
Parallel C Version 2.2.2

Release Note

3L Ltd.

August 11, 2000

1 Introduction

This Release Note accompanies version 2.2.2 of 3L Parallel C for

the Inmos transputer, and outlines the changes in Parallel C since

version 2.1. The most important changes are:

� The compiler can now generate programs for 16-bit transputers

such as the IMS T212.

� The compiler has been drawn closer to the ANSI standard.

� Changes have been made both to the compiler and the run-

time libraries to increase the speed of generated programs.

� The master task of a processor farm may \broadcast" a mes-

sage to all the worker tasks.

� The linker has been completely rewritten.

� The General Purpose Con�gurer is faster, and generates much

smaller application image �les.

� The con�gurer also supports sub-networks within the larger

main network.

� Changes have been made to correct various errors.

1



V2.2.2 is released with a new edition of the Parallel C User Guide.

This Release Note should be read in conjunction with that publica-

tion.

1.1 Notes

1.1.1 Stricter Type-Checking

Certain expressions involving non-standard combinations of types

were previously wrongly accepted by the compiler. These will now

be agged as errors at compile time. This change reduces the chance

of run-time errors caused by type incompatibilities. A few programs

which took advantage of the previous version's laxer policy may now

need to be corrected.

1.1.2 Integral Promotions

The compiler now follows the ANSI standard in performing the \in-

tegral promotions" before using integer-type values in an expression.

In a very small number of cases, this may lead to changes in the value

of expressions. This is discussed further in section 3.2 of this Release

Note.

2 Installation Procedure

This version of Parallel C is supported by a new interactive installa-

tion program. This ensures that installation will be possible for all

versions of DOS.

Details of the installation procedure will be found in chapter 1 of

the new edition of the User Guide. It is important to follow this

procedure, rather than simply copying the �les. It is worthwhile

performing the con�dence test described in chapter 2 as well.

2



3 The Compiler

3.1 General Changes

� Variables of type short and unsigned short are now 16 bits

wide by default. A new compiler switch, /Gs, will cause the

compiler to generate 32-bit short variables, as before.

Users should note that if program modules which were com-

piled with di�erent length short variables attempt to commu-

nicate using short variables, problems will arise. In particular,

the current versions of library functions, such as printf and

scanf, expect short variables to be 16 bits wide. If problems

of this sort arise, the user is advised to recompile programs,

including function libraries, with the new version of the com-

piler.

A new built-in macro _3L_SHORT_BITS has the value 16 or

32, depending on the width of short variables in the current

compilation.

� The maximum length of a source line, once macro expansions

have been performed, has been increased from about 1 KB to

about 4 KB.

� The compiler can now generate object �les for 16-bit transput-

ers, such as the T212. A new command, t2c, is provided to

compile T2 programs; full details can be found in chapter 8 of

the User Guide.

� Previously, the limit on the total number of dimension spec-

i�cations that may be used in all the array declarations in a

module was about 1000. This limit has now been increased to

more than 32,000.

� By default, previous versions of the compiler output the infor-

mation required by Tbug and the decoder to associate source

lines with the right parts of the binary code. In V2.2.1, this

information will only be output if the compiler's /Zd switch is

used. The /Zi switch has the same e�ect, as well as causing the

compiler to output information for Tbug relating to variables.

3



Previous versions of the Parallel C compiler recognised the /Zd

switch, but it had no e�ect.

3.2 ANSI features

� Previous versions of the compiler only allowed string literals

with less than 256 characters. This restriction has been re-

moved. The length of string literals is now limited by available

memory and logical line length but will be about 4 KB at least.

� Expressions of the form z++->a are now allowed. Previously,

the compiler followed K&R C in prohibiting them.

� The compiler now recognises the signed char data type.

� The defined unary operator, as speci�ed in section 3.8.1 of

the ANSI standard, is now recognised by the preprocessor.

� The ANSI standard prescribes an important change in the way

in which the types of values are converted for use in expressions.

The compiler now follows the standard by performing the \in-

tegral promotions" on integer-type values before they are used

in an expression. This means that if the whole range of values

of the type can be represented by an int it is converted into

an int; otherwise it is converted into an unsigned int.

Only after this has been done are the necessary conversions for

evaluating the expression performed. In particular, if at this

stage one of the operands is an unsigned int and the other

an int, the int will be converted to unsigned int.

This will make a di�erence to the value of expressions only in

a small number of cases. For example,

unsigned char c = 5;

int a, b = -1;

a = (c > b);

With previous versions of the compiler, a was assigned the

value 0 (false). Now it will be assigned the value 1 (true).

Full details of these conversions may be found in section 3.2.1

of the standard. Users may also be interested in the corre-

4



sponding section of the Rationale for the standard, where this

change is described as \the most serious semantic change made

by the Committee to a widespread current practice".

Note that the integral promotions will treat unsigned short

values di�erently for the T2 and T4/T8; for the former, they

will become unsigned int, and for the latter, int.

� The #elif preprocessor directive has been implemented.

� Preprocessor directives may now be preceded on a line by white

space, and the initial `#' character need not fall in the �rst

column.

� The su�xes to oating constants (`f', `l, `F', `L') and to in-

teger constants (`u', `l, `U', `L') are accepted by the compiler,

although such su�xed constants are not at present treated

di�erently from unsu�xed ones.

� The ANSI trigraph sequences, as described in section 2.2.1.1

of the standard, are now accepted by the compiler.

� Previous versions of the compiler followed K&R C by perform-

ing all oating-point arithmetic in double precision by default.

The current version follows ANSI by performing oating-point

arithmetic which involves only float values in single precision.

(The user should bear in mind that a oating-point constant

is always double-precision.)

A new switch /Gd is provided to make the compiler use double-

precision arithmetic as before. The old switch /S, which used

to make the compiler use single precision where possible, is still

recognised but has no e�ect.

� Adjacent string literals are now treated as a single literal. For

example, the following two statements have the same e�ect:

p = "Hallo, world";

p = "Hallo, ""world";

Note, however, that although ANSI allows white space to oc-

cur between the two literals, the compiler does not at present

accept this.

5



� If a function-like macro name appears and is not followed by a

left parenthesis, the macro will not be expanded. For example,

in the following, sqr will not be expanded:

#define sqr(a) a*a

b = sqr+1;

� The compiler wrongly assumed that the result of the `~' (tilde)

operator is always int. This is not always true, for example if

the operand is an unsigned int.

� The compiler now allows expressions of type float to be used

as control expressions; for example, in if statements. Expres-

sions of type double were already permitted.

� It is now possible to select the elements of a structure value

returned by a function.

� The compiler now allows the second and third operands of the

?: conditional operator to be both of type void.

� Both K&R and the standard specify that the result of a cast

operator is not an lvalue; it cannot, for example, appear as the

left operand of an assignment operator. This is now enforced

by the compiler.

3.3 Performance Enhancements

The speed and size of the code generated have been improved in

many ways. The following changes are the most obvious to the user.

� The compiler's treatment of switch statements has been im-

proved.

� The amount of diagnostic and other \red tape" information

output by the compiler has been reduced, especially when a

module contains no static variables. Recompiling the run-time

library in this way has reduced the size of the minimal linked

program from about 10 KB to about 8 KB.

� Further improvements in the compilation of switch state-

ments.

6



� The compiler will now generate in-line code instead of function

calls for the following functions whenever possible. This \in-

lining" will not happen, however, if the compiler /Gi switch is

used, or if the appropriate header �le is not included.

abs ceil fabs

floor fabs modf

memcpy

chan_in_byte chan_in_message

chan_in_word

chan_init chan_out_byte

chan_out_message

chan_out_word chan_reset

thread_deschedule thread_priority

thread_restart

thread_stop

timer_after timer_delay

timer_now

timer_wait

4 Run-Time Libraries

4.1 General Changes

� Certain headers could not be included more than once without

multiple de�nitions arising. This has been corrected.

� Certain low-level functions (e.g. lseek) used to output error

messages to the console on their own account. This has been

stopped.

� A stand-alone run-time library for supporting T2 programs has

been implemented.

� The method used to invoke exit handlers registered by atexit

(see section 4.10.4.2 of the ANSI standard) has been improved

to cope with the possibility that an exit handler might itself

call atexit.

7



� The function provided by the startup routine for exiting a

program has been renamed _exit. This function should not

normally be used directly; instead, the function exit, which is

held in another module, should be used.

This change has been made so that vendors of pre-processors

to the C compiler may replace exit with their own alternative

exit functions, which should �nish by calling _exit.

� The library header �les have been altered so that all follow

the same style. In particular, all use ANSI function prototypes

and do not include dummy identi�ers for the arguments, only

type speci�cations.

4.2 ANSI Features

� The facilities de�ned by the ANSI stdarg.h header are sup-

ported, along with the more traditional varargs.h facilities.

� The printf, fprintf and sprintf functions now follow the

standard.

� The standard strtod function has been implemented.

� The offsetof macro, as described in section 4.1.5 of the stan-

dard, has been implemented.

� The EXIT_SUCCESS and EXIT_FAILUREmacros are now de�ned

in stdlib.h, as described in section 4.10 of the standard.

� The tmpnam function, described in section 4.9.4.4 of the stan-

dard, has been implemented.

� The div_t and ldiv_t types, as described in section 4.10 of

the standard, and the div and ldiv functions, as described in

section 4.10.6, have been implemented.

� The tmpfile function, described in section 4.9.4.3 of the stan-

dard, has been implemented.

� The vprintf, vsprintf and vfprintf functions described in

section 4.9.6 of the standard have been implemented.

� De�nitions of the FOPEN_MAX and FILENAME_MAX macros have

been added to stdio.h.

8



� The scanf, sscanf and fscanf functions now comply with the

ANSI standard.

Note that in ANSI C %E is de�ned to be equivalent to %e, and

so returns a float. In previous versions of the compiler, %E

used to return a double. This may cause problems in existing

programs. %le or %lE should now be used instead to return a

double.

Similarly %D, %O, %X return int where they used to return long.

This will not be a problem for existing programs as these types

are currently equivalent.

%F is not de�ned by ANSI and so continues to return a double.

This code is included for compatibility with previous versions

and is not recommended for new programs.

� A de�nition for the standard macro FLT_ROUNDS has been

added to <float.h>. The appropriate value for the transputer

is 1, which means \round to nearest".

� The fgetpos and fsetpos functions de�ned in section 4.9.9

of the standard have been implemented. Users should note,

however, that at present they support only binary �les.

The setvbuf function de�ned in section 4.9.5.6 of the standard

has been implemented, but always returns a non-zero value

to indicate that the request to change the bu�ering method

cannot be honoured.

The necessary prototypes and macros to support these func-

tions have been added to stdio.h, as have the SEEK_SET,

SEEK_CUR and SEEK_END macros needed by fseek.

� The strcoll and strxfrm functions de�ned in section 4.11.4

of the standard have been implemented.

� Implement support for multi-byte characters. At present, every

multi-byte character is one byte in length. There is no state-

dependent encoding.

The following functions, described in section 4.10.7 of the stan-

dard, are available: mblen, mbtowc, wctomb, mbstowcs and

wcstombs. The macros MB_CUR_MAX and MB_LEN_MAX are both

de�ned with the value 1.

9



� A minimal locale functionality, as described in section 4.4

of the standard, has been implemented. At present, only the

locales "C" and "" are available. For both, the values for the

members of the lconv struct returned by localeconv are as

de�ned in section 4.4 of the standard.

The setlocale and localeconv functions have been imple-

mented, as required by section 4.4.

� A de�nition of the type ptrdiff_t has been added to

stddef.h, as required by section 4.1.5 of the standard.

� A basic version of the signal facility, as de�ned in section

4.7 of the standard, has been implemented. The only signals

are those listed on page 121 of the standard; that is, SIGABRT,

SIGFPE, SIGILL, SIGINT, SIGSEGV and SIGTERM. None of these

happen automatically, but only as a result of a call to raise or,

in the case of SIGABRT, to abort. The default action selected

by using the macro SIG_DFL as a parameter to the signal

function is to ignore the signal.

� The standard \wide characters" facility has been implemented,

although at present the type wchar_t (see section 4.1.5 of

the standard) is de�ned as equivalent to char and each wide

character occupies one byte.

Wide character constants (e.g., L'a') and wide string literals

(e.g., L"hello") are accepted, but are treated like the corre-

sponding non-wide elements.

� The standard speci�es that if a null pointer is passed to free,

no action should occur. If a null pointer is passed to realloc,

the equivalent of a call to malloc should be performed (see

section 4.10.3 of the standard). These have been implemented.

� The assert macro has been changed so that it does not make

implied reference to the contents of <stdio.h>.

4.3 Performance Enhancements

� The speed of the realloc function has been improved, in most

cases by a factor of more than 10.

10



� The speed (in terms of CPU use) of the functions fread and

fwrite has been improved.

� The speed of the strcmp function has been greatly improved.

� The module atexit is no longer included in the linked program

unless it is used.

� Following section 4.10.1.1, the atof function is now imple-

mented by a call to strtod, instead of using its own code.

This reduces the size of the libraries.

� Similarly, atoi and atol are now implemented by calls to

strtol.

� The strtod function has been altered so that it makes use of

ldexp rather than pow. This requires the addition of fewer

run-time library modules to the program, and is faster.

5 The Linker

The linker has been entirely rewritten. Amongst the new facilities

are:

� Support for the interactive source-level debugger, Tbug.

� Binary �les and libraries containing T2 object code can now

be linked.

� Modules can be selected by reference to external names they

contain for placing at the beginning of the image, so that they

may be placed on on-chip RAM, if available.

� The �les in the link list may contain more than one de�nition

of a single external name. In this case, the linker selects the

�rst occurring. In this way, �les in a library can be overridden

by routines with the same name appearing earlier in the link

list.

� The command line has been simpli�ed by permitting space as a

connecting character in addition to `+' and assuming �lename

extensions for the various types of �les accessed.

11



� At least 150000 external references may now be made within

a single image.

The batch �les which call the linker have also been enhanced to allow

more than one object �le to be speci�ed. You may also specify linker

switches.

6 The General Con�gurer

The General Con�gurer, config, has been improved in several ways.

� If a user declares multiple tasks all of which have the same

image �le, the contents of that �le will appear only once in the

application �le.

� The number of copies of the loading software included in the

application �le has been much reduced.

� If the user places more than one identical task on the same

processor, they will now share one copy of the code for the

task.

� The PROCESSOR statement has a new BOOT attribute. This

enables the user to specify sub-networks within a larger main

network, which may, for example, contain T2 processors.

� The PROCESSOR statement also has a new RAM attribute,

which forces the loader to assume the speci�ed size.

� Filenames speci�ed in con�guration �les are now treated as

case-signi�cant.

� The con�gurer has been changed so that, by default, the in-

formation needed by Tbug is not stored in the application �le.

This results in smaller application �les, faster loading and less

use of memory.

The information is not normally needed because the debugger

loads con�gured applications from the original task �les, not

from the application �le. However, an option switch, /K, has

12



been provided, which will cause the debugging information to

be passed to the application �le as before, if the need arises.

7 Broadcasts in Processor Farms

The net_broadcast function has been added to the net package

to enable the master task of a processor farm application to send a

message to every worker task in the processor farm. It should not

be used by any worker task. A synopsis for this function, using the

format used in the User Guide, would look like this:

#include <net.h>

int net_broadcast(int n_bytes, char *packet);

nbytes is the number of bytes of data in the bu�er pointed to by

packet. This function is unlike net_send in that the nbytes param-

eter is not restricted to NET_MAX_PACKET_LENGTH. This means that

the programmer does not have to split the message up into pack-

ets; this is done by net_broadcast. The worker tasks receive the

message by calling net_receive in the usual way, possibly several

times; net_broadcast ensures that the when the last packet is read,

the complete argument is set to 1 as usual.

net_broadcast can only be used when all the worker tasks are

known to be idle. Typically, this would be at the beginning of the

program run, before any work packets have been sent out. Later,

the master task can broadcast new data, provided a result packet

has been received corresponding to every work packet sent out.

8 Miscellaneous

� The stub �ler task did not support SetReturnCode.Cmd. This

has been corrected.

� The install program and the external driver program have

been compressed using LZEXE.

13



� The decode program now displays the contents of the debug

areas in a more easily understood way.

14


