

TRANSTECH

Parallel Systems _____

TMB15 User Manual

Ref: 15 M 711

Document reference number 15 M 711.

Copyright © 1997 Transtech Parallel Systems.

This publication is protected by Copyright Law, with all rights reserved. No part of this publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual, electric, electronic, mechanical, chemical, optical or otherwise, without prior written permission from Transtech Parallel Systems.

Transtech reserves the right to alter specifications without notice, in line with its policy of continuous development. Transtech cannot accept responsibility to any third party for loss or damage arising out of the use of this information.

Transtech acknowledges all registered trademarks.

Transtech Parallel Systems Corp 20 Thornwood Drive Ithaca NY 14850-1263 USA	Transtech Parallel Systems Ltd 17-19 Manor Court Yard Hughenden Avenue High Wycombe Bucks, HP13 5RE United Kingdom
tel: 607 257 6502	tel: +44 (0) 1494 464303
fax: 607 257 3980	fax: +44 (0) 1494 463686
transtech@transtech.com	support@transtech.co.uk
http://www.transtech.com	http://www.transtech.co.uk

Table of Contents

Chapt	er 1 About this manual	1
Chapt	er 2 Installation	3
	2.1 Before You Start	
	2.2 Configuration	4
	2.2.1 Switches	
	2.2.2 VME Board Address	5
	2.3 Installing the TMB15	6
	2.4 Software	6
Chapt	er 3 The TMB15	7
	3.1 Overview	
	3.2 Hardware Description	10
	3.2.1 Front Panel Switches: SW1	
	3.2.2 Front Panel Switches: SW2	
	3.2.3 Front Panel Switches: SW3	
	3.2.4 SW4 Switch Bank	
	3.2.5 VME Address Switches	
	3.3 TMB15 Control Registers	
	3.3.1 LED Register	
	3.3.2 Resetting the Interface Transputer	
	3.4 The C011	
	3.5 VME Interface	
	3.5.1 VME A32 Mode	
	3.5.2 VME A24 Mode	
	3.6 Interface Transputer Memory Map	
	3.7 Flash ROM	
	3.8 Link Architecture	
	3.9 Configuration Architecture	
	3.10 System Services Architecture	

Chapter 4 Solaris 2 Software Installation	37
4.1 FORCE CPU-3CE	37
4.2 FORCE CPU-5V	38
4.3 Installation	38
4.4 Before Continuing	39
4.5 Configuration File	39
4.6 Confidence Test	42
4.7 Environment Variables	42

Chapter 5 Support Software

5.1 Device Driver	45
5.2 TMB15 Firmware	47
5.3 TMB15 Examples	
5.3.1 MMS	
5.3.2 c004rst	
5.3.3 flashtst	
5.4 check and iserver	49
5.5 Aserver	
5.6 bootvme	

Chapter 6 Programming the TMB15

6.1 Booting the Interface Transputer	51
6.1.1 Boot from Link	52
6.1.2 Boot from Flash	52
6.1.3 Boot from VME	53
6.2 LED Example	53

Index

51

45

Chapter 1 About this manual

This manual describes the Transtech TMB15 VME transputer module (TRAM) motherboard.

- "Installation" on page 3 gives an overview of the process of installing a TMB15.
- "The TMB15" on page 7 gives a full description of the TMB15 hardware and a reference to all of the user configurable switches and jumpers on the board.
- "Solaris 2 Software Installation" on page 37 describes the process of installing the Solaris 2 software support for the TMB15.
- "Support Software" on page 45 details the supplied software support for the TMB15.
- "Programming the TMB15" on page 51 describes how the TMB15's interface Transputer can be programmed with user's application code.

Please refer to the Transtech *Transputer Motherboard User Manual* for general information on using TRAM modules and TRAM motherboards.

Chapter 2 Installation

CAUTION - STATIC SENSITIVE DEVICES

The TMB15 uses CMOS devices which can be permanently damaged by static discharge. Please observe the following precautions when handling the board:

- Always transport the board in an antistatic box or bag.
- Don't touch any of the components on the board.
- It is recommended that you wear an earthed wrist strap when handling the board. If one is not available, it is recommended that you ground yourself on a metal part of the casing of your VME rack, which will be earthed, before touching any part of the board.

The switches and jumpers referred to in this section can be located on the TMB15 with the aid of figure 4, "TMB15 Board Layout," on page 10. All switches and jumpers are also clearly marked on the TMB15 motherboard itself. Full details of switch settings can be found in section 3.2, "Hardware Description," on page 10.

2.1 Before You Start

Before installing the TMB15 hardware or software, please read this section carefully.

It is recommended that you install the VME controller hardware and software before installing the TMB15. If you wish to use a FORCE CPU-3CE board running Solaris2 to control a TMB15, please follow the instructions in section 4.1, "FORCE CPU-3CE," on page 37.

If you intend to use a TMB15 as a hostlink interface (i.e. to run iserver, check or Inquest using the TMB15 as an interface

between a host and the processor network) then you should install the device driver software for that board.

If you intend to run your own application code on the TMB15's interface Transputer then you should not install the device driver software for that board. You will need another hostlink interface such as a TMB14 or another TMB15 to able to use Inquest (for example) to debug code running on the TMB15's host interface.

2.2 Configuration

2.2.1 Switches

When using a TMB15 as a hostlink interface, the interface Transputer runs code programmed into its flash memory. Thus you should set the front panel switches to the following:

- Config C011 (SW1 UP).
- Boot from ROM (SW2 DOWN).
- Boot from Flash (SW3 UP).

These switch settings are shown in figure1:

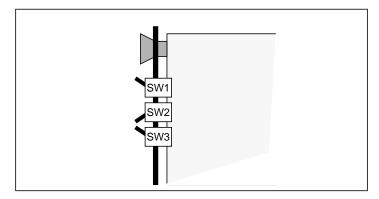


Figure 1. Default Front Panel Switch Settings

The following settings should be used for the on-board switches:

- Use flat mode (SW4.2 OFF) unless TRAM slots 1 to 7 are to be reset using TRAM 0's subsystem pins.
- Enable lock on boot when booting from Flash ROM or VME (SW4.3 OFF, SW4.4 ON).

- 20 MB/s links (SW4.5 OFF) unless 10 MB/s links are required (SW4.5 ON).
- Config to the front panel connector J1 (SW4.6 ON) or to P2 (SW4.6 OFF) as required.
- Disable VME power on reset (SW4.7 OFF).
- Enable the VME interface (SW4.8 OFF).

The default switch settings are shown in figure 2

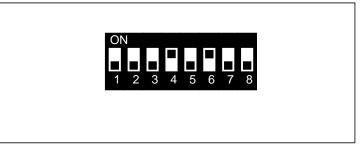


Figure 2. Default SW4 Settings

See 3.2, "Hardware Description," on page 10 for details of the front panel and on-board switches.

2.2.2 VME Board Address

You need to choose a suitable board address for each TMB15 installed into a VME rack. In A32 mode the TMB15 decodes a 16MB region of VME address space. In A24 mode the region is 4MB.

See figure 5, "VME Address Switches," on page 14 for details of how to set the VME board address.

If the TMB15 is to be used in A32 mode, set the top two rotary switches to the eight most significant VME base address bits. A value of 0×08 corresponding to a base address of 0×08000000 is often suitable. Set the bottom rotary switch to $0 \times F$. On the FORCE 3CE, the value 0×00000000 is normally not available as this would clash with the default base address of the 3CE's VME slave memory.

If the TMB15 is to be used in A24 mode, the settings of the top two rotary switches are ignored. Set the bottom rotary switch to a value of 0×0 , 0×1 , 0×2 or 0×3 to set the two most significant bits of the VME base address (i.e. addresses 0×000000 , 0×400000 , 0×800000 or $0 \times c00000$). A value of 0×1 corresponding to a base address of 0×400000 is often suitable. On the FORCE 3CE, the value 0x3 is not available as the last 64K of A24 address space is reserved for A16 mode.

2.3 Installing the TMB15

After configuring the TMB15 hardware, proceed with the following steps to install the TMB15 hardware:

- 1. If you have not done so already, install any required transputer modules onto the TMB15.
- 2. Remove the power to the VME rack.
- 3. Plug the board in and bolt it down.
- 4. Switch on the VME rack.

2.4 Software

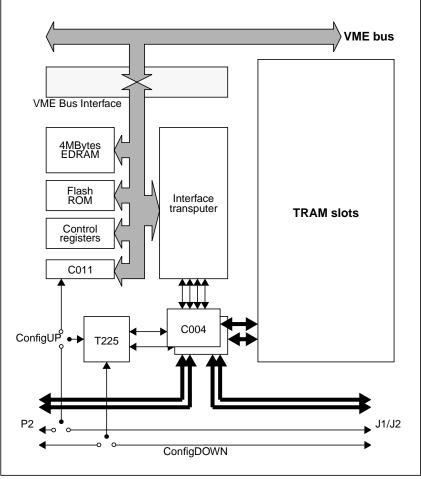
Details of how to install the Solaris 2 software for the TMB15 are given in Chapter 4.

Chapter 3 The TMB15

This chapter describes the TMB15 hardware. The summary below provides a "roadmap" of the sections contained in this chapter to assist quickly locating any reference information needed.

- Section 3.1, "Overview," on page 8 gives an overall description of the TMB15s features and contains a block diagram of the board's architecture.
- Section 3.2, "Hardware Description," on page 10 gives a complete description of all user configurable switches on the TMB15.
- Section 3.3, "TMB15 Control Registers," on page 15 describes the board control registers.
- Section 3.4, "The C011," on page 18 describes the C011 on the TMB15.
- Section 3.5, "VME Interface," on page 19 describes the VME interface. It includes address maps of the TMB15 as seen from the VME bus.
- Section 3.6, "Interface Transputer Memory Map," on page 22 shows the interface transputer memory map.
- Section 3.7, "Flash ROM," on page 23 describes the 128K of Flash ROM fitted on the TMB15.
- Section 3.8, "Link Architecture," on page 23 describes the architecture of the electronic transputer link switches on the TMB15.
- Section 3.9, "Configuration Architecture," on page 28 describes the connectivity of the configuration T225 processor (the processor which sets the electronic link switches).

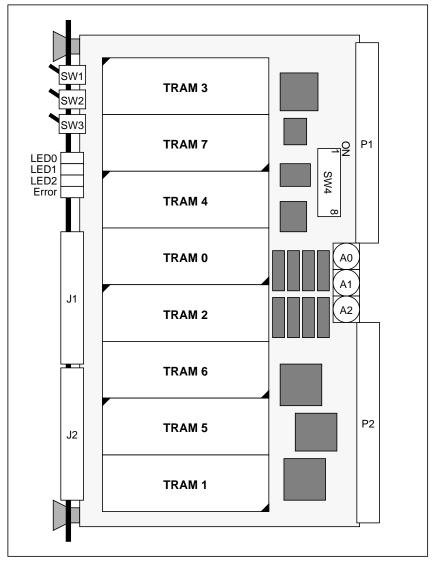
- Section 3.10, "System Services Architecture," on page 29 describes the options for configuring the TRAM subsystem architecture of the TMB15.
- Section 3.11, "Interrupts," on page 30 describes the facilities provided for TMB15 to VME and VME to TMB15 interrupts.
- Section 3.12, "Edge Connector Pinout Details," on page 31 gives detailed pin number information for all the external connectors provided on the TMB15.


For a general introduction to TRAM modules and motherboards please refer to the Transtech *Transputer Motherboard User Manual*.

3.1 Overview

The TMB15 is a combined 8 slot TRAM motherboard and a high performance transputer VME slave. The TMB15 specification is summarized as follows:

- 6U by 160mm VME format board.
- T805 or T425 *interface transputer* with 4MBytes of fast EDRAM memory shared with the VME bus.
- 8 TRAM sites with all links connected to a pair of socketed C004 link crossbars for electronic reconfiguration of the link topology.
- Highly optimized 32bit slave VME interface.
- A24/A32 VME addressing and D32/D16/D08(EO) data transfer support.
- Flexible byte/word swapping memory regions for endian conversion.
- C011 interfaced to both the VME bus and the interface transputer for configuring the C004 switches (via a T225 transputer).
- Front panel connections (J1/J2) for transputer links and subsystem signals.
- P2 connections for transputer links and subsystem signals.
- 3 user programmable LEDs and an Error LED mounted on the front panel.
- Interface transputer boot from flash ROM or shared memory option.
- No components are fitted to the top surface of the board within the TRAM sites.


The VME interface is a highly optimized 32bit slave interface. VME bus writes are posted to give maximum transfer performance from a bus master. The interface also recognizes sequential VME reads from the EDRAM memory and prefetches data whenever possible.

A block diagram of the TMB15 is shown in figure 3.

Figure 3. TMB15 Block Diagram

3.2 Hardware Description

The TMB15 board layout is shown in figure 4.

Figure 4. TMB15 Board Layout

3.2.1 Front Panel Switches: SW1

SW1 determines the ConfigUP link taken to the configuration T225 processor. The choices to select from are: the C011, J1 ConfigUP or P2 ConfigUP. Details are given in table 1. For more information on controlling the TMB15 configuration architecture, see section 3.9, "Configuration Architecture," on page 28.

SW1	SW4.6	ConfigUP	
UP	any	C011	
DOWN	ON	J1 ConfigUP	
DOWN	OFF	P2 ConfigUP	

Table 1: SW1

3.2.2 Front Panel Switches: SW2

SW2 determines whether the interface transputer will attempt to boot from memory or from link. When the switch is set to boot the interface transputer from memory, the actual memory bank used is determined by SW3. Details are given in table 2.

Table	2:	SW2
-------	----	-----

SW2	Interface transputer boots from:
UP	Link
DOWN	Memory (as determined by SW3)

3.2.3 Front Panel Switches: SW3

SW3 determines the memory bank that the interface transputer will boot from when it is set to "boot from memory mode". The choices to select from are either EDRAM or Flash ROM. Details are given in table 3. For more information on setting the interface transputer to boot from memory mode, see the description of SW2. For more infor-

mation on the effect of this switch on the interface transputer, see section 3.6, "Interface Transputer Memory Map," on page 22.

SW3	Interface transputer boots from:
UP	Flash ROM
DOWN	EDRAM

Table 3: SW3

3.2.4 SW4 Switch Bank

SW4 determines a number of miscellaneous board configuration options. Details are given in table 4.

Switches 4.3 and 4.4 determine whether VME or Transputer lock is asserted when the interface Transputer is booting. When booting from Flash memory, the interface Transputer must have exclusive access to its memory and registers, thus Transputer lock is asserted after reset. When booting from EDRAM memory, VME lock must be asserted after reset so that a program can be written into memory and then executed by the interface Transputer by removing VME lock. When booting from link no locking of the bus is required. The two switches allow complete control over this function, i.e. always on, always off or controlled by SW2. The third option is recommended - SW4.3 OFF, SW4.4 ON.

Switch 4.5 controls the link speeds of all links on the interface transputer and all links on all transputers mounted on the TRAMs in the TRAM sites.

Switch SW4.7 enables the TMB15 to drive the VMEreset whenever the board is powered on. Note that some VME systems do not assert VMEreset for sufficiently long to reset all the components on the TMB15 when the system is powered on. In such systems, you should set the switch to OFF to allow the TMB15 to hold VMEreset active whilst it runs through its power on cycle. If you are sure that the VMEreset is active after power on for long enough to reset all the components on the TMB15, then its is safe to set SW4.7 to ON.

Switch	Setting	Action	More information	
4.2	ON	TRAMs 1 to 7 subsystem services taken from TRAM 0's subsystem port	Section 3.10, "Sys- tem Services	
4.2	OFF	TRAMs 1 to 7 subsystem services taken from the same source fed to TRAM 0	Architecture," on page 29.	
4.3	ON	Never set VME or Transputer lock on reset, regardless of SW4.4 position.	See notes above.	
4.3	OFF	Set VME or Transputer lock on reset depending on SW3, BUT see SW4.4		
4.4	ON	VME or Transputer Lock on reset is set whenever SW2 is DOWN. SW4.3 must be OFF	See notes above.	
4.4	OFF	SW4.3 has complete control over VME and Transputer Lock on reset.		
4.5	ON	Transputer link speed set to 10Mbits/sec	See notes above.	
4.5	OFF	Transputer link speed set to 20Mbits/sec.		
4.6	ON	ConfigDOWN taken to J1. ConfigUP taken from J1 according to SW1	Section 3.9, "Con- figuration Architec-	
4.6	OFF	ConfigDOWN taken to P2. ConfigUP taken from P1 according to SW1	ture," on page 28	
4.7	ON	Do not drive VMEreset on power up	See notes above.	
4.7	OFF	Drive VMEreset on power up		
4.8	ON	Disable the VME interface		
4.8	OFF	Enable the VME interface		

Table 4: SW4

3.2.5 VME Address Switches

The VME address switches A0, A1 and A2 determine both the TMB15 VME address and whether the board is in A24 address mode or A32 address mode.

Switches A0 and A1 select the top 8bits of the board's A32 mode address. In A32 mode the TMB15 occupies 16MBytes of the VME memory map. Switches A0 and A1 select one of the 256 possible such 16MByte aligned blocks the board could occupy.

Switch A2 selects the top 2 bits of the board's A24 mode address. In A24 mode the TMB15 occupies 4MBytes of the VME address map. Switch A2 selects which of the 4 possible such 4MByte aligned blocks the board could occupy.

Details are given in figure 5.

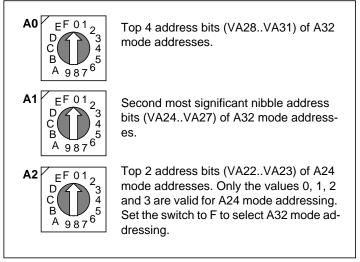


Figure 5. VME Address Switches

3.3 TMB15 Control Registers

The TMB15 control registers are accessible both by the VME bus and by the interface transputer. A description of all of the control registers is given in table 5. For each register, the table shows:

- *Group*. Registers with related functionality are assigned to groups. Elsewhere in this manual, a reference to a register group should be taken as a reference to all the registers in that register group.
- Register Name.
- *Register Function.* A brief description of what the register is used for. Sometimes this will be a reference to another section in the manual which discusses that area of functionality in greater detail.
- Address. For VME accesses the address given is relative to the TMB15 VME base address set by switches A0-A2. See section 3.5, "VME Interface," on page 19 for more information on the memory map of the TMB15 as seen from the VME bus. The registers are accessed as the least significant byte in each word, thus add 3 to the offset address if byte-wide accesses are made to the registers from VME.

For accesses by the interface transputer, the address given is the absolute byte address of the register. Since the transputer address space is signed, the control registers appear in the middle of the interface transputer's memory address map (see section 3.6, "Interface Transputer Memory Map," on page 22 for more information).

 Bits. Only the bits specified in this column are valid. When writing to a register set all other bits to 0. When reading from a register, mask all other bits. Registers are either write-only, read-only or read-write, designated in the table by (W), (R) and (RW) respectively.

For single bit registers, writing the register bit to the value 1 corresponds to asserting the signal associated with the register. Writing the register bit to 0 corresponds to de-asserting the signal associated with the register. Similarly, reading the register bit as a 1 implies that the signal associated with the register is asserted.

Group	Register Name	Register Function	Address	Bits
TRAM subsystem registers	Tram_Reset	Possible source of TRAM subsystem services. See section 3.10, "System Ser-	00	D0 (W)
	Tram_Error		00	D0 (R)
	Tram_Analyse	vices Architecture," on page 29 for details.	04	DO (W)
Interface	Tif_Reset	Possible source of inter-	10	D0 (W)
transputer registers	Tif_Analyse	face transputer subsystem services. See section 3.10,	14	D0 (W)
regiotoro	Tif_Error	"System Services Architec- ture," on page 29 for details.	18	D0 (R)
	LED	Front panel LEDs	1C	D0-D2 (W)
Bus locking registers	Tif_Lock	Lock memory and registers for the exclusive use of the Interface Transputer	20	D1 (RW)
	VME_Lock	Lock memory and registers for the exclusive use of the VME interface.	24	D1 (RW)
	PAGE	A24 addressing mode page register. See section 3.5, "VME Interface," on page 19 for more details	28	D0-D1 (RW)
Interrupt control registers	Int_Tif	Generates an interrupt to the interface transputer	30	D2 (RW)
	Int_VME	Generates an interrupt to the VME bus	34	D1 (RW)
	VME_IRQ_Level	VME interrupt level 1-7. Set to zero to disable VME interrupts	38	D0-D2 (RW)
	C011_Int	Directs C011 interrupts to the interface transputer (asserted) or the VME bus (not asserted)	40	D2 (RW)
	Int_Acknowledge	Acknowledges the Trans- puter interrupt enabling an event on the next interrupt	44	Any (W)
	Remove_Tif_Lock	VME writing any value to this register forces the removal of the Interface Transputer's bus lock	4C	Any (W)

Table 5: Control Registers

Group	Register Name	Register Function	Address	Bits
Flash ROM registers	Flash_Program	Sets Flash ROM program- ming voltage	50	D1 (W)
	Flash_Bits	Sets the two least signifi- cant bits of the Flash mem- ory address	54	D0-D1 (W)
Interrupt control registers	VME_IRQ_Vector	VME interrupt vector num- ber	60	D0-D7 (RW VME Only)

Table 5: Control Registers

3.3.1 LED Register

Details of the LED register bit assignments are given in figure 6

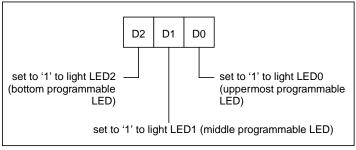


Figure 6. LED Register bit assignments

3.3.2 Resetting the Interface Transputer

When the interface transputer reset register bit is asserted, the next VME access must be a write and will cause the reset to be deasserted. Thus, when using the interface transputer registers to reset the interface transputer from the VME bus, the following sequence should be used:

1. Write any value to the Remove_Tif_Lock register.

This forces the removal of the transputer's bus lock and will also clear the reset if it is asserted.

- 2. Write one to Tif_Reset.
- 3. Write zero to Tif_Reset.

3.4 The C011

The transputer link from the C011 can be taken to the T225 configuration transputer to allow the link topology to be set. For more details on the configuration transputer see section 3.9, "Configuration Architecture," on page 28.

The C011 is used in its mode2 of operation i.e. in C012 compatibility mode. It is accessible both by the VME bus and by the interface transputer. The mapping of the C011 is given in table 6.

For VME accesses the address given is relative to the TMB15 VME base address set by switches A0-A2. See section 3.5, "VME Interface," on page 19 for more information on the memory map of the TMB15 as seen from the VME bus. Remember to add 3 to this address if accessing the C011 in byte-wide mode over VME.

For accesses by the interface transputer, the address given is an absolute byte address. Since the transputer address space is signed, the C011 appears near the middle of the interface transputer's memory address map (see section 3.6, "Interface Transputer Memory Map," on page 22 for more information).

For more information on the use of the registers in the C011, see the SGS documentation for the part.

Register	Address
Read data	70
Write data	74
Input status	78
Output status	7C

Table 6: C011 Address Mapping

3.5 VME Interface

All of the EDRAM and all the control registers are accessible from the VME bus. The TMB15 supports A32 D32, A32 D16 and A32 D08(EO) accesses, and A24 D32, A24 D16 and A24 D08 (EO) accesses. It does not support A16 accesses. Unaligned cycles are not supported.

To provide the required endian conversion between the VME and transputer data buses the EDRAM is mapped to the VME bus three times. Once with the same byte ordering as seen by the transputer, once with consecutive pairs of 16bit words swapped and once with groups of 4 bytes swapped. This provides the system designer with the option of accessing 16 bit data streams and 8 bit data streams with 32 bit access cycles and have any necessary byte/word swapping handled in hardware. Details of the byte swapping behavior of the TMB15 are shown in figure 7.

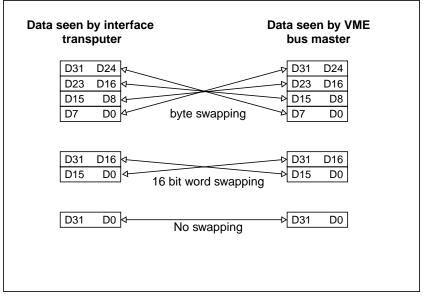


Figure 7. TMB15 Byte Swapping Behavior

In circumstances where both the VME bus and the interface transputer are competing for access to the EDRAM, arbitration is performed on a rotating basis for each such access. This guarantees that neither the VME bus nor the interface transputer can lock the other out of the EDRAM for more than one memory cycle.

3.5.1 VME A32 Mode

In A32 address mode the TMB15's VME base address is set by address switches A0, A1 and A2. See section 3.2.5, "VME Address Switches," on page 14 for details of these switches. The 16MByte VME bus address map for the TMB15 A32 address mode is shown in figure 8.

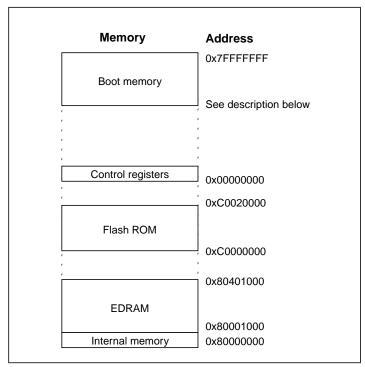
Memory	Address
EDRAM image (no swapping)	board base + 0xC00000
EDRAM image (16bit word swapped)	board base + 0x800000
EDRAM image (byte swapped)	board base + 0x400000
Control registers	board base + 0x000000

Figure 8. TMB15 VME Address Map (A32 addressing)

3.5.2 VME A24 Mode

In A24 address mode the TMB15's VME base address is set by address switch A2. See section 3.2.5, "VME Address Switches," on page 14 for details of this switch. The 4MByte VME bus address map for the TMB15 A32 address mode is shown in figure 9.

Memory	Address
paged EDRAM image (no swapping)	board base + 0x300000
paged EDRAM image (16bit word swapped)	board base + 0x200000
paged EDRAM image (byte swapped)	board base + 0x100000
Control registers	board base + 0x000000


Figure 9. TMB15 VME Address Map (A24 addressing)

In order to minimize address space occupancy of the TMB15 in A24 address mode, the EDRAM is mapped in 1MByte windows onto the VME bus. Control of which of the 4 possible such windows mapped to the VME bus is set by the PAGE control register, as shown in table 7.

Table 7:	PAGE	Register	Settings
----------	------	----------	----------

PAGE Register Value	EDRAM mapped to VME interface
0	0x000000 - 0x0FFFFF
1	0x100000 - 0x1FFFFF
2	0x200000 - 0x2FFFFF
3	0x300000 - 0x3FFFFF

3.6 Interface Transputer Memory Map

The TMB15 memory map from the perspective of the interface transputer is given in figure 10.

Figure 10. Interface Transputer Memory Map

The boot memory can be either a second mapping of the EDRAM memory or a second mapping of the Flash ROM memory, according to the setting of SW3 (see section 3.2.2, "Front Panel Switches: SW2," on page 11 for the actual switch settings). Note that whether the interface transputer actually attempts to boot from the boot memory depends on the setting of SW2.

When the interface transputer is booting from boot memory, the top of memory should contain a backwards jump instruction to the beginning of the main program.

3.7 Flash ROM

The TMB15 has 128K of Flash ROM fitted. The interface Transputer can load and run a program from this Flash ROM if required. This is how the firmware for the SunOS device driver is run after a reset.

The Flash memory can be accessed from the interface Transputer only. It cannot be accessed from VME. Furthermore, VME accesses to any part of the TMB15's memory map must be disabled when accesses are made to the Flash ROM. Thus the interface transputer bus lock must be asserted either by explicitly writing to the relevant register or automatically after a reset when boot from Flash is selected.

When the transputer lock signal is asserted and the boot from Flash switch is set, the Flash ROM appears in the interface transputer's memory in two places. In the 128K region up to address $0 \times 7 ffffffff$ the Flash ROM appears to be 32 bits wide and is read only. This is the place at which the transputer starts executing in boot from ROM mode.

In the 128K region starting at address $0 \ge 0000000$, the least significant byte of each word accesses one byte of the flash ROM and can be read or written. The actual byte accessed in the word is selected by the contents of the Flash memory LSBs register. This is the region in which Flash memory programming is performed.

The method by which the Flash memory can be programmed is not documented here. Please refer to the manufacturer's documentation for details. The source code of a programming utility flashtst.c is supplied which runs on the interface transputer and can be used either to test or to program the Flash memory.

3.8 Link Architecture

The TMB15 uses two C004 (C004a and C004b) link crossbar switches for electronic reconfiguration of the transputer link topology. Both C004s are socketed, allowing them to be replaced by wired headers for those applications where the link topology is fixed.

The C004s are connected to the 8 TRAM slots, the interface transputer, P2 and J1/J2. They are wired in such a way that for each switched transputer link, the linkIN signal is switched by one C004 and the linkOUT is switched by the other. This slightly unusual "parallel" use of the C004s allows extensive board reconfigurability to be achieved, whilst minimizing the propagation delays (and consequent link bandwidth reduction) which can occur when C004s are wired in "series".

Transputer links are divided into two groups as per table 8. Transputer links in group A can be switched to transputer links in group B. However, transputer links on one group cannot be switched to other transputer links in the same group.

Group A		Group B	
Links	Number of links	Links	Number of links
TRAM links 0	8	TRAM links 2	8
TRAM links 1	8	TRAM links 3	8
Front panel J1, links 0, 1, 2, 3 & 4	5	Front panel J1, links 5, 6, 7, 8 & 9	5
Front panel J2, links 0, 1, 2, 3 & 4	5	Front panel J2, links 5, 6, 7, 8 & 9	5
VME P2, links 0, 1, 2, 3, 4, 5, 9, 10, 11, 12.	10	VME P2, links 6, 7, 8, 13, 14	5
		Interface trans- puter, links 0, 1, 2 & 3	4

Table 8: Link Group Assignments

For example, TRAM links 0 are in group A and TRAM links 3 are in group B. This means that any TRAM link 0 can be switched to any TRAM link 3, but that TRAM links 0 cannot be switched to other TRAM links 0 and TRAM links 3 cannot be switched to other TRAM links 3. Similarly any TRAM link 2 can be connected to any TRAM link 1, but not link 2 to link 2 or link 1 to link1.

If it is essential to connect a link in one group to another link in the same group, then this can be achieved by making a cabled loop back connection on the P2 connector to connect two group A links and then to switch the group A links to be connected to P2.

Some of the transputer links taken to front panel connector J2 are also wired to the VME P2 connector. This overlap allows the TMB15

to be used either in applications where many links are required at the front panel or applications where many links are required at P2. Identical edge connector links are listed in table 9. Under no circumstances should an application attempt to use both the P2 and J2 connections of these links.

J2 Link	P2 Link
J2 Link0	P2 Link1
J2 Link1	P2 Link3
J2 Link2	P2 Link4
J2 Link3	P2 Link5
J2 Link5	P2 Link6
J2 Link6	P2 Link7
J2 Link7	P2 Link8
J2 Link10	P2 Link0
J2 Link11	P2 Link2
J2 Link6 J2 Link7 J2 Link10	P2 Link7 P2 Link8 P2 Link0

Table 9: Edge Link Equivalences

Detailed wiring data for C004a is given in table 10. Detailed wiring data for C004b is given in table 11.

Link	C004a Pin Number	C004a Pin Name	C004a Pin Name	C004a Pin Number	Link
T0 Link0 OUT	12	LinkIN 0	LinkOUT 0	37	T0 Link2IN
T0 Link1OUT	13	LinkIN 1	LinkOUT 1	39	T0 Link3IN
T1 Link0OUT	1	LinkIN 2	LinkOUT 2	38	T1 Link2IN
T1 Link1OUT	24	LinkIN 3	LinkOUT 3	31	T1 Link3IN
T4 Link0OUT	2	LinkIN 4	LinkOUT 4	21	T4 Link2IN
T4 Link10UT	14	LinkIN 5	LinkOUT 5	11	T4 Link3IN
T5 Link0OUT	4	LinkIN 6	LinkOUT 6	22	T5 Link2IN
T5 Link1OUT	25	LinkIN 7	LinkOUT 7	23	T5 Link3IN
T7 Link0OUT	28	LinkIN 8	LinkOUT 8	19	T7 Link2IN
T7 Link10UT	18	LinkIN 9	LinkOUT 9	29	T7 Link3IN
T6 Link0OUT	9	LinkIN 10	LinkOUT 10	10	T6 Link2IN
T6 Link1OUT	8	LinkIN 11	LinkOUT 11	34	T6 Link3IN
T3 Link0OUT	27	LinkIN 12	LinkOUT 12	30	T3 Link2IN
T3 Link1OUT	17	LinkIN 13	LinkOUT 13	36	T3 Link3IN
T2 Link0OUT	7	LinkIN 14	LinkOUT 14	40	T2 Link2IN
T2 Link1OUT	16	LinkIN 15	LinkOUT 15	41	T2 Link3IN
J1 Link0IN	84	LinkIN 16	LinkOUT 16	42	J1 Link5OUT
J1 Link1IN	61	LinkIN 17	LinkOUT 17	48	J1 Link6OUT
J1 Link2IN	83	LinkIN 18	LinkOUT 18	46	J1 Link7OUT
J1 Link3IN	71	LinkIN 19	LinkOUT 19	47	J1 Link8OUT
J1 Link4IN	82	LinkIN 20	LinkOUT 20	54	J1 Link9OUT
P2L1/J2L0	81	LinkIN 21	LinkOUT 21	64	P2/J2 Link5OUT
P2L3/J2L3	60	LinkIN 22	LinkOUT 22	74	P2/J2 Link6OUT
P2L4/J2L2	70	LinkIN 23	LinkOUT 23	63	P2/J2 Link7OUT
P2L5/J2L3	59	LinkIN 24	LinkOUT 24	56	J2 Link8OUT
J2 Link4IN	69	LinkIN 25	LinkOUT 25	75	J2 Link9OUT
P2L0/J2L10	78	LinkIN 26	LinkOUT 26	51	P2 Link27OUT
P2L2/J2L11	68	LinkIN 27	LinkOUT 27	55	P2 Link28OUT
P2 Link9IN	58	LinkIN 28	LinkOUT 28	49	T LinkIN 0
P2 Link10IN	77	LinkIN 29	LinkOUT 29	45	T LinkIN 1
P2 Link11IN	76	LinkIN 30	LinkOUT 30	44	T LinkIN 2
P2 Link12IN	67	LinkIN 31	LinkOUT 31	43	T LinkIN 3

Table 10: C004a Connectivity

	· · · · · · · · ·				
Link source	C004b Pin Number	C004b Pin Name	C004b Pin Name	C004b Pin Number	Link Destination
T0 Link2OUT	12	LinkIN 0	LinkOUT 0	37	T0 Link0IN
T0 Link3OUT	13	LinkIN 1	LinkOUT 1	39	T0 Link1IN
T1 Link2OUT	1	LinkIN 2	LinkOUT 2	38	T1 Link0IN
T1 Link3OUT	24	LinkIN 3	LinkOUT 3	31	T1 Link1IN
T4 Link2OUT	2	LinkIN 4	LinkOUT 4	21	T4 Link0IN
T4 Link3OUT	14	LinkIN 5	LinkOUT 5	11	T4 Link1IN
T5 Link2OUT	4	LinkIN 6	LinkOUT 6	22	T5 Link0IN
T5 Link3OUT	25	LinkIN 7	LinkOUT 7	23	T5 Link1IN
T7 Link2OUT	28	LinkIN 8	LinkOUT 8	19	T7 Link0IN
T7 Link3OUT	18	LinkIN 9	LinkOUT 9	29	T7 Link1IN
T6 Link2OUT	9	LinkIN 10	LinkOUT 10	10	T6 Link0IN
T6 Link3OUT	8	LinkIN 11	LinkOUT 11	34	T6 Link1IN
T3 Link2OUT	27	LinkIN 12	LinkOUT 12	30	T3 Link0IN
T3 Link3OUT	17	LinkIN 13	LinkOUT 13	36	T3 Link1IN
T2 Link2OUT	7	LinkIN 14	LinkOUT 14	40	T2 Link0IN
T2 Link3OUT	16	LinkIN 15	LinkOUT 15	41	T2 Link1IN
J1 Link5IN	84	LinkIN 16	LinkOUT 16	42	J1 Link0OUT
J1 Link6IN	61	LinkIN 17	LinkOUT 17	48	J1 Link1OUT
J1 Link7IN	83	LinkIN 18	LinkOUT 18	46	J1 Link2OUT
J1 Link8IN	71	LinkIN 19	LinkOUT 19	47	J1 Link3OUT
J1 Link9IN	82	LinkIN 20	LinkOUT 20	54	J1 Link4OUT
P2L6/J2L5	81	LinkIN 21	LinkOUT 21	64	P2/J2 Link0OUT
P2L7/J2L6	60	LinkIN 22	LinkOUT 22	74	P2/J2 Link1OUT
P2L8/J2L7	70	LinkIN 23	LinkOUT 23	63	P2/J2 Link2OUT
J2 Link8IN	59	LinkIN 24	LinkOUT 24	56	P2/J2 Link3OUT
J2 Link9IN	69	LinkIN 25	LinkOUT 25	75	J2 Link4OUT
P2 Link13IN	78	LinkIN 26	LinkOUT 26	51	P2/J2 Link10OUT
P2 Link14IN	68	LinkIN 27	LinkOUT 27	55	P2/J2 Link11OUT
T LinkOUT 0	58	LinkIN 28	LinkOUT 28	49	P2 Link23OUT
T LinkOUT 1	77	LinkIN 29	LinkOUT 29	45	P2 Link24OUT
T LinkOUT 2	76	LinkIN 30	LinkOUT 30	44	P2 Link25OUT
T LinkOUT 3	67	LinkIN 31	LinkOUT 31	43	P2 Link26OUT

Table 11: C004b Connectivity

In these tables, the abbreviation Tn stands for TRAM slot n and the abbreviation T stands for the interface transputer.

3.9 Configuration Architecture

The link connections to the T225 on the TMB15 are shown in figure 11 below.

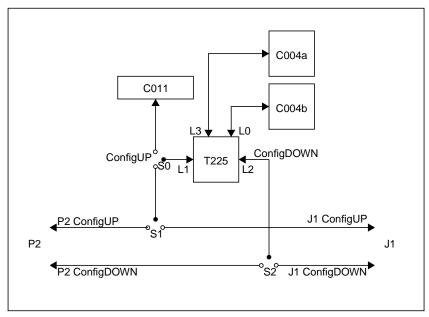


Figure 11. T225 Link Connections

The action of the switches S0, S1 and S2 in the figure are determined by SW1 (on the front panel) and SW4.6, as shown in table 12.

SW1	SW4.6	ConfigUP	ConfigDOWN
UP	ON	C011	J1
UP	OFF	C011	P2
DOWN	ON	J1	J1
DOWN	OFF	P2	P2

Table 12: Configuration Control

3.10 System Services Architecture

The system services architecture (i.e. Reset, Analyse and Error) of the TMB15 is shown in figure 12.

Figure 12. System Services Configuration

For more information on the *TRAM subsystem registers* and the *Interface transputer registers* see section 3.3, "TMB15 Control Registers," on page 15.

The system services delivered to the interface transputer can be taken from the Interface transputer registers accessed from VME logically OR'ed with the UP system services port on P2 or J2.

The system services delivered to TRAM slot 0 is taken from the Interface transputer's system services logically OR'ed with the TRAM subsystem registers accessed from VME or from the Interface transputer. These services are then presented to the DOWN system services port available on P2 or J2.

The system services delivered to TRAM slots 1 to 7 can be taken either from the subsystem port of TRAM slot 0 or from the same source that was fed to TRAM slot0 (DOWN) according to the setting of SW4.2.

The C011 and T225 are reset from the same source fed to TRAM slot 0 (DOWN). The C004 is reset when the T225 writes to its external memory.

A summary of the switch settings is given in table 13.

Switch	Setting	Configuration
SW 4.2	ON	TRAMs 1 to 7 subsystem services taken from TRAM 0's subsystem port
	OFF	TRAMs 1 to 7 subsystem services taken from the same source fed to TRAM 0 (DOWN)

 Table 13: Subsystem Configuration Switches

A power on reset or a VME bus reset cause every device on the TMB15 to be reset (all TRAM slots, the interface transputer, the C011, T225 and the C004).

3.11 Interrupts

A VME interrupt can be asserted or cleared by setting or clearing a bit in the VME interrupt register. The VME interrupt level can be set by writing to VME IRQ level register. The TMB15 responds to VME IACK cycles when an interrupt is outstanding by returning the contents of the VME vector number register.

The interface transputer can be evented by setting a bit in the interface transputer interrupt register. This bit can then be cleared to prevent further events from occurring. After an event, the interface transputer must perform a write to the interface transputer interrupt acknowledge register before waiting for another event.

The C011 can interrupt either the VME bus or the interface transputer depending on the contents of the C011 interrupt destination register.

3.12 Edge Connector Pinout Details

Details of the pinout of the front panel 37 way D type connectors J1 and J2 are given in figure 13, "J1 (top) D-type pinout," on page 32 and figure 14, "J2 (bottom) D-type pinout," on page 33. The link numbers referred to in these tables correspond directly to the link numbers printed on the silk screen of a standard 37 way D-type to transputer link break out board (commonly called a "hedgehog"). This is shown in figure 15, "Connections on J1 (top) break out board," on page 34 and figure 16, "Connections on J2 (bottom) break out board," on page 35.

Details of the P2 connector pinout are given in Table 14, "P2 connector pinout," on page 36.

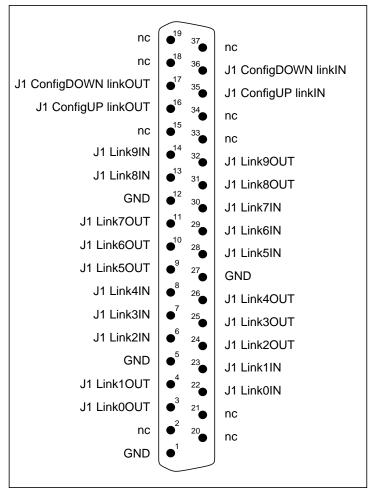


Figure 13. J1 (top) D-type pinout

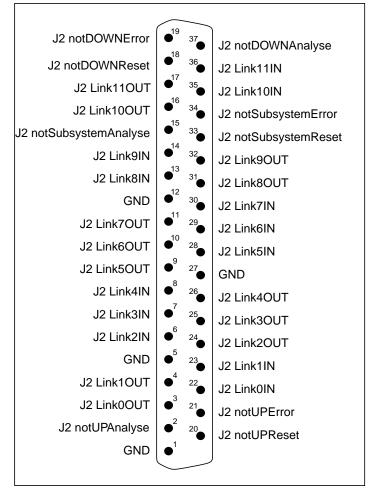


Figure 14. J2 (bottom) D-type pinout

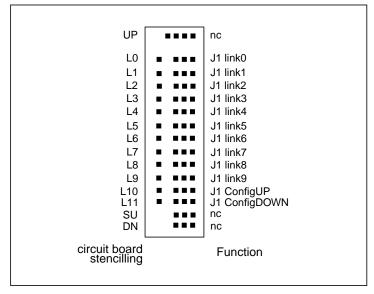


Figure 15. Connections on J1 (top) break out board

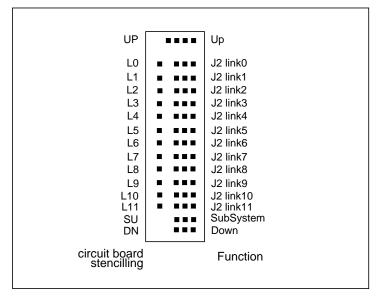


Figure 16. Connections on J2 (bottom) break out board

Pin	а	b	с
1	GND	Vcc	GND
2	P2 ConfigDown LinkIN	GND	P2 ConfigUP LinkOUT
3	P2 ConfigDown LinkOUT	nc	P2 ConfigUP LinkIN
4	GND	VA24	GND
5	P2 Link1OUT	VA25	P2 Link0IN
6	P2 Link1IN	VA26	P2 Link0OUT
7	GND	VA27	GND
8	P2 Link3OUT	VA28	P2 Link2IN
9	P2 Link3IN	VA29	P2 Link2OUT
10	GND	VA30	GND
11	P2 Link4OUT	VA31	P2 Link9IN
12	P2 Link4IN	GND	P2 Link9OUT
13	GND	Vcc	GND
14	P2 Link5OUT	VD16	P2 Link10IN
15	P2 Link5IN	VD17	P2 Link10OUT
16	GND	VD18	GND
17	P2 Link6OUT	VD19	P2 Link11IN
18	P2 Link6IN	VD20	P2 Link110UT
19	GND	VD21	GND
20	P2 Link7OUT	VD22	P2 Link12IN
21	P2 Link7IN	VD23	P2 Link12OUT
22	GND	GND	GND
23	P2 Link8OUT	VD24	P2 Link13IN
24	P2 Link8IN	VD25	P2 Link13OUT
25	GND	VD26	GND
26	nc	VD27	P2 Link14IN
27	nc	VD28	P2 Link14OUT
28	P2 notUPAnalyse	VD29	P2 notDOWNAnalyse
29	P2 notUPReset	VD30	P2 notDOWNReset
30	P2 notUPError	VD31	P2 notDOWNError
31	P2 notSubsystemAnalyse	GND	P2 notSubsystemError
32	P2 notSubsystemReset	Vcc	GND

Table 14: P2 connector pinout

Chapter 4 Solaris 2 Software Installation

This chapter describes the installation of the software for a sparc VME bus-master running the Solaris 2 operating system.

The TMB15 software for Solaris 2 consists of the following:

Configuration File	File listing the installed TMB15 motherboards and their hardware parameters.	
Solaris 2 Device Driver		
	Software to allow applications running under Solaris 2 to access TRAM modules fitted on the TMB15 in a hardware independent manner.	
lserver	Server program allowing programs running on TRAM modules to perform host I/O.	
Check Utilities	Network explorer and test programs.	
Examples	Example MMS wiring files, Transputer and host executables.	

This chapter describes the process by which the Solaris device driver is installed.

4.1 FORCE CPU-3CE

If you are using a FORCE SPARCE CPU-3CE card, please read this section carefully when selecting a VME base address for each TMB15 to be installed.

The FORCE SPARC CPU-3CE card maps a single window of the VME address space into its processor memory map. All of the

addresses used for the installed VME cards must be within this window.

The PROM monitor variable vme-a32map should be set to the top VME address bits of the window. Please see your FORCE documentation for details.

Also note that the 3CE has some slave memory mapped onto the VME bus. By default this is 1MB starting at VME address zero. You must ensure that the any base address chosen for the TMB15 does not conflict with this slave memory.

For a single TMB15 to be controlled by a 3CE in A32 mode, a base address of 0×08000000 is often suitable. This can be achieved by setting the TMB15's switches SW1 to 0, SW2 to 8, and SW3 to F. In this case the value of vme-a32map should be set to zero:

```
ok setenv vme-a32map 0
```

For a single TMB15 to be controlled by a 3CE in A24 mode, a base address of 0×000000 is often suitable. This can be achieved by setting the TMB15's switch SW3 to 0. In this case the value of vme-a32map should be set to 15:

ok setenv vme-a32map 15

4.2 FORCE CPU-5V

When using a TMB15 in conjunction with a FORCE SPARC CPU-5V VME controller in VME A32 mode, you need to enable VME A32 accesses. To do this, set the PROM monitor prompt variable vme-a32-master-ena? as follows:

ok setenv vme-a32-master-ena? true

4.3 Installation

Please install the software supplied with the VME controller or VME interface before installing the Transtech software. Please also install the TMB15 at a suitable base address into the VME rack before proceeding.

The Solaris 2 software for the TMB15 is supplied on the Transtech Transputer Utilities CD-ROM. If the Sun with the installed hardware (e.g. a Force CPU-3CE) itself does not have a CD-ROM drive, then use another Sun with a CD-ROM drive and use NFS to access the CD-ROM from the VME card. For a Sun with a CD-ROM drive, install the software as follows:

- 1. Log into the Sun as root.
- 2. Put the supplied CD-ROM into the CD-ROM drive.
- 3. Use volcheck to mount the CD-ROM:

```
# volcheck cdrom
```

4. Move to the solaris2 directory on the CD-ROM:

cd /cdrom/cdrom0/solaris2

5. Add the Solaris 2 packages:

pkgadd -d 'pwd' all

When prompted for an installation directory, press Return for the default (/opt/transtech) or type in an alternative installation directory.

6. Eject the CD-ROM from the drive:

```
# cd /
# eject cdrom
```

4.4 Before Continuing

To use the TMB15 to communicate with TRAM modules you either need to use the supplied TMB15 device driver and firmware or program the TMB15's interface Transputer yourself.

If you intend to run utilities such as iserver, check e.t.c., then you need to use the TMB15 device driver software. To do this please follow the rest of the installation instructions given in this chapter.

If you intend to program the TMB15's interface Transputer for yourself, then please ignore the rest of the installation instructions given in this chapter.

4.5 Configuration File

Before the TMB15's device driver software can be used, a configuration file needs to be edited to reflect the hardware parameters of the TMB15 motherboard or motherboards used. This configuration file is described in this section.

The file /kernel/drv/tmb.conf is a configuration file which is used to specify the hardware parameters of the installed TMB15 motherboard or motherboards.

Normally, for every Transtech TMB15 motherboard with an enabled VME interface an entry is required in the configuration file. Configuration file entries should not be made for TMB15s in the following cases:

- The TMB15 VME interface is disabled.
- The TMB15's interface Transputer is to run user application code and not the supplied TMB15 firmware.

An entry consists of a list of the following properties terminated by a semi-colon:

name	The device driver name. Must be set to "tmb".
class	The type of device driver. Must be set to "vme".
reg	Two sets of three numbers. The first set corresponding to the TMB15 registers and the second set corresponding to part of the TMB15's shared memory.
	In each set of three numbers, the first specifies the type of VME accesses used $(0x4d \text{ or } 0x7d \text{ as detailed below})$, the second specifies the VME start address and the third specifies the amount of VME memory space used by the motherboard in this region.
interrupts	A set of two numbers, the first specifying the VME IRQ level as set by the interrupt level register on the motherboard, the second specifying the VME interrupt vector to use. The VME interrupt vector number must be different from those used by other installed VME boards.
vme_mode	The VME access mode used by the motherboard interface e.g. "A32D32".
motherboard	The type of VME TRAM 0 motherboard used e.g. "TMB15".
controller	The type of the VME controller used which runs the device driver e.g. "FORCE-3CE".

The relationship between the VME mode used and the first ${\tt reg}$ property is shown below:

vme_mode	reg[0]
A32D32	0x4d
A24D32	0x7d

Table 15: VME modes

By uncommenting the following lines in the supplied configuration file, the default setup for a TMB15 can be used:

```
name="tmb" class="vme"
reg=0x4d,0x08000000,0x100,0x4d,0x08700000,0x100000
interrupts=1,0x44
vme_mode="A32D32" motherboard="TMB15" controller="FORCE-3CE";
```

This corresponds to a TMB15 used in A32D32 mode at VME address 0x08000000, IRQ level 1 and interrupt vector 44 hex controlled by a FORCE SPARC CPU-3CE.

After changing the configuration file, the computer needs to be shutdown and then rebooted with the VME motherboard and TRAM modules installed as follows:

```
# init 0
...
ok boot -r
```

Note that the -r option is used to rebuild the device directories under /devices and /dev. This must be done each time the configuration file is changed.

Each entry in the configuration file corresponds to a set of device files, for example /dev/tmb/0 to /dev/tmb/4. Note that if the entries are changed in the configuration file, the device files that it corresponds to may also change leaving obsolete device files. These obsolete device files can be removed by deleting the appropriate lines in the file /etc/path_to_inst.

4.6 Confidence Test

Once rebooted, the software and hardware can be tested by running check. For example:

This shows the TMB15's configuration link (tmb4) with the two C004 link switches.

A wiring file generated by MMS is supplied which can be used to connect the TMB15's interface to a TRAM installed in slot 0:

4.7 Environment Variables

The following UNIX environment variables should be set when using the TMB15 under Solaris 2:

TPS	The installation directory of the Transtech software.
ICONDB	The link interface description file used by check and iserver.
ASERVDB	The link interface description file used by the Aserver utilities such as rspy and inquest.
TRANSPUTER	The default link interface to use as specified in the file ICONDB.
ISEARCH	The set of directories searched by the Inmos toolset for header files e.t.c. Remember the final '⁄'.

In addition, the UNIX command search path needs to include the directory \$TPS/bin. This should be inserted in the path before any directory containing Inmos tools.

For example, for a single TMB15 installed in a VME rack with a SPARC VME card running Solaris 2, the following extract of .login will set the environment variables for the C-shell:

setenv TPS /opt/transtech
setenv ICONDB \$TPS/lib/tmb.db
setenv ASERVDB \$TPS/tp/4libs/aservdb
setenv TRANSPUTER tmb0
setenv ISEARCH \$TPS/tp/4libs/
set path = (\$TPS/bin \$path)

Chapter 5 Support Software

This chapter details the support software supplied with the TMB15. The software includes:

Device Driver	UNIX kernel extensions to allow access to the TMB15's interface transputer's links. Used in conjunction with the TMB15 firmware.
Firmware	Code to run on the TMB15's interface transputer to implement the device driver read and write functions.
MMS Examples	Example files for configuring the TMB15's C004 link switches.
iserver	Server utility allowing code running on TRAMs to perform host I/O.
check	Network test utility.
c004rst	TMB15 link switch utility.
flashtst	TMB15 Flash ROM test and programming utility.
bootvme	Utility to boot the TMB15's interface Transputer over VME.

5.1 Device Driver

For Solaris 2, the device driver object file is /kernel/drv/tmb and its corresponding configuration file is /kernel/drv/tmb.conf.

For the device driver to function correctly, the correct version of the TMB15 firmware must be programmed into the TMB15's Flash ROM and the TMB15 run in boot from Flash ROM mode.

The device driver together with the firmware implements a B016 compatible software interface to the TMB15. The following interface is implemented:

open()	Opens the connection to a TMB15 interface link. The filename used should be of the form $/dev/tmb/n$ where <i>n</i> is the link number.
	For a single TMB15 a value of n in the range 0-3 corresponds to the TMB15's interface transputer's link 0 to link 3. A value of 4 corresponds to the TMB15's configuration link.
close()	Closes the connection to the link.
read()	Reads from the link. This function returns when the data transfer has completed or when a time-out, error or signal has occurred.
write()	Writes to the link. This function may return before the data transfer has completed or when a time-out, error or signal has occurred.
ioctl()	Perform various interface functions described below.

A number of functions can be performed by calling <code>ioctl()</code> with the request argument set to <code>SETFLAGS</code> and the third argument set to a pointer to an <code>IMS_IO</code> structure with the <code>op</code> member set to the following values:

RESET	Resets the link.
ANALYSE	Resets the link with analyse asserted.
SETTIMEOUT	Sets the link time-out to the value in the val member measured in tenths of a second.

The <code>IMS_IO</code> structure and related constants are defined in the include file <code>ims_bcmd.h</code>.

For example, the following code fragment opens and resets the TMB15:

#include <ims_bcmd.h>

union IMS_IO io;

. . .

```
int fd;
/* Open link */
fd = open( "/dev/tmb/0", O_RDWR );
if (fd < 0)
        exit( 1 );
/* Reset link */
io.set.op = RESET;
io.set.val = 0;
if (ioctl( fd, SETFLAGS, &io ))
        exit( 1 );
```

Note that performing a reset or analyse causes the TMB15 interface transputer to be reset and its firmware rebooted.

The function <code>ioctl()</code> can also be called with a request argument of READFLAGS with the third argument set to a pointer to an <code>IMS_IO</code> structure. This returns status information.

For example, the status of the TMB15's error flag can be sampled as follows:

```
/* Get status */
if (ioctl( fd, READFLAGS, &io ))
        exit( 1 );
/* Test error flag */
if (io.status.error_f)
        printf( "Error flag set.\n" );
```

5.2 TMB15 Firmware

The TMB15 is supplied with its firmware programmed into its Flash ROM. If necessary, the firmware can be reprogrammed by using the flashtst utility and the file tmb15.hex which can be found in the directory \$TPS/source/tmb15.

See section 5.3.3 on page 48 for an example of using the ${\tt flashtst}$ utility.

The device driver relies upon the firmware being run on the interface transputer each time the TMB15 is reset. This means that the TMB15 front panel switches should be set for boot from Flash ROM whenever the device driver is used.

5.3 TMB15 Examples

The following example files and utilities can be found in the directory \$TPS/examples/tmb15.

5.3.1 MMS

A hardwire file and an example softwire file for the TMB15 are supplied in the which can be used in conjunction with the Inmos MMS software to configure the TMB15's C004 link switches.

The example softwire file has been processed using MMS to produce the file wire.btl which connects link 0 of the interface transputer to link 0 of a module installed in TRAM 0:

```
% cd $TPS/examples/tmb15
% iserver -sl tmb4 -sc wire.btl
% check -l tmb0
Using tmb0 check 3.0.2
    # Part rate Mb Bt [ Link0 Link1 Link2 Link3 ]
    0 T805d-30 1.33 0 [ HOST ... ... ]
```

5.3.2 c004rst

The c004rst utility/example resets the TMB14's C004 link switches by poking the TMB15's T2's external memory. This saves having to perform a full VME reset or power cycle if the C004s enter an undefined state for any reason.

5.3.3 flashtst

The flashtst utility can test or program the TMB15's Flash memory. If no argument is given, the Flash ROM is programmed with a test data pattern. If the name of a hex file (the output of ieprom) is specified, then the contents of this file are programmed into the Flash memory.

Note that this utility runs on the TMB15's interface transputer and is booted from link. Thus a separate hostlink connection to the TMB15 is required to run this utility.

Once the TMB15's interface Transputer can be booted from link, for example from a PC Transputer Motherboard, the Flash ROM can be programmed thus:

C:\>iserver /sb flashtst.btl led.hex

5.4 check and iserver

For details of the network test program check and the host I/O server iserver, please consult the Transtech *Transputer Motherboard User Manual.*

5.5 Aserver

The Inmos Aserver based utilities (such as rspy and inquest) can be run with a TMB15. For example:

```
% rspy
# Part-rt Link0 Link1 Link2 Link3
0 T805-25 HOST ... ...
```

5.6 bootvme

This utility allows the TMB15's interface Transputer to be booted over VME. The TMB15 device driver must be disabled for this to work correctly. Also, the TMB15 front panel switches SW2 and SW3 must be set to Boot from ROM and Boot from VME respectively.

The interface Transputer program to load using bootvme is in the form of a hexadecimal EPROM file generated by ieprom. The base address of the TMB15 can be specified using the -b option.

For example, to load the example program led.hex onto the TMB15's interface Transputer at the default base address of 0x08000000:

% bootvme led.hex

If the TMB15's base address is 0x0c000000:

% bootvme -b 0c000000 led.hex

The process by which the TMB15 interface Transputer can be booted over VME is described in Chapter 6.

You may need to change the permissions on certain device files before running bootyme as follows:

chmod 666 /dev/vme*

Chapter 6 Programming the TMB15

This chapter describes the process by which user programs can be loaded and run on the TMB15's interface Transputer.

If you wish to run programs on the TMB15's interface Transputer then you must not install or remove or disable the TMB15 device driver.

6.1 Booting the Interface Transputer

There are three methods for booting programs onto the TMB15's interface Transputer:

ansputer Motherboard. The TMB15 Flash DM test and programming utility .ashtst.btl is run using this method.
e interface Transputer runs a program ogrammed into the TMB15's Flash ROM ing the flashtst utility. This is how the /B15 firmware is run.
e interface Transputer runs a program nich has been loaded into the TMB15's ared memory. This is how the bootvme lity works.

These modes are selected by switches SW2 and SW3 on the TMB15's front panel.

6.1.1 Boot from Link

In this mode, the TMB15's interface Transputer can be booted down one of its links. For instance, a TRAM fitted onto a PC TRAM motherboard such as a TMB03 can be used as follows:

- 1. Connect the TMB03's slot 1 link 3 to the TMB15's J1 link 0.
- 2. Connect the TMB03's slot 1 link 1 to the TMB15's Config Up connection on J1.
- Connect the TMB03's down system to the TMB15's up system on J2.
- 4. Set the TMB15 switches to be Config Up, Boot from Link and Boot from Flash.
- 5. Using MMS on the PC, configure the TMB15's link switches using the following softwire file:

```
SOFTWIRE

PIPE 0

SLOT 8, LINK 0 TO EDGE 0

END
```

Programs such as the flashtst utility can then be run by skipping over the Transputer in the TMB03 as follows:

```
>iserver /sr /sc c:\d7414a\libs\skip3.btl
>iserver /ss /sc flashtst.btl led.hex
```

Please note that, depending on the TMB15's switch settings, the interface Transputer lock signal can be asserted by a reset in Boot from link mode. Thus for a VME master to access shared memory when an interface Transputer program has been booted from link, it may be necessary to explicitly deassert the interface Transputer lock signal.

6.1.2 Boot from Flash

In Boot from Flash mode, the TMB15's Flash EPROM appears in the interface Transputer's boot ROM location. Thus, after reset, the interface Transputer runs the program contained in the Flash EPROM.

For the interface Transputer to access the Flash ROM, VME cycles must not occur during Flash ROM cycles. For this reason, the interface Transputer lock signal is asserted on the TMB15 at reset in

Boot from Flash mode. For VME accesses to the TMB15 to be reenabled in Boot from Flash mode, the following procedure is used:

- Copy the interface Transputer program from Flash ROM for executing out of RAM. This can be achieved using the ra options to icconf and icollect.
- 2. Explicitly deassert interface Transputer lock in the interface Transputer program.

6.1.3 Boot from VME

In Boot from VME mode, an image of the TMB15's shared memory is mapped into the interface Transputer's ROM boot memory region. This allows the interface Transputer to boot a program which has been programmed into shared memory over VME using the following method:

1. The VME bus master resets the interface Transputer by asserting and deasserting the interface reset signal.

In Boot from VME mode, this also causes the TMB15 VME lock signal to be asserted. This means that the interface Transputer cannot start executing code once reset is deasserted.

- 2. The interface Transputer program is loaded into the end of the TMB15's shared memory region which corresponds to the boot ROM location for the interface Transputer.
- The TMB15 VME lock is removed by the VME bus master. This allows the interface Transputer to start executing the program.

This is how the bootvme utility works.

6.2 LED Example

An example interface Transputer program is supplied in the directory \$TPS/examples/tmb15 which runs on the TMB15's interface Transputer and flashes the TMB15's LEDs.

The program source code is led.c:

```
#include <process.h>
#include <tmbl5.h>
#define LED((volatile unsigned char *) LED_REGISTER)
#define LOCK((volatile unsigned char *) T8_BUS_LOCK_REGISTER)
int main( void )
{
```

}

```
int value;
int second;
/* Allow VME access to shared memory */
*LOCK = T8_BUS_LOCK_OFF;
/* Toggle LEDs */
second = ProcGetPriority() ? 15625 : 1000000;
while (1)
{
    for (value = 0; value < 8; value++)
    {
        teD = value < 8; value++)
        {
            *LED = value;
            ProcWait( second/2 );
    }
}
```

This program can be compiled using the 4th generation toolset thus:

% make -f d4414.mak led.hex

The program can be run on a TMB15 in Boot from VME mode at the default base address 0×08000000 as follows:

```
% bootvme led.hex
```

```
% bootvme -b 0c000000 led.hex
```

Index

Α

ANALYSE 46 ASERVDB 42 Aserver 49

С

c004rst 48 check 37, 42 close() 46 Confidence Test 42 Configuration File 37, 39

D

Device Driver 37, 45 Device File 41

Ε

Environment Variables 42 Error Flag 47

F

Firmware 47 Flash ROM 23 flashtst 23, 47, 48

Η

Hedgehog TMB08 35 TMB14 34

I

ICONDB 42 ieprom 48 ims_bcmd.h 46 IMS_IO 46 inquest 42, 49 Installation Software 38 ioctl() 46 ISEARCH 42 iserver 37

L

LED Register Bits 17

Μ

MMS 48

0

open() 46

R

read() 46 READFLAGS 47 RESET 46 Resetting Interface Transputer 17 rspy 42, 49

S

SETFLAGS 46

SETTIMEOUT 46 Software 37 Solaris 2 37 Switches Front Panel 4 On-board 4 Rotary 5

Т

tmb.conf 39 TMB08 Hedgehog 35 TMB14 Hedgehog Connections 34 P2 Connector Pinout 36 P4 D-type Pinout 32 TPS 42 TRANSPUTER 42

V

vme-a32map 38

W

wire.btl 48 write() 46