8. THE I/O SERVER

mcb.MsgHdr.Dest = reply_port;
(void) GetMsg(&mcb);

/* Tidy up and exit */
Close(IO);
Close(stream);
FreePort(reply_port);
return(0);

}

The PC side is detailed below.

;
; Resident program to test the Helios call-trap facility.
;
; Install a simple routine at interrupt 0x60, to be called
; by the PC I/O server when it receives a private protocol
; message for the /pc device. The routine gets a pointer
; to the Server MCB in registers ds:dx, allowing it to
; manipulate the message before it is sent back to the
; client - make sure that the data size and control size
; entries in the MCB are set correctly. The routine should
; return in under two seconds, with a 32-bit reply code in
; dx:ax - this is sent back as the message FnRc to the client.
;

cseg segment para public ’CODE’

org 100H

assume cs:cseg, ds:cseg, es:cseg, ss:cseg

Init proc near

mov dx,cs ; force all segment registers
mov ds,dx ; to a sensible value
mov es,dx
mov dx,offset trap ; install routine "trap" at
mov ax,2560H ; interrupt vector 0x60
int 21H

mov dx,offset signon ; display a message to show that
mov ah,9 ; the routine is installed
int 21H

; terminate but stay resident
mov dx,((offset Pgm_Len+15)/16)+20H
mov ax,3100H
int 21H

Init endp

;

8.5. THE PC I/O SERVER 367

; This is the routine that will be activated by the Server
;
trap proc far

sti ; make sure that interrupts are
; enabled

mov dx,offset warn ; display a message to show that
mov ah,9 ; the trap has been activated
int 21h
mov dx,8765H ; return code 0x87654321
mov ax,4321H

iret

trap endp

cr equ 0dH
lf equ 0AH

signon db cr,lf,’Trap 60 handler installed’,cr,lf,’$’
warn db cr,lf,’Trap 60 activated’,cr,lf,’$’

Pgm_Len equ $-Init ; size of this program,
; needed to terminate
; but stay resident

cseg ends

end init

The example PC program simply displays a message when it is run, and another
message whenever a Helios application causes the program to be invoked. On the
Helios side the following points should be remembered. The example code does not
take into account any of these points, to keep it simple.

1. There may be more than one /pc server in the network. In fact there may be a
processor called /pc, containing a server /pc/pc.

2. Message passing is unreliable. It is possible for either the request or the re-
ply message to get lost, for example because an intermediate processor crashed
or ran out of memory. The protocol used between the application and the PC
program should be able to cope with errors of this sort.

3. Streams tend to ‘time out’ under Helios. If a stream has not been used for half an
hour or so then the corresponding server is allowed to assume that the client has
gone away or crashed, without closing the stream. The behaviour observed by
the application is similar to that for the previous case, because message passing
fails.

The PC side is rather more complicated.

368 CHAPTER 8. THE I/O SERVER

1. The trap routine will be invoked with a pointer to a message control block or
MCB in registers ds:dx. The MCB structure is defined in the header file mes-
sage.h

2. The message will be in Transputer format, so an integer in the structure is a
32-bit long on the PC side

3. The trap routine should return a function code in the dx:ax register pair. This
function code will be installed in the message. In addition the message ports
will be adjusted as required.

4. The trap routine can send back data if required. The MCB will contain a suitable
control and data vector, which can be filled in by the trap. The trap routine
should also fill in the control vector size and data vector size in the message
header, or the I/O server will be unable to determine how much data to send
back. The other fields in the MCB must not be changed by the trap routine.

5. The I/O server will preserve all registers on the stack. The trap routine must not
corrupt the stack, and should not use more than about 500 bytes of stack.

6. If the PC program consists of a mixture of C and assembler then the program-
mer is responsible for ensuring that these work together correctly. In particular
the various segment registers may have to be set up correctly before calling C
routines, to allow access to static data.

7. If the trap routine is going to perform file I/O it must set up the Program Segment
Prefix or PSP correctly, as well as some other MS-DOS specific variables.

8. The trap routine must not suspend the I/O server indefinitely. In particular, some
other Helios application may want to access a server inside the I/O processor and
will try to send a request down the link. Unless the I/O server accepts this request
within a few seconds things will start to go seriously wrong. As a general rule
the trap routine should return within about two or three seconds.

A more complicated example of such a ‘terminate and stay resident’ utility, and a
Helios application that interacts with it, is shipped with the PC graphics library. For
details of writing such programs generally, and in particular how to perform file I/O,
the MS-DOS Encyclopedia8 may prove useful.

8.6 The Sun I/O server

After PC Transputer boards, the various types of Sun plug-in boards are probably
the most popular type of Transputer expansion system. Amongst the manufacturers
producing Sun boards are Inmos, Parsytec, and Transtech. This section describes the
Sun implementation of the I/O server, which can drive all of these boards.

8Published by Microsoft Press, a division of Microsoft Corporation.

8.6. THE SUN I/O SERVER 369

8.6.1 Introduction

There are two quite fundamental differences between the PC I/O server and the Sun
implementation. A typical PC plug-in board has a single link adapter and one or a
small number of processors. It is unusual to have more than one such board in a PC,
because in a single-tasking operating system like MS-DOS it is not possible to run
several different copies of the I/O server. A typical Sun board might come with four
link adapters, allowing four users at the same time. Each link adapter is known as a
site. The I/O server must be able to cope not only with different hardware, but also
with the different sites on a given piece of hardware. Every site allows one I/O server,
so if there are four sites then it is possible to have four copies of the I/O server running
simultaneously, each supporting one user.

The second difference involves local area networking. Most Suns tend to be at-
tached to an ethernet, and software should be able to exploit this. In particular it
should be possible to access some Transputer hardware plugged into a Sun somewhere
else in the network, yet still be able to access all the resources in your own machine.
This will be slower than accessing the Transputer hardware directly, because most of
the communication now has to go over the ethernet as well as across the link. This
gives us the picture of the world shown in Figure 8.7.

10 11 12 13 14 15 16 17

00 01 02 03 04 05 06 07

Sun

Ethernet

Sun 3�

	

� �

Sun 4 �
	

� �

�

�

�

�

�
terminal
�

�

�

�

Figure 8.7 A Sun network

At the top is a Helios network, with 16 processors but it could be any number. There is
a Sun with four sites, possibly but not necessarily just a file server. This Sun is attached
to an ethernet network. Also on the network are a Sun3, a Sun4 with a dumb terminal
attached through a serial port, and a PC running PC-NFS and Telnet. On the two Suns
the users may be running SunView or the X window system. The dumb terminal may
be a ‘standard’ VT100 terminal, or something very obscure. It should be possible to

370 CHAPTER 8. THE I/O SERVER

run Helios from any of these machines and still gain access to the resources of the
user’s own machine.

To cope with these requirements Helios comes with four separate programs to run
on Sun hosts. All of these are shipped in Sun3, Sun4, and Sun386 versions.

1. server: the I/O server itself. This should always run on the user’s Sun. It can
access a plug-in board inside that Sun, or some remote board accessible through
the ethernet.

2. hydra: a link daemon. This program can only run on a Sun equipped with the
plug-in boards. It allows an I/O server running somewhere else to access the
board, over the ethernet.

3. hydramon: a little administration program to control the behaviour of the link
daemon.

4. serverwindow: a separate program which is started by the I/O server to interact
with SunView9.

In the diagram all four sites are shown connected to a single Helios network. This is
one way of configuring the system, but not the only way. Another configuration would
have all four sites going into four separate, non-overlapping networks. Alternatively
there could be two networks, with two sites going to each network, or some other
combination.

In addition to the usual I/O server configuration file host.con, the Sun system
uses a separate configuration file hydra.con for the link daemon hydra and the utility
hydramon. This new configuration file uses the same syntax as the host.con file.

8.6.2 Hydra

Hydra is the Helios link daemon. It is run on the Sun containing the processor network,
and allows access to this hardware from any other Sun connected to the same ethernet
network. The I/O server is run on these other Suns, and gives access to all the resources
of these other Suns including the graphics display. This is shown in Figure 8.8.

In most installations the hydra program is controlled by the system administrator
and started up automatically when the Sun boots up, typically as a local service in the
Sun’s /etc/rc file. Alternatively the program can be started up manually at any time by
any person who has access to the binary. The command line syntax for hydra is:

hydra[−C < hydra − configuration− file >]

By default the program reads the configuration file hydra.con from the current
directory. A different configuration file can be specified on the command line. It must
contain the following information.

host The type of I/O machine.

box The type of external hardware.

hydra host The ethernet name of the Sun host.

9Trademark of Sun Microsystems

8.6. THE SUN I/O SERVER 371

10 11 12 13 14 15 16 17

00 01 02 03 04 05 06 07

�

�

�

�

� �

Sun 3
Sun 4

or
Sun 386

Hydra must run here
I/O server can run here

�
�

Ethernet

�

Sun 3�

I/O server can run here�

	

� �

Sun 4
I/O server can run here�

�

	

� �

Telnet to a Sun�

�

�

�

�

�

Figure 8.8 Hydra and the I/O server

address The Unix or Internet socket name.

site description The accessible sites.

In normal operation Hydra behaves as a TCP/IP service. If it is to work correctly
then this service must be registered with the Sun’s operating system. In particular there
is a system resource file, /etc/services, which should be changed on the machine run-
ning Hydra and every machine which may run the I/O server. This file can be changed
only by the system administrator, and in many installations the Network Information
Service (NIS) can take care of most of the work. The following line should be added
to the /etc/services file.

hydra 1234/tcp # Helios link daemon

This gives the name of the service, hydra, a unique socket number which must not
clash with any other service socket number in the network, and a specification that the
service is a tcp service rather than udp or some other protocol. A typical hydra.con
file looks like this.

host = SUN
box = IMB
hydra_host = Molly
#family_name = AF_UNIX
#socket_name = /tmp/hydra
family_name = AF_INET
connection_delay = 5
all_sites
#imb0
#imb1

372 CHAPTER 8. THE I/O SERVER

The various fields in the configuration file have the following meanings:

1. host serves to identify the host computer. It is somewhat redundant since the
program has been compiled for a Sun anyway, but it provides a useful validation
check for the configuration file.

2. box identifies the Transputer hardware to be used. The various possible boxes
are listed in section 8.6.5.

3. hydra host is the ethernet network name of the Sun containing the Transputer
hardware. Every machine attached to an ethernet has two identifiers, a network
number such as 89.0.0.150, and a text name such as Sun5 or Molly. These
identifiers can be found in the Sun configuration file /etc/hosts. The hydra host
variable should be set to this text name.

4. family name. Under SunOS there are two types of sockets. The Unix sockets of
the family AF UNIX are internal to the machine and do not allow remote access.
Internet sockets, family AF INET, do allow remote access. The AF UNIX
family is supported only for debugging purposes or when there are problems
with the installation process, and normally the AF INET family should be used.

5. socket name is used only in conjunction with AF UNIX sockets as described
above. The socket used by the daemon and the clients must be created within
the Unix filing system, so a file name must be supplied.

6. connection delay. When a client first connects to the link daemon and boots He-
lios into a processor the initial communications traffic is very heavy. If various
people attempt to do this at the same time then there may be timing problems.
Hence there is always a minimum delay between successive connections, the
default being ten seconds. Some other delay can be specified using this variable.

7. all sites specifies that all the available sites should be accessible over the ether-
net. In most installations this is the default. The alternative is to specify only
those sites that can be accessed over the ethernet, by listing the names of those
sites.

8.6.3 Hydramon

Most of the time there should be no need to interfere with the behaviour of hydra, but
just in case a utility is provided to interact directly with the link daemon and perform
various operations. This utility is known as hydramon. This utility is usually available
only to the system administrator, or to trusted people. The hydramon command line
options are:

hydramon[−C < hydra − configuration− file >]

The hydramon program needs to read the same hydra.con configuration file as the link
daemon. By default it will attempt to read this file from the current directory, but an
alternative file name can be specified on the command line. When hydramon starts up
it connects to the link daemon and should give the menu:

8.6. THE SUN I/O SERVER 373

Site 0 (IMB0) : running, owned by bart @ Folly
(Top, Bottom, Next, Prev, Disconnect, Use, Free, Help, Quit)
?

The first line gives the current site number and name, and the state of the site. In the
example shown the site is currently running a Helios session for user bart on machine
Folly. An owned site may also be reset, usually because the user is debugging that
site, or booting if the user is in the middle of booting up that site. Sites that are not
owned can be free or unused. A free site is accessible through hydra, but nobody
is currently accessing this site as far as Hydra is aware. There may be some other
application using the site without going through hydra. An unused site is not currently
accessible from Hydra. Typically this would happen if the site was not specified in the
hydra.con configuration file.

The various commands perform the following actions.

1. Top moves to site 0.

2. Bottom moves to the last site known to the link daemon. This depends on the
hardware available.

3. Next moves to the next site, allowing the user to step through the various sites
and find out what is happening on each site.

4. Previous moves to the previous site.

5. Disconnect can be used only on sites that are currently owned. It forcibly
disconnects the session and sets the site back to free. The session is aborted
abruptly with no opportunity to save any data or perform any tidying up, so this
option should be used with care.

6. Use takes an unused site, one that is not currently accessible through the link
daemon, and sets it to free mode so that it is now accessible. This can be used
to modify which sites are accessible, without modifying the hydra.con config-
uration file and restarting the link daemon.

7. Free performs the inverse operation to Use. It takes a free site and changes it to
unused, making it inaccessible through the link daemon.

8. Help gives much the same information as described here.

9. Quit terminates the hydramon session.

8.6.4 Supported hardware

The Sun implementation of the I/O server works in terms of sites. Essentially a site is
some form of link adapter connecting the Sun host to a processor network. The current
release of the I/O server supports the following hardware.

374 CHAPTER 8. THE I/O SERVER

Transtech MCP1000

This VME board, previously known as the Niche NTP1000, is suitable for Sun3 and
Sun4 and comes with four sites. The sites are called nap0, nap1, nap2 and nap3,
corresponding to device drivers /etc/nap0 and so on. It is possible to plug several of
these boards into one Sun, giving additional sites nap4, nap5 and so on.

Inmos B011

This board is supported by the I/O server. It is a VME board suitable for Sun3 and
Sun4, but only has one site. The board is accessed by direct access to the VME bus,
and it is not possible to have more than one board in one Sun.

Inmos B014

This is another VME board with just one site. Helios does support more than one
of these boards in a Sun, and the sites are called bxiv0, bxiv1 up to bxiv9. These
correspond to device drivers /dev/bxiv0 onwards.

K-Par

In a Sun386 installation it is possible to use any Inmos B008 or compatible PC board
(if it supports DMA), and access this board through the K-Par device drivers that are
shipped with the Sun386 version of Helios. It is possible to plug two of these boards
into one Sun giving two sites, called imb0 and imb1 and referring to the device drivers
/dev/imb0 and /dev/imb1.

Archipel Volvox-1/S

The Volvox board is a link adapter for the SBus based Sun SPARCstation workstations.
The site is named vxv0, corresponding to the device /dev/vxv0.

8.6.5 Which configuration do I need ?

One of the main problems with producing a flexible system is that the user must spend a
considerable amount of time deciding how to configure it all. This subsection describes
some typical systems, and the configuration that is required for each. In the I/O server
configuration file host.con, the relevant entries are box and site. Possible entries for
box are:

box = NTP1000
box = MCP1000
box = B011
box = B014
box = IMB
box = VOLVOX
box = remote

8.6. THE SUN I/O SERVER 375

One of the first six entries should be used when the I/O server runs on the same Sun
as the Transputer boards. In that case the I/O server needs to interact with the device
driver or the actual hardware, so it needs to know what the hardware is. The last entry
is used when the I/O server goes through the link daemon hydra. In that case the I/O
server does not need to know what the actual hardware is, since those details are taken
care off by the link daemon. If there is more than one site then the host.con file may
specify the particular site to use, irrespective of whether the I/O server goes through
the link daemon or interacts with the hardware directly.

site = 2

If a particular site is specified then the I/O server will try to access only that site.
If the site is already in use then a suitable error message will be generated and the
I/O server will exit. If no particular site is specified then the I/O server will search all
possible sites to see if any of them is free, and it will use that site. In the host.con file
sites are numbered from zero onwards. For example, with the Transtech MCP1000
board site number 0 is nap0, site 1 is nap1, and so on. If the installation needs to use
the link daemon hydra (not all installations do) then there should be a configuration file
hydra.con containing an entry defining the Transputer hardware. See the description
of hydra.con below. For example:

box = imb

It is not legal to specify box = remote in the hydra.con file because the link
daemon always interacts with the hardware, not with another remote daemon. The hy-
dra.con file contains a number of other options. First it may be desirable to restrict the
link daemon to only certain sites, leaving the other sites inaccessible over the ethernet.
The system administrator could use this option to ensure that he or she can always use
one site, by accessing that site directly. Alternatively all sites may be made accessible.
The hydra.con options controlling this are:

all_sites
#imb0
imb1

If the all sites option is given then all the processor sites can be accessed through the
link daemon. However, if the option is disabled then only those sites listed in the con-
figuration file are accessible. In the example this would mean that site imb0 could not
be accessed through the link daemon, but site imb1 could. Note that a site accessible
through the link daemon but not currently in use is still available for other software.
For example, the link daemon may be set up to allow remote access to site 3 amongst
others, but nobody is currently using this site through the daemon. Then any user can
access the site directly, for example to run the I/O server without going through the
link daemon. Attempts to access a site through the link daemon when another piece
of software is using it will fail, and a suitable error message will be produced. As a
general rule, there will be only one copy of the hydra.con configuration file and this
will be controlled by the system administrator. Every user may have her or his own
copy of the host.con configuration file, although the system administrator should keep
a master copy. Using the options above, various different configurations can now be
considered.

376 CHAPTER 8. THE I/O SERVER

One Sun with one site

If the installation involves just one Sun not attached to an ethernet network, and the
network processor board has just one site, then only the I/O server needs to be config-
ured. This is the most basic installation as shown in Figure 8.9.

�

�

�

�

� �

Sun

00 01 02

10 11 12

Figure 8.9 One Sun with one site

The host.con file should specify the actual hardware, for example:

box = b011

There is no reason for specifying a site because there is only one possible site.
There should not be a hydra.con file since there is no point in running the link daemon
if no remote I/O servers can access it over the ethernet.

One Sun with identical multiple sites

Again assume that the Sun is not attached to an ethernet. However, this time the pro-
cessor network board contains multiple sites and each site has exactly one processor.
Since there is no ethernet there is no point in running the link daemon, so the hy-
dra.con file can be discarded. The host.con file should specify the actual hardware.
There is no point in specifying a particular site because all sites are equivalent, so this
option is usually commented out.

box = mcp1000
site = 2

In a network like this typically one user would have the main Sun display and a full
windowing system, and the other users would have dumb terminals plugged into the
Sun’s serial ports. This is illustrated in Figure 8.10.

Much the same effect can be achieved by having the Sun and several PCs attached
to the ethernet. The PCs are used for telnet sessions to the Sun, and the users can
then run the I/O server on the Sun. The various resources of the PC are not available.
Another similar system would involve a number of different Unix workstations, with
the users gaining access to the Sun through rlogin and running the I/O server on the
Sun. Again only the Sun’s resources will be available, not the resources of the other
Unix workstations.

8.6. THE SUN I/O SERVER 377

�

�

�

�

� �

Sun
terminal
�

�

�

�

transputer
box00 01

02 03

00 01

02 03

site 0 site 1

Figure 8.10 Sun and terminals

One Sun with varied multiple sites

A small variation on the above configuration would have different processor networks
attached to the different sites. Site zero might have 32 processors, site one only eight
processors, and sites two and three only four processors each.

In this case the user will want to specify a particular site when the I/O server is
started up. For example, the host.con file might contain the entries:

box = b014
site = 2

Alternatively the site could be specified on the command line, for example:

server "+site=2"

using the I/O server’s + command line option to add a line to the configuration file.
This technique is a fairly quick way of finding a free site.

Many Suns with many sites

A very different configuration would involve the processor network board plugged into
a file server, with all I/O servers running remotely over the ethernet. In this case all
I/O servers would need to access a remote link, using the host.con entry set out below:

box = remote

In addition it is now necessary to start up the link daemon hydra. This needs to
know what hardware is plugged into the Sun, so this information has to be put into
the hydra.con file. In the configuration specified all sites must be accessible remotely.
Hence the hydra.con file should contain the following entries.

box = mcp1000
all_sites

If all the sites are equivalent then there is no point in specifying a particular site in
the file host.con. If the sites differ in various ways then it may be desirable to specify
one site, either in the host.con file or on the command line, as described above.

378 CHAPTER 8. THE I/O SERVER

A complicated configuration

The configuration starts to get complicated when a mixture of the option systems is
desired. For example, there are a considerable number of Suns on the network and
any one of these may be used to run the I/O server. One of the Suns is equipped with
processor network hardware providing a number of sites, and users may wish to run the
I/O server on this Sun for maximum performance. There are also various PCs running
Telnet sessions connected to the Sun with the processor network, or to other Suns, and
the I/O server must cope with these as well. Such a setup is shown in Figure 8.11.

10 11 12 13 14 15 16 17

00 01 02 03 04 05 06 07

�

�

�

�

� �

Sun 3
Sun 4

or
Sun 386

ethernet

�

Sun 3�
	

� �

Sun 4 �

	

� �

�

�

�

�

�

Figure 8.11 A complicated configuration

First, given such a configuration it will always be necessary to run the link daemon
hydra. The hydra.con file will need to specify the hardware, and which sites can be
accessed remotely. Unless there is a very good reason otherwise, it is usual to allow
access to all sites. Hence the hydra.con file would typically contain the following
entries.

box = imb
all_sites

If a user needs to access a site over the ethernet, through the link daemon, then
something like the following host.con entries should be used.

box = remote
site = 1

This assumes that the various sites are attached to different hardware, which is quite
likely in this setup, and that the user prefers to access the hardware on site 1. If a user is
currently running on the Sun with the processor network then it is usually desirable to

8.6. THE SUN I/O SERVER 379

avoid going through the link daemon because of the extra communication overheads.
Hence the host.con entries would be:

box = imb
site = 0

8.6.6 Other host.con link I/O options

There are a number of host.con I/O server options for interacting with the link. These
are shown below:

box = IMB
#site = 0
#box = remote
#family_name = AF_UNIX
#socket_name = /tmp/hydra
family_name = AF_INET
hydra_host = Molly
connection_retries = 10

1. The box field should specify either one of the types of supported hardware as
described earlier, or remote. The hardware can be specified if the I/O server
runs on the Sun with the processor network attached. Otherwise remote should
be used, indicating that the I/O server should go through the link daemon hydra.

2. The site variable can be used to specify the particular site to access, irrespective
of whether the I/O server is accessing the hardware directly or going through the
link daemon. If the variable is not defined then the I/O server will search for any
free site.

3. The family name option is only used when going through the link daemon,
and should be either AF UNIX or AF INET. The Unix family is used only for
debugging purposes. Please see the section 8.6.2 on hydra for more details.

4. The socket name variable is only used when accessing the link daemon through
Unix sockets, for debugging purposes. It should match the entry in the hy-
dra.con configuration file.

5. The Hydra host option is used when accessing the link daemon through Internet
sockets. It should match the entry in the hydra.con configuration file.

6. With the option connection retries, the link daemon may reject new connec-
tions if it is very busy, because several people are trying to connect and boot at
the same time. In that case the I/O server will try to connect several times, at
five second intervals. The number of retries is controlled by this entry in the
host.con file.

8.6.7 The windowing interface

The Sun I/O server provides two different windowing interfaces. The choice of win-
dowing interface depends on the current TERM environment variable, which must be

380 CHAPTER 8. THE I/O SERVER

defined before the I/O server is run. The Sun’s printenv command can be used to find
out the current value.

If the TERM environment variable is set to sun, sun-cmd, or any other string
with sun as the first three characters, then the I/O server assumes it is running under
SunView and it will exploit the facilities of SunView including multiple real windows
and pop-up menus. Full details are given below.

If the TERM environment variable is set to anything else then the I/O server as-
sumes it is running on a dumb terminal of some sort. This could be a traditional
terminal plugged into a serial port on the Sun, or a PC running telnet. The I/O server
will use the Server windows pseudo windowing system, with a hot key switching
mechanism.

The I/O server consults the Sun’s termcap database for some of its operations.
The user may need to understand some of the workings of this database before reading
the subsections below, by consulting the appropriate Sun documentation.

Window output

When using SunView or a dumb terminal the I/O server will consult the termcap
database called /etc/termcap to work out how to drive the screen, and in the case
of dumb terminals to find out how big the screen is. This means that the /window
server can accept standard Helios output escape sequences and convert these to the
machine-specific ones to drive the actual output. If the termcap database is incorrect
the results are likely to be very confusing.

The following termcap database entries are used:

1. bl to ring the bell. If this entry does not exist the I/O server will send the ASCII
bell character 0x07.

2. cl to clear the screen.

3. ce to clear to the end of the current line. If the termcap database does not have
this entry then the I/O server will emulate it by writing the required number of
space characters.

4. cm to move the cursor to a particular location on the screen.

5. am to determine whether or not the terminal wraps. The Helios standard for
screen output specifies that screens do not wrap, so if the actual terminal does
wrap the I/O server has to take care when writing data in the last column.

6. mr and me to switch output from normal to inverse video and vice versa. If
these two options are not defined then the I/O server will substitute the so and
se options instead.

7. ro and co are used with dumb terminals only, to determine the screen size. If the
I/O server is to work correctly then these two entries must be defined correctly.

In general if the Helios screen output is confused one way or the other, this is
probably because the termcap entry is not correct. The user will have to work out a
correct termcap entry, to be installed by the system administrator.

8.6. THE SUN I/O SERVER 381

Window input

In addition to screen output, the termcap database is also consulted to find out what
data the terminal generates when particular keys are pressed. This data is then con-
verted to the proper Helios sequence. For example, a typical termcap entry might
specify that the terminal generates the sequence \E[215z when the up cursor key is
pressed. Whenever the I/O server detects this sequence in a window it will translate it
to the correct Helios sequence for that key, byte 0x9B followed by the letter ‘A’. The
I/O server will test for the following entries in the termcap database, to perform the
necessary conversions.

Termcap Helios
k1-k9 Function keys 1 to 9
k; Function key 10
&8 Undo key
@7 End key
kI Insert key
kN PageDown key
kP PageUp key
kh Home key
kd Down-arrow key
ku Up-arrow key
kr Right-arrow key
kl Left-arrow key
%1 Help key

As with the output sequences, if any of the termcap entries are not defined correctly
then the user has to correct them.

SunView

When the I/O server is run under SunView it makes use of the facilities provided by that
program. In particular, every window produced under Helios will result in a separate
window on the Sun’s display. The I/O server has its own window which should look
something like Figure 8.12.

At the top of a window is a label line giving the name of the window. Below
this is a control box for the I/O server, with four buttons, a cycle to control the error
logger, and a pop-up menu to control the debugging options. These can be activated
as follows.

1. Clicking on Reboot (positioning the mouse cursor over the button and pressing
the left mouse button) will cause the I/O server to reboot.

2. Clicking on Debugger will cause the I/O server to reset the root processor and
enter the built-in debugger. The debug session will happen inside the I/O server’s
window.

3. Clicking on Status will cause the I/O server to display the message Server alive
and well. in the I/O server’s own window.

382 CHAPTER 8. THE I/O SERVER

Server Window

Reboot Debugger Status Exit Logger

�

��

�
� Both Debug

Helios Sun I/O Server V3.84 16.11.91

Copyright (C) Perihelion Software Ltd. 1987-1991

All rights reserved.

Booted...

Figure 8.12 The I/O server’s window

4. Clicking on Exit will cause the I/O server to exit, closing all open files in the
process.

5. Clicking anywhere in the vicinity of the logger cycle should switch the error
logging destination between screen-only, file-only, and both screen and file.

6. Clicking the left mouse button on Debug will activate all debugging options
if none are currently enabled, or it will disable any debugging options that are
currently enabled. This is equivalent to the ALL debugging option.

7. Clicking the right mouse button on Debug will produce a pop-up menu listing
all debugging options. If any options are currently enabled then these will be
highlighted. If the right mouse button is released when it is on top of one of the
menu options, then that option is toggled. If the right mouse button is released
when outside the menu then this has no effect.

Below the control box is an ordinary text window. When the I/O server writes to
the window the text will appear here. Any data typed into this window will be read by
the I/O server. Ordinary windows produced by Helios are similar, but do not have the
control box.

In addition the windows displayed by the I/O server obey the conventions of Sun-
View. Pressing the middle mouse button when the mouse cursor is positioned over
the window’s title bar allows the window to be moved. Pressing the right mouse but-
ton will pop up a standard SunView menu allowing the window to be moved, resized,
iconified, and so on. Care has to be taken when resizing a window, because most ap-
plications do not check regularly to see if the window has been resized. For example,
when using the MicroEmacs editor it is necessary to exit the editor, resize the window,
and start the editor again.

8.6. THE SUN I/O SERVER 383

The current implementation of SunView uses up a considerable number of Unix
file descriptors for every window, and since a single Sun program like the I/O server
can have only 64 file descriptors these are considered a scare resource. Hence the I/O
server does not produce the SunView windowing itself. Instead it forks off another
program to do the windowing, and it interacts with that program using pipes. By de-
fault the I/O server will pick up the correct window program from the Helios directory,
either serverwindow.sun4, serverwindow.sun3 or serverwindow.sun386. This can
be overwritten by an option in the host.con configuration file.

serverwindow = /usr/local/bin/serverwindow.sun386

This option is provided mainly for debugging purposes. When running under SunView
there is no way of performing graphical operations in the Helios network that produce
output on the Sun’s display. The only facility that is provided is text windows.

Dumb terminals

When the I/O server runs on a dumb terminal it implements a pseudo windowing sys-
tem with a hot key mechanism to switch between windows. This gives an environment
similar to that of the PC I/O server. However, there are some difficulties. On a PC
there is no problem specifying an obscure key combination such as control-shift-F10
to perform an action such as reboot. It is most unlikely that any Helios applications
will be interested in such a combination. Dumb terminals do not offer the same flexi-
bility. It is not generally possible to detect when both shift and control keys are down,
and the terminal may not even be equipped with function keys. Hence the I/O server
needs to be told which keys or key sequences to use for operations such as rebooting,
switching windows, or toggling debugging options, and the information is provided by
the host.con configuration file.

First, the user has to specify one particular key as the hot key or main escape
sequence. All operations can be performed by pressing this hot key, and then one other
key. For example, the user may specify that function key one is the hot key: pressing
function key 1, then the key ‘o’, would toggle the open debugging option; pressing
function key 1, then the key ‘1’, would switch to the next window. The following
sequences are defined:

Key Sequence Operation
hot key ‘1’ Switch to next window
hot key ‘2’ Switch to previous window
hot key ‘3’ Refresh current window
hot key ‘7’ Enter built-in debugger
hot key ‘8’ I/O server status request
hot key ‘9’ I/O server exit
hot key ‘0’ Reboot I/O server
hot key ‘a’ Toggle debugging option ALL
hot key ‘b’ Toggle debugging option BOOT
...
hot key ‘z’ Debugging option Z

384 CHAPTER 8. THE I/O SERVER

There are two ways to specify the hot key in the host.con file. First, it is possible
to specify the termcap name for the key to be used. For example, the termcap name
for function key 1 is k1, so the following host.con entry would make function key 1
the hot key.

escape_sequence = k1

Sometimes a particular key is not defined in the termcap database. In this case it
is still possible to define that key as the hot key, by specifying exactly what bytes are
produced by that key. For example,

escape_sequence = #\E[S

The hash character is used to indicate absolute data \E[S, rather than a termcap name.
The example defines a key that produces three bytes, an escape character, open-square-
bracket, and the letter S. The syntax used is the same as that for the termcap database.

1. \E is the escape character, 0x1B.

2. ˆQ specifies control-Q or 0x11, (the caret character should be followed by a
single upper-case letter and the corresponding control character is produced).

3. \0123 is the octal number 0123, or hex 0x53. Any three octal digits starting
with a backslash produces the appropriate octal number, provided the number is
less than 256.

4. \n, \r, \t, \b, \f, generate linefeed, carriage return, tab, backspace, and
formfeed respectively, as per the C syntax.

5. \\ generates the backslash character, 0x5C.

6. \ˆ generates the caret character, 0x5E.

7. Any other character produces itself.

For example, consider the following possible host.con entry:

escape_sequence = #\EˆQ\012p\n

This specifies that the hot key (or the sequence of hot keys) produces the following
bytes: 0x1B, escape; 0x11, control Q; 0x0A, octal 012; 0x70, the letter p; and 0x0A,
linefeed. Most terminals should allow for a rather simpler escape sequence.

Some of the special operations such as switching windows are particularly useful.
These can be invoked by a two-key sequence, the hot key followed by another (spec-
ified) key, but often it is desirable to allocate some additional special keys for these
operations. The following host.con entries could be used to map the main operations
onto the function keys.

switch_forwards_key = k2
switch_backwards_key = k3
refresh_key = k4
debugger_key = k5
status_key = k6
exit_key = k7
reboot_key = k8

8.6. THE SUN I/O SERVER 385

The same syntax is used as for escape sequence. In the example the termcap names for
the various function keys are used, but absolute character sequences can be specified
by using the hash character.

If a key or key sequence is used by the I/O server then it cannot be read from
Helios. For example, if the user has specified the cursor keys for various operations
then Helios has no way of reading the cursor keys.

8.6.8 Background operation

The Sun I/O server can be run in the background when using SunView to give multiple
windows. If a dumb terminal is in use then the I/O server needs full control over the
screen and keyboard while it is running, so it cannot be run in the background.

8.6.9 File I/O

The Sun I/O server provides two file servers: /helios and /files. /helios is the standard
Helios top-level directory, containing the main Helios binaries, include files and so on.
It is mapped onto some directory in the real filing system by using the helios directory
variable in the host.con configuration file. In most installations /helios will contain the
following subdirectories:

1. bin: binaries for the main Helios commands.

2. lib: binary files not accessed directly by users, but accessed indirectly by other
programs such as the linker.

3. include: the C header files.

4. tmp: temporary storage space for applications.

5. etc: the system text resource files.

6. local: a subdirectory for installation-specific files.

Problems arise in a multi-user environment with perhaps four sites and four simul-
taneous users. Suppose that the four sites are attached to four separate Helios networks
with 32, 16, 8 and 4 processors respectively. Each site needs a different configuration,
in particular a different resource map, when booting up. Essentially this means that
every site needs a different copy of the /etc subdirectory. The four sites can share the
bin, lib, include, and local directories because in general these do not depend in any
way on the site being used.

One solution to this problem is simply to give every site its own copy of the /helios
directory, but this is inefficient in disc usage because most of the files can be shared
safely. An alternative approach has been taken. Suppose that the copy of Helios sup-
ports four sites. In that case the /helios server will contain the following subdirectories:
bin, lib, include, and local as before. There will also be subdirectories etc0, etc1, etc2
and etc3, four separate copies of the /etc subdirectory for the four different sites.

When an application under Helios tries to access the directory /helios/etc, the I/O
server automatically modifies this to correspond to the site being used. For example, if
the user is connected to site 2 then the actual directory being accessed is /helios/etc2.

386 CHAPTER 8. THE I/O SERVER

The result is that there is a single Helios directory which can be shared by all users
simultaneously, without any worries about where site specific information should be
held.

The other file server, /files, provides access to the root directory of the host filing
system. For example, the Helios file /IO/files/usr/games/rain corresponds to the file
called /usr/games/rain on the Sun. This file server allows access to any object within
the host filing system including the devices in the /dev directory.

8.6.10 The error logger

The Sun I/O server implements the standard error logger device.

8.6.11 The clock

The Sun I/O server implements the standard clock device. It is not possible to write
this clock device in the Sun implementation, so Helios applications cannot change the
time and date maintained by the I/O processor.

Chapter 9

The Kernel

The Kernel is the foundation upon which the rest of the system is based. To all client
programs it appears to be a Shared library like any other.

The major subsystems in the Kernel are described below. In addition to these the
Kernel provides a number of additional facilities which will not be described here.

9.1 Kernel data structures

The current state of the Kernel is stored in, or referenced by, two global data structures.
These are the Root structure and the Config structure.

9.1.1 The root structure

The Root structure is where the Kernel stores all its static data. Fields of the root
structure reference all the major data structures of the system. A pointer to the root
structure may be obtained using GetRoot(). The data structures to which the Root
Structure prints are described later in this chapter. The Root Structure fields are:

PortTable Pointer to port base table.

PTSize Number of slots in port base table.

PTFreeq Descriptor of first Port Table Entry (PTE) in free queue.

Links Pointer to a NULL terminated table of pointers to LinkInfo struc-
tures.

SysPool Memory pool to which all memory allocated by the Kernel is
transferred.

FreePool Pointer to main free memory pool.

Incarnation Incarnation number (unused).

BufferPool Cache of free message buffers.

BuffPoolSize Number of BufferPool buffers currently in use.

387

388 CHAPTER 9. THE KERNEL

LoadAverage Low priority process load average. This is approximately the av-
erage number of microseconds processing time that each running
process has consumed, averaged over the last 3 seconds. On a busy
Transputer this will be between 1500 and 2000.

Latency The number of microseconds it would take a high priority process
to start execution after being scheduled.

TraceVec Pointer to a 4K trace vector beyond the end of the main free pool.

EventList List of Event structures which have been submitted through SetEvent.

EventCount Count of number of events seen since bootup.

Time Current system time in seconds since 00:00:00 on 1 Jan 1970.

FastPool Pool for carriers of free fast RAM areas.

MaxLatency The Maximum value of Latency seen so far.

IODebugLock Serialisation lock for IOdebug operations.

MachineType Processor type code.

BufferCount Number of bytes of memory used by the Kernel in message buffers.

MaxBuffers Maximum value of BufferCount seen so far.

Timer The value of the system timer the last time that Time was updated.
Hence this can be as much as one second out.

Errors Number of processor errors seen so far (Transputers only).

LocalMsgs Total size of all messages passed between local message ports.
This includes messages which have been buffered and delivered
later.

BufferedMsgs Total size of messages which have had to be buffered pending later
delivery.

Flags System flags:

rootnode This was the first processor booted in the system.

special This is a special version of the Nucleus (it has a
built-in file server).

ROM This Nucleus is ROM-resident.

xoffed The processor has sent an Xoff link protocol byte
through all its active links.

LoaderPool Pointer to the pool into which the Loader allocates all code and
libraries.

Configuration Pointer to Config structure.

9.1. KERNEL DATA STRUCTURES 389

ErrorCodes Array of Kernel error codes. This avoids having these codes in the
code as constants. Only ten codes are used, but they are used in
several places each. This gives as sizable saving in Kernel size.

IODebugPort If this port is not NullPort then IOdebug messages are delivered
here rather than to the link with the debug bit set.

GCControl Controls the Kernel port garbage collector. The bytes of this word
are interpreted as follows:

0 Enable garbage collector only if this byte is non-zero.

1 Increment the Age field of inactive ports once every this
number of seconds.

2 Free any port if its Age field reaches this value.

NThreads Current number of executing threads created through the Kernel.
In the case of Transputer versions of Helios, this does not count
threads created directly by Transputer instructions. Threads must
also terminate by calling the Kernel StopProcess routine for this
count to be decremented.

MaxThreads Maximum value of NThreads seen.

9.1.2 The configuration structure

The Config structure is passed to the Kernel by the machine-specific bootstrap sys-
tem. This structure defines the initial configuration of the processor. A pointer to this
structure can be obtained using GetConfig().

The fields of this structure are:

PortTabSize Number of slots in base port table (unused).

Incarnation What booter believes our incarnation is (unused).

LoadBase Address at which system was loaded.

ImageSize Size of system image.

Date Initial value for root Time field.

FirstProg Offset of initial program in system image. If zero a processor
dependent default value is used.

MemSize If non-zero this is the size of the available RAM, which the
Kernel accepts unconditionally. If zero, the Kernel will try to
work out the size of memory for itself.

Flags Initial value of root Flags field. In particular the rootnode,
special and ROM flags should be set here.

MyName The offset from this word to the name of this processor, stored
after all other fields in this structure.

390 CHAPTER 9. THE KERNEL

ParentName A similar offset to the name of this processor’s booter.

NLinks Number of links this processor has.

LinkConf[NLinks] A LinkConf structure for each link.

Names[...] Processor and Parent names stored at the end of this structure.

9.2 Message passing

The primary activity of the Kernel is the passing of messages between tasks. This is
designed to be efficient and independent of the locations of the source and destination
threads in the processor network.

9.2.1 Message ports

Messages are passed to ports which are represented in all programs by a port descrip-
tor. A port descriptor is a 32-bit value which indexes into a Kernel table of ports. The
descriptor also contains an 8-bit cycle field which must match an equivalent field in
the port table entry. This allows the Kernel to distinguish between a current descriptor
for that table slot, and a descriptor for a previous occupant of that slot.

The port table is a two-level structure consisting of a base table of pointers to
arrays of Port Table Entries (or PTEs). A port descriptor contains two 8-bit indexes,
one selects the pointer in the base table and the second the entry in the referenced PTE
array. A port table entry consists of the following fields:

Type This may be free, local, surrogate, trail, or permanent; these last
three are essentially equivalent and will all be referred to as surrogate
ports.

Cycle This must match the Cycle field in the descriptor.

Age This records the length of time since this port was last used.

TxQueue For local ports a queue of waiting transmission processes.

RxQueue For local ports a queue of waiting reception processes.

Descriptor For surrogate ports (described below), the descriptor for which this is
a surrogate (this field overlays TxQueue).

Link For surrogate ports, the link through which Descriptor is valid.

Local ports are used as rendezvous points for message passing between threads
on the same processor. When a thread attempts to send a message to a local port
which has an empty RxQueue, or a non-empty TxQueue it is added to the TxQueue
and suspended. Similarly an attempt to get a message from a port which has an
empty TxQueue or a non-empty RxQueue will result in the thread being added to
the RxQueue.

9.2. MESSAGE PASSING 391

A surrogate port is a local representative for a port on another processor. Messages
may only be sent to a surrogate port, not received.

A user program may only create local ports, surrogate ports are created only by the
Kernel in circumstances described later. However a user program may destroy both
local and surrogate ports, but only those which it has created, or which the Kernel has
created on its behalf.

Ports are garbage collected. If a particular message port has not been used for a
long time, it will be destroyed by the Kernel to save port table space. The current
default garbage collection time is 4 hours 15 minutes. This feature may be disabled or
altered with the GCControl field in the Root structure.

9.2.2 Message structure

Helios messages are divided into three parts, a header, an optional control vector and
an optional data vector.

The header contains the following fields:

DataSize Size of data vector in bytes in the range 0 to 65535.

ContSize Size of control vector in 32-bit words in the range 0 to 255.

Flags Flag bits:

preserve Preserve current route.

exception Kernel exception message.

sacrifice Message may be destroyed by Kernel.

bytesex Originating processor byte order (0 = lsb first, 1 = msb
first).

Dest Descriptor for destination port.

Reply Optional descriptor for the reply port.

FnRc Function or Return code.

Normally the control vector contains fixed-sized, word-aligned data items while
the data vector contains variable-sized data items, indexed by the control vector entries.

A message is described and manipulated by means of a message control block or
MCB. An MCB contains the following fields:

MsgHdr A message header as defined above.

Timeout A timeout in microseconds.

Control A pointer to the control vector in memory.

Data A pointer to the data vector in memory.

392 CHAPTER 9. THE KERNEL

For transmission all the fields of the header must be initialised to an appropriate
value, and the Control and Data fields must point to the vectors to be sent. The timeout
may either be a positive timeout value, or -1 which is interpreted as infinite.

For reception only the Dest field of the header, the vector pointers, and the timeout
need to be initialised. The header will be overwritten with the header of the received
message. Care must be taken that the vectors point to memory areas large enough to
accept the incoming message, as this is not checked.

9.2.3 Message passing functions

There are three main message passing functions: PutMsg, GetMsg, and XchMsg.
The first two take a single argument of a pointer to an MCB and either deliver a mes-
sage to, or receive a message from the port whose descriptor is in the message header
destination field.

XchMsg takes two MCB pointers as arguments and attempts to perform a re-
quest/reply exchange. The first MCB argument describes the request message and
the second the reply message. If only one MCB is given it is used for both messages.
This function will retry the interaction in the face of recoverable errors, but will return
if a more serious error occurs. Thus it constitutes a simple Remote Procedure Call
(RPC) mechanism. On return from XchMsg the caller will know either that the desti-
nation was unreachable, or that the request was delivered and a reply returned at least
once.

In addition to PutMsg and GetMsg, the routines PutReady and GetReady test for
whether a port is ready for transmission or reception respectively.

The MultiWait function is used to wait for a message from any one of a set of
ports. Its arguments are a pointer to an MCB and an array of port descriptors. The
function tests each of the ports in the array in turn for readiness. If one is found to be
ready the message is received from that port and its index in the port array is returned.
Otherwise the calling process is added to the RxQueue of each port in the list. The first
port to receive a message will restart the process, which will then detach itself from
the remaining port queues and return the index of the receiving port. The Timeout is
the only field used in the MCB. On return the MCB will be filled in with the received
message as with GetMsg.

The precise semantics of message passing are deliberately undefined to allow the
widest range of possible implementations. When calling PutMsg a program must be
aware that it may be suspended until the message is delivered but should not assume
that it has been delivered if PutMsg returns immediately. Programs should also at-
tempt to receive messages as quickly as possible, otherwise they may be lost. This
style of ‘eager-reader’ programming is a well known technique for ensuring deadlock
free message passing.

9.2.4 Inter-processor message passing

A message is sent from a source processor to a port on some destination processor by
passing it from processor to processor through their links. The surrogate ports play an
important part in achieving this.

9.2. MESSAGE PASSING 393

Message transmission

When PutMsg is called, the destination port is inspected. If it is a local port the
message is delivered, or the process queued as described above. Otherwise the port
is a surrogate, and contains a link number plus the descriptor of a port which is valid
through that link. The original destination descriptor in the message header is replaced
with the descriptor stored in the port. PutMsg now queues for access to the link. Once
control of the link has been obtained, the message is transmitted through the link in the
following order: header, control vector, data vector. This is preceded by a link protocol
byte indicating that a message is being sent (see section 9.3.2 for a full description
of the link protocol). Once the message has been transferred through the link, the
PutMsg call returns. However, the message may not have yet reached its destination,
so a successful return from PutMsg must not be interpreted as an indication that the
message has been delivered.

Link guardians

Attached to each input link channel is a Link Guardian process. In addition to op-
erating the link protocol, it is responsible for delivering messages to their destination,
or forwarding them through another link. When an incoming message is detected, its
header is received into a local buffer and inspected. The destination port descriptor is
mapped to its associated port table entry and validated. If a Reply descriptor is present
in the message, a new surrogate port is created. The original descriptor and the current
link number are stored in the surrogate port, and a descriptor for this new port is put
into the message header Reply field in place of the original.

The type of the destination port is now examined. If the type is local then the
message has reached its destination processor. The state of the port’s queues is exam-
ined and if it is ready to receive a message immediately (that is, TxQueue is empty
and RxQueue is not empty) then the Link Guardian copies the header into the waiting
MCB, and transfers any control and data vectors directly from the link into the waiting
buffers.

If the port is a surrogate then the message must be forwarded to another proces-
sor through some other link. If the destination link is in use then the message must
be buffered, otherwise the message can be transferred directly. If the link is free the
destination descriptor is replaced by the descriptor stored in the port and the header
is immediately retransmitted. If the remainder of the message (control plus data vec-
tors combined) is less than 65 bytes it is received in one operation and retransmitted
through the destination link. If the remainder is less than 257 bytes then it is received
and retransmitted sequentially in 64-byte chunks.

If the message is greater than 256 bytes long, the Link Guardian enters double
buffer mode. In this case it awakens a double buffer process associated with the des-
tination link. These two processes now cooperate to transfer the message from the
source link to the destination link. While one process is receiving a chunk of data
from the source link the other is transmitting a previously received chunk through the
destination link. Once both operations have completed, the processes rendezvous and
change places. This continues until the entire message has been received.

If a destination port or link is not ready to receive the message immediately it

394 CHAPTER 9. THE KERNEL

must be buffered for later delivery. The Kernel uses any free system memory for
this purpose. To buffer a message, a piece of memory is allocated and the message
received into it from the link. Once this has been done a Kernel process is created to
call PutMsg to deliver the message and free the buffer. As an optimisation, for small
messages, the message buffer and process stack are allocated in the same piece of
memory. Another optimisation is to maintain a small number of pre-allocated buffers
of a fixed default size (currently 1K). These are used as buffers for small messages and
as the stacks of the delivery processes.

Port trails

It should be clear from this description that inter-processor message passing is achieved
by sending messages along trails of surrogate message ports. The only way that such
a trail can be made is as a return path left behind a message as it moves through the
system. Long trails are made by a message being routed through a sequence of adja-
cent shorter trails in turn. Part of the link protocol (q.v.) causes adjacent processors to
exchange a descriptor each, and it is from these initial simple trails that all others are
derived.

Most port trails are short lived, existing only between the time that a message is
delivered to its destination and a reply is generated. The default behaviour for mes-
sages is to destroy the trail as it passes through it. The preserve flag in the message
header prevents this, allowing the trail to be used again.

The double buffering, and the sequential single buffering for smaller messages,
means that if the links are free, then a message will be spread out across several pro-
cessors and links. This is essentially a form of wormhole routing and gives a much
higher data rate than if each message were stored and forwarded.

There are several reasons for adopting this trail-based routing scheme rather than a
processor-id based scheme. Firstly, by avoiding introducing globally unique processor
identifiers, running systems can be interconnected without worrying about clashing
identifiers. Secondly, the system is capable of being expanded and contracted without
having to inform every processor of the changes. Thirdly, the number of processors is
not limited by such things as the processor id field size in any data structures. Fourthly,
at each processor on a trail, the destination of a message is exactly defined by its
destination descriptor and no routing table lookup is required. Finally, only active
connections consume resources on intermediate processors.

Error handling

It is not always possible to deliver a message at all. The destination port descriptor
may be invalid, the link indicated by a surrogate port may have changed mode, or
the processor through that link may have crashed. If a failure is detected during the
PutMsg call then an appropriate return code is generated. If the failure is detected by a
Link Guardian it must attempt to do two things: recover from the error, and inform the
sender that the message has been lost. In the case of an invalid descriptor, or a bad link,
only the header will have been received. The Link Guardian recovers by receiving and
destroying the remainder of the message. If a destination link is not detectably bad, but
the processor beyond it has crashed or stopped listening, then any attempt to transmit

9.3. LINKS 395

through that link will result in a timeout. Since the transmitter on the other end of the
source link is running exactly the same timeout, it will fail at approximately the same
time. Hence the Link Guardian does not need to take any recovery action, and the
message failure will ripple back to the message originator.

When a message is lost or cannot be delivered, the Link Guardian attempts to
inform the originator. It can only do this if the lost message contained a reply port. In
this case the Link Guardian sends an Exception message back along the trail already
built. This has two effects: first, it destroys the trail built by the lost message, and
second, it informs the originator of the reason for the message failure. This means
that the result of a GetMsg call may yield a result associated with a previous PutMsg.
Since these two operations are likely to be linked in an RPC style interaction, this is the
correct behaviour. Messages without a reply port are simply destroyed silently since
there is no way of finding out where they originated.

Message passing reliability

The Kernel does not guarantee to deliver all messages reliably. On Transputer systems,
in the absence of link failures and processor crashes, this results in all messages being
delivered reliably. However, since the higher-level protocols are designed to handle
message loss, when a link does break or a processor crash, the system can recover
from this and continue where it left off. Hence, the lack of message reliability is more
a philosophical point of view than a reflection of the true nature of the system.

The only time the Kernel will explicitly destroy messages is in order to resolve
any deadlocks in the message passing system. The major cause of such deadlocks is
a program failing to receive messages sent to it. In this case the destination proces-
sor, followed by processors successively closer to the source of he messages, will fill
all available memory with buffered messages and eventually stop listening for more.
The Helios servers are designed to accept messages as soon as possible. The stan-
dard protocols are designed to avoid the transmission of unexpected messages which
may cause congestion. This behaviour is known as ‘eager-reader’ behaviour, and is a
common requirement of deadlock free routing systems.

9.3 Links

9.3.1 LinkInfo

The processor links are managed through the LinkInfo structures, one per link. The
fields of the LinkInfo structure are:

Flags Some flags:

parent The link through which processor was booted.

ioproc The processor through this link is a non-Transputer
I/O processor.

debug Send low-level debug messages through this link.

report Changes in the state of this link will be reported to
the Processor Manager.

396 CHAPTER 9. THE KERNEL

stopped The processor through this link has temporarily
quenched all traffic.

Mode Link mode: Null, Dumb or Intelligent.

State Link state (see below).

Id Link number.

TxChan Address of transmit hardware control location.

RxChan Address of receive hardware control location.

TxUser Pointer to current transmitting process, if any.

RxUser Pointer to current receiving process, if any.

MsgsIn Total data received on this link so far.

MsgsOut Total data transmitted on this link so far.

TxQueue Queue of processes waiting for access to transmit on link.

RxId Current process receiving a message from link, used only during
link-to-local port transfers.

TxFunction Optional link data transmission function. This is used to redirect
link traffic to another device and it is also used to support links
based on hardware other than Transputer style links.

RxFunction Optional link data reception function.

Sync Synchronisation point used by Link Guardian and KillTask.

LocalIOCPort Destination port for system messages from this link. This port
is sent across the link in the Info link protocol message (see
below).

RemoteIOCPort Port for system messages through this link. This is a surrogate
port for the remote processor’s LocalIOCPort.

Incarnation Currently unused, intended to distinguish between reboots of
the remote processor.

MsgsLost Number of messages lost or destroyed by this Kernel.

DBInfo Pointer to a data structure associated with this link’s double
buffer process.

The link Mode determines whether the link is intelligent and can be used for
message passing, or whether it is a dumb link. A link is either mode can be in one of
several states. The valid states are:

Null The link is not connected.

9.3. LINKS 397

Dumb Not used.

Running Indicates an intelligent link is sending and receiving messages success-
fully. For a dumb link indicates that the link is allocated.

Timedout Indicates that the Link Guardian has seen a reception timeout and that
the link is probably dead.

Crashed Indicates that the link has been active, but is no longer.

Dead Indicates that the link is inactive. For dumb links, indicates that the
link is unallocated.

The Kernel will move links between states as necessary according to the link pro-
tocol, but links may also be forced into a given state by the Configure function.

9.3.2 Link protocol

In addition to passing messages through the links, the Link Guardians maintain a low-
level link protocol between themselves. This is to enable the system to detect processor
failures, and to retain synchronisation of the link traffic.

The link protocol consists of single byte codes, followed by some type-specific
data. The protocol bytes are as follows:

Write Followed by a 32-bit address and a 32-bit value. The Link Guardian
accepts but ignores this message.

Read Followed by a 32-bit address. If the address is a special probe value,
the Link Guardian returns a word of Alive protocol bytes. Otherwise
the contents of the addressed word are returned.

Msg Followed by a Helios message as described above.

Null Never sent across the link, this is used to initialise the buffer into
which the protocol byte is received. It indicates a timeout to the
Link Guardian.

Term Sent by a processor just before it resets itself to put all its neighbours
links into Dead state.

Reconfigure Sent when a link is being reconfigured from intelligent to dumb state,
causes the equivalent state change on the other end of the link.

Reset On a Transputer, the Reset byte is followed by the bytes 0x21 0x2f
0xff 0x03 0x21 0x2f 0xff. This is interpreted by the Link Guardian
as an instruction to reset the processor. The same sequence sent to a
reset Transputer will boot it with a reset instruction.

Xoff Causes the remote processor to stop sending any more messages
through this link.

Xon Restarts messages stopped by a previous Xoff message.

398 CHAPTER 9. THE KERNEL

Info Followed by three more Info bytes plus an 8-byte info message. This
message contains the LocalIOCPort descriptor for the sending pro-
cessor plus a flag indicating whether a reply is needed. Whenever an
Info message is received, the links RemoteIOCPort is re-initialised
with the port descriptor received.

Alive Followed by three more Alive bytes. This is sent as a response to a
special probe Read message.

Dead Followed by three more Dead bytes. This is part of the idle exchange
described below.

Most of these messages are used as part of the idle handshake. This is designed enable
a Kernel to remain confident about the state of the processor through a link in the
absence of link traffic. If no message has been received through a link for some time
the Link Guardian goes through the following sequence.

1. Send a Write message to write a word full of Dead bytes at a special probe
address.

2. Send a Read message to read back the word just written. If the response is
Dead bytes then the link is marked dead and the idle exchange terminated. If
the remote processor is running, it will respond with a word of Alive bytes.

3. Send an Info message indicating that a reply is required.

4. Receive an Info message in reply.

This exchange is event driven. The response to each step triggers the next action. The
Link Guardian always spawns a worker process to transmit the link protocol messages,
leaving itself free to receive messages. Thus both ends of the link may initiate the idle
exchange simultaneously. Since the protocol is event driven, it can be entered part-
way through. For example, when a processor is first booted, it initiates just the Info
exchange with its parent.

9.3.3 Dumb link access

When Helios is using a link for message passing, it is not available for direct use by
application programs. A link can be made available for direct use with the Configure
function. The argument to configure is a LinkConf structure, which defines the new
state of the link:

Id The number of the link to be changed.

Flags The new value for the LinkInfo Flags field. Only the state of the report
and debug flags may be changed.

Mode The new link mode, either Dumb or Intelligent. If the link is changing from
intelligent to dumb mode, a Reconfigure protocol byte is sent through the
link to force the far end into dumb mode too.

9.4. TASKS AND THREADS 399

State The new link state. If the mode of the link is changing from dumb to in-
telligent this defines the state of the link. When changing from intelligent
to dumb mode the link state is forced into Dead state. If the link is not
changing mode the state will not be affected.

Once a link is in dumb mode, it can be used for direct access. The Kernel provides
a number of functions for this, which will only operate on links in dumb mode. The
AllocLink function reserves the link for use, this enables different programs to use
the same link in a controlled manner. The FreeLink function reverses the effect of
AllocLink. An allocated link is signified by changing its state from Dead to Running.

The functions LinkIn and LinkOut perform data transfers across the chosen link.
These functions will only operate on Dumb mode links in Running state. Each function
takes a link number, a buffer and size, and a timeout. The timeout, like that on PutMsg
and GetMsg is used to detect transfer failures rather than provide a timing service. A
minimum timeout of two seconds is imposed as a result of the implementation of these
functions. An example of direct link usage is given in appendix C.

9.4 Tasks and threads

The primary execution unit under Helios is a task. This is the object to which resources
such as ports and memory are allocated. Within a task there may exist a number of
Threads. These all share the resources of the task and may communicate or synchro-
nise with each other through shared memory and semaphores.

9.4.1 Tasks

A task is described to the system by a task data structure:

Node In theory used by Kernel to list all tasks. In practice not used, but
reserved for possible future use.

Program Pointer to the code (or text) of the program the task is executing.

MemPool task’s memory pool. All memory allocated by the task is linked into
this pool.

Port Task’s initial message port, used to receive the program’s environ-
ment.

Parent Message port back to this task’s creator.

IOCPort Message port for communication with the local Processor Manager.

Flags Flag word. In debugging systems this controls the level of debug
output provided by the System library.

ExceptCode Function called on delivery of a hardware exception to this task. This
is unused in Transputer versions of Helios.

ExceptData Data passed to ExceptCode, no longer used.

400 CHAPTER 9. THE KERNEL

HeapBase Base of task’s initial heap.

ModTab Pointer to base of task’s module table.

TaskEntry Pointer to Processor Manager’s controlling data structure for this
task.

A new task is created by the TaskInit call which takes a pointer to the task struc-
ture for the new task1. TaskInit expects the Program, Port and MemPool fields to
be initialised. In turn the HeapBase and Modtab will be initialised by the Kernel.
Since the TaskInit call will start the task running the remaining field should also be
initialised before the call, although failure to do so will not affect the functioning of
the Kernel, only the resulting program. The memory layout presented when a task is
started is described in chapter 16, Program representation and calling conventions.

Normally a task is only terminated at its own request. This is done by KillTask
which is only called by the Processor Manager. KillTask is responsible for suspend-
ing all threads belonging to a particular task. To do this it scans the processor timer
queues, run queues, port tables and LinkInfo structures in order. It identifies threads
which belong to the task by comparing their workspace (stack) pointers to the range of
addresses defined by the task’s memory pool. If a thread is found it is removed from
the queue.

9.4.2 Threads

Threads are the entities which actually execute code. On the Transputer they are sup-
ported entirely by the hardware and on other processors a lightweight software sched-
uler performs the same functions.

Threads are created by the Kernel calls InitProcess and StartProcess and can
halt themselves by calling StopProcess. There is no way to suspend or stop a thread
externally. On the Transputer, threads may be created with the appropriate machine
instructions without needing to inform the Kernel.

Since threads can be created easily without Kernel intervention, and because the
number of threads can grow large, the Kernel does not maintain any permanent per-
thread data structures. Instead a structure, known as an Id structure, is allocated when-
ever the Kernel needs to suspend a thread. A Id structure has the following fields:

rc Return code. Indicates reason for wakeup.

next Next Id in queue.

tail Tail Id in queue. Only valid in the first Id on the queue.

state Pointer to saved thread machine state.

endtime Time at which this thread should be restarted if still waiting.

mcb For message queues, a pointer to the MCB.

This structure is always allocated on the thread’s stack, along with any saved state.
1Currently the task structure is allocated in the memory space of the Processor Manager, and pointers

to it are passed to the Kernel and the new task itself. This violation of memory security will be changed
in the future and must not be relied upon.

9.5. TIMEOUT HANDLING 401

9.5 Timeout handling

All message operations contain a timeout, and the Kernel protects itself against dead
links and crashed processors by applying a timeout to all link transfers. All these
timeouts are driven by the timeout process. This process wakes up once every second
and scans the port tables and LinkInfo structures for Id’s whose endtime is less than
the current time. If one is found, it is dequeued and resumed with a timeout return
code.

The result of this mechanism is that such timeouts may expire anything up to a sec-
ond later than the time for which they are set. The cost of maintaining a more accurate
timeout mechanism is not justified by the use to which they are put. All such time-
outs are used to detect exceptional, usually failure, conditions. These happen rarely
and it does not matter that the indication is slightly late. More accurate timing can
be achieved by using a second timeout process which executes Delay for the required
time and then raises an event (possibly by aborting a port, or sending a message).

9.6 Semaphores

Between the threads of a single process there is no need to pass messages since they
share the same address space and can share memory. However, it will be necessary to
protect this shared memory against concurrent access, and there are other situations in
which threads may need to synchronise.

In Helios these requirements are met by the implementation of semaphores. A
Semaphore structure is allocated in the task’s address space and is private to that task.
Inter-task semaphores should not be used.

A semaphore may be initialised by InitSemaphore to any integer value, either
positive or negative. The Wait function is defined to return as soon as the semaphore
counter may be decremented to yield a non-negative result. The Signal function simply
increments the semaphore. The TestWait function will always return immediately,
and will return TRUE if it managed to execute a Wait operation on the semaphore,
and FALSE otherwise.

The effect of this is that if a semaphore is initialised to 3, then, in the absence
of any calls to Signal, three calls to Wait will be allowed before a thread is blocked.
If the semaphore is initialised to 1 then it acts as a serialising mutual exclusion lock.
If the semaphore is initialised to -3 then it will block any Wait operation until four
Signal operations have been performed. This can be used, for example, to wait for the
termination of a number of Forked threads.

In non-Transputer based versions of Helios there is also a TimedWait call. This
is essentially a Wait call with a timeout. If the call to Wait suspends the thread for
longer than the timeout value, the thread is rescheduled and the Wait will return with
an error. The semaphore will not be decremented.

9.7 Memory management

The Kernel’s memory management system is optimised for the allocation of large
blocks for program use, and for speed in allocating message buffers and Kernel worker

402 CHAPTER 9. THE KERNEL

process stacks. User programs normally use the System library Malloc and Free calls
(or language specific memory allocation) which implement a Heap Manager within
blocks obtained from the Kernel.

Kernel memory blocks are all allocated to a Pool, whether it be a free pool, a
system memory pool or a task pool. Tasks may also create their own pools, but care
must be taken in how they are used.

A Kernel memory block consists of a Memory header structure followed by the
memory itself.

Node Link in owning pool’s memory list.

Size Size of block including this structure. All memory blocks are a multiple
of 16 bytes long, so the least significant four bits of this field are not used.
These bits contain the following flags:

FwdBit Allocation state of this block: 1 = allocated, 0 = free.

BwdBit Allocation state of block physically before this one in memory.

Fast Indicates that this is a carrier for a fast ram block.

Reloc Indicates that this is a relocatable block, this is used in some
systems to implement a recoverable RAM disc.

Pool Pointer to pool which owns this block.

In addition to this structure, any block marked as free will contain a pointer to its
Memory header in its last word. This allows the Kernel to locate the headers of both
a block’s physical neighbours quickly.

Memory blocks are collected together into pools. A pool is described by the Pool
data structure:

Node List node for collecting pools together, currently unused.

Memory List of Memory blocks which constitute this pool.

Blocks Current number of memory blocks in this pool.

Size Total size of blocks currently in this pool.

Max Original size of pool (only useful in free memory pools).

There are essentially two types of memory pool: free and allocated. A free pool
contains only blocks marked as free. The blocks in the Memory list of the pool are
kept in strictly descending address order. A newly initialised free pool must describe
a contiguous region of memory. The first block on the list is a header-only block
placed at the top of the memory region and is marked as allocated. The remainder of
the memory is initially described by a single free block whose BwdBit flag bit is set.
These ensure that the boundaries of the pool are protected by allocated blocks. An
allocated pool contains only blocks marked as allocated, and these are placed in the
Memory list in any order.

9.8. EVENTS 403

The external memory routines, AllocMem and FreeMem are translated by the
Kernel into the more general Allocate and Free routines. Allocate takes a size, and
pointers to a source free pool and a destination allocated pool. It starts by adjusting the
size to the next highest multiple of 16 and adds the size of the Memory header (also
16). It then scans the blocks in the free pool’s memory list until it finds a block whose
size is greater than or equal to the required size. If the block size is not much larger
than the required size, the whole block is allocated. Otherwise the block is split into
a piece of the required size, plus the remainder. The required piece is always taken
from the top of the block to avoid having to alter the memory list links. It is because of
this that free pool blocks are listed in descending order, and Helios allocates memory
from the top of RAM. Once a block has been found, its FwdBit and its successor’s
BwdBit are set and it is linked into the destination pool. The Size and Blocks counts
are adjusted for each pool.

Free returns a memory block to its free pool. The source pool is obtained from
the blocks Pool field, and the free pool is passed as an argument. The block is first
removed from its current pool and the counts of both pools adjusted accordingly. If the
block’s BwdBit is clear then the address of the predecessor’s header is picked up from
the word immediately before the current block’s header. The two blocks are coalesced
by adding the current block’s size to that of the predecessor; the predecessor now
becomes the current block for the rest of the function. By adding the current block’s
size to its base address, the header of the successor is found, if this is free the blocks
are coalesced; the memory list pointers being re-initialised to point to the new block.
If neither of the block’s neighbours is free, then its place in the memory list is found by
searching. Once inserted into the list, the block’s FwdBit and its successor’s BwdBit
are cleared.

On the Transputer (and some other processors) a small quantity of fast, on-chip,
RAM is available. To avoid occupying valuable space in this memory with system data
structures, this is managed by a slightly different mechanism. Regions of fast RAM
are described by Carrier structures:

Addr Address of fast RAM region.

Size Size of region in bytes.

An initial carrier for the entire fast RAM area is allocated from the system free pool
and put into a special fast RAM free pool. Calls to AllocFast search the carriers in this
pool for a match. If one is found it is transferred to the destination pool, otherwise
a new carrier is allocated and a block is split, the new carrier being allocated to the
destination pool. Since carriers are marked as such, the fast RAM they represent can
be freed by passing them to the normal FreeMem routine. This detects carriers and
passes them to the internal FreeFast routine which returns the fast RAM to the free
pool.

9.8 Events

The Kernel provides access to the processor’s hardware interrupt handling mechanisms
through an event handling mechanism. Attached to each interrupt source is a priority

404 CHAPTER 9. THE KERNEL

ordered list of event handling procedures. When the interrupt occurs the event proce-
dures are called in decreasing priority order.

On the Transputer, the only available interrupt is the event line. When this is sig-
nalled, a process attached to the processor’s event channel is awakened. This process
calls all the procedures in the list of Event structures which have been passed to the
Kernel through SetEvent. These procedures will be called in the context of their parent
task, but at high priority. For this reason they must avoid being blocked, or consuming
more than the minimum CPU time. In general these procedures should simply signal
a semaphore, or send a message to a low priority process which will continue with the
event processing.

On non-Transputer processors, an additional Vector field in the Event structure
selects one of several possible interrupt sources. When an interrupt occurs, the proce-
dures registered for that interrupt name are called in order of priority until one returns
a TRUE result.

Chapter 10

The System libraries

The Helios Nucleus contains four Shared, or Resident libraries. The Kernel is de-
scribed in chapter 9. The Server library is described in chapter 12, Writing servers.
The remaining libraries are the System library and the Utility library. These are de-
scribed below.

The reader is referred to the system headers for the precise details of function
prototypes and constant values, and to the Encyclopaedia for a technical description of
each function. Some knowledge of these is assumed in the following descriptions.

10.1 The System library

The System library is primarily responsible for presenting a procedural interface to the
GSP protocol operations. As such it corresponds approximately to the conventional
system call interface of most operating systems. It should be remembered, however,
that it is just a library, executing in user mode and storing its data structures in user
memory.

10.1.1 System library data structures

The primary data structures manipulated by the System library are Object and Stream
structures. An Object corresponds exactly to a GSP context object. A Stream corre-
sponds to a GSP direct operation port.

An Object is usually created as a result of a Locate or Create operation and is
initialised from the reply message. It can also be created under other circumstances
described later. An object contains the following fields:

Node All Objects known to the System library are chained together through
this field.

Type The object’s type from the reply.

Flags The object’s flags from the reply plus some System library flags.

Result2 The last error on this Object.

405

406 CHAPTER 10. THE SYSTEM LIBRARIES

FnMod The return code passed back from the server in the reply. This will be
bitwise ORed with the function code of all indirect operations which use
this Object as a context.

Timeout Base value for calculating timeouts.

Reply Local port for all replies to indirect operations using this object.

Access The object’s capability from the reply.

Name The object’s canonical path name from the reply.

A Stream is initialised from the reply to an Open operation. It contains the fol-
lowing fields.

Node All Streams known to the System library are chained together through
this field.

Type The object’s type from the reply.

Flags The object’s flags from the reply plus some System library flags.

Result2 The last error on this Stream.

FnMod The return code passed back from the server in the reply. This will be
bitwise ORed with the function code of all direct operations which are
sent through this Stream.

Timeout Base value for calculating timeouts.

Reply Local port for all replies to direct operations using this object.

Access The object’s capability from the reply.

Pos The current object position pointer, initialised to zero.

Server The direct operation port from the reply.

Mutex A semaphore to protect this Stream against concurrent access.

Name The object’s canonical path name from the reply.

The first eight fields of these structures are identical, and in some cases may be used
interchangeably in some System library functions. Where such a polymorphic function
needs to distinguish between the structures, it can do so by examining the Flags field.

10.1.2 System library flags

The flags controlled by the System library in the Flags field are:

Mode These four bits are a copy of the least significant four bits of the mode
passed to Open. They are used to define the mode if the Stream
needs to be reopened.

10.1. THE SYSTEM LIBRARY 407

Remote Indicates whether the server being used is on another processor.

Append This is the same bit as O Append and is saved in case a reopen is
necessary.

Application These four bits are reserved for use by the application.

Stream Indicates whether this is an Object or Stream.

10.1.3 Open modes

In addition to the mode bits defined as part of the GSP Open operation, the System
library Open operation also defines, or examines, mode bits such as:

Append All Write operations should be performed at the end of the object. If this
bit is set the Open function issues a Seek operation before returning.

10.1.4 Object and stream manipulation

In addition to the results of Locate, Create and Open, Objects and Streams may also
be created through other System library functions.

The functions CopyObject and CopyStream each produce a duplicate of their ar-
gument. While Objects may be copied freely, care must be taken in copying Streams.
This is because a copy does not contain a fresh direct operation port but shares the
port of the original. This means that a Close operation from either will invalidate the
other. To partially avoid such problems, the Closeable flag in the copy is cleared. This
means that when a copy is closed it will not generate a Close operation to the server,
but closing the original will.

The functions NewObject and NewStream create an Object or Stream from their
arguments. The new Object or Stream is given type Pseudo, and is not validated
against the server. The exception to this is if the mode passed to NewStream (actually
a full Flags field) has the OpenOnGet bit set. In this case an Open operation will be
performed.

A pseudo Object is one which has not been validated with the supporting server,
hence there is no guarantee that the server, or the object, still exist, or that the capability
is valid. A pseudo Stream is one which has not been opened, so the direct operation
port is invalid. These Streams and Objects may be used anywhere that a normal one
may be used. The System library detects this and calls either ReLocate or ReOpen to
validate and/or open the object before continuing with the desired operation. A failure
in the validation or open operation results in the entire operation failing.

The function PseudoStream builds a Stream from an Object and a set of flags.
This is actually a jacket which extracts the name and capability from the Object and
calls NewStream.

The function Abort causes any pending operations on a Stream or Object to be
aborted. This is somewhat drastic because it uses AbortPort to detach any waiting
GetMsg calls from the reply port with a hard error code. The result of this will be
to terminate an interaction with a server part way through. With respect to pipes, this
function issues a GSP Abort operation.

408 CHAPTER 10. THE SYSTEM LIBRARIES

10.1.5 The environment

When a task is first started it has no Objects or Streams. For some system tasks
and servers this is acceptable. However most tasks need an environment defining their
arguments, initial I/O stream etc. This is passed to the new task from its parent through
the GSP SendEnv protocol. The System library provides an implementation of both
the sending and receiving parts of this protocol in the SendEnv and GetEnv functions.

The SendEnv function is given a destination port plus a pointer to an Environ
structure. This contains the following fields:

Argv A pointer to a NULL terminated array of pointers to strings. By convention
the first argument is the name of the program.

Envv A pointer to a NULL terminated array of pointers to strings. By convention
these are all of the form ”NAME=value”.

Objv A pointer to a NULL terminated array of pointers to Object structures.
Empty slots in the array may be filled with the value MinInt.

Strv A pointer to a NULL terminated array of pointers to Stream structures.
Empty slots in the array may be filled with the value MinInt.

There are system conventions with regard to the use of the entries in the Objv and Strv
arrays. The entries in the stream array are referenced by their index, and are expected
to correspond to the Unix conventions for streams. Thus Strv[0] is the task’s standard
input, Strv[1] is its standard output and Strv[2] is its standard error stream. In general
Strv[n] will be referenced by the POSIX library through file descriptor n.

The entries in the Objv array are assigned specific purposes and have been given
specific names:

Cdir Current directory.

Task Entry in the local Processor Manager.

Code Entry in Loader.

Source Original program source file.

Parent Processor Manager entry for parent task.

Home User’s home directory.

Console Control console or window.

CServer Directory of control console, allows new windows to be created on the
same device.

Session User’s Session Manager entry.

TFM User’s Task Force Manager.

TForce If this task is part of a task force, this is the TFM entry for the task force.

10.1. THE SYSTEM LIBRARY 409

When GetEnv receives an environment, it expands the marshalled entries in the
four arrays of the environment message. The Argv and Envv entries are converted into
direct pointers, and the terminating -1 is converted into a NULL. The object and stream
array entries are converted, through NewObject and NewStream into full Object and
Stream structures. These are all given type Pseudo. This means that if a program
never accesses a stream or object passed in its environment, then the supporting server
will never be contacted, saving time and memory. The only exception to this is if a
stream has the OpenOnGet flag set, in which case it will be opened in GetEnv before
the acknowledge message is sent. A symmetric CloseOnSend flag causes SendEnv
to close a stream. This is only done once the acknowledge message has been received.
Thus either the sender or the receiver (and briefly both) always has an open connection
to the server.

10.1.6 Fault tolerance and recovery

The System library implements the standard GSP recovery strategy. Recoverable er-
rors result in the retry of individual messages or message exchanges. Warnings result
in a call to ReOpen for Streams and a retry with an incremented retry field for Ob-
jects. More serious errors are reported to the application.

10.1.7 Memory management

The System library provides a memory management package for its own use and for
the use of application programs. This package obtains large blocks of memory from
the Kernel and implements a heap within them. A feature of this mechanism is that if
any Kernel block is emptied it is returned to the system.

All memory blocks allocated by the System library are composed of a Memb
structure followed by the memory itself. The Memb structure contains the following
fields:

word Size Size of memory, including header, rounded up to next 8-byte bound-
ary. The least significant bit is set for free blocks.

Memb *Next Next memory block in free list.

Each memory block obtained from the Kernel is headed by a HeapBlock structure:

Node Node Link in list of heap blocks.

word Size Total size of available memory in block.

word Free Number of bytes free in block.

Memb *FreeQ List of free blocks.

These heap blocks are chained together in a list, and all free memory blocks within a
heap block are chained on the FreeQ.

The action of Malloc is to first adjust the size to allow for the header and align it to
the next multiple of 8 bytes. The heap blocks are then scanned in strict order for one

410 CHAPTER 10. THE SYSTEM LIBRARIES

with sufficient free space, and the free queue of that block scanned on a first-fit basis
for a suitable memory block to allocate. If no space can be found in any block then a
new heap block is allocated. The size for this heap block is taken from the HeapSize
field of the program’s header. As a special case, if the requested size is more than half
the standard heap size the memory is allocated directly from the Kernel. A Memb
header is placed at its beginning, but the size is negative to mark it as a special block.
The function MemSize takes account of this in calculating the size of the block.

There are two memory freeing functions, Free and FreeStop. Both release a mem-
ory block back into its containing heap, coalescing it with it neighbours if possible. If
the operation results in all the memory in a heap block being freed, the heap block itself
is returned to the Kernel. The difference between the two routines is that FreeStop,
once the memory has been freed, halts the calling thread. This function exits solely so
that a thread may free its own stack and halt as a single atomic action.

10.1.8 DES encryption support

The System library contains an implementation of the DES standard encryption al-
gorithm. This is used by the system servers to encrypt all capabilities. The code
is a straightforward implementation of the algorithm and as such is not particularly
fast. On a 20MHz T800 it takes approximately 8 milliseconds to encrypt a sin-
gle 64-bit block. This can be reduced to between 4 and 5 milliseconds per cycle if
DES KeySchedule is used to pre-generate the key schedule, but this is only true if
many blocks are to be encrypted with the same key.

10.2 Utility library

The Utility library collects together a number of useful functions which do not prop-
erly belong in any other library. These include some string and memory manipulation
functions from the C library, Thread creation, debugging functions and fast RAM ac-
cess.

10.2.1 C library functions

Because they are used by the system servers and libraries, a number of routines from
the C library have been moved into the Nucleus. This avoids the need to include the
entire C library into the Nucleus.

The functions in this library are:

longjmp setjmp
strcat strncat
strcpy strncpy
strcmp strncmp
strlen memcpy
memset

10.2. UTILITY LIBRARY 411

10.2.2 2-D block move

In Transputer versions of Helios, the function bytblt provides a procedural interface to
the Transputer 2-D block move instructions (see The Helios Encyclopaedia for further
information).

10.2.3 Thread creation

This library provides a low-level thread creation interface, essentially a veneer on top
of the Kernel routines.

The NewProcess function allocates a stack, using Malloc, and calls InitProcess.
The result is a pointer to the position of the first argument for the new thread. The
functions RunProcess and ExecProcess start a thread created by NewProcess run-
ning. The main difference between these routines is that RunProcess starts the thread
running at the same priority as the caller, while ExecProcess starts it at a selected pri-
ority. If the caller decides not to start a process, it can call ZapProcess to deallocate
the stack.

The Fork function is the most frequently used interface to these routines. It simply
calls NewProcess to allocate and initialise a stack, copies the supplied parameters into
the new thread’s stack frame, and calls RunProcess to start it.

As described in chapter 9, The Kernel, threads are only able to terminate them-
selves, they cannot be terminated externally except on task exit. A thread created by
NewProcess (and hence Fork) can terminate by returning from its entry procedure.
This returns to code which will deallocate the stack and halt the process (by calling
FreeStop).

10.2.4 Using fast RAM

Helios provides two mechanisms for using fast, on-chip, RAM on the Transputer and
on other processors which provide this facility. These allow the programmer to move
either the stack or the code of a procedure to fast RAM.

The Accelerate function executes a given procedure using fast RAM for its stack.
The RAM to use should have been allocated with a call to AllocFast. When Accel-
erate is called, a stack frame is built at the top of the fast RAM area supplied, the
arguments to the function are copied across, the current stack is set to the new frame
and the function is entered. When the function returns, code is entered which rein-
states the original stack and returns from Accelerate. Obviously only one thread at a
time can call Accelerate using any given fast RAM area. The execution time of the
called procedure must be such that the cost of transferring to fast RAM is rendered
negligible.

The AccelerateCode function moves the code of a given function into fast RAM.
Because most functions access constants, strings and external procedure calling stubs
in a PC-relative way, the entire module containing the procedure must be moved into
fast RAM. This means that the procedure must be small and be compiled on its own
into a separate module. In C this means that the procedure must appear in a source file
of its own. From the supplied procedure pointer AccelerateCode locates the module
header, allocates sufficient fast RAM, and copies the entire module over. If this is suc-
cessful, it re-calls the module’s initialisation routines to re-install it in the module table

412 CHAPTER 10. THE SYSTEM LIBRARIES

(see the chapter entitled Program representation and calling conventions for more de-
tails of this). Following this, any invocation of the moved procedure will execute the
fast RAM copy, no special action is needed on the part of the callers to do this.

10.2.5 Debugging support

Helios as a whole provides a low-level debugging mechanism which allows simple
text messages to be routed to an I/O server from any processor in the system. These
messages contain a NULL terminated string in their data vector and have the function
code 0x22222222. These messages are originated by the IOputs function. This exam-
ines the processor’s links for one with the debug flag set. If found, the debug message
is sent through the RemoteIOCPort of that link. This will cause it to be delivered
to the Processor Manager of the neighbouring processor. On receiving a debug mes-
sage, the Processor Manager simply re-calls IOputs to pass it on. If the root structure
IODebugPort is not NullPort, then IOputs will deliver the message to this port. This
allows programs to intercept the IOdebug messages for display in some alternative
way.

The function IOdebug provides a printf style interface for generating debug mes-
sages. Like printf this routine takes a format string followed by a number of param-
eters. Within the format string escapes of the form %<char> indicate how the next
parameter should be displayed. Unlike printf this function does not support any of
the format modifiers which may appear between the % and the format character. The
format characters allowed are:

c Print a single character (char).

x Print in base 16 (int).

d Print in base 10 (int).

s Print string (char *).

o Print only last component of pathname (char *).

N Print whole pathname (char *).

A Print access mask (AccMask).

E Print error code (word).

P Print pointer (void *).

T Print object type (word).

X Print access matrix (Matrix).

C Print capability (Capability *).

M Print message header (MsgHdr *).

O Print Object in the format "<Object: Type Nam>" (Object *).

10.2. UTILITY LIBRARY 413

S Print Stream in the format "<Stream: Type Flags Name>" (Stream *).

F Print function code (decoded only on debugging systems) (word).

Normally a newline is added to the end of each string generated by IOdebug. This
can be disabled by terminating the format string with a % character.

To avoid problems with mixed output, IOdebug waits on the IODebugLock semaphore
in the root structure before starting, and releases it after having generated its output.
This is the only instance where different tasks share a single data structure. If a task is
terminated while holding this lock all subsequent IOdebug attempts will be blocked.
However, it is a simple matter to write a program to re-initialise this lock if this is
suspected:

#include <syslib.h>
#include <root.h>

int main(void)
{
RootStruct *root = GetRoot();

InitSemaphore(&root->IODebugLock,1);

IOdebug("IOdebug lock cleared");

return 0;
}

414

Chapter 11

The System servers

This chapter describes the Helios Processor Manager and Loader, both of which are
part of the Helios Nucleus. The Processor Manager implements most of the operating
system functions not covered by the Kernel. The description here covers its manage-
ment of names and tasks in the processor. The description of the Loader covers the
external interface of the Loader, and how it actually works. It also includes the Helios
calling conventions and debugging interfaces.

11.1 The Processor Manager

The Processor Manager has two primary functions: to manage the processor’s Name
Table, and to manage the tasks running in the processor. These functions are described
below.

11.1.1 The Helios naming scheme

It is a feature of Helios that all objects managed by the system are available through
a single consistent naming scheme. This gives the appearance of a rooted tree of
directories containing other directories and objects. The levels nearest the root of the
tree are implemented in a distributed manner by the Processor Managers. Lower levels
of the tree are implemented by servers.

The upper 1 part of the tree forms a hierarchy of logical processor, cluster and
network names. Each processor is a directory named by an unique pathname in this
hierarchy. Server names are placed within the processor directory in which they are
running. The directory tree within a server is managed entirely by that server. While
the server may alter the naming conventions at this point, it is not recommended.

While each Processor Manager logically contains a complete copy of the name
tree, it is in fact built on a need-to-know basis. So, if a particular processor has not
accessed any services in a particular processor or network, it will not have any knowl-
edge of it. When a Processor Manager is asked by a task for access to an unknown
service, it initiates a network wide search for it.

To allow servers to be named in a position independent way, the Processor Man-
agers allow abbreviated names which omit higher levels of the name tree. In this case

1UP is towards the root of the tree, DOWN is towards the leaves.

415

416 CHAPTER 11. THE SYSTEM SERVERS

the closest instance of that server will be located.

11.1.2 The I/O controller

When a task wants to send an indirect message to a server, it sends it initially to its
IOCPort. Waiting on this is a thread, the I/O Controller or IOC, which was created
by the Processor Manager when the task was created. It acts as the task’s agent in
searching the name table. Additionally, a special LinkIOC accepts messages from
remote processors and acts as the agent for remote tasks for interaction with the local
name table.

The IOC is responsible for locating the processor on which the server is resident,
and then for forwarding the message to that processor. When passed an indirect GSP
message it extracts the element indicated by the Next field and looks this up in a
hash table of all the names it currently possesses. This implements the abbreviated
name mechanism and should result in a pointer into the name tree. From here the IOC
follows the pathname through the directory structure as far as possible. If the last name
table node found contains a message port, because it is a local server name or a cached
remote name, the Next field of the request is updated and the message forwarded to
the port.

If the hash table lookup yields no match, or following the path does not end in
a cached name, the IOC performs a distributed search for the last name item which
did not match (see section 11.1.3 for details of the distributed search protocol). If
this search fails the request is returned to its originator with an error. If the search
succeeds, the message port that it returns is cached in the name table and the request
is forwarded to it. Subsequent accesses to the same name will find the cached port and
forward messages to it in the normal way.

The IOC is also responsible for part of the GSP fault recovery strategy. Retries
of indirect GSP requests all contain a retry counter. Each cached name table entry
contains a Confidence level which is reset to a default level each time a request with
a zero retry counter is forwarded through it. Each time a request with a non-zero retry
counter is sent, the confidence level is reduced by the value of the counter. When the
confidence level reaches zero, the cached name is removed from the name table, and
the next request will force a new distributed search for that name. If this fails then a
hard error will be returned to the sender.

11.1.3 Distributed search protocol

The mechanism used by Helios to locate servers is the distributed search protocol.
Initially any Processor Manager knows only about its local servers and as a result
of the Kernel link idle exchange can send messages to the LinkIOC threads in its
immediate neighbours. These near-neighbour connections are used by the distributed
search protocol. The distributed search protocol consists of the following messages:

Search Request Message Header:

Flags Preserve
Dest Link.RemoteIOCPort
Reply Local reply port
FnRc FG Search

11.1. THE PROCESSOR MANAGER 417

Control Vector:

String Name name being sought
word Id Unique identifier
word Link Sender’s link number

Success Reply Message Header:

Flags NONE
Dest Request.Reply
Reply Server port
FnRc Err Null

Control Vector:

String Name Canonical name of service
word Flags Flags field
word Link Sender’s link number

Failure Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Error Code

Control Vector:

String Name Set to -1
word Flags Set to 0
word Link Sender’s link number

The Name field contains the service name being sought. If the first part of the name
is already known (the cluster or processor name for example) then this should be in-
cluded. The Id field is a random number which identifies this search, it is used to
detect cycles in the processor network. The Link field contains the sender’s number
for the link this message is being sent on, it is used to detect link errors.

From the originating processor a search request message is transmitted on each of
its active links. It then waits on the reply port for the replies to arrive.

In a neighbouring processor, the search message will be delivered to the LinkIOC.
This first checks the Id field against a table of the most recent Ids received. If the
identifier is found then a Failure message is returned to the reply port. Otherwise the
Id is entered into the table and the local name table searched for the service name. If
the name is found, and it is not a cached name from another processor, a success reply
is returned. This contains the full canonical name of the service, a set of flags to OR
into the name table entries Flags field, and the Link field from the original request.

If the name is not found locally, new search requests, containing the original Name
and Id fields are transmitted on all the active links except the one on which the original
request was received. A reply is then awaited exactly as in the originator’s case.

Searchers wait until either a successful reply has been received, all neighbours
have replied with a failure, or a timeout expires. In the last two cases, a Failure reply
is returned to the originator. If a Success reply arrives, the reply port is freed, causing
all subsequent responses to be destroyed by the Kernel. The Success reply is then
returned to the originator.

418 CHAPTER 11. THE SYSTEM SERVERS

Name table management

The management of the name tables is primarily the responsibility of the Processor
Manager, there is little provision for external management. The only functions that a
task can perform are to create a name in its local name table, delete that name, clear
the name table of all cached names, and extend the name tree.

Name creation

A new name may be added at any level in the name tables, not necessarily just at
the processor level. Such new names, however, are restricted to being in the current
processor’s path. They may not be added to other processors or clusters.

A name is added with the Create indirect operation. The target in the Common
field indicates the name to be created, which must not already exist on this proces-
sor, but may exist on other processors. The type should be Name. The information
structure passed is a NameInfo structure:

Port The server’s initial request port, to which all indirect operations will
be directed.

Flags Flags for the new name entry. The only flag which may currently be
set is StripName which tells the Processor Manager to position the
Next field of any request just past the server’s name. If absent, Next
will point to the server’s name in the request.

Matrix Initial access matrix for the name. This will be ANDed with Def-
NameMatrix before being installed.

LoadData Originally intended to contain data to enable the automatic loading of
the server when first accessed. This field in currently unused.

Because the port descriptor in this structure is not seen by the Kernel when this mes-
sage is passed, it cannot be translated into a surrogate, and hence this operation is
restricted to being sent only to the local Processor Manager.

Name deletion

The result of creating a name will be a pathname and capability for the new name.
Only the capability returned from this create encodes the right to delete the name. The
default name access matrix is rwv:rx:ry:rz which omits both delete and alter rights
for all categories. Hence, only the server which installed a particular name is able to
remove it.

Clearing the name table

Under certain circumstances it is useful for all the cached names in the Processor
Manager’s name table to be cleared. This is achieved by the Reconfigure operation.

Request Message Header:

11.1. THE PROCESSOR MANAGER 419

Flags Preserve
Dest IOC port
Reply Local reply port
FnRc FG Reconfigure

Control Vector:

IOCCommon Common Common part of GSP request

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

The target of this operation is the processor’s /tasks directory (to avoid problems with
cached names in other processors).

Extending the name tree

This is performed by a normal Rename operation sent to the processor’s own directory
node. The ToName field should contain the complete new path name of the processor.
This operation is restricted to adding extra levels of network and cluster names. Hence,
the current processor name must be a terminating substring of the new name. For
example, a processor may be renamed from /Net/03 to /Cluster/Net/03 but not to
/Cluster/Net1/03 or /Net/04. This function is used primarily by the Network Server
when booting the processor network.

11.1.4 The Task Manager

The second major function of the Processor Manager is the management of all the tasks
which have been created in the processor. The interface to this is presented through
the /tasks directory in every processor. Some of the control functions are performed
by the standard GSP operations while others are performed by special operations. The
full description of these protocols is given in in the chapter entitled GSP.

Task to IOC messages

In addition to sending all indirect operations to its IOCPort a task may send it a num-
ber of private messages. These interact with the Task Manager part of the Processor
Manager.

MachineName

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG MachineName

420 CHAPTER 11. THE SYSTEM SERVERS

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

String Name Machine name

This operation requests the full name of the current processor. This string may change
over time as new levels are added to the processor name (see section 11.1.3 above).

SetSignalPort

Request Message Header:

Flags preserve
Dest IOC port
Reply new signal port
FnRc FG SetSignalPort

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply old signal port
FnRc Return Code

Signal Message Message Header:

Flags NONE
Dest signal port
Reply NullPort
FnRc EC Recover—SS ProcMan—EG Exception—EE Signal—signal

This operation is used to establish a port for the delivery of signals to the task.
Whenever a signal is generated for the task either through SendSignal or from the
Kernel or the Processor Manager, a message will be sent to this port.

Exit

Exit Message Message Header:

Flags preserve
Dest IOC port
Reply new signal port
FnRc EC Error—EG Exception—EE Kill

Control Vector:

word Code Program return code

This message is sent by the task to its IOCPort when it wishes to exit. It is sent
by the System library Exit function. This is the only way that a task can exit. How-
ever, under certain circumstances this message is generated internally by the Processor
Manager to force a task to quit.

The Code field contains the program’s return code, the argument supplied to Exit.
This will be returned to the task’s parent in the Program info Message.

11.1. THE PROCESSOR MANAGER 421

11.1.5 Debugging system control messages

In debugging and development versions of the Helios Nucleus a set of IOdebug mes-
sages can be generated. These are controlled by a set of flags in the Processor Manager
and in each task structure. These flags are changed by the following messages.

Debug

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Debug

Control Vector:

IOCCommon Common Common part of GSP request
word Flags Debug flags to be set

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation should be directed to a processor’s /tasks directory. The set of flags in
the Flags field are exclusive-ORed with the current set of debug flags in the Processor
Manager. The flags are interpreted as follows:

ioc1(0x01) Report all indirect operations sent by all tasks.

ioc2(0x02) Report the name table lookup process for each indirect opera-
tion.

ioc3(0x04) Report on message forwarding for each indirect operation.

search(0x08) Report on each distributed search made from this processor.

searchwork(0x10) Report on each distributed search received at this processor.

mem(0x20) Report all memory allocations made by the Processor Man-
ager.

tasks(0x40) Report all task operations.

info(0x01000000) Report processor state every 5 seconds.

Some of these options will produce large quantities of output, and will significantly
affect the system’s performance.

In addition to the above flags, the Flags field of all tasks created will be initialised
to (debug flags>>8)&0xFF. This allows a set of default task debugging flags to be set
for all tasks (see next section).

422 CHAPTER 11. THE SYSTEM SERVERS

SetFlags

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG SetFlags

Control Vector:

IOCCommon Common Common part of GSP request
word Flags Flags to set

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation affects the Flags field of a task structure. It exclusive-ORs the request
Flags field with the structure’s Flags field. In the System libraries, certain of these
flags are inspected and debugging information is output if they are set. These flags are
defined in task.h:

ioc Report each indirect operation and its result.

stream Report each direct operation and its result.

memory Report each memory allocation and release operation.

error Report all message passing errors.

process Report all task related operations.

info Produce a single report on the state of the task.

meminfo Produce a single report on the state of the task’s heap.

fork Report each Fork operation and the stack used by the thread when it
exits.

servlib Report incoming requests in Server library dispatcher.

fixmem Disable the acquisition of new heap block from the Kernel.

11.2 The Loader

The Loader server is part of the Nucleus and is responsible for loading code from files
into memory in preparation for execution. It manages the demand loading of Shared
libraries, and the general sharing of code between tasks. Where possible it will obtain
the code needed from another processor in the network, rather than fetch it from the
file system.

11.2. THE LOADER 423

11.2.1 Code management

Code is loaded into a processor through the Load request, which is a variant of the
Create request (see later). The first thing the Loader must do is to locate a copy of the
code required. There are five possibilities:

1. It may already be loaded in this processor.

2. The Loader may already contain a symbolic link to the code.

3. It may be resident in a neighbouring processor.

4. If a library, it may be in /helios/lib.

5. Its location is supplied in the request.

If the code is already loaded, its use count is incremented and a successful reply
is returned to the Create request. To allow for case insensitive file systems, the name
comparison is case insensitive.

If the Loader contains a symbolic link to the code, placed there by the cache com-
mand, then the name and capability stored in it are used to read the code.

If the Loader has no knowledge of the code, it needs to find it. The first attempt
is to ask its immediate neighbours. To do this it sends a message containing the name
of the code required, plus its own processor type, to each of its neighbours. If the
neighbour is of the same processor type, and it contains a copy of the code then it
returns its name and capability. Otherwise an error is returned.

If the code being sought is a library from a Resident library reference ResRef, then
the directory /helios/lib is scanned for the file. The matching process here is compli-
cated by the potential use of host file systems which are case insensitive. The library
is first sought using the name from the ResRef directly. If this fails the processor type
is appended (on the Transputer either .t4 or .t8) and the search retried. If this fails the
original name is converted to lower case and the two searches repeated.

If the code is not a library then a source for it will have been provided in the load
request in the form of a name and capability.

To load a piece of code, either from disc, or from another Loader, the object is
opened and the first twelve bytes read. These are an ImageHdr structure which defines
the size of the code. A block of memory of this size is allocated and the indicated
number of bytes read into it. The code is then scanned for Resident library references.
If the library is already present, a pointer to it is placed into the code. Otherwise its
whereabouts are sought, using this algorithm recursively.

Each code object managed by the Loader has two variables associated with it:
a use count and a retain flag. Each time a code object is used by a task its use
count is incremented. When the task exits, the use counts on all its code objects are
decremented. If the use count of any code object falls to zero, and its retain flag is false,
its memory is reclaimed, otherwise it is kept. The retain flag is set on all libraries when
they are loaded, and on all code loaded through a symbolic link. Additionally, if an
attempt is made to Delete a piece of code, its retain flag is set to false. If its use count
is zero it is deleted immediately, otherwise it will be deleted when it is no longer in
use.

424 CHAPTER 11. THE SYSTEM SERVERS

11.2.2 Error detection

All code in Helios is read-only, there is no relocation, and no code is self modifying.
The Loader uses this fact to implement a simple error check on all code. When a piece
of code is loaded, it is checksummed. Whenever a task starts or exits, all the code
it uses is checksummed again and the result compared with the original sum. If they
differ an error message is generated on the logger and the code’s retain flag cleared.
This will force it to be unloaded at the earliest opportunity and if needed again, a fresh
copy will be fetched.

11.2.3 Loader protocol

In keeping with the Helios conventions, the Loader presents a directory interface
through the /loader directory on all processors. The entries in this directory each
represent a single piece of code loaded into that processor, or a symbolic link to it.
The normal operations for directory listing may be applied to this server. In addition
the following operations have an extended or modified function.

Create

The Create operation is used to load code into the Loader. This is modified by ORing
the FF LoadOnly flag into the function code F field. The optional Info field is a
LoadInfo structure:

Cap Capability of object to be loaded.

Matrix Initial access matrix of object, this will be ANDed with a default matrix.

Pos Start position of image in object.

Name The canonical pathname of the object to load.

The Cap and Name fields should have been obtained from the result of an Open,
Create or Locate operation. The Pos field is present to allow the loading of code
which is embedded in some other information in a file.

Open

Access to a loaded code object is acquired through the normal Open operation. The
action of Open depends on whether the mode flags include the Execute mode. When
Execute is not required, a direct operation port is returned and the object may be read
just like a normal file. This is used, for example, for transferring the code from one
processor to another. If Execute mode is requested then the Object field of the open
reply contains a pointer to the start of the code in memory. No direct operation port is
returned, but the Closeable flag is set, forcing the client to send a CloseObj operation
when it has finished with the code.

11.2. THE LOADER 425

Link

The Link operation is used unmodified. The action of this request is to place a refer-
ence in the Loader under a given name to a particular piece of code. Any subsequent
use of this code will result in it being loaded and retained.

This facility is used to mark particular commands and libraries as cacheable. The
actual code will only be loaded on demand, but will be retained once loaded.

Delete

This operation marks an object in the Loader as a candidate for removal. It does not
force its removal unless the code is not currently in use. Otherwise the object will be
removed the next time the use count reaches zero.

CloseObj

When an object has been opened for execution the server ensures that a CloseObj
reply will be generated when the object is closed. Because no direct operation port is
returned, a normal Close operation cannot be used.

The action of CloseObj is to reduce the use count on the code object being closed.
If it reaches zero, and the retain flag is false, the code is deallocated, and the use counts
on all the libraries it used are also decremented. This may cause further deallocations
and use count decrements recursively.

426

Chapter 12

Writing servers

12.1 Introduction

The purpose of this chapter is to explain how to write servers under Helios. Helios is
based on the client-server model of computing. To do any work under Helios other
than pure computational work, for example inverting a matrix or sorting some data
in memory, programs need to interact with servers. For example, to read data from a
file it is necessary to interact with a file server, and to send diagnostics to a screen it
is necessary to interact with a window server. As far as application programmers are
concerned this usually happens transparently. User applications simply call standard
libraries such as the Posix or C library, and the system performs the necessary interac-
tion with the server. This chapter looks at the other side: the server side. It explains
how advanced programmers can write their own servers, thus extending the facilities
provided by Helios.

Even with the support provided by Helios, writing a server is a non-trivial job, and
should be attempted only by experienced programmers who have used Helios for some
time. This chapter assumes that the reader has some understanding of the workings of
Helios, such as the naming scheme and the structure of the Nucleus. Since the vast
majority of servers are written in the C language this chapter also assumes familiarity
with that language.

Section 12.2 provides a general introduction to servers, starting with the Unix dae-
mon mechanisms and then describing how and why Helios servers are different. It
gives a brief description of the Helios message passing system, the General Server
Protocol, and the Server library.

Section 12.3 contains the code for a simple server, a /lock server which provides
locking between separate programs. The sources of this lock server and other servers
described in this chapter are supplied with Helios in the directory /helios/users/guest/examples/servers.

Section 12.4 gives a more detailed description of some of the aspects of writing
servers: error codes, protection, and other server library routines.

Section 12.5 gives the code for a more complicated server, the /include disc which
acts as a simple read-only file server. The section continues with a description of how
to extend this server so that it becomes a full RAM disc.

Section 12.6 describes Helios device drivers, what they are for, and how to access
them from a server. To illustrate the use of device drivers the sources for another

427

428 CHAPTER 12. WRITING SERVERS

server, a /keyboard server, together with an example device driver, are included.
Section 12.7 concludes this chapter with a description of how to write servers

without using the Server library. An example is given of an MS-DOS compatible file
server.

This chapter has been written mainly as a tutorial rather than as a reference work.
Further information on particular aspects can be found in other chapters. The online
help system and the Helios encyclopaedia contain full details of the various routines
outlined in this chapter. The Helios header files are also a good source of information.

12.2 Helios servers

The basic concept of the client-server model is very simple.

1. Somewhere in a network of processors there is a program A that requires a ser-
vice. The service could be reading some data from a file, running another pro-
gram or a collection of programs, or showing a picture of the starship Enterprise
on a graphics display. Many services involve I/O of some sort, but not all.

2. The program may be physically unable to perform the service. For example,
some essential piece of hardware such as the graphics display might be attached
to a different processor, making it inaccessible.

3. Alternatively it may be inconvenient for the program to perform the service.
For example, application programs do not usually want to control a hard disc,
keeping track of all the sectors and maintaining the directory structure. Instead
such programs expect to interact with an existing program which implements a
filing system.

4. There is another program B, possibly on the same processor as A or possibly on a
different processor. This program has been written to perform a specific service.
Occasionally a program may provide more than one service. Alternatively a
collection of programs may be required to provide one service.

5. Program A can communicate with program B and it can request that the required
service be performed on its behalf.

6. In this situation, program A acts as a client, and B acts as a server.

The client-server model is by no means unique to Helios. In fact it is an essential
part of many existing operating systems, including most Unix systems. This chapter
describes the daemon-based approach used by Unix, as the mechanisms involved are
supported by Helios. However, Helios was designed from the beginning around the
client-server model and provides much more extensive facilities.

12.2.1 Unix daemons

Originally Unix was designed as a single-processor operating system isolated from the
rest of the world. With the development of networking such as ethernet, this situation
changed, and client-server facilities had to be added to Unix, for example in the form
of socketsin BSD UNIX.

12.2. HELIOS SERVERS 429

1. A program willing to provide a service must become a daemon. Unix systems
typically come with a number of these daemons, for example, telnetd is the
telnet daemon permitting users to log in from remote machines over the network.

2. A daemon must create a socket and bind an address to this socket. This regis-
ters the daemon with the system, thus allowing clients to contact the server. The
daemon can then accept incoming connections. The addresses used are simple
numbers such as 69, rather than text names. For convenience, Unix maintains a
services file, mapping names such as nfs onto the numbers, but system admin-
istrators are responsible for maintaining this file.

3. When a client needs to access a daemon it creates a socket. It must then specify
the service required, using the service address, and the address of the processor
running the service, which is another number. Again there is a file called hosts
mapping text names onto processor addresses. The client can then connect to the
daemon. Note that the client must know the identity of the processor running
the daemon.

4. The socket routine returns a Unix file descriptor, and the read() and write()
routines can be used on this descriptor to achieve communication between client
and server. The underlying nature of this communication, whether stream-based
or datagram-based, can vary.

5. At any one time a daemon may have several clients connected to it, all request-
ing different services. Typically a daemon’s main loop calls the select() routine
to find out which of the current clients is requesting a service, or to accept con-
nections from new clients. For every such client the daemon will read details
of the service required from the corresponding socket, perform the service, and
send back a reply to the client.

6. The protocols used between the clients and the daemon are NOT defined by the
operating system. Hence one daemon might interpret a request code 1 to mean
“open file”, whereas another daemon might interpret exactly the same request to
mean “delete file”.

Helios provides the Unix socket calls as part of its Unix compatibility, and many of
the usual Unix daemons are available. Hence existing Unix daemons can be ported to
Helios with little or no effort. For example, the Helios implementation of the X server
uses the standard socket based server code rather than the Helios mechanisms.

12.2.2 Helios servers

Helios has been designed specifically around the client-server model. In particular the
Helios naming scheme has been designed around servers.

1. Under Helios a program willing to provide a service, and which does not want to
use the Unix mechanisms, must become a server. Occasionally a Helios program
may become a daemon as well as or instead of a server, to provide the service
over a local area network such as ethernet as well as within a multi-processor
Helios machine.

430 CHAPTER 12. WRITING SERVERS

2. A server must register itself with the system by creating a new name inside
the processor. Helios always uses textual names for its addressing rather than
numbers.

3. Clients can access most servers by standard library calls. For example, exactly
the same Posix open() routine can be used to access a filing system on the same
processor, a ram disc on some other processor in the network, a window inside
an I/O processor somewhere in the network, or a serial port attached to a modem.
There is no need for any special routines on the client side to access a service.

4. Furthermore, the client does not need to know the location of the service. For
example, If a client tries to access /fs/users/dick and the system has not yet
accessed the server /fs, there will be a distributed search throughout the network
of processors.

5. As far as the client is concerned, the exact mechanisms used to access servers
are irrelevant, because the client simply uses standard I/O calls such as open()
and stat(). In fact there is a System library which turns these calls into Helios
messages sent to the appropriate servers. Servers accept these messages, per-
form the requested service, and send reply messages. These replies are accepted
by the System library, and the original library call will return.

6. Helios servers are usually internally multi-threaded. For every client accessing
the service there will be a separate thread inside the server program responsible
for handling requests from that client. Hence if two clients want to access two
different files inside the same file server, these files can be accessed in parallel.
However this does involve a cost, because servers must perform some synchro-
nisation operations between the various threads.

7. The basic protocol used between Helios servers and clients, or rather the System
library which performs all the work on behalf of the client, is defined by He-
lios. This protocol is the General Server Protocol. It is recognised by all Helios
servers, although not all servers need to support all parts of the protocol. For
example, a mouse server does not need to accept incoming data as a result of a
write() call, because there is nothing useful it could do with such data.

When it comes to writing Helios servers the essential points to note are message
passing and General Server Protocol. Helios servers must accept and respond to
incoming messages, so it is necessary to understand how this message passing works.
The contents of all the various messages for all types of servers is defined by a protocol,
and this protocol must also be understood.

12.2.3 Message passing

Helios servers accept requests from clients in the form of messages. These messages
are generated by the System library as a result of the client’s library calls. Servers
must receive these messages, perform the requested service, and send back replies.
This subsection gives an outline description of Helios message passing, which has
already been described in detail in previous chapters.

12.2. HELIOS SERVERS 431

The basic data structure used for message passing is the MCB, as defined in the
header file message.h.

typedef uword Port;
#define NullPort ((Port) 0)

typedef struct MsgHdr {
unsigned short DataSize;
unsigned char ContSize;
unsigned char Flags;
Port Dest;
Port reply;
word FnRc;

} MsgHdr;

typedef struct MCB {
MsgHdr MsgHdr;
word Timeout;
word *Control;
byte *Data;

} MCB;

Messages are sent to message ports. If the message’s destination is going to send a
reply, it will need a reply port. There is a special value NullPort which is recognised
by the system as an invalid port.

A Helios message consists of three fields. The first is a message header, which has
a fixed size of 16 bytes. The second is a control vector, a vector of 32-bit integers
or words. In theory this vector can contain between 0 and 255 words, the exact size
being defined in the ContSize field of the message header. In practice, GSP messages
never involve more than 16 words, but Helios messages could be used for communi-
cation other than interaction between client and server. The third field is a data vector,
containing between 0 and 65535 bytes. The exact size is defined in the DataSize field
of the message header. The MCB structure contains a message header and pointers to
the control and data vectors.

In addition to the control and data vector size, the message header contains four
fields. The flags field controls various options in the message passing system. For
servers there are two important flags:

1. MsgHdr Flags preserve: By default a message port can be used only once. If
a message is sent to a particular message port, that port cannot be used again.
Usually this is exactly what is required. For example, a server receives a request
with a suitable reply port in the message header. It performs the service and
sends back a reply to the client using that reply port. The transaction is now
complete so the system can reclaim the message port, preferably without any
further work required on the server’s part. Occasionally it is necessary to send
multiple replies to a single message port. For example, when replying to a read
request for 200K of data, this data must be split into multiple messages, because
each message is limited to 64K. All of the reply messages except for the final one
should use the preserve flag to prevent the system from reclaiming the message
port too early. The final reply should not use the flag because the transaction has
now finished and the system should do the cleaning up.

432 CHAPTER 12. WRITING SERVERS

2. MsgHdr Flags sacrifice: For some servers it does not matter whether or not a
particular message actually reaches a client. For example, a mouse device can
generate tens of messages every second while the user is moving the mouse, and
if one of these messages is lost this does not matter greatly. Setting the sacrifice
flag is a hint to the Kernel that the message can be discarded if necessary, usually
because the network is being overloaded with message traffic and the Kernel is
running out of communication bandwidth. If this flag is not set, the Kernel still
does not guarantee delivery, but it will try harder.

The destination message port usually refers to the client that sent the original re-
quest, and was contained in the Reply field of the incoming message. For some re-
quests a reply message port can be included which would allow the client to send
messages directly to the server, the main use being for opening a stream connection.
For most requests the reply message port should be set to NullPort, indicating that the
transaction has completed. The FnRc field is used to hold the function request code
for incoming messages, or the error code for replies. The structure of request and reply
codes is described in more detail in section 12.4. The whole MCB contains one other
field, a timeout for the message transaction.

There are four Kernel routines to perform message passing: PutMsg() sends a
message; GetMsg() receives a message on a single message port; XchMsg() is used
mainly by clients to send a request and receive a reply; and MultiWait() can be used
to wait for messages sent to several different message ports. Of these four the first two
are the most important for writing servers. Servers either call them directly or they are
called automatically as a result of using the Server library.

An important aspect of Helios message passing is that the communication is not
always totally reliable. The vast majority of messages sent will arrive at their destina-
tion without problems, but there are circumstances under which some messages will
be lost.

1. The client program itself may crash while the server is handling a request. Given
the absence of memory management hardware on some types of processors run-
ning Helios this possibility must be anticipated. Even if memory management
hardware is available, hardware irregularities can cause the occasional crash. In
this case the reply generated by the server must be discarded by the system, and
the server must recover somehow from a client that disappears.

2. Some other program on the same processor as the client crashes the processor.
Since Helios is a multi-tasking system this is possible. Servers cannot distin-
guish between this case and the previous one.

3. A server may crash while the client has an open stream to it. This is less likely
than the previous case but it can happen. The System library routines will return
error codes which should be propagated to the user’s application. Sometimes
the System library can find an alternative server offering the same service, and
will transfer to that one automatically, but this is not always possible.

4. A processor used to route messages between the client and the server crashes
as a result of an errant program or a hardware failure. In the worst case, this

12.2. HELIOS SERVERS 433

processor crashes just when a message has been read from one link but before
it can be sent out of another. Because there are timeouts on all messages, the
system can detect such failures and take recovery action. This recovery action is
always initiated from the client side, rather than from the server side. The route
to recovery may be as simple as sending the message again, forcing a new dis-
tributed search to find an alternative route to the same server, but more complex
recovery techniques are also built into the system. All of this is transparent to
the application programmer.

5. The network may be so congested with message traffic that messages can no
longer be transmitted. Again, the system will automatically take recovery action
and the network should always continue running.

Given that message passing is inherently unreliable it is essential to design the client-
server communication so that it can cope with failures, and servers must be written to
allow for failures.

12.2.4 The General Server Protocol

The message passing routines allow communication between the System library and
Helios servers. The format of the message header is clearly defined. The content of the
FnRc field and of the control and data vectors is not defined by the message passing
system. Instead it is defined by the higher-level General Server Protocol (GSP). GSP
is defined in greater detail in chapter 13, General Server Protocol. The following is a
brief introduction to the basics of the protocol.

The following GSP messages can be sent to servers for any objects.

Open

This is used to establish a stream connection between the client and the server.
Essentially this is used to obtain another message port which can be used to
interact with one thread in the server dedicated to handling this stream. This
message port can then be used to send other requests such as read and write
which can involve very large amounts of data. There are various open modes
such as an implicit create if the specified object does not yet exist. The same
open request can be used for files, directories, devices, and so on.

Create

This is used to create a new object, for example a new window on the screen.

Locate

This is used to test whether or not a particular object exists. It returns certain
useful pieces of information, for example whether the object is a file or a direc-
tory.

ObjectInfo

This is used to obtain additional information about an object, for example its
size and a date stamp for when the object last changed. Essentially this is used
by the Posix stat() routine.

434 CHAPTER 12. WRITING SERVERS

ServerInfo

This obtains information about an entire server rather than about a specific object
within the server. The information supplied depends on the server. File servers
return disc usage statistics such as the disc size and how much of it has been
used. The Processor Manager gives performance statistics about the processor
such as memory usage and link traffic.

Delete

This is used to remove an object from the name table. This might involve delet-
ing a file and returning its disc blocks to the free pool. Alternatively it might
involve eliminating a server’s name table entry when that server is exiting.

Rename

This changes the name of an object within the server. It cannot be used to move
an object from one server to another because a GSP message transaction inter-
acts with a single server, not with several servers. Different servers may or may
not allow objects to be moved from one directory to another.

Link

This is usually supported only by file servers which can store data permanently.
It creates a symbolic link to some other object in the naming hierarchy together
with the capability needed to access that object.

Protect

This is analogous to the Posix chmod() routine, which is used to change the
access mask of an object. Since Helios uses capabilities rather than true Posix
access masks, the match is not exact.

SetDate

This changes the timestamp of an object. It is used mainly by the touch com-
mand.

Refine

This can be used to generate a new capability for an object. It is described in
more detail in section 12.4.1.

CloseObj

This is used by some servers as a hint that an object is no longer required. It
can be thought of as a less drastic form of a Delete request. For example, when
a piece of code loaded in memory is no longer required a CloseObj message
is sent to the Loader. If no other application is using the code at the time, the
Loader may remove the code from memory.

Revoke

This is also used to implement Helios protection. It invalidates all existing ca-
pabilities.

12.2. HELIOS SERVERS 435

All of these messages operate on named objects. The System library routines corre-
sponding to these GSP messages typically take the following form:

word ObjectInfo(Object *context, string name, byte *info);

The first argument is an object, usually the current directory. This object contains
a capability giving the client a certain amount of access to that object and hence to
objects within its subdirectories. The second argument is a string specifying the file
or device name relative to this directory. The third argument is routine specific, in this
case a buffer for the required information. The routine packs the details of the context
object and the name into a message, together with any request specific information,
and passes this message to the system. The system then forwards this message to the
correct server, performing a distributed search for the server if necessary.

For example, a message might have a context object of /Net/00/helios/include and
a filename of stdio.h. The system scans these names. If the client is in the same Helios
network as the server, the current processor will already know about /Net, and the next
part of the name can be scanned. If the client is in a different network which happens
to be attached to the one containing the server, the system forwards the message to
the nearest processor in /Net. The next part of the name is /00, which might be the
processor running the client or it might be a different processor. If it is the latter, the
message is forwarded to processor /00. Once the message is in processor /00 it is
passed to the server /helios, which can start processing the request.

Making the system search name tables for requests works well for operations such
as Delete and ObjectInfo which are relatively infrequent and involve small amounts
of data. For I/O intensive operations such as reading and writing files, GSP uses a
different set of messages. These messages can be used only over stream connections
created as a result of an Open request. The client opens a stream to an object within
the server. The server starts a separate thread to handle the request, and the request
returns a message port private to the stream connection. The client can now send read
and write requests directly to this message port and hence to the appropriate thread
within the server. The requests that can be used on open streams are listed below.

Read

This is used to extract data from the object.

Write

This is used to put data into the object.

Getsize

This indicates the amount of data in the object. The exact meaning of this can
vary. For example, in a file server the size indicates the current size of the file,
whereas in a pipe it indicates the amount of readable data currently buffered.

SetSize

This is rarely used, but it can truncate or expand files to a particular size.

Close

This terminates an existing stream connection. The message ports are released
and the thread in the server handling the connection terminates.

436 CHAPTER 12. WRITING SERVERS

Seek

This changes the current position within the object. It’s usefulness is limited to
files.

Getinfo

This obtains control information about an object. For example, if used on an
RS232 port it returns details about baud rates, parity settings, and so on. The
nature of the information depends on the server, but the Attributes structure is
commonly used.

SetInfo

This changes control information about an object. For example, it can be used
to change the baud rate of an RS232 port.

EnableEvents

This is used with event-driven devices such as mice, to start receiving event
messages. The server receives a message port and will start sending messages to
this port as soon as they are generated. The System library returns this message
port to the application program, which should start receiving messages.

Acknowledge

This is used with event-driven devices to inform the server that certain messages
have been received.

NegAcknowledge

This is also used with event-driven devices to indicate that one or more messages
have been lost.

Select

This is used to determine whether the object has data ready to be read, or whether
the object can receive data.

GSP has been designed to cope with lost messages. Servers should be stateless, in
other words the server should not need to remember any information about the client
between requests. Every request contains all the information needed by the server to
perform the requested service. For example, consider a client that writes data to a
file. Each write is a separate transaction, and each request contains the position within
the file where the data is to be written, as well as the data itself. This copes with the
following situation:

1. The client sends a write request for 1024 bytes at position 4096.

2. The server performs this write and sends back a reply.

3. The reply message is lost for some reason, and the client must retry. This in-
volves another write message.

12.2. HELIOS SERVERS 437

4. The server does not know that a message has been lost. If the data was sent
to it without a position, it could only write this data at location 5120, after the
previous data. Hence the file would contain corrupt information.

5. Since the file position is sent with the write message, the server can put the data
at the right position and the output file is not corrupted.

In this example the essential piece of state information is the current position within
the file. To achieve stateless servers the GSP messages must be idempotent: if a client
sends two or more identical messages to a server, usually because of a failure, this has
the same effect as sending the message exactly once without any failures, and the client
must receive the same reply. The Write messages described above are an example of
idempotentcy.

In practice, fully idempotent protocols are complicated and do not necessarily be-
have in the expected manner. For example, consider a message which renames a file
tom to a file dick. The first time this operation will succeed and send back a suitable
success code. If the message is repeated, the server will send back an error message
because the file tom no longer exists. Hence two identical messages generate different
replies, and the protocol is not fully idempotent. However the Rename operation does
work in the expected manner. Similarly deleting a file which does not exist should, in
theory, return a success code: a previous identical message might have deleted the file
and generated a success code. For such cases GSP follows common sense rather than
strictly obeying the theory.

12.2.5 The Server library

Many servers require similar facilities. These include the following:

1. Maintaining a directory tree in memory. Except for some file servers which hold
their directory trees on a disc this is true for the vast majority of servers.

2. Accepting incoming requests aimed at the server and starting up a thread to
handle those requests. For most operations this thread will perform the requested
service and terminate. For an Open operation, the thread continues running
to handle requests sent to the stream port, until a Close request is sent to that
stream.

3. Walking down the directory tree and possibly adding and deleting entries. Care
must be taken here to synchronise with other threads.

4. Many requests can be handled using identical code in different servers. For
example, the information required to handle the ObjectInfo requested is usually
all stored in the directory tree, and no special code is required in the server to
access it. Hence different servers can share code to perform these operations.

5. All servers require miscellaneous operations such as sending back error mes-
sages.

To support these common requirements of servers, Helios provides a Server library,
embedded in the Nucleus. Its use is described in the sections to follow, with the exam-
ple programs.

438 CHAPTER 12. WRITING SERVERS

12.3 A /Lock server

This section contains the source code of a simple server which provides a locking ser-
vice between different programs. The lock server is not intended to be particularly
useful, but it does illustrate many of the concepts of writing Helios servers. The full
sources of this and a number of other servers are in the directory /helios/users/guest/examples/servers,
shipped with the Helios system. A lock server needs to support three main operations:
it must be possible to create a unique named lock, which should fail if that lock already
exists: it must be possible to delete an existing lock; and it must be possible to examine
the /lock directory to find out which locks currently exist.

12.3.1 Header files

Since the lock server is written in C it will need a number of header files, included at
the start of the source.

#include <helios.h>
#include <string.h>
#include <codes.h>
#include <syslib.h>
#include <servlib.h>
#include <gsp.h>
#include <root.h>
#include <link.h>
#include <message.h>
#include <protect.h>
#include <event.h>
#include <nonansi.h>

When writing servers it is often necessary to consult these header files, if only because
the header files tend to contain the most up to date information about parts of Helios.
Some knowledge of what is in each header file is useful.

helios.h contains type definitions and macros which are used frequently by the Helios
system programmers, including the example servers in this chapter. Among the
most common macros used are New() to allocate some memory for a data struc-
ture, and Null() to check whether or not an operation such as memory allocation
failed.

string.h contains prototypes for string and memory manipulation routines such as
strcpy() and memset().

codes.h holds the details of how request and error codes are encoded in the FnRc
field of a message header. This header file is necessary if the server is to return
sensible error codes.

syslib.h defines the System library, including options such as the various different
modes in which a file or a device can be opened.

servlib.h contains the data structures and routines provided by the Server library.

gsp.h defines all the messages in the General Server Protocol.

12.3. A /LOCK SERVER 439

root.h contains details of the root data structure, which is essentially where the Kernel
holds all its private data. Occasionally a server may need to examine the current
state of this data structure, using the GetRoot() macro.

Note: No program should ever change the root data structure.

link.h contains details of how to access processor links directly. Some servers interact
with the actual hardware by sending and receiving data to and from a dumb
link, typically because there is a processor dedicated to an I/O task, such as a
disc controller attached to the link.

message.h has the data structures used for message passing, together with prototypes
for the message passing routines.

protect.h contains various definitions and macros used to implement the capability
based protection mechanism.

event.h contains data structures and function prototypes to handle hardware interrupts
(the event line in computer based systems).

nonansi.h has prototypes for some miscellaneous routines: Fork() is used to start
up another thread; IOdebug() provides a low-level debugging facility similar
to printf(), which is useful mainly for system programmers in a single-user
system; the use of on-chip memory (if available) is permitted by Accelerate()
and AccelerateCode().

12.3.2 Program startup

All servers tend to start in much the same way.

1. Some servers are ordinary C programs which have a normal environment, and
hence they can examine their arguments and environment strings for options.

2. Other servers are designed to be run from the initrc file or from the network
resource map, without an environment. During development it may be desirable
to start these servers from the shell, so there is typically a compile-time option
to receive an environment. Such servers are usually linked with the s0.o startup
code instead of c0.o, as described in chapter 3, Programming under Helios.

3. Various bits of data must be initialised, notably the initial directory tree.

4. A message port must be obtained, so that the server has a way of receiving its
incoming requests.

5. If the server controls a piece of hardware, usually this must be initialised. This
may involve loading a device driver or interacting directly with the hardware.
Often one or more threads must Fork() off to interact with the hardware. Details
of this are specific to the server.

6. The server must be registered with the system. Unless the system knows that a
particular program is willing to provide a service, distributed searches for that
server will fail and clients will be unable to access the server.

440 CHAPTER 12. WRITING SERVERS

7. If the server is to be embedded in the Nucleus, it must send an acknowledgement
back to the Processor Manager. This is described in more detail in chapter 3,
Programming under Helios.

8. The server calls a Dispatch() routine in the Server library, to start accepting
messages from clients.

9. The Dispatch() routine usually does not return, because servers are usually
started when the machine is booted and continue running until the machine is
powered down or rebooted. Nevertheless, servers may provide one or more ways
of being shut down, mainly as a debugging feature. If so, there is usually some
tidying-up code at the end.

Hence the main() routine of a server tends to look like this.

int main(void)
{ Port server_port;

#ifdef DEBUG
/* If the program is to be started from the shell */
/* but still linked with s0.o then it must accept */
/* an environment. */

{ Environ env;
GetEnv(MyTask->Port, &env);

}
#endif

/* Initialise directory tree */

/* Obtain a message port for this server */
server_port = NewPort();

/* Initialise the hardware */

/* Register the server with the system */

/* If embedded in the nucleus, acknowledge start-up */
#ifdef IN_NUCLEUS

{ MCB m;
InitMCB(&m, 0, MyTask->Parent, NullPort, 0x456);
(void) PutMsg(&m);

}
#endif

/* Call the Dispatcher */

/* Tidy up */

return(EXIT_SUCCESS);
}

12.3. A /LOCK SERVER 441

12.3.3 Initialising the directory tree

The following code is used to initialise the directory tree.

static DirNode LockRoot;

int main(void)
{ ...

InitNode((ObjNode *) &LockRoot, "lock", Type_Directory, 0,
DefDirMatrix);

InitList(&LockRoot.Entries);
...

}

Maintaining the directory tree involves two main data structures: DirNode is used
for directories, and ObjNode is used for files or devices within a directory. A DirNode
contains the following fields:

typedef struct DirNode {
Node Node; /* link in directory list */
char Name[NameMax]; /* entry name */
word Type; /* entry type */
word Flags; /* flag word */
Matrix Matrix; /* access matrix */
Semaphore Lock; /* locking semaphore */
Key Key; /* protection key */
struct DirNode *Parent; /* parent directory */
DateSet Dates; /* dates of object */
word Account; /* owning account */
word Nentries; /* number of entries in dir */
List Entries; /* directory entries */

} DirNode;

Linked lists are used to hold the directory tree because they provide convenient
data structures. The name of the directory can be up to 31 characters long, plus a
\0 terminator, which should suffice for most uses. The directory has a type, usually
just Type Directory, but other types are described in section 12.4, as are the various
possible flags. The Matrix and Key fields are used to implement the protection mecha-
nisms. The semaphore guards against concurrent access to the directory. For example,
if a server receives two simultaneous requests, one of which involves adding an entry
to the directory and the other of which involves removing an entry, the server will con-
tain two threads handling these requests. Unless these threads synchronise with each
other, the data structure is likely to be corrupted. The Parent field points at the parent
directory, if it exists. The data structure contains time stamps for when the object was
created, when it was last changed, and when it was last accessed. These are usually
updated automatically by the Server library. The meaning of the account field varies
from server to server: it is one of the fields printed out by ls -l; for example, listing the
Session Manager might give the following output.

% ls -l /sm
4 Entries
d r--x---- 0 132 Sat May 4 15:51:35 1991 Windows/
f r------- 108 1 Sat May 4 16:29:18 1991 bart

442 CHAPTER 12. WRITING SERVERS

In this case the Windows subdirectory has no account information, but the account
field for user bart is 108, corresponding to the Posix user id. A common use for the
account field is to keep track of the number of open streams to an object. For listing
the /window server might produce the following output:

% ls -l /window
2 Entries
f rw----da 4 0 Sat May 4 15:51:04 1991 User1
f rw----da 3 0 Sat May 4 15:51:04 1991 console

In this case window User1 has four open streams, and window console has three. The
final two fields in the DirNode structure are used to hold the contents of this directory:
the number of entries, and a linked list holding the entries.

The ObjNode structure is used to hold details of files and devices, rather than of
directories. It is almost identical to the DirNode structure.

typedef struct ObjNode {
Node Node; /* link in directory list */
char Name[NameMax]; /* entry name */
word Type; /* entry type */
word Flags; /* flag word */
Matrix Matrix; /* access matrix */
Semaphore Lock; /* locking semaphore */
Key Key; /* protection key */
struct DirNode *Parent; /* parent directory */
DateSet Dates; /* dates of object */
word Account; /* owning account */
word Size; /* object size */
List Contents; /* whatever this object contains */

} ObjNode ;

Most of the fields are the same and have exactly the same meaning. Instead of a count
of the number of directory entries, the ObjNode structure has a Size field which can
be the current size of a file, the number of characters buffered up and to be read, or
some other piece of information relevant to the server. There is a linked list at the
end to hold information specific to the server. The three words making up the linked
list can be used as a list, for example to hold various buffers. Alternatively, by using
suitable casts, the words can be assigned different meanings appropriate to the server.
In addition it is possible to make the ObjNode part of a larger structure, for example:

/* data structure for an Analog to Digital Converter */
typedef struct ATOD_Node {

ObjNode ObjNode;
WORD *HardwareBase;
WORD Mode;
BYTE Buffer[256];

} ATOD_Node;

Since this data structure contains all the correct pieces of information at its start, it will
be recognised by the Server library as an ordinary file or directory. Routines which
need to access the hardware are passed the ObjNode part of the structure, and hence
the whole data structure. DirNode and ObjNode structures can be readily initialised
with the InitNode routine of the Server library. This performs the following:

12.3. A /LOCK SERVER 443

1. The Name, Type, Flags, and Matrix fields are completed using the arguments
provided.

2. The semaphore is initialised to unlocked.

3. A random number is generated for the key, allowing the Server library to produce
unique capabilities which can be passed back to clients.

4. The date stamps for creation, last modified, and last access are all set to the
current time.

5. The account and size (or number of entries for a directory) are set to 0.

The list node, the pointer to the parent directory, and the final linked list are not
initialised. The first two will be completed when the object is inserted into a directory.
The contents of the linked list is specific to the server and hence it is the responsibility
of the server’s code. In the lock server the initial directory tree contains a top-level
directory LockRoot which is initially empty. Entries will be added to this directory
as a result of incoming Create requests, and entries will be removed following Delete
requests. Some servers can build their entire directory tree when they start up and this
directory tree remains fixed. For example, the following code fragment could be used
to initialise an analogue-to-digital server which has six ports.

static DirNode ATODroot;
static ATOD_Node Ports[6];
int main(void)
{ int i;

...
InitNode((ObjNode *) &ATODroot, "ATOD", Type_Directory,

DefDirMatrix);
InitList(&ATODroot.Entries);

for (i = 0; i < 6; i++)
{ char buf[4];

buf[0] = ’0’ + i; buf[1] = ’\0’;
InitNode(&(Ports[i].ObjNode), buf, Type_Stream, 0,

DefFileMatrix);
Ports[i].Mode = ATOD_Idle;
Ports[i].HardwareBase = (WORD *) 0x20000000 + (0x10 * i);
Insert(&ATODroot, &(Ports[i].ObjNode), FALSE);

}
...

}

The root of this server’s directory tree is initialised as before. Next, the six direc-
tory entries 0, 1, and so on, are initialised and inserted into the directory. Once the
server has started the dispatcher a client program can open a stream to /ATOD/5 and
access the fifth port of the device.

444 CHAPTER 12. WRITING SERVERS

12.3.4 Registering the server

Servers must make themselves known to the system. Unless the system knows that a
particular program is willing to provide a service, distributed searches for that server
will fail and clients will have no way of accessing the server. To register, a server
needs to create an entry in the name table of the current processor and this name must
be associated with the message port which the server will use to accept incoming
requests. This can be achieved with the following code fragment:

int main(void)
{ Object *nametable_entry;

{ char mcname[IOCDataMax];
NameInfo nameinfo;
Object *this_processor;

MachineName(mcname);
this_processor = Locate(Null(Object), mcname);

nameinfo.Port = server_port= NewPort();
nameinfo.Flags = Flags_StripName;
nameinfo.Matrix = DefNameMatrix;
nameinfo.LoadData = NULL;

nametable_entry = Create(this_processor, "lock", Type_Name,
sizeof(NameInfo), (BYTE *) &nameinfo);

if (nametable_entry eq Null(Object))
{ IOdebug("Lock: failed to install name table entry");

return(1);
}

Close(this_processor);
}
...

}

To create a name table entry the System library Create() routine must be used.
This routine returns an Object pointer which must be remembered, to allow the server
to exit cleanly. Server names must be created inside the processor, so it is necessary
to determine the current processor name and to obtain another Object to use with the
Create() routine. The name table entry to be created must have exactly the same name
as the root directory entry, and it must be of type Type Name. If the server is unable to
create the name table entry, this usually means that the server is already running. This
may be unexpected, so the system administrator is informed through an IOdebug()
call.

The Helios Nucleus automatically installs name table entries for the servers /ram,
/pipe, /fifo, /socket, and /null. The code for these servers will be loaded automatically
when an attempt is made to access the server, and these servers should not install
their own name table entries. The initrc file provides a command called auto which
achieves the same thing for user-defined servers. Once a server has been registered
with the system, clients can start sending requests to it. Hence the next thing that a
server should do is to call a dispatcher and thus prepare to accept such messages.

12.3. A /LOCK SERVER 445

12.3.5 The dispatcher

The Server library uses one other major data structure in addition to ObjNode and
DirNode. The DispatchInfo structure informs the library which routines can be called
to handle specific routines. For the lock server this structure would contain the follow-
ing:

static void do_open(ServInfo *);
static void do_create(ServInfo *);
static void do_delete(ServInfo *);

static DispatchInfo LockInfo = {
(DirNode *) &LockRoot,
NullPort,
SS_LockDevice,
NULL,

{ NULL, 2000 },
{

{ do_open, 2000 },
{ do_create, 2000 },
{ DoLocate, 2000 },
{ DoObjInfo, 2000 },
{ InvalidFn, 2000 }, /* ServerInfo */
{ do_delete, 2000 },
{ InvalidFn, 2000 }, /* Rename */
{ InvalidFn, 2000 }, /* Link */
{ DoProtect, 2000 },
{ DoSetDate, 2000 },
{ DoRefine, 2000 },
{ InvalidFn, 2000 }, /* CloseObj */
{ DoRevoke, 2000 },
{ InvalidFn, 2000 }, /* Reserved1 */
{ InvalidFn, 2000 }, /* Reserved2 */

}
};

int main(void)
{ ...

LockInfo.ReqPort = server_port;
Dispatch(&LockInfo);
...

}

The components of the DispatchInfo structure are as follows:

1. A pointer to the root directory for this server.

2. The message port to which incoming requests will be sent.

3. A subsystem code used to identify the source of error messages. This is de-
scribed in detail in section 12.4.

446 CHAPTER 12. WRITING SERVERS

4. A string. This can be used to indicate the name of the parent directory, the de-
fault being the processor running this server. Occasionally, a server may wish
to install itself somewhere other than under the processor level, typically to pro-
vide a network-wide service. In such cases a string can be supplied to indicate
the parent directory, and the name table entry must be created inside this parent
rather in the current directory, although the use of this facility is not recom-
mended.

5. A function pointer to handle incoming messages which do not belong to the
acceptable set of GSP messages. Such private protocol messages are used occa-
sionally to enable or disable debugging options in the server. In addition to the
function pointer the structure must contain a stacksize: the Dispatch() routine
will Fork() off a separate worker thread to handle each incoming request, and
this thread must be allocated its own stack.

6. A table of routines to handle the various possible GSP requests, each with a
stack size. Note that there are two spare slots at the end of the table to allow for
future expansion to the GSP protocol, should this be required.

This server defines three routines of its own: do open(), do create(), and do delete().
Default Server library routines are used to handle incoming Locate, ObjectInfo, Pro-
tect, SetDate, Refine and Revoke messages. The InvalidFn() routine is also part of
the Server library, and simply sends back an error code indicating that this server does
not support the request. Hence the lock server does not support the renaming of locks,
it provides no useful information as a result of a ServerInfo request, it cannot contain
symbolic links, and it does not use the CloseObj request.

The dispatcher works as follows:

1. While the server’s message port remains valid, it allocates a MsgBuf buffer
suitable for an incoming GSP request. This buffer has a data vector of IOC-
DataMax, set to 512 bytes. The General Server Protocol defines this to be the
largest message that can be sent directly to a server. Should an application man-
age to send more data somehow, the server’s memory would be corrupted and
the processor is likely to crash. The dispatcher waits for a message to be sent to
the server message port.

2. When a message arrives, the server checks the request code. If it is not an
accepted GSP message, it will examine the private function part of the Dis-
patchInfo structure. Otherwise it will look at the appropriate entry of the GSP
routines table. From this it can extract a stack size and Fork() off a worker
thread to handle this particular request.

3. Once the worker thread has started, the dispatcher will allocate another message
buffer and accept the next request. This ensures that there is a very small delay
between accepting requests from several different clients, and the Kernel does
not need to buffer such requests for any length of time.

4. The worker initialises a ServInfo structure which is used to monitor the way
this request is being handled. For example, as the worker thread walks down the

12.3. A /LOCK SERVER 447

server’s directory tree to reach the target object the ServInfo structure is updated
to monitor the current position.

5. The worker checks the validity of the message, and in particular it checks that
the capability supplied by the client is valid.

6. If the message appears valid, the appropriate routine in the DispatchInfo struc-
ture will be called with the ServInfo structure as argument. This routine may be
one of the default routines in the Server library or it may be code in the server
itself.

7. Once the routine specified in the DispatchInfo structure has finished, the request
has been handled and, after some tidying up, the worker thread terminates.

For example, suppose a client attempts to delete the object /Net/00/lock/dbase.table12.
The System library routine Delete(), called explicitly or through a higher-level routine
such as Posix unlink(), will produce a GSP message with the function code for Delete
and pass this message to the system. The message may have to be routed through var-
ious processors to find the one running the server, but eventually it will arrive at the
lock server’s message port where the dispatcher accepts it. The dispatcher checks that
the message is a valid GSP request, it checks the table to determine the stack size for
do delete(), and it will Fork() off a worker to handle this request. The worker per-
forms some further validation checks and then calls the routine specified in the table,
do delete(). The server code can now handle this request, generate a reply, and return.
The worker performs some tidying up and terminates. Meanwhile the dispatcher con-
tinued running and may have received a number of other messages, starting a separate
thread for each of them.

12.3.6 Cleaning up

The dispatcher will only return if the server’s main message port becomes invalid,
usually as a result of a user request to terminate the server. Different servers have
different ways of being terminated:

1. Some servers cannot be terminated at all. For example, there is no way of ter-
minating the /tasks and /loader server in a processor.

2. Some servers have special commands which can be used to terminate them.
For example, the Network server and Session Manager can be terminated only
by using the stopns command. Such commands normally make use of private
protocol messages.

3. Some servers can be terminated by sending them a signal. This is possible only
if the server is an ordinary C program because the signal handling is usually
done through the Posix routine signal(). The kill command can be used to send
signals to such servers.

4. With some servers it is possible to delete the whole server, for example rm /lock.
This is the mechanism supported by the lock server. It will only work if the root
directory of that server is currently empty.

448 CHAPTER 12. WRITING SERVERS

Normally the request to terminate is received by a separate thread within the server,
either a signal handling thread or a worker thread Fork()ed off by the dispatcher. It
is conventional for this thread merely to abort the dispatcher’s message port, forcing
the dispatcher to terminate, and letting the main() routine perform any cleaning up
required. Most of this cleaning up happens automatically when the server program
terminates: for example, any allocated parts of memory are released; owned message
ports are freed; any threads that are still running are aborted. However, the system
does not clean up everything and servers may need to do the following jobs:

1. The name table entry for the server must be deleted explicitly. Unless the entry
is deleted it will not be possible to start another server with the same name. The
following code fragment illustrates how this can be achieved:

int main(void)
{ ...

/* Dispatch will return ifœ the server_port */
/* has been aborted. */

Delete(name, Null(char));

return(0);
}

2. If the server interacts with a piece of hardware, this may need to be shut down.
For example, a file server may need to sync the disc and park the heads. This is
specific to the server.

3. If the event handling mechanism has been used to handle interrupts, it is neces-
sary to use RemEvent() to release the event handler.

4. If a dumb link has been allocated, it must be released.

12.3.7 Using the lock server

So far the content of this section has been general. With only a small number of
changes the same code can be used in most servers. The subsections to follow describe
the pieces of code specific to this server. It is useful to look at the client side first of
all. The following two routines can be used to create and remove locks.

typedef Object *Lock;
#define NullLock ((Lock) NULL)

Lock GetLock(char *name)
{ Object *lock_server = Locate(Null(Object), "/lock");

Lock result;

if (lock_server == Null(Object))
{ fputs("GetLock: fatal error, lock server is not running.\n",

stderr);
exit(EXIT_FAILURE);

}
result = Create(lock_server, name, Type_Stream, 0, Null(BYTE));
Close(lock_server);

12.3. A /LOCK SERVER 449

return(result);
}

void FreeLock(Lock lock)
{ Delete(lock, Null(char));

Close(lock);
}

The first routine tries to create a named lock, for example, dbase.table12. If it cannot
create this lock it will return the value NullLock, typically causing the client to back
off and try again some time later. The lock server requires no extra information when
creating an object, so the final two arguments to the Create() call are null. The second
routine removes the lock. The following code fragment illustrates how these could be
used in a real program.

void manipulate_table(int table_number)
{ char buffer[Name_Max];

Lock lock;

sprintf(buffer, "dbase.table%d", table_number);
while ((lock = GetLock(buffer)) == NullLock)
Delay(OneSec);

/* Manipulate the table */

FreeLock(lock);
}

In addition to the Create and Delete requests which could be sent by the routines
shown above, it is desirable to be able to examine the current state of the lock directory.
For example, use the command ls -l /lock to determine which locks are currently in
place, particularly when debugging clients that may or may not be leaving locks in
place by accident. To examine a directory it is necessary to open that directory and
read data from it. Hence the three requests that the lock server must accept are Open,
Create, and Delete. The nature of these requests is such that the Server library cannot
provide sensible default routines for them. For example, when a file in a RAM disc is
deleted it is necessary to release the associated memory. The Server library does not
know that the server is a RAM disc, nor how the data is held, so it would have no way
of releasing this memory in a DoDelete() routine.

12.3.8 The Open routine

When the Open request arrives at the server, the dispatcher will Fork() off a worker
thread to handle the request. This worker will perform some handling before invoking
the server specific routine do open(). The exact details of this are shown below.

1. A ServInfo structure will be allocated. This is used to hold information about
the request as it is handled.

2. A longjmp buffer Escape in this structure will be initialised. This allows the
user code to longjmp() back to the worker thread at any time, used mainly in
emergencies to abort the handling of this request.

450 CHAPTER 12. WRITING SERVERS

3. A pointer to the MCB holding the incoming request is put into the ServInfo
structure. This allows the server specific code to examine the initial request.

4. A copy of the request code is placed in the ServInfo structure and the FnRc field
of the MCB is overwritten with the subsystem code defined in the DispatchInfo.
This makes it easier to send back error codes.

5. The worker routine will begin walking down the directory tree until it reaches the
Context object. For file I/O this is usually the current directory. For the locking
routines described earlier the Context object is /lock, the root of the directory
tree. Once the context has been reached the Server library will check that the
capability provided in the message was valid. Note that the Context object may
have been reached, and hence the capability checked, before the message arrived
at the server: the Context might have been the processor or even the root of the
whole naming tree. In such a case the search will halt at the root of this server
rather than at a subdirectory.

6. As the worker thread walks down the directory hierarchy it will fill in the Path-
name field of the ServInfo structure. This is used to generate replies.

7. When the search ends, either at the root directory for this server or at a subdi-
rectory or object lower down, the specified object is locked. This prevents other
threads from modifying the directory tree at this point, but not at other parts of
the naming tree.

8. The server specific routine will be called with a single argument, a pointer to the
ServInfo structure.

The start of the do open() routine would typically look like this:

static void do_open(ServInfo *servinfo)
{ MCB *m = servinfo->m;
IOCMsg2 *req = (IOCMsg2 *)(m->Control);
byte *data = m->Data;
char *pathname = servinfo->Pathname;
DirNode *d;
ObjNode *f;

d = (DirNode *) GetTargetDir(servinfo);
if (d == Null(DirNode))
{ ErrorMsg(m, EO_Directory); return; }

f = GetTargetObj(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_File); return; }

...
}

The user routine starts by extracting various pieces of information from the ServInfo
structure. The MCB m contains the incoming request, apart from the FnRc field which
has been overwritten with the subsystem code: the original FnRc will have been saved

12.3. A /LOCK SERVER 451

in the ServInfo structure. Given the MCB it is possible to extract the control and data
vectors of the message. The control vector will contain a data structure defined by
GSP, in this case containing general information plus the mode used to open the file or
directory. The Pathname field should now contain something like /Net/00/lock, the
path name for the context object or the root directory of this server.

The routine GetTargetDir() returns the parent directory for the target object, up-
dating various fields such as the current pathname if necessary. If there is no parent
directory or if the client does not have access to the parent directory, the FnRc field of
the MCB will have been completed with part of a suitable error code: the ErrorMsg()
routine uses or in the second arguments and sends the error message to the client.
There is a special case for the root of the server’s directory tree: if this is the target
object, GetTargetDir() will return the root /lock, not the processor /00 which is its
true parent.

For example, imagine that a client is attempting to access a file in the include disc
server /Net/00/include. The client has a current directory of /Net/00/include, which
is the context object. The file to access is sys/errno.h, so the subdirectory sys is the
parent directory for the target object. When do open() is entered, the pathname would
be /Net/00/include and the root of the server would have been locked. After the call
to GetTargetDir() the pathname would have been updated to /Net/00/include/sys,
the sys subdirectory would have been locked, and the root directory would have been
unlocked. This prevents any other thread from deleting the sys subdirectory while this
thread is active.

The next set of lines go down the directory tree for one more step, to reach the
actual target object. Again the pathname is updated, the target object is locked, and the
parent directory is unlocked. Other threads can now add entries to, or remove entries
from the parent directory, but they cannot manipulate the target object of the request.
The value of f will be an ObjNode or a DirNode pointer created by the server. It could
be the root directory of the server, a subdirectory, or an object within a directory. These
various possibilities do not cause any problems for the Server library since the two data
structures are almost identical. The Type field of the structure identifies whether it is
a directory or not.

The lock server allows directories to be read but it is not possible to open locks: as
far as this server is concerned reading from or writing to a lock is not sensible, so any
attempt to open a lock should give an error message.

void do_open(ServInfo *servinfo)
{ ...

if (f->Type != Type_Directory)
{ ErrorMsg(m, EC_Error + EG_WrongFn + EO_Object);

return;
}
...

}

The request has now been validated so it is necessary to send back a reply to the
client. The structure of this reply is again determined by the GSP protocol. It could be
constructed manually, but for convenience the Server library provides a routine to do
it.

void do_open(ServInfo *info)

452 CHAPTER 12. WRITING SERVERS

{ MsgBuf *r;
Port reqport;
...
r = New(MsgBuf);
if (r == Null(MsgBuf))
{ ErrorMsg(m, EC_Error + EG_NoMemory); return; }

FormOpenReply(r, m, f, Flags_Server | Flags_Closeable, pathname);
reqport = NewPort();
r->mcb.MsgHdr.Reply = reqport;
PutMsg(&r->mcb);
Free(r);
...

}

The FormOpenReply() routine requires a second message buffer, so this is allocated.
Various fields, such as the pointers to the control and data vectors, are completed auto-
matically by FormOpenReply(). Since the request involves establishing a stream con-
nection the client will need a message port to communicate directly with this thread,
so another port is allocated and put into the message header. The message is then sent
back to the client, and the second message buffer can be released again.

Note that no attempt is made to check whether or not the reply message arrived
safely back at the client. This is not necessary: if the reply message is lost, the client
will time out and simply repeat the open request, starting up another thread. This
thread will fail to receive any messages on its message port and can go away after a
while: if necessary the client will re-open the connection.

The do open() routine should now go into a loop, handling incoming requests such
as Read, Seek, and Close, which can be sent directly to open streams. In practice it
is known that the object that has been opened is a directory, and as far as the Server
library is concerned all directories look the same: a linked list of DirNode and ObjN-
ode structures. Hence the Server library provides another routine to handle the Read
requests and so on, which terminates when the client closes the connection.

void do_open(ServInfo *servinfo)
{ ...

DirServer(servinfo, m, reqport);
FreePort(reqport);
return;

}

Obviously if the server does support Read, Write, and other operations on objects,
a great deal more work will be required here. When the do open() routine returns,
the worker thread tidies up, for example, releasing any locks that have been left, and
terminates.

12.3.9 The Create routine

The next routine to consider is responsible for creating locks. The start of the routine
is similar to the do open() routine.

12.3. A /LOCK SERVER 453

static void do_create(ServInfo *servinfo)
{ MCB *m = servinfo->m;

MsgBuf *r;
DirNode *d;
ObjNode *f;
IOCCreate *req = (IOCCreate *)(m->Control);
char *pathname = servinfo->Pathname;

d = GetTargetDir(servinfo);
if(d == Null(DirNode))
{ ErrorMsg(m,EO_Directory); return; }

f = GetTargetObj(servinfo);

Again, various pieces of information about the request are obtained through the Serv-
Info structure and an attempt is made to walk down the directory tree to reach the
target object. However, at this point the correct behaviour is different. If an attempt is
made to open a non-existent object, this is usually an error. (Servers may support the
O Create flag for an implicit create.) Only existing objects may be opened. When
creating a lock an error occurs if the target object already exists: another application
has already claimed the named lock, so this attempt to create a lock must fail.

static void do_create(ServInfo *servinfo)
{ ...

if (f != Null(ObjNode))
{ ErrorMsg(m, EC_Error + EG_InUse + EO_Name);

return;
}

/* Reset FnRc field, changed by failure of GetTargetObj() */
m->MsgHdr.FnRc = SS_LockDevice;
...

}

The request has now been validated so it is necessary to add a new lock to the di-
rectory. This involves allocating a new ObjNode structure, initialising it, and inserting
it into the directory.

static void do_create(ServInfo *servinfo)
{ ...

f = New(ObjNode);
if (f == Null(ObjNode))
{ ErrorMsg(m, EC_Error + EG_NoMemory + EO_Object);

return;
}
InitNode(f, objname(pathname), Type_Stream, 0, DefFileMatrix);
Insert(d, f, TRUE);
...

}

The type, flags, and matrix arguments passed to InitNode() are described in the
next section. The routine called objname() is a useful little routine which takes a full
path name, for example /Net/00/lock/dbase.table12, and it extracts the final part of
the path name, dbase.table12. The Insert() routine takes three arguments: a directory,

454 CHAPTER 12. WRITING SERVERS

a new object to put into the directory, and a flag to indicate whether or not the directory
is currently locked. The GetTargetObj() routine failed in this case, so the appropriate
parent directory has remained locked.

It is fairly easy to support the creation of subdirectories as well as locks. This
would allow a collection of programs such as a database package to create a subdirec-
tory when they start up, and to keep all their locks in this subdirectory. Hence these
programs are less likely to interfere with any other programs using the lock server, by
accidentally using the same names for locks. The following code fragment shows how
subdirectories can be included.

static void do_create(ServInfo *servinfo)
{ ...

if (req->Type == Type_Stream)
{

/* Create a lock as before */
}
else
{ DirNode *subdir = New(DirNode);

if (subdir == Null(DirNode))
{ ErrorMsg(m, EC_Error + EG_NoMemory + EO_Directory);

return;
}

InitNode((ObjNode *)subdir, objname(pathname),
Type_Directory, 0, DefDirMatrix);

InitList(&subdir->Entries);
Insert(d, (ObjNode *) subdir, TRUE);
f = (ObjNode *) subdir;

}
...

}

Note that the initialisation of the linked list of directory entries must be done ex-
plicitly. It is not done automatically by the Server library. Finally it is necessary to
send back a reply to the client indicating that the operation has been successful.

static void do_create(ServInfo *servinfo)
{ ...

r = New(MsgBuf);
if (r == Null(MsgBuf)) /* %$#@! */
{ Unlink(f, TRUE);

Free(f);
ErrorMsg(m, EC_Error + EG_NoMemory + EO_Message);
return;

}

/* A kind of magic, see next section */
req->Common.Access.Access = AccMask_Full;

FormOpenReply(r, m, f, 0, pathname);
PutMsg(&r->mcb);
Free(r);

}

12.3. A /LOCK SERVER 455

Note that the create operation may fail at the last moment because the server is
running low on memory. Since processors running Helios typically have no virtual
memory support this is an ever-present possibility that must be allowed for. Usually it
is possible to fill in a reply message with little effort, using the Server library, and this
reply message can be sent off. A Create request does not involve opening a stream
connection so there is no need to include a message port in the reply message.

There is a problem if the reply message is lost. The lock has now been created so
no application can create the same lock. Hence if the client tries to repeat the request
it will fail the second time around, and the application will hang. Given that message
passing is inherently unreliable such problems are unavoidable, and there is a small
but finite possibility that applications will fail as a result.

12.3.10 The Delete routine

The final routine which the lock server must provide is for Delete requests. Again, the
start of the routine is fairly similar.

static void do_delete(ServInfo *servinfo)
{ MCB *m = servinfo->m;

ObjNode *f;
IOCCommon *req = (IOCCommon *)(m->Control);

f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_File); return; }

...
}

Again, details of the request are extracted from the ServInfo structure. This routine,
instead of calling GetTargetDir() and GetTargetObj(), calls GetTarget(), an alterna-
tive Server library routine. This alternative simply combines the other two, returning
NULL if either the parent directory or the target object does not exist. If desired, this
routine could have been used in the do open() routine above.

The object to be deleted can be a file, a subdirectory, or the root directory. Direc-
tories can only be deleted if there are no entries. Deleting the root directory is special:
it is the means used to terminate the whole server.

static void do_delete(ServInfo *servinfo)
{ ...

if (f->Type == Type_Directory)
{ DirNode *d = (DirNode *) f;

if (d->Nentries != 0)
{ ErrorMsg(m, EC_Error + EG_InUse + EO_Directory);

return;
}

}

if (f == (ObjNode *) &LockRoot)
{ ErrorMsg(m, Err_Null); /* send back a success code */

AbortPort(LockInfo.ReqPort, EC_Fatal + EG_Exception + EE_Abort);
}

456 CHAPTER 12. WRITING SERVERS

else
{ Unlink(f,FALSE);

servinfo->TargetLocked = FALSE
Free(f);
ErrorMsg(m,Err_Null);

}
}

According to the General Server Protocol the reply to a Delete request is simply
success or failure, not a full message. Hence there is no need to allocate another mes-
sage buffer for the reply. The AbortPort() routine will terminate the dispatcher, thus
activating the tidying-up code in main(). Note that the root directory will have been
checked to ensure that the server does not terminate while there are still outstanding
locks and, presumably, clients of this server. If a lock or a subdirectory is to be deleted,
it must first be removed from its parent directory: this parent is not currently locked,
so the second argument is FALSE. Next the ServInfo structure is updated: the target
object no longer exists, so the worker thread should not unlock it when the do delete()
routine returns. Finally the piece of memory used to hold the lock or subdirectory can
be freed, and the operation has finished.

12.4 More details

The previous two sections have given information about servers, including the source
code for a simple lock server. At times certain details were simplified to avoid making
the descriptions even more complicated than they already are. This section provides
more detailed explanations.

This section is divided into two subsections: protection, giving details of those as-
pects of protection a server needs to worry about; and a brief description of the various
Server library fields and more information on some of the available data structures.

12.4.1 Protection

This subsection explains how the Helios protection mechanism (described in detail in
chapter 14, Protection) affects the writing of servers. It is assumed that the reader has
some understanding of access matrices, and in particular that the terms, V access, X
access, Y access, and Z access are familiar.

Associated with every file and directory within a server are two fields: an encryp-
tion key and an access matrix. These are held in the ObjNode and DirNode data
structures. The encryption key is secret, known only to the server, and must never
be made known to users or to other programs. If the encryption key associated with
an object becomes known, that object is effectively unprotected. Encryption keys are
usually generated automatically by the Server library in the call to InitNode(), and are
suitable random numbers.

When a client attempts to access an object, it does so relative to a context object,
which is typically the current directory. It will already have a capability for this con-
text object. When a user logs in, that user’s session is given capabilities for various
objects including the user’s home directory and the window server. These capabilities
are inherited by any programs running inside the session. The capability defines the

12.4. MORE DETAILS 457

access allowed to the context object, using an eight-bit access mask. This access mask
contains bits for: read access; write access; delete access to remove the object; alter
access to change the protection associated with an object; and V X Y and Z access
for directories. Some objects may also support execute access if the object is an exe-
cutable file. If the appropriate bit in the access mask is set, the capability grants that
access to the context object. This access mask is encrypted within the capability using
the encryption key stored by the server.

For example, a user attempts to access a file relative to his or her home directory.
The message includes the home directory as a context object, and a capability for that
directory. Since it is the user’s home directory, that user is likely to have read, write,
and alter access to the directory itself, and V access to get to the contents of the direc-
tory. The user is unlikely to have delete access to the home directory, since deleting
a user is usually only possible for the file system administrator. When the file server
receives the message, the dispatcher will Fork() off a worker thread, which follows
the directory tree as far as the context object. It then decrypts the capability with the
encryption key held in the appropriate DirNode or ObjNode structure to validate the
capability. If some other user is attempting to fake access to this directory, by in-
venting a capability, the decryption will fail and an error message will be generated
automatically.

The object actually being accessed is not the context object but something relative
to it. The request will involve working down the directory tree from the context object,
until the target directory and object are reached. During this process, the access mask
sent with the request is updated using the access matrices held with the intermediate
DirNode structures and the final ObjNode. When the final object has been reached,
the message contains the actual access permitted to the object which this client is
allowed to have.

Three requests involve sending back capabilities: Locate, Open, and Create.
These capabilities are generated automatically by the FormOpenReply(), using the
current access mask and the encryption key associated with the object. There is a spe-
cial problem for Create: the target object which should be created does not exist, so
the current access mask refers to the parent directory and not to the object; this must
be changed to full access for the reply message, since the client is now the owner of
the new object.

static void do_create(ServInfo *servinfo)
{ ...

req->Common.Access.Access = AccMask_Full;
FormOpenReply(r, m, f, 0, pathname);
PutMsg(&r->mcb);
...

}

There are three requests to modify the protection. A Protect message is used to
change the access matrix on a directory or an object. A Refine message takes an
existing capability and returns a reduced capability which can be passed to other users
or programs, allowing these other users some access to the object but not necessarily
as much as the owner. A Revoke message changes the encryption key associated with
an object, thus invalidating any existing capabilities.

458 CHAPTER 12. WRITING SERVERS

In writing servers, the programmer must do two things. Firstly, it is necessary to
put suitable access matrices in every DirNode and ObjNode when the object is cre-
ated. Once the object has been created these access matrices are usually manipulated
automatically through the DoProtect(), DoRefine() and DoRevoke() routines in the
Server library, and the programmer need not worry about these any further. Secondly,
the server code must check the current access mask before performing operations, to
ensure that the client is actually permitted to perform the operation.

Choosing access matrices

One of the arguments to the InitNode() routine is the access matrix to put into the
DirNode or ObjNode structure. The correct choice of access matrix is usually sim-
ple. The header file protect.h defines two default access matrices DefDirMatrix and
DefFileMatrix, which suffice for the majority of servers. Some applications may need
different access matrices, but these can be installed after the object has been created
using the Protect() routine. For most servers there is little or no point in attempting to
guess the access rights which the client wants the object to have.

DefDirMatrix is defined as 0x21134BC7, or darwv:drwx:rwy:rz. Note that the
matrix is defined for little-endian processors, so the owner category offering the most
access C7 is actually the last byte. This access matrix simply propagates the current
permissions to the lower levels, so if a client currently has X access, it will continue to
have X access after going through this directory. The owner of the object is allowed to
delete, alter, read, and write the directory. Other users are given less access, depending
on their current category.

DefFileMatrix is defined as 0x010343C3, or darw:drw:rw:r. There are no access
bits for V, X, Y and Z access since those only refer to directories. The owner of the file
is allowed to delete it, alter the access permissions, and read and write it. Most users
are only allowed to read the file.

As an example of a server for which the default access matrices are not suitable,
consider a read-only filing system such as a ROM disc. For such a server nobody can
write to the filing system, simply because that is the way the hardware works. Hence all
write access must be removed, both on files and on directories. Write access includes
delete and alter, because these involve writing to the directories. Hence directories
should be given the access matrix 0x21110905 or rv:rx:ry:rz. Files should be given
the access matrix 0x01010101 or r:r:r:r. If it is desirable to be able to terminate the
server by deleting the root of its directory tree, the root must be given a different access
matrix to allow deletions: 0x21114945 or drv:drx:ry:rz.

Another example could be a variant of the lock server. In the source shown
DefDirMatrix and DefFileMatrix were used, so any client with X access has the
right to delete locks. This may be undesirable. An alternative would allow only the
program which created the lock to delete it. This program automatically has V access
to the lock because it created it, so the correct access matrix for a lock would now be:
0x010343C3 or darw:drw:rw:r. Also, since a lock cannot be read or written it may
be desirable to eliminate read or write access to the locks, but not to the directories
since these must still be readable. Hence the access matrix for a lock would now be:
0x000000C0, or da:::.

In practice the lock server would work well without the above modifications, and

12.4. MORE DETAILS 459

choosing access matrices other than the default ones provides little or no benefit for
the average user.

Testing access rights

It is mainly the responsibility of the server code to check that the requested operation
is allowed. The Server library guarantees that the capability passed in the message was
valid and hence that the client has the access currently held in the access mask. The
rest has to be done in the server code. The following code fragments indicate how this
can be done.

static void do_create(ServInfo *servinfo)
{ int access;

MCB *m = servinfo->m;
IOCCreate *req = (IOCCreate *) m->Control;
DirNode *d;
ObjNode *f;

d = GetTargetDir(servinfo);
if (d == Null(DirNode))
{ ErrorMsg(m, EO_Directory); return; }

/* Remember the access to the parent directory */
access = req->Common.Access.Access;

f = GetTargetObj(servinfo);
if (f != Null(ObjNode))
{ ErrorMsg(m, EC_Error + EG_InUse + EO_Name); return; }

/* Reset the FnRc field after failure of GetTargetObj() */
m->MsgHdr.FnRc = /* subsystem code */;

/* Check that this client has write access to the parent */
unless(CheckMask(access, AccMask_W))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_Directory);

return;
}

/* Reset the current access mask to full access */
req->Common.Access.Access = AccMask_Full;

/* Create the object, do a FormOpenReply(), and reply */
/* to the client. */
...

}

When creating a new object the important access rights are those for the directory
which will contain the new object, not for the object itself since that does not exist
yet. Hence the current access mask is saved after the call to GetTargetDir(). The
call to CheckMask() checks that the current access mask allows all of the requested
operations, in this case just writing, but several access bits can be checked in a single
call. The client automatically becomes the owner of the new object so it must be given
full access. Otherwise it is possible to create objects which cannot be deleted.

460 CHAPTER 12. WRITING SERVERS

Some servers allow objects to be created with the same name as an existing object.
For example, the /window server will accept several requests to create a window Shell.
The first Create will produce /window/Shell, the second /window/Shell.1, and so on.
Such servers need slightly different code in the do create() routine.

static int next_window = 1;

static void do_create(ServInfo *servinfo)
{ ...

f = GetTargetObj(servinfo);
if (f != Null(ObjNode))
{ /* Add a number to the current pathname */

strcat(pathname, ".");
addint(pathname, next_window++);

/* Reset the current target back to the parent directory */
UnLockTarget(servinfo);
servinfo->Target = (ObjNode *d);
LockTarget(servinfo);

}
...

}

The addint() routine adds a number to the current pathname, the last bit of which
will be used when creating the new object. In addition it is necessary to switch back
to the parent directory and lock that.

The code for a do delete() routine will look something like this.

static void do_delete(ServInfo *servinfo)
{ MCB *m = servinfo->m;

IOCCommon *req = (IOCCommon *) m->Control;
ObjNode *f;

f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_File); return; }

unless(CheckMask(req->Common.Access.Access, Accmask_D))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_File);

return;
}
...

}

The routine merely checks whether or not the client has delete access to the specified
object. Similarly the Protect routine would check whether or not the client has Alter
access, and a Locate routine should check that the client has some access. For an
Open request the situation is slightly more complicated because open could be used
for read-only, for write-only, or for both read and write. Also, if the O Create bit is
supported, it may be necessary to check that the client has write access to the parent
directory.

12.4. MORE DETAILS 461

static void do_open(ServInfo *servinfo)
{ MCB *m = servinfo->m;

IOCMsg2 *req = (IOCMsg2 *) m->Control;
DirNode *d;
int dir_access;
ObjNode *f
int file_access;

d = GetTargetDir(servinfo);
if (d == Null(DirNode))
{ ErrorMsg(m, EO_Directory); return; }
dir_access = req->Common.Access.Access;

f = GetTargetObj(servinfo);
if (f == Null(ObjNode))
{ if ((req->Arg.Mode & O_Create) == 0)

{ ErrorMsg(m, EO_File); return; }
m->MsgHdr.FnRc = /* subsystem code */

unless(CheckMask(dir_access, AccMask_W))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_Directory);

return;
}

/* Create and insert new object */
f = /* new object */

/* client is owner, so has full access */
req->Common.Access.Access = AccMask_Full;

}
else
{ int mode = req->Arg.Mode & (O_Create + O_Exclusive);

/* create+exclusive -> file must not yet exist ! */
if (mode == (O_Create + O_Exclusive))
{ ErrorMsg(m, EC_Error + EG_InUse + EO_Name);

return;
}

}

file_access = req->Common.Access.Access;

/* Check for a truncate request */
if (req->Arg.Mode & O_Truncate)
{ unless(CheckMask(file_access, AccMask_W))

{ ErrorMsg(m, EC_Error + EG_Protected + EO_File);
return;

}
/* truncate the object, if that makes sense */

}

/* Check that the requested Open mode is allowed. */
/* This involves checking the bottom nibble only. */

unless(CheckMask(file_access, req->Arg.Mode & Flags_Mode))

462 CHAPTER 12. WRITING SERVERS

{ ErrorMsg(m, EC_Error + EG_Protected + EO_File);
return;

}

/* Use FormOpenReply() and acknowledge the request. */
...

forever
{ word errcode;

m->MsgHdr.Dest = stream_port;
m->Timeout = StreamTimeout;
m->Data = data;

UnLockTarget(servinfo);
errcode = GetMsg(m);
m->MsgHdr.FnRc = /* subsystem code */
LockTarget(servinfo);

/* validate the request code */

switch(errcode & FG_Mask)
{ case FG_Read :

unless(CheckMask(file_access, AccMask_R))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_File);
break;

}
/* Handle read request */

case FG_Write :
unless(CheckMask(file_access, AccMask_W))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_File);
break;

}
/* Handle write request */

...
}

}
}

This code fragment illustrates several more aspects. First the open mode can be quite
complicated. There are create, exclusive, and truncate bits, which must be allowed
for. Some servers may also need to take the O NonBlock mode into account, which
means that any read or write requests should be answered immediately and the server
should not wait for data from the device before replying. The creation of a new object
requires write access to the parent directory, and the truncation of an object requires
write access to the object itself. If, for example, the client is trying to open the object
in write-only mode when the client does not have write access, the Open request can
fail immediately. It is conceivable that a client could open a stream in read-only mode
and then attempt to write to it, so subsequent requests must also be checked.

12.4. MORE DETAILS 463

The code fragments for Create, Delete, and Open requests illustrate fairly well
the sort of checks that servers have to perform for different operations. Handling other
requests such as Locate and ObjectInfo involves only minor variations.

12.4.2 The Server library

The Server library provides a considerable number of facilities that have not yet been
described. This subsection gives an outline of all the available routines, plus some
more information on several of the data structures. Full details on individual routines
can be found in The Helios Encyclopaedia or by using the on-line help system.

Object types

Every object controlled by a server has a type, for example Type File or
Type Directory. This type consists of two separate fields. The bottom nibble is used
to identify the general nature of the object, whether it is a directory containing other
objects, whether it behaves like a file or a device, or whether it supports some other
protocol.

#define Type_Flags 0x0F /* a mask */
#define Type_Directory 1
#define Type_Stream 2
#define Type_Private 4

All Helios objects are supersets of the above three basic types. In the previous
section, the individual lock ObjNode structures were assigned the type Type Stream.
In practice, since locks cannot be opened and read like files it would have been better
to make them supersets of Type Private.

#define Type_Lock (0x120 | Type_Private)

The remainder of the type field gives further information about the object, but
this is rarely used. For example, the header file gsp.h defines data types for networks
and for task forces which are both supersets of Type Directory. User servers should
avoid re-using any existing object types for new devices, and in particular Type Link,
Type Pipe, Type Socket, and Type Pseudo are interpreted in a special way by the
system.

Object flags

Associated with every object controlled by a server is a set of flags. This informs the
System library as to how the object can be manipulated. These flags are returned in
the directory entries when the parent directory is read. The flags are also returned as
a result of the routine FormOpenReply(), together with some extra flags passed as an
argument to that routine. At present the following flags are relevant to user servers.
The full list can be found in the header file syslib.h.

More implies that more information can be obtained about the object by sending an
ObjectInfo request. Failing to set this bit will not prevent clients from sending
ObjectInfo requests, but some client programs may take account of this flag.

464 CHAPTER 12. WRITING SERVERS

Seekable means that if a client opens a stream to this object, this stream can handle
Seek requests. Typically this is true only for files, since seeking within an RS232
line, for example, does not make much sense.

NoIData is used with the Write protocol. When writing small amounts of data, less
than 512 bytes, the System library can normally send the data with the Write
request. For larger amounts of data the System library must send a preliminary
message requesting that the server allocate suitable buffer space before the data
is actually sent. If a server sets this flag, the System library will always use the
second protocol, even for amounts of data less than 512 bytes. Typically this
flag might be used by a file server which wants full control over the incoming
messages to optimise its use of the cache.

CloseOnSend can be used by servers which do not want more than one client to have
stream access to a given object. Normally when a program spawns another child
program, typically using vfork() and execve() in the Posix library, the child
inherits all open streams. Hence if the parent has an open stream to this server,
the child will also have an open stream, and in theory both programs can now
start interacting with the server. There will be a separate Open request resulting
in a second worker thread, but both threads are operating on the same object. For
most servers this is acceptable since the correct locking mechanisms are in place.
Occasionally a server may be unable to cope with this, in which case setting the
CloseOnSend will cause the stream in the parent program to be closed when the
child is spawned.

OpenOnGet Helios uses lazy evaluation on streams inherited from the parent through
the environment. For example, a program’s standard error stream is not opened
until the client actually attempts to write data to this stream. If a server needs to
know immediately when a program inherits a stream, it can set the OpenOnGet
flag: as soon as the child receives its environment there will be an Open request
sent to the server.

Selectable should be set if the server supports Select requests on a stream. This is for
compatibility with old servers which may not support Select.

Interactive is set on interactive streams such as windows and serial ports. It is used
fairly often. For example, the C library uses this flag to determine the buffer size
for C I/O: for non-interactive streams the buffer size is usually 1024 bytes and
data is held until the whole buffer is full; for interactive streams a smaller buffer
is used and data is flushed when a linefeed character is written.

MSdos indicates that the file server uses MS-DOS format for text files, with both
carriage return and linefeed characters marking the end of a line instead of a
single linefeed. Helios is defined to use linefeed characters only, not carriage
return/linefeed. This flag is interpreted by Language libraries such as the C
library, which will automatically convert to the Helios form on input and to the
MS-DOS form on output.

Extended indicates that the server supports an extended protocol for read operations.
If this flag is set, the System library will cause another message transaction once

12.4. MORE DETAILS 465

all the data has been received from the server, as a way of informing the server
that the data has arrived safely and can be discarded if appropriate.

NoReOpen can be set if the server does not support the re-opening of stream connec-
tions to cope with a broken route. Such servers are not inherently fault tolerant.

Fast indicates that the server guarantees a rapid response to all requests, and hence
that the client side can use a relatively short timeout rather than the default ones
of (typically) twenty seconds.

Closeable means that the client side should send a message to the server when a
stream or object is closed.

Server is used together with the Closeable flag to work out what kind of Close request
to send. If the Closeable flag is clear, this flag is ignored. Otherwise if this flag is
clear, the client will send a CloseObj request on the object; if this flag is set, the
client will send a Close request on the stream. Most servers set both Closeable
and Server as a result of an Open request.

.. and symbolic links

Helios pathnames can include . and .. to refer to the current directory and to the
parent directory respectively. Normally these are handled automatically by the Server
library and programmers need not worry about them. However, there is a problem at
the root directory of a server. The parent of the root directory should normally be a
processor, so the relevant request must be sent back from the server to a higher level.
The most convenient way to do this is to install a symbolic link to the processor as the
parent of the root directory.

int main(void)
{ BYTE mcname[IOCDataMax];

Object *this_processor;

MachineName(mcname);
this_processor = Locate(Null(Object), mcname);

{ LinkNode *parent;
parent = (LinkNode *) Malloc(sizeof(LinkNode) + strlen(mcname));
InitNode(&parent->ObjNode, "..", Type_Link, 0, DefDirMatrix);
parent->Cap = this_processor->Access;
strcpy(parent->Link, mcname);
Root.Parent = (DirNode *) parent;

}
}

As far as the Server library is concerned a symbolic link is a special type of Ob-
jNode structure with a type field Type Link. In addition to the usual pieces of infor-
mation in an ObjNode it must contain two other entries: the full name of the object
the symbolic link points to, and a capability for that object. Creating a symbolic link
involves essentially the above piece of code, but inserting the LinkNode structure into
a directory rather than placing it as the parent of this server. If a request is sent for an

466 CHAPTER 12. WRITING SERVERS

object that is actually a symbolic link to another object, for some requests the message
is automatically forwarded to the correct server. Only Delete, Protect, Rename, and
ObjectInfo affect the symbolic link itself rather than the object the link points to.

Server library routines

The Server library contains a considerable number of routines. This subsection gives
a brief description of what they are for and why a server might want to use them. Full
information on individual routines can be found in The Helios Encyclopaedia or in the
on-line help system.

InitNode is used when building a new ObjNode or DirNode structure, either when
the server is initialising or as the result of a Create request or an Open request
with implicit Create.

Dispatch starts up a dispatcher routine. This receives incoming messages sent directly
to the server, and will Fork() off worker threads to handle these messages. The
worker will perform some initialisation and then call a routine defined in the
DispatchInfo structure.

GetContext is called from inside the worker thread to start walking down the direc-
tory tree until the context object has been reached, allowing the capability sent
with the message to be validated. This routine is rarely called directly by servers.

GetTargetDir returns the parent directory of the target object, if possible. On success
it leaves the parent directory locked and the current pathname pointing to that
directory. On failure it will fill in the error class and error group of the FnRc
field of the incoming message. There are various possible reasons for failure,
including insufficient access.

GetTargetObj continues walking down the directory tree after a call to GetTarget-
Dir(), returning the object which the operation is attempting to access. The
routine always updates the pathname. On success it locks the target object and
unlocks the parent directory. On failure it leaves the parent directory locked and
fills in the error class and error group of the FnRc field of the message.

GetTarget calls GetTargetDir(). If that succeeds it calls GetTargetObj(). This rou-
tine is useful mainly for operations which are guaranteed not to affect the parent
directory, such as ObjectInfo.

pathcat takes an existing pathname and appends another string to it, inserting a slash
character / if necessary. For example if the first argument is /Net/00/fs and the
second argument is include/stdio.h, the new pathname becomes /Net/00/fs/include/stdio.h.
The routine assumes that the first string is part of a sufficiently large buffer,
preferably IOCDataMax bytes.

objname takes a full pathname and extracts the final component, for example stdio.h.

addint takes a pathname and an integer, turns the integer into a string, and appends
this string to the pathname. This routine is useful when generating unique names
in response to a Create request. An example was given earlier.

12.4. MORE DETAILS 467

Lookup checks whether a particular name is already present in a directory. It is used
mainly by the GetTarget routines, but could be useful to server programmers.

Insert puts a new ObjNode, DirNode, or LinkNode into an existing directory. The
new structure is added to the tail of the linked list for that directory, the number
of directory entries is updated, the parent field of the object is completed, and
date stamps are updated.

Unlink performs the inverse function, removing an object from a directory.

DirServer can be used in response to an Open request if the target being opened is a
directory. The routine will handle Read, Close, and GetSize requests and send
back error codes for any other operation, because those operations are normally
inappropriate for a directory.

FormOpenReply is used to generate the reply message for an Open, Create, or Lo-
cate request. The corresponding System library routines return a new Object
structure, and this routine fills in the information required to build that structure.

MarshalInfo is called by DoObjInfo() to fill in the information required for an Ob-
jectInfo reply.

DoLocate is a default handling routine for Locate requests. If the target object exists
and the client has some access to it, the routine will return the required informa-
tion, otherwise it will send back an error code.

DoRename handles incoming Rename requests. These are quite complex.

1. The client must have write access to the current parent directory.

2. The target parent directory must exist and the client must have write access
to this also.

3. Both the current target and the new position must be relative to the same
context object.

4. The Rename request cannot perform an implicit delete of an existing ob-
ject.

If these conditions are met, the DoRename() routine will move the target object
to the new position, updating all the various fields.

DoLink is a default routine for incoming Link requests to create a symbolic link.
Usually symbolic links are supported only by file servers, including the RAM
disc. Some devices may attach special meanings to symbolic links, for example,
the /loader server uses symbolic links as a way of caching commands. When
the symbolic link is accessed the target code is actually loaded, and will remain
loaded until explicitly deleted.

DoProtect is a default routine for incoming Protect requests, used to update the ac-
cess matrix of a directory or an object.

468 CHAPTER 12. WRITING SERVERS

DoRevoke is a default routine for incoming Revoke requests. This routine changes
the encryption key held in the ObjNode or DirNode structure, thus invalidating
any existing capabilities. It requires Alter access to the target object, and returns
a new capability.

DoObjInfo can be used for incoming ObjectInfo requests. It extracts all the informa-
tion it needs from the appropriate ObjNode or DirNode structure. If the size or
account of an object can change, it is the server’s responsibility for maintaining
this information.

DoSetDate is a default routine for incoming SetDate requests. It requires Write ac-
cess to the target object.

DoRefine is a default routine for incoming Refine requests, and produces a new ca-
pability allowing less access than the current one.

InvalidFn is a default routine for sending back error codes if the server does not
support a particular type of request, such as CloseObj. It returns the error code
”EC Error + EG WrongFn + EO Object”.

NullFn returns an empty message. It can be used as a default routine for ServerInfo
requests if the server does not attach any special meaning to such requests.

ErrorMsg takes an existing MCB, usually that of an incoming message, and part of an
error code. It or’s the current FnRc field of the MCB, usually just the subsystem
code, with the error code and sends the appropriate error message with no data
or control vectors.

UpdMask is called by the GetTarget routines while walking down the directory tree.
It updates the current access mask in an incoming request using the access ma-
trix held in the DirNode or ObjNode structure. This routine is rarely called
explicitly.

CheckMask checks that the client program has the specified amount of access to
some object. Several access bits can be checked in one call.

GetAccess is used to validate a capability, using the encryption key held in an ObjN-
ode or DirNode.

Crypt encrypts or decrypts a block of data using the specified key. This is used when
generating or validating capabilities, but could be used for other reasons. For
example, it could allow data to be transmitted in an encrypted format.

NewKey generates a random number which can be used as the encryption key for
ObjNode and DirNode structures. It is called automatically by InitNode().

NewCap takes an existing object and an access mask specifying the amount of access
a client should have, and generates a suitable capability. This routine is called
automatically by FormOpenReply().

12.5. THE /INCLUDE DISC 469

ServMalloc is a memory management routine. When a server runs out of memory the
result can be disastrous. To avoid this problem the Server library automatically
maintains a small safety net, which it can use to attempt to cope gracefully
with lack of memory. This routine is automatically used by servers instead of
Malloc().

UnLockTarget unlocks the current target object, maintained in the ServInfo struc-
ture. It is used mainly in a do open() routine just before waiting for incoming
stream requests, to permit other clients access to the same object.

LockTarget locks the target currently defined in the ServInfo structure. Again it is
used mainly in a do open() routine after a stream message has been received, to
ensure that this thread now has sole access to the target object.

AdjustBuffers can be used by some servers to maintain data in a linked list of buffers.
Essentially, the routine maintains a list of blocks of the specified size and can
be used to add data to the end of the buffer or remove data from the start of the
buffer.

GetReadBuffer is used in conjunction with AdjustBuffers().

GetWriteBuffer is also used in conjunction with AdjustBuffers().

DoRead can be used to handle incoming Read requests, provided that the server
makes use of the Server library’s buffering scheme.

DoWrite can be used to handle incoming Write requests, provided that the server
makes use of the Server library’s buffering scheme.

12.5 The /include disc

This section describes a more complex server, the /include disc. This server pro-
vides a read-only filing system containing the Helios header files. It ensures that
all the header files are held permanently in memory somewhere in the network of
processors, thus speeding up most compilations. Following the description of the
/include disc is a discussion of how this server can be extended to become a more
general RAM disc server, supporting write operations as well as read. The sources
of the /include disc are shipped with every release of Helios, in the directory /he-
lios/users/guest/examples/servers, together with the associated utility buildinc.

The main purpose of this section is to give example code for the majority of re-
quests, which can be incorporated into user servers. For simplicity, the code has been
reduced in places and does not perform some of the tests it should such as running out
of memory. The sources shipped with Helios do include such checks.

12.5.1 /include disc preamble

The preamble of the /include disc, declaring the various data structures and functions,
is straightforward.

470 CHAPTER 12. WRITING SERVERS

/* Usual header files */
#include <helios.h>
#include <syslib.h>
#include <servlib.h>
#include <nonansi.h>
#include <message.h>
#include <gsp.h>
#include <task.h>

/* Name of include disk binary image */
#define IncludeDisk "/helios/lib/incdisk"

/* Function prototypes */
static BYTE *extract_files(DirNode *root, int number, BYTE *buffer);
static void do_open(ServInfo *);
static void do_private(ServInfo *); /* for debugging */

/* Data type used by the include disk */
typedef struct FileEntry {

ObjNode ObjNode;
BYTE Data[1];

} FileEntry;

/* Root directory and DispatchInfo structure */
static DirNode Root;
static DispatchInfo IncludeInfo = {

&Root,
NullPort,
SS_RomDisk,
NULL,
{ do_private, 0 },
{

{ do_open, 2000 }, /* FG_Open */
{ InvalidFn, 2000 }, /* FG_Create */
{ DoLocate, 2000 }, /* FG_Locate */
{ DoObjInfo, 2000 }, /* FG_ObjectInfo */
{ InvalidFn, 2000 }, /* FG_ServerInfo */
{ InvalidFn, 2000 }, /* FG_Delete */
{ InvalidFn, 2000 }, /* FG_Rename */
{ InvalidFn, 2000 }, /* FG_Link */
{ InvalidFn, 2000 }, /* FG_Protect */
{ InvalidFn, 2000 }, /* FG_SetDate */
{ InvalidFn, 2000 }, /* FG_Refine */
{ InvalidFn, 2000 }, /* FG_CloseObj */
{ InvalidFn, 2000 }, /* FG_Revoke */
{ InvalidFn, 2000 }, /* Reserved1 */
{ InvalidFn, 2000 } /* Reserved2 */

}
};

There is the usual set of header file includes, function prototypes, and data struc-
tures for the root directory and the dispatcher. Given the shortage of subsystem codes
the /include disc re-uses the code allocated to the ROM disc, fairly reasonable since

12.5. THE /INCLUDE DISC 471

this server provides another read-only filing system with all data held in memory. The
server only supports Open, Locate, and ObjectInfo requests. Create, Delete, Rename,
Link, Protect, Revoke, and SetDate all involve modifying the data, and this server
is defined to be a read-only system. Refine is of little or no use given that the other
protection requests are not supported. CloseObj is not required. ServerInfo could be
supported if desired, such that the df command would indicate a disc of the appro-
priate number of Kbytes, all of which are used. A special protocol is supported for
debugging, using the private protocol support.

There are three lines in the above piece of code unique to the /include server. The
define of IncludeDisk specifies the file to read during initialisation, which contains all
the information required. The routine extract files() fills in a directory structure. The
data structure FileEntry defines the representation of a file in this server: a standard
ObjNode structure followed by an arbitrary amount of data.

12.5.2 Initialising the /include disc

The file /helios/lib/incdisk is a binary file containing all the header files in a format
that can be converted easily into a server’s directory tree. The first word of the file
is a count of the number of entries in the root directory. This is followed by ObjN-
ode and DirNode structures for each entry, and the linked list holding the directory
entries can be initialised simply by adding these nodes. The actual file data is stored
immediately after the ObjNode, and since the size is stored with the ObjNode it is
possible to move to the next entry. Some simple recursion copes with subdirectories.
For example, Figure 12.1 contains the file layout for a root directory containing three
entries: file root1, subdirectory root2, and file root3. root2 contains two other files,
sub1 and sub2. The code to read this file and turn it into a directory structure is fairly

DirNode
Root

ObjNode
root1

Data
root1

DirNode
root2

ObjNode
sub1

Data
sub1

ObjNode
sub2

Data
sub2

ObjNode
root3

Data
root3

Figure 12.1: incdisk file layout

straightforward, if possible errors (such as having insufficient memory to allocate the
buffer) are disregarded.

int main(void)
{ Object *inc_disk;

Stream *file;
BYTE *buffer;
int size;
int number_entries;

#ifdef DEBUG
/* If the program is to be started from the shell */
/* but still linked with s0.o then it must accept */
/* an environment. */

{ Environ env;

472 CHAPTER 12. WRITING SERVERS

(void) GetEnv(MyTask->Port, &env);
}

#endif

/* Find and open the IncDisk binary image */
inc_disk = Locate(Null(Object), IncludeDisk);
file = Open(inc_disk, Null(char), O_ReadOnly);
Close(inc_disk);

/* Read the file into a suitable buffer */
size = GetFileSize(file);
buffer = (BYTE *) Malloc(size);
Read(file, buffer, size, -1);
Close(file);

/* Initialise the root directory for /include */
number_entries = *((int *) buffer);
InitNode((ObjNode *) &Root, "include", Type_Directory, 0,

0x21110905);
InitList(&(Root.Entries));

/* extract all the files and subdirectories */
extract_files(&Root, number_entries, &(buffer[sizeof(int)]));
...

}

static BYTE *extract_files(DirNode *parent, int number, BYTE *buffer)
{ ObjNode *objnode;

int size;

while (number-- > 0)
{ /* Insert next entry into the current directory */

objnode = (ObjNode *) buffer;
Insert(parent, objnode, FALSE);
objnode->Dates.Creation = objnode->Dates.Access =
objnode->Dates.Modified = GetDate();

/* If a file, move to the next entry */
if (objnode->Type == Type_File)
{ size = sizeof(FileEntry) + objnode->Size;

size = (size + 3) & ˜3;
buffer = &(buffer[size]);

}
else

/* If a directory, extract its contents. */
{ DirNode *subdir = (DirNode *objnode);

int number_entries = subdir->Nentries;
subdir->Nentries = 0;
InitList(&(subdir->Entries));
buffer = &(buffer[sizeof(DirNode)]);
buffer = extract_files(subdir, number_entries, buffer);

}
}

12.5. THE /INCLUDE DISC 473

return(buffer);
}

Most of the work of constructing the /include directory hierarchy had been done
already when the include disc binary image was produced by the buildinc command.
The above code essentially just reads the whole file into memory and walks down the
buffer, getting the pointers right and resetting some time stamps. The information held
in the binary image will contain pointers to memory within the buildinc address space,
which is not the address space of this server.

12.5.3 Dispatching

Once the binary image of the include disc data has been read and processed the whole
directory tree is in memory. Hence it is possible to add an entry into the name table
and call the dispatcher. The code for this is almost identical to the code used in the
lock server: only the name of the server has changed.

int main(void)
{ BYTE processor_name[IOCDataMax];

Object *name_entry;

#ifdef DEBUG
{ Environ env;
(void) GetEnv(MyTask->Port, &env);

}
#endif

MachineName(processor_name);

IncludeInfo.ReqPort = NewPort();

{ NameInfo name;
Object *this_processor;

this_processor = Locate(Null(Object), processor_name);

name.Port = IncludeInfo.ReqPort;
name.Flags = Flags_StripName;
name.Matrix = DefNameMatrix;
name.LoadData = Null(WORD);

name_entry = Create(ThisProcessor, "include", Type_Name,
sizeof(NameInfo), (BYTE *) &name);

Close(ThisProcessor);
}

Dispatch(&IncludeInfo);
Delete(name_entry, Null(char));

}

474 CHAPTER 12. WRITING SERVERS

12.5.4 The Open handler

The only request handling routine that this server handles itself is Open requests. All
other requests can be handled by default routines or are invalid for a read-only filing
system. The do open() routine will look something like this:

static void handle_read(MCB *m, ObjNode *f);
static void handle_seek(MCB *m, ObjNode *f);

static void do_open(ServInfo *servinfo)
{ MCB *m = servinfo->m;

MsgBuf *r;
ObjNode *f;
IOCMsg2 *req = (IOCMsg2 *) m->Control;
Port reqport;
BYTE *data = m->Data;
char *pathname = servinfo->Pathname;

f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_File_Null); return; }

r = New(MsgBuf);
if (r == Null(MsgBuf))
{ ErrorMsg(m, EC_Error + EG_NoMemory + EO_Message);

return;
}

FormOpenReply(r, m, f,
Flags_Server | Flags_Closeable | Flags_Selectable,
pathname);

reqport = NewPort();
r->mcb.MsgHdr.Reply = reqport;
PutMsg(&r->mcb);
Free(r);

if (f->Type == Type_Directory)
{ DirServer(servinfo, m, reqport);

FreePort(reqport);
return;

}

f->Account++;
f->Dates.Access = GetDate();

forever
{ WORD e;

m->MsgHdr.Dest = reqport;
m->Timeout = StreamTimeout;
m->Data = data;

UnLockTarget(servinfo);

12.5. THE /INCLUDE DISC 475

e = GetMsg(m);
m->MsgHdr.FnRc = SS_RomDisk;
LockTarget(servinfo);

if (e < Err_Null) break; /* abort on any error */

f->Dates.Access = GetDate();

switch(e & FG_Mask)
{ case FG_Read :

handle_read(m, f); break;

case FG_Close :
if (m->MsgHdr.Reply != NullPort)
ErrorMsg(m, Err_Null);

goto done;

case FG_GetSize :
InitMCB(m, 0, m->MsgHdr.Reply, NullPort, Err_Null);
MarshalWord(m, f->Size);
PutMsg(m);
break;

case FG_Seek :
handle_seek(m, f); break;

case FG_Select :
e &= O_ReadOnly;
if (e == 0)
ErrorMsg(m, EC_Error +EG_Protected + EO_File);

else
ErrorMsg(m, e);

break;

default :
ErrorMsg(m, EC_Error + EG_FnCode + EO_File);
break;

}
}

done:
f->Account--;
FreePort(reqport);

}

Again most of this code should be familiar by now. The target directory or file is
identified. Since the /include server is intended to be a generally available read-only
system there is no point in checking that the client can access it. The Server library is
used to handle subdirectories. For files this worker thread will go into a loop waiting
for a stream request. Any type of error will cause the thread to terminate, forcing the
client to re-open the connection if it needs to use the file again. Read and Seek requests

476 CHAPTER 12. WRITING SERVERS

are handled in separate routines. Close involves terminating the loop. GetSize simply
returns the fixed size of the file. The Selectable flag is sent in the reply, so the stream
may receive Select requests: if the client is doing a select for reading, this returns
immediately, anything else is an error.

The account field is used to keep track of the number of open connections. If there
is no better use for the account field, this is a sensible use, possibly providing some
useful debugging information.

12.5.5 Read requests

Read requests contain three parameters: the amount of data to read, where to start the
read, and a timeout. For file and similar servers, the timeout can be ignored. For other
servers the timeout indicates the maximum amount of time that the client is willing to
wait, and the server must send a reply within that time.

The /include disc handles reads easily. The amount of data in the file is known, and
the file is held in a single buffer following the ObjNode structure, so testing parameters
passed to the read is easy.

static void handle_read(MCB *m, ObjNode *f)
{ ReadWrite *rw = (ReadWrite *) m->Control;

WORD pos = rw->Pos;
WORD size = rw->Size;
FileEntry *file = (FileEntry *) f;
if (pos < 0)
{ ErrorMsg(m, EC_Error + EG_Parameter + 1); return; }
if (size < 0)
{ ErrorMsg(m, EC_Error + EG_Parameter + 2); return; }
if (pos >= f->Size)
{ m->MsgHdr.FnRc = ReadRc_EOF; /* Clear subsystem */

ErrorMsg(m, 0);
return;

}
if ((pos + size) > f->Size) size = f->Size - pos;
...

}

The code performs various tests, mostly unnecessary for well-behaved clients. It
is illegal to read before the start of the file or to read negative amounts of data. Reads
past the end of the file should generate an EOF message. Note that the FnRc field
of the message currently contains a subsystem code which must be cleared. If a read
involves more data than is left in the file, the size of the read is corrected. Sending back
the data to the client is more complicated, as it may be split into several messages. Any
message could be lost on the way to the client, so the protocol uses sequence numbers
to monitor which messages have arrived. This sequence number is held in the FnRc
field of the message, with a code in the bottom nibble describing how the Read is
progressing. Since the bottom four bits are used for this code, the sequence number
must increase by 16 with every message. ReadRc SeqInc is defined to be 16 in gsp.h.
The code for returning arbitrary amounts of data would look something like this:

static void handle_read(MCB *m, ObjNode *f)

12.5. THE /INCLUDE DISC 477

{ int i;
int sequence = 0;
Port reply = m->MsgHdr.Reply;
...

/* Send the data in chunks of up to 65535 bytes */
for (i = 0; i < size; i+= 65535)
{ m->MsgHdr.Dest = reply;

m->MsgHdr.Reply = NullPort;
m->MsgHdr.ContSize = 0;
/* Is this the last message ? */

if ((i + 65535) < size)
{ /* Not the last message yet */

m->MsgHdr.DataSize = 65535;
m->MsgHdr.Flags = MsgHdr_Flags_preserve;
m->MsgHdr.FnRc = sequence + ReadRc_More;
sequence += ReadRc_SeqInc;

}
else
{ m->MsgHdr.DataSize = size - i;

m->MsgHdr.Flags = 0;
m->MsgHdr.FnRc = sequence + ReadRc_EOD;

}
/* point to next bit of buffer */

m->Data = &(f->Data[i + pos]);
m->Timeout = 5 * OneSec;

/* and send the data to the client */
PutMsg(m);

}
...

}

For example, suppose one file in the /include disc contains 150K. A client wants
to read 200K of data starting from a position 50K into the file. The amount of data
requested will be truncated to 100K, because that takes the Read request to the end
of the file. The first message sent will contain 65535 bytes starting at position 51200
within the buffer. This message will have a sequence number of 0 and a function code
of ReadRc More, indicating that another message will follow shortly. The message
header flags field is set to Preserve, because the same message port will be used for
another message. The second message will contain (100K - 65535) bytes starting at
the appropriate offset. The FnRc field will have a sequence number of 16 indicating
that it is the second message, plus ReadRc EOD specifying the end of the data that
will be returned for this read request. ReadRc EOF could be used instead since the
end of the file has been reached, but in practice this offers little or no benefit. The
second message will have the message header flags field cleared, indicating the end of
this transaction.

12.5.6 Seek requests

Strictly speaking Seek requests are not necessary for the GSP protocol. Every Read
and Write request contains the position within the file from which to perform the op-
eration. However, using Seek messages may enable some servers to optimise caching

478 CHAPTER 12. WRITING SERVERS

strategies and the like by giving advance warning of the position of the next Read or
Write request.

The request contains the current position within the file, a seek mode, and an offset.
The seek mode may be relative to the start of the file, the end of the file, or the current
position. The reply contains a single word in the control vector, the new position within
the stream.

static void handle_seek(MCB *m, ObjNode *f)
{ SeekRequest *req = (SeekRequest *) m->Control;

WORD curpos = req->CurPos;
WORD mode = req->Mode;
WORD newpos = req->NewPos;

switch(mode)
{ case S_Beginning : break;

case S_Relative : newpos += curpos; break;
case S_End : newpos += f->Size; break;

}
if (newpos > f->Size) newpos = f->Size;
if (newpos < 0) newpos = 0;
InitMCB(m, 0, m->MsgHdr.Reply, NullPort, Err_Null);
MarshalWord(m, newpos);
PutMsg(m);

}

12.5.7 Private protocols for debugging

Many servers are critical to the behaviour of Helios, and if and when things go wrong
it is often desirable to provide users with the ability to enable some debugging options
within the server. The networking software is a good example: there are commands
diag ns and diag tfm to control debugging within the Network server and the Task
Force Manager respectively. The /include disc is hardly of equal importance to those
servers, but can be used to illustrate the techniques used.

The private protocol handler will be invoked for any incoming IOC-format request
which has a function code outside the accepted range. These function codes currently
vary from 0x0010 for Open requests, up to 0x00f0. Hence sending a message with
function code 0x1070, GetInfo, or 0x1080, SetInfo, is acceptable. The following
code fragment could be incorporated into a debugging command such as diag inc.

static word inc_private(char *name)
{ Object *server = Locate(Null(Object), name);

MCB m;
WORD control[IOCMsgMax];
BYTE data[IOCDataMax];
Port reply_port;
word rc;

if (server == Null(Object))
{ fprintf(stderr, "diag_inc: failed to locate server %s\n", name);

exit(EXIT_FAILURE);
}

12.5. THE /INCLUDE DISC 479

reply_port = NewPort();
InitMCB(&m, MsgHdr_Flags_preserve, NullPort, reply_port,

FC_GSP + FG_GetInfo);
m.Control = control;
m.Data = data;
MarshalCommon(&m, server, Null(char));

SendIOC(&m);
m.MsgHdr.Dest = reply_port;
rc = GetMsg(&m);
FreePort(reply_port);
return(rc);

}

The first step in the diagnostics program is to locate the target server, using either
a default name or the name provided as an argument to the program. Given this object
it is possible to construct a message in the right format and send it off to the server
through the program’s IOC controller. The server will send back a reply.

Suppose that the include disc supports up to 32 debugging options, conveniently
encoded bit-wise in a single word. The current set of debugging options can be ob-
tained by a GetInfo message, a new set can be enabled with a SetInfo message, and
a Terminate message causes the server to exit. The above client code can be modified
easily to provide these three facilities. The code in the server would look something
like this:

static word DebugOptions = 0;

static void do_private(ServInfo *servinfo)
{ ObjNode *f;

MCB *m = servinfo->m;
IOCMsg2 *req = (IOCMsg2 *) m->Control;

/* The message must refer to the root directory of /include */
f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_Directory); return; }
if (f != (ObjNode *) &Root)
{ ErrorMsg(m, EC_Error + EG_WrongFn + EO_Object); return; }

/* Cope with the three different debugging requests */
switch(servinfo->FnRc & FG_Mask)
{ case FG_GetInfo :

InitMCB(m, 0, m->MsgHdr.Reply, NullPort, Err_Null);
MarshalWord(m, DebugOptions);
PutMsg(m);
break;

case FG_SetInfo :
DebugOptions = req->Arg.Mode;
ErrorMsg(m, Err_Null);
break;

480 CHAPTER 12. WRITING SERVERS

case FG_Terminate :
ErrorMsg(m, Err_Null);
AbortPort(IncludeInfo.ReqPort,

EC_Fatal + EG_Exception + EE_Abort);
break;

default :
ErrorMsg(m, EC_Error + EG_WrongFn + EO_Object);
break;

}
}

The diagnostics program and the server must obviously agree on which bits in the
debugging mask correspond to which debugging options. Typically this is done by
putting the known options into a shared header file, such as include.h.

#define dbg_Open 0x0001
#define dbg_Close 0x0002
#define dbg_Read 0x0004
#define dbg_Seek 0x0008

At the appropriate places within the server code it is now possible to compare the
current value of the DebugOptions variable with one of these constants, and condi-
tionally produce some debugging output. Commonly this is done through a macro
rather than by explicit code. Using macros makes it easier to produce debugging and
non-debugging versions of servers if desired, the latter tending to be rather smaller.

#ifdef Debugging
#define Debug(a,b) if (DebugOptions & a) report(b)
#else
#define Debug(a,b)
#endif

static void do_open(Servinfo *servinfo)
{ ...

Debug(dbg_Open, ("in the do_open routine, target %s"\
f->Name));

...
}

Servers linked with the C library can obviously call the C library formatted output
routines such as fprintf(). Servers designed not to be linked with the C library typically
contain their own. The example code shipped with Helios contains such routines.

12.5.8 A RAM disc

The /include disc provides a simple read-only filing system. It is convenient to exam-
ine the amount of work involved in making it a more general server, like a RAM disc,
supporting write operations as well.

12.5. THE /INCLUDE DISC 481

The first thing to note is that a more complex server will need to support more
of the GSP requests. The include disc only supports Open, Locate, and ObjectInfo
requests, plus Read, Seek, Close, GetSize, and Select on streams. A writeable server
may also have to support Create, ServerInfo, Delete, Rename, Link, Protect, Set-
Date, Refine, Revoke, Write, SetSize, and possibly GetInfo and SetInfo for control
operations such as setting baud rates. In addition the Open request can be rather more
complicated than before. These requests are outlined below. Formal specifications of
the individual requests can be found in chapter 13, General Server Protocol or in The
Helios Encyclopaedia, for example the entry FG Open contains the specification for
Open requests.

Locate

The purpose of the Locate request is to test whether or not the target object exists,
and, if it does, to return enough information to the client side to let the System library
construct an Object structure. The Server library contains a DoLocate() routine which
essentially does the following:

static void do_locate(ServInfo *servinfo)
{ MCB *m = servinfo->m;

MsgBuf *r;
ObjNode *f;
IOCMsg1 *req = (IOCMsg1 *) m->Control;
char *pathname = servinfo->Pathname;

f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_File); return; }

unless(CheckMask(req->Common.Access.Access, AccMask_R))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_File); return; }

r = New(MsgBuf);
if (r == Null(MsgBuf))
{ ErrorMsg(m, EC_Error + EG_NoMemory + EO_Message); return; }

FormOpenReply(r, m, f, 0, pathname);
PutMsg(&r->mcb);
Free(r);
f->Dates.Access = GetDate();

}

The information returned is similar to that for Create and Open requests, which
will return Object or Stream structures in the client.

ObjInfo

The ObjectInfo request is used to get additional information about some file or direc-
tory, such as its size and the date stamps. The Server library contains a DoObjInfo()
routine to handle such requests. The following code fragment performs much the same
operation.

482 CHAPTER 12. WRITING SERVERS

static void do_objinfo(ServInfo *servinfo)
{ MCB *m = servinfo->m;

IOCMsg1 *req = (IOCMsg1 *) m->Control;
ObjNode *f;

f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_File); return; }

unless(CheckMask(req->Common.Access.Access, AccMask_R))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_File); return; }

MarshalInfo(m, f);
PutMsg(m);
f->Dates.Access.Access = GetDate();

}

The MarshalInfo() routine extracts the object type, name, flags, access matrix, ac-
count, size, and date stamps from the current ObjNode or DirNode structure, and
packs them into the reply message. When writing servers for specific devices there is
usually a need to update the Size field, either in the ObjNode structure before the call
to MarshalInfo() or in the actual reply message afterwards, to reflect the amount of
data actually available.

Create

Not all servers need support Create requests, for example it is difficult to create an-
other /rs232 port if the underlying hardware is missing. Different servers also vary
in the way that Create requests are handled if the target object already exists. A file
server would normally return an error code. The /window server accepts the requests
and creates a new window with a unique name, not necessarily matching the name
requested. Since this new name is returned in the reply message and held in the re-
sulting Object structure the client will not become confused about which window it is
supposed to use. The Server library provides an addint() routine which is useful here.

A newly created object must be fully initialised. Note in particular that the En-
tries or Contents field of the DirNode or ObjNode is not initialised by InitNode(),
and hence this must be done by the server code itself. The Server library contains
various routines for storing arbitrary amounts of data in a linked list of buffers, which
is particularly useful for devices such as RAM discs. The use of these routines will be
described later.

The Create request can come with some additional, server-defined, block of data.
For example, to load a program into memory the Load() routine of the System library
sends a Create request to the appropriate /loader server, with the name of the program
to be loaded in this block of data. The size of this block of data is limited to IOC-
DataMax, 512 bytes, minus the space required to hold the generic IOC message data.
Servers which do not expect to receive such extra data can just ignore it. Other servers
have to check that the data has actually been sent.

To create an object the client must usually have write access to the parent direc-
tory. The server must ensure that the client is given full access to the newly created

12.5. THE /INCLUDE DISC 483

object, by resetting the access mask in the incoming message to AccMask Full before
constructing the reply message.

ServerInfo

The ServerInfo request is used to get additional data about the server. For example,
a file server responds to this request with disc usage statistics, using the FSInfo struc-
ture. The df command sends such a request to a file server, and expects to get back
the correct data structure. At present every server can define its own reply structure,
subject to a maximum data size of IOCDataMax, since there has to be a separate pro-
gram requesting the information from particular types of servers. This situation may
change in future versions of Helios. The ServerInfo request usually only provides
information to the client, so only read access is required.

The following code fragment illustrates how a file server could handle ServerInfo
requests.

static void do_serverinfo(ServInfo *servinfo)
{ MCB *m = servinfo->m;
IOCMsg1 *req = (IOCMsg1 *) m->Control;
ObjNode *f = GetTarget(servinfo);
FSInfo data;

if (f == Null(ObjNode))
{ ErrorMsg(m, EO_File); return; }

unless(CheckMask(req->Common.Access.Access, AccMask_R))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_File); return; }

data.Flags = Flags_Server;
data.Size = /* something */;
data.Avail = /* something */;
data.Used = /* something */;

InitMCB(m, 0, m->MsgHdr.Reply, NullPort, Err_Null);
MarshalData(m, sizeof(FSInfo), (BYTE *) &data);
PutMsg(m);
f->Dates.Access = GetDate();

}

Rename

The Rename request is rarely handled explicitly, since the Server library has a DoRe-
name() routine to perform the operation. The request message contains two different
names, both of which must be relative to the same context object which must be in-
side the server. Extracting and manipulating both names is complicated, requiring the
following steps:

1. Determine the current target directory, and check that the client has write access
to it.

2. Find the target object and ensure that it is not the root directory of this server.

484 CHAPTER 12. WRITING SERVERS

3. Reset the target object held in the ServInfo structure to be the original context
object. Change the Next field of the message to the ToName field of the Re-
name request so that it is possible to look for the destination object.

static void do_rename(ServInfo *info)
{ /* Remember access to context object */
WORD mask = req->Common.Access.Access;
...
req->Common.Access.Access = mask;
req->Common.Next = req->Arg.ToName;
servinfo->Target = (ObjNode *) servinfo->Context;
Wait(&servinfo->Target->Lock);
...

}

4. Search for the destination directory, and check that the client has write access to
this directory as well.

5. Check that the target object does not exist, in other words that the Rename is
not overwriting some existing object.

6. Change the name of the target object to the new name.

7. If the current and target directories are different, Unlink the target object from
its current directory, and Insert it into the new directory.

8. Unlock the previous directory!

Link

Symbolic links are usually supported only by file servers. A Link request is like a
Create request, but the data structure to be entered in the directory tree should be a
LinkNode structure rather than an ObjNode or DirNode. This structure should con-
tain the name and capability sent with the message, which will refer to the destination
of this link. Symbolic links do not usually require special treatment by servers, since
the Server library’s GetTarget() routines will automatically forward messages to the
appropriate server when a link is encountered. The exception is Delete requests which
should remove the symbolic link and not the target object: the delete handler must
recognise objects of Type Link. Like Rename requests, Link messages are not usu-
ally handled explicitly in server code since the Server library has a suitable DoLink()
routine.

Protect

The Protect request is used to install a new access matrix in the ObjNode, DirNode,
or in the LinkNode structure corresponding to the target object. The client should have
Alter access to the target object. It is usually desirable to check that it is still possible
to either delete the object or alter its access matrix again, or it will be impossible to get
rid of this object. The following code fragment achieves this:

12.5. THE /INCLUDE DISC 485

static void do_protect(ServInfo *servinfo)
{ MCB *m = servinfo->m;

IOCMsg2 *req = (IOCMsg2 *) m->Control;
ObjNode *f;
Matrix new = req->Arg.Matrix;

f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_Object); return; }

unless(CheckMask(req->Common.Access.Access, AccMask_A))
{ ErrorMsg(m, EC_Error + EG_Protected + EO_Object);

return;
}

if ((UpdMask(AccMask_Full, new) & (AccMask_A + AccMask_D)) == 0)
{ ErrorMsg(m, EC_Error + EG_Invalid + EO_Matrix); return; }

f->Matrix = new;
f->Dates.Access = f->Dates.Modified = GetDate();
ErrorMsg(m, 0);

}

Again the Server library has a DoProtect() routine which does the same work as the
above code, and most servers can use this routine instead.

SetDate

The SetDate request is almost identical to the Protect request, and is usually handled
by the DoSetDate() routine of the Server library. The client should have write access
to the target object. Any non-zero dates in the request should be used to overwrite
the date stamps in the ObjNode or DirNode data structure, and usually only the last-
modified date is changed. The reply message consists of just the message header, with
no additional data.

Refine

The Refine request is more complicated. The purpose of the request is to produce
another capability for the object, usually permitting less access, which can then be
passed on to other users. The client may or may not have alter access to the target
object and the resulting behaviour is different: essentially the owner, with alter access,
should be able to produce any capability. If this was not the case, the owner would first
have to change the protection matrix to provide the required access, then use refine,
and finally revert the protection matrix. While this is happening some other client
might be able to use the temporarily-relaxed access conditions to gain greater access
to the object. The following code does much the same work as the DoRefine() routine
of the Server library.

static void do_refine(ServInfo *servinfo)
{ MCB *m = servinfo->m;

486 CHAPTER 12. WRITING SERVERS

IOCMsg2 *req = (IOCMsg2 *)(m->Control);
ObjNode *f;
Capability cap;
AccMask newmask = req->Arg.AccMask;

f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_File); return; }

/* prepare reply message */
InitMCB(m,0,m->MsgHdr.Reply,NullPort,Err_Null);

/* If the client has Alter permission to the object */
/* use the new mask as given, otherwise restrict it */
/* by the actual access. */

unless(CheckMask(req->Common.Access.Access,AccMask_A))
newmask &= req->Common.Access.Access;

NewCap(&cap, f, newmask);
MarshalCap(m,&cap);
PutMsg(m);
f->Dates.Access = GetDate();

}

Revoke

The purpose of the Revoke request is to change the encryption key stored with the
ObjNode or DirNode, invalidating outstanding capabilities. The handler must return
a new capability for the object, or it may become inaccessible. The following code
fragment performs essentially the same operation as the DoRevoke() routine of the
Server library.

static void do_revoke(ServInfo *servinfo)
{ MCB *m = servinfo->m;

IOCCommon *req = (IOCCommon *)m->Control;
ObjNode *f;
Capability cap;

f = GetTarget(servinfo);
if (f == Null(ObjNode))
{ ErrorMsg(m, EO_Object); return; }

/* only allow revocation if the target is the */
/* context object AND the client has alter rights */

unless (f == (ObjNode *)servinfo->Context &&
CheckMask(req->Access.Access,AccMask_A))

{ ErrorMsg(m,EC_Error+EG_Protected); return; }
/* change the key, and construct a new capability */

f->Key = NewKey();
NewCap(&cap, f, req->Access.Access);
InitMCB(m,0,m->MsgHdr.Reply,NullPort,Err_Null);
MarshalCap(m,&cap);
PutMsg(m);

12.5. THE /INCLUDE DISC 487

f->Dates.Access = f->Dates.Modified = GetDate();
}

Private

Private protocol messages acting on named objects were described earlier in this chap-
ter, as a way of providing server debugging facilities. In addition they can be used to
handle requests specific to a server, should this be necessary. It is recommended that
such use of private protocols be avoided, as the whole point of having a General Server
Protocol is to make all servers behave in the same way wherever possible and thus pro-
vide a consistent interface.

Open

Open request handlers are generally the most complicated of requests acting on names.
A full handler routine may have to allow for the following possibilities:

1. The target object may not exist yet. If the O Create bit is set, the object must
be created, provided that the client has write access to the parent directory.

2. If both the O Create and the O Exclusive bits are set the object must not exist
yet.

3. If the O Truncate bit is set, the file should be truncated, in other words set to
0 length, if that makes sense for the server. This requires write access to the
object.

4. If the O NonBlock bit is set, the server should always reply immediately to
Read and Write requests, and not wait until some timeout expires before reply-
ing.

5. The access has to be checked for each additional stream request sent to the han-
dler routine. For example, a client might open a file in read-only mode and then
attempt to write to it.

6. If the target object is a directory, the DirServer() routine of the Server library
should be invoked to handle stream requests.

Read

The /include disc read routine described earlier is useful if all the data to be read is
conveniently held in a single buffer in memory, or even in several buffers. For a server
such as a RAM disc where more data can be written at any position within the file
at any time, handling Read requests becomes more complicated. To cope with such
requirements the Server library has built-in routines to manipulate arbitrary amounts
of data, using linked lists of buffers. The linked list header is held in the Contents
field of the appropriate ObjNode.

The main routine for manipulating these buffers is AdjustBuffers(). This routine
takes four arguments: a linked list pointer, usually the address of the appropriate Con-
tents field; a starting position; a final position; and a size for the amount of data held

488 CHAPTER 12. WRITING SERVERS

in each buffer within the linked list, typically 1024 or 4096. The routine ensures that
there is enough buffer space within the linked list to hold data between the start and
end position. Buffers will be added to or removed from the linked list as required.

For example, suppose that the truncate bit is set in the open mode. This means that
the entire contents of the file should be deleted, in other words the buffer list should be
emptied. The following code fragment achieves this:

#define BufSize 1024

static void do_open(ServInfo *servinfo)
{ ...

if (mode & O_Truncate)
AdjustBuffers(&(f->Contents), 0, 0, BufSize);
...

}

For files in a RAM disc the starting position is always fixed at 0. For devices like
fifos the starting position moves as data is read, and buffers are released by calls to
AdjustBuffers() at the end of a Read request. Device servers such as /rs232 typically
behave in the same way.

Assuming that all the data is held in such buffers, the Server library provides a
routine DoRead() which can be used to handle read requests. The routine assumes
that the request has been validated, in other words that the client is not attempting to
read past the end of file. The following code fragment illustrates its use.

static void do_read(MCB *m, ObjNode *f)
{ ReadWrite *rw = (ReadWrite *) m->Control;

if ((rw->Pos < 0) || (rw->Size < 0) || (rw->Pos > f->Size))
{ ErrorMsg(m, EC_Error + EG_Invalid + EO_Message); return; }

/* Cope with reads at the end of file */
if (rw->Pos == f->Size)
{ m->MsgHdr.FnRc = ReadRc_EOF; ErrorMsg(m, 0); return; }

if ((rw->Pos + rw->Size) > f->Size)
rw->Size = f->Size - rw->Pos;

DoRead(m, GetReadBuffer, &f->Contents);
f->ObjNode.Dates.Access = GetDate();

}

When interacting with devices rather than file servers it is important to allow for
the timeout sent in the Read request. The protocol specifies that the server should re-
turn data in response to a Read request as soon as that data is available. For example,
if the Read request is for 100 bytes and only one byte of data is available, the server
should send that one byte, rather than wait for the remaining 99 to be generated some-
how. If the non-blocking flag is set in the open mode, the server should always reply
immediately, even if there is no data. Otherwise the server should wait for up to the
specified timeout for data, and return either that data or a timeout. This may involve
a certain amount of polling. The server is permitted to generate a timeout message
before the timeout has actually expired, if that is convenient.

12.5. THE /INCLUDE DISC 489

Write

The Write request involves the most complicated message transactions in the GSP
protocol. Some or all of the following steps are involved.

1. The control vector of the first message contains a position, the amount of data to
be written, and a timeout.

2. The data vector may contain the data to be written if the amount involved is
less than or equal to IOCDataMax, since that is the size of the message buffer
normally used by the do open() routine. If the server has set the NoIData flag,
this will not happen.

3. If the server cannot handle the amount of data to be written, it should send back
an error message within the specified timeout. For example, a serial line might
be in use for another write. This error message should be of class EC Recover
since retrying the same message may cause a success.

4. If the server can handle the Write request and has not yet received the data, it
must send back a message indicating how it wants to receive the data. This initial
reply contains sizes for the amount of data to be sent in the first message and for
subsequent messages, to allow the server to make optimal use of its buffers or
caches.

5. The client will now send the data in one or more messages, using the format
requested by the previous message. These messages will be sent as quickly as
possibly, so the server must be ready to receive them all.

6. If the server can no longer perform the Write operation it should send back a
recoverable error code at this point.

7. If the server has received all the data and can perform the Write operation, it
should reply with a success message.

8. The server should now perform the actual write. Note that as far as the client is
concerned the Write finishes when the data has been received by the server, not
when the underlying hardware operation finishes.

Coping with all these variations can be rather difficult. The following code frag-
ment shows how some of these can be handled in user code, ignoring the possibility
that the device may not be ready yet.

static void do_write(MCB *m, ObjNode *f)
{ ReadWrite *req = (ReadWrite *) m->Control;

bool ownbuf = FALSE;
Port reply = m->MsgHdr.Reply;
Port myport = m->MsgHdr.Dest;
BYTE *buffer, *ptr;
word amount, fetched;

amount = req->Size;

490 CHAPTER 12. WRITING SERVERS

/* Cope with immediate and non-immediate data */
if (m->MsgHdr.DataSize ne 0) /* immediate */
buffer = m->Data;
else
{ if ((buffer = Malloc(req->Size + 1)) eq Null(BYTE))

{ ErrorMsg(m, EC_Error + EG_NoMemory + EO_Message); return; }
ownbuf = TRUE;

/* Send the initial reply, requesting the data */
#define ChunkSize 16384

InitMCB(m, MsgHdr_Flags_preserve, reply, NullPort,
WriteRc_Sizes);

MarshalWord(m, (amount > ChunkSize) ? ChunkSize : amount);
MarshalWord(m, ChunkSize);
PutMsg(m);

/* Receive all the data */
ptr = buffer; fetched = 0;
while (fetched < amount)
{ m->MsgHdr.Dest = myport;

m->Data = ptr;
if (GetMsg(m) < 0)
goto done;
fetched += m->MsgHdr.DataSize;
ptr = &(ptr[m->MsgHdr.DataSize]);

}
}

/* Acknowledge the Write */
InitMCB(m, 0, reply, NullPort, WriteRc_Done);
MarshalWord(m, amount);
PutMsg(m);
/* Do the actual write. There are "amount" */
/* bytes in buffer "buffer". */

done:
if (ownbuf) Free(buffer);

}

Alternatively, the Server library provides a DoWrite() routine analogous to the
DoRead() routine. Obviously this is useful mainly if the data is simply to be held in
memory, and does not require any further processing. If the data must be sent on to a
piece of hardware, either the Write request has to handled completely by user code,
or the server has to walk down the linked list of buffers to get to the data to be written.
The following code fragment illustrates how the DoWrite() routine can be used in a
RAM disc or similar server.

static void do_write(MCB *m, ObjNode *f)
{ ReadWrite *rw = (ReadWrite *) m->Control;

if ((rw->Pos < 0) || (rw->Size < 0) || (rw->Pos > f->Size))
{ ErrorMsg(m, EC_Error + EG_Invalid + EO_Message); }

/* Add more buffer space if necessary and possible */
if ((rw->Pos + rw->Size) > f->Size)
{ if (!AdjustBuffers(&f->Contents, 0, rw->Pos + rw->Size,

12.6. DEVICE DRIVERS 491

BufSize))
{ f->Size = ((Buffer *) f->Contents.Tail)->Pos + BufSize;

ErrorMsg(m, EC_Error + EG_NoMemory + EO_File);
return;

}
else
f->Size = rw->Pos + rw->Size;

}

DoWrite(m, GetWriteBuffer, &f->Contents);

f->ObjNode.Dates.Modified = f->ObjNode.Dates.Access = GetDate();
}

GetSize

The GetSize request is used to determine the amount of data currently available. For
a file server or a RAM disc this means the amount of data in the file. For something
like a serial line server it means the amount of data buffered up and ready to be read by
the client. Note that the server need not guarantee that a subsequent read will actually
return this amount of data, for example another client might be reading from the same
device and obtain the data first.

SetSize

The SetSize request is rarely used. File servers may need to support it for truncating
files to zero length, or conceivably to some non-zero length. Changing the size of a
file cannot cause that file to grow. The server should return the new size of the file in
its reply message.

GetInfo

The GetInfo request is used to obtain some control information about a particular de-
vice. Its main purpose is for window and rs232 devices, to determine baud rates and the
like. Servers which do not use such control information can ignore this request. The
amount and nature of the data returned can vary from server to server, but should never
exceed IOCDataMax bytes. Window and rs232 servers use the Attributes structure.

SetInfo

SetInfo is used to change control information such as baud rates for serial lines. The
same arguments apply as for GetInfo.

12.6 Device drivers

Helios is designed to be independent of any particular hardware. This applies also to
servers for particular types of hardware. For example, the Helios file server can be
used with a variety of SCSI disc interfaces, with the M212 disc controller, and with a
rawdisc device provided by an I/O Server. Most of the complexity of the file server,

492 CHAPTER 12. WRITING SERVERS

such as disc caching and block allocation, are common to all the hardware. The code
to drive one specific type of disc is held in a separate code module, known as the device
driver, which is loaded at run-time by the main file server.

Using device drivers when writing servers has several advantages.

1. There is no need to ship different binary versions of the server for the different
types of hardware. A single binary version suffices for all systems.

2. All the hardware-specific details are isolated in a separate file, with a clearly de-
fined interface between the main server and the hardware-specific details. These
hardware-specific details typically involve between 1 and 20 percent of the over-
all code size.

3. The server can be ported to different hardware simply by producing a new device
driver. There is no need to change the server, and in fact the server sources are
not usually required to do the port.

4. In theory debugging is easier. Exactly the same server can be tried with different
bits of hardware, to determine whether some problem is generic to the server or
specific to one device driver or one type of hardware.

This chapter describes the use of device drivers for a simple /keyboard server.
The programming techniques and restrictions for writing device drivers have been dis-
cussed already, in chapter 3, Programming under Helios. For existing Helios servers
with device driver interfaces, such as the file server, the ethernet server, the X win-
dow system, and the Network server, specifications of the device drivers together with
example code are usually shipped with the appropriate Helios package.

12.6.1 The /keyboard server

The initialisation code for the /keyboard server is slightly different from servers de-
scribed so far, for the following reasons:

1. The root object for this server is a stream object, not a directory. It is not possible
for clients to access /keyboard/0 or other entries within a subdirectory of this
server.

2. The server needs to determine the name of the device driver somehow. In addi-
tion it may need to supply the device driver with some options. This information
could come from various sources:

(a) If the server is an ordinary C program it can receive options from the com-
mand line through argc and argv, in the usual manner.

(b) The server could read a configuration file, for example keyboard.con in
the usual /helios/etc directory. The format of this configuration file can be
determined by the server, but ideally it should be relatively simple and
use the same syntax as some existing Helios configuration file such as
host.con. Using a configuration file does not eliminate the problem: there
may be several /keyboard servers in a network, each requiring a different

12.6. DEVICE DRIVERS 493

configuration file, so the server now needs the name of the configuration
file as an option.

(c) The server could load a fixed device driver, for example keyboard.d, and
as part of the installation procedure the real device driver is copied to that
file. Again this does not solve the problem for multiple servers.

(d) Some servers can use the system’s DevInfo file to get information. This
offers little benefit over having a server-specific configuration file, apart
from reducing the number of files with different syntaxes.

This example server uses the first option, obtaining the name of the device driver
from an argument. If no argument is supplied, the server defaults to using key-
board.d.

3. The device driver has to be loaded, and the interface between the main server
and the device driver has to be initialised.

The start-up routine for the /keyboard server should look something like this:

int main(int argc, char **argv)
{ char *driver_name;

if (argc > 2)
usage();
elif (argc == 2)
driver_name = argv[1];
else
driver_name = "keyboard.d";

/* Do the hardware initialisation */
init_hardware(driver_name);

/* Initialise the root of this server to be a Stream */
/* instead of a directory. Read-only access suffices.*/
InitNode(&Keyboard_Root, "keyboard", Type_Stream,

Flags_Interactive, 0x01010101);

/* Set the Root object’s parent to be a LinkNode to */
/* the processor, create a name table entry, and */
/* call the Dispatcher as usual. */

/* If and when the dispatcher terminates, tidy up. */
tidy_hardware();

}

Most of this involves small modifications to the servers described so far. First,
consider exactly how the device driver interface should work. A /keyboard server
provides an event interface. The client side, typically the X window system server,
opens a stream to the keyboard and enables an event on this stream. If successful it gets
back a message port, and it should wait on this message port. The server should send
event messages to this port when keyboard events occur (whenever a key is pressed or
released).

494 CHAPTER 12. WRITING SERVERS

The device driver must monitor the actual hardware and, as soon as an event oc-
curs, report this event to the main server. Typically this would be done by a thread
Fork()ed off inside the device driver which either polls the hardware or waits for an
interrupt to happen. The simplest way for the device driver to report an event is to call
a routine new keyboard() inside the main server code, so when the device driver is
started up it must be given the address of this routine. To cope with Acknowledge and
NegAcknowledge messages the main server code will have to maintain some history
information about recent events.

The do open() routine should look like this:

static Port KeyboardPort = NullPort;
static Semaphore KeyboardLock;

static void keyboard_open(ServInfo *servinfo)
{ MCB *m = servinfo->m;

MsgBuf *r;
ObjNode *f;
IOCMsg2 *req = (IOCMsg2 *) (m->Control);
BYTE *data = m->Data;
char *pathname = servinfo->Pathname;
Port stream_port;
Port my_event_port = NullPort;

f = GetTarget(servinfo);
if (f eq Null(ObjNode))
{ ErrorMsg(m, EO_File); return; }

unless (f eq &Keyboard_Root)
{ ErrorMsg(m, EC_Error + EG_WrongFn + EO_Object); return; }

r = New(MsgBuf);
if (r eq Null(MsgBuf))
{ ErrorMsg(m, EC_Error + EG_NoMemory + EO_Message); return; }

FormOpenReply(r, m, f, Flags_Closeable | Flags_Interactive,
pathname);

r->mcb.MsgHdr.Reply = stream_port = NewPort();
PutMsg(&r->mcb);
Free(r);

f->Account++;
UnLockTarget(servinfo);
forever
{ word errcode;

m->MsgHdr.Dest = stream_port;
m->Timeout = StreamTimeout;
m->Data = data;

errcode = GetMsg(m);
m->MsgHdr.FnRc = SS_Keyboard;

12.6. DEVICE DRIVERS 495

if (errcode < Err_Null)
{ /* Event streams cannot time out if an event is enabled. */

if (errcode eq EK_Timeout)
{ Wait(&KeyboardLock);

if ((KeyboardPort eq my_event_port) &&
(KeyboardPort ne NullPort))

{ Signal(&KeyboardLock); continue; }
Signal(&KeyboardLock);
break;

}
errcode &= EC_Mask;
if ((errcode eq EC_Error) || (errcode eq EC_Fatal))
break;
else
continue;

}

if ((errcode & FC_Mask) ne FC_GSP)
{ ErrorMsg(m, EC_Error + EG_WrongFn + EO_Stream); continue; }

switch(errcode & FG_Mask)
{ case FG_Close :

if (m->MsgHdr.Reply ne NullPort)
{ m->MsgHdr.FnRc = 0; ErrorMsg(m, Err_Null); }

goto done;

case FG_EnableEvents :
{ WORD mask = m->Control[0] & Event_Keyboard;

Wait(&KeyboardLock);
if (mask eq 0) /* disable */
{ if ((KeyboardPort eq my_event_port) &&

(KeyboardPort ne NullPort))
{ AbortPort(KeyboardPort, EC_Error);

KeyboardPort = my_event_port = NullPort;
}

InitMCB(m, 0, m->MsgHdr.Reply, NullPort, Err_Null);
MarshalWord(m, 0);
PutMsg(m);

}
else
{ if (KeyboardPort ne NullPort)

AbortPort(KeyboardPort, EC_Error);
KeyboardPort = my_event_port = m->MsgHdr.Reply;
InitMCB(m, MsgHdr_Flags_preserve, m->MsgHdr.Reply,

NullPort, Err_Null);
MarshalWord(m, mask);
PutMsg(m);

}
Signal(&KeyboardLock);
break;

}

496 CHAPTER 12. WRITING SERVERS

default :
ErrorMsg(m, EC_Error + EG_WrongFn + EO_Stream);
continue;

}
}

done:
f->Account--;
FreePort(stream_port);
Wait(&KeyboardLock);
if ((KeyboardPort eq my_event_port) && (KeyboardPort ne NullPort))
{ AbortPort(KeyboardPort, EC_Error);

KeyboardPort = NullPort;
}
Signal(&KeyboardLock);

}

Again, this do open() routine varies in a number of places from similar routines in
previous servers. Since the /keyboard server supports rather different requests, this is
not entirely surprising.

1. There a message port KeyboardPort to which events will be sent. This port
must be accessible to the device driver thread calling the new keyboard() rou-
tine. At any one time a keyboard server can send event messages to at most one
client, but this client could vary. As a complication, it is conceivable that several
clients might try to access the keyboard at the same time, and hence the server
must be able to cope with this.

2. Since KeyboardPort is a resource shared by at least two threads, the worker
thread running do open() and the device driver thread, a semaphore is needed
to prevent simultaneous access to the port.

3. There is another message port local to the do open() routine which can be used
to check whether or not this client currently holds the event.

4. The error handling is slightly different. A timeout usually means that this worker
thread can go away because the client has requested no activity for half an hour
or so, and may have died. For event based servers it is intended that the client
performs as little interaction with the server as possible and merely accepts mes-
sages, thus halving the message traffic. Hence a timeout should be ignored if this
thread currently holds the event port.

5. Similarly, non-serious errors are best ignored by this server.

6. Following a close request, if this thread has control of the keyboard event port, it
is desirable to send back an error to the client. Usually the client side will have
a separate thread receiving the messages. Certainly it is necessary to clear the
main keyboard event port, so that no further messages will be sent to a client
that has closed the stream.

12.6. DEVICE DRIVERS 497

7. The EnableEvents message can be used for two purposes. If the requested
event is 0 or unrecognised, the message serves to disable the keyboard event.
Otherwise it enables the keyboard event.

It is now possible to consider the routines responsible for interacting with the de-
vice driver.

#include <ioevents.h>
#define KeytabSize 32
static word KeyboardCounter = 1;
static word KeyboardTail = 0;
static word KeyboardHead = 0;
static IOEvent Keytab[KeytabSize];
static DCB *KeyboardDCB;

static void init_hardware(char *device_driver)
{ int i;

InitSemaphore(&KeyboardLock, 1);
for (i = 0; i < KeytabSize; i++)
{ Keytab[i].Type = Event_Keyboard;

Keytab[i].Stamp = 0;
}

KeyboardDCB = OpenDevice(device_driver, NULL);
if (KeyboardDCB == Null(DCB))
{ fprintf(stderr, "/keyboard: failed to loader driver %s\n",

device_driver);
exit(EXIT_FAILURE);

}

Operate(KeyboardDCB, &new_keyboard);
}

static void tidy_hardware()
{ CloseDevice(KeyboardDCB);
}

static void new_keyboard(bool up, int scancode)
{ MCB m;

Wait(&KeyboardLock);
if (KeyboardPort eq NullPort) goto done;

Keytab[KeyboardHead].Counter = KeyboardCounter++;
Keytab[KeyboardHead].Key = scancode;
Keytab[KeyboardHead].What = up ? Keys_KeyUp : Keys_KeyDown;

InitMCB(&m, MsgHdr_Flags_preserve, KeyboardPort, NullPort, 0);
m.Data = (BYTE *) &(Keytab[KeyboardHead]);
m.MsgHdr.DataSize = Keyboard_EventSize;
m.Timeout = 5 * OneSec;
(void) PutMsg(&m);

498 CHAPTER 12. WRITING SERVERS

KeyboardHead = (KeyboardHead + 1) & (KeytabSize - 1);

done:
Signal(&KeyboardLock);

}

A table of recent events is kept so that Acknowledge and NegAcknowledge requests
could be handled, if desired. The init hardware() routine initialises this table, loads
the specified device driver, and initialises the device driver with the address of the
new keyboard() routine. No extra information is available to be passed to the device
driver when it is loaded, so the second argument to OpenDevice() is NULL. With some
servers this second argument might point to information obtained from a configuration
file or the DevInfo file. The second argument to Operate() is just a function pointer,
since that is the only information required by this device driver. With other servers this
second argument is usually a DevReq structure as defined in the device.h header file,
or some superset of that structure.

The device driver name passed as argument to OpenDevice() can be either an ab-
solute pathname, for example /helios/local/lib/keyboard.d, or a simple name referring
to a file in the /helios/lib directory.

When the server exits it must call CloseDevice(), to give the device driver a chance
to change the hardware back to a sensible state. If this is not done and the device driver
has made use of facilities such as interrupt handling, the processor may crash.

The new keyboard() routine is called from a separate thread within the device
driver, when some event data is available. This routine needs exclusive access to some
of the server’s data, so the semaphores are used. If currently no client has enabled the
keyboard event then the data is ignored. A possible improvement might be to invoke
the device driver every time the event is enabled or disabled, and leave the device
driver to throw away keyboard data that is not going to be used, but the performance
improvement would be small. If there is currently a client for the keyboard data, this
data is put into the table, in case it has to be sent again following a NegAcknowledge,
and a message is sent to the client.

Essentially that is all the code required to implement a hardware independent key-
board server with a suitable device driver interface. Now, consider some possible
device drivers.

12.6.2 Example device drivers

The initial parts of most device driver code tend to be much the same, no matter what
the hardware looks like. The following code shows what is involved:

typedef struct KeyboardDCB {
DCB DCB;
VoidFnPtr new_keyboard;
bool running;
/* Any hardware-specific information ... */

} KeyboardDCB;

KeyboardDCB *DevOpen(Device *dev, void *info)

12.6. DEVICE DRIVERS 499

{ KeyboardDCB *dcb = Malloc(sizeof(KeyboardDCB));
dcb->DCB.Device = dev;
dcb->DCB.Operate = &DeviceOperate;
dcb->DCB.Close = &DeviceClose;
dcb->new_keyboard = NULL;
dcb->running = FALSE;
return(dcb);

}

static word DeviceClose(KeyboardDCB *dcb)
{ shutdown_hardware(dcb);

return(Err_Null);
}

static word DeviceOperate(KeyboardDCB *dcb, VoidFnPtr fn)
{ if (dcb->new_keyboard != NULL)

{ /* Error, device already initialised */ }

dcb->new_keyboard = fn;
dcb->running = TRUE;
startup_hardware(dcb);
return(Err_Null);

}

Code like the above would be complemented by some hardware-specific functions,
plus an assembler file to provide the required calling stubs. Suppose that the keyboard
hardware is connected to one of the processor’s links, and whenever a key is pressed
the hardware will transmit a single byte down the link. If the top bit of this byte is
set, a key has been pressed, otherwise it has been released. The remaining seven bits
constitute the scancode of the key. Code to support such hardware, including setting
the link to the right mode and Fork()ing off the process to monitor the hardware would
look like this, ignoring error conditions for simplicity:

#define KeyboardLink 3

static void startup_hardware(KeyboardDCB *dcb)
{ LinkInfo info;

LinkConf conf;

/* 1) Reconfigure link 3 to dumb, so that it can be used */
if (LinkData(KeyboardLink, &info) < Err_Null)
{ /* error, link does not appear to exist */ }
conf.Flags = info.Flags;
conf.Id = info.Id;
conf.Mode = Link_Mode_Dumb;
conf.State = Link_State_Dumb;
if (Configure(conf) < Err_Null)
{ /* error, link cannot be set to the correct mode */ }

/* 2) Obtain sole access to the link */
if (AllocLink(KeyboardLink) < Err_Null)
{ /* error, another program owns this link */ }

500 CHAPTER 12. WRITING SERVERS

/* 3) Fork off a thread to monitor the link */
unless(Fork(1000, &link_monitor, 4, dcb))
{ /* error, out of memory */ }

}

static void link_monitor(KeyboardDCB *dcb)
{ BYTE data[1];

while(dcb->Running)
if (LinkIn(1, KeyboardLink, data, 2 * OneSec) >= Err_Null)
{ bool up = (data[0] & 0x0080) == 0;

(*(dcb->new_keyboard))(up, data[0] & 0x007F);
}

}

static void shutdown_hardware(KeyboardDCB *dcb)
{ dcb->Running = FALSE;

Delay(3 * OneSec); /* to let the monitor exit */
FreeLink(KeyboardLink);

}

During the initialisation the link is set to the right mode for interacting with the de-
vice, the device driver obtains sole access to the link, and a separate thread is spawned
to get the data from the link. This thread polls the link, passing data to the keyboard
server as soon as it arrives. Note that to terminate it is necessary to abort this monitor
thread, which can be achieved fairly easily by using timeouts and a suitable flag.

A different type of keyboard hardware might generate an interrupt whenever a
key is pressed or released, using the Transputer’s event pin. When such an interrupt
occurs the key event can be read from a location within the processor’s address space.
Code for such a piece of hardware would look like this, including a more complicated
KeyboardDCB structure:

typedef struct KeyboardDCB {
DCB DCB;
VoidFnPtr new_keyboard;
Semaphore wait;
Event event;

} KeyboardDCB;

static void startup_hardware(KeyboardDCB *dcb)
{ Event *event = &(dcb->event);

InitSemaphore(&(dcb->wait), 0);
event->Pri = StandardPri;
event->Code = &event_handler;
event->Data = dcb;
if (SetEvent(event) < Err_Null)
{ /* error, failed to install event handler */ }

unless(Fork(1000, &keyboard_monitor, 4, dcb))
{ /* error, out of memory */ }

12.6. DEVICE DRIVERS 501

}

static void event_handler(KeyboardDCB *dcb)
{ Signal(&(dcb->wait));
}

static void keyboard_monitor(KeyboardDCB *dcb)
{ BYTE key;

bool up;

forever
{ Wait(&(dcb->wait));

key = *((BYTE *) 0x00006000);
up = (key & 0x0080) == 0;
(*(dcb->new_keyboard))(up, key & 0x007F);

}
}

static void shutdown_hardware(KeyboardDCB *dcb)
{ RemEvent(&(dcb->event));
}

Considerable care has to be taken when handling interrupts. The interrupt handling
routine will be called from inside the Kernel, so it must do as little work as possible.
In this case it simply signals a semaphore. A short time later the keyboard monitor()
process will be rescheduled, and it can pass the keyboard event on to the main server.
When the server is shutting down the interrupt handler is deactivated, ensuring that the
keyboard monitor() process will never be restarted.

12.6.3 The DevInfo file

Helios has a file /helios/etc/devinfo which can be compiled from the corresponding
devinfo.src file with the gdi program. The binary file can contain configuration infor-
mation for certain servers and their device drivers. The main purpose of this config-
uration file is to support system Helios servers such as the file server and the internet
server, and users cannot change the syntax of the source file to reflect the needs of
their servers. Nevertheless some users may wish to use the DevInfo file as a way of
configuring their systems.

The DevInfo file supports five different types of entries: file servers, file system
device drivers, serial port servers, event-driven servers, and ethernet devices. More
entries may be added in the future. A typical devinfo.src file might contain the follow-
ing:

fileserver fs
{

device m212 # discdevice to use
cachesize 100 # approx cache size in K
syncop 1 # synchronous operations

502 CHAPTER 12. WRITING SERVERS

volume { # define a volume
name fs1 # volume name
partition 0 # maps to partition 0 of disc device

}
volume {

name fs2
partition 1 # multi-partition volume
partition 2

}
}

discdevice m212
{

name m212.dev # device name in /helios/lib
controller 3 # through link 3
addressing 1 # addresses are in bytes
mode 0x11 # MULTI buffered read & write

partitions...
partition { # partition 0

drive 0 # partition is on drive 0
start 2 # starts at cylinder 2

end at last cylinder of drive
}
partition { # partition 1

drive 1 # occupies whole drive
}

partition { # partition 2
drive 2 # occupies whole drive

}

disc drives...
drive { # define a physical disc drive

id 1 # id within controller
type 1 # type in controller
sectorsize 512 # size of sectors in bytes
sectors 17 # sectors per track
tracks 4 # tracks per cylinder
cylinders 612 # cylinders

}

drive { # drive 1
id 2
type 1
sectorsize 512
sectors 17
tracks 6
cylinders 1034

}

drive { # drive 2
id 2

12.6. DEVICE DRIVERS 503

type 1
sectorsize 512
sectors 17
tracks 6
cylinders 1034

}
}

serialserver RS232
{

name rs232 # server name
device rs232.d # device
address 0x00cc0000 # device base address

line { # line 0
name line0 # addressed by /RS232/line0
offset 0 # offset = line within device

}

line { # line 1
name line1
offset 1

}
}

eventserver KEYBOARD
{

name keyboard # server name
device keyboard.d # device driver name
address 0x00dd0000 # device base address

}

This devinfo.src contains all the configuration information needed by a fairly complex
file system, running on two separate discs, one of which has two different partitions.
Details of all the file server configuration options can be found in the file system doc-
umentation. In addition there is information about a serial line server and about an
event driver server. The serial line server provides a directory /rs232 with two entries,
line0 and line1. The server needs to load device driver /helios/lib/rs232.d to interact
with the hardware, which can be found at location 0x00cc0000 within the processor’s
address space. The event driven server provides a single server, /keyboard, using the
device driver /helios/lib/keyboard.d to interact with the hardware which can be found
at location 0x00dd0000 within the processor’s address space.

The above text file has to be compiled with the gdi program before it can be used.
The server needs to read the resulting binary object into memory, scan it to find the
required entry, and extract the data. The binary file consists of a chain of InfoNode
structures, as defined in the header file device.h. These structures contain indices to
the entry name, for example fs in the fileserver entry above, plus indices to the entry
specific data structures: FileSysInfo, DiskDevInfo, SerialInfo, EventInfo, and so on.

Suppose that the /keyboard server needs to use the DevInfo file to get information
about the device driver and the base address of the hardware. The required entry in the

504 CHAPTER 12. WRITING SERVERS

file has the name KEYBOARD. The following code fragment can be used to extract
this information.

int main(void)
{ char devname[IOCDataMax];

int hardware_address;
...
unless(read_devinfo("KEYBOARD", devname, &hardware_address))
{ /* Error, missing devinfo entry */ }

/* Open the device "devname", and give it the hardware address */
...

}

static bool read_devinfo(char *entry, char *devname, int *addr)
{ Stream *s = Null(Stream);

Object *o = Null(Object);
BYTE *devinfo = Null(BYTE);
ImageHdr hdr;
bool result = FALSE;
InfoNode *info;

/* Look in various places for the DevInfo file */
/* 1) a ROM disk embedded in the nucleus */

o = Locate(NULL, "/rom/DevInfo");
/* 2) a file embedded in the nucleus */

if (o == Null(Object))
o = Locate(NULL, "/loader/DevInfo");

/* 3) a file in the /helios server */
if (o == Null(Object))
o = Locate(NULL, "/helios/etc/DevInfo");

if (o == Null(Object)) return(FALSE);

s = Open(o, Null(char), o_ReaadOnly);
Close(o); o = Null(Object);
if (s == Null(Stream)) return(FALSE);

/* Check the file header information */
if (Read(s, (BYTE *) &hdr, sizeof(hdr), -1) != sizeof(hdr))
goto done;
if (hdr.Magic != Image_Magic) goto done;

/* Allocate space to hold the whole file */
devinfo = Malloc(hdr.Size);
if (devinfo == NULL) goto done;

if (Read(s, devinfo, hdr.Size, -1) != hdr.Size)
goto done;
Close(s); s = Null(Stream);

12.7. STANDALONE SERVERS 505

/* Search through the devinfo information to get to */
/* right device entry. */
info = (InfoNode *) ((Module *) devinfo + 1);
forever
{ if ((strcmp(entry, RTOA(info->Name) == 0) &&

(info->Type == Info_Event))
/* FOUND IT */

{ EventInfo *event_info = (EventInfo *) RTOA(info->Info);
strcpy(devname, RTOA(event_info->DeviceName));

*addr = event_info->Address;
result = TRUE;
goto done;

}
if (info->Next == 0) break;
info = (InfoNode *) RTOA(info->Next);

}

done:
if (o != Null(Object)) Close(o);
if (s != Null(Stream)) Close(s);
if (devinfo != NULL) Free(devinfo);
return(result);

}

12.7 Standalone servers

For the vast majority of Helios servers the Server library makes programming much
easier. However, for some problems it is inappropriate. In particular if the directory
structure is not held in the processor’s memory, the Server library becomes unusable.
Essentially this applies to all non-volatile file servers, whether based on hard discs,
floppy discs, non-volatile RAMS, and so on. Since the directory structure is not held
in memory it is not possible for the Server library to walk down it to get the context
object, the target directory, and the target object in the usual manner.

Writing servers without the Server library is not significantly more complicated
than writing ordinary servers. In particular it is fairly easy to use routines similar to
the ones in the Server library and thus implement a standalone server. For simplicity, it
is probably desirable to use exactly the same data structures as the Server library. This
section outlines solutions for some of the problems likely to be encountered when
writing standalone servers.

12.7.1 The dispatcher

The Server library dispatcher works as follows:

1. As long as the server’s message port remains valid, it receives incoming mes-
sages into a suitable buffer.

2. The dispatcher determines the type of the message, for example an Open request
or a private protocol message, and it will spawn a worker thread using the stack

506 CHAPTER 12. WRITING SERVERS

size specified in the DispatchInfo structure for that request.

3. The dispatcher goes around the loop again, waiting for the next request.

4. The worker initialises a ServInfo structure, used to maintain information about
this request.

5. The worker searches down the directory tree for this server to reach the context
object, and validates the capability sent with this message. Typically this context
object would be the current directory.

6. If the message appears valid, the appropriate handler routine specified in the
DispatchInfo structure will be called.

7. Once the handler routine has finished, the worker will do some cleaning up, and
the worker thread will terminate.

For standalone servers it is not possible to search the directory tree for the context
object, because the context may not currently be held in memory. Hence such servers
need their own versions of the dispatcher routine and the corresponding worker. The
DispatchInfo structure must not contain references to default handler routines pro-
vided by the Server library, since the default handlers assume that the directory tree is
in memory. It is possible to use the error handling routines InvalidFn() and NullFn()
if desired. The following code fragment illustrates what is required in the dispatcher
routine.

static void my_Dispatch(DispatchInfo *info)
{ MsgBuf *m = NULL;

word fn;
word stacksize;
DispatchEntry *e;

forever
{ m = Malloc(sizeof(MsgBuf));

if(m == Null(MsgBuf)) { Delay(OneSec); continue; }

m->mcb.MsgHdr.Dest = info->ReqPort;
m->mcb.Timeout = OneSec*30;
m->mcb.Control = m->control;
m->mcb.Data = m->data;

lab1:
while ((fn = GetMsg(&m->mcb)) == EK_Timeout);

if(fn < 0) break;
if ((fn & FC_Mask) != FC_GSP)
{ m->mcb.MsgHdr.FnRc = info->SubSys;

ErrorMsg(&m->mcb, EC_Error + EG_FnCode);
goto lab1;

}

fn &= FG_Mask;

12.7. STANDALONE SERVERS 507

if((fn < FG_Open) || (fn > FG_LastIOCFn))
e = &info->PrivateProtocol;

else
e = &info->Fntab[(fn-FG_Open) >> FG_Shift];

stacksize = (e->StackSize < 1024) ? 1024 : e->StackSize;
unless(Fork(stacksize, my_Worker, 12, m, info, e))
{ m->mcb.MsgHdr.FnRc = info->SubSys;

ErrorMsg(&m->mcb, EC_Error + EG_NoMemory);
goto lab1;

}
}

if(m != NULL) Free(m);
}

Essentially this is just an infinite loop, terminated only if an error other than a time-
out occurs. Such an error can usually be generated only if the server’s message port
is aborted or freed. A message buffer is allocated and initialised. When a message
arrives the FG part of the request is examined. If it is a request that the server is ex-
pecting (Open, Create and so on), the appropriate entry in the DispatchInfo structure
is extracted. Otherwise the private function entry is used. This gives the stack size for
the worker thread, with the system imposing a minimum lower limit, and the worker
thread is started. Note that the worker thread may use the stack for the ServInfo
structure, rather than allocating another chunk of memory dynamically, and the size
of this structure is over 500 bytes. Hence it is essential that the stack sizes specified
in the DispatchInfo structure are reasonable. The corresponding worker routine looks
something like this:

static void my_Worker(MsgBuf *m,DispatchInfo *info, DispatchEntry *e)
{ DirNode *d;

ServInfo servinfo;

if(setjmp(servinfo.Escape) != 0) goto done;
servinfo.Context = info->Root;
servinfo.m = &m->mcb;
servinfo.Target = (ObjNode *)info->Root;
servinfo.TargetLocked = false;
servinfo.FnCode = m->mcb.MsgHdr.FnRc;
servinfo.DispatchInfo = info;
MachineName(servinfo->Pathname);
m->mcb.MsgHdr.FnRc = info->SubSys;

#ifdef ProtectedServer
d = my_GetContext(&servinfo);
if (d == Null(DirNode))
ErrorMsg(&m->mcb,0);
else

#endif
(*e->Fn)(&servinfo);

done:

508 CHAPTER 12. WRITING SERVERS

UnLockTarget(&servinfo);
Free(m);

}

The first half of this routine simply initialises the ServInfo data structure. This in-
cludes a jump buffer, so that at any time while handling this request the server code
can abort and terminate this thread. The root of the server’s directory tree is always in
memory, so this can be used as the current target even if the rest of the directory tree
is held somewhere on a hard disc.

The equivalent Server library routine would now call a GetContext() routine which
starts to walk down the directory tree until the context object has been reached. The
message will contain a capability which defines the client’s access to the context object.
Once the capability object has been checked the Server library can continue walking
down the directory tree until the target object has been reached, modifying the client’s
current access using the access matrices encountered along the way. Not all servers
can support a capability based protection mechanism. For example, if the server is
intended to support MS-DOS compatible floppy discs, the disc format is fully defined
and there is no way of storing the required encryption keys and access matrices within
the directory structure. Hence the server is inherently unprotected and there is no way
of supporting the Helios protection mechanisms. However the Helios file server uses
its own disc format and hence it can store the required encryption keys and access
matrices. Both cases are dealt with below.

12.7.2 Name handling without protection

The first case deals with unprotected file servers. For such servers there is no point in
walking down the directory tree, carefully manipulating access matrices along the way.
Instead the server code can simply build up the entire pathname and perform whatever
operation is required. For example, the do open() routine could look something like
this:

static void do_open(ServInfo *servinfo)
{ char *object_name;

...
object_name = BuildName(servinfo);

/* object_name now points to "include/stdio.h" */
/* This is all the information needed to manipulate */
/* the specified object. N.B. the object may not */
/* actually exist... */
...

}

The routine BuildName() extracts all the required information from the request mes-
sage to build up the name of the object within this server. This name is appended to the
current pathname held in the ServInfo structure, so that it is still possible to send back
the full pathname in the reply messages to Open, Create and Locate requests. The
BuildName() routine itself is rather complicated, having to cope with several different
cases.

12.7. STANDALONE SERVERS 509

1. The incoming message contains three offsets within the Control vector, referring
to strings in the data vector.

(a) Context refers to the start of the context object, usually the current direc-
tory. This may be set to -1 if there is no context object, in other words
when the target object has been specified with an absolute pathname.

(b) Name refers to a pathname relative to the context object. This may be set
to -1 if the target object is the context object.

(c) Next contains an index to the remainder of the pathname. This may be in-
side the Context name, if the context object is contained within the server.
Alternatively it may be inside the Name string if the context object was
reached before the message arrived at the server.

2. When the message arrives at the server it is guaranteed that Next will point to
just past the server name.

3. The Pathname field of the ServInfo structure will contain the current processor
name, because this was filled in in the worker routine earlier. The current server
name can be appended to this.

4. The remainder of the Next string can be added.

5. If Next currently points inside the Context name, it may be necessary to append
the Name string as well.

6. The incoming message may contain references to . and .. which have to be
filtered out. This could cause the message to refer to objects outside this server,
for example /msdos/../fs, and in theory it is desirable to forward the message to
that server. In practice this can be difficult, so in this example such requests will
generate errors.

7. If the file server supports symbolic links to objects outside the server, everything
becomes much more complicated. It is necessary to detect a symbolic link as
soon as it has been reached, and forward the remainder of the message on to the
right server. Again this complication is not dealt with here.

Given these requirements it is now possible to show the BuildName() routine.
The Server library’s pathcat() routine is particularly useful here: it is like the C li-
brary strcat() string concatenation routine, but inserts the directory separator / where
appropriate.

static char *BuildName(ServInfo *servinfo)
{ char *pathname = servinfo->Pathname;

MCB *m = servinfo->m;
IOCCommon *req = (IOCCommon *) m->Control;
BYTE *data = m->Data;
char *result;
char *local;
ObjNode *f = servinfo->Target;

/* pathname currently hold the processor name. */

510 CHAPTER 12. WRITING SERVERS

/* "f" is guaranteed to point at the server root. */
/* This routine should return a pointer to the */
/* object relative to the server name. */
pathcat(pathname, f->Name);
result = pathname + strlen(pathname) + 1;

/* copy the remainder of the current string */
if (data[req->Next] != ’\0’)
pathcat(pathname, &(data[req->Next]));

/* if Next is part of the Context string, and if there is a */
/* Name string as well, append the name string. */
if (((req->Next < req->Name) && (req->Context < req->Name)) ||

((req->Next > req->Name) && (req->Context > req->Name)))
if (req->Name != -1)
pathcat(pathname, &(data[req->Name]));

/* Eliminate occurrences of . and .. in the name */
Flatten(servinfo, result);

return(result);
}

The Flatten() routine has to walk through the resulting pathname eliminating any oc-
currences of . and ... This may take the pathname to some object outside the server,
which is treated as an error. A suitable error message is generated, and the jump buffer
in the ServInfo structure is used to abort the handling of this request.

static void Flatten(ServInfo *servinfo, char *start)
{ char *source = start;

char *dest = start;
MCB *m = servinfo->m;

until(*source == ’\0’)
{ if (*source == ’.’)

{
/* case 1 : xyz/./yyy */
if ((source[1] == ’/’) || (source[1] == ’\0’))
{ source += 2; continue; }

/* case 2 : xyz/../yyy */
if ((source[1] == ’.’) &&

((source[2] == ’/’) || (source[2] == ’\0’)))
{ if (dest <= start)

{ ErrorMsg(m, EC_Error + EG_Name + EO_Server);
longjmp(servinfo->Escape, 1);

}

/* backtrack one directory level */
dest--;
until (*(--dest)) == ’/’);
dest++;
continue;

}

12.7. STANDALONE SERVERS 511

}

/* default, just copy the string */
until ((*source == ’/’) || (*source == ’\0’))

*dest++ = *source++;
if (*source == ’/’)

*dest++ = *source++;
}

*dest = ’\0’;
}

It is not possible to use the FormOpenReply() routine to generate the reply mes-
sage to Open, Create and Locate requests because this routine assumes there is an
ObjNode structure. However it is relatively easy to produce a version of FormOpen-
Reply() suitable for the server.

void FormOpenReply(MsgBuf *r, MCB *m, ObjNode *o,
word flags, char *pathname)

{ IOCCommon *req = (IOCCommon *)(m->Control);
Capability cap;

if(m->MsgHdr.Reply & Port_Flags_Remote)
flags |= Flags_Remote;

r->mcb.MsgHdr.Flags = 0;
r->mcb.MsgHdr.DataSize = 0;
r->mcb.MsgHdr.ContSize = 0;
r->mcb.MsgHdr.Dest = m->MsgHdr.Reply;
r->mcb.MsgHdr.Reply = NullPort;
r->mcb.MsgHdr.FnRc = Err_Null;
r->mcb.Timeout = IOCTimeout;
r->mcb.Control = r->control;
r->mcb.Data = r->data;

NewCap(&cap, o, req->Access.Access);
MarshalWord(&r->mcb, o->Type);
MarshalWord(&r->mcb, o->Flags|flags);
MarshalCap(&r->mcb, &cap);
MarshalString(&r->mcb, pathname);

}

The reply message contains the object type, flags, capability, and full pathname.
The pathname has been generated already in the BuildName() routine. The type and
flags are no different from servers written with the Server library. The capability will
never be checked, since checking it is always the responsibility of the server and this
server does not test capabilities. The access mask must be constructed, for example
AccMask R AccMask W for files, or AccMask Full to give complete access. The
access mask may be checked by some applications to check that, for example, a delete
operation is likely to succeed before attempting it, so some effort should be made to
ensure that the access mask is sensible.

512 CHAPTER 12. WRITING SERVERS

12.7.3 Name handling with protection

For file servers which do support the Helios protection mechanism, writing standalone
servers is more complicated. Consider a server which works roughly as follows:

1. The information held on the hard disc consists of ObjNode and DirNode struc-
tures, or supersets thereof.

2. These structures do not contain pointers to other ObjNode and DirNode struc-
tures, since the others are not held in memory. Instead the list nodes and the
parent pointers refer to entries within disc blocks.

3. There are some cache management routines, possibly interacting with a separate
cache management thread. There is at least one routine which takes a disc block
reference, loads the relevant block into memory, and returns a real pointer. There
is another routine which releases the disc block again, allowing the block to be
removed from necessary.

4. The disc block management is fairly sensible, and keeps directory entries in one
block or in contiguous blocks wherever possible.

Walking down a directory tree is now possible, as illustrated by the following
pseudo-code:

until the target has been reached
follow the current name string until the directory
separator character / is found

if the required name is . then loop

if .., the target becomes the parent. Get the parent block,
and release the current block

find the appropriate directory entry
get the disk block for that directory entry
release the current block

if the entry is missing, generate an error message and
escape with a longjmp

All this is fairly standard for file servers and should not present any major problems.
To handle Helios protection as well, the following points have to be considered:

1. If the current string is in the Name rather than the Context than the capability
has been verified already.

2. If the current string is in the Context, it is necessary to validate the capability.
This involves:

(a) Walk down the directory until the Context object has been found.

(b) Use the encryption key of the Context object and the capability passed with
the message as arguments to GetAccess().

12.7. STANDALONE SERVERS 513

(c) If GetAccess() fails the capability is invalid and an error message must be
generated.

(d) GetAccess() will update the Access.Access mask of the incoming request
to be the access permitted to the Context object by this client. If this is
zero, the client has no access and an error message should be generated.

3. Continue walking down the directory tree following the Name string, until the
target object has been reached. The client must have Read access to go down
a directory. The pathname field of the ServInfo structure must be updated at
every step.

4. At every level, update the access mask with the access matrix associated with
the current object, using UpdMask().

5. When the target object has been reached, the field Access.Access in the request
message will contain the access allowed to this object. This can now be checked
by the handler routine.

The details of all this will vary greatly from server to server, depending on the under-
lying hardware and the disc organisation. The above information is intended only to
provide the necessary hints.

12.7.4 Directory reads

A final significant difference between writing servers with the Server library and writ-
ing standalone servers is in the handling of directories. The Server library has a routine
DirServer() which can take care of open directory streams. A standalone server has
to do this work manually.

A directory appears to Helios like a read-only file. It supports Read, Close, and
GetSize requests. Every entry in the directory consists of the following structure:

typedef struct DirEntry {
word Type;
word Flags;
Matrix Matrix;
char Name[32];

} DirEntry;

The values of these various fields are simply copies of what could normally be found in
the ObjNode or DirNode structures. The simplest way to handle directory operations
is as follows:

1. When a directory is opened, a chunk of memory is allocated large enough to
hold all the directory entries, plus entries for . and ...

2. This chunk is filled in with the current directory contents, starting with . and
.. followed by all the directory entries.

3. Read and GetSize requests simply operate on this chunk of memory, in exactly
the same way as a file in the /include disc is read. It is not necessary to update
the information every time entries are added to or removed from the directory.

514 CHAPTER 12. WRITING SERVERS

4. A Close request involves freeing the chunk of memory.

Directory operations simply give a snapshot of the world at the time that the direc-
tory was opened, and the information may not be accurate by the time that it is actually
read.

Chapter 13

General Server Protocol

The General Server Protocol (GSP) is the glue which binds the Helios system together.
It is the means by which client programs obtain services from servers and is designed
to be orthogonal, fault tolerant, idempotent and extendable. This section provides an
overview of the protocols as currently implemented.

GSP is based on the client-server principle: a client sends a message containing
a function code plus some arguments to a server, the server performs the requested
operation (or refuses to) and returns a message containing a return code plus some
results. Some operations may involve the passing of extra messages between client
and server, and the server which eventually replies may not be the one to which the
message was originally sent.

13.1 Function and return codes

The encoding of function and return codes is a prime feature in the extendability and
orthogonality of GSP. All codes are 32-bit values and follow the same basic rules.
A code with zero in the most significant bit is a function code, and a code with the
figure one in the same place is an error code. In replies any positive value indicates a
successful result, and may contain some extra information (for example, most servers
return their id code in all successful replies). With one (non-space) character per bit
position, a function code is divided into the following fields:

0 CC SSSSS RRRR GGGGGGGGGGGGGGGG FFFF

C Protocol class, currently 0 = GSP protocol, 3 = private, 1,2 = reserved.

S Subsystem or server identification code. This may be zero, but if not, a server
is free to reject requests which do not contain its own code.

R Retry counter. Used to indicate how many times this request has been retried.

G Generic function code.

F Subfunction or modifier, often server or function specific.

Error codes are divided into the following fields:

515

516 CHAPTER 13. GENERAL SERVER PROTOCOL

1 CC SSSSS GGGGGGGG EEEEEEEEEEEEEEEE

C Error class:

Recover A transient error such as a timeout or congestion; a simple retry
may succeed.

Warn A slightly more serious error, but more fundamental recovery ac-
tion may allow a retry to succeed.

Error An error from which no automatic recovery is possible.

Fatal A serious error which should probably cause the program to ter-
minate.

S Subsystem or server identification code. This indicates where the error origi-
nated, it may not necessarily match the same field in a request function.

G General error code. Indicates what has gone wrong.

E Specific error code. If the most significant bit of this field is set then it is in-
terpreted as an object name code. This indicates the object to which the error
occurred.

The rationale behind the encoding of errors is that with only a few values for each
field, a very large number of error codes can be generated. The C and S fields select
an error class and subsystem name, the G field selects a verb phrase and the E field
selects a noun phrase. These can then be filled into a prototype sentence of the form:

From <S>: <C>, <G> <S>

This is exactly what the Fault library does, selecting the appropriate words or phrases
from the faults database. Not all general errors expect an object code to be given.
Those that do not are listed here, with the interpretation placed on the E field.

Parameter Indicates a bad or out of range parameter. The E field indicates which
parameter of the request message is bad.

Exception Indicates a number of exception conditions. The E field contains one
of the following codes:

Kill Interpreted by the Processor Manager as an instruction to
terminate the sending task. The control vector contains an
error code.

Abort Sent by the Kernel when aborting or deleting ports to any
threads waiting for message transfers.

Signal A range of values whose least significant 8 bits indicate
a signal number. By sending this a server can provoke a
signal handler to be called in a client.

All other codes are unused and reserved.

13.2. GSP FUNDAMENTALS 517

Errno Where a server is based on or derived from Unix code, instead of
translating all its error codes into Helios codes, they are passed di-
rectly to the client in the E field of this general error code.

CallBack If a server knows that it will not be able to service a request for some
time it can return this error, causing the client to wait for the number
of seconds in the E field.

13.2 GSP fundamentals

GSP is designed for use over unreliable communications systems. This is best achieved
by making the server stateless and the messages idempotent, allowing a request to be
repeated until either it works or fails conclusively.

When the term stateless is applied to servers, it has a somewhat special meaning.
It does not imply that the server maintains no state at all: a stateless file server would
be quite useless. Instead it means that the server does not maintain any state associated
with each client. Hence each request is treated in isolation and any state associated
with it is destroyed when the reply is generated. Any state which must persist between
requests is kept by the client and sent to the server with each request. This has the
effect of insulating both the server and the client from a failure of the other. If the
client fails the server simply receives no more requests, it does not need to detect the
failure and tidy up any state. If the server crashes the client can simply wait for it to
restart, or find another one, and continue from where it left off.

Unfortunately, a purely stateless protocol is cumbersome and requires all the rele-
vant information (object identifier, protection information, operation parameters, etc.)
to be presented in every request 1. To alleviate this, GSP has been defined as a semi-
stateless protocol. Essentially, this allows the server to perform the object location and
protection operations once, for each client. Once this has been done the client can
operate on the object using a much more lightweight protocol.

There are two major request message groups, direct and indirect. Direct messages
are sent by the client directly to the server controlling an object. The object is identified
implicitly by the message port to which the requests are sent. Indirect messages are
send initially to the task’s IOCPort and are eventually delivered by the Processor
Manager on the server’s processor. The target object is identified by information in the
message.

Indirect messages operate on the object as a whole, with operations such as delete,
rename, etc. These tend to be generic, and all servers must support the standard set.
Direct messages operate on the internal representation of the object, with operations
such as read, write, etc. These are often more specific to the object’s representation,
but the set of file access operations is common. The indirect operation Open returns a
port descriptor for direct operations and thus forms the bridge between the two sets.

All operations in the two sets are idempotent, and may be repeated. However, the
server is at liberty to destroy a direct request port and all resources associated with it
at any time. Since all state is kept with the client, it can obtain a new direct request
port at any time by repeating the Open request.

1For example, the smallest NFS read request is 138 bytes!

518 CHAPTER 13. GENERAL SERVER PROTOCOL

The exact set of operations which may be applied to a particular object depend on
a large number of factors. The object type is the most important, and certain functions
make no sense for particular kinds of object (for example, seek on a serial line). Certain
objects may allow access to only one user at a time, so the presence of other clients
may restrict the operation set. A distinction must also be drawn between the set of
operations which could be applied, and those which are allowed by the protection
mechanism. For example, the Write operation is allowed on files, but if the file has
been made read-only then it will be rejected. See chapter 14, Protection, for further
information.

13.3 Message formats

GSP makes use of the control and data vectors in a particular way. The control vector
always contains a fixed-size data structure whose format depends on the message type.
The data vector contains variable sized data such as strings. Fields in the control vector
structure are either explicit values, or the offset of data in the data vector. If there is
nothing in the data vector for a particular offset field, the offset is set to -1.

In the protocol descriptions which follow, offset fields are given one of the follow-
ing types:

Offset A simple offset into the data vector.

String The offset of a null terminated string.

Struct The offset of a sized data item. This consists of a 4-byte size field followed
by that many bytes of data.

All data vector offsets should be aligned to 4-byte boundaries. Hence there may
be up to 3 bytes of padding between data vector items.

13.4 Object types

All objects are typed. The type of an object defines the set of GSP requests which may
be applied to it and the semantics of the operations performed.

An object type is a 32-bit value divided into a flags field in the least significant 4
bits and a type code in the remaining 28 bits. The flags place the object into one of
three generic types:

Directory This is a container for other objects. All indirect operations may be
applied to it, but only Read, GetSize and Close direct operations must
be supported.

Stream This is a source, sink or container for raw data. All indirect operations
with the exception of Create may be applied. The exact set of direct
operations supported is dependent on the open mode, underlying hard-
ware and server implementation, but in general this is an object which
may be treated rather like a file.

13.5. OBJECT FLAGS 519

Private This supports a private interface. All indirect operations may be ap-
plied, but some may be rejected as inappropriate, or accepted silently.
The direct operation interface is largely server defined, but may contain
some standard operations.

13.5 Object flags

In addition to a type, all objects also have an associated set of flags bits. These define
various features or options which are not encoded in the type field. The full set of flags
is divided into three classes: those which are the responsibility of the server supporting
an object, those which are the responsibility of the System library, and those which are
the responsibility of the application. These are all stored in a single 32-bit word in the
System library data structures.

The flags controlled by the System library are defined in chapter 10, The System
libraries. The flags controlled by the servers are as follows:

More Indicates that more data about this object is available through Ob-
jectInfo.

Seekable Indicates that the current read/write pointer of this object may be
repositioned.

StripName For a name table entry, indicates that the object name index in the
GSP request should point after the server name.

CacheName For a name table entry, indicates that the name is a cache entry for
a server on another processor.

LinkName Indicates that this is a name table entry for a hardware link.

NoIData Indicates that for Write requests, no data should be sent in the
request message.

ResetContext In cached names, indicates that the object name index should be
reset before forwarding the request.

CloseOnSend Indicates that the stream should be closed in the current task if it is
to be passed on to another task through SendEnv.

OpenOnGet Indicates that the stream should be opened when received through
GetEnv.

Selectable Indicates that the stream supports the Select operation.

Interactive Indicates that the stream is interactive (for example, a terminal).

MSdos Indicates that the object is an MS-DOS file or directory. This en-
ables the necessary character translations needed to make all file
systems appear similar.

Extended Indicates that the extended Read protocol should be used.

520 CHAPTER 13. GENERAL SERVER PROTOCOL

NoReOpen Indicates that this object cannot be re-opened.

Fast Shorter than normal timeouts may be used.

Closeable Indicates that the server expects the stream/object to be closed.

Server Indicates that the server has allocated resources for the client and
thus expects a Close direct operation to terminate the session. If
this flag is clear but Closeable is set, the client must close it with a
CloseObj indirect operation.

13.6 Indirect operations

Indirect requests are sent initially to a task’s own IOCPort, the reply is returned di-
rectly from the server to the client. The request may have to be passed through several
servers before reaching its destination due to the presence of explicit routing in the
request, or symbolic links in the servers.

To allow these messages to be processed without intimate knowledge of all pos-
sible formats, all indirect messages conform to a common format. This consists of
a context object plus a target object name relative to the context object. Additional
operation specific parameters are added only after these structures have been defined.

The context object is described by two items: its name and a capability. The name
is a string giving the context object’s full pathname in the naming hierarchy. This
name must be in canonical form, where all symbolic links have been removed. In
general this name should have been created by the server which supports the object.
The capability is a 64-bit protection handle, with which the server can validate the
client’s access rights over the object. This consists of an 8-bit access mask field plus a
56-bit validation field. See chapter 14, Protection, for more detailed information.

The target name is the name of the object upon which the operation is to be per-
formed. Normally the context object would be a directory and the target an object
within that directory. If no target name is given then the context object is the target
for the operation. If the target name begins with a ‘/’ character, it is an absolute
reference and does not need a context object. In this case the context name string is
not present and the capability, except for its access mask field, is unused.

The first four words of the control vector are formatted as follows:

String Context Context object name
String Name Target object name
String Next Current name index
Capability Access Capability for Context object

This is known as an IOCCommon structure and must be present in all GSP messages
sent to the IOCPort. The Context and Name fields are offsets into the data vector. If
both are present then the context string must appear before the target name string. The
Next field is an offset into either the context or target name strings. It indicates how
far through the name resolution the sender has reached, and where the receiver should
start. This allows the request to be passed from server to server as the path name is
followed without needing to re-format the message. This field should be initialised

13.6. INDIRECT OPERATIONS 521

by the client to point to the first character of the context name string, or to the first
character of the target name string if no context is provided.

Within the request message header the control and data vector sizes must be at
least large enough to contain the IOCCommon structure and its strings. No flags need
be set, although the preserve flag will be set by the IOC as a matter of course. The
destination port must be the task’s own IOCPort passed to it at startup. The reply
port should normally be a local port to which the reply will be sent. It should not be
possible for other messages to be received on this port unless they can be differentiated
unambiguously from the reply. Hence the port should be one that is specific to the
request, or to the context object, if it can be locked. Exceptionally, the reply port may
be a surrogate port, in which case the eventual reply will be routed back to the original
provider of the surrogate port without further interaction with the sender.

These operations may be retried in the face of errors. If a retry is needed then the
client should increment the R retry counter field in the function code. Once this reaches
a sufficiently high value, it will trigger higher-level recovery action in the Processor
Manager. This will attempt to find an alternative route to the server.

The following sections describe each request in detail. Each section contains the
formats of the request and reply messages along with a description of the operation and
any important points to be noted. The comments about protection are recommenda-
tions only. Since servers are responsible for implementing the protection mechanism
themselves, they can choose not to do so. The recommendations follow the practice
with all current servers.

13.6.1 Open

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Open

Control Vector:

IOCCommon Common Common part of GSP request
word Mode Open mode

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply direct port
FnRc Return Code

Control Vector:

word Type Object type code
word Flags Object Flag bits
Capability Access Access rights to object
String Pathname Canonical pathname of object
word Object (Optional) Object value

522 CHAPTER 13. GENERAL SERVER PROTOCOL

This operation is primarily used to obtain a direct operation port for the target object.
The Mode is the logical OR of the following set of mode bits:

ReadOnly Open for reading only, writes will be rejected.

WriteOnly Open for writing only, reads will be rejected.

ReadWrite Open for both reading and writing.

Execute Open for execution.

Private Open for use through a private interface. It is possible for an object
to present two completely different interfaces dependent on this bit.

Create Create the object if it does not exist.

Exclusive If Create is set, and the file exists, fail.

Truncate If the object exists, and it makes sense to do so, truncate it to zero
length.

NonBlock Do not block on read and write operations, effectively forces the time-
out on these operations to zero.

The client should have Read access to all directories between the context and target
objects, and the server should ensure that the client has sufficient access rights to allow
the mode requested.

In the reply, the Pathname is the canonical form of the object’s name. It may
bear no relationship with the original context and target pathnames supplied in the
request and should be used if the stream needs to be reopened. The capability encodes
the intersection of the rights the client has to the object and the access rights sought
through the requests Mode field. The Object field is optional and is used by some
servers to return an object identifier and avoid opening a direct request port.

In addition to the data in the reply message vectors, two fields of the message
header constitute reply parameters. The Reply port descriptor, if present, is the direct
operation port and may be used to apply direct operations to the object. The FnRc
field will be greater than zero if the operation was successful, and should be kept and
bitwise ORed with the function code of all subsequent direct operations.

13.6.2 Create

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Create

Control Vector:

IOCCommon Common Common part of GSP request
word Type Type of object to create
word Size Size of Info data
Offset Info Type specific information

13.6. INDIRECT OPERATIONS 523

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

word Type Object type code
word Flags Object Flag bits
Capability Access Access rights to object
String Pathname Canonical pathname of object

This operation is used to create new objects in a server. It is used not only for the
normal creation of files and directories, but also to load code into the loader, execute
tasks, and to create name table entries for servers. It is server defined whether an
attempt to create an object which already exists will succeed. Three outcomes are
possible: return information on the object as if the create succeeded, fail the operation
indicating that the object already exists or create a new object with a different name
and return information on that. This last option is used by the Processor Manager,
for example to allow several instances of the same program to co-exist on a single
processor.

The client should have Read access to all directories between the context and target
objects, and have Write permission for the parent directory of the new object.

The request defines the type of the object to be created and optionally provides
some additional information. A target Name field must be present in the IOCCom-
mon structure, and is used as the name of the new object. The server is at liberty to
modify or totally alter this name as it sees fit, so the returned pathname must be used
to re-access the object. The Info field is only used in the creation of complex objects
such as name table entries and tasks (see section 11.1 on the Processor Manager and
section 11.2 on the Loader for details). For most servers, the Size field may be zero.

The reply is identical to that produced as a result of an Open request, except that
no direct operation port will be returned, and no Object field is allowed. The returned
pathname and capability may be used as the context for subsequent indirect operations.
If this is the case the FnRc field of this reply should be ORed with the function code
of all such operations.

13.6.3 Locate

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Locate

Control Vector:

IOCCommon Common Common part of GSP request

Reply Message Header:

524 CHAPTER 13. GENERAL SERVER PROTOCOL

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

word Type Object type code
word Flags Object Flag bits
Capability Access Access rights to object
String Pathname Canonical pathname of object

This operation is used for two main purposes: to test whether a particular object exists,
and to acquire the canonical pathname and capability of an object for use as the context
of subsequent indirect operations. The client should have Read access to all directories
between the context and target objects, and have some access rights to the target object
itself. The request is minimal and simply identifies the object to be located. The reply
is identical to that supplied as a result of a Create request and the same comments
apply.

13.6.4 ObjectInfo

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG ObjectInfo

Control Vector:

IOCCommon Common Common part of GSP request

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation asks for more information about an object. This operation is only sup-
ported if the More flag is set in the object flags. The client should have Read access
to all directories between the context and target objects, and have some access rights
to the target object itself. The reply is server and type specific. However, most servers
which support this operation will return an ObjInfo structure in the data vector.

The ObjInfo structure is:

DirEntry A copy of this object’s directory entry structure, which is read from
directory streams (see Read below).

Account A server defined account identifier. This is used by some system servers
to return other information.

13.6. INDIRECT OPERATIONS 525

Size The object size.

Dates A structure comprising three dates indicating its creation, last modified
and last accessed times.

If the object is a symbolic link then a Link Info structure is returned:

DirEntry Object’s directory entry.

Cap Capability for linked object.

Name Canonical pathname of linked object.

The name and capability returned by this request may be used as the context object in
subsequent requests.

13.6.5 ServerInfo

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG ServerInfo

Control Vector:

IOCCommon Common Common part of GSP request

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This request obtains some information about the server supporting the target object. It
should not matter which object in the server is targeted, and access to this information
is not normally checked for access rights. Like ObjectInfo, it simply identifies the
target object or server. The reply is server specific, but most file systems return a
FSInfo structure in the data vector:

Flags Flag word, currently unused.

Size File system size in bytes.

Avail Free space in bytes.

Used Used space in bytes.

526 CHAPTER 13. GENERAL SERVER PROTOCOL

13.6.6 Delete

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Delete

Control Vector:

IOCCommon Common Common part of GSP request

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation requests that the target object should be deleted. The server should
ensure that the client has adequate access rights to allow this operation. The client
should have Read access to all directories between the context and target objects, and
Delete permission on the target object itself. The request simply identifies the object to
be deleted. The reply has no result parameters, the FnRc field of the message header
will indicate whether the operation was carried out successfully.

13.6.7 Rename

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Rename

Control Vector:

IOCCommon Common Common part of GSP request
String ToName New name for target object

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation requests that the target object be renamed, and possibly repositioned in
the directory hierarchy. An object may only be moved or renamed within its supporting
server, it may not be transferred to a different server. The success of an attempt to
rename an object over the top of an existing object is server-defined.

The client should have Read access to all directories between the context and the
target object, and between the context object and the new parent directory. The client
should also have Write permission to both the target’s parent directory and the new
parent directory. The request identifies the target in the normal way. The ToName field
is the new name for the object and is evaluated relative to the context object supplied
in the IOCCommon field. The reply has no result parameters, the FnRc field of the
message header will indicate whether the operation was carried out successfully.

13.6. INDIRECT OPERATIONS 527

13.6.8 Link

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Link

Control Vector:

IOCCommon Common Common part of GSP request
String Name Canonical pathname of linked object
Capability Cap Capability of linked object

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation creates a symbolic link to the object whose name and capability are
provided. This is only supported by servers which can store symbolic links in this
form. Hence, the MSDOS and Unix file systems cannot support this operation, while
the Helios File System and the RAM file system can.

A symbolic link is essentially just a context object stored in a server. When a
server encounters one in the resolution of a path name, it rebuilds the original request
using the contents of the link as the new context object and the remainder of the target
name string as the new target name. It then copies any remaining parameters from
the original request, and delivers the new request to its own IOCPort. The request
will now find its way to the server which supports the new context object, and hence
the eventual target. Note that since context names are canonicalised, a link cannot be
encountered while resolving the context pathname of a request.

The client should have Read access to all directories between the context and target
objects, and Write permission to the new link’s parent directory.

As with Create, the Common field identifies the object to be created, it must not
already exist. The Name and Cap fields should have been obtained as a result of
a Open, Create or Locate operation. No check is made to ensure that the described
object exits. The reply has no result parameters. The FnRc field of the message header
will indicate whether the operation was carried out successfully.

13.6.9 Protect

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Protect

Control Vector:

528 CHAPTER 13. GENERAL SERVER PROTOCOL

IOCCommon Common Common part of GSP request
Matrix Matrix New access matrix

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation alters the protection status of the target object. See chapter 14, Pro-
tection, for more detailed information. The client should have Read access to all
directories between the context and target objects, and Alter access rights to the target
object. The reply has no result parameters, the FnRc field of the message header will
indicate whether the operation was carried out successfully.

13.6.10 SetDate

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG SetDate

Control Vector:

IOCCommon Common Common part of GSP request
DateSet Dates Set of dates to set

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation requests that one or more of the dates associated with the object are
changed. These are defined by the DateSet structure:

Creation Date object was created

Access Date object was last accessed

Modified Date object was last modified

A date is measured in the number of seconds since 00:00:00 on 1 January 1970. Only
the dates which are non-zero in the request will be altered. The client should have
Read access to all directories between the context and target objects, and Write per-
mission to the target object itself. The reply has no result parameters, the FnRc field
of the message header will indicate whether the operation was carried out successfully.

13.6. INDIRECT OPERATIONS 529

13.6.11 Refine

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Refine

Control Vector:

IOCCommon Common Common part of GSP request
AccMask AccMask New access mask

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

Capability Cap Refined capability

This operation requests that a new capability be created for the target object. The main
use for this operation is to enable a program to restrict the access rights to an object
when it needs to pass some access over to another, less trusted program. For example,
the network server, having booted all processors, Protects them all against external
access while keeping a full access rights capability for itself. When a processor is
allocated to a user, the Network Server uses Refine to manufacture a medium-level
access capability to pass to the TFM.

The AccMask parameter defines the access mask to be used in the new capability.
The client should have Read access to all directories between the context and target
objects. If the client has Alter access rights to the target object then the new mask is
used as it stands, otherwise the new mask is bitwise ANDed with the client’s actual
access mask for the object. This prevents the user obtaining greater access rights than
they already have, while recognising that a user with Alter permission can give them-
selves any access rights they want with the Protect operation in a much less secure
way.

The reply contains a new capability which encodes the new access rights. This may
now be used with a canonical name for this object as the context in any subsequent
operation.

13.6.12 CloseObj

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG CloseObj

Control Vector:

530 CHAPTER 13. GENERAL SERVER PROTOCOL

IOCCommon Common Common part of GSP request

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation requests that a Close operation be performed on the target object. Nor-
mally Close is sent to the direct operation port of an opened object. However, certain
servers do not need to retain an open stream to the client since there are no direct op-
erations needed. However, the server still needs to be informed when the stream is
closed.

For example, the pipe server acts as a rendezvous point for the two ends of a pipe.
Once the rendezvous has been made the two communicating tasks communicate di-
rectly without involving the server. However, the server must maintain the rendezvous
point in case the clients lose contact and need to re-rendezvous. Thus when the pipe
is finally closed, the clients each send a CloseObj operation to the server to inform it
that the rendezvous point may be destroyed. The client should have Read access to all
directories between the context and target objects.

In all cases Close is merely a hint to the server that the object is no longer open.
Hence it does not matter unduly that it is lost. For this reason the client need not supply
a Reply port, and no reply need be returned. If a reply port is supplied, the generation
of a reply is server-dependent.

13.6.13 Revoke

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Revoke

Control Vector:

IOCCommon Common Common part of GSP request

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

Capability Cap New capability for target

13.7. DIRECT OPERATIONS 531

This operation requests that the server revoke all existing capabilities for the target
object and issue a new capability to the client. The client should have Read access to
all directories between the context and target objects, and Alter permission to the target
object. The request must not contain a Name field in the IOCCommon structure, so
the context object is the target. The reply contains a new capability for the object with
the same access rights as the original supplied in the request. This capability will be
the only capability which can access the object.

13.7 Direct operations

These requests are sent directly to a server through a direct operation port obtained
from an Open operation. There is no fixed protocol.

The protocols used here are designed to cope with communications failures and
to allow the implementation of a fault recovery strategy at the client when the server
crashes or communications are lost.

If an error return code is generated from either PutMsg or GetMsg the initial
recovery action is controlled by the error code’s class. If the class is Recover then the
operation should be retried from the beginning. If the class is Error or Fatal then the
operation should be abandoned, and the code returned to the application. If the class
is Warn then the client can attempt to re-open the direct operation port.

To re-open the direct operation port the client must construct an Open request
using the name and capability returned in the original open reply, and send it to its
IOCPort. The function code of this message should have the ReOpen bit set in the
F field. This is then routed to and treated by the server as a normal open, and a new
direct operation port is returned. To allow for transient errors, the client may need to
retry the open several times.

13.7.1 Read

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG Read

Control Vector:

word Pos Position in file to start reading
word Size Maximum number of bytes to read
word Timeout Time to wait for data to be available

Replies Message Header:

Flags preserve (all except last)
Dest Request.Reply
Reply NullPort
FnRc Return Code OR seqno|ReadRc More (ReadRc [EOD|EOF] on last)

Directory Read Replies Message Header:

532 CHAPTER 13. GENERAL SERVER PROTOCOL

Flags preserve (all except last)
Dest Request.Reply
Reply NullPort
FnRc Return Code OR seqno|ReadRc More (ReadRc [EOD|EOF] on last)

Data Vector:

DirEntry Entries[...] Array of directory entry structures

This operation requests data to be transferred from the object to the client. The object
must have been opened with Read permission for this operation to succeed. The Pos
field indicates where in the object the read operation should start. For sized objects
such as files this must lie within the bounds of the object. For objects which are simply
data sources, such as a pipe or serial line, this parameter is used as a sequence counter.
In this case the server will interpret a request with a certain Pos value as implicit proof
that all preceding data has been received successfully. A request with a repeat Pos field
is interpreted as a retry after some communication error. If such a retry is not an exact
duplicate of the original then the server’s behaviour may be undefined. Thus to retain
the ability to retry a serial stream server needs to retain enough data to repeat each
client’s last read operation. This can be avoided, at the cost of some extra messages,
by employing the extended read protocol described later.

The Size field indicates the maximum quantity of data to be transferred. The server
must not interpret this as an exact requirement. Any amount of data up to this size,
including zero, may be returned. However, the server must never return more than this
size.

The Timeout field indicates how long the client is willing to wait for data to be-
come available. It is specified in microseconds, although the server may impose its
own grain size of up to a second. If the timeout is zero then a reply must be generated
immediately, whether data is available or not, to allow clients to poll the server. There
is no provision for an infinite timeout. If clients want to wait indefinitely they should
submit a Read request with a finite timeout and simply retry it when it returns with a
timeout. In this way a low-level idle exchange is maintained between client and server,
allowing either to detect the other’s failure. If an infinite timeout were allowed here,
the client would not be able to detect whether a lack of response from the server was
simply a result of no data being available, or because the server, or communications
with it, had failed.

The response to a Read request is one or more reply messages. If the message
header FnRc field of any of these is an error code, it will provoke the necessary re-
covery action depending on its class. Otherwise the FnRc contains a return code in
its least significant four bits, and a message sequence number in its most significant
28 bits. The sequence number starts at zero and is incremented for each successive
message in the transfer.

The possible return codes are:

ReadRc More Indicates that there are more messages to follow.

ReadRc EOD End Of Data. Indicates that this is the last message in the transfer.

ReadRc EOF End Of File. Indicates that this is both the last message in the
transfer, and that the end of the file has been reached.

13.7. DIRECT OPERATIONS 533

The data being transferred is contained in the data vectors of the messages. As a special
feature, the control vector may contain a number of whole words of data. The extra
words in the control vector should be copied into the data buffer immediately after the
end of the message’s data vector. This is primarily to allow a full 64K to be transferred
in a single message instead of 64K-1.

The data messages should be delivered to the client in ascending sequence number
order. This allows the client to simply advance the MCB data vector pointer along its
buffer, receiving the data directly into the memory area required without needing to
copy it out of a message buffer. If a message arrives with a wrong sequence number,
or a communications failure occurs, the client should free the original reply port and
allocate a new one before retrying the operation. This ensures that any messages still
in transit, or yet to be sent, are disposed of and do not interfere with the retry.

If the object’s Extended flag is set, then the server expects the client to make use
of an extended read protocol. This is identical to the normal read protocol except that
it contains an extra acknowledge interaction at the end. This acknowledgment is seen
by the server as an extra ReadAck request:

Control Vector:

word Result Size of data received or error code.

The result is either the quantity of data received, or if an error occurred during the
transfer, the error code. The server will respond with a header-only message acknowl-
edging receipt. In the face of Recover class messages, the client need only retry this
message and not the entire transfer.

The effect of the ReadAck message is to inform the server that the client has
received the data and avoids the need to keep it until the next Read operation in case
it is a retry.

If the object being read is of type Directory, or some derivative, then there are
some additional constraints upon the form of the request and reply messages. In the
request, the Pos and Size fields must be a multiple of the size of a DirEntry structure.
The reply will consist of an array of a whole number of DirEntry structures in the data
vectors. The DirEntry structure contains the following fields:

Type Object type.

Flags Object flags.

Matrix Access matrix for object.

Name Name of this entry.

13.7.2 Write

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG Write

534 CHAPTER 13. GENERAL SERVER PROTOCOL

Control Vector:

word Pos Position in file to start writing
word Size Number of bytes to write
word Timeout Time to wait for write to start

Sizes Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort OR data port
FnRc Return Code

Control Vector:

word First Size of first message data vector
word Rest Size of remaining message data vectors
word Max (Optional) Maximum transfer size

Already and Done Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc WriteRc Already OR WriteRc Done

Control Vector:

word Got Number of data bytes received
word Wrote (Optional) Number of data bytes actually written

Data Messages Message Header:

Flags preserve (all except last)
Dest Request.Dest OR Sizes.Reply
Reply NullPort
FnRc Seqno|ReadRc More (ReadRc EOD on last)

This operation requests a data transfer from the client to the object. The object must
have been opened with Write permission for this operation to succeed. This is the most
complex protocol interaction between client and server. It is necessary to ensure data
delivery on unreliable communications and to support the semantics of non-blocking
writes. In summary, it consists of an initial request message followed by a first reply
from the server. If the interaction is not terminated there, the client transfers the data
to be written to the server and awaits a final reply from the server.

The Pos field indicates where in the object the write operation should start. For
sized objects, such as files, this should lie within the bounds of the object, or be exactly
one more that the object’s upper bound. In this case the write operation will extend
the object appropriately. For objects which are simple data sinks, such as a pipe or a
serial line, this parameter is used as a sequence counter. In this case if a repeat request
is received the server can respond immediately with an Already reply as described
below.

The Size field indicates how much data the client wants to send the server. The
server need not accept this much data and may modify the actual transfer size with

13.7. DIRECT OPERATIONS 535

the Max field in the Sizes reply. The Timeout field indicates how long the client is
prepared to wait for the write operation to complete. This is intended to be used to wait
for devices to get ready. The server should not terminate a transfer in the middle simply
because the timeout has been reached. A timeout of zero indicates that the writer does
not expect to be blocked by the server. In this case the server should accept all the data
sent, but only write as much as it can without blocking, reporting the discrepancy in
the final reply. As with Read there is no provision for an infinite timeout, for the same
reasons.

If the data to be transferred is less than or equal to IOCDataMax it may be sent
to the server in the data vector of the request. However, if the object’s NoIData flag
is set, then this should not be done. Once the request message has been sent the client
should await a response from the server. If the FnRc field contains an error code the
appropriate recovery action is taken, as described earlier. Otherwise it will be one of
the following codes from the server:

WriteRc Done Indicates how much data was received and written.

WriteRc Sizes Defines how the client should ship the data to the server.

WriteRc Already This is a response to a retry of a write which has actually suc-
ceeded the first time.

If the response is WriteRc Done then the client must have sent data in the request
message. If the control vector is empty then all the data has been written. If the con-
trol vector contains just the Got field then the server will only have written that much
data. When sent data in the request, the server is not able to use the WriteRc Sizes re-
sponse to alter the transfer size, this feature has the effect of doing that. If the response
contains both the reply fields then the application should be informed that not all the
data was written.

If the response is WriteRc Already then the server is informing the client that it
already has the data and it need not be re-sent. This is a response to a retry of a write
operation whose final reply got lost. For this to work correctly, the retry should be an
exact copy of the original request. This response effectively shortcuts the remainder of
the protocol and should be treated like the final reply described later.

If the response is WriteRc Sizes then the server is ready for data to be transferred.
This reply indicates how the transfer should be made. The First field indicates what
size the data vector of the first message should be. The Rest field indicates what size
the rest of the messages should be. The last message will be some size less than or
equal to Rest. The reason for forcing the transfer into this pattern is so that the server
can optimise the placement of data into its memory. For example, consider a file server
which maintains a block cache. If it could not control the message sizes it would have
to receive each message into a buffer and then copy the data out into each cache block.
By controlling the message sizes, the server can receive the data messages directly into
the cache blocks, eliminating a copy operation. The First field allows for the fact that
the write may start part way through a cache block. Under no circumstances must the
client disobey the server in this matter.

Certain servers may be unable to accept write operations above a certain size. The
optional Max field in the Sizes reply allows the server to reduce the write transfer size

536 CHAPTER 13. GENERAL SERVER PROTOCOL

to a more reasonable value. Although the client must obey this demand, it is at liberty
to issue another write request for the remaining data as soon as the first operation is
completed. This feature is of use to servers which have limited buffering space, and/or
slow devices. It allows them to accept as much data as possible, and then to block the
client on its timeout while it disposes of it. When buffer space becomes available, the
server can then quickly re-start the client to fill it.

If the Sizes reply contains a message port in its message header Reply field, then
the client must send the data messages to this port. Otherwise, the client should send
the data to the original request port. This allows the server to redirect the data to a
special port, or even to another server.

Once given the instruction to proceed by the server the client can transfer the data.
This must be done in the message data sizes defined by the server and sent to the data
port defined by the server. The FnRc field of these messages must follow exactly the
format of the data messages used for the Read request. Thus, the least significant 4
bits of the field must be set to ReadRc More for all but the last message, which must
be set to ReadRc EOD (ReadRc EOF has no meaning and should never be used).
The most significant 28 bits should be set to the serial number of the message starting
from zero. The message header preserve flag must also be set on all messages, except
if the server has provided a different data port in the Sizes reply. In this case the
last message (the one indicating EOD) must have this flag cleared. If the client gets
an error from the PutMsg operations sending this data, it should abandon the entire
transfer and either retry it, reopen the connection, or report an error.

Once the client has sent the data it must wait for a final confirmation reply from
the server. This will be a Done reply containing up to two fields. The first field, Got
should match exactly the amount of data the client sent in the data transfer messages.
If it does not, then an error occurred and the entire transfer should be repeated. The
second result is optional and indicates how much of the data received was actually
written to the device. If this does not agree with the Got field, then the discrepancy
should be reported to higher levels. If this field is absent then all the data sent was
written.

It should be noted that the Read and Write protocols are designed to neatly dove-
tail together with minimum interaction from a server. An example of how this works
is given in section 15.3.

13.7.3 GetSize

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG GetSize

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

13.7. DIRECT OPERATIONS 537

Control Vector:

word Size Object size

This operation requests the size of the object. The object may have been opened with
any permission. The request simply delivers the function code to the server. The reply
contains the current size of the object. In the case of files this will be the file’s upper
bound. In the case of simple data source objects such as pipes and serial lines, this is
the quantity of data which is immediately available to a Read operation.

13.7.4 SetSize

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG SetSize

Control Vector:

word Size Size to set

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation requests that the size of an object be set. The object must have been
opened with Write permission. The Size field in the request indicates the new size.
The interpretation placed on this request is server or object specific. For files the given
size must be less than its upper bound and effects a truncate operation. For pipes this
request sets the amount of data which may be written into the pipe before the writer is
blocked. This may only be set at the read end of the pipe.

13.7.5 Close

Request Message Header:

Flags NONE
Dest direct port
Reply NullPort OR local reply port
FnRc FG Close | mode

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

538 CHAPTER 13. GENERAL SERVER PROTOCOL

This operation informs the server that the client has finished with the direct operation
port for the object. Since this operation is only a hint to the server that the client is
finished, the request need not contain a reply port. If it does then the server should
return a success reply to the client. The F field of the request function code, if non-
zero, indicates which mode of the object to close:

ReadOnly Close the object for reading only.

WriteOnly Close the object for writing only.

If the object is open for both read and write, setting a mode in the close will close
it only for the given direction. Operation for the other direction will be allowed to
continue. If the mode is zero, it is closed for both directions.

13.7.6 Seek

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG Seek

Control Vector:

word CurPos Current position
word Mode Seek mode
word NewPos New position relative to mode

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

word NewPos New position

This function requests that the server calculate a new position in the object and return it
to the client. Although the server does not keep an object position pointer for the client,
it is given the job of calculating updates to it. This is to ensure that the new position
is calculated and validated using the most up-to-date values for the object size. It can
also act as a hint to the server that the client’s point of interest in the object has moved.
This would allow a file server, for example, to dispose of any cached blocks at the old
position and to start pre-reads at the new.

The request CurPos field is the client’s current absolute position pointer and the
NewPos field is the new relative position pointer. The Mode field indicates how these
are to be combined to generate the new absolute position:

Beginning Position relative to start of file, NewPos is the new absolute position.

13.7. DIRECT OPERATIONS 539

Relative Position relative to original: CurPos+NewPos is the new absolute po-
sition.

End Position relative to end of file: the new absolute position is FileSize+NewPos.

The final absolute position is compared against the object bounds and trimmed appro-
priately before being returned in the reply message.

13.7.7 GetInfo

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG GetInfo | subtype

Ioctl request Control Vector:

word Type Ioctl type code
Struct Value (Optional) parameter structure

SocketInfo request Control Vector:

word Level Protocol level code
word Option Parameter option code
Struct Value (Optional) Parameter value

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Ioctl Reply Control Vector:

word Type Ioctl type code
Struct Value result structure

SocketInfo Reply Control Vector:

word Level Protocol level code
word Option Parameter option code
Struct Value Result value

This operation requests the server for control information from the object. The request
identifies the information type in the F field of the function code. The types are as
follows:

Attributes Indicates that the data vector contains an Attrib structure.

Ioctl Indicates that the message is an Ioctl request.

SocketInfo Indicates that this is a SocketInfo request.

540 CHAPTER 13. GENERAL SERVER PROTOCOL

Additionally, if the SendInfo bit is bitwise ORed into the type value, then the client
can send a parameter value in the request. This has been introduced to support certain
Unix-compatible ioctl() operations. It must not be used as a substitute for SetInfo
because the server may not handle this in a fully generic way.

The Attributes subtype is defined to be compatible with past practice, and defines
no format for the control vector. The Ioctl subtype is included specifically to support
servers which are derived from Unix code, and to provide a fully Unix compatible
interface to other servers in future systems. The SocketInfo subtype is included to
support the TCP/IP Internet server, this currently piggybacks the ioctl() functions it
supports onto this subtype by means of a special protocol level.

13.7.8 SetInfo

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG SetInfo | subtype

Ioctl request Control Vector:

word Type Ioctl type code
Struct Value Parameter value

SocketInfo request Control Vector:

word Level Protocol level code
word Option Parameter option code
Struct Value Parameter value

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation requests that control information be set for the object. The same set of
subtypes and data structures are defined for this function as for GetInfo.

13.7.9 EnableEvents

Request Message Header:

Flags preserve
Dest IOC port
Reply local event port
FnRc FG EnableEvents

Control Vector:

word Mask Event select mask

13.7. DIRECT OPERATIONS 541

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

word Mask Event select mask

Event messages Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Event return code

Data Vector:

IOEvent Event[...] Event descriptions

Acknowledge message Message Header:

Flags preserve
Dest direct port
Reply NullPort
FnRc FG Acknowledge

Control Vector:

word Counter Counter of last IOEvent received.

NegAcknowledge message Message Header:

Flags preserve
Dest direct port
Reply NullPort
FnRc FG NegAcknowledge

Control Vector:

word Counter Counter of last IOEvent received.

This operation establishes a client port as a recipient of event messages from the object.
As and when the selected events occur in the object, a message will be sent to the
client’s port. This is used to obtain raw mouse and keyboard events as well as by
shells to capture special key handling (such as CTRL-C).

The request contains the event port as its message header Reply field, and a mask
of the events to be notified in the Mask field. The reply will return a mask of the events
which will actually be sent. This may differ from the requested set if the server does
not support the given event type.

Once the event port has been registered the server will send event messages to
it using a specific protocol. Each event message may contain one or more IOEvent
structures in its data vector. The exact size of these structures is server defined, but a
server will never send structures of differing sizes. It will pad smaller event structures
out to the size of the largest it could send. Each IOEvent defines the following standard
field:

542 CHAPTER 13. GENERAL SERVER PROTOCOL

Type The event type bit from the request mask field.

Counter An increasing, cyclic, sequence counter.

Stamp The timestamp of when the event occurred.

Device A variable sized field containing any event-specific data.

The FnRc field of each message contains a return code:

Acknowledge The client should return an Acknowledge message.

IgnoreLost The client need not return an Acknowledge message.

An Acknowledge message contains the Counter of the last event received. The
server should not throw any event messages away until they have been acknowledged.
As each event occurs it should be both buffered and sent to the client. When the buffer
becomes close to full the server should set the Acknowledge return code in all events
it sends until an Acknowledge message is received.

If the client ever received an event message with a greater Counter than it ex-
pected, then it should send a NegAcknowledge message to the server containing the
Counter of the last message it received in sequence. This will have the dual purpose
of acknowledging all events up to that point, and informing the server to re-send all
subsequent events.

If the nature of the events is such that it does not matter that some messages are
lost, then the server can set the FnRc of all messages to IgnoreLost, in which case the
client need never acknowledge receipt of events.

13.7.10 Select

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG Select | condition

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc condition

This operation allows the client to be sent a message when an object satisfies a given
condition. This is present primarily to support the System library SelectStream and
Unix compatible select functions, and should not normally be used outside of these.

The request encodes the condition in the F field of the function code using the
same bits as defined in the open mode:

ReadOnly Return the reply when the object has data available for reading.

13.7. DIRECT OPERATIONS 543

WriteOnly Return the reply when the object has space to accept a write operation.

Exception Return the reply when the object meets some device specific exception
condition.

The reply is not returned immediately, but only when the given condition is met. If
more than one condition was given, the exact condition or conditions met are encoded
in the least significant 4 bits of the reply.

On receiving a select operation the server should check whether any of the con-
ditions are already met, if so then a reply must be generated immediately. Otherwise
the server should save the condition and the reply port with the object. It is acceptable
for the server to allow only one outstanding select per object. If one or more of the
selected conditions becomes true, the reply should be generated and the pending select
cancelled. A select may also be cancelled if the object is ever closed, or an operation
for which the select is waiting is performed, or if another select request is received.
When a select is cancelled in this way the server must execute a FreePort() Kernel
call on the reply port to dismantle any port trail.

The client should use this operation to perform selects on a number of objects
simultaneously, and then wait for one or more to complete using MultiWait. Since it
is possible for more than one object to be ready at the time that the request is issued,
the client should be ready to receive several replies. It may also receive some error
responses if servers are unreachable, or as selects are cancelled by the action of other
clients. The timeout facility of MultiWait should be used, and if the timeout expires,
the full set of select operations should be repeated. The client has no need to cancel
pending selects, but to prevent replies interfering with later operations, the reply port
should be freed.

13.7.11 Abort

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG Abort | mode

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

This operation allows the client to abort any pending read or write operations on the
object. It is optional whether the server supports this operation, and at present is only
used in the pipe protocol. The mode in the request is either ReadOnly or WriteOnly
and causes the appropriate pending operation to be aborted.

544 CHAPTER 13. GENERAL SERVER PROTOCOL

13.8 Task control messages

The GSP operations described so far are generic to all objects. The following opera-
tions are specific to tasks in the Processor Manager and task forces in the Task Force
Manager. This interface should also be presented by any server which acts as a con-
troller of active programs.

These operations fall into two groups, those that are extensions or modifications
of the standard protocols, and those that are specific to tasks and task forces. The
operations which have been extended are Create and Delete, while all other indirect
operations may be applied with the normal semantics except Rename which is not
allowed. Once a task (or task force) has been created it may be opened in the normal
way. However, only the set of direct operations defined here, along with Close, may
be applied to it.

13.8.1 Create

The standard Create operation is used to execute a task or task force. This is modified,
first, by ORing the FF Execute into the function code F field. Second, the optional
Info field is a TaskInfo structure:

Name A self-relative pointer to the canonical name of the file containing the
program to be executed.

Cap A capability for the program file which allows at least read permission.

Matrix An initial access matrix for the new task, this should be ANDed with a
default matrix in the server.

The timeout on the message exchange should always be large for this operation since
the creation time of a task force may be long.

13.8.2 Delete

The server’s response to a Delete operation on a running task or task force should be to
attempt to force its termination. The severity with which it does this can be controlled
by setting the F field in the function code. The exact interpretation of these values is
server specific, but in general the higher the value, the more severe the termination will
be. Also, the severity should be cumulative, so repeated delete attempts at one level
will act with increasing severity. See chapter 11, The System servers, for details of
how the Processor Manager handles this function.

13.8.3 SendEnv

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG SendEnv | 1

13.8. TASK CONTROL MESSAGES 545

Control Vector:

word Items Number of items to be sent in environment
word Data Total data size of items.

First Reply Message Header:

Flags NONE
Dest Request.Reply
Reply data port
FnRc Return Code OR 1

Environment Message Message Header:

Flags NONE
Dest data port
Reply acknowledge port
FnRc Err Null

Data Vector:

String Argv[...] Argument array
String Envv[...] Environment array
Offset Objv[...] Object array
Offset Strv[...] Stream array
byte Data[...] Data referenced by the arrays

Acknowledge Reply Message Header:

Flags NONE
Dest acknowledge port
Reply NullPort
FnRc Return Code

This operation transfers a task environment, normally between a parent task and a
newly created child. Both the sender and receiver must implement the complete pro-
tocol, although a server may intervene for part or all of the interaction.

The first, request message defines the size of the environment. The Items field
counts the total number of entries in the four offset vectors in the environment message.
It should count 1 for each entry in each of the four arrays, plus 1 for each of the arrays.
For example, if there are six arguments, ten environment strings, ten objects and four
streams, the number of items is (6 + 1) + (10 + 1) + (10 + 1) + (4 + 1) = 34.
The Data field counts the total number of bytes to be allocated for the Data array in
the environment message. For each string in the argument and environment arrays, it
should count the size of the string, plus the zero terminator, rounded up to a multiple
of four. For the objects it should count the size of a capability, plus the size of the
pathname string, again counting the zero and rounded up to a multiple of four. For
entries in the stream array it should count the same space as for an object array entry,
plus space for two words.

The receiver, on getting the request message, allocates sufficient space for the en-
vironment. If this is not possible, or some other error occurs, it can return an error,

546 CHAPTER 13. GENERAL SERVER PROTOCOL

otherwise the returned message indicates that it is ready for the environment. The re-
ceiver must also return a port descriptor in the Reply field on which the environment
will be received.

The environment itself is sent in response to the second message, to the port re-
turned in that message. Its data vector contains four arrays of offsets into a Data array.
the offsets are relative to the start of the Data array 2. Each array is terminated by an
entry containing −1. This message should also contain a reply port for the acknowl-
edge message.

Entries in the object and stream arrays, in addition to containing offsets in to the
Data array, may contain special values. If the entry contains MinInt then it is empty,
and is simply a placeholder for a potential entry. If the entry has the most significant
16 bits set, then the least significant 16 bits contain an offset to some other entry in the
same array. This allows two entries in the array to refer to the same object or stream
without duplicating it.

Once the message has been received, the receiver must return an acknowledgment
message, terminating the protocol.

Normally this protocol is not exchanged directly between parent and child, but is
mediated by a server. The Processor Manager is the recipient of the initial request
message, which it passes directly to the child on its own port. The remainder of the
interaction then proceeds between parent and child without the Processor Manager’s
intervention. The Task Force Manager takes a more active role, and receives the entire
environment itself. It then alters some aspects of this (runtime parameter substitution,
access rights to the task force, and so on) before passing it on to each member of the
new task force. To do this it sends the environment through the Processor Manager.
Hence in this case the parent is actually the Task Force Manager and not the true parent.

13.8.4 Signal

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Signal

Control Vector:

word Signal Signal to raise

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Signal Message Message Header:

2It should be noted that an earlier version of this protocol put the offset arrays in the control vector
and the data in the data vector, which is where this arrangement is derived from. The maximum control
vector size of 255 words proved too limiting.

13.8. TASK CONTROL MESSAGES 547

Flags NONE
Dest signal port
Reply NullPort
FnRc EC Recover—SS ProcMan—EG Exception—EE Signal—signal

This operation requests that a given signal be raised in the task. The request specifies
the signal to be raised, the set of valid signals may be found in signal.h. The reply
is returned when the signal has been delivered to the task. However, it may not have
actually been raised at this point.

The signal is delivered to the task in one of two ways. The first is in the form of
a message sent to the task’s Signal Port, which is established by the SetSignalPort
private operation between the task and its IOC. If no signal port has been set, then the
Exception routine in the task structure is called. This last interface is only present as a
compatibility feature. It will eventually be discontinued.

13.8.5 ProgramInfo

Request Message Header:

Flags preserve
Dest direct port
Reply info port
FnRc FG ProgramInfo

Control Vector:

word Mask Mask of information wanted

Reply Message Header:

Flags preserve
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

word Mask Mask of information which will be reported
word Size Number of components

Program Info Message Message Header:

Flags preserve
Dest info port
Reply NullPort
FnRc Return Code

Control Vector:

word Status[...] Status of each component

This operation requests that information on task, or task force, state changes be re-
turned to the caller. The request specifies under what conditions the information is to
be returned by setting flag bits in the Mask field. The only flag currently supported

548 CHAPTER 13. GENERAL SERVER PROTOCOL

by either the Task Force Manager or the Processor Manager is Terminate, which is
reported when the task (or task force) exits.

The initial reply confirms in the Mask field the conditions which will cause reports.
The Size field indicates the number of components in a task force for which status will
be returned. This is an obsolete feature and the value returned will always be 1.

When a state change occurs, a second reply will be returned to the original reply
port containing the information required. The FnRc field will contain a return code
for the entire task force, or task. The Status vector will contain the exit status of each
component (only one such result will ever be returned).

Chapter 14

Protection

The Helios protection mechanism is one of great power and flexibility. In consequence
it is slightly more complex than the simpler mechanisms used by Unix or MS-DOS.

This chapter first considers protection mechanisms in general and explains why
the particular mechanism chosen has been used. It goes on to describe the Helios
protection mechanism in detail, and concludes with some examples of its use.

14.1 Protection mechanisms

A good protection mechanism is one which does not make itself felt until the client
violates its rules. It must allow the implementation of the principle of minimum privi-
lege, where no client has more access rights than are absolutely necessary. Finally the
protection system should implement the mechanism but not the policy of any security
system; it should be possible to construct several different security systems upon the
same protection mechanism.

All protection mechanisms may be placed into one of two classes: access control
lists and capabilities. In access control list mechanisms each protected object has
associated with it a list of clients with their access rights. Any attempt to access the
object is checked against the list to see whether the client is allowed to perform the
operation requested. An explicit list of clients can be expensive to check, so most
operating systems group clients into categories and only store the access rights for
each category. For example, UNIX has three categories: owner, group and public and
stores just three rights (read, write and execute) for each.

The capability mechanism is essentially the inverse of the access control list mech-
anism. Instead of storing a list of clients with each object, a list of objects is stored
with each client. When an access is made the client’s rights to the object are passed
with the request and checked. In most capability based operating systems the mecha-
nisms for identifying the object and for specifying the access rights are combined. The
resulting descriptor or identifier is called a capability.

The integrity of both these mechanisms relies upon being able to prevent forgery
of either the client identifiers or the capabilities. Where the underlying hardware im-
plements memory protection it is a straightforward matter for the operating system
to store these items outside the client’s address space and provide some closely con-
trolled functions to manipulate them. Where no hardware protection is present, as on

549

550 CHAPTER 14. PROTECTION

the Transputer, other mechanisms must be used, specifically sparseness and encryp-
tion.

If client identifiers are chosen at random from a large (>=64bit) number space it
is unlikely that an intruder will be able to guess a valid client id. However, client
identifiers need to be public knowledge, if only so that object access control lists can
be manipulated. Therefore the client identifier needs to be accompanied by proof that
the client is indeed who it claims to be. This in turn requires an authentication authority
to check the identity and issue the proof, which must itself be chosen from a sparse
number space to prevent it being guessed. Both the client identifier and the proof must
accompany any request, and the pair checked for validity with the authenticator before
the operation is allowed. An additional problem now presents itself: the client has
passed its proof of identity over to some other program, which could now masquerade
as the client. To avoid giving such hostages to fortune, the client actually must generate
a special temporary proof for the server, and destroy that as soon as the operation is
finished.

From the above brief discussion it should be clear that access lists leave a lot to be
desired in the context of a distributed operating system. They require large amounts
of data to be transferred with each request, and both clients and servers must contin-
uously interact with the authentication authority to check the validity of clients. The
presence of such a central authority violates one of the basic design goals of Helios.
For these reasons Helios implements a capability based protection mechanism; how
this overcomes, or avoids, the problems raised above will be described in the follow-
ing sections.

14.2 Helios capabilities

A Helios capability is a 64-bit value divided into an 8-bit cleartext access mask and a
56-bit encrypted validation field. Bits are set in the access mask corresponding to the
rights a client may have over the object.

When a capability is issued the access mask is combined with a known value and
encrypted to form the validation field. Thus even if the cleartext mask is altered the
original access rights are still present in the encrypted validation field. The true access
to the object is always determined by ANDing the cleartext mask with the decrypted
mask from the validation field. This allows the access rights of a capability to be
restricted, but never amplified, by changing the access mask.

Whenever a new object is created a new encryption key is created and stored with
the object. Capabilities in requests to access this object are decrypted with the object
key and if the known value is correct the access mask is extracted and used. Protection
of capabilities against forgery derives from the sparseness of the keys within their
number space and not from the encryption itself.

A Helios capability only encodes the client’s access rights to an object, identifica-
tion of the object is by means of an absolute name string. Helios capabilities therefore
differ from conventional capabilities which combine these two parts into one item. A
Helios capability is virtually useless on its own, although in theory the entire object
space could be searched for an object whose key decrypts the capability. While this
‘glass slipper’ approach may be useful for failure recovery it is clearly impractical

14.3. ACCESS MATRICES 551

for normal use. For simplicity in the rest of this note the term capability should be
interpreted as referring to a name plus capability pair.

Because the encryption key is stored with the object, the protection mechanism
is operated only by the server containing the object and does not need any external
authenticator. The key selection and encryption algorithms are entirely at the discre-
tion of the server, as is the interpretation of the access mask bits although a system
convention exists for the interpretation of these bits.

The conventional access mask for all objects contains at least four access rights
bits: r, w, d and a. The bits r and w are conventional read and write permission for
files, or list and create permission for directories. d allows the client to delete the
object, or at least its directory entry. a allows the client to alter the protection status
of the object, this will be explained in more detail later. In addition to these standard
access bits, there are up to four type-specific bits. Files use one such additional bit
which is the e or execute bit to mark executable files. Directories use all four extra bits
which are used by the protection mechanism itself.

14.3 Access matrices

So far it has been assumed that to access an object a client must possess a capability for
that object. It is clearly impractical for a client to keep a capability for all the objects
in the system it might ever need to access (even if such a list could be made). Instead
a client will initially possess just a few capabilities, for example, one for its current
directory and one for the user’s home directory. All subsequent object accesses are
either relative to these initial capabilities or relative to no capability (a non-contextual
access). Therefore a GSP message to access an object contains a name/capability pair
for its context object, and a relative pathname to the target object. Either, but not both,
of these may be absent: no context capability results in an absolute, non-contextual
access; no pathname results in access to the context object itself.

The capability in a GSP message only specifies the access rights to the context
object, some means of obtaining the client’s access rights to the target object is needed.
To achieve this a highly modified form of access control list is re-introduced. The
extra four access bits associated with a directory place the client in one or more access
categories. These are given the letters v, x, y and z for historical reasons. Each
directory entry lists for each of these categories the access mask allowed to a client
with that category of access. If the categories are viewed as rows and the access masks
as columns then this forms a 4-by-8-bit access matrix, which is actually stored as a
single 32-bit word. For example the entry for a particular file may be as follows:

v: r - e - - - - -
x: - w - - - - - -
y: r - - - - - - -
z: - - - - - - - -

The actual access rights a client has to an object in a directory depends on the
access rights it has to the directory itself. Thus in the example, if the client has just the
v category bit set in its access mask for the directory, its access mask for this file will

552 CHAPTER 14. PROTECTION

be re. However if it has both the x and y bits set, its access mask for the file will be rw
— w for being in category x and r for being in category y.

The convention for writing access masks and access matrices is simple. An access
mask is written by giving the letters of the bits which are set. Programs and procedures
which accept such mask descriptions should accept the letters in any order. Sometimes
it is useful to show the positions where bits are not set, these may be represented in the
mask by a ‘-’ character. Thus the following access masks are all equivalent:

rwd == rw----d- == dwr

An access matrix is written by listing the access masks for each category in the order
v, x, y and z, separating each category with a colon. The access matrix shown above
would therefore be written re:w:r:.

Since the access mask for a directory contains v, x, y and z bits, these may also
appear in the matrix rows for a directory entry. These then indicate which access
categories a client has for entries in that directory. For example, if a subdirectory entry
has the matrix wv:ry:z:z and the client has vx access to the parent directory, its access
mask for the subdirectory will be rwvy and hence will have vy access rights to its
entries. If the file described previously were in this subdirectory, the client would end
up with an access mask of re.

More formally, to calculate the client’s access mask for an object within a direc-
tory: the rows of the object’s access matrix which correspond to the access categories
present in the client’s access mask for the directory are extracted and ORed together to
form the access mask for the object.1 By repeated application of this transformation on
the client’s access mask as a path is followed through a directory network the correct
access rights to a target object can be determined.

The access rights a client is allowed to a particular target object depend on two
things: the access mask in the context capability, and the route used to reach it. There-
fore two clients starting from the same context object and accessing the same target
object may have different rights over that object. This is because the access mask in the
context capability may give them different initial access categories which will result
in different access matrix rows being selected from intermediate directories. Simi-
larly two clients accessing the same target from different context directories may also
have different access rights since their paths will pass through different intermediate
directories whose matrices will have different effects on the final access mask. It is
even possible for a client to get different access rights to a single object by following
different paths to it from the same starting point.

There is no explicit meaning or hierarchy inherent in the categories themselves.
However by convention v access should be reserved for the object’s creator or owner
and z access for public access, x and y rights may be used to provide similar func-
tionality to the UNIX group mechanisms. Most servers will restrict non-contextual
accesses (those without a context capability) to just the z category. However a user can
alter the access matrices of directories to either shut out all public access (for example
rwva:rwx:ry:) or to move it to another category (for example rwva:rwx:ry:x makes x
the public category for a directory) or to enhance it. (For example, rwva:rwva:rwva:rwva
gives all categories the same rights as the owner.)

1Even more formally this can be viewed as a boolean arithmetic matrix multiplication of the 8x4
access matrix by the 4 element category vector to yield an 8 element access vector

14.4. CAPABILITIES IN PROGRAMS 553

14.4 Capabilities in programs

Under normal circumstances the programmer does not need to concern himself with
the manipulation of capabilities, these are handled for him by the System library. Ca-
pabilities are present in the Object and Stream data structures returned by Locate,
Create and Open. An Object structure is in fact no more than a name+capability pair
and may be viewed as the programmer’s representation of a capability. Similarly the
Locate function does no more than obtain a capability for a named object although
it has the additional function of canonicalising the pathname. The capability stored
in a Stream structure is used only if the stream has to be reopened as a result of fault
recovery or when the stream is transferred to another task.

14.5 Saving capabilities

The capabilities in Object and Stream structures exist only for the lifetime of the task or
program that obtained them. To allow users to retain their privileges from one session
to the next capabilities must be preserved. There are two mechanisms for doing this.

The first preservation method allows a capability to be converted into an ASCII
string which can then be saved in any text file. This is implemented by the System
library calls EncodeCapability and DecodeCapability. An extension of this is a text
format for name+capability pairs in which any name beginning with the ‘@’ character
is followed by a 16-character text capability and the full pathname of the object (for
example, @abcdefghijklmnop/net/IO/helios/bin). This format is recognised and de-
coded by the System library so such names may be used anywhere that a pathname
is expected. Hence, they may be placed in shell or environment variables, aliases and
shell scripts or compiled into programs.

The second capability storage mechanism is implemented only by certain file
systems and is in the form of symbolic links. A symbolic link is no more than a
name/capability pair stored in the filing system. When the file server encounters a link
while following a pathname it builds a new GSP request using the name/capability pair
in the link as the context object and the remainder of the pathname and forwards it to
the IOC. Here it is treated like any other request and forwarded to the server which
supports the context object (which may or may not be the original server). In this way
symbolic links may be stored for any objects in the system, they do not need to be
in the same server, and they need not even be files or directories. At present only the
RAM file server and the Helios Filing System support full symbolic links.

Capabilities are only worth saving if they are for long-lived objects such as files
and directories. The encryption keys, and hence valid capabilities, of transient objects
such as tasks and pipes are chosen at creation time and destroyed with the object or
on a server or processor crash. Even files and directories are destroyed, so the saved
capabilities for them may become invalid. The fact that a capability has been saved for
an object is unknown to the object’s server, and has no effect upon the object itself.

554 CHAPTER 14. PROTECTION

14.6 File system protection

The foundation of the protection mechanism is the file system where users store their
long-lived capabilities. If these can be protected from other users then all else will
follow. The following description, which only applies to the Helios File System, is an
example of how a secure system might be constructed.

The main access point of the file system is its root directory, within this are only
system directories. The access matrix on the root directory is rz:rz:rz:rz which restricts
all non-contextual accesses to just being able to list the directory and receive z category
to all subdirectories.

User directories are placed in a special subdirectory of the root, the user master di-
rectory. The access matrix of this directory is rz:rz:rz:rz, just like the root, and simply
propagates the same protection policy. The matrix on user directories is rz:rzd:rz:rz
which again restricts all accesses to rz except that any user with x access to the user
master directory can delete it. Somewhat arbitrarily we have decided that the x cate-
gory is to be used by the user administrator. He will possess a capability for the user
master directory which contains rwx access. This gives him the right to create and
delete user directories but because the x access is not propagated by the user directory
matrices he has no more rights over the contents of a users directory than any other
user. There may be several user master directories on different file systems, and dif-
ferent users may be the administrators for them. Each will be able to control the users
in his own directory, but will not have any privileged access to the other user master
directories.

When a file or directory is first created, it is given a default access matrix. For files
this matrix is rwda:rwd:rw:r, which gives the creator all rights except execute, and
the public just read access with intermediate rights going to the other two categories.
The default matrix for directories is rwvda:rwxd:rwy:rz, ignoring the category bits,
the creator gets all rights while the public can just list the directory’s contents, again
the other two categories get intermediate rights. The category bits present simply
propagate the existing category rights down to the objects within the directory. Once
created only the possessor of the v category can change this matrix. However, the
capability returned by the Create operation contains full access rights, and allows the
creator of an object to have complete control over it regardless of the matrix.

14.7 Processor protection

It is not only files which may be protected by capabilities, but any entity in the system.
In particular processors have their own access matrices and may be protected like any
other object. The tasks and loader directories have standard matrices which may be
modified to block execute or load request as desired.

A special feature of processors is the way in which the access matrix attached to a
processor’s own name node in the name table is used. This matrix is used to modify
the access rights on all non-contextual GSP requests which pass through the Processor
Manager, whether originated locally or remotely.

A non-contextual request does not have a capability in it, but the access mask is set
to all ones indicating an effort to get the maximum possible access. If this was simply

14.7. PROCESSOR PROTECTION 555

passed to the server the client might get more rights than he was entitled to. To prevent
this the access mask in such requests is replaced by just the category bits from one of
the rows in the processor’s access matrix.

The selection of the row is based on the distance the message has travelled to
reach the server. If the message has come from a local task the v row is selected. If
it has come from a processor in the same cluster, then the x row is selected. Similarly
processors in the same super-cluster will select the y row and increasingly more distant
processors will all select the z row. Note that this is a logical distance, not physical;
it is possible for two adjacent processors to be distant from one-another in the naming
hierarchy.

The default matrix attached to a processor is rwva:rx:ry:rz. This indicates that only
local tasks may create new servers within the name table or alter this matrix, these
operations may not be performed remotely. With this matrix local non-contextual
requests to local servers will be restricted to the v category while external requests
will be restricted to the appropriate category depending on the source’s distance. If
the matrix were changed to rwva:rv:ry:rz then tasks in processors in the same cluster
would have the same rights as local tasks to any servers.

It should be emphasised that this modification of the request’s access mask is only
carried out on non-contextual requests, any request which contains a context object
with a valid capability is untouched since these access rights will be verified by the
server which supports that object.

556

Chapter 15

Sockets and pipes

This chapter describes the higher-level facilities provided by Helios for interprocess
communication. These consist of a socket interface and interprocess pipes.

15.1 Sockets

The Helios socket interface is intended to conform to the ARPA specification for sock-
ets (essentially BSD4.3). The mechanism supports connection to both external net-
works such as the Internet and a network domain functioning within Helios.

Since the word network can be ambiguous, the term external network will be
used to refer to systems such as Internet (an ethernet ring, for example) and the term
internal network will be used to refer to a Helios processor network.

15.1.1 Posix-level calls

The support in the Posix library is intended to match the set of routines available
under BSD or System V. Thus calls such as socket, bind, accept and connect function
exactly as expected. Similarly read and write may be used on the appropriate sockets
along with the send... and recv... functions.

The only departures from the specification are in the omission of sethostid, sethost-
name, getdomainname and setdomainname which on Unix are superuser only ad-
ministrative calls and are supported by other mechanisms. At present gethostid and
gethostname assume that the Internet domain server is functioning.

The socket function translates the supplied domain identifier (usually a small in-
teger) into a server name. The domains AF HELIOS and AF INET can be recognised
by the Posix library directly. Any other domain to server mappings are held in the
file /helios/etc/socket.conf, which will be searched for unknown domains. This file is
identical in format to its namesake under System V.

The reader is referred to the appropriate Unix1 manuals for a full description of the
socket mechanism.

1Unix is a trademark of AT&T

557

558 CHAPTER 15. SOCKETS AND PIPES

15.1.2 System library support

The Posix routines are implemented in terms of a small set of support routines in the
System library, application programs should not usually need to use these directly.

The routines are described in the following sections, the reader is referred to
<syslib.h> for the exact function prototypes.

Socket

This routine creates a new socket and returns a Helios Stream structure. The stream
is not opened or connected to a server at this time, the domain server name is copied
into the stream structure and the type and protocol values encoded into the stream’s
Pos field as follows:

stream->Pos = (protocol<<8)|type;

Bind

This routine contacts the server specified by the domain and opens a stream to it. This
should result in the creation of a socket within the server and its binding to the supplied
external network address. If no external network address is supplied then the server
should bind the socket to an address of its own invention.

All the remaining calls may only be directed to a bound socket, although Con-
nect and SendMessage will implicitly bind the socket to an anonymous address if an
unbound socket is provided. It is possible to apply Bind several times to the same
socket.

Listen

This function marks the socket as available for connections and gives an upper bound
for the number of pending connections allowed. Once this call has been made, the
client may use Select to await incoming connections.

Accept

This function waits for a connection to arrive. No timeout is given so this is a poten-
tially infinite wait.

The result of Accept is a totally new stream, possibly to a different server, which
represents the opened connection. The original stream remains unchanged and may
be used for further selects or accepts. The new stream may be used for data transfer
according to the rules of the underlying protocol.

Connect

This function creates a connection to a given address. In connection oriented sock-
ets such as a STREAM socket this must match with an appropriate Accept but in
DATAGRAM sockets it merely serves to bind an implicit destination address for all
transmissions.

15.1. SOCKETS 559

Once connected the original stream may be used for data transfer according to the
rules of the underlying protocol. Note that the Helios server involved in this may differ
from that in which the socket was originally created.

SendMessage

This function supports all the send... routines at the Posix level. It is used both to send
datagrams and to send out-of-band data through stream sockets.

RecvMessage

This function supports all the recv... routines at the Posix level. It is used both to
receive datagrams and to receive out-of-band data through stream sockets.

SetSocketInfo

This function supports the setsockopt Posix function, its arguments are identical. It is
also used to submit ioctl operations by defining a new level, SOL IOCTL, passing the
ioctl number as the option and the parameter structure as the option value.

15.1.3 GetSocketInfo

This function supports both the Posix getsockopt function and hostid, hostname,
peername and sockname functions. This is achieved by adding extra option codes
and an extra level – SOL SYSTEM. Like SetSocketInfo this function is also used to
support ioctl calls. An extra feature is that if the ioctl requires that parameters be
passed to the server as well as received, then these must appear in the option value
buffer. The requirement for this is encoded in the ioctl number, so this function de-
pends on the encoding scheme for these.

15.1.4 Message formats

This section details the Helios messages which are exchanged between the System
library calls above and the server which handles the given external network domain. It
is intended primarily for the authors of external network interface servers. Messages
are described in the same format as in the chapter entitled General Server Protocol.

The following sections describe each set of message interactions under the heading
of the function code which initiates it. The function codes are defined in <codes.h>.
Most of the data structures referenced here may be found in <gsp.h>.

Bind

Request Message Header:

Flags preserve
Dest IOC port
Reply local reply port
FnRc FG Bind

Control Vector:

560 CHAPTER 15. SOCKETS AND PIPES

IOCCommon Common Common part of GSP request
word Protocol Protocol type
Struct Addr Address to bind to

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply direct port
FnRc Return Code

Control Vector:

word Type Object type code
word Flags Object Flag bits
Capability Access Access rights to object
String Pathname Canonical pathname of object

As stated above, the Socket call does not generate any message traffic and the first
message any server will see is a Bind message.

The Protocol field is simply the Pos field encoded by the Socket call. If no address
is given the server is expected to invent a name or generate an anonymous socket. It is
domain-specific whether more than one client may bind to an address simultaneously.

The reply is a standard open reply. The fields in this reply are used to re-initialise
the original stream structure. The Type should be Socket, the Flags and Access fields
should contain valid values. The Stream structure will have been allocated by Socket
such that it can contain a pathname of up to 100 bytes, the server must ensure that it
does not return a longer name. In the message header, the reply port will be used for
all subsequent operations on this socket and as with all open-style functions the return
code in the message header is preserved to be ORed with the function codes of all
subsequent requests.

Listen

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG Listen

Control Vector:

word Pending Number of pending connects allowed

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

15.1. SOCKETS 561

After the Bind message a client which intends to accept connections must enable
the socket to do this by sending a listen message. The control vector of this message
consists of just a single word: the number of pending connects allowed. The reply
message merely indicates the success of this in the header return code. Once the socket
has been enabled for accepting connections the client should be able to select the socket
for read operations to determine whether an accept operation is possible.

Accept

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG Accept

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply direct port
FnRc Return Code

Control Vector:

word Type Object type code
word Flags Object Flag bits
Capability Access Access rights to object
String Pathname Canonical pathname of object
Struct Addr Address of connector

Once the socket has been enabled, the client may send an Accept message to make
a connection. The Accept request contains no data and consists solely of a message
header containing the appropriate function code.

The first four fields of the reply consist of a standard open reply and should be
used, along with the reply port and return code to initialise a new stream as if it had
just been opened. The Type should be Type Socket—Type Stream. The address of
the connector must be provided and will be returned to the application if required. The
stream described need not be supported by the same server (for example in the Helios
domain stream sockets are supported by creating pipes in the pipe server).

If no connections are available the server should keep the request for a short pe-
riod of time (about 10 seconds) and return a recoverable error. This will cause the
client to retry and thus establish an idle handshake between server and client while
the connection is pending. This allows both sides to guard against the other’s sudden
demise.

Connect

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG Accept

562 CHAPTER 15. SOCKETS AND PIPES

Control Vector:

Struct DestAddr Address to connect to
Struct SourceAddr Address of originator

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply direct port
FnRc Return Code

Control Vector:

word Type Object type code
word Flags Object Flag bits
Capability Access Access rights to object
String Pathname Canonical pathname of object

The alternative to listening for and accepting connections is to connect out to
a given address. Normally only the DestAddr field is filled in by the client, the
SourceAddr field is only used in the Helios domain.

If the message return code is positive and the control vector is not empty then
the reply is a standard open reply which, like Bind, is used to re-initialise the orig-
inal Stream structure (therefore the same comments apply). The Type should be
Type Socket—Type Stream. If there is no control vector in the message then the
stream remains as it stands. As in Accept, if no connection can be made immediately,
the server should establish an idle handshake.

SendMessage

Request Message Header:

Flags preserve
Dest direct port
Reply local reply port
FnRc FG SendMessage

Control Vector:

word Flags Flags
word DataSize Size of data to send
word Timeout Time to wait for transfer
Struct AccRights Access rights
Struct DestAddr Destination Address

First Reply Message Header:

Flags NONE
Dest Request.Reply
Reply data port
FnRc Return Code

Control Vector:

15.1. SOCKETS 563

word Flags Flags
word DataSize Size of data to send
word Timeout Time to wait for transfer
Struct AccRights Access rights
Struct DestAddr Destination Address
Struct SourceAddr Source Address (added by server)

Data Message Message Header:

Flags NONE
Dest data port
Reply [acknowledge port]
FnRc Err Null

Control Vector:

word Flags Flags
word DataSize Size of data to send
word Timeout Time to wait for transfer
Struct AccRights Access rights
Struct DestAddr Destination Address
Struct SourceAddr Source Address
Offset Data Data (added by client)

Acknowledge Message Message Header:

Flags NONE
Dest acknowledge port
Reply NullPort
FnRc Return Code

This function supports both datagrams and the transmission of out-of-band data on
stream sockets where it is supported. The protocol used here is slightly more complex
than a request/reply sequence. The mechanism revolves around the client and server
progressively building the contents of the control vector to describe the datagram to be
sent.

The client notifies its desire to transmit a message by sending an initial request
to the server consisting of just the first five fields of the structure, neither of the
SourceAddr or Data fields are transmitted at this point. If the server is prepared
to accept it the message is returned with the SourceAddr field filled in and the Data-
Size field possibly adjusted to the amount of data the server is prepared to accept. The
client should add only this amount of data to the message and then send it to the data
port returned in the message header Reply field of the reply. If this data message it-
self contains a reply port, the server should return a simple acknowledgment message.
Normally only STREAM socket servers should do this. If the server is not ready to
accept the data it should keep the client idling by returning a recoverable error to the
first message every ten seconds or so.

RecvMessage

Request Message Header:

564 CHAPTER 15. SOCKETS AND PIPES

Flags preserve
Dest direct port
Reply local reply port
FnRc FG RecvMessage

Control Vector:

word Flags Flags
word DataSize Maximum size of data wanted
word Timeout Time to wait for transfer

Reply Message Header:

Flags NONE
Dest Request.Reply
Reply NullPort
FnRc Return Code

Control Vector:

word Flags Flags
word DataSize Size of data
word Timeout Time to wait for transfer
Struct AccRights Access rights
Struct DestAddr Destination Address
Struct SourceAddr Source Address
Offset Data Data

Like SendMessage this function supports both datagrams and special reads on stream
sockets. Unlike SendMessage this is a simple request/reply interaction, although it
uses the same control vector structures.

A client notifies the server that it wants to read a message by sending a request
containing just the Flags, DataSize and Timeout fields. If data is available the reply
will consist of a completed control vector with all fields filled in. The DataSize field
will indicate how much data has actually been received, and must never be more than
requested. It should be noted that the SendMessage and ReadMessage protocols are
designed to dovetail together in much the same way that the Read and Write protocols
do. Again, if no data is available, the server should keep the client idling.

Open

Normally a server which supports sockets will not see an Open operation since this
function is performed by Bind. However it is possible for the connection between
client and server to timeout, in which case the automatic error recovery strategy will
cause a re-open to be performed. Also, if a program passes the Stream on to another
program, the recipient will connect to the server by means of an Open operation.

The server should therefore respond to an Open on an existing socket by returning
an open reply as usual. At present servers can reject open attempts for objects which do
not exist, but in future systems it may be convenient to use a Open request to establish
connections.

15.2. THE HELIOS DOMAIN 565

Close

The standard Close operation should be supported. If any mode bits are set in the F
field of the function code, then the corresponding transfer direction is shutdown.

Other GSP messages

The server is at liberty to interpret other GSP message types (FG Delete, FG Rename,
and so on) as it sees fit. As a minimum the server should present the usual directory
interface so users may browse the current list of bound sockets. This is most sim-
ply achieved by use of the Server library, see chapter 12, Writing servers, for further
details.

A more sophisticated interface might present all, or some, of the external networks
functionality through the normal Helios stream interface. So opens to particular files
or directories might result in the acceptance or connection of a stream socket to a given
destination. By using some textual convention to represent external network addresses
within Helios file names, existing programs may use remote services and resources
without change.

15.2 The HELIOS domain

In addition to an interface to external networks, Helios also provides an internal com-
munication domain. This is intended to have, as a minimum, the same functionality
as the UNIX domain. It functions only within a single Helios network, but the com-
municating parties may be placed on any processors within the internal network. The
Helios domain supports three socket types: stream, datagram and raw.

A Helios domain address consists of a name string of up to 31 characters. The
name domain is shared with the existing Helios server name space and bound sockets
are placed in the local name table. Sockets may not be bound with the same name as
an existing Helios server, but multiple clients are allowed to bind to the same name.
If this is done it is unspecified which client will receive any incoming connection or
datagram.

STREAM sockets are implemented by pipes, and may currently be used with nor-
mal read and write calls but not any of the send... or recv... calls. Select may be used
both on open pipes and on sockets pending a connection.

Datagram sockets allow single messages to be delivered to a named socket with
high probability. The source socket will be implicitly bound to a name in the local
processor if not already bound. Select may be used to wait until datagrams may be
sent or received.

Raw Sockets simply exchange Helios message ports, Any further communication
is performed by calls to PutMsg and GetMsg.

15.3 Pipes

Helios pipes are the primary application level interprocess communication mechanism.
They are created by the Posix pipe() call, by the Task Force Manager to connect task

566 CHAPTER 15. SOCKETS AND PIPES

force components, and by the Processor Manager to support STREAM sockets in the
HELIOS domain.

Pipes are supported by a pipe server, and by the pipe protocol code in the System
library. Pipes are strictly one-to-one and cannot have multiple readers or writers. In
this sense, they are closer in nature to Occam channels than Unix pipes.

15.3.1 Pipe server

The pipe server acts only as a rendezvous point for the two pipe ends. It is not in-
volved in the data transfer phase. However, it must be informed when a pipe is finally
destroyed. Pipe servers are in the same class as the ram file server and the fifo server,
being loaded on demand into any processor.

A pipe is created by sending a Create request to a pipe server. The server chosen
should be resident on the same processor as one of the communicating programs. This
is not essential, but using a pipe server elsewhere may introduce some extra links into
the path between the ends. Once an Object has been returned from the Create, two
pseudo streams should be created from it with PseudoStream.

These streams can be used directly by the calling program, or passed to other pro-
grams through SendEnv. This may occur repeatedly, however, since the pipe server
sets the CloseOnSend and OpenOnGet bits in the flags returned by the Create opera-
tion the streams will be opened and closed as they are passed. This is so that if the pipe
in not used (it could be connected to stderr for example) the server will know when the
last Stream for it is closed and will be able to free its own data structures. Because the
CloseOnSend flag is set, once a pipe has been passed on to another program, it cannot
be used in the original. This ensures that at any time there are exactly two valid ends
for the pipe.

15.3.2 Pipe connection protocol

Once the pipe ends have reached their eventual destinations, the pipe is not actually
created until both ends attempt to read or write the pipe. An attempt to do either of
these on a new pipe causes entry into the Pipe Connection Protocol. This results in
a Connect message being sent to the pipe server, containing the descriptor of a local
port which will be used for the pipe protocol. The server waits until it has received
such a message from both pipe ends, and then replies to them both, passing each the
port supplied by the other.

The result of this protocol is that each end of the pipe now has a message port
through which it can send messages to the other end, and a local port on which it can
receive messages.

15.3.3 Pipe data transfer protocol

The pipe data transfer protocol is operated within the System library, and uses the ex-
tended Read and Write protocols. The exact behaviour of the System library depends
on the mode in which the pipe end has been created.

If the mode is WriteOnly the ports obtained from the connect protocol are used as
the direct and reply ports of the Stream. All subsequent direct operation on that stream

15.3. PIPES 567

will be sent to the other end of the pipe.
If the mode is ReadOnly then a pipe server process is Forked locally. A local port

is created and used as the direct operation port of the Stream. Hence all subsequent
direct operations will be directed to the local pipe process.

If the mode is ReadWrite then the same initialisation as for ReadOnly is per-
formed. However, depending on the operation type, subsequent direct operations are
sent either to the local pipe process, or to the other end. Only Read, GetSize, SetSize
and read Selects are sent to the local process, all others are sent to the remote process.

In all these initialisations it is assumed that the other end of the pipe has a matching
mode. The result of this mechanism is that all Read operations are sent to a the local
process while all Write operations are remote. Hence, for a particular direction of data
transfer, all requests are handled in one place: the pipe process at the reader’s end. For
bi-directional pipes the two directions are handled at opposite ends of the pipe.

The main purpose of the pipe process is to match the read and write operations
from both ends, and to cause data to be transferred between them. To smooth the flow
of data, and to allow the writer to avoid being blocked, the pipe process maintains a
pending data buffer. This is initially only 2048 bytes, but its size may be queried with
GetSize and altered with SetSize.

When a Read operation arrives at the pipe process it first checks the pending data
buffer. If this is not empty then some, or all, of the data in it is returned to satisfy the
request. Otherwise the request is kept, and bounced on a timeout to maintain an idle
handshake in the usual way. If a Write request arrives while there is an outstanding
read request then the pipe server returns a Sizes reply to the writer containing the size
of the read request, and the reader’s reply port. The writer will now transfer its data
directly to the reader without intervention from the pipe process. Since the reader is
using the extended protocol, it will respond with a ReadAck operation, to the pipe
process, once it has received the data. In response to this the pipe process acknowl-
edges the ReadAck and sends a confirming Done reply to the writer, completing the
data transfer.

If there is no outstanding read when a write request arrives, the pending data buffer
is inspected. If there is space, the pipe process uses the mechanisms available in the
Write protocol to receive just enough data to fill the buffer. If this leaves the write
request unsatisfied, it is bounced on its timeout in the usual way. When reads make
more space in the buffer, more data is obtained from the writer.

568

Chapter 16

Program representation and
calling conventions

This chapter describes how programs are represented as executable files on disc, in
memory and during execution. It describes some advanced programming techniques
available under Helios. First it gives a brief history of the linking process, as a prelude
to explaining the Helios module table mechanism. Then it describes the actual calling
conventions in more detail, explaining the display and the vector stack and how stack
checking actually works. This is followed by an example piece of C, showing the
assembler file produced by the C compiler and describing how this file is processed
by the linker. Next, this section explains how to build Resident libraries, using the
information given so far. Similar information is given for device drivers. This section
concludes with a description of the Nucleus structure and how users can produce their
own Nuclei.

This chapter describes primarily the Transputer version of Helios, and several ex-
amples of Transputer assembler are given. However, the basic concepts of the module
table and the calling conventions used are common to all Helios systems.

The final two sections contain a more formal summary of the Helios program rep-
resentation and Nucleus structure, to complement the information provided in the rest
of the chapter.

16.1 Module tables

This section gives a brief description of how programs can be linked together, and how
conventional linkers have developed over the years. Then it gives a description of the
BCPL global vector mechanism, which is an alternative way of solving the linking
problem. Finally, it explains module tables which can be thought of as a generalisation
of the global vector mechanism.

16.1.1 History

Suppose a program consists of just two modules, 1 and 2. Somewhere inside module
1 there is a call to a routine A(), which is held in module 2. The basic problem of
linking and loading programs boils down to ensuring that the call in module 1 actually

569

570CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

ends up at the right position in module 2. There are variations on this basic theme.
For example, some code in module 1 might access a variable in module 2 instead of a
function. These variations have little effect on the linking process. Figure 16.1 shows
this.

X

Figure 16.1: The linking process

Note that the two modules are compiled completely independently, so the compiler
does not know anything about routine A() when compiling module 1. All it can do
is put some information into the intermediate object file for module 1, indicating that
some external routine A() will be called. Other programs (usually the linker) are re-
sponsible for sorting out such external references.

The term ‘module’ is used here both for pieces of user code and for libraries pro-
vided by the system or written by the user. Even a simple Hello World program
written in C, consisting of just a single user source file, has to be linked with the C,
Posix, System, Utility, and Kernel libraries. There is little or no difference between
calling printf() in the C library and routine A() in a separate user module.

In the early days of computing, linking was relatively straightforward. At the time,
machines had little or no operating system support, and even a system monitor was
a luxury. The computer could run only one program at a time and this program was
always loaded at a fixed address in memory. For example, the linker would know
that module 1 would reside at location 0x100 in memory. If module 1 was exactly
2048 bytes in size, then module 2 would reside at location 0x900 in memory. Hence
routine A() in module 2 would be at location 0x950, and calls to routine A() could be
converted to calls to absolute address 0x950. The linker could produce a binary image
to be loaded at a fixed address in memory with all cross-module references resolved.
There were some variations on this basic scheme. For example, calls could be made
relative to the current program counter instead of to absolute addresses, but this does
not affect the basic model.

As far as linking is concerned, the next development in computing involved multi-
tasking. As computers became more powerful it was desirable to have several pro-
grams loaded in memory at the same time, with time-slicing and scheduling algorithms
to share the available CPU time. Usually one of these programs would be an operat-
ing system. A program’s location in memory was not known until the program was
actually loaded, so the linker could not do all the work it did previously. A separate
program, the Loader, was responsible for taking the binary executable with the relo-
cation information, putting it into a free area of memory, and resolving everything. A
typical piece of relocation information might contain the following:

1. At offset 0x300 within the program there is a call to a routine A()

2. There is a routine A() at offset 0x850 within the program.

Given this information and the starting address of the program, the Loader could

16.1. MODULE TABLES 571

patch the program loaded in memory. This patching is equivalent to the work done by
the linker previously. Note that this architecture is roughly equivalent to some existing
machines running Helios.

The next development came with memory management hardware. Programs now
operated in a virtual address space, which was mapped by some hardware onto real
addresses. Bits of memory could be swapped to and from disc automatically so that
programs could use more memory than was actually attached to the processor. Once
again programs could be loaded at a fixed location in memory because this fixed lo-
cation was inside the program’s own address space, independent of the various other
programs loaded in memory. Nevertheless, the use of relocation information contin-
ued. In particular it was desirable to maintain information about which routines were
at which addresses because this could be used by debugging and profiling tools. Es-
sentially this is the mechanism used by most existing Unix systems.

A fairly recent development in Unix systems is shared libraries. Previously, every
copy of every program had its own version of the C library and other libraries embed-
ded in the binary executable. This is inefficient in memory and disc usage. Hence some
versions of Unix now support shared libraries similar to Helios Resident libraries. A
shared library is a separate piece of code, which has to be linked with application
programs at load time. The relocation information in the binary executable contains
information on the shared library references, allowing it to be patched at load time.

16.1.2 The BCPL global vector

The mechanisms described so far all involve modifying the binary image of a program,
either at link time or at load time, to put in absolute addresses for the various routines
and bits of data that must be accessed. These techniques work, but they have their
disadvantages.

1. In the absence of memory management hardware it is difficult to share bits of
code between programs. Every instance of a program needs its own data and
the code has to be patched to access this data. Hence the same piece of code
cannot be used to access two different data areas, and it cannot be shared by two
different programs.

2. If code cannot be shared, every binary executable needs to hold versions of
the C library, Posix library, and so on. This is inefficient in disc space. More
importantly, it is inefficient in memory usage. Typically, processors running
Helios have only limited amounts of memory attached (between one and sixteen
megabytes) and it is important to use this limited resource efficiently.

3. Code cannot be moved easily from one processor to another. In particular it
is not possible for the system to take copies of a Resident library loaded into
a processor and move it to another processor, because the library image was
changed at load time.

The BCPL language eliminates the need for relocation information completely.
When a BCPL program is running there will a table of words (the global vector)
somewhere inside that program’s own data space. A pointer to this global vector is

572CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

always held at a readily accessible location, usually in a register or at a fixed offset
from the current stack pointer. Hence the global vector itself can be accessed without
any need for absolute addresses in the code. The global vector holds all information
that is shared between modules.

Consider an example.

1. Module 1 contains a call to a routine A() in a different module.

2. Module 2 has the code for this routine.

3. Both modules know that this routine has been allocated slot 200 of the global
vector. When the program is loaded, some initialisation code inside module 2
will put the current address of the routine in the correct slot of the global vector.
Information about the slot allocation comes from a separate header file which
must be included in all source files.

4. The code in module 1 can always access the global vector, either through a
register or a fixed position on the stack. Hence it can access slot 200 of this
vector and get the address of routine A(). The actual routine can now be called
by indirecting through this address.

For this mechanism to work, various conditions must be met. Firstly, the various
modules making up the program must have the same information about the global
vector layout. If one module thinks routine A() is held in slot 199 and the other module
uses slot 200, the program will not work. Secondly, the compiler must produce some
module initialisation code together with the real code, so that the slots of the global
vector can be filled in, and the system must call all the initialisation code in the different
modules before actually starting the program. There must be some way of storing the
global vector address where it can always be accessed readily, either in a register or
somewhere on the stack. To permit sharing and moving of code the code must not be
self-modifying. With most modern processors this can all be achieved fairly easily.

The global vector mechanism makes it relatively easy to use shared libraries. At
load time the initialisation code of the shared libraries will be called, just like the
initialisation code of user modules. This code can place the address of system routines
in the global vector. Hence user applications can call system routines in exactly the
same way as other user routines. Figure 16.2 illustrates the use of global vectors in
BCPL.

X

Figure 16.2: The BCPL global vector

There are two programs loaded in memory. Each of these has some code which is
used only by itself. Both programs have their own global vector, representing their
own private data areas. Some parts of the global vector point at system routines in a
shared library. Other parts point at routines internal to each program.

16.1. MODULE TABLES 573

16.1.3 Module tables

The global vector mechanism works for the BCPL language. However it does have
some limitations. Most importantly, it relies on the programmer to define the layout
of the global vector. To make the mechanism more usable, and in particular to support
languages other than BCPL, it must be possible to generate the global vector automat-
ically.

The Helios mechanism is essentially an extension to the global vector. The module
table is a vector of pointers to module data areas, also known as static data areas. For
example slot 7 in the module table usually refers to the C library. This slot contains a
pointer to another piece of memory containing the various bits of information associ-
ated with the C library. The fifth word of this piece of memory holds the address of
the putc() routine. Hence an application can call putc() by locating the module table,
which is typically held in a register or on the stack; indirecting through the 7th slot of
the module table to get the C library data area; and indirecting again through the 5th

word in this data area. This is illustrated in Figure 16.3.

X

Figure 16.3: Calling through the module table

The compiler has to do the following work to support module tables.

1. For every routine that might be called from other modules, a slot has to be allo-
cated in this module’s data area. In addition it is necessary to produce a name
table describing which routine has been allocated which slot in the data area.

2. Every piece of data that can be accessed from other modules needs to have space
allocated within this module’s data area. This also needs to be put into the name
table.

3. Every piece of static data (private to this module) needs to have space allocated
within the data area. There is no need to put this information into the name table.

4. A call to an external routine A() always involves the following stages:

(a) Extract the module table pointer

(b) Index into the module table to get the data area for the module containing
routine A(). At compile time it is not known which slot of the module table
will be used for that module, so this has to be put in by the linker.

(c) Index into the relevant module’s data area to get the address of routine A().
Again the required offset will not be known until all the modules are linked
together.

Using all these indirections may seem an expensive way of calling another rou-
tine. In practice on Transputers they involve, typically, only five bytes worth of
instructions.

574CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

5. Accessing external data involves much the same process, with indirections to
get to the relevant module’s data area.

6. The size of this module’s data area has to be stored at a fixed location within
the executable so that, when the program is loaded, the system can allocate a
sufficiently large area of memory.

7. Some initialisation code must be produced to fill in the module’s data area. This
code will be called by the system before the actual program is started.

The jobs to be done by the linker are as follows:

1. Read in all the files passed as arguments, including Scanned libraries. Build
a global name table of all the names in all the modules. Files may contain a
single module, for example the result of compiling a single user source file.
Alternatively they may contain many modules, for example a Scanned library.

2. Determine the minimum set of modules needed to link the program. This in-
volves eliminating any parts of Scanned libraries that are not actually used.

3. Assign module table slot numbers for all the modules that will be incorporated
in the final executable. Resident libraries have pre-defined slot numbers. Other
modules are assigned slot numbers starting from 1, skipping any slots that have
been used already for Resident libraries.

4. For every module, for every access to an external routine or piece of data, fill
in the module’s slot number and the offset within the module’s data area corre-
sponding to that routine.

5. On processors with variable length instruction sets, notably Transputers, per-
form a final code growing phase. Until now neither the compiler nor the linker
could know whether access to a particular module slot or data area involved one,
two, or more bytes worth of instructions. Hence the final code can be produced
only at this time.

6. The end result is a binary executable that can be written to a file.

When the program is loaded the system has to do the following jobs.

1. Work out the size of the module table, in other words how many modules there
are in the executable program and hence how many slots there must be in the
module table.

2. For every module, work out the size of its data area.

3. Allocate a single piece of memory large enough for the module table and for all
the data areas. The program’s initial stack and heap are also placed in this data
area. The initial stack and heap size are held at a fixed offset within the program.

4. Fill in the module table slots with pointers to the data areas, all within the same
piece of memory.

16.2. CALLING CONVENTION 575

5. Call all the module initialisation routines with a pointer to this module table,
so that all the various pointers and bits of data get initialised. In fact to allow
for possible circular dependencies the initialisation routines are called twice, the
first time with an argument 0, the second time with a non-zero argument. During
the first pass the module initialisation code should initialise data internal only to
itself, which is usually most if not all. During the second pass any data relying
on other modules. For example, suppose module 1 has a static variable which is
automatically initialised to the address of a function in module 2. Until the first
pass has reached module 2 there is no way for module 1 to know the address of
this function.

6. Call the program’s entry point, c0.o or s0.o depending on how the program was
linked, which will be at a fixed position within the executable program.

Note that only a single piece of memory is used to hold the module table and
all data areas. The module table for a simple C program might look something like
Figure 16.4.

X

Figure 16.4: A C program’s module table

There are problems when building Resident libraries. When, for example, the C
library is built to produce a binary object that can be loaded at any time, it must have
some way of accessing its own data area. For example, it must have some way of
accessing the table of FILE * pointers so that it can initialise these. The library’s data
area can only be accessed through the module table, so when the C library is built it
must know which module table slot to use to access its data area. Similarly, if the C
library is to be able to call other Resident libraries such as the Posix library through
the module table, it must know the slot number and data area layout of these other
libraries. The solution here is to pre-allocate certain module table slots to specific
Resident libraries. For example, the Kernel library always uses slot 1 of the module
table, and the C library always uses slot 7.

16.2 Calling convention

Helios defines a basic calling convention which is assumed by the system libraries.
The exact details, in other words which instructions are used, vary from processor type
to processor type. This subsection describes mainly the Transputer conventions. Other
processor versions will use similar conventions, but processor specific documentation
should be consulted for exact details.

When a procedure is entered the stack pointer should point at the return link, in
other words the address of the instruction to be executed when the call returns. In the
next location there should be a pointer to a display area. The nature of this display area
is not defined by Helios, as different languages have different requirements. However,

576CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

the first word in the display area should be the module table pointer. Any arguments
should be on the stack following the display pointer. This is shown in Figure 16.5.

X

Figure 16.5: Helios calling convention

For example, on Transputers the following code fragment can be used to call the
putc() routine which occupies word 5 of the C library’s static data area, where the C
library uses slot 7 of the module table.

ldl 1 -- load display pointer off stack
ldnl 0 -- load module table pointer from display
ldnl 7 -- indirect to C library’s static data area
ldnl 5 -- indirect to get putc routine
gcall -- call the routine

The calling convention is designed to be usable from a wide range of languages.
Since the system libraries assume no more than this convention these libraries can be
called from all the languages. Should a language implementation need to use a dif-
ferent calling convention then some extra work will be required before the system can
be called. For example the Meiko Fortran compiler uses its own calling conventions,
and the Fortran library has routines POSIX_WRITE() and so on which call the actual
libraries after a conversion process.

Once a routine has been entered it may do anything it likes with the stack pointer.
Usually the position is adjusted to hold variables local to this routine, possibly in-
cluding temporary ones generated by the compiler. A routine can return by restoring
the stack pointer to its initial value, pointing at the return link, and executing the ret
instruction. For example the following code fragment shows a routine that allocates
space for one local variable, sets it to five, and returns immediately.

.routine: -- entry point label
ajw -1 -- space for one local variable
ldc 5
stl 0 -- assign five to the local variable
... -- do useful work

ajw 1 -- restore the stack pointer
ret -- and return to the calling routine

For languages that do not require a display the module table pointer itself can be
used as the display, because slot 0 of the module table always points to the module
table itself.

16.2.1 C calling convention

By default the C compiler uses a vector stack. Consider the following piece of code.

void a_routine(void)
{ int x;

16.2. CALLING CONVENTION 577

char big_array[256];
int y;

}

One way of allocating these local variables is simply in order of declaration. Hence
there would be a single word on the stack for integer x, then 256 bytes for the array,
and another word on the stack for the second integer. This is shown in Figure 16.6.

X

Figure 16.6: Inefficient stack usage

Using a stack laid out like this is inefficient, because the local variable y cannot be
accessed easily. Many processors have instructions specifically for accessing local
variables close to the current stack pointer. Having local variables far away from the
current stack pointer increases code size and slows down the program. The Helios C
compiler uses a vector stack instead. All arrays and data structures larger than eight
bytes, in other words larger than the size of a double precision number, are placed in
a separate piece of memory, the vector stack. Typically this is placed at the opposite
piece of memory from the stack, in other words the normal stack grows in one direction
and the vector stack grows in the other direction. This is shown in Figure 16.7

X

Figure 16.7: The C vector stack

Using a vector stack makes it easy to implement stack checking. When a routine is
entered it can check whether or not the normal stack and the vector stack now overlap.
If so then there has been a stack overflow. If the vector stack is disabled then the
compiler cannot generate code to perform stack checking. Note that the vector stack is
not part of the standard Helios calling convention, and hence it must be disabled when
compiling Resident libraries or device drivers which might be called from languages
other than C. The C compiler accepts pragmas to control whether or not stack checking
is enabled.

Job Compiler Driver c Compiler cc Source code
Enable stack checking default default #pragma -s0
Disable stack checking -Fs -ps1 #pragma -s1
Enable vector stack default default #pragma -f1
Disable vector stack -Ff -pf0 #pragma -f0

The vector stack works as follows:

1. The display used by the C compiler consists of two words. The first word is the
module table pointer, as per the Helios calling convention. The second word is
the current vector stack pointer.

578CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

2. If a routine does not allocate space on the vector stack then the display is passed
unchanged to other routines.

3. Otherwise the routine must allocate a new display on its local stack. This new
display will inherit the module table pointer from the old one, and it will have
a new vector stack pointer consisting of the old one plus the space allocated by
this routine. Any routines called from here are passed the new display instead
of the old one.

4. No work is required when returning from a routine because previous stack frames
hold displays with the correct information about vector stack usage.

16.2.2 An example

This subsection illustrates some of the mechanisms described so far, using a small
piece of C and describing the code produced by the compiler and the linker. The C
program is simple.

#pragma -s1

extern int global;
static int local;

int main()
{

local = global;
printf("Hello world.\n");

}

Note that stack checking is disabled to keep the code produced by the compiler
somewhat simpler.

The compiler

The first code produced by the C compiler looks something like this:

align
module -1

.ModStart:
word #60f160f1
word .ModEnd-.ModStart
blkb 31,"main.c" byte 0
word modnum
word 1
word .MaxData
init

This information is a Module header as defined in the header file module.h. There
is a magic number 0x60f160f1 used to identify the type of the module, in this case
an ordinary program. This is followed by the size of the code in this module, which
will be evaluated automatically by the linker. The name of the module is part of the
code, and this information is used by programs such as objed. There is a word to hold

16.2. CALLING CONVENTION 579

this module’s slot number in the module table, which will be filled in by the linker.
The next word holds version numbers for Resident libraries and can be ignored. The
MaxData field will be the size of this module’s static data area.

The code for routine main() looks something like this.

align
word #60f360f3,.main byte "main",0 align

.main:
ajw -1 -- space on stack for temporary variable
ldc ..1-2 -- get address of "Hello world."
ldpi
stl 0 -- store it in the temporary variable

-- Line 7 (main.c)
-- Line 8 (main.c)

ldl 2 -- load display pointer off stack
ldnl 0 -- get module table
ldnl @_global -- get data area for required module
ldnl _global -- access the actual variable
ldl 2 -- load display pointer again
ldnl 0
ldnl modnum -- move to own static data area
stnl ..dataseg+0 -- and write to variable local

-- Line 9 (main.c)
ldl 0 -- fetch "hello world." string
ldl 2 -- extract display pointer
call .printf -- call from stub below
ajw 1 -- clean up stack
ret -- return to parent routine

There is some header information at the start of the routine, consisting of the magic
number 0x60f360f3 and the name of the routine. This will be embedded in the final
code. It can be used by, for example, the stack overflow handler to report the name
of the routine that caused the stack error. However, it will use up space, in this case a
total of 12 bytes. To keep programs as small as possible it is possible to suppress these
names. The relevant options are: -Fg for the compiler driver; -pg0 for the C compiler;
and #pragma -g0 for source code.

The program contains a single literal value, the string “Hello world.”, that is read-
only. Hence this string can be left in the code part of the binary executable, and it does
not need to be copied into the static data area.

-- Literals
align

..1: -- 1 refs
byte "Hello world.\n"
byte 0
align

There is a call to an external routine printf(). All such calls go through calling
stubs, which are responsible for indirecting through the module table and so on. Using
calling stubs has several advantages. Most important, if the external routine is called
from more than one place in the code then using calling stubs reduces code size. Also
it makes life easier for the compiler: when there is a call to routine A(), which may or

580CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

may not be in the same module, the compiler can always generate the instructions call
.A. If the routine is declared in the same module no extra work is required; otherwise
the compiler simply generates a calling stub; in theory this permits all programs to be
compiled in just one pass of the compiler.

-- Stubs
align

.printf:
ldl 1 -- get display pointer off stack
ldnl 0 -- get module table pointer
ldnl @_printf -- find static data area
ldnl _printf -- get the address of routine printf
gcall -- and call it

The next piece of code produced by the compiler reflects the static data area of
this module. This module defines a single static variable local requiring one word of
static data area. In addition it defines one routine main() that is accessible from other
modules. The global statement declares _main as a global name, so that the linker can
resolve cross references. The data statement allocates one word of store in the static
data area, which will be filled in by the module initialisation code with the address of
routine main(). Hence the total size of the static data area is two words.

-- Data Area
data ..dataseg 1
global _main
data _main 1

The final piece of code is responsible for initialising the static data area for this
module. Its main job is to get the address of routine main() and put it into the second
slot of this module’s static data area. The final line specifies the end of this module.
.ModEnd is referred at the start of the code as a way of determining the code size.

-- Data Initialisation
align
init
ajw -2
ldl 3 -- get display pointer
ldnl 0 -- get module table pointer
ldnl modnum -- get this module’s data area
stl 1 -- store in temporary variable
ldl 1
ldnlp ..dataseg
stl 0
ldl 4 -- get argument to initialisation code
cj ..3 -- if 0 then first pass of initialisation

-- second pass initialisation code
-- would go here

j ..4
..3: -- 1 refs

ldc .main-2 -- get address of main
ldpi

16.2. CALLING CONVENTION 581

ldl 0
stnl 1 -- store in slot 1 of the static data area

..4: -- 1 refs
ajw 2 -- initialisation code finished
ret
data .MaxData 0
align

.ModEnd:

Note that the code shown here is the assembler source produced by the compiler, in
other words the .s file. Usually this is passed through the assembler to tokenise it,
replacing the text by binary opcodes and special linker directives, to produce a much
smaller .o file. The information contained in the .o file is the same as the information
in the .s file.

The linker

The linker starts by reading in all the files specified: c0.o, the program’s own object file
and also helios.lib, and c.lib. From this it can work out which modules are required to
build the executable binary, and allocate module table slot numbers.

Slot Contents Type
3 c0.o Program header
1 Kernel Resident library reference
2 System Resident library reference
4 Utility Resident library reference
5 Floating point Resident library reference
6 Posix Resident library reference
7 C library Resident library reference
8 main.c user module

Note that the final program layout does not necessarily reflect the slot number alloca-
tion. In particular the program start-up code c0.o is the first part of the executable file,
but has been given slot 3 in the module table because this is the first free slot. The
various Resident libraries have fixed slots in the module table. Finally user modules
and Scanned library modules are assigned any free slots that are available.

Once all the modules have been assigned slot numbers the linker can go through
the code and fill in suitable information. For example, a calling stub to access routine
putc() in the C library would be changed from:

ldl 1 -- get display pointer
ldnl 0 -- load module table pointer
ldnl @_putc -- module containing putc
ldnl _putc -- offset of putc within data area
gcall

to:

ldl 1
ldnl 0
ldnl 7
ldnl 5
gcall

582CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

or, more correctly, to the binary sequence 0x71 0x30 0x35 0x37 0xf6.
Once all the module table and static data areas have been resolved it is possible to

produce the final code. The results can now be written to a file which looks something
like this:

1. An image header. This contains a magic number 0x12345678 to specify that
the program is an ordinary executable rather than a compiled task force or some
other strange file. There is a flags field to hold information such as the processor
type. Then there is a size field giving the total size of the whole executable
program.

2. A Program structure. This contains a module header for the start-up code c0.o,
the initial stack and heap sizes, and the program’s entry point as an offset.

3. The required modules. These may be Resident library references or real code.
The system can distinguish between these by examining the type field at the start,
since ordinary modules and Resident library references have different numbers
to represent their types.

The Loader

When it is time to execute the program it has to be loaded into memory. This is the
shared responsibility of two Helios servers, the Loader and the Processor Manager,
which are present on every Helios processor. For convenience the term Loader is used
here for both these servers.

The first step is to read the image header, which allows the Loader to check that
the file is really an executable program and to determine its size. A suitable area of
memory can now be allocated and the program can be loaded off disc.

Once in memory the Loader examines every module. The first module comes
immediately after the fixed-size system header. Every module has its size built into the
binary. Hence the Loader can access every module. If a module is actually a Resident
library reference then the Loader ensures that this is in memory, getting it off disc or
from a neighbouring processor if necessary, before continuing. As every module is
examined the Loader keeps track of the static data areas required and the total number
of modules. With this information, plus the stack and heap sizes held at the start of the
program, the Loader can allocate another suitable area of memory. The positions of
the stack and initial heap within this area are readily determined, as is the start of the
module table. The various slots in the module table can now be filled in with pointers
to every module’s static data area. The module initialisation routines can now be called
twice, and the program is fully initialised and ready to run.

16.3 Resident libraries

Helios Resident libraries are separately compiled and linked pieces of code which can
be used by applications without embedding all the code in the application’s binary
image. They have the following characteristics:

16.3. RESIDENT LIBRARIES 583

1. Resident libraries always reside in the directory /helios/lib. Hence they can be
installed only by the system administrator, and ordinary users do not normally
produce their own.

2. Resident libraries usually have an associated .def file used by the linker. This
file defines the library’s module table slot number and its static data area, giving
the linker the information it needs. This .def file is in addition to the main file
containing the actual code. For example, Clib contains the code for the C library
and Clib.def contains the library definition.

3. Application programs can contain Resident library references. When a program
is loaded the system checks for such Resident library references and will auto-
matically fetch libraries off disc or from neighbouring processors.

4. Resident libraries always have fixed slot numbers within the module table. If
this were not the case then the library could not access its own private data, and
other libraries would be unable to call its routines.

5. As far as Helios is concerned a Resident library is a single module with just
one slot in the module table. In practice any non-trivial library has to be built
from more than one source file. Hence some special work is required to build
Resident libraries.

This section describes how to build simple Resident libraries. Please note that
application programmers should normally use Scanned libraries instead. Resident li-
braries are used mainly by system programmers, and for most user applications there
is little or no benefit in producing Resident rather than Scanned libraries.

16.3.1 Slot numbers

Every Resident library needs a slot number. The first 25 slots have been allocated
already. The table below shows slot number allocations for Transputer versions of
Helios.

Slot Purpose
1 Kernel
2 System library
3 Server library
4 Utility library
5 Floating point library
6 Posix library
7 C library
8 Floating point part of C library
9 X library
13 Modula 2 library
15 BCPL library
18 Profiling library
19 Debugging library
21 Fortran library
24 Resource Management library

584CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

To allow for future expansion Helios reserves slots 25 to 50. Slots 51 to 100 are
reserved for third parties developing general purpose libraries, and Perihelion Software
should be consulted for details of how to obtain such a slot. Slots 101 onwards may be
used by all programmers.

Problems can arise only if a program needs two Resident libraries that use the same
slot. For example, suppose both the C library and the Fortran library had been given
slot 7. If a program had to be linked with both these libraries for some reason then
both libraries would attempt to use the same piece of memory for their data areas, and
the program would crash almost immediately. Because all the main libraries have been
allocated separate slots such problems are unlikely to arise for the foreseeable future.

16.3.2 Compiling the sources

Some of the code produced by the C compiler is inappropriate for Resident libraries.1

In particular, the compiler must not generate code for the following:

1. There should not be a module header at the start of the file. The final library
must have a single module header, typically produced from an assembler file,
instead of a separate module header for every source file making up the library.

2. Similarly the module terminator .modend should not be produced. Shipped with
Helios is the file /helios/lib/modend.o which should be linked at the end of the
Resident library.

3. Most of the static data area layout should be determined separately. In particular
the offsets of the various functions and variables that can be accessed by appli-
cation programs and other libraries should be specified in the assembler file and
not generated automatically by the C compiler. Otherwise small changes to the
C code could cause the compiler to produce a different and incompatible layout
and the library would no longer work with existing programs.

4. Calling stubs to routines outside the Resident library must also be put into the
assembler file, and not produced by the compiler.

Note that the C source code is no different for Resident libraries. All that has to
change is the intermediate object files generated by the compiler.

The C compiler has an option specifically for building Resident libraries, which
takes into account the above requirements. Using the compiler driver this can be
achieved as follows:

c -m -c matrix.c -o matrix.p

Note that code produced for Resident libraries is usually given a .p suffix instead
of a .o suffix, to make it easier to keep track of the library’s purpose. If the compiler is
invoked explicitly instead of through the compiler driver the following commands can
be used:

1This subsection describes only Resident libraries written in C. Other languages may support similar
features to the ones described here, permitting Resident libraries to be written in those languages. The
reader is referred to the appropriate language manual for more details.

16.3. RESIDENT LIBRARIES 585

cc -l -d__HELIOS -d__TRAN -d__HELIOSTRAN matrix.c -s matrix.s
asm -p -o matrix.p matrix.s

Code compiled for Resident libraries should be compiled without stack checking
and without the vector stack, using the compiler options or pragmas.

16.3.3 The library assembler file

The first component of a Resident library is normally written in assembler. In practice
this assembler file uses macros throughout, to ensure that the same source file can be
used for many different processors. A typical file might look like this:

include basic.m
include library.m
include sem.m

Resident
[

name Maths
slot 105
version 1000

static
[

extern func invert_matrix
extern func fft
extern func integrate
extern word maths_errno
extern func solve_eqn

-- additions must go here

-- initialise statics
code
[

initword maths_errno 0

-- call into C source to initialise statics
libcall mathslib_init

]
]

uses Kernel
uses SysLib

stubs
[

-- kernel
stub Wait
stub Signal
stub InitSemaphore
stub TestSemaphore

586CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

-- syslib
stub Malloc
stub Free

]
]
-- end of mathslib.a

This assembler file will be passed through the Assembler Macro Pre-Processor AMPP,
a copy of which will be required for building Resident libraries. The syntax of the pre-
processor is described in the AMPP manual, as are the various macros supplied in the
macro header files. The first three lines simply include some macro header files that
are required. Then the Resident macro is invoked to start building a Resident library.
This should contain the following fields:

1. The library name. This must be the final name of the library inside the directory
called /helios/lib. Programs can be linked with the definition file Maths.def, and
the Loader will automatically fetch the file Maths when this library is required.

2. A version field. This is currently unused. In future the Loader may exploit it to
ensure that programs linked with a later version of a library are not run with an
old version, which might be lacking some routines.

3. A static section. This defines the layout of the public part of the static data area
associated with this library. All functions in the library that can be accessed
from applications or from other libraries should be declared here as extern func
items. In this example four such routines are made accessible. The code for
these routines is, of course, still in the C source files. Similarly all variables
that must be accessible should be listed here. Integer-sized data items should
be declared as word. Alternatively vectors or data structures could be specified.
The main Helios data structures are already defined in the macro header files
shipped with AMPP.

extern vec 256 byte_array
extern struct Sem maths_lock

It is ESSENTIAL that the ordering of this static section is not changed. Chang-
ing this section, for example putting the routines into alphabetical order or
adding new routines in the middle, changes the static data area layout. If an
application has been linked with this library already then the code will expect to
find the fft() routine at offset 1 within the data area, so if the library programmer
rearranges this area and puts the integrate() routine at offset 1 instead then the
application will almost certainly crash.

If new routines or variables are added to the library then they must be placed
at the end of the static data area. Routines and variables cannot be removed
from Resident libraries without, potentially, causing existing applications to stop
working. If a particular routine is no longer needed then it should be replaced
with a dummy routine of the same name, which typically only returns an error
code.

16.3. RESIDENT LIBRARIES 587

4. After the function and variable declarations there should be a small piece of
code. This will be called during the first pass of the module table initialisation.
The code can contain macros such as initword, initptr, and inittab to initialise
variables.

More generally it is possible to call an ordinary C routine to initialise variables.
However, since this code is called during the first pass of the initialisation the
C routine must be entirely self-contained and cannot access routines or data in
other modules.

5. After the initialisation code the various other libraries called from inside this one
must be listed, with the uses statement.

6. Finally all the routines called from inside this library must be given calling stubs.
If a calling stub is missing then when the library is linked the linker will produce
a warning message about an undefined function.

Resident libraries can usually be built simply by taking the above example, chang-
ing some names and the slot number, and adding to the list of externally accessible
functions and calling stubs.

16.3.4 makefile

A makefile for a simple Resident library would look something like this:

.suffixes:

.suffixes: .a .c .p

.c.p:
c -m -c $*.c -o $*.p

default: Maths Maths.def
echo Maths library built.

Maths: mathslib.p matrix.p fourier.p simuleqn.p integrate.p
asm -f -n$@ -o$@ $ˆ /helios/lib/modend.o \

/helios/lib/kernel.def \
/helios/lib/syslib.def

mathslib.p: mathslib.a
ampp -o$*.s -dhelios.TRAN 1 -i/helios/include/ampp/ \
/helios/include/ampp/basic.m $<

asm -p -o$@ $*.s
rm $*.s

Maths.def: mathslib.a
ampp -o$*.s -dmake.def 1 -dhelios.TRAN 1 \
-i/helios/include/ampp/ /helios/include/basic.m $<

asm -p -o$@ $*.s
rm $*.s

Note how the assembler file is processed twice, once to generate the initial part of
the library and once to generate the .def library definition file. The Resident library
macros in library.m check for the flags make.def and produce code accordingly.

588CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

16.4 Device drivers

Device drivers are another special kind of binary object. A device driver is a piece of
code that is loaded from inside an application while the application is running. This
is different from Resident libraries which are loaded before the application starts up.
The main use of device drivers is when writing Helios servers for a variety of different
hardware. For example the Helios file server is independent of the underlying file
system hardware, and loads a hardware specific device driver to interact with SCSI
discs, M212 disc controllers, and so on.

The linker does not know which device drivers will be loaded by a program. This
causes a special problem: because the linker has no advance knowledge of the device
driver it cannot allocate a module table slot to that driver, nor can it allow for another
static data area. This has the following effects on the device driver:

1. A device driver can have no static data at all. In Helios static data is always
handled using the module table mechanism, and device drivers do not have any
space within the module table.

2. Device driver routines cannot be accessed directly. The addresses of these rou-
tines would normally be placed in the module table, but the device driver has
no space within the module table. Instead the device driver has a specific entry
point DevOpen() whose offset within the code is held within a header structure.

3. The device driver can only make calls to Resident libraries that have been linked
to the application. Otherwise, drivers expecting the relevant library to be bound
into the module table will erroneously indirect through a non-existent or re-used
slot in the table. This will cause the application to crash.

Building device drivers is in many ways similar to building Resident libraries,
involving the same options to the C compiler and a separate assembler file. A typical
C source file for a device driver to control, for example, a model railway would look
like this:

#include <device.h>
#include "railway.h" /* define hardware specific structures */

static void DeviceOperate(DCB *device);
static void DeviceClose(DCB *device);

RailwayDCB *DevOpen(Device *dev, RailwayInfo *info)
{ RailwayDCB *dcb = Malloc(sizeof(RailwayDCB));

dcb->DCB.Device = dev;
dcb->DCB.Operate = &DeviceOperate;
dcb->DCB.Close = &DeviceClose;
return(dcb);

}

static word DeviceClose(RailwayDCB *dcb)
{

/* shut down the railway */

16.4. DEVICE DRIVERS 589

return(Err_Null);
}

static word DeviceOperate(RailwayDCB *dcb, RailwayReq *req)
{

/* perform the work specified by the request */

return(Err_Null);
}

To load a device driver Helios provides the routine OpenDevice() which takes two
arguments: the name of the device driver, for example railway.d; and some hardware
specific information, possibly NULL. The specified piece of code is loaded off disc,
usually from the /helios/lib directory, and the DevOpen() routine in the device driver
is called. This routine can be accessed because its offset within the driver code is
held in some header information at the start of the code. The DevOpen() routine
allocates a device control block of some sort, which contains as its initial part the
DCB structure defined in the header file device.h, usually followed by some additional
hardware specific data. Any variables that would normally be allocated statically must
be put into this control block. The DevOpen() routines must also fill in the Operate
and Close fields with addresses of suitable routines. The close routine is called when
the server is shutting down. The operate routine is called when the server needs to
perform some hardware specific job, details of which can be encoded in the request
argument.

Apart from the restrictions that there can be no static variables within the device
driver and that its routines are called indirectly, usually through the operate routine, the
device driver contains standard C code. However, a separate assembler file is needed
to actually build the device driver. A typical assembler file would look like this:

include device.m

Device Railway.Device 1000

uses Kernel
uses SysLib
uses Util

stubs
[-- kernel

stub InitSemaphore
stub Wait
stub Signal
stub TestSemaphore

-- syslib
stub Delay

-- util
stub memcpy
stub strcpy
stub strlen

590CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

stub strcmp
]

-- End of raildrvr.a

The assembler file for a device driver is rather simpler than for a Resident library.
A macro header file is needed to define the Device macro. This macro takes just two
arguments, a device name and a version number, neither of which are important. The
macro expands to a special header structure which must be the first part of the final
binary object. There is no need to produce a static data area layout, since device
drivers do not have any static data. It is necessary to produce calling stubs and library
references in the same way as for Resident libraries.

The makefile for a device driver would look something like this:

.suffixes:

.suffixes: .a .c .p

.c.p:
c -m -c $*.c -o $*.p

default: railway.d
echo Railway device driver built.

railway.d: raildrvr.p railway.p
asm -f -n$@ -o$@ $ˆ /helios/lib/modend.o \
/helios/lib/kernel.def \
/helios/lib/syslib.def \
/helios/lib/util.def

railway.p: railway.c

raildrvr.p: raildrvr.a
ampp -o$*.s -dhelios.TRAN 1 -i/helios/include/ampp/ \
/helios/include/ampp/basic.m $<

asm -p -o$@ $*.s
rm $*.s

16.5 The Nucleus

The Nucleus is the core component of Helios, running on every Helios processor in a
network. Application programmers rarely need to worry about the Nucleus. System
programmers will occasionally need to produce their own versions of the Nucleus to
meet special requirements. For example, in a standalone system it is usual to boot
a small monitor program from ROM which then fetches a special Nucleus from the
initial sectors of a hard disc. This special Nucleus needs to incorporate the file server,
the hard disc device driver, and the devinfo configuration file as well as the standard
Nucleus components. Otherwise the newly-booted processor would be unable to start
up the rest of the system by using the init program and the initrc file.

The default Nucleus for Transputers includes the following components:

1. The Kernel is responsible for maintaining the processor hardware. This part
of Helios is the first to start up in a newly booted processor. It initialises the

16.5. THE NUCLEUS 591

hardware, for example determining the amount of memory on the processor,
and then transfers control to the higher-level Processor Manager. The Kernel
is unusual in that, to some extent, it is a program as well as a Resident library:
it starts off its own threads to control specific bits of hardware, it has its own
memory pool, and so on; it also contains library routines for low-level message
passing, semaphore synchronisation, and similar low-level operations. However,
the Kernel is not a full program in the sense that it does not have its own module
table.

2. The system library is a Resident library, providing the interface between Helios
applications and servers. The system library is not usually invoked directly, but
it is used by higher levels of the system such as the Posix library.

3. The server library facilitates the job of writing Helios servers.

4. The utility library contains various miscellaneous routines which are needed by
other parts of the Nucleus (routines such as memcpy() and Fork()).

5. nboot.i is a little utility used for booting other processors.

6. The Processor Manager is a program, not a Resident library. Once the hardware
has been initialised the Kernel transfers control to this program. It is responsible
for maintaining the Helios world, for example keeping an accurate clock, storing
the name table and performing distributed searches, and similar administrative
chores. In addition it provides a /tasks server to allow programs to be run on
that processor. When the Processor Manager has done its initialisation it will
examine the rest of the Nucleus and start up any other programs, one by one.

7. The Loader is another program responsible for maintaining the code loaded into
that processor. To achieve this it provides a /loader server. Note that the Loader
does not perform all of the jobs of starting up a program, it is responsible only
for fetching code and required Resident libraries off disc. The Processor Man-
ager does the rest. When the Loader is started up by the Processor Manager
it examines the Nucleus and creates /loader directory entries for all programs,
Resident libraries, and other objects.

The above components are fixed and must be present in every Nucleus. However it
is possible to build a Nucleus with more programs or Resident libraries embedded. For
example, it is possible to build a Nucleus with the Posix, C, and Floating Point libraries
embedded to reduce file I/O. Helios comes with two programs for maintaining nuclei:
sysbuild and sysbreak.

To build a Nucleus it is necessary to obtain separate copies of the Kernel, system
library, and so on. These are not shipped with Helios as separate files. Instead there
is a sysbreak program which takes an existing Nucleus and extracts the required files.
The following command line can be used:

sysbreak /helios/lib/nucleus kernel.i syslib.i servlib.i util.i \
nboot.i procman.i loader.i

592CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

The first argument is a file containing an existing Nucleus. The remaining arguments
specify the various output files, with a .i suffix indicating that the object can be em-
bedded in the Nucleus. The sysbuild command is similar.

sysbuild nucleus.C kernel.i syslib.i servlib.i util.i nboot.i \
procman.i loader.i /helios/lib/FpLib.t8 \
/helios/lib/Posix /helios/lib/Clib

The first argument now specifies the output file instead of the source file, and the
remaining arguments specify the Nucleus components. Alternatively, the following
command line builds a Nucleus with the Helios file server embedded, which could be
used in a standalone Helios system.

sysbuild nucleus.fs kernel.i syslib.i servlib.i util.i nboot.i \
procman.i loader.i /helios/lib/scsi.d \
/helios/etc/devinfo /helios/lib/fs

Only four types of binary objects may be embedded in a Nucleus: programs, Resi-
dent libraries, device drivers, and the devinfo file. Programs embedded in the Nucleus
need a special startup. The Processor Manager will call them without an environment,
so they must be linked with s0.o and not c0.o. Furthermore they must send a message
to the Processor Manager once any necessary initialisation has been done, before the
Processor Manager will continue running other programs in the Nucleus or the init
program. For example a file server should normally delay this message until the file
system is ready, to stop the Processor Manager loading init off hard disc too early. The
following code fragment shows what is needed.

#include <task.h>
#include <message.h>

int main(void)
{

/* do any essential initialisation work */

/* let the Processor Manager continue */
{ MCB m;

InitMCB(&m, 0, MyTask->Parent, NullPort, 0x456);
(void) PutMsg(&m);

}
/* do whatever the program is supposed to do */

}

16.6 Program representation

This section describes how the text (code) of a program is stored. It provides a formal
summary of the the information provided earlier in this chapter.

A program in Helios is composed of a number of modules. Each module is com-
posed of a body of text, plus a static data area. The text is position independent and
not self modifying, so it may be shared between several programs consecutively and

16.6. PROGRAM REPRESENTATION 593

concurrently. The module’s static data area is referenced by a pointer in a per-task
module table. Each module occupies a single, unique, slot in the module table. All
intermodule references are indirected through the module’s static data area which con-
tains pointers to the module’s external procedures as well as data. This allows the
interfaces to be fixed while allowing the implementations of the modules to be varied.

The modules which comprise a program are of two basic types, those which are
private to the program, and shared library modules. On disc and in memory the private
modules of a program are simply concatenated together. Shared library modules are
represented in this concatenation only by a reference to the name of the module and
are only bound to the program at load time.

An important feature of the Helios program representation is that all information
regarding a program is embedded into its text as data. Nothing is lost by loading
a program into memory and may be read out again as if it were in a file. This is
significantly different from other program formats (for example, a.out) which will
strip off relocation and symbol table information as a program is loaded.

Continuing the theme of making all code self-describing, the static data area is
initialised by special initialisation procedures added to the code by the compiler. This
allows the data initialisation to be as complex or as simple as the language requires.
It avoids the problem of the load format not supporting some special initialisation
operation. It also greatly simplifies the loading process since the initialisation is all in
executable form and does not need to be interpreted by the Loader.

16.6.1 Type codes

All embedded data items are tagged by an unique type code. The values of these are
chosen to match illegal or unimplemented instructions, or instruction sequences, on
the selected processor. The type codes currently supported are:

Module A module header structure.

Program A Program header structure.

ResRef A reference to a shared Resident library.

Proc A procedure header.

ProcInfo Extra procedure information for debugging purposes.

Device A Helios device driver.

FileName An embedded source file name.

DevInfo A devinfo file.

16.6.2 Modules

A module consists of a header structure followed by the text of the module itself. The
header structure consists of the following fields:

Type Module type code.

594CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

Size Size of module in bytes including the header.

Name The module’s name. Compilers should set this to the source file name.

Id The module table slot number of this module.

Version The version number of this module.

MaxData The size of this module’s static data requirements.

Init The offset, from this word, of the first initialisation routine.

16.6.3 Resident library references

A shared Resident library reference is a module which contains no text, just the name
of a library. It is essentially a place-holder for the actual module which is elsewhere in
memory. A ResRef structure consists of the following fields:

Type ResRef type code.

Size Size of ResRef structure in bytes.

Name The name of the Resident library being referenced.

Id The module table slot number of this module.

Version The version number of the module required.

Module Pointer to actual module installed by Loader.

The combination of the Name, Id and Version uniquely identify the module required.
Hence modules in different slots may have the same name, and different libraries may
occupy the same slot(but not in the same program). The version number will match
if the version on the real module is greater than or equal to the version number in the
reference. 2

The module table slot number of the real module must match that of the reference
exactly. This is because intermodule references in the rest of the program will have
been linked assuming the slot supplied in the reference.

It should be noted that the ResRef structure does not define the static data area size
of the module, this is supplied from the real module. This allows different implemen-
tations of a module, using different quantities of static data, to be used by a program
without recompilation.

16.6.4 Programs

In Helios a program is a simple concatenation of modules and Resident library refer-
ences in module table slot order.

The first module is special and has an extended header. This is a Program struc-
ture:

2At present Helios only matches modules by name, the slot and version numbers are ignored. This
will be changed in future systems.

16.6. PROGRAM REPRESENTATION 595

Module A standard Module header, but with type Program.

Stacksize Size of initial thread stack.

Heapsize Size of initial program heap.

Main Offset, from this word, of the entry point to the program.

Normally this first module is programming language dependent and is responsible for
causing the runtime system to be initialised and for the program proper to be entered.
The Kernel function TaskInit starts the program running at the instruction referenced
by Main.

At the end of the concatenation, a single word containing zero marks the end of the
program. This occupies the place where the Type field of a following module would
appear. Hence a program’s modules can be scanned easily by adding a modules size
to its header address until a module with type code zero is encountered.

When stored in a file, an additional ImageHdr header is prepended to the program:

Magic A ‘magic number’ indicating what type of program image this is. Current
numbers are as follows:

Image A normal Helios program image.

TaskForce A compiled CDL object file.

RmLib A Network Object.

Flags Unused.

Size Program size in bytes, including this header.

This header is primarily present to supply the program image size. This allows a
program to be embedded in a file containing other data.

16.6.5 Resident libraries

A shared Resident library is a single module which implements a fixed, well known,
interface. In memory it consists of the implementing module, followed by a number
of ResRefs for the libraries that it invokes, terminated by a zero word.

In a file a library has the same ImageHdr as a program.

16.6.6 Embedded information

In addition to the data structures defined so far for describing the structure of a pro-
gram, the text may also contain a number of embedded information structures.

The most common information structure is the Proc structure which describes a
procedure:

Type Proc type code.

Proc Offset from this word to the start of the procedure.

Name Procedure name.

596CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

This normally appears immediately before the procedure it describes. Hence, by
searching backwards from the procedure entry point (or a return address to it) for
the Proc type code, the procedure’s name can be found.

When a program has been compiled for debugging, the compiler can sometimes
also generate a ProcInfo structure just before the Proc structure:

Type ProcInfo type code.

Size Size of the procedure in bytes.

StackUse Calling stack usage in words.

VstackUse Vector stack usage in words.

Modnum Module table slot number for this module.

Offset Offset of this procedure’s pointer in module data area.

It is also possible for the source file name of a module to be inserted using a
FileName structure:

Type FileName type.

Modnum Module number of this file.

Name Source file name.

16.7 Nucleus structure

The Helios Nucleus contains those Resident libraries and programs which are common
to all processors, or which must be loaded before a file system is available (for exam-
ple, the file server itself). Each of these is compiled, linked and written out to a file
in standard program or library format. To build the Nucleus image file, the necessary
files are simply concatenated together and preceded by a header.

The Nucleus header is an array of self-relative offsets (RPTRs) to the various com-
ponents. In the standard Helios Nucleus these are:

0 The total size of the Nucleus, this is also an RPTR to the first word after the
Nucleus when in memory.

1 RPTR to the Kernel.

2 RPTR to the System Library.

3 RPTR to the Server Library.

4 RPTR to the Utility Library.

5 RPTR to a copy of the bootstrap (nboot.i).

6 RPTR to the Processor Manager.

16.7. NUCLEUS STRUCTURE 597

7 RPTR to the Loader.

An important point to note is that each of the libraries is in the slot which corre-
sponds exactly to its module table slot number. The remaining programs in the array
should only use libraries which are included in the system image. Unless told other-
wise by the configuration, the Kernel will always start the program in slot 6, this is
then responsible for starting all other programs/servers.

Like programs, the Nucleus loses no information on being loaded into a proces-
sor, and is not self-modifying. Hence it may be used from memory, to boot further
processors.

598CHAPTER 16. PROGRAM REPRESENTATIONAND CALLING CONVENTIONS

Appendix A

Options: debugging and
configuration file

The debugging options: summary

A All. Either enable all debugging, or disable any debugging which is currently active.

B Boot. Give a progress report while the root processor is being booted.

C Communications. Monitor transmissions to and from serial lines and similar devices.

D Delete. List all files and directories being deleted.

E Errors. Report any error messages generated by the I/O server.

F File I/O. Give details of miscellaneous file I/O activities such as renaming files.

G Graphics. Report any graphics transactions.

H Raw disc. List sector reads and writes on a raw disc device.

I Initialisation. Give a progress report as the I/O server initialises its various component
servers.

J Directory. Show details of any directory accesses.

K Keyboard. Report any key presses.

L Logger. Cycle the error logging destination between screen-only, file-only, and both screen
and file.

M Message. Report all messages sent to and from the I/O server.

N Names. Show the names of objects Helios is trying to access.

O Open. List all files that Helios is trying to open.

P Close. Report any file close requests sent by Helios.

Q Quit. Give a progress report when the I/O server tries to exit.

R Read. Monitor any file reads.

S Search. Report all distributed searches arriving at the I/O server.

T Timeouts. Report any stream timeouts that may occur.

U Nopop. In the Server windows system, toggle between pop and nopop mode.

599

600 APPENDIX A. OPTIONS: DEBUGGING AND CONFIGURATION FILE

V OpenReply. Give details of replies to Open, Create, and Locate requests.

W Write. Monitor any file writes.

X Resources. Produce a snap shot of what the I/O server is currently doing.

Y List. Give details of all debugging options.

Z Reconfigure. Re-read the configuration file host.con .

601

Configuration file options

The main options used in the configuration file are given below.

bootfile = SYSTEM LEVEL.

This defines the initial bootstrap code file.

bootlink

This defines the link used to boot the root Transputer. (Default = 0.)

box =

This defines the type of extension card or external rack connected to the I/O pro-
cessor. It must be one of: NTP1000, MCP1000, B011, B014, IMB, VOLVOX,
remote.

comn base

This specifies the base address of the given extra PC serial port.

connection retries = SUN ONLY:

This gives number of connection attempts to the link daemon.

default centronics = PC ONLY:

This defines default centronics port.

default printer = PC ONLY:

This defines default printer port.

default rs232 = PC ONLY:

This defines default rs232 port.

enable link

This is used when the I/O server connects directly into the network, rather than
via a root
Transputer.

family name = SUN ONLY:

This defines link daemon socket. Must be one of AF INET or AF UNIX.

floppies = PC ONLY:

This defines the PC floppy drives available.

helios directory =

This gives the location of the helios file server.

hydra host = SUN ONLY:

This defines the Internet name of the host machine.

602 APPENDIX A. OPTIONS: DEBUGGING AND CONFIGURATION FILE

host =

This identifies the host computer or I/O processor.

io processor =

This changes the name of the I/O processor (default = /IO).

logfile =

This defines the file used as the destination of log messages. (Default is logfile
in the current directory.)

logging destination =

This sets the default destination of log messages to be one of file, screen or
both. (Default is screen.)

message limit =

This gives the size of the I/O server message buffer. (Default is 2000.)

mouse divisor = PC ONLY:

This is the amount of mouse movement required.

mouse resolution = PC ONLY:

This is the amount of mouse movement before message.

no bootstrap SYSTEM LEVEL.

This disables the bootstrap of the root processor with the file nboot.i.

no check processor SYSTEM LEVEL.

This disables the check that the root processor is a Transputer in the bootstrap.

no config SYSTEM LEVEL.

This disables the sending of the configuration vector in the bootstrap.

no image SYSTEM LEVEL.

This disables request for accepting the system image in the bootstrap.

no reset target SYSTEM LEVEL.

This disables the reset of the root Transputer in the bootstrap.

no server

Disables the given server. For example:

no clock disables the clock server.

no helios disables the file server.

no logger disables the error logger.

no rawdisk disables the disk server.

no window disables the window server.

603

no sync SYSTEM LEVEL.

This disables the sync messages within the bootstrap.

processor memory =

This specifies the amount of memory on the root processor.

rawdisk drive = PC ONLY:

This defines the discs converted to rawdisks.

root processor =

This changes the name of the root processor (default = /00).

rs232 ports = PC ONLY:

This specifies the numbers of PC rs232 ports.

rs232 interrupt = PC ONLY:

This specifies interrupt vector of PC rs232 ports.

Server windows

Tells the I/O server to provide a window server instead of a simple /console
device.

site = SUN ONLY:

Remote processor sites accessible via the I/O server.

Server windows nopop

This disables the automatic popping to the front of the error and debug window.

socket name SUN ONLY:

This gives the Unix socket name for accessing the link daemon.

system image = SYSTEM LEVEL.

This defines the nucleus used to boot the system.

target processor =

This defines the type of the boot processor. It must be one of: Arm, T414, T800,
T425, T400, i860, 68000, T9000.

Xsupport PC ONLY:

This enables X windows servers.

604 APPENDIX A. OPTIONS: DEBUGGING AND CONFIGURATION FILE

Appendix B

Options: debugging and
configuration file

The debugging options: summary

A All. Either enable all debugging, or disable any debugging which is currently active.

B Boot. Give a progress report while the root processor is being booted.

C Communications. Monitor transmissions to and from serial lines and similar devices.

D Delete. List all files and directories being deleted.

E Errors. Report any error messages generated by the I/O server.

F File I/O. Give details of miscellaneous file I/O activities such as renaming files.

G Graphics. Report any graphics transactions.

H Raw disc. List sector reads and writes on a raw disc device.

I Initialisation. Give a progress report as the I/O server initialises its various component
servers.

J Directory. Show details of any directory accesses.

K Keyboard. Report any key presses.

L Logger. Cycle the error logging destination between screen-only, file-only, and both screen
and file.

M Message. Report all messages sent to and from the I/O server.

N Names. Show the names of objects Helios is trying to access.

O Open. List all files that Helios is trying to open.

P Close. Report any file close requests sent by Helios.

Q Quit. Give a progress report when the I/O server tries to exit.

R Read. Monitor any file reads.

S Search. Report all distributed searches arriving at the I/O server.

T Timeouts. Report any stream timeouts that may occur.

U Nopop. In the Server windows system, toggle between pop and nopop mode.

605

606 APPENDIX B. OPTIONS: DEBUGGING AND CONFIGURATION FILE

V OpenReply. Give details of replies to Open, Create, and Locate requests.

W Write. Monitor any file writes.

X Resources. Produce a snap shot of what the I/O server is currently doing.

Y List. Give details of all debugging options.

Z Reconfigure. Re-read the configuration file host.con .

Appendix C

Allocation of streams

The way in which streams are allocated for components is summarised by the follow-
ing rules.

• A parallel constructor ˆ defines no communication between its operands.

• A pipe constructor | defines a single communication between its operands. For
the task force A | B, file descriptor 1 of A is connected to file descriptor 0
of B. Note that A and B may themselves be task forces. File descriptor 0 of
(A | B) is equivalent to file descriptor 0 of component A, and file descriptor 1
of (A | B) is equivalent to file descriptor 1 of component B.

• A subordinate constructor <> defines a pair of communications between its
operands. For the task force A <> B, file descriptor 5 of A is connected to
file descriptor 0 of B, and file descriptor 4 of A is connected to file descriptor 1
of B. Again, A and B may themselves be task forces. The file descriptors 0
and 1 for the task force (A <> B) correspond to file descriptors 0 and 1 of
component A.

• The interleave constructor ||| can be treated as a special case of the subordinate
constructor. Thus A ||| B is equivalent to A <> lb <> B.

• The order of allocation of streams is defined by the precedence of the construc-
tors. Thus for the task force A | B <> C, the subordinate constructor has
a higher precedence so the streams for B <> C are allocated, and then the
streams for A | (B <> C).

• The allocation of streams within an auxiliary list is a special case. Consider the
task force
A (<> B, | C). Here the constructors <> and | share the same left-hand
operand A. The stream allocation for A starts at the first free file descriptor
starting with number 4. The stream allocation for B and C is the same as for
the simple cases above. Thus for the task force A (<> B, | C) <> D, the
main task force is (A <> D) and the stream allocation for this is resolved,
using up file descriptors 4 and 5 of component A and file descriptors 0 and
1 of component D. Then the auxiliary list components are dealt with, starting
from the left: <> B needs two file descriptors for A, and the first two unused

607

608 APPENDIX C. ALLOCATION OF STREAMS

file descriptors starting from 4 are 6 and 7; also, file descriptors 0 and 1 of
component B are allocated; | C needs an output file descriptor for A, and the
first unused odd file descriptor is 9; hence file descriptor 9 of A communicates
with file descriptor 0 of C.

• Allocation in an auxiliary list always occurs from left to right, ignoring the
precedence of the operators in the auxiliary list. Otherwise the allocation could
become much more confusing. If in doubt, the -i or -l option of the CDL
compiler can be used to produce a listing of the streams for all the components.

Appendix D

Measuring performance

The listings of the test programs used to investigate communications performance are
given below. Two program listings are given, both of which measure the rate of data
transmission between a sender and a receiver process. The first program is used to
evaluate the efficiency of the Helios communications mechanisms. The level of com-
munication is defined at compile-time to be one of :

1. Message passing primitives (GetMsg() and PutMsg()).

2. System library routines (Read() and Write()).

3. Posix library routines (read() and write()).

The second program features direct link utilisation (message transmission is im-
plemented via in-line calls to assembler macros).

Both program listings are preceded by a CDL script that would be typically used
to launch the processes on explicitly named processors. The network topology should
be a simple pipeline. By modifying the puid fields in the CDL scripts, the required
distance between processors and hence the number of intermediate links, can be spec-
ified.

Program 1: Helios communication

#! /helios/bin/cdl
Communication performance measuring cdl script
component sender
{

code /Cluster/perf/comms;
puid /Cluster/06;

}
component receiver
{

code /Cluster/perf/comms;
puid /Cluster/07;

}
sender <> receiver 0

609

610 APPENDIX D. MEASURING PERFORMANCE

/*
- - Communications Performance
- - comms [<any.param>]
- - <any.param> : indicates whether node is the sender or receiver
- - - if specified, node is the receiver
- -
- - Compile-time define (-D) options :
- - MSG : Socket based message passing (GetMsg / PutMsg)
- - SYSTEM_LIB : System library routines (Read / Write)
- - POSIX_LIB : Posix library routines (read / write)

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <nonansi.h>
#include <syslib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/hel.h>

#define MAX_BUF 65536
#define DATA_SIZES 17
#define ITERATIONS 1000

#if defined (MSG)
#define SOCKET_NAME "socket"
void socket_error (char *err_msg)
{

perror (err_msg) ;
exit (1) ;

}
#elif defined (SYSTEM_LIB)
#define from_receiver fdstream (4)
#define to_receiver fdstream (5)
#define from_sender fdstream (0)
#define to_sender fdstream (1)
#endif

int main (int argc, char **argv)
{

char *buf ;

#if defined (MSG)
int sock, msg_sock ;
struct sockaddr_hel socket_addr ;
int addr_len = sizeof (socket_addr) ;
Port tx, rx ;
MCB txmcb, rxmcb ;

611

/* create socket */
if ((sock = socket (AF_HELIOS, SOCK_RAW, 0)) < 0)
socket_error ("socket ()") ;

socket_addr.sh_family = AF_HELIOS ;
strcpy (socket_addr.sh_path, SOCKET_NAME) ;

#endif

if (argc > 2)
{
fprintf (stderr,"Usage: comms [<any.param>]\n") ;
exit(1) ;

}

unless (buf = (char *) Malloc (MAX_BUF))
{
fprintf (stderr, "Insufficient memory to create buffer\n") ;
exit (1) ;

}

if (argc < 2)
/* -- sender -- */
{

#if defined (MSG)
Delay (OneSec) ;
/* initiate connection */
{

int connect_status = -1 ;
while ((connect_status =
connect (sock, (struct sockaddr*) &socket_addr, addr_len)) < 0)

fprintf (stderr, "Trying to connect ...\n") ;
}

tx = fdstream (sock)->Server ;
rx = fdstream (sock)->Reply ;

InitMCB (&txmcb, MsgHdr_Flags_preserve, tx, NullPort, 0) ;
InitMCB (&rxmcb, MsgHdr_Flags_preserve, rx, NullPort, 0) ;

txmcb.Data =
rxmcb.Data = buf ;

rxmcb.MsgHdr.DataSize = 1 ;
/* synchronise with receiver */
GetMsg (&rxmcb) ;

#elif defined (SYSTEM_LIB)
/* synchronise with receiver */
Read (from_receiver, buf, 1, -1) ;
SetFileSize (from_receiver, 0) ;

#elif defined (POSIX_LIB)
/* synchronise with receiver */
read (4, buf, 1) ;

612 APPENDIX D. MEASURING PERFORMANCE

SetFileSize (fdstream (4), 0) ;
#endif

#if defined (MSG)
printf ("Message Passing (GetMsg, PutMsg)\n") ;

#elif defined (SYSTEM_LIB)
printf ("System Lib (Read, Write)\n") ;

#elif defined (POSIX_LIB)
printf ("Posix Lib (read, write)\n") ;

#endif

printf ("%s %18s %18s %18s\n", "Msg Size (bytes)",
"Time (usecs)", "Bytes/sec", "Kbytes/sec") ;

{
register int i, buf_size ;

for (i = 0, buf_size = 1 ; i < DATA_SIZES ; buf_size = 1 << ++ i)
{

register int j ;
int start ;
float time, rate ;

if (i == 16) buf_size - - ; /* 16-bit data size */
#if defined (MSG)

rxmcb.MsgHdr.DataSize =
txmcb.MsgHdr.DataSize = buf_size ;

#endif
start = _cputime () ;
for (j = 0 ; j < ITERATIONS ; j ++)
{

#if defined (MSG)
PutMsg (&txmcb) ;
GetMsg (&rxmcb) ;

#elif defined (SYSTEM_LIB)
Write (to_receiver, buf, buf_size, -1) ;
Read (from_receiver, buf, buf_size, -1) ;

#elif defined (POSIX_LIB)
write (5, buf, buf_size) ;
read (4, buf, buf_size) ;

#endif
}
time = (_cputime () - start) * 10000 ; /* usecs */
time /= (2 * ITERATIONS) ;
rate = (buf_size / time) * OneSec ; /* bytes/sec */
printf ("%15d %18d %19d %18d\n", buf_size, (int) time,

(int) rate, (int) (rate / 1024)) ;
}

}
#if defined (MSG)

close (sock) ;
#endif

}
else

613

/* -- receiver -- */
{

#if defined (MSG)
/* name socket */
if (bind (sock , (struct sockaddr *) &socket_addr, addr_len) < 0)

socket_error ("bind ()") ;

/* listen for connection */
if (listen (sock, 1) < 0) socket_error ("listen ()") ;

/* accept connection */
if ((msg_sock = accept (sock, (struct sockaddr*) &socket_addr,

&addr_len)) < 0)
socket_error ("accept ()") ;

tx = fdstream (msg_sock)->Server ;
rx = fdstream (msg_sock)->Reply ;

InitMCB (&txmcb, MsgHdr_Flags_preserve, tx, NullPort, 0) ;
InitMCB (&rxmcb, MsgHdr_Flags_preserve, rx, NullPort, 0) ;

txmcb.Data =
rxmcb.Data = buf ;

txmcb.MsgHdr.DataSize = 1 ;
/* synchronise with sender */
PutMsg (&txmcb) ;

#elif defined (SYSTEM_LIB)
/* synchronise with sender */
Write (to_sender, buf, 1, -1) ;
SetFileSize (from_sender, 0) ;

#elif defined (POSIX_LIB)
/* synchronise with sender */
write (1, buf, 1) ;
SetFileSize (fdstream (0), 0) ;

#endif

{
register int i, buf_size ;

for (i = 0, buf_size = 1 ; i < DATA_SIZES ; buf_size = 1 << ++ i)
{

register int j ;

if (i == 16) buf_size - - ; /* 16-bit data size */
#if defined (MSG)

rxmcb.MsgHdr.DataSize =
txmcb.MsgHdr.DataSize = buf_size ;

#endif
for (j = 0 ; j < ITERATIONS ; j ++)
{

#if defined (MSG)
GetMsg (&rxmcb) ;

614 APPENDIX D. MEASURING PERFORMANCE

PutMsg (&txmcb) ;
#elif defined (SYSTEM_LIB)

Read (from_sender, buf, buf_size, -1) ;
Write (to_sender, buf, buf_size, -1) ;

#elif defined (POSIX_LIB)
read (0, buf, buf_size) ;
write (1, buf, buf_size) ;

#endif
}

}
}

#if defined (MSG)
close (msg_sock) ;

#endif
}
exit (0) ;

}

Program 2: In-line assembler macros

#! /helios/bin/cdl
Communication performance measuring cdl script
component p05
{

code /Cluster/perf/directIO;
puid /Cluster/05;

}
component p06
{

code /Cluster/perf/directIO;
puid /Cluster/06;

}
component p07
{

code /Cluster/perf/directIO;
puid /Cluster/07;

}
prev next
p05 2 1
p06 3 2
p07 0 3
directIO <prev> <next> <position>
position : 0 = start, 1 = intermediate, 2 = end

p07 0 3 2 ˆˆ p06 3 2 1 ˆˆ p05 2 1 0

/*
- - Direct Link Usage

615

- - directIO <prev> <next> <position>
- - <prev> : link to prev node (0..3)
- - <next> : link to next node (0..3)
- - <position> : position in pipe (first (0), intermediate (1), last (2))
- -
- - FIRST_NODE INTER_NODE LAST_NODE
- - __|__ __|__ __|__
- - __| |_____ ... _____| |_____ ... _____| |__
- - |_____|next prev|_____|next prev|_____|
- - | | |
- -
- - Note : message pipelining not utilised

*/

#include <stdio.h>
#include <asm.h>
#include <chanio.h>
#include <stdlib.h>
#include <syslib.h>
#include <nonansi.h>
#include <link.h>
#include <config.h>

#define MAX_BUF 65536
#define DATA_SIZES 17
#define ITERATIONS 1000

#define FIRST_NODE 0
#define INTER_NODE 1
#define LAST_NODE 2

#define DUMB 0
#define INTELLIGENT 1

#define ALLOC 0
#define FREE 1

#define invalid_link(c) (c < 0) || (c > 3)
#define invalid_pos(p) (p < FIRST_NODE) || (p > LAST_NODE)

void Set_Link_Mode (int, int) ;

void Set_Link_Usage (int, int) ;

int main (int argc, char **argv)
{

int link_next, link_prev, node_position ;
char *buf ;

if (argc != 4)
{
fprintf (stderr, "Usage: directIO <prev> <next> <position>\n") ;
exit (1) ;

616 APPENDIX D. MEASURING PERFORMANCE

}

unless (buf = (char *) Malloc (MAX_BUF))
{
fprintf (stderr, "Insufficient memory to create buffer\n") ;
exit (1) ;

}

link_prev = atoi (argv [1]) ;
link_next = atoi (argv [2]) ;
node_position = atoi (argv [3]) ;

if ((invalid_link (link_next)) || (invalid_link (link_prev)))
{
fprintf (stderr, "Invalid link specification\n") ;
exit (1) ;

}

if (invalid_pos (node_position))
{
fprintf (stderr, "Invalid node position\n") ;
exit (1) ;

}

/* reconfigure links to Dumb mode and allocate for direct use */
if (node_position != FIRST_NODE)
{
Set_Link_Mode (link_prev, DUMB) ;
Set_Link_Usage (link_prev, ALLOC) ;

}
if (node_position != LAST_NODE)
{
Set_Link_Mode (link_next, DUMB) ;
Set_Link_Usage (link_next, ALLOC) ;

}

switch (node_position)
{
/* -- first -- */
case FIRST_NODE :
{

register int i, buf_size ;

printf ("Direct Link I/O\n") ;
printf ("%s %18s %18s %18s\n", "Msg Size (bytes)",

"Time (usecs)", "Bytes/sec", "Kbytes/sec") ;

buf_size = 1 ;
/* synchronise with LAST_NODE */
link_in_data (link_next, buf, buf_size) ;

for (i = 0, buf_size = 1 ; i < DATA_SIZES ; buf_size = 1 << ++ i)
{

617

register int j ;
int start ;
float time, rate ;

if (i == 16) buf_size - - ;
start = _cputime () ;

for (j = 0 ; j < ITERATIONS ; j ++)
{
/* send to & receive from next node */
link_out_data (link_next, buf, buf_size) ;
link_in_data (link_next, buf, buf_size) ;

}
time = (_cputime () - start) * 10000 ; /* usecs */
time /= (2 * ITERATIONS) ;
rate = (buf_size / time) * OneSec ; /* bytes/sec */
printf ("%15d %18d %19d %18d\n",

buf_size, (int) time,
(int) rate, (int) (rate / 1024)) ;

}
}
break ;
/* -- intermediate --- */
case INTER_NODE :
{

register int i, buf_size ;

buf_size = 1 ;
/* synchronise FIRST_ & LAST_NODE */
link_in_data (link_next, buf, buf_size) ;
link_out_data (link_prev, buf, buf_size) ;

for (i = 0, buf_size = 1 ; i < DATA_SIZES ; buf_size = 1 << ++ i)
{

register int j ;

if (i == 16) buf_size - - ;

for (j = 0 ; j < ITERATIONS ; j ++)
{
/* receive from previous and send to next */
link_in_data (link_prev, buf, buf_size) ;
link_out_data (link_next, buf, buf_size) ;
/* receive from next and send to previous */
link_in_data (link_next, buf, buf_size) ;
link_out_data (link_prev, buf, buf_size) ;

}
}

}
break ;
/* -- last --- */
case LAST_NODE :
{

618 APPENDIX D. MEASURING PERFORMANCE

register int i, buf_size ;

buf_size = 1 ;
/* synchronise with FIRST_NODE */
link_out_data (link_prev, buf, buf_size) ;

for (i = 0, buf_size = 1 ; i < DATA_SIZES ; buf_size = 1 << ++ i)
{

register int j ;

if (i == 16) buf_size - - ;

for (j = 0 ; j < ITERATIONS ; j ++)
{
/* receive from and send to previous node */
link_in_data (link_prev, buf, buf_size) ;
link_out_data (link_prev, buf, buf_size) ;

}
}

}
break ;

}

/* free links and reconfigure to Intelligent mode */
if (node_position != FIRST_NODE)
{
Set_Link_Usage (link_prev, FREE) ;
Set_Link_Mode (link_prev, INTELLIGENT) ;

}
if (node_position != LAST_NODE)
{
Set_Link_Usage (link_next, FREE) ;
Set_Link_Mode (link_next, INTELLIGENT) ;

}
exit (0) ;

}

/* -- set link mode and usage -- */

void Set_Link_Mode (int link_id, int mode)
{

struct LinkConf link_conf ;

link_conf.Id = link_id ;

if (mode == DUMB)
{
link_conf.Mode = Link_Mode_Dumb ;
link_conf.State = Link_State_Dumb ;

}
else /* INTELLIGENT */
{
link_conf.Mode = Link_Mode_Intelligent ;

619

link_conf.State = Link_State_Running ;
}

if (Configure (link_conf) != 0)
{
fprintf (stderr, "Could not configure link %d\n", link_id) ;
exit (1) ;

}
}

/* -- */

void Set_Link_Usage (int link_id, int mode)
{

int status = 0 ;

if (mode == ALLOC)
{
while (status == 0)
{

fprintf (stderr, "Trying to allocate link %d ...\n", link_id) ;
status = AllocLink (link_id) ;

}
}
else /* FREE */
{
if (FreeLink (link_id) != 0)
{

fprintf (stderr, "Can’t free link %d\n", link_id) ;
exit (1) ;

}
}

}

620 APPENDIX D. MEASURING PERFORMANCE

Performance measurements

The rates of data transmission obtained from the test programs used to evaluate com-
munications performance are given in the following tables. The programs were de-
signed to measure the time taken to transmit messages between a sender and a receiver
task. These tasks were placed on processors separated by varying numbers of interme-
diate nodes. The programs were compiled using version 2.01 of the Helios C compiler,
and run under Helios version 1.2.1. The hardware environment comprised a directly
linked pipeline of 20MHz IMS T800C-G20S Transputers, each having access to 1
Mbyte of 4 cycle (200 ns) external RAM. The links speeds of the processors were set
at 20 Mbits/second.

The rates of transmission are expressed in Kbytes/second, and are given with re-
spect to the message size (in bytes), and the number of intermediate links through
which the messages were routed. The results are presented separately for each respec-
tive level of communication:

1. Direct link usage using assembler macros.

2. Message passing primitives (GetMsg() and PutMsg()).

3. System library routines (Read() and Write()).

4. Posix library routines (read() and write()).

Direct link usage

Size Number of intermediate links
(bytes) 0 1 2 3 4 5 6 7

1 - 195 97 65 48 39 32 27
2 - 195 130 130 78 65 55 48
4 - 781 260 195 130 111 86 86
8 - 781 390 312 223 156 142 130

16 - 1562 520 390 284 240 195 156
32 - 1562 694 446 328 271 223 195
64 - 1562 735 520 378 304 255 219

128 - 1666 833 531 403 324 268 229
256 - 1724 847 555 416 333 277 239
512 - 1724 854 568 423 338 283 241

1024 - 1724 858 571 427 341 285 244
2048 - 1724 862 575 429 343 286 245
4096 - 1727 863 575 430 344 287 246
8192 - 1729 864 576 430 344 288 246

16384 - 1730 865 576 430 344 287 246
32768 - 1731 865 576 430 345 287 246
65535 - 1731 865 577 430 345 287 246

621

Message passing primitives
Size Number of intermediate links

(bytes) 0 1 2 3 4 5 6 7
1 11 7 5 3 3 2 2 1
2 21 15 10 7 6 5 4 3
4 45 30 20 15 12 10 8 7
8 91 60 40 30 24 20 17 15

16 173 115 80 60 47 40 34 30
32 328 215 152 115 93 78 67 59
64 657 390 260 204 171 145 126 111

128 1250 641 384 324 274 240 215 192
256 2173 925 500 446 396 359 328 304
512 3571 1204 746 645 581 523 476 436

1024 5263 1418 1015 925 843 778 727 680
2048 6666 1562 1223 1111 1010 932 873 809
4096 7920 1646 1340 1271 1197 1136 1086 1038
8192 8648 1689 1410 1369 1313 1275 1243 1210

16384 9090 1711 1447 1425 1384 1359 1339 1319
32768 9343 1723 1466 1454 1421 1405 1393 1379
65535 9453 1729 1475 1468 1440 1428 1419 1409

System library routines
Size Number of intermediate links

(bytes) 0 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1
4 2 2 2 2 2 2 2 2
8 4 5 5 5 4 4 4 4

16 9 11 10 10 9 9 9 9
32 19 22 21 20 19 18 18 18
64 37 44 42 40 38 37 36 35

128 75 87 82 78 74 70 68 67
256 148 170 151 140 141 132 125 117
512 288 298 265 250 257 242 229 217

1024 529 457 381 347 319 295 279 264
2048 1005 724 610 557 508 470 444 418
4096 1818 1021 866 810 756 712 679 648
8192 3059 1287 1095 1047 996 955 925 896

16384 4630 1478 1260 1228 1184 1153 1130 1108
32768 6243 1596 1364 1344 1307 1285 1270 1254
65535 7467 1657 1415 1403 1372 1354 1346 1335

622 APPENDIX D. MEASURING PERFORMANCE

Posix library routines
Size Number of intermediate links

(bytes) 0 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1
4 2 2 2 2 2 2 2 2
8 4 5 5 5 4 4 4 4

16 9 11 10 10 9 9 9 9
32 18 21 20 20 19 18 18 18
64 37 43 41 39 38 36 35 35

128 74 86 81 77 73 69 68 66
256 145 168 149 139 140 131 123 117
512 283 294 263 248 255 240 227 214

1024 520 454 379 346 317 294 277 263
2048 987 720 607 554 507 469 442 416
4096 1793 1019 863 808 753 709 677 647
8192 3018 1284 1092 1047 993 953 924 895

16384 4597 1475 1259 1227 1184 1151 1129 1106
32768 6213 1595 1363 1343 1307 1285 1270 1254
65535 7441 1657 1415 1403 1372 1356 1345 1335

	The Helios Operating System
	COPYRIGHT
	ACKNOWLEDGEMENTS
	CONTENTS
	Chapter 1: Introduction
	1.3 Architectural improvements
	1.4 Parallelism
	1.5 The Transputer
	1.6 Helios
	1.7 Target hardware
	1.8 About this book
	1.2 Actual requirements
	1.1 Hardware limitations

	Chapter 2: Networks
	2.1 Introduction
	2.2 The components of Helios
	2.2.5 The Init program
	2.2.6 The network server
	2.2.7 The Session Manager
	2.2.8 The Task Force Manager
	2.2.9 Summary of the bootstrap process
	2.2.2 The Helios naming scheme
	2.2.3 The I/O server
	2.2.4 The Nucleus
	2.2.1 A simple network

	2.3 Some example networks
	2.3.15 Networked mainframe computers
	2.3.14 A mainframe computer
	2.3.13 A large multi-user network
	2.3.12 Two connected single-user networks
	2.3.11 A small multi-user network
	2.3.10 A single-user process control system
	2.3.9 Several single-user systems
	2.3.8 A single-user supercomputer
	2.3.7 A network with configuration hardware
	2.3.6 A fairly small single-user network
	2.3.5 A small network
	2.3.4 Workstation for developing parallel software
	2.3.3 Workstation with I/O processor
	2.3.2 Single-processor workstation
	2.3.1 Single-processor embedded systems

	2.4 The real world
	2.4.1 Different hardware
	2.4.2 Inmos
	2.4.3 Parsytec
	2.4.4 Telmat
	2.4.5 Meiko
	2.4.6 Handling different hardware
	2.4.7 Mapping task forces onto a network
	2.4.8 Possible topologies
	2.4.9 Task force connectivity
	2.4.10 Other considerations
	2.4.11 Summary

	2.5 Network commands
	2.6 Configuration files
	2.6.1 host.con
	2.6.2 initrc
	2.6.3 .login, .cshrc, and .logout
	2.6.4 nsrc
	2.6.5 Network resource maps

	2.7 Configuring networks
	2.7.1 Single-processor workstation
	2.7.2 Workstation with I/O processor
	2.7.3 Workstation for developing parallel software
	2.7.4 A small network
	2.7.5 A fairly small single-user network
	2.7.6 A network with configuration hardware
	2.7.7 A single-user supercomputer
	2.7.8 Several single-user systems
	2.7.9 A process control system
	2.7.10 A small multi-user network
	2.7.11 Two connected single-user networks
	2.7.12 A large multi-user network
	2.7.13 A mainframe computer
	2.7.14 Networked mainframe computers

	Chapter 3: Programming under Helios
	3.1 Simple programming
	3.1.1 A simple program
	3.1.2 Driver options
	3.1.3 Multiple modules
	3.1.4 Make
	3.1.5 Common suffixes

	3.2 More advanced programming
	3.2.1 Libraries
	3.2.2 Other tools
	3.2.3 Manual compilation

	3.3 Servers
	3.3.1 Posix facilities
	3.3.2 System library facilities
	3.3.3 File systems
	3.3.4 The /window server
	3.3.5 The /rs232 server
	3.3.6 The centronics server
	3.3.7 Mouse and keyboard servers
	3.3.8 Networking servers
	3.3.9 /tasks and /loader
	3.3.10 The null server
	3.3.11 The error logger
	3.3.12 Real-time clock
	3.3.13 The lock server
	3.3.14 Raw disc servers
	3.3.15 The X window system
	3.3.16 Pipe and socket I/O

	3.4 Protection: a tutorial

	Chapter 4: CDL
	4.1 The CSP model for parallel programming
	4.2 The CDL language
	4.2.1 How to execute task forces
	4.2.2 The task force definition
	4.2.3 Allocation of streams
	4.2.4 Component declarations
	4.2.5 Replicators
	4.2.6 Replicated component declarations
	4.2.7 The environment
	4.2.8 Arguments and replicators
	4.2.9 Signals and termination

	4.3 An example as easy as PI
	4.3.1 A simple problem
	4.3.2 How to parallelise the problem
	4.3.3 The ring
	4.3.4 A farm topology
	4.3.5 Different levels of communication
	4.3.6 More about pipe I/O
	4.3.7 Running the task force
	4.3.8 FORTRAN task forces
	4.3.9 Pascal task forces

	4.4 CDL farms and load balancing
	4.4.1 A simple farm
	4.4.2 A simple load balancer
	4.4.3 More about packets
	4.4.4 Advanced farms

	4.5 Odds and ends
	4.5.1 Communication versus computation
	4.5.2 Problems with worker components
	4.5.3 Parallel servers

	Chapter 5: Compatibility
	5.1 Introduction
	5.2 Unix compatibility
	5.3 File handle sharing
	5.4 fork()
	5.5 Signals
	5.6 Process identifiers
	5.7 User and group identifiers
	5.8 BSD compatibility
	5.9 Porting techniques
	5.10 Multi-threaded library access

	Chapter 6: Communication and performance
	6.1 Communication
	6.1.1 Helios overview
	6.1.2 Pipes
	6.1.3 Sockets
	6.1.4 Message passing

	6.2 Performance
	6.2.1 Test conditions
	6.2.2 Computational benchmarks
	6.2.3 Communication benchmarks
	6.2.4 Obtaining performance data from Helios

	Chapter 7: The Resource Management library
	7.1 Introduction
	7.2 The Resource Management library
	7.2.1 The abstract model

	7.3 Outline of the library calls
	7.3.1 Programming conventions
	7.3.2 Building a network
	7.3.3 Examining a network
	7.3.4 Obtaining a network
	7.3.5 Constructing a task force
	7.3.6 Examining a task force
	7.3.7 A program’s environment
	7.3.8 Executing a task
	7.3.9 Executing a task force
	7.3.10 Mapping a task force
	7.3.11 Modifying a network
	7.3.12 File I/O
	7.3.13 Miscellaneous
	7.3.14 Error handling

	7.4 Example programs
	7.5 Owners
	7.6 Mappipe

	Chapter 8: The I/O server
	8.1 Introduction
	8.2 The role of the I/O server
	8.3 I/O in more conventional machines
	8.3.1 Transputer hardware
	8.3.2 The role of the I/O server

	8.4 The I/O server options
	8.4.1 The command line
	8.4.2 Debug options
	8.4.3 The host.con file
	8.4.4 Root Transputer bootstrap
	8.4.5 Special actions
	8.4.6 Debugging facilities
	8.4.7 The built-in debugger

	8.5 The PC I/O server
	8.5.1 Hardware
	8.5.2 Special keys
	8.5.3 File I/O
	8.5.4 Multiple windows
	8.5.5 The error logger
	8.5.6 The clock device
	8.5.7 X window system support
	8.5.8 Serial ports
	8.5.9 Parallel ports and printers
	8.5.10 The rawdisk device
	8.5.11 The /pc device

	8.6 The Sun I/O server
	8.6.1 Introduction
	8.6.2 Hydra
	8.6.3 Hydramon
	8.6.4 Supported hardware
	8.6.5 Which configuration do I need ?
	8.6.6 Other host.con link I/O options
	8.6.7 The windowing interface
	8.6.8 Background operation
	8.6.9 File I/O
	8.6.10 The error logger
	8.6.11 The clock

	Chapter 9: The Kernel
	9.1 Kernel data structures
	9.1.1 The root structure
	9.1.2 The configuration structure

	9.2 Message passing
	9.2.1 Message ports
	9.2.2 Message structure
	9.2.3 Message passing functions
	9.2.4 Inter-processor message passing

	9.3 Links
	9.3.1 LinkInfo
	9.3.2 Link protocol
	9.3.3 Dumb link access

	9.4 Tasks and threads
	9.4.1 Tasks
	9.4.2 Threads

	9.5 Timeout handling
	9.6 Semaphores
	9.7 Memory management
	9.8 Events

	Chapter 10: The System libraries
	10.1 The System library
	10.1.1 System library data structures
	10.1.2 System library flags
	10.1.3 Open modes
	10.1.4 Object and stream manipulation
	10.1.5 The environment
	10.1.6 Fault tolerance and recovery
	10.1.7 Memory management
	10.1.8 DES encryption support

	10.2 Utility library
	10.2.1 C library functions
	10.2.2 2-D block move
	10.2.3 Thread creation
	10.2.4 Using fast RAM
	10.2.5 Debugging support

	Chapter 11: The System servers
	11.1 The Processor Manager
	11.1.1 The Helios naming scheme
	11.1.2 The I/O controller
	11.1.3 Distributed search protocol
	11.1.4 The Task Manager
	11.1.5 Debugging system control messages

	11.2 The Loader
	11.2.1 Code management
	11.2.2 Error detection
	11.2.3 Loader protocol

	Chapter 12: Writing servers
	12.1 Introduction
	12.2 Helios servers
	12.2.1 Unix daemons
	12.2.2 Helios servers
	12.2.3 Message passing
	12.2.4 The General Server Protocol
	12.2.5 The Server library

	12.3 A /Lock server
	12.3.1 Header files
	12.3.2 Program startup
	12.3.3 Initialising the directory tree
	12.3.4 Registering the server
	12.3.5 The dispatcher
	12.3.6 Cleaning up
	12.3.7 Using the lock server
	12.3.8 The Open routine
	12.3.9 The Create routine
	12.3.10 The Delete routine

	12.4 More details
	12.4.1 Protection
	12.4.2 The Server library

	12.5 The /include disc
	12.5.1 /include disc preamble
	12.5.2 Initialising the /include disc
	12.5.3 Dispatching
	12.5.4 The Open handler
	12.5.5 Read requests
	12.5.6 Seek requests
	12.5.7 Private protocols for debugging
	12.5.8 A RAM disc

	12.6 Device drivers
	12.6.1 The /keyboard server
	12.6.2 Example device drivers
	12.6.3 The DevInfo file

	12.7 Standalone servers
	12.7.1 The dispatcher
	12.7.2 Name handling without protection
	12.7.3 Name handling with protection
	12.7.4 Directory reads

	Chapter 13: General Server Protocol
	13.1 Function and return codes
	13.2 GSP fundamentals
	13.3 Message formats
	13.4 Object types
	13.5 Object flags
	13.6 Indirect operations
	13.6.1 Open
	13.6.2 Create
	13.6.3 Locate
	13.6.4 ObjectInfo
	13.6.5 ServerInfo
	13.6.6 Delete
	13.6.7 Rename
	13.6.8 Link
	13.6.9 Protect
	13.6.10 SetDate
	13.6.11 Refine
	13.6.12 CloseObj
	13.6.13 Revoke

	13.7 Direct operations
	13.7.1 Read
	13.7.2 Write
	13.7.3 GetSize
	13.7.4 SetSize
	13.7.5 Close
	13.7.6 Seek
	13.7.7 GetInfo
	13.7.8 SetInfo
	13.7.9 EnableEvents
	13.7.10 Select
	13.7.11 Abort

	13.8 Task control messages
	13.8.1 Create
	13.8.2 Delete
	13.8.3 SendEnv
	13.8.4 Signal
	13.8.5 ProgramInfo

	Chapter 14: Protection
	14.1 Protection mechanisms
	14.2 Helios capabilities
	14.3 Access matrices
	14.4 Capabilities in programs
	14.5 Saving capabilities
	14.6 File system protection
	14.7 Processor protection

	Chapter 15: Sockets and pipes
	15.1 Sockets
	15.1.1 Posix-level calls
	15.1.2 System library support
	15.1.3 GetSocketInfo
	15.1.4 Message formats

	15.2 The HELIOS domain
	15.3 Pipes
	15.3.1 Pipe server
	15.3.2 Pipe connection protocol
	15.3.3 Pipe data transfer protocol

	Chapter 16: Program representation and calling conventions
	16.1 Module tables
	16.1.1 History
	16.1.2 The BCPL global vector
	16.1.3 Module tables

	16.2 Calling convention
	16.2.1 C calling convention
	16.2.2 An example

	16.3 Resident libraries
	16.3.1 Slot numbers
	16.3.2 Compiling the sources
	16.3.3 The library assembler file
	16.3.4 makefile

	16.4 Device drivers
	16.5 The Nucleus
	16.6 Program representation
	16.6.1 Type codes
	16.6.2 Modules
	16.6.3 Resident library references
	16.6.4 Programs
	16.6.5 Resident libraries
	16.6.6 Embedded information

	16.7 Nucleus structure

	APPENDIX
	A - Options: debugging and configuration file
	B - Options: debugging and configuration file
	C - Allocation of streams
	D - Measuring performance

