
Contents

Introduction xv

Intended Audience : xv

The C Language : xv

Hardware Assumptions : xvi

Document Structure : xvii

Further Reading : xviii

Conventions : xix

Text Conventions : xix

Installation Directory : : : : : : : : : : : : : : : : : : xix

1 Installing the Compiler 1

1.1 Installation Directory : : : : : : : : : : : : : : : : : : 1

1.2 Installing the Software : : : : : : : : : : : : : : : : : : 2

1.3 The Search Path : 3

1.4 Environmental variable 3LCC_INC : : : : : : : : : : : : 4

2 Con�dence Testing 7

3 Developing Sequential Programs 11

3.1 Editing : 12

3.2 Compiling : 12

3.3 Linking : 13

3.3.1 Linking More than One Object File : : : : : : 14

3.3.2 Indirect Files : : : : : : : : : : : : : : : : : : : 15

3.3.3 Calling the Linker Directly : : : : : : : : : : : 16

3.3.4 Libraries : 17

vi CONTENTS

3.4 Running : 19

3.4.1 Using C Programs as MS-DOS Commands : : 20

3.4.2 Command-Line Arguments : : : : : : : : : : : 21

3.4.3 I/O Redirection and Piping : : : : : : : : : : : 22

3.5 Memory Use : 23

3.5.1 Default Memory Mapping : : : : : : : : : : : : 24

3.5.2 Alternative Memory Mapping : : : : : : : : : : 25

3.5.3 Limit on Program Memory : : : : : : : : : : : 25

4 Introduction to Parallel C 27

4.1 Abstract Model : 27

4.2 Hardware Realisation : : : : : : : : : : : : : : : : : : : 29

4.3 Software Model : 30

4.4 Simultaneous Input : 32

4.5 Parallel Execution Threads : : : : : : : : : : : : : : : 33

4.6 Con�guring an Application : : : : : : : : : : : : : : : 33

4.7 Processor Farms : 34

5 Developing Parallel Programs 37

5.1 Con�guring One User Task : : : : : : : : : : : : : : : 38

5.1.1 Hardware Con�guration : : : : : : : : : : : : : 40

5.1.2 Software Con�guration : : : : : : : : : : : : : : 41

5.1.3 Building the Application : : : : : : : : : : : : : 43

5.2 More than One User Task : : : : : : : : : : : : : : : : 46

5.2.1 Inter-Task Communication Functions : : : : : 47

5.3 Building Multi-Task Systems : : : : : : : : : : : : : : 51

5.4 Multi-Transputer Systems : : : : : : : : : : : : : : : : 53

5.5 Simultaneous Input : 54

5.6 Multi-Threaded Tasks : : : : : : : : : : : : : : : : : : 57

5.6.1 Creating Threads : : : : : : : : : : : : : : : : : 57

5.6.2 Threads versus Tasks : : : : : : : : : : : : : : 60

5.7 Debugging : 63

5.8 Estimating Memory Requirements : : : : : : : : : : : 65

6 Global Input/Output 67

6.1 One Transputer : 67

6.2 More than One Transputer : : : : : : : : : : : : : : : 70

CONTENTS vii

6.3 More than One Multiplexer : : : : : : : : : : : : : : : 71

6.4 Limits : 71

6.5 Termination of an Application : : : : : : : : : : : : : : 72

7 Processor Farms 77

7.1 The Worker Task : 79

7.2 The Master Task : 79

7.3 The net Package : 80

7.3.1 Functions net_send and net_receive : : : : : 81

7.3.2 The net_broadcast function : : : : : : : : : : 82

7.4 Building the Application : : : : : : : : : : : : : : : : : 82

7.4.1 Con�guration File : : : : : : : : : : : : : : : : 83

7.5 Running the Example : : : : : : : : : : : : : : : : : : 84

7.6 Heterogeneous Networks : : : : : : : : : : : : : : : : : 86

8 Developing T2 Programs 89

8.1 Compiling : 89

8.2 The Compiler in T2 Mode : : : : : : : : : : : : : : : : 90

8.2.1 Language Restrictions : : : : : : : : : : : : : : 90

8.2.2 Pre-de�ned Macros : : : : : : : : : : : : : : : : 91

8.2.3 Data-type Representations : : : : : : : : : : : 92

8.2.4 Compiler Error Messages : : : : : : : : : : : : 93

8.3 Linking T2 Tasks : 93

8.4 Linker Support for the T2 : : : : : : : : : : : : : : : : 94

8.4.1 Linker Command Switches : : : : : : : : : : : 94

8.4.2 The Bootstrap : : : : : : : : : : : : : : : : : : 99

8.5 The Run-Time Library : : : : : : : : : : : : : : : : : : 99

8.5.1 Functions De�ned in alt.h : : : : : : : : : : : 100

8.5.2 Functions De�ned in chan.h : : : : : : : : : : 100

8.5.3 Functions De�ned in chanio.h : : : : : : : : : 100

8.5.4 Functions De�ned in ctype.h : : : : : : : : : : 100

8.5.5 Functions De�ned in locale.h : : : : : : : : : 101

8.5.6 Functions De�ned in par.h : : : : : : : : : : : 101

8.5.7 Functions De�ned in sema.h : : : : : : : : : : 101

8.5.8 Functions De�ned in setjmp.h : : : : : : : : : 101

8.5.9 Functions De�ned in signal.h : : : : : : : : : 101

8.5.10 Functions De�ned in stdlib.h : : : : : : : : : 101

viii CONTENTS

8.5.11 Functions De�ned in string.h : : : : : : : : : 102

8.5.12 Functions De�ned in thread.h : : : : : : : : : 102

8.5.13 Functions De�ned in timer.h : : : : : : : : : : 102

8.6 Running T2 Programs : : : : : : : : : : : : : : : : : : 102

8.6.1 Using the Con�gurer to Boot a T2 : : : : : : : 103

8.6.2 Piping Code into a T2 : : : : : : : : : : : : : : 104

8.7 Parameters to Main : : : : : : : : : : : : : : : : : : : 106

Introduction 107

Overview : 107

Standard Syntactic Metalanguage : : : : : : : : : : : : : : : 108

9 C Compiler Reference 109

9.1 The C Language : 109

9.1.1 ANSI Features : : : : : : : : : : : : : : : : : : 110

9.1.2 Special Features : : : : : : : : : : : : : : : : : 119

9.1.3 System-dependent Features : : : : : : : : : : : 120

9.2 The C main Function : : : : : : : : : : : : : : : : : : : 121

9.3 Running the Compiler : : : : : : : : : : : : : : : : : : 121

9.4 Compiler Switches : 122

9.4.1 Default Switches : : : : : : : : : : : : : : : : : 123

9.4.2 Controlling Output Files : : : : : : : : : : : : : 124

9.4.3 Controlling Object Code : : : : : : : : : : : : : 126

9.4.4 Controlling Code Patch Sizes : : : : : : : : : : 129

9.4.5 Controlling Debugging : : : : : : : : : : : : : : 131

9.4.6 Controlling #include Processing : : : : : : : : 132

9.4.7 Macro De�nitions : : : : : : : : : : : : : : : : 132

9.4.8 Information from the Compiler : : : : : : : : : 133

9.5 Prede�ned Macros : 135

9.6 Handling of #include Files : : : : : : : : : : : : : : : 135

9.7 Assembly Language : : : : : : : : : : : : : : : : : : : 137

9.7.1 When to Use Assembly Language : : : : : : : : 137

9.7.2 Assembly Language Syntax : : : : : : : : : : : 138

9.7.3 Literal Operands : : : : : : : : : : : : : : : : : 139

9.7.4 Variables as Operands : : : : : : : : : : : : : : 139

9.7.5 Accessing Complex Structures : : : : : : : : : 142

9.7.6 Labels and Jumps : : : : : : : : : : : : : : : : 144

CONTENTS ix

9.7.7 Literal Machine Code : : : : : : : : : : : : : : 146

9.7.8 Errors : 146

9.8 Data-type Representations : : : : : : : : : : : : : : : : 147

9.8.1 Integral Data Types : : : : : : : : : : : : : : : 147

9.8.2 Pointer Types : : : : : : : : : : : : : : : : : : : 148

9.8.3 Floating Types : : : : : : : : : : : : : : : : : : 148

9.8.4 Alignment and Complex Types : : : : : : : : : 150

9.9 Compiler Error Messages : : : : : : : : : : : : : : : : 151

9.9.1 Compiler Error Message Format : : : : : : : : 152

9.9.2 Fixing Errors Detected by the Compiler : : : : 154

9.9.3 List of Error Messages : : : : : : : : : : : : : : 156

9.9.4 Errors in Assembler Language : : : : : : : : : 198

10 The C Run-Time Library 203

10.1 Introduction : 203

10.1.1 Purpose of the Run-Time Library : : : : : : : 203

10.1.2 Versions of the Run-Time Library : : : : : : : 204

10.1.3 Conventions : 205

10.1.4 Header Files : : : : : : : : : : : : : : : : : : : 206

10.1.5 Errors <errno.h> : : : : : : : : : : : : : : : : 207

10.1.6 Limits <float.h> and <limits.h> : : : : : : : 208

10.1.7 Common De�nitions <stddef.h> : : : : : : : : 208

10.2 Alt Package <alt.h> : : : : : : : : : : : : : : : : : : : 208

10.3 Diagnostics <assert.h> : : : : : : : : : : : : : : : : : 209

10.4 Neighbouring Transputers <boot.h> : : : : : : : : : : 209

10.5 Channels <chan.h> : 209

10.6 Character Handling <ctype.h> : : : : : : : : : : : : : 211

10.6.1 Character Testing Functions : : : : : : : : : : 211

10.6.2 Character Mapping Functions : : : : : : : : : : 212

10.7 Accessing DOS Functions <dos.h> : : : : : : : : : : : 212

10.8 Localisation <locale.h> : : : : : : : : : : : : : : : : : 217

10.9 Mathematics <math.h> : : : : : : : : : : : : : : : : : : 217

10.9.1 Treatment of Error Conditions : : : : : : : : : 218

10.9.2 Trigonometric Functions : : : : : : : : : : : : : 218

10.9.3 Hyperbolic Functions : : : : : : : : : : : : : : 218

10.9.4 Exponential and Logarithmic Functions : : : : 218

10.9.5 Power Functions : : : : : : : : : : : : : : : : : 219

x CONTENTS

10.9.6 Nearest Integer, Absolute Value and Remain-

der Functions : : : : : : : : : : : : : : : : : : : 219

10.10Processor Farm Communications <net.h> : : : : : : : 220

10.11Synchronising Access to Run-Time Library <par.h> : 220

10.12Semaphores <sema.h> : : : : : : : : : : : : : : : : : : 221

10.13Emulating the filter Task <serv.h> : : : : : : : : : 221

10.14Nonlocal Jumps <setjmp.h> : : : : : : : : : : : : : : 221

10.15Signal Handling <signal.h> : : : : : : : : : : : : : : 222

10.16Variable Arguments <stdarg.h> : : : : : : : : : : : : 222

10.17Input/Output <stdio.h> : : : : : : : : : : : : : : : : 223

10.17.1 Stream I/O : 225

10.17.2Binary I/O : 226

10.17.3Text I/O : 226

10.17.4Operations on Files : : : : : : : : : : : : : : : 227

10.17.5 File Access Functions : : : : : : : : : : : : : : 227

10.17.6 Formatted Input/Output Functions : : : : : : 227

10.17.7Character Input/Output Functions : : : : : : : 228

10.17.8Direct Input/Output Functions : : : : : : : : : 229

10.17.9 File Positioning Functions : : : : : : : : : : : : 229

10.17.10Error Handling Functions : : : : : : : : : : : : 230

10.18General Utilities <stdlib.h> : : : : : : : : : : : : : : 230

10.18.1 String Conversion Functions : : : : : : : : : : : 230

10.18.2Pseudo-Random Sequence Generation Functions230

10.18.3Memory Management Functions : : : : : : : : 231

10.18.4Communication with the Environment : : : : : 231

10.18.5 Searching and Sorting Utilities : : : : : : : : : 232

10.18.6 Integer Arithmetic Functions : : : : : : : : : : 232

10.18.7Multibyte Character Functions : : : : : : : : : 232

10.18.8Multibyte String Functions : : : : : : : : : : : 232

10.19String Handling <string.h> : : : : : : : : : : : : : : 233

10.19.1Copying Functions : : : : : : : : : : : : : : : : 233

10.19.2Concatenation Functions : : : : : : : : : : : : 233

10.19.3Comparison Functions : : : : : : : : : : : : : : 233

10.19.4 Search Functions : : : : : : : : : : : : : : : : : 234

10.19.5Miscellaneous Functions : : : : : : : : : : : : : 234

10.20Threads <thread.h> : : : : : : : : : : : : : : : : : : : 235

CONTENTS xi

10.21Date and Time <time.h> : : : : : : : : : : : : : : : : 235

10.22Transputer Timers <timer.h> : : : : : : : : : : : : : : 236

11 Alphabetic List of Run-time Library Entries 237

12 The Linker 333

12.1 Command Line : 333

12.2 File Name Conventions : : : : : : : : : : : : : : : : : : 334

12.3 The Output File : 335

12.4 Indirect Files : 335

12.5 Libraries : 336

12.6 The Executable Image : : : : : : : : : : : : : : : : : : 338

12.7 Map Files : 340

12.8 T2 Support : 340

12.8.1 Switch /Msize : : : : : : : : : : : : : : : : : : : 341

12.8.2 Switch /Asize : : : : : : : : : : : : : : : : : : : 341

12.8.3 Switches /FC, /FA, /FS, and /FH : : : : : : : : 342

12.8.4 Modi�ed /F Switches : : : : : : : : : : : : : : : 344

12.8.5 Switch /Rsize : : : : : : : : : : : : : : : : : : : 345

12.9 Debug Tables : 345

12.10Summary of Switches : : : : : : : : : : : : : : : : : : 345

12.11Using Batch Files : 348

12.12Duplicate De�nitions : : : : : : : : : : : : : : : : : : : 349

12.13Messages : 350

13 The mempatch Utility 367

13.1 Identifying mempatch : : : : : : : : : : : : : : : : : : : 368

13.2 Invoking mempatch : 369

13.3 Re-invoking mempatch : : : : : : : : : : : : : : : : : : 369

14 The decode Utility 371

14.1 Usage : 371

14.1.1 Compilation for the Decoder : : : : : : : : : : 371

14.1.2 Running the Decoder : : : : : : : : : : : : : : 372

14.2 Features of the decode Program : : : : : : : : : : : : 372

14.3 Other Languages : 373

xii CONTENTS

15 The worm Utility 375

15.1 Notes : 376

16 The tnm Utility 379

17 The tunlib Utility 381

18 Con�guration Language Reference 383

18.1 Standard Syntactic Metalanguage : : : : : : : : : : : : 383

18.2 Con�guration Language Syntax : : : : : : : : : : : : : 384

18.2.1 Low Level Syntax : : : : : : : : : : : : : : : : 385

18.2.2 Numeric Constants : : : : : : : : : : : : : : : : 387

18.2.3 String Constants : : : : : : : : : : : : : : : : : 388

18.2.4 Identi�ers : 389

18.2.5 Statements : 391

18.2.6 PROCESSOR Statement : : : : : : : : : : : : 391

18.2.7 WIRE Statement : : : : : : : : : : : : : : : : : 397

18.2.8 TASK Statement : : : : : : : : : : : : : : : : : 397

18.2.9 CONNECT Statement : : : : : : : : : : : : : : 403

18.2.10PLACE Statement : : : : : : : : : : : : : : : : 404

18.2.11BIND Statement : : : : : : : : : : : : : : : : : 405

19 Flood-Fill Con�gurer Reference 407

19.1 User Task Protocol : 407

19.1.1 Master Task's Ports : : : : : : : : : : : : : : : 408

19.1.2 Worker Task's Ports : : : : : : : : : : : : : : : 408

19.2 Packet Format : 408

20 Task Data Sheets 411

Appendices 425

A Distribution Kit 425

A.1 Directory \tc2v2 : 425

A.2 Directory \tc2v2\examples : : : : : : : : : : : : : : : 427

B Compatibility with T414A and T800A 429

CONTENTS xiii

B.1 Problems with T414A : : : : : : : : : : : : : : : : : : 429

B.1.1 Restriction on Message Lengths : : : : : : : : : 430

B.1.2 Problems with Timers : : : : : : : : : : : : : : 430

B.2 Problems with T800A : : : : : : : : : : : : : : : : : : 431

B.2.1 Floating-Point Conversion Problems : : : : : : 431

B.2.2 Instruction Decode Problems : : : : : : : : : : 431

C Building a Network 433

C.1 Network Principles : 433

C.2 Network Requirements : : : : : : : : : : : : : : : : : : 434

C.2.1 Requirements for Links : : : : : : : : : : : : : 434

C.2.2 Requirements for System Services : : : : : : : 435

C.3 Connecting a Network : : : : : : : : : : : : : : : : : : 436

D Summary of Option Switches 439

D.1 Compiler Switches : 439

D.2 Linker Switches : 441

D.3 afserver Switches : 443

D.4 General Purpose Con�gurer Switches : : : : : : : : : : 445

E Transputer Instructions 447

E.1 Pseudo-Instructions : : : : : : : : : : : : : : : : : : : 447

E.2 Pre�xing Instructions : : : : : : : : : : : : : : : : : : 448

E.3 Direct Instructions : 448

E.4 Operations : 450

E.5 T4-only Instructions : : : : : : : : : : : : : : : : : : : 452

E.6 T8-only Instructions : : : : : : : : : : : : : : : : : : : 453

E.6.1 Floating Point Instructions : : : : : : : : : : : 453

E.6.2 Other T8-only Instructions : : : : : : : : : : : 455

F Compatibility Functions 457

F.1 Introduction : 457

F.1.1 ASCII Control Codes <ascii.h> : : : : : : : : 458

F.1.2 Channel Communications <chanio.h> : : : : : 458

F.1.3 Variable Arguments <varargs.h> : : : : : : : 458

F.2 Low-Level I/O : 459

F.3 Alphabetic List of Compatibility Functions : : : : : : 460

xiv CONTENTS

G Mandelbrot Program Listings 473

G.1 Mandelbrot Example Master Task : : : : : : : : : : : 473

G.2 Mandelbrot Example Worker Task : : : : : : : : : : : 479

G.3 Header File : 481

G.4 Con�guration File : 481

H ASCII Code Chart 483

Bibliography 485

Index 487

Introduction

Intended Audience

This User Guide accompanies 3L's Parallel C product. It is intended

for anyone who wants to use Parallel C to program a transputer

system, whether writing a conventional sequential program or using

the full support for concurrency which the transputer processor has

to o�er.

The C Language

There are two main dialects of the C language in common use: these

are often referred to as \K&R C" and \ANSI C".

K&R C This older dialect of C is de�ned|fairly informally|by

The C Programming Language, First Edition[1], by Brian

W. Kernighan and Dennis M. Ritchie, the original authors of

the language.

ANSI C This is de�ned, in ANS X3.159-1989[3], as the American

national standard for the C language. At the time of writing,

the same de�nition was expected to be adopted as an interna-

tional standard.

xvi Introduction

The dialect of C accepted by the 3L Parallel C was originally based

on K&R C. However, it has been extended by adding most of the

features of ANSI C, including, for example, function prototypes and

enumerated types. Details of Parallel C's ANSI extensions may be

found in section 9.1.

In addition, the run-time library includes nearly all of the features of

the ANSI run-time library. Traditional features have been retained

as well, for compatibility with other compilers. To this have been

added functions providing control of the transputer's special features,

such as channel communications, concurrent execution threads, and

so on.

Hardware Assumptions

Parallel C can be used with a large variety of development and target

transputer systems.

The compiler itself and all the supporting utilities run on a T414 or

T800 processor. This manual makes the simplifying assumption that

the development environment will be an Inmos IMS B004 transputer

evaluation board, or a transputer system which is largely compatible

with a B004. This board is a single plug-in card for the standard

IBM PC bus, with one transputer and either 1 or 2MB of RAM.

The assumption is also made here that the host computer for the

B004 will be an IBM PC with a hard disk drive, or one of the many

personal computers compatible with the original IBM machines.

A variety of target processors are supported by Parallel C.

� The T414 and T800 target environment is assumed to be sim-

ilar to the development environment described above. Both

processors are fully supported by Parallel C. However, early

pre-production transputers contained faults which may cause

problems with the operation of Parallel C programs. If you will

Introduction xvii

be using early transputer chips, you should check appendix B

for details of the problems which you may encounter, and how

to get round them.

� The T425 processor can be used with Parallel C if it is treated

as if it were a T414; some additional instructions are included

in this processor which are not at present accepted by the

in-line assembler within Parallel C. If you wish to use these

instructions in assembly-language code, you must code them

using the opr instruction instead.

� Parallel C can also be used to build programs for the 16-bit

T212 and T222 processors. Target environments for these are

discussed in chapter 8.

Document Structure

There are four main divisions within this document, as follows:

� Part I: Getting Started covers installing Parallel C on your

machine and verifying that it is operating correctly.

� Part II: Tutorial introduces you to the operation of the com-

piler and the other tools supplied with Parallel C. In particular,

there are tutorial sections explaining parallelism on the trans-

puter and the way in which this can be accessed from Parallel C

programs.

� Part III: Reference contains the detailed technical information

which you will require to write sophisticated applications for

the transputer using Parallel C.

� The appendices at the end of this manual contain supple-

mentary information in a condensed form, such as tables of

transputer assembly language mnemonics.

xviii Introduction

Further Reading

This User Guide does not attempt to teach the C language itself;

rather, reference should be made to one of the many introductory

texts available. The �rst|and still one of the best|books about C

is the original book describing the language. This is The C Pro-

gramming Language, First Edition[1], by Brian W. Kernighan and

Dennis M. Ritchie.

As Parallel C includes so many ANSI features, it may be useful

to consult the second edition[2] of this book, by the same authors,

which describes the standard dialect. However, as certain ANSI

features are not supported by Parallel C, beginners in particular

may �nd the �rst edition preferable. Both editions are available in

most bookshops or from the publishers.

The reader is assumed to be reasonably familiar with the operating

system of the host computer being used. For personal computers

made by IBM, this will usually be PC-DOS, which is supplied with

a manual called Disk Operating System Reference[4]. For compat-

ible machines made by other manufacturers, the operating system

will usually be MS-DOS, described in Microsoft MS-DOS User's

Reference[5]. These two operating systems are largely compatible,

and their documentation is very similar. We will refer to \MS-

DOS" in this manual to mean the operating system used on your

machine. The term DOS Reference Manual will be used to refer to

the appropriate manual.

References to these and other documents mentioned in this manual

are collected in a bibliography, which can be found on page 485.

Introduction xix

Conventions

Text Conventions

Throughout this manual, text printed in this typeface represents

direct verbatim communication with the computer: for example,

pieces of C text, commands to MS-DOS and responses from the

computer.

In examples, text printed in this typeface is not to be used verbatim:

it represents a class of items, one of which should be used. For

example, this is the format of one kind of compilation command:

t8c source-�le

This means that the command consists of:

1. The word \t8c", typed exactly like that.

2. A source-�le: not the text source-file, but an item of the

source-�le class, for example \myprog.c".

Installation Directory

As we shall see in chapter 1, it is possible to install the Parallel C

compiler and its associated software in any directory. By default,

however, it will be installed in directory \tc2v2, and throughout

the rest of the User Guide it will be assumed that this is what

has been done. Users who have chosen to install the software in

another directory should replace the directory \tc2v2, wherever it

is mentioned, by the name of their own installation directory.

xx Introduction

Chapter 1

Installing the Compiler

This chapter contains instructions on how to load Parallel C from

the supplied oppy disks onto a hard disk and make it ready for use.

You can skip this chapter if the compiler has already been installed

on the machine you are using.

1.1 Installation Directory

Before we go any further, you should decide on an installation di-

rectory; that is, the directory where you want the compiler and its

associated software to be placed. It is best to reserve a directory

just for this purpose, rather than mixing Parallel C up with other

system software. In particular, do not try to install Parallel C in

the same directory as any other 3L compilers, as many of the �les

have the same names, even though their contents may be di�erent.

The installation procedure will overwrite any �le in the installation

directory which has the same name as a Parallel C �le.

Notice that certain �les are created at installation time, and include

the name of the installation directory. This means that if you wish

2 Chapter 1

to move the software to another directory, you cannot simply copy

it across; instead, you should install it again from the oppy disks.

The default installation directory is \tc2v2. In the other chapters

of this User Guide we shall assume that this is where the software

has been installed. If this is not the case, you should mentally

substitute the name of your installation directory whenever \tc2v2

is mentioned.

1.2 Installing the Software

The compiler is distributed on three 360KB oppy disks. The con-

tents of these disks are described in detail in appendix A.

To install Parallel C on your hard disk, follow this procedure.

1. Place the disk labelled Disk 1 of 3 in your oppy disk drive

A:.

2. Type the following commands:

C>a:

A>install

3. Answer any questions the install program asks you. One of

these will enable you to specify your installation directory (see

above). If you wish to accept the default installation directory

(\tc2v2), you should just press the Enter key in answer to this

question; otherwise, erase \\tc2v2" and type the name of the

installation directory you want.

4. Place the appropriate disks in drive A: when the install pro-

gram asks for them.

It is important to use the supplied install program to install Par-

allel C. If you simply copy the �les, the installation will not be

performed correctly.

Installing the Compiler 3

1.3 The Search Path

The compiler is now installed, but can only be run in the installation

directory. Before the compiler can be used from other directories the

installation directory must be added to the MS-DOS search path.

Program �les stored in directories which are on the search path can

be loaded and run simply by typing the name of the program as

a command. So, to make sure that the C compiler is available as

a command (t8c, t4c or t2c), the installation directory must be

added to the search path.

The search path for your machine is set up by the batch �le

c:\autoexec.bat which is automatically executed when the ma-

chine starts up. To change the path, you will need to edit the

autoexec.bat �le using a text editor like edlin. (The DOS Ref-

erence Manual explains how to use edlin). Your autoexec.bat �le

will probably already contain a line of the following form:

path : : : list of directories : : :

For example:

path c:\dos;c:\utils

In this case, you will need to add the text \c:\tc2v2" (if that is the

installation directory) on to the end of the line, giving:

path c:\dos;c:\utils;c:\tc2v2

If there is no path line in the autoexec.bat �le, just add the line:

path c:\tc2v2

Some important points about setting the search path should be

noted:

1. The documentation for previous versions of 3L compilers, in-

cluding Parallel C, recommended the use of a set path= com-

mand to set up the search path. This is equivalent to the path

4 Chapter 1

command, and can be changed to include your installation

directory in the same way.

2. If you already have earlier C compiler installed on your ma-

chine, its installation directory may appear in your search path.

It should be removed from the search path before adding the

installation directory of the new version.

3. If you are a user of the Inmos TDS environment, your search

path will probably include a reference to the directory where

the TDS is held, such as \tds2dir. This reference must not

precede the Parallel C installation directory in the path; if it

does, the wrong version of the afserver program will be called.

4. From time to time, 3L release new versions of components,

such as the linker or the afserver, which are included in

more than one compiler product. This means that if you are a

user of any other 3L compilers, you should make sure that the

installation directory of the latest compiler product precedes

all the others. This will ensure that the latest versions of these

common components are picked up; they will be compatible

with all the compiler products.

Once your autoexec.bat �le has been changed, you will need to

reboot your machine to make the changes e�ective.

1.4 Environmental variable 3LCC_INC

Sometimes it is also necessary to de�ne the MS-DOS environmental

variable 3LCC_INC when you install the compiler. 3LCC_INC can be

used to de�ne where the compiler should look for the header �les

which are included in programs by lines such as

#include <stdio.h>

Installing the Compiler 5

If 3LCC_INC is not de�ned, the compiler looks for header �les, such

as stdio.h, in directory \tc2v2 on the current disk. This means

that 3LCC_INC must be de�ned in the following circumstances.

� If you have decided to install the compiler in a directory other

than \tc2v2.

� If you use the compiler from a disk other than the one where

the compiler is installed.

In either case, you should include in your autoexec.bat �le a line

of this format:

set 3LCC_INC=f:\lib\ThreeLC

A full discussion of how the #include directive is handled may be

found in section 9.6 in part III of this manual.

6 Chapter 1

Chapter 2

Con�dence Testing

This chapter describes a short procedure which may be followed to

check that installation has been done correctly.

1. Set the current disk drive to the one on which Parallel C has

been installed. For example, if the compiler has been installed

in directory c:\tc2v2, do this:

D>c:

C>

2. Set the current directory to a convenient directory for doing

this test. For example:

C>cd \mine

C>

NB: Don't use the installation directory for the con�dence test,

as this would mean that you would not be testing whether the

correct search path has been set up.

8 Chapter 2

3. Check that the correct versions of the afserver program and

of the compiler are available, by typing the following command.

You should see the output shown.

C>t8c /i -:i

IBM PC Filer server Inmos V1.3 (14th October 1987) / 3L

V1.3.7

Copyright INMOS Limited, 1985

Transputer C compiler, CC_transputer V2.2.2

Copyright (C) 3L 1991

C>

If the above message does not appear, check the installation

procedure, and in particular, ensure that the correct path com-

mand has been set up.

If, after the afserver's identity, the computer outputs the

following, or something similar|

Last command = 0

Server terminated: bad protocol when expecting INT32

|it is likely that there has been some error in setting up the

transputer board. In particular, please check that the wire

links, accessible from the back of the PC, have been correctly

installed. The transputer board's documentation should help

with this.

4. Copy the example hello.c �le to the current directory. If the

installation directory is \tc2v2, for example, you should type

this:

C>copy \tc2v2\examples\hello.c

1 File(s) copied

C>

5. Compile the example using the T8 version of the compiler (this

will work for the T4 as well, because the example contains no

Con�dence Testing 9

oating-point instructions):

C>t8c hello

C>

6. Link the resulting binary �le with the necessary parts of the

run-time library, and the harness:

C>t8clink hello

C>linkt hello \tc2v2\crtlt8 \tc2v2\t8harn

C>

7. Finally, the program can be run:

C>afserver -:b hello.b4

hello, world

C>

The output \hello, world" comes from the hello.c example pro-

gram. If it does not appear, we recommend that the installation

procedure should be carefully repeated, and the con�dence test pro-

cedure followed again. If this message still does not appear, please

contact your dealer for further assistance.

10 Chapter 2

Chapter 3

Developing Sequential

Programs

This chapter shows you how to use the Parallel C compiler to write

conventional sequential programs to run on the transputer. You

should be familiar with the contents of this chapter before you

progress to the later chapters explaining parallel programming on

the transputer.

The instructions in this chapter assume that the C compiler has

already been installed as described in chapter 1.

The operating procedures for the T2 di�er in some ways from the

ones discussed here, which are appropriate for the T4 and T8 trans-

puters. If you are developing programs for the T2, you should read

this chapter for general information, and then study chapter 8.

Some of the procedures described here are di�erent for T4 and T8

transputers. You should �nd out which type of transputer is �tted

in your PC before using the compiler.

12 Chapter 3

3.1 Editing

Any editor which handles standard MS-DOS text �les can be used

to create or change C source programs. The example below shows

how the edlin editor supplied with MS-DOS can be used to create

a new C source program.

C>edlin hello.c

New file

*i

1:*main()

2:*{

3:* printf("hello, world\n");

4:*}

5:*^C

*e

C>

The DOS Reference Manual explains how to use edlin.

Note that the \folded" �les which the Inmos TDS works with are

not ordinary MS-DOS text �les and that therefore they cannot be

used directly as input to the compiler. However, the tdslist utility

program supplied with the TDS will convert TDS-format text �les

into ordinary MS-DOS text �les which can be read by Parallel C.

3.2 Compiling

A C source program is compiled into a binary object (.bin) �le of

T8 transputer instructions by a command of the form:

t8c source-�le

To compile code for a T4 transputer, use the command

t4c source-�le

Developing Sequential Programs 13

Note that, in general, code compiled for a T4 will not run on a T8

(or vice versa) so you must use the command appropriate for the

type of processor in your transputer board.

The source-�le is the �lename of the C source program which is to

be compiled. If no �lename extension is given in the command, .c

is added automatically.

So, to compile the �le hello.c for the T8, you would give the

command:

C>t8c hello

If the source �le contains no errors, an output object �le hello.bin

is produced. If the compiler detects errors in the source program, it

writes diagnostic messages to the MS-DOS standard output stream.

Error messages may therefore be redirected using `>', or piped using

`|', as described in the DOS Reference Manual . The format of

compiler error messages, and a list of all the messages which may be

produced by the compiler, appears in section 9.9 in part III of this

manual.

3.3 Linking

Once a Parallel C program has been compiled into an object (.bin)

�le, it must be linked with any external functions it requires before

it can be run, including functions like printf and other functions

from the Parallel C run-time library. This is done by the linker .

Here we discuss the most usual linker operations; a full description

of the linker can be found in chapter 12.

Rather than calling the linker directly, it is usually more convenient

to use one of the batch �les provided for the purpose.

To link T4 code produced by the t4c compiler use the command:

t4clink object-�le

14 Chapter 3

For example,

t4clink hello

To link T8 code produced by t8c use the command:

t8clink object-�le

You must use the link command appropriate to the target processor

(T4 or T8).

Both batch �les automatically append .bin to the object �le name

and produce an executable �le with the same �le name as the object

�le and extension .b4.

3.3.1 Linking More than One Object File

This section deals with linking more than one object �le at a time.

If you only want to link single object �les for now, you can skip to

section 3.4 which describes how to run executable �les produced by

the linker.

The t4clink and t8clink batch �les can be used to link up to

nine object �les. As before, the extensions of all the object �les are

assumed to be .bin. The executable �le generated will have the �le

name of the �rst object �le speci�ed, with the extension .b4.

For example, if there are two C source �les, main.c and fns.c,

the following commands will compile them and link them together,

producing an executable �le for the T4 called main.b4.

C>t4c main

C>t4c fns

C>t4clink main fns

Compiling and linking the example �les above for the T8 would be

done as follows:

C>t8c main

Developing Sequential Programs 15

C>t8c fns

C>t8clink main fns

3.3.2 Indirect Files

It is quite common for programs to consist of many di�erent object

�les. The t4clink and t8clink batch �les cannot handle more than

nine, but even with fewer �les than this, you may �nd the command

line awkward to type.

The linker provides a way of getting round this problem, called an

indirect �le. An indirect �le is a text �le containing a list of object

�le names, all of which are to be included in the executable �le. It

is speci�ed in the linker command by its �le name preceded by an

`@'. For example:

C>t8clink @objfiles

This will cause the linker to �nd the �le objfiles.dat, and link

together all the object �les speci�ed in it. As usual, the generated

�le will be given the name of the �rst object �le with the extension

.b4.

Indirect �les are assumed to have the extension .dat. They contain

a list of MS-DOS �le names, with one �le name on each line. Full

path names, including directory speci�cations, are allowed. Indirect

�les may also include the names of other indirect �les, by preceding

with an `@'; nesting indirect �les in this way may be done to �ve

levels.

The example indirect �le objfiles.dat above might contain the

following text:

main

fns

\userlib\general\io

@grafpack

16 Chapter 3

When used in the example given above, this will link the object

�les main.bin and fns.bin from the current directory and io.bin

from the directory \userlib\general, together with all the object

�les speci�ed in the indirect �le grafpack.dat. The executable �le

generated will be main.b4.

3.3.3 Calling the Linker Directly

Occasionally, instead of using the batch �les, you may need to call

the linker directly, or write your own batch �les to do so. Fuller

information about the linker may be found in chapter 12, and details

of the internal format of object �les are provided in the Inmos Stand-

Alone Compiler Implementation Manual [14].

The linker is invoked by the command linkt. The general form of

a link command is

linkt object-�les,executable-�le

object-�les is a list of object �le names separated by spaces. These

are the object �les which are to be linked together. All of them must

have been compiled for the same processor type (T4 or T8). If an

object �le is speci�ed without an extension, the extension is assumed

to be .bin.

The order in which the object �les are speci�ed is signi�cant. Details

of this may be found in sections 3.5 and 9.4.4.2.

The executable-�le is the name of the �le to which the linker writes

the executable output code. If no extension is speci�ed, the linker

supplies the extension .b4. The executable �le and its preceding

comma may be omitted; in this case, the executable �le is given the

same �le name as the �rst object �le in the command line, with the

extension .b4. If the �rst �le mentioned on the command line is an

indirect �le, the executable �le is given a name taken from the name

of the �rst object �le listed in the indirect �le.

Developing Sequential Programs 17

To link C programs, you must include in the list of object �les both

the Parallel C run-time library and a special object �le called a

\harness". The directory \tc2v2 contains two versions of both of

these components: crtlt4.bin and t4harn.bin for T4 transputers,

and crtlt8.bin and t8harn.bin for T8 transputers. The linker will

not allow you to mix T4 and T8 object �les.

The example below shows the command necessary to link all the �les

listed in the indirect �le subs.dat into a single executable �le for

the T4, called prog.b4.

C>linkt @subs \tc2v2\crtlt4 \tc2v2\t4harn,prog

Note that the Parallel C run-time library (crtlt4.bin) and the

harness (t4harn.bin) must both be named explicitly as input object

�les.

For the T8, the command would be the following.

C>linkt @subs \tc2v2\crtlt8 \tc2v2\t8harn,prog

3.3.4 Libraries

It is often convenient to be able to treat a group of object �les as a

single unit. For example, the Parallel C run-time library consists of

many separate object �les, but is supplied as a single �le containing

all of them.

The linker provides the option of linking together a group of object

�les to produce a library �le instead of an executable �le. The library

contains all of the code and entry points de�ned by the input object

�les, which can be changed or deleted without a�ecting the library.

To change a library it must be relinked from its component parts.

Library �les have several advantages over using indirect �les.

� The linker selects from the library �le only those modules which

are actually referenced elsewhere in the program; the others are

not included in the executable �le.

18 Chapter 3

� Copying a single �le to another place is simpler than copy-

ing many component object �les and making sure that the

corresponding indirect �le is kept up to date with changes in

directory and �le names.

� Opening just one library �le is faster than opening an indirect

�le and several object �les.

However, using an indirect �le may be faster while a library is being

developed because there is no need to relink the library whenever a

component module is changed.

A linker command of the form shown below is used to produce a

library from a number of component object �les.

linkt object-�les, library-�le/l

The option letter after the `/' is a lower case `L'.

The form of the input object-�les is the same as for normal operation

of the linker: a list of �lenames separated by spaces. Indirect �les

are indicated by an `@' sign as before.

The library-�le must be a single MS-DOS �le name. If no extension

is speci�ed, the linker will give it the extension .lib. Note that

this is di�erent from the default extension which the linker uses for

libraries when they are speci�ed as input �les, which is .bin.

The example below shows a graphics library being built from a core

graphics module and two device driver modules. The library is then

linked in the ordinary way with a user program. Indirect �les are

used to simplify the required linker commands.

C>type graflib.dat

core

tek

hp

C>linkt @graflib,graflib.bin/l

C>type myprog.dat

Developing Sequential Programs 19

myprog

graflib

\tc2v2\crtlt8

\tc2v2\t8harn

C>linkt @myprog

3.4 Running

Executable programs are loaded into the transputer board and run

using the afserver program, which runs on the IBM PC.

The afserver is an ordinary MS-DOS program, and after loading

the C program into the transputer board, it remains active through-

out the program's run. Instructions are sent from the C run-time

library to the afserver whenever it needs to performMS-DOS func-

tions such as reading information from the disks, displaying output

on the screen and so on. The results of these operations are sent by

the afserver back to the transputer board.

The command to load and run a program is:

afserver -:b �lename

The �lename must be the name of an executable �le produced by

the linker. The �le name extension must be speci�ed. An example

of a command to load and run a simple program would be:

C>afserver -:b hello.b4

Note that this will only work if your program uses a fairly small

amount of stack memory. See section 3.5 for information about

running programs with larger stack requirements.

Appendix section D.3 includes more information about the afserver

and its options, and the Inmos Stand-Alone Compiler Implementa-

tion Manual [14] (section 10) contains a full description. Note that

the -:e (test error ag) switch described in [14] is not supported

20 Chapter 3

for use with Parallel C programs. For improved performance,

the C compiler relies on being able to generate code which might

incidentally cause the error ag to be set. Therefore, the transputer

error ag may be set as part of the normal execution of a C program.

The running of programs can be simpli�ed by putting the appro-

priate afserver command into an MS-DOS batch �le. Typing the

name of the batch �le is then su�cient to run the program. For

example:

C>type myprog.bat

afserver -:b \mydir\myprog.b4

C>myprog

The command myprog will then call afserver to load the executable

�le \mydir\myprog.b4 into the transputer board and start it. Note

that if a program compiled and linked for the T4 is loaded into a T8

(or vice versa) the e�ects will be unpredictable.

3.4.1 Using C Programs as MS-DOS Commands

Because of the limitations on what can be done with MS-DOS batch

�les it is useful to have a way of running a transputer C program as

if it were an MS-DOS .exe �le.

You can turn any .b4 �le into an MS-DOS command by making a

copy of the �le \tc2v1\linkt.exe in the same directory as the .b4

�le, giving it the same root �lename as the .b4 �le but keeping the

.exe extension. For example, if the current directory contains the

executable �le ex.b4, it can be run as a command by typing:

C>copy \tc2v1\linkt.exe ex.exe

C>ex

This new ex command can be used from any directory, provided the

directory containing ex.exe and ex.b4 is on the MS-DOS search

path.

Developing Sequential Programs 21

(linkt.exe works by taking the command verb from its command

line, adding .b4, and then calling afserver to load that �le from

the same directory linkt.exe itself was loaded from).

When a .b4 �le is invoked via a \driver" program in this way,

the -:o 1 option (see section 3.4) is added automatically and the

program is given a large amount of stack space. If you want to run a

program as an MS-DOS command, but with its stack in fast on-chip

RAM, you should invoke the program as usual but add -:o 0 to the

command line (hyphen, colon, letter `o', then a space followed by the

digit zero). For example:

C>ex -:o 0

3.4.2 Command-Line Arguments

The afserver passes its command line on to the user program it

invokes, for use as program arguments. For example:

C>afserver -:b myprog.b4 fred

Here, the character string \fred" is passed on to myprog.b4.

Note that the \-:b myprog.b4" part of the command is not passed

through as an argument to myprog.b4. In general, afserver option

switches (-:b, -:o) and their arguments are not passed on to the

user program. Any DOS �le redirections (see section 3.4.3 below)

are also stripped out.

The text of the command line is also passed on to the user program

if the afserver is invoked using the driver program described in

section 3.4.1. For example:

C>myprog xyz abc

Here, the program argument string \xyz abc" is passed on to

myprog.b4.

The program argument string is broken up into a sequence of to-

kens before being passed to the C main program function. Tokens

22 Chapter 3

are separated by blank or horizontal tab characters, so in the �rst

example there was one token: \fred", and in the second example

there were two: \xyz" and \abc".

When the C main program function is called, it is passed the follow-

ing arguments:

main(int argc, char *argv[])

argv[0] is the program name, currently always a pointer to a null

string (i.e., a pointer to a `\0' character).

If the value of argc is greater than one then argv[1]: : :argv[argc-1]

are pointers to token strings each of which is terminated by `\0'.

argv[argc] is a null pointer.

argc is the number of tokens, including the program name. It is

always greater than zero.

3.4.3 I/O Redirection and Piping

Normally the C standard input stream (stdin) read by functions like

getc and scanf is the keyboard. Standard input can be taken from

a �le by using the MS-DOS redirection symbol `<' in the normal way.

For example, to use the �le chap1.txt as the standard input stream

for a word counting program wc.b4 you could use the command:

C>afserver -:b wc.b4 <chap1.txt

This also works if wc.b4 is invoked by a driver program, wc.exe:

C>wc <chap1.txt

Similarly, the standard output stream (stdout) written by functions

like putc and printf is normally the screen. Standard output is

redirected using the `>' symbol. A program called cat.b4 which

concatenated the contents of all the input �lenames given as its

program arguments and wrote the result to the standard output

Developing Sequential Programs 23

stream could be used to concatenate the �les a.txt, b.txt and

c.txt, writing the result to another �le all3.txt as follows:

C>afserver -:b cat.b4 a.txt b.txt c.txt >all3.txt

Note that neither \>�lename" nor \<�lename" is considered to be

part of the program arguments; these special forms do not appear in

the argv array passed to a C main program.

Standard output may also be piped into an MS-DOS �lter program

by writing the name of the �lter after a vertical bar `|', as shown

below.

C>afserver -:b cat.b4 a.txt b.txt | more

The DOS Reference Manual describes in detail what can be done

with �lters. (The more program simply displays its input on the

screen, a page at a time).

3.5 Memory Use

The memory used by a C program is divided into four storage areas.

� Code storage is used to hold the executable instructions of the

program itself, together with some constant data and control

information.

� Static storage is used to hold static and external variables,

including variables declared at the global level.

� Stack storage(sometimes referred to as workspace) is used for

auto variables. The stack is also used for function calls and

passing parameters.

In addition, library functions use varying amounts of stack

space as working storage. The stack requirements of the math-

ematical functions are given in the Inmos TDS Compiler Imple-

mentation Manual [15] (Section 10, Parameters and workspace

24 Chapter 3

requirements) and are generally about 40 to 100 words. The

stack requirements of the oating-point arithmetic support li-

brary for the T4 are generally about 10 to 40 words. About

70 words of stack storage are permanently reserved for use by

the run-time library.

� Heap storage is used to hold all variables created by calls on

malloc, etc. It is also used internally by the run-time library

for I/O bu�ers, etc.

These four areas of storage are mapped onto two areas of physical

memory:

� On-chip memory. The T4 has 2KB of fast on-chip memory,

and the T8 has 4KB.

� External memory. The Inmos B004 board has either 1MB or

2MB of external memory.

Using the linker only, two methods of mapping the storage areas

onto physical memory are available: the default method, and the

alternative method. You can select the method you wish to use by

calling the afserver in di�erent ways, which are discussed below.

The con�gurers required for developing parallel programs give the

user more advanced methods for controlling the use of memory. See

section 5.8, and chapter 18.

3.5.1 Default Memory Mapping

Default memory mapping is used if the afserver program is called

as described in section 3.4 above. With this arrangement, the T4's

on-chip memory, and the �rst 2KB of the T8's on-chip memory, are

used for stack storage. Since on-chip memory is faster than exter-

nal memory, programs can run much faster with default memory

mapping. Obviously, you must be certain that the program's stack

storage will �t in the available 2KB.

Developing Sequential Programs 25

If you are using a T8, default memory mapping provides an op-

portunity for further speed inprovements, since the remaining 2KB

of the T8's on-chip memory is available for code storage. To take

advantage of this, you should place small, speed-critical subprograms

at the beginning of the link-list.

WARNING: A program which exceeds the amount of available stack

space will fail in unpredictable ways: it may hang, or it may simply

give wrong answers.

3.5.2 Alternative Memory Mapping

Unless you are sure your program's stack data will �t into the 2KB

of available on-chip memory, you should use the alternative method

of memory mapping. This is done by calling the afserver like this:

C>afserver -:b myprog.b4 -:o 1

With the alternative method, the stack is placed in external memory,

and so is limited only by the amount of external memory available.

On the T4, on-chip RAM is not used at all. On the T8, although

the upper 2K of on-chip RAM is used for code as before, the rest of

it is unused.

The program will execute more slowly with this method, because

external memory is slower than on-chip memory.

Note that the afserver switch is typed as hyphen, colon, option

letter `o', then a space, then the digit one.

3.5.3 Limit on Program Memory

The current version of the linker generates executable �les which will

only run correctly on boards having 1MB or 2MB of memory. To

get round this restriction, the Parallel C kit includes the mempatch

program which may be used to change executable �les to run on

26 Chapter 3

boards which have di�erent amounts of memory. See chapter 13 for

a discussion of mempatch.

Chapter 4

Introduction to

Parallel C

This chapter aims to help you become familiar with Parallel C and

its terminology. If you know occam, or if you have read a lot about

the transputer, then you will already be familiar with the ideas on

which Parallel C is based. If not, don't worry; the ideas are quite

simple. They are explained in outline here, and again in more detail

in the chapters which follow.

4.1 Abstract Model

The treatment of parallel processing in transputer systems is based

on the idea of communicating sequential processes. In this model,

a computing system is a collection of concurrently active sequential

processes which can only communicate with each other over chan-

nels. A channel connects exactly one process to exactly one other

process. A channel can only carry messages in one direction: if

communication in both directions between two processes is required,

two channels must be used. Each process can have any number of

28 Chapter 4

input and output channels, but note that the channels in a system

are �xed; new channels cannot be created during its operation.

For example, a disk copy command built into a computer's operating

system could be described as three concurrently executing processes:

two oppy disk controller processes and one process doing the copy-

ing.

disk 1 disk 2

copy

�
��> Z

ZZ~

This example shows an important property of channel communica-

tions: they are synchronised. A process wanting to send a message

over a channel is always forced to wait until the receiving process

reads the message. In our example, this means that even if at

some time the output oppy disk can't keep up with the input, the

system will still work properly. This is because the copy process will

automatically be forced to wait if it tries to send a message before

the output disk process is ready to receive it. Sometimes it is useful

to allow a sending process to run ahead of a receiving one; in such

cases an explicit bu�ering process must be added to the system.

Note that because a process in this model is just a \black box"

connected to the outside world only by its channels, the actual im-

plementation of any individual process is not important. A process

could be a bit of hardware or a software module; in particular it

may also be another complex system, itself consisting of a number

of communicating processes.

Introduction to Parallel C 29

4.2 Hardware Realisation

The transputer was designed to be used as a component in concur-

rent systems of exactly the sort described in the previous section.

Each transputer processor has four Inmos links, to connect it with

other transputers. Each link has two channels, one in each direction.

These hardware channels behave exactly like the abstract channels

discussed above; they provide synchronised, unidirectional commu-

nication.

Arbitrary networks of transputers can be constructed simply by con-

necting their links together with ordinary wires, the only limitation

being that each processor cannot be directly connected to more than

four others.

At this level, a transputer can therefore be viewed as a single process

in a multi-transputer system. However, it is also possible for any

number of concurrent processes to be run on an individual trans-

puter. Any word in the transputer's memory may be used as a

channel to connect one internal process to another. The address of

such a channel word is used to identify it to the transputer instruc-

tions (and Parallel C functions) which send or receive messages. The

contents of the word are used by the hardware to synchronise sending

and receiving processes.

From a program's point of view, these internal channels and the

hardware link channels are identical. The same instructions (or

Parallel C functions) are used to send and receive messages on both.

Hardware link channels are identi�ed by special �xed addresses. For

example, on a T414 the input channel of processor link 3 is always

at address 8000001C16. Internal channels have addresses allocated

by software.

This equivalence of internal channels to hardware link channels

means it is possible to develop a parallel system on a single trans-

puter and then move some of its processes onto other transputers

without having to recompile any code.

30 Chapter 4

task
input
ports -

-

-
output
ports-

-

Figure 4.1: a task viewed as a \black box".

Each process executing on a transputer processor has a priority,

which can either be \urgent" or \not urgent". The processor au-

tomatically shares its available time between these processes. A pro-

cess can be descheduled either because it has performed an operation

(such as sending a message to another process) which causes it to

pause or, in the case of a \not urgent" process, because it has

been executing without interruption for a certain period of time.

The e�ect of this is that the CPU time-slices between the \not

urgent" processes, but \urgent" processes are not interrupted until

they cannot proceed because of a communication. For this reason,

\urgent" processes should be designed so that they do not perform

large amounts of computation, as they will \lock out" the less urgent

processes entirely.

4.3 Software Model

Parallel C is based on the same abstract model of communicating

sequential processes as the transputer hardware.

A complete application is viewed as a collection of one or more con-

currently executing tasks. Each task has its own region of memory

for code and data, a vector of input ports, and a vector of output

ports. The port vectors are passed to the task as arguments to its

main function. The code of a task is a single transputer image (.b4)

�le generated by the ordinary linker, linkt.

Tasks can be treated as software \black boxes" connected together

via their ports, as shown in �gure 4.1.

Introduction to Parallel C 31

#include <chan.h>

#include <ctype.h>

main(int argc, char *argv[], char *envp[],

CHAN *in_ports[], int ins, CHAN *out_ports[], int outs)

{

int c;

for (;;) {

chan_in_word(&c, in_ports[0]);

if (c == -1) break; /* terminate task */

chan_out_word(_toupper(c), out_ports[0]);

}

}

Figure 4.2: Complete example task with one input and one output

port.

For example, a very simple task might accept a stream of char values

on an input port, convert each character to upper case, and output

the resulting stream of characters on an output port. The C code

for this is shown in �gure 4.2.

Tasks can be treated as atomic building blocks for parallel systems,

to be wired together rather like electronic components. Indeed, sev-

eral such basic building-block tasks are supplied with the compiler.

Each element in the input and output port vectors is of type \pointer

to channel word", (CHAN *). Ports are bound to real channel ad-

dresses by con�guration software external to the task itself; the

bindings can be changed without recompiling or relinking the task.

Extended C run-time library functions supplied with the compiler

allow C programs to send and receive messages over the channels

bound to a task's ports.

The con�guration software also provides ways of specifying which

software tasks are to be run on which hardware processors. Each

processor can support any number of tasks, limited only by available

memory.

32 Chapter 4

Tasks placed on the same processor can have any number of intercon-

necting channels. Tasks placed on di�erent processors can only be

connected where physical wires connect the processors' links. Each

logical connection between two tasks placed on di�erent processors is

assigned exclusive use of one of the physical link channels connecting

the processors. The number of interconnections between tasks on

di�erent processors is therefore limited by the number of hardware

links each one has. If more than four logical connections in each

direction are required between one transputer and its neighbours,

the designer of the system must provide explicit multiplexer tasks.

4.4 Simultaneous Input

All of the code of a task can be written in an ordinary sequential

language like C, except for one extra feature needed by languages

based on the communicating sequential processes idea. This extra

feature is a way of making a process wait until a message is received

on any one of a number of input channels. For example, the main

loop of a �le server process would want to wait until a message was

available from any one of its \client" processes. It can't read them

all sequentially because a message could come from any one of them,

in any order.

Parallel C provides a group of library functions, the alt package,

which solve this problem. These functions allow a program to wait

until any one of a selected group of channels becomes ready to com-

municate. The channel which becomes ready �rst is identi�ed to the

calling program, which can then go on to read its message using one

of the same channel I/O functions used to send messages between

tasks.

Introduction to Parallel C 33

4.5 Parallel Execution Threads

Parallel C supports multi-threaded tasks. Tasks dynamically create

new execution threads by passing a pointer to a function and an

amount of stack space to a library function. The new execution

thread then starts executing the code of the pointed-to function

concurrently with the thread which created it. The new thread runs

in the same context as its creator; they share their static, extern

and heap memory areas. The only private storage available to the

new thread is its stack. The parent thread has no direct control over

its o�spring, which continues to execute until it terminates itself by

returning from the function which was invoked, or by calling another

library function.

Parallel C's threads resemble the execution threads of OS/2, the

\processes" of Modula-2, and the \coroutines" of some other lan-

guages. Each one has its own stack but shares the rest of its data

with all the other threads in the same task.

Semaphore functions in the run-time library can by used to prevent

threads which share data from interfering with each other. Alterna-

tively, internal channels declared as program variables can be used

to synchronize the threads' operations and transmit data between

them by passing messages. Parallel C provides a CHAN data type

which can be used to declare channel variables.

Of course, like any other software construct, threads or coroutines

may be used in contexts other than those in which they are formally

necessary. Indeed, many problems in simulation, real-time control

and other areas map very well onto a multi-threaded algorithm,

although they do not strictly require to be executed in this way.

4.6 Con�guring an Application

Once an application has been designed and written as a collection

of communicating tasks, how is it loaded into a physical network of

34 Chapter 4

transputers?

First, each individual task is built by compiling all its source �les

with the C compiler and using the linker (linkt) to combine the

resulting binary (.bin) �les with the Parallel C run-time library to

produce a task image (.b4) �le.

Now a bootable application image �le must be generated from the

component task (.b4) �les. The program which does this is called

the con�gurer. It is driven by a user-supplied con�guration �le which

speci�es:

� the hardware con�guration (processors, and the wires connect-

ing them) on which the application is to be run;

� the names of the .b4 �les containing the component tasks of

the application;

� the connections between the various tasks' ports;

� the placement of particular tasks onto particular processors in

the physical network.

The output of the con�gurer is an application �le which can

booted into the speci�ed hardware network and run using the same

afserver program used for simple stand-alone programs.

4.7 Processor Farms

The tools described so far allow you to build applications which exe-

cute on any transputer network the wiring of which can be speci�ed

in advance in a con�guration �le. For many parallel computations

it is useful to be able to create applications which will automatically

con�gure themselves to run on any network of transputers. Such

applications will automatically run faster when more transputers are

added to a network, without recompilation or recon�guration.

Introduction to Parallel C 35

Parallel C allows you to create applications like this, provided the

application can be implemented by a processor farm, and provided

that there is enough memory on each processor in the network to

support the required loading and message handling software.

In the processor farm technique, an application is coded as one mas-

ter task which breaks the job down into small, independent pieces

called work packets which are processed by any number of anony-

mous worker tasks. Work packets are automatically distributed

across an arbitrary network of transputers by routing software sup-

plied with the compiler. All of the worker tasks must run the same

code. Each worker simply accepts work packets, processes them, and

sends back result packets via the same routing software. A worker

task is just a simple sequential loop: read a packet; process it; send

back a result packet; repeat.

Provided a master task can be written for your application which

will split the job up into independent work packets which the worker

tasks can handle without communicating with other tasks, you can

use the ood-�ll con�gurer to combine the code for the master and

worker tasks into a bootable application �le which can be loaded

automatically into an arbitrary transputer network by the afserver

program.

Many computationally intensive applications can in fact be imple-

mented by processor farms, particularly graphics applications like

ray-tracing where di�erent sections of the screen can be worked on

independently.

36 Chapter 4

Chapter 5

Developing Parallel

Programs

In this chapter we move on from looking at the general features of

Parallel C to explaining how some of the parallel programming tools

supplied with the compiler are used in practice. The general-purpose

con�gurer is described here along with the extended run-time library

functions for sending messages over channels and creating new exe-

cution threads. Processor farm applications are covered in the next

chapter.

We have actually already encountered an interesting example of

a parallel system: even a simple sequential program running on

a transputer board plugged into a PC runs in parallel with the

afserver program on the host computer, as shown below.

PC

af-
server

0

0

B004

�lter

0

0

1

1

user
prog.

1

1-

�

-

�

38 Chapter 5

The afserver task is an ordinary MS-DOS executable (.exe) �le

that runs on the PC. It loads executable .b4 �les into the transputer

and also acts as a �le server, handling I/O requests made by the

transputer. The afserver and the transputer execute in parallel and

communicate via an Inmos link. The messages sent to the afserver

are normally generated by the Parallel C run-time library. It converts

I/O operations like putchar and fprintf into messages requesting

the afserver to perform MS-DOS operations like write 512 bytes

and then waits for the afserver to reply.

In principle, the afserver task could be directly connected to the

user program. In practice, a �lter task is interposed between them.

The �lter runs in parallel with the afserver and the user task;

it simply passes on messages travelling in both directions. The

�lter is required because sometimes the messages passed between

the user program and the afserver are only one byte long and the

revision A T414 chip cannot handle single-byte message transfers on

its hardware links. The �lter pads out 1-byte messages to 2 bytes to

avoid this problem.

5.1 Con�guring One User Task

Up to now a standard \harness", t4harn.bin, has been linked in

with all user programs. The harness contains system initialisation

code, the �lter, and a call to the user program. There is no need

to describe the standard system con�guration (afserver, �lter and

one user task) to the harness; the con�guration is assumed.

Using the standard harness is simple but inexible. We need a way

to produce executable �les for more complicated system con�gura-

tions containing many tasks and many transputers. The con�gurer

program supplied with the compiler can do this; a simpler harness

(known as the \task harness") can then be used.

The con�gurer is driven by a user-written con�guration �le which

describes the system to be built: the �le lists all the physical proces-

Developing Parallel Programs 39

!

! UPPER.CFG

!

processor host !the PC

processor root !the transputer in the B004

wire jumper - !connects...

root[0] - !link 0 of root transputer

host[0] !to the PC bus

task upper ins=2 outs=2 !the user task

task filter ins=2 outs=2 data=10k

task afserver ins=1 outs=1

place afserver host !afserver runs on PC

place upper root !everything else on transputer

place filter root

connect ? filter[0] afserver[0]

connect ? afserver[0] filter[0]

connect ? filter[1] upper[1]

connect ? upper[1] filter[1]

Figure 5.1: Con�guration File with One Example Task

sors in the system, the wires connecting them, the tasks to be loaded

into the system and their logical interconnections. The complete

con�guration �le needed for a single transputer system with one task

(i.e., the same con�guration that is built into the standard harness)

is shown in �gure 5.1. In the rest of this section we will look at its

contents in detail.

The example program we have chosen just converts a stream of char-

acters read from stdin to upper case. The C source �le, upper.c

is shown in �gure 5.2 (the corresponding con�guration �le is called

upper.cfg). Note that the examples discussed here are not the same

as the �les with the same names supplied in the distribution kit.

40 Chapter 5

#include <stdio.h>

#include <ctype.h>

main()

{

int c;

while ((c = getchar()) != EOF)

putchar(toupper(c));

}

Figure 5.2: C Source File for Upper Casing Program, upper.c

5.1.1 Hardware Con�guration

The �rst thing the con�guration needs to describe is the hardware

con�guration. A single B004 board plugged into a PC is very easy

to describe.

processor host

processor root

wire jumper host[0] root[0]

There are two processors: the host PC and the root transputer in the

B004. The root transputer is so called because if a larger network is

built around a basic B004 system, the transputer directly connected

to the PC becomes the root of the network|all communication with

the �le system on the PC must pass through it.

A wire connects the root transputer's link 0 to the host processor.

The WIRE statement describes actual physical cables, in this case

the little jumper you have to plug into the back of a B004 board

which connects link 0 on the transputer to the PC bus. Each wire

is given a name, in this case jumper. Objects declared in the con-

�guration language can have arbitrary names made up of letters,

digits and the special characters `_' and `$', but are usually given

mnemonic names.

The processor identi�ers (host and root) used in a WIRE statement

must have been declared in a previous PROCESSOR statement.

Developing Parallel Programs 41

This is a general rule: all objects in the con�guration language

(processors, wires, tasks) must be declared before they are used.

Now compare the short example above with the full con�guration

�le in �gure 5.1. You will notice a few di�erences in layout. Blank

lines, spaces and tabs have been used to improve readability, and

comments (from a `!' character to the end of the line) have been

added. Some lines have been broken, indicated by a hyphen, `-', as

the last non-whitespace character before a line break (or comment).

Layout and comments are ignored by the con�gurer. Note that,

unlike C, the con�gurer also ignores the case of letters: `a' and `A'

are not distinguished.

5.1.2 Software Con�guration

As well as describing the hardware of a system, the con�guration �le

must contain details of all its software tasks and their interconnec-

tions.

5.1.2.1 Declaring Tasks

For each concurrently executing task in the system the con�guration

�le must contain a TASK statement which declares the number of in-

put and output ports the task has. The afserver has only one input

port (for �le system requests) and one output port for responses.

task afserver ins=1 outs=1

Our example user task is next. It will be a program to convert

characters to upper case, so it is given the name upper.

task upper ins=2 outs=2

As before, the ins and outs attributes specify the number of input

and output ports for the task. The upper task has two of each, num-

bered from 0 as in C, and called upper[0] and upper[1]. Whether

42 Chapter 5

a port speci�er like upper[0] refers to an input or an output port is

determined by the context in which it is used.

The ordinary Parallel C run-time library, with which the upper task

will be linked, makes the assumption that the �rst two input and

output ports of a task will be reserved for its use. The �rst pair

of ports (numbered 0) have uses which will not be described here;

they should simply be left unconnected. The second pair of ports

(numbered 1) are assumed to be connected to a �le server task. Here,

we will connect the upper task to the afserver through a �lter task.

The �lter task has a slightly more complicated declaration:

task filter ins=2 outs=2 data=10k

The DATA attribute speci�es the amount of memory a task needs.

The filter task requires a minimum of 10KB of workspace. For

ready-made tasks supplied with the compiler, like filter, memory

requirements can be looked up in the data sheets in chapter 20.

A user task like upper for which no memory requirement is speci�ed

gets all the free memory remaining once any other tasks placed on

that processor are loaded. Only one task on each processor can have

its memory requirements left unspeci�ed in this way. The con�gurer

would otherwise have to decide how to split the remaining memory

between several tasks with unspeci�ed requirements. Because an

even split is unlikely to be desirable in practice, this is not allowed.

Section 5.8 below gives hints on estimating memory requirements in

cases where multiple user-written tasks must be placed on the same

processor.

5.1.2.2 Assigning Tasks to Processors

The placement of tasks on processors is speci�ed by the PLACE

statement. In our example, the afserver runs on the host PC and

the user task (upper) runs on the root transputer with the �lter task.

place afserver host

Developing Parallel Programs 43

place upper root

place filter root

5.1.2.3 Making Connections between Tasks

The CONNECT statement establishes a channel between two tasks,

by connecting an output port to an input port. Because chan-

nels (unlike wires) are unidirectional, two CONNECT statements

are needed to create channels going in both directions between the

afserver and the �lter.

connect ? filter[0] afserver[0]

connect ? afserver[0] filter[0]

The CONNECT keyword can be followed by an identi�er naming the

connection, but all the con�guration statements which declare new

identi�ers allow a question mark to be used in place of the identi�er

being declared. This is useful when there is no need to refer to an

object after it has been declared. Currently there is no statement

which can refer to the identi�er declared by a CONNECT state-

ment, so the question marks avoid the bother of naming essentially

anonymous connections.

After the identi�er (or question mark) we code �rst the output port,

and then the input port. Thus, the �rst CONNECT statement in

the example above makes a channel from filter's output port 0 to

afserver's input port 0.

The remaining connections in our example system are written down

in the same way:

connect ? filter[1] upper[1]

connect ? upper[1] filter[1]

5.1.3 Building the Application

Once a con�guration �le has been written all we have to do to execute

the application is compile the C source �le upper.c, link the resulting

44 Chapter 5

object �le with the C run-time library, and then run the con�gurer.

The example below shows what must be done to build an executable

�le from the uppercasing example:

C>t4c upper

C>t4ctask upper

C>config upper.cfg upper.app

WARNING: no memory allocation specified for task upper:

assuming rest of processor's memory

C>afserver -:b upper.app

case changer

CASE CHANGER

^Z

C>

Two commands are new: t4ctask and config.

5.1.3.1 Linking for the Con�gurer

The ordinary batch �le for linking C programs (t4clink) is not

suitable for linking a task because it links in the standard harness.

t4ctask.bat is a batch �le supplied with the compiler which links

an object (.bin) �le with the Parallel C run-time library and a

vestigial task harness containing neither the �lter process nor any

system initialisation code. The example below shows two C source

�les, main.c and subs.c, being compiled and then linked together

to form a T4 task called main.b4.

C>t4c main

C>t4c subs

C>t4ctask main subs

Like t4clink, the t4ctask batch �le can handle up to nine object

�les on the command line. If you need to link more �les than this,

Developing Parallel Programs 45

you will need to use an indirect �le, as described in section 3.3.2.

If you need to call the linker directly, as described in section 3.3.3,

you must link in the run-time library, crtlt4.bin and the task har-

ness, taskharn.t4, by hand. Both can be found in the installation

directory, \tc2v2.

As usual, there are T8 versions of the batch �le and the task harness.

They are called t8ctask and taskharn.t8.

Note: it is important to link all tasks which are to be used with the

con�gurer with the correct harness. If the wrong harness is used (for

example by accidentally using t4clink rather than t4ctask) then

the con�gured application will fail to operate correctly. It may fail to

execute, or it may simply give wrong answers.

5.1.3.2 Running the Con�gurer

The con�gurer is invoked by the config command. Two �lenames

must be speci�ed on the command line: �rst the con�guration �le,

then the name of the executable �le to be output. For our case-

conversion example, the required config command line was:

C>config upper.cfg upper.app

The con�gurer does not supply default �lename extensions, but .cfg

is conventional for con�guration �les.

File names for the task images which make up the application are

not supplied on the command line; the con�gurer derives them au-

tomatically by appending .b4 to the task identi�ers given in the

con�guration �le. In our example, the con�gurer will search for task

image �les called upper.b4 and filter.b4.

If a task image �le is not found in the current directory, the con�gurer

will automatically search all of the directories on the MS-DOS search

path, so there is no need to make copies of ready-made tasks like

filter.b4 held in the same directory as the compiler (\tc2v2).

46 Chapter 5

The search path can be modi�ed in the usual way by the MS-DOS

commands path and set.

This automatic mechanism for specifying task image �le names can

be overridden by the FILE attribute of the con�guration language's

TASK statement, described in chapter 18.

Note that tasks placed on the host (PC) processor are not searched

for in this way to be included in the output application �le. The

con�gurer does not attempt to load afserver.b4 into the PC from

the transputer! The afserver task must be declared and placed on

the host simply in order to give a name to the object with which the

filter task communicates over its port 0. However, afserver.exe

will always be running in the PC, ready to accept �le I/O requests,

when a transputer application starts running, simply because the

afserver is used to load the application into the transputer. It is

therefore reasonable to regard it as part of the con�guration.

The output from the con�gurer can be run directly using the

afserver:

C>afserver -:b upper.app

The actual hardware con�guration of the transputer network at-

tached to your PC must match the declarations in the con�guration

�le. The memory requirements of con�gured tasks are speci�ed in

the con�guration �le; the afserver options -:o 1 and -:o 0 are

ignored by con�gured applications.

5.2 More than One User Task

In the previous section we saw how an application consisting of a

single user task could be built using the con�gurer instead of the

standard harness.

From this base, we can move on to more complicated systems con-

taining multiple user tasks running in parallel.

Developing Parallel Programs 47

Let's continue with the small case conversion example by splitting

the job performed by upper.c into two tasks: a driver task to handle

�le I/O, and a processing task which accepts a stream of words

containing ASCII character code values on one of its input ports

and sends the corresponding upper case character codes to one of its

output ports.

This example is a bit contrived, but splitting a job up into an I/O

task and a number of concurrent computation tasks is commonplace.

5.2.1 Inter-Task Communication Functions

Coding the driver task in C is easy. Instead of using the toupper

function from <ctype.h> as before, it converts characters to upper

case by sending a message containing the ASCII character code to

the \computation" task and waiting for a reply message containing

the result.

C tasks send messages using the channel I/O functions described in

chapter 10. The chan package provides functions to send and receive

messages of any length. The driver task is shown in �gure 5.3; it uses

chan_in_word and chan_out_word to handle word-sized messages.

A word is the same size as an int.

The driver source �le, driver.c, is included as an example in the

distribution kit, along with the processing task, upc.c, and a suitable

con�guration �le, upc.cfg. These �les can be found in the examples

subdirectory of the directory containing the compiler, \tc2v2.

The statement in driver.c which sends character codes to the pro-

cessing task is:

chan_out_word(c, out_ports[2]);

The word (int) value to be sent is passed as the �rst argument in

the function call.

48 Chapter 5

/*

** driver.c file I/O for uppercasing example

*/

#include <chan.h>

#include <stdio.h>

main(int argc, char *argv[], char *envp[],

CHAN *in_ports[], int ins, CHAN *out_ports[], int outs)

{

int c;

for (;;) {

c = getchar();

chan_out_word(c, out_ports[2]);

if (c == EOF) break;

chan_in_word(&c, in_ports[2]);

putchar(c);

}

}

Figure 5.3: driver.c with Channel I/O Calls

Beware when using the channel I/O functions that sending and re-

ceiving tasks must always agree on the size of messages. For example,

if a task sends a word value as a single 4-byte message, the receiving

taskmust read it as one 4-byte unit; it is not possible for the receiving

task to read four separate 1-byte messages. Trying to do so may

cause the transputer to lock up or behave unpredictably.

The second argument to chan_out_word identi�es the output port

to which the message is to be sent. out_ports[2] corresponds to

output port 2 of the driver task. A CONNECT statement in the

application's con�guration �le referring to driver[2] will specify

which task the port is connected to. In our case, it will be the

processing task to be described later.

out_ports is a vector of pointers to channels, passed into the task

via the argument list of its C main function. This vector is declared

as:

CHAN *out_ports[];

Developing Parallel Programs 49

CHAN is the channel data type de�ned in the library header �le

<chan.h> which is included by C �les which use the channel I/O

functions. Each port (i.e., each element in the vector) has type

\pointer to channel".

The number of output ports in the vector is de�ned by the OUTS

attribute of the TASK statement used to declare the task in the

con�guration �le. Our driver task has outs=3, so there are three

elements in its output port vector, numbered 0 to 2.

The value of OUTS is passed into the task as an argument to main

along with the port vector. It is declared (int outs) in driver.c

but not used. It can be used to write tasks which handle an arbitrary

number of ports, like the multiplexer task described later on in this

chapter.

The main function's argument list also provides access to the input

port vector in a similar way. In the driver example, the input port

vector is given the name in_ports and will have ins elements.

The driver task will keep reading characters from the standard input

stream (getchar), sending them to the processing task and writing

the reply messages (the translated characters) to the standard output

stream until EOF is read.

The next thing to look at is the processing task. It is logically a

\black box" with one input port and one output port:

upc- -0 0

stream of word-
size messages

(ASCII codes)

same stream in
upper case

processing

task

A Parallel C implementation of this task is shown in �gure 5.4.

The processing task uses the same channel I/O functions as the driver

to send and receive messages. It terminates when it receives a �1

50 Chapter 5

/*

** upc.c stand-alone processing task;

** communicates with driver.c

*/

#include <chan.h>

#include <ctype.h>

#include <stdio.h>

main(int argc, char *argv[], char *envp[],

CHAN *in_ports[], int ins, CHAN *out_ports[], int outs)

{

int c;

for (;;) {

chan_in_word(&c, in_ports[0]);

if (c == EOF) break; /* terminate task */

chan_out_word(toupper(c), out_ports[0]);

}

}

Figure 5.4: The Processing Task

from the driver. (The character codes are sent as words rather than

bytes because in this implementation of C, char variables can only

hold values in the range 0 to 255; �1 is not a valid char value).

Extending the con�guration �le for our �rst, single-task, example

(see �gure 5.1) to handle two tasks is easy. We just change references

to the old upper task to driver, and add the following extra con�gu-

ration statements to describe the processing task and its connections.

task upc ins=1 outs=1 data=5k

place upc root

connect ? driver[2] upc[0]

connect ? upc[0] driver[2]

This says that the new task upc has one input port, one output port,

and requires 5KB of memory (section 5.8 gives hints on estimating

task memory requirements). The upc task is placed on the root

transputer, and its ports are connected to the corresponding ports

of the driver task.

Developing Parallel Programs 51

5.3 Building Multi-Task Systems

We will run into a problem when trying to compile and link the

components of the dual-task system.

The ordinary C run-time library expects to send messages to the

afserver on output port 1 and receive replies on input port 1. This

is true even if your C program does not explicitly use any standard

I/O functions like printf|the library will still try to open the stan-

dard input and output streams, and read the command-line string

from the host machine in order to initialize argc and argv.

This means that even though it does no C I/O, the upc task will

still attempt to communicate with the afserver if it is linked with

the standard run-time library. However, the afserver is already

connected to the driver task. The afserver task can't simply be

shared between the driver and upc tasks, because that would require

connecting one port on the afserver task to two client ports. That

is not allowed|channels must always connect one port to exactly

one other port1.

This is not as restrictive as it seems, because a stand-alone version

of the C run-time library which does not need to communicate with

the afserver is supplied with the compiler. The stand-alone library

is just the same as the ordinary library except that all the functions

which require afserver support (I/O, date, DOS calls, etc.) have

been omitted.

A multi-task application is normally split up into an I/O task with

afserver support and one or more processing tasks which do not

need ordinary C I/O because they use the channel I/O functions like

chan_in_word to communicate with the I/O task.

Our example application is already in the right form: all we need

to do is link the driver task with the standard run-time library and

link the processing task, upc, with the stand-alone library.

1There is, in fact, a method to allow tasks to share the afserver. It is

described in chapter 6.

52 Chapter 5

In practice this logical organisation of an I/O task serving a number

of parallel computing tasks is commonplace anyway.

For embedded systems which do not need disk I/O support, is is

possible to link all of the component tasks with the stand-alone

library, producing a consequent reduction in code size due to the

absence of I/O initialisation code from the stand-alone library.

If an application includes several tasks which need to write to the

screen using printf, or access disk �les using fread, you will need

the global I/O facility described in chapter 6. Normally it is just

as simple to cast an application in the form of an I/O task serving

multiple \compute" tasks which only use the stand-alone library and

communicate by passing messages.

A batch �le analogous to t4ctask is provided for linking an object

�le with the stand-alone library. It is called t4cstask.bat; a T8

version (t8cstask) is also supplied. As usual, these batch �les can

be used to link up to nine object �les; if you need to drive the linker

yourself, the �les to link with are sacrtlt4.bin and taskharn.t4

in the installation directory, \tc2v2, or their T8 equivalents. The

commands required to link and con�gure the upper case example for

a T4 are shown below.

C>t4c driver

C>t4ctask driver

C>t4c upc

C>t4cstask upc

C>config upc.cfg upc.app

WARNING: no memory allocation specified for task driver:

assuming rest of processor's memory

C>afserver -:b upc.app

xyz123

XYZ123

pqr

Developing Parallel Programs 53

PQR

^Z

You can try this out for yourself by making a copy of the relevant

�les, which are supplied in the directory \tc2v2\examples, together

with the batch �les upct4.bat and upct8.bat, for building the

application.

5.4 Multi-Transputer Systems

If you have followed the examples this far, the generalisation from

a multi-task system running on a single transputer to a full multi-

transputer system will be fairly obvious. All that is required is a

change to the con�guration �le to describe the extra hardware and

place some tasks onto processors other than the root transputer.

We could run the case conversion example on a two-transputer sys-

tem with the driver task on the root transputer and the upc task on

the other transputer. The extra hardware must be declared in the

con�guration �le:

processor addon

wire root[1] addon[0]

This gives a name (addon) to the second processor and declares that

it will be connected by a wire from its link 0 to link 1 on the root

transputer. (Link 0 on the root transputer is already being used to

connect it to the host computer).

If we recon�gured the application at this stage, the addon processor

would be unused because the upc and driver tasks are both placed

on the root transputer. We can �x this by modifying the PLACE

statement for upc.

place upc addon

Now the con�gurer will automatically generate all the bootstrap and

loader software required to make sure that the code of the upc task

54 Chapter 5

is loaded into the second transputer when the complete application

is started on the root transputer by the afserver.

When interpreting a CONNECT statement, the con�gurer makes a

direct channel connection between the ports, if the two tasks are in

the same processor. Now they are on di�erent processors, the chan-

nel will use the external links, and will be mapped by the con�gurer

onto the external connection as speci�ed in the WIRE statement.

C>config upc.cfg upc.app

WARNING: no memory allocation specified for task driver:

assuming rest of processor's memory

C>afserver -:b upc.app

two transputers...

TWO TRANSPUTERS...

^Z

Further generalisation to an arbitrary system should be clear: just

declare more processors and wires in the con�guration �le, place

tasks on the processors and connect them together.

5.5 Simultaneous Input

One thing we have not yet seen how to do is to wait for a message

from any one of a number of concurrently executing tasks. For

example, a multiplexer task which accepted messages on any of an

arbitrary number of input ports and passed them on through a single

output port would be a useful building block. It might be used to

allow a number of tasks to share a single hardware link.

mux
input
ports

-
-
-

-

0

1

2

n

-0
output
port

A task connected to the output port of the mux task sees a sequential

stream of messages, even though they are coming from any number

of input tasks, in any order.

Developing Parallel Programs 55

To implement the mux task we will need a way of reading from

a number of input ports \all at the same time" so that the �rst

message to appear on any of them \wins" and satis�es the read

request, blocking any other messages which appear until the next

read request.

The alt functions supplied with Parallel C provide this facility. The

alt package is more fully described in chapter 10; the interfaces

to the individual functions are described in the alphabetical list of

functions in chapter 11.

Here, we give the avour of these functions by showing a Parallel C

implementation of the multiplexer task which uses the alt_wait_vec

function to wait for a message to arrive from any element of an array

of (pointers to) channels. The multiplexer task's input port vector is

just such an array of pointers to channels, so it can be passed directly

to alt_wait_vec along with a count of the number of elements in

the array.

alt_wait_vec waits for a message to arrive on any of the channels

pointed to by the array, in this case any of the multiplexer task's

input ports. It then returns the index in the array of the channel on

which the message was received. If more than one message arrives

at the same time, the system will choose which one to handle �rst.

If no message ever arrives, the function will never return.

Once alt_wait_vec has determined the channel on which a message

is incoming, the rest of the mux task is quite straightforward. First,

read the message from that channel into a bu�er, then echo the

message to the single output port. In the example, the messages

consist of a �xed length (four byte) header giving the size of a

trailing variable-length part. Only one message bu�er is required

no matter how many input ports are connected to the multiplexer

task. Messages arriving on any other channels are blocked while the

multiplexer deals with the current message.

Figure 5.5 shows the code of the multiplexer task.

56 Chapter 5

/* altmux.c: message multiplexer using 'alt' package */

#include <alt.h>

#include <chan.h>

main(int argc, char *argv[], char *envp[],
CHAN *in_ports[], int ins, CHAN *out_ports[], int outs)

{

char buf[1024]; /* message buffer */
int i; /* input port on which message received */

int msglen; /* number of bytes in message */

for (;;) { /* read messages forever */

/* wait till next message received on any input port */

i = alt_wait_vec(ins, in_ports);

/* read the message from that port */
chan_in_word(&msglen, in_ports[i]);

chan_in_message(msglen, &buf[0], in_ports[i]);

/* ...and copy it to the single output port */

chan_out_word(msglen, out_ports[0]);
chan_out_message(msglen, &buf[0], out_ports[0]);

}
}

Figure 5.5: Multiplexer Task Using alt Package

Developing Parallel Programs 57

5.6 Multi-Threaded Tasks

5.6.1 Creating Threads

The alt functions allow a limited amount of parallelism or non-

determinism to be introduced into a sequential task. Parallel C also

allows tasks to be fully multi-threaded. This means that a task

can contain any number of concurrent processes each of which is

independently executing the code of the task. All the threads in a

task share the same static, extern and heap data. The threads can

still operate independently because each one is given its own stack

for auto variables. New threads are created dynamically by calling

the library function thread_create. All of the library functions

discussed in this section are described more fully in chapters 10

and 11.

If multiple threads in a task are operating on shared data, say a

bu�er held in static storage or on the heap, they must synchronize

their access to this data. Threads can synchronize their operations

using either channels or semaphores.

A channel can be used to synchronize two threads by includeing the

header <chan.h> and then declaring a static, extern or heap vari-

able of type CHAN. If this channel is initialized using the chan_init

function, a pointer to it can be used to specify the channel to be

read or written by any of the channel I/O functions.

Remember that each channel can only be used to transmit data in

one direction between exactly two threads. You cannot use a channel

to transmit data in both directions (you must use two channels) and

you cannot allow more than one thread to be waiting for input from

the same channel.

Figure 5.6 shows a task which creates just two threads, a producer

thread which generates a sequence of word-sized messages and a

consumer thread which processes them. The messages are transmit-

ted across an internal channel, chan. The channel transmits the data,

58 Chapter 5

and also ensures synchronization: the consumer cannot proceed once

it has called chan_in_word until the producer sends a message over

chan. Similarly, if the consumer thread is busy when the producer

attempts to send a message, it will be blocked until the consumer

comes to read its next message.

There are several points to note about this example.

First, any channels to be used to synchronize the operations of mul-

tiple threads should be declared and initialized before those threads

are created.

Second, it is a bad idea for the main function of a task to return

while any threads it has created are still active if, as in this case, one

of the threads may use C standard I/O. If this happens, the main

function may exit, causing the run-time library to shut down the I/O

system and close all open �les before some thread which needs to do

I/O has �nished. To forestall this possibility, an extra channel has

been added in the example from the consumer thread back to the

original main thread. It is used purely for synchronization. When the

consumer thread is about to terminate, it sends a dummy message

over this channel. The main thread waits for this message before

returning.

Finally, note the use of par_printf in place of printf in the

consumer thread. If multiple threads are active in a task, and more

than one thread may need to call the run-time library, then their calls

must be interlocked using a semaphore. The par package provides

ready-interlocked versions of some common functions like printf.

The interlock is not actually necessary in this case, since no other

thread will be attempting to use the run-time library at the same

time, but it is as well to be aware of the problem.

Semaphores may also be used to interlock user threads. To illustrate

the use of semaphores we have recoded the multiplexer example pre-

sented previously to use multiple threads interlocked by a semaphore

in place of the alt functions.

Developing Parallel Programs 59

#include <thread.h>

#include <chan.h>
#include <par.h>

#define STACKSIZE 1024

CHAN chan, consumer_finished;

void producer() /* generate 10 values */
{

int i;
for (i=0; i < 10; i++)

chan_out_word(i, &chan);

}

void consumer() /* processes 10 values */
{

int i, val;
for (i=0; i < 10; i++) {

chan_in_word(&val, &chan);

par_printf("%d\n", 2*val);
}

chan_out_word(1, &consumer_finished);
}

main()
{

int dummy;

chan_init(&consumer_finished);
chan_init(&chan); /* BEFORE starting the threads! */

thread_create(producer, STACKSIZE, 0);
thread_create(consumer, STACKSIZE, 0);

/* wait for all threads to terminate */

chan_in_word(&dummy, &consumer_finished);

/* before exiting */

}

Figure 5.6: Synchronization by Internal Channels

60 Chapter 5

A new execution thread is created for each input port. Each thread

does a simple sequential read and waits for a message. As soon as

one thread receives a message it waits until a semaphore indicates

the output port is free. It needs to wait in case one of the other

threads is currently using it. Using a semaphore prevents disaster if

two threads each try to write to a shared object like the output port

at the same time.

Figure 5.7 shows the semaphore version of the multiplexer task in

Parallel C. This implementation shares one message bu�er area be-

tween all its threads as well as sharing the output port. All of a

task's threads share the same static, extern and heap data. Each

thread has its own stack for auto variables, so each thread in the

example has its own msglen variable. The stack space for a thread is

created automatically (from the heap) by the thread_create func-

tion. Any number of input threads can have read the length part of

their incoming messages, but the buf_free semaphore ensures that

only one is using buf and out_ports[0] at any time.

If you haven't used semaphores or a similar method for controlling

concurrent access to shared objects before, you should read a good

introduction to the subject, such as [7, 8]. It is possible to introduce

di�cult-to-trace errors into a program if threads forget to synchro-

nize access to a shared object by waiting for a semaphore.

5.6.2 Threads versus Tasks

Threads can be useful in many situations. They are just \lightweight"

processes, corresponding to processes in Modula-2 or the coroutines

of some other languages.

Compared with tasks, threads are:

� \lightweight"|they share their code, heap, static and external

data memory with all the other threads created by the same

task;

Developing Parallel Programs 61

/* mux.c: message multiplexer task */

#include <chan.h> /* required header files */

#include <thread.h>
#include <sema.h>

char buf[1024];

SEMA buf_free; /* controls access to buf */

CHAN **in_p, **out_p; /* global pointers to */
/* port vectors */

main(int argc, char *argv[], char *envp[],
CHAN *in_ports[], int ins, CHAN *out_ports[], int outs)

{

extern void receive(int);
int i;

sema_init(&buf_free, 1); /* buffer is initially free */

in_p = in_ports; /* make in_ports & out_ports */

out_p = out_ports; /* globally available */

for (i=0; i < ins; i++) /* one thread per input port */

thread_create(receive, /* function */
50*sizeof(int), /* workspace size in bytes */

1, /* 1 argument */
i); /* tell thread which port */

}

void receive(int i) /* handle a single input port */

/* i = port to service */
{

int msglen; /* each thread has its own msglen */

for (;;) { /* forever... */
chan_in_word(&msglen, in_p[i]); /* await message from input port */

sema_wait(&buf_free); /* wait till no one else using buf */
chan_in_message(msglen, /* read body of message into */

&buf[0], /* the shared global buffer */
in_p[i]); /* from our port */

chan_out_word(msglen, out_p[0]); /* copy message to out_ports[0] */

chan_out_message(msglen, &buf[0], out_p[0]);
sema_signal(&buf_free); /* let someone else in again */

}
}

Figure 5.7: Multiplexer Task Using Semaphores

62 Chapter 5

� they can share data and may communicate either via shared

memory or by using channels like tasks;

� all the threads of a single task run on the same processor,

allowing them to share memory.

Tasks on the other hand are more substantial than threads:

� they only communicate via channels;

� each task has its own code and data areas, separate from all

other tasks; code, including run-time library functions, is not

shared between tasks, even tasks placed on the same processor;

this is so that

� a task can be moved to a di�erent processor simply by recon-

�guration.

Two operations to be performed concurrently can be usefully per-

formed by threads rather than tasks if all of the following conditions

hold.

� They will never need to be run on distinct processors.

� The operations are closely coupled, i.e., they share a lot of

common code. Code is automatically shared between threads,

but each task has its own copy of all of its code, including

library functions, so that if necessary it can later be moved to

a di�erent processor without requiring recompilation or relink-

ing.

� The operations logically operate on shared data structures.

This may be more e�ciently performed directly by concur-

rent threads than by tasks copying the data back and forth as

messages when it is modi�ed.

Developing Parallel Programs 63

5.7 Debugging

This section contains some hints on debugging parallel programs

for users who have not purchased Tbug, 3L's interactive debugger

product. Tbug allows examination of source program variables and

provides source level breakpointing and single-stepping within multi-

threaded, multi-tasking Parallel C applications. This simpli�es fault-

�nding.

If you do not have Tbug, what can be done when a parallel system

locks up or fails to work properly? A sequential program could be

attacked by inserting extra debugging output statements at strategic

points in the code.

In a multi-task system this will in general only be easy to do to

an I/O server task linked with the standard library and directly

connected to the afserver. Unless you design debugging messages

into the communication protocol used between the various tasks in

your system you will not be able to get debugging output from

a stand-alone task to a screen driving task. Even building debug

message formats into the protocols used by the tasks in your system

may not be enough if the fault lies in the failure of some intermediate

task to transmit messages correctly.

However, it is possible to get output directly from a stand-alone task

to an output device by using a second host computer and transputer

board combination as a debugging tool. The second system can be

attached to a suspect node of the system, in the same way as an

oscilloscope can be used to debug an electronic system.

One way of doing this is to relink the suspect task with the standard

run-time library (rather than the stand-alone library) and place it

on the transputer attached to the second host computer. Ordinary

printf calls can then be inserted in the code; the results will be

output directly by the afserver in the second PC and displayed on

its screen. The con�guration statements required would be like this:

processor host

64 Chapter 5

processor root

wire ? root[0] host[0] !as before

processor extra_PC type=PC

processor extra_B004 !plugged into extra_PC

task extra_afserver ins=1 outs=1

wire ? extra_B004[0] extra_PC[0]

wire ? extra_B004[1] root[1]

place extra_afserver extra_PC

place suspect_task extra_B004

connect ? suspect_task[1] extra_afserver[0]

connect ? extra_afserver[0] suspect_task[1]

The main thing to notice here is the type=PC attribute given to

the extra_PC processor. This tells the con�gurer not to try and

bootstrap any tasks into that processor. (The host processor is

just a special case for which type=PC is assumed). To make this

con�guration work, you must start the afserver on the extra PC

using the afserver command without the -:b option before starting

the system under test. If no -:b option is present on the command

line, the afserver does not attempt to bootstrap the network it is

attached to; it will simply accept �le I/O request messages over its

links.

It is also possible to use this debugging technique if you don't have

another host and transputer board combination but do have another

PC with an Inmos link adapter card. Relink the suspect task with

the full run-time library rather than the stand-alone library, then re-

con�gure the system with input and output ports 1 of the task being

debugged connected to the PC with the link adapter, as follows:

processor second_PC type=pc

task second_afserver ins=1 outs=1

place second_afserver second_PC

processor any_processor !of network being debugged

wire any_processor[3] second_PC[0]

task suspect_task ins=2 outs=2 !connect [1]'s to afserver

place suspect_task any_processor

Developing Parallel Programs 65

connect ? suspect_task[1] second_afserver[0]

connect ? second_afserver[0] suspect_task[1]

This technique has two advantages: it only requires an extra PC and

link adapter card, rather than an extra PC and transputer board,

and there is no need to change the placement of the suspect task.

A third technique uses the three spare links on a transputer board

plugged into the extra PC to accept debugging messages from up

to four separate tasks anywhere in the network being debugged and

multiplex them onto its PC screen.

5.8 Estimating Memory Requirements

Section 3.5 has already discussed the various categories of data stor-

age. As noted there, the data requirement for a task is the sum of

the number of bytes required for static, stack and heap storage in all

its modules.

The decode utility (see chapter 14) can be used to determine a

module's static data requirement (including extern data). decode

displays the number of words (not bytes) of static data required by

a module near the top of the output listing it produces, after the

keyword STATIC. The whole task also has one word of static space

permanently allocated to each module.

Stack and heap requirements are more di�cult to estimate; you must

decide how much space to leave for all the functions which may be

active at once, based on the sizes of individual data items. Each level

of function calling uses about �ve words of stack space in addition

to the space required for function data.

Heap storage is currently allocated by the run-time library in blocks

of 4KB, so if your task uses the heap be sure to allocate at least that

much space for it.

66 Chapter 5

In addition to the amount of space you estimate your task actually

needs, it is a good idea to leave at least 1 or 2KB of extra overow

space, unless you are absolutely sure the task will never require more

space than you have calculated.

Bear in mind that if a task exceeds its stated memory requirements

the whole system will probably crash, so err on the side of caution.

A good rule of thumb would be to allocate at least 1KB to simple

tasks which don't use the heap, and 8{10KB for tasks which do use

the heap. Note that the C standard I/O functions (such as fprintf

or printf) implicitly use the heap to allocate bu�er space.

If the stack space required by a task is small enough it can be

allocated from the transputer's on-chip RAM. The space available

there is 2KB on a T414, 4KB on a T800. Placing a computationally

intensive task's stack in fast on-chip RAM can produce dramatic

speed improvements. The con�guration language contains various

attributes for the TASK statement which allow control over memory

layout. These more advanced topics are covered in chapter 18.

Chapter 6

Global Input/Output

In the last chapter, we looked at how to build con�gured applications

with more than one user task, whether running on one or more

transputers. In this chapter, we shall see how to arrange for all

these tasks to use the input/output functions and other facilities

which need the support of the afserver program.

6.1 One Transputer

We saw in section 5.3 that only one task can communicate with the

afserver, and that this task was the only one to be linked with

the full C run-time library. All the other tasks were linked with the

stand-alone library, and this precluded them from doing I/O, DOS

calls and so on. Figure 6.1 shows, for example, a simple two-task

application, and �gure 6.2 shows the corresponding con�guration

�le.

The problem is that the server only has one possible connection to

one �lter task, and the �lter task has only one possible connection

to a user task. We can get round this problem by placing a special

multiplexer task between the user tasks and the �lter tasks. This

68 Chapter 6

afserver

filter

user1 user2

root

host

-

�

?
6

?

6

0

0

1

1

2 2

Figure 6.1: Two-task Application

multiplexer task is included with the Parallel C kit, and is called

filemux; a task data sheet for it can be found in chapter 20.

Figure 6.3 shows this arrangement. The con�guration �le is un-

changed, except that the following statements, which connected

user1 to the �lter are removed:

connect ? filter[1] user1[1]

connect ? user1[1] filter[1]

and instead we have the following:

task filemux ins=3 outs=3 data=6.5K

place filemux root

connect ? filter[1] filemux[0]

connect ? filemux[0] filter[1]

connect ? filemux[1] user1[1]

connect ? user1[1] filemux[1]

connect ? filemux[2] user2[1]

connect ? user2[1] filemux[2]

Now it is filemux which is connected to the �lter, and the two user

Global Input/Output 69

processor host

processor root

wire ? root[0] host[0]

task afserver ins=1 outs=1

task filter ins=2 outs=2 data=10K

task user1 ins=3 outs=3 data=50K

task user2 ins=3 outs=3 data=50K

place afserver host

place filter root

place user1 root

place user2 root

connect ? filter[0] afserver[0]

connect ? afserver[0] filter[0]

connect ? filter[1] user1[1]

connect ? user1[1] filter[1]

connect ? user1[2] user2[2]

connect ? user2[2] user1[2]

Figure 6.2: Two-task Application

tasks each have their number 1 port pairs connected to a filemux

port pair. Each user task should be linked with the full run-time

library using t4ctask or t8ctask, and each task can behave as if it

has sole use of the afserver. The multiplexer arranges for all the

messages from the user tasks to be transported to the afserver on

the host, and transports the replies back to the correct user task.

You can arrange for the multiplexer to handle more tasks. Each must

have its port pair 1 connected to a multiplexer port pair, starting

at number 1 and going upwards with no gaps. For example, if the

multiplexer is supporting 9 tasks, they must be connected to port

pairs 1 to 9. The amount of memory which the multiplexer uses is

no more than (6 + 0:25n)K bytes, where n is the number of tasks

supported. So in the case of 9 supported tasks, the TASK statement

should read:

task filemux ins=10 outs=10 data=8.25K

The multiplexer adjusts its own activities to support all the tasks

which are connected in this way.

70 Chapter 6

afserver

filter

filemux

user1 user2

root

host

-

�

?
6

?
6

?
6

?

6

0

0

1

0

1 2

1

2 2

1

Figure 6.3: Two-task Application with Global I/O

6.2 More than One Transputer

A task does not have to be on the same transputer as the multiplexer

which supports it. Provided the necessary wires exist, it can be on an

adjacent transputer. Figure 6.4 shows how this would be arranged,

and �gure 6.5 is the corresponding con�guration �le.

Each WIRE statement corresponds to a hardware link between two

transputers, and supports two CONNECT statements, one in each

direction. This means that the connections between filemux and one

supported task on a neighbouring transputer will use up one WIRE

statement, that is, one hardware link. This implies two restrictions:

� If you have a task on a neighbouring transputer supported by

a multiplexer on this one, and you also want user tasks on the

Global Input/Output 71

two transputers to be connected, you will need two hardware

links between the two transputers.

� As a transputer has only four hardware links, the number of

tasks on neighbouring transputers which can be supported is

limited.

6.3 More than One Multiplexer

Fortunately, there is a way to improve on this situation. This can

be done by using more than one copy of the filemux task.

Up to now, the number 0 port pair of the multiplexer has always been

connected to the number 1 port pair of the �lter task. However, it

is also possible to connect the number 0 port pair to another copy

of the multiplexer, which could be on another transputer. In this

way, copies of the multiplexer can be built up into a tree. Figure 6.6

shows how this could be done, and �gure 6.7 shows the corresponding

con�guration �le.

Once again, a user task which is connected to the multiplexer, no

matter how deep into the tree it is, can use the server's facilities as

if it were directly connected. The task's server requests are passed

up the tree of multiplexer tasks until they reach the afserver, and

the response is similarly passed back to the correct user task.

6.4 Limits

The number of MS-DOS �les and devices which the afserver can

handle at the same time is limited, currently to 20. This means that

the network of tasks which are supported by filemux may not open

more than 20 �les at any one time. This applies regardless of the

number of filemux tasks involved.

72 Chapter 6

Each C task which is linked with the full run-time library uses up

three of this allotment of 20, for stdin, stdout and stderr. As a

result, the maximum number of tasks which can be supported by

the multiplexer network is currently 6.

6.5 Termination of an Application

When a task which is linked to the full run-time library terminates,

for example by returning from the main function or calling the exit

function, it sends to the afserver a server terminate request. This

causes the afserver to stop executing and return control to DOS.

Obviously, when a number of tasks are using the server, this cannot

be allowed to happen. Accordingly, filemux does not pass on a

server terminate request until all the the tasks it supports have tried

to send one.

The e�ect of this is that the afserver does not terminate until it

has been asked to do so by every task in the application which is

supported by filemux. It is not enough for a task to go into a loop,

or to be waiting for input; if this happens, the application as a whole

will not terminate. Every task must terminate properly.

Global Input/Output 73

afserver

filter

filemux

user1

user2

root

host

two

?
6

?

6

?
6

?

6

-

6

0

0

1

0

1 2

1

2

2

1

Figure 6.4: Task on Neighbouring Transputer

74 Chapter 6

processor host

processor root

processor two

wire ? root[0] host[0]

wire ? root[1] two[0]

wire ? root[2] two[1]

task afserver ins=1 outs=1

task filter ins=2 outs=2 data=10K

task filemux ins=3 outs=3 data=6656

task user1 ins=3 outs=3 data=50K

task user2 ins=3 outs=3 data=50K

place afserver host

place filter root

place filemux root

place user1 root

place user2 two

connect ? filter[0] afserver[0]

connect ? afserver[0] filter[0]

connect ? filter[1] filemux[0]

connect ? filemux[0] filter[1]

connect ? filemux[1] user1[1]

connect ? user1[1] filemux[1]

connect ? filemux[2] user2[1]

connect ? user2[1] filemux[2]

connect ? user1[2] user2[2]

connect ? user2[2] user1[2]

Figure 6.5: Task on Neighbouring Transputer

Global Input/Output 75

afserver

filter

filemux

user1 user2

filemux

user3 user4 user5

root

host

two

?

6

?
6

?
6

?
6

?

6

?
6

?
6

?
6

0

0

1

0

1 2 3

1 1

0

1 2 3

1 1 1

Figure 6.6: Networking Multiplexers

76 Chapter 6

processor host

processor root

processor two

wire ? root[0] host[0]

wire ? root[1] two[0]

task afserver ins=1 outs=1

task filter ins=2 outs=2 data=10K

task mux1 file=filemux ins=4 outs=4 data=6912

task mux2 file=filemux ins=4 outs=4 data=6912

task user1 ins=2 outs=2 data=50K

task user2 ins=2 outs=2 data=50K

task user3 ins=2 outs=2 data=50K

task user4 ins=2 outs=2 data=50K

task user5 ins=2 outs=2 data=50K

place afserver host

place filter root

place mux1 root

place mux2 two

place user1 root

place user2 root

place user3 two

place user4 two

place user5 two

connect ? filter[0] afserver[0]

connect ? afserver[0] filter[0]

connect ? filter[1] mux1[0]

connect ? mux1[0] filter[1]

connect ? mux1[1] user1[1]

connect ? user1[1] mux1[1]

connect ? mux1[3] user2[1]

connect ? user2[1] mux1[3]

connect ? mux1[2] mux2[0]

connect ? mux2[0] mux1[2]

connect ? mux2[1] user3[1]

connect ? user3[1] mux2[1]

connect ? mux2[2] user4[1]

connect ? user4[1] mux2[2]

connect ? mux2[3] user5[1]

connect ? user5[1] mux2[3]

Figure 6.7: Networking Multiplexers

Chapter 7

Processor Farms

The previous chapters showed how to create a parallel application

for a multi-transputer system with a �xed hardware con�guration.

In this chapter we look at how to build one of the \processor farm"

applications mentioned in the Introduction to Parallel C in chapter 4

which will automatically ood-�ll an arbitrary network of transput-

ers with copies of a \worker" task.

Three things must be written to create a processor farm application:

1. A master task to split up the job into independent work pack-

ets.

2. A worker task, which is automatically copied to each node of

the network.

3. A con�guration �le, describing the memory requirements and

other attributes of the tasks.

In this chapter we will use a program which displays pictures of the

now-famous \Mandelbrot Set" on an IBM PC-type host equipped

with a CGA-compatible display as an example processor farm appli-

cation.

78 Chapter 7

The full source code of the Mandlebrot master and worker tasks,

and of the con�guration �le required, is printed in appendix G.

These �les are also supplied in machine-readable form in the

\tc2v2\examples directory, along with a batch �les (mandelt4.bat

and mandelt8.bat) to compile, link and con�gure the example �les

into an executable application. Section 7.5 at the end of this chapter

explains how to run the demonstration if you want to try it out before

reading further.

The Mandelbrot program is suitable for running on a processor farm

because each part of the �nal picture can be computed independently

of all the others.

The master task has to split the job up into lots of small units

which can be handled independently by the \farm workers". In the

Mandelbrot case this is easy: the master divides up the screen area

into 100 small squares, and sends the coordinates of the individual

squares out into the network as work packets. Any idle worker

receiving a packet calculates the required graphics display bitmap

for that part of the picture and sends it back as a result packet.

Both the master and worker task make use of a package of functions

(the \net" functions) which provide a procedural interface to the

underlying message-based software which routes work packets from

the master to free worker tasks and carries result packets back again.

The net_send and net_receive functions used by the master and

worker tasks must be declared by including the appropriate header

�le:

#include <net.h>

The net_send and net_receive functions are described in detail in

the reference part of this manual, starting on page 290.

Processor Farms 79

7.1 The Worker Task

If you look at the code of the Mandelbrot worker task you will see

that it is purely sequential. It consists of a single loop:

1. Get a work packet by calling net_receive. The work packet

identi�es the individual square of the display which is to be

computed.

2. Work out the graphics display for that square in the counts

array member of the result packet structure r.

3. Send the result packet back to the master task by calling

net_send.

4. Go back to step 1.

The worker task does not care which processor it is executed on and

must not communicate explicitly with other tasks. All communica-

tion between workers and master is handled \behind the scenes" by

net_send and net_receive.

The only other restriction on the worker task is that because it

must be replicated throughout the network and therefore cannot

be directly connected to the afserver it must be linked with the

stand-alone run-time library.

7.2 The Master Task

The master task of a processor farm application has three basic

functions.

1. Split up the job into work packets. It sends the work packets

out into the farm of worker tasks by calling net_send. The

master simply does this as fast as it can: whenever the network

of worker tasks becomes saturated, net_send is automatically

80 Chapter 7

blocked until a worker task becomes idle. Because the routing

software is bu�ered, the network can hold a number of packets

waiting to be processed; this ensures that processors are idle

for a short a time as possible. Consequently, the network will

not be saturated until all the workers are working, and all the

bu�ers are full.

2. Receive result packets from the network by calling net_receive.

If no result packets are available, net_receivewill wait for one

to arrive before returning.

3. Perform any I/O required by the worker tasks.

To prevent incoming result packets being blocked by the net_send

function waiting for a worker to become free, or conversely the send-

ing of work packets being blocked by net_receive waiting for a

reply, these functions must be performed in parallel.

In the example implementation of the Mandelbrot program these

functions are performed by three parallel execution threads: send,

receive and main, which are synchronized using semaphores.

7.3 The net Package

Descriptions of the functions in the net package may be found in

chapter 11.

The administration of a processor farm is under the control of a

task called frouter (see chapter 20). Each node in a processor farm

contains a copy of this task; all the copies, and the master and worker

tasks, are connected together by the ood-�lling con�gurer (see sec-

tion 7.4 below). This network of frouter tasks can be regarded by

the programmer as a single entity, whose job it is to ensure that

messages arrive at their correct destinations.

Processor Farms 81

7.3.1 Functions net_send and net_receive

The function net_send is used to send a message to the network,

and net_receive is used to receive one from the network.

Messages sent to the network by the master task (using net_send)

are routed to an idle worker task, if necessary passing through more

than one node in order to reach one. At each level of re-direction,

the messages are bu�ered. Only if all the worker tasks are busy, and

all the bu�ering is full, will a call on net_send by the master task

have to wait.

Messages sent to the network by worker tasks are routed back to the

master task, once again passing through more than one transputer

if necessary.

There is a limit on the size of a bu�er that can be submitted to

net_send; the constant NET_MAX_PACKET_LENGTH is de�ned in the

package �le to have this value (currently 1024). If the message you

wish to send is longer than this, it must be broken into a number

of packets. The last packet of the message should be sent with the

complete parameter of net_send set to the value 1; this should also

be done if there is only one packet in the message. All the other

packets should be sent with complete set to the value 0. When

a packet is received, net_receive sets its complete parameter to

the value used when the packet was sent. The network will ensure

that a sequence of packets will arrive in the right order, but it is

the receiving task's responsibility to �t the sequence of packets back

together again.

It is best, however, to design the application to use messages which

are smaller than 1024 bytes, as long packets can clog up the network

and block packets being delivered to other nodes.

82 Chapter 7

7.3.2 The net_broadcast function

Sometimes you may wish to start a run of your processor farm appli-

cation by initialising all the worker tasks with the same set of data.

These could be parameters obtained from the user, for example, or

data tables which vary from run to run. This can be done using

net_broadcast.

The net_broadcast function should only be used by the master

task. Each call results in a copy of the broadcast message being sent

to every worker task in the processor farm. The broadcast message

can be received by the worker tasks by using net_receive in the

normal way. The most usual time to do a broadcast would be at

the beginning of the run, but a message can be broadcast whenever

the network is idle; that is, when all the work packets sent out by

the master task have been answered by the worker tasks by sending

a result packet. However, as there is no method to tell a broadcast

message from a normal work packet, it is up to the programmer to

ensure that the worker tasks never get confused.

A broadcast message can be any length. If necessary, net_broadcast

will break it up into packets for transmission through the network. In

this case, the worker tasks will have to call net_receive more than

once to receive it, checking the complete parameter as described

above.

Note that net_broadcast is the only reliable method to send an

identical message to every worker task. Repeatedly calling net_send

is unlikely to work.

7.4 Building the Application

Once the master and worker tasks have been compiled, the master

should be linked with the standard run-time library (t4ctask or

t8ctask); the worker task must be linked with the stand-alone run-

time library (t4cstask or t8cstask).

Processor Farms 83

The executable �le containing the code of these tasks along with the

extra software to ood-�ll a transputer network with copies of the

worker task is generated by the ood-�ll con�gurer, fconfig.

7.4.1 Con�guration File

Like the �xed-network con�gurer, fconfig requires a con�guration

�le as input. This must specify at least:

� the �lename of the master task;

� the �lename of the worker task;

� the memory requirements of the worker task.

The con�guration language accepted by fconfig is a subset of that

accepted by config.

The minimum con�guration �le for the Mandelbrot example would

be:

task master

task worker data=10k

fconfig would search for the master task in master.b4, and for

the worker task in worker.b4. These �le names can be over-ridden

using the FILE attribute of the TASK statement, as shown below,

but the task identi�ers master and worker are special: you must use

these names to identify the master and worker tasks to the ood-

con�gurer.

If the alternative con�guration �le below were used, the con�g-

urer would expect to �nd the tasks in �les called mandelm.b4 and

mandelw.b4.

task master file=mandelm

task worker file=mandelw data=10k

84 Chapter 7

The DATA size speci�cation is required for at least one of the tasks.

Other attributes governing placement of stack memory in on-chip

RAM and so on are covered in the reference part of this manual.

It is not required (and indeed not possible) to specify INS or OUTS

attributes for the master and worker tasks in their con�guration

TASK statements: all the ports and connections required are gener-

ated automatically by the ood-con�gurer.

To run the ood-con�gurer by hand, use a command of the form:

fconfig con�guration-�le executable-�le

For example:

C>fconfig mandel.cfg mandel.app

The executable �le generated by the ood-con�gurer will place the

master task and one copy of the worker task on the root transputer,

and distribute copies of the worker task to any other transputers

connected to the root. A �lter task allowing the master task to

communicate with the afserver is automatically added by fconfig,

along with the loader and router tasks required to copy the workers

across the network and carry messages between them and the master

task.

This additional software occupies about 20KB of RAM in the current

version of Parallel C, so each node in our example network must have

at least 32KB of RAM to support the 10KB worker task declared in

the con�guration �le along with a router and loader. The root node

must be larger again in order to support the master and �lter tasks

as well.

7.5 Running the Example

The kit includes batch �les which will automatically compile, link

and con�gure the the Mandelbrot example.

Processor Farms 85

To run the program from a temporary directory on a network of T8s,

you can use the following commands:

C>cd \

C>mkdir temp

C>cd temp

C>copy \tc2v2\examples*.*

C>mandelt8
.
.
.

To run on a network of T4s, you should use the command mandelt4

instead of mandelt8. Each of these batch �les results in an appli-

cation �le (called fmandel.b4) which can be run in any network

consisting only of the appropriate type of transputer. Section 7.6

below describes how to ood-con�gure applications to run on a net-

work containing a mixture of T4 and T8 processors.

The executable �le can be loaded and run in the normal way:

C>afserver -:b fmandel.b4

When it starts, the Mandelbrot program reminds you that it needs

an IBM PC compatible host machine with CGA graphics to work

properly, then prompts you to enter several numeric parameter val-

ues on the keyboard.

Some suitable test values are:

Input X coordinate: -2

Input Y coordinate: -1.25

Input Y range: 2.5

Threshold 1: 5

Threshold 2: 20

Threshold 3: 50

Once the display is complete, the host system's bell will be rung. Hit

Enter, and the �rst prompt will reappear. You can then experiment

86 Chapter 7

with other sets of parameter values. A more interesting set of values

is: �0:25, 0:8, 0:25, 10, 20, 50.

Use Ctrl-C when you want to stop the program.

Once you have the program working, you can make it run faster

simply by plugging more transputers into the network and rebooting

the program.

The batch �les mandelt4.bat and mandelt8.bat also result in an-

other �le, mandel.b4. This is a statically con�gured application

including a master task and one worker, which are both placed on

the root transputer.

7.6 Heterogeneous Networks

A ood-�lled application compiled for the T4 and con�gured using

the simple master and worker forms of task declaration may work

on a mixed network of T4 and T8 processors if it uses only integer

operations. This approach will not in general work for an application

which uses oating-point operations, because of the incompatibilities

between the T4 and T8 instruction sets.

Mixed networks of T4 and T8 processors are properly handled by an

extension to the con�guration �le, like this:

task t4master file=mandelm4

task t8master file=mandelm8

task t4worker file=mandelw4 data=10k

task t8worker file=mandelw8 data=10k opt=stack

Separate tasks must be compiled and linked for T4 and T8 proces-

sors; the Parallel C software ensures that the right task images are

loaded into the right processors.

Again the names t4master, t8master, t4worker and t8worker are

special, but the �le names derived from them can be over-ridden by

the FILE attribute, as above.

Processor Farms 87

Note that it is possible to specify di�erent memory optimisation

options (e.g., opt=stack above) for the T4 and T8 variants of a

task. This is useful because the T4 and T8 have di�erent amounts

of on-chip RAM.

If a t4master task is declared, a corresponding t8master task must

also be declared, and similarly for the worker task.

At present, T425 processors cannot be included in heterogeneous

ood-�lled networks.

88 Chapter 7

Chapter 8

Developing T2 Programs

This chapter shows you how to use the Parallel C compiler to develop

programs for 16-bit transputers, hereafter referred to as T2 trans-

puters. Many of the features of the compiler are the same whether

you are compiling for T2, T4 or T8 transputers.

The preceding chapters describe working with T4 and T8 transputers

in detail. This chapter will concentrate on the di�erences you will see

between T2 transputers and the other variants. For the convenience

of T2 users, appropriate information drawn from chapters 9, 10, 11

and 12 is also be presented here.

8.1 Compiling

T2 support

A C source program is compiled into a binary object (.bin) �le of

T2 transputer instructions by a command of the form:

t2c source-�le

90 Chapter 8

Note that code compiled for a T2 will not run on 32-bit transputers

(and vice versa) so you must use the command appropriate for the

type of processor you have in mind.

The source-�le is the �lename of the C source program which is to

be compiled. If no �lename extension is given in the command, .c

is added automatically.

So, to compile the �le hello.c for the T2, you would give the

command:

C>t2c hello

If the source �le contains no errors, an output �le hello.bin is

produced. If the compiler detects errors in the source program, it

writes diagnostic messages to the MS-DOS standard output stream.

8.2 The Compiler in T2 Mode

8.2.1 Language Restrictions

This section should be read in conjunction with section 9.1.

The compiler imposes a number of restrictions on the sorts of pro-

gram it can handle when generating instructions for T2 transputers.

� There is no support for oating-point quantities. This means

that you cannot declare variables of type float or double.

Similarly, you cannot use oating-point constants.

� The only sizes of integer variable you can use are int (signed

or unsigned), short, and char. int and short will give you a

16-bit integer which will have an even address. char will give

you an 8-bit unsigned integer.

� Any integer expressions which are evaluated while the program

is being compiled (for example, values used for conditional

Developing T2 Programs 91

compilation with #if) will be evaluated to 32-bit accuracy.

This can give di�erent answers from the evaluation of simi-

lar expressions during program execution. For example, the

condition on the following #if statement is true:

#if (0x8000 << 1) >> 1 == 0x8000

However, note the e�ect of the following expressions when the

program runs on a T2 transputer:

int x,y,z;

x = 0x8000;

y = x<<1; /* y will get the value 0 */

z = y>>1; /* z will get the value 0 */

� Integer constants to be used during program execution will be

evaluated to 32-bit accuracy and the least signi�cant 16 bits

will be used. A warning will be issued if the most signi�cant

16 bits of the 32-bit representation are not all the same. This

means that, for example, if you write the constant 0x12345 in

a program, the compiler will generate a warning message and

use the value 0x2345 instead.

� If you use the keyword long in a declaration, the compiler will

ignore it and warn you of this fact.

8.2.2 Pre-de�ned Macros

When compiling for T2 transputers, the following macros will be

automatically de�ned with the value `1':

_transputer

_3L

_IMST2

The following macros will be unde�ned, as they are used to indicate

that a T4 or T8 compilation is being performed:

_IMST4

_IMST8

_IMST8A

92 Chapter 8

See also section 9.5.

8.2.3 Data-type Representations

A full discussion of data-type representations for all processors may

be found in section 9.8.

8.2.3.1 Integral Data Types

On the T2, a byte is 8 bits and a word is 16 bits (2 bytes). The

C integral (i.e., integer or character) data types are represented as

follows:

Type Bits Bytes Minimum Maximum

char 8 1 0 255

signed char 8 1 -128 127

int 16 2 -32768 32767

unsigned int 16 2 0 65535

short int 16 2 -32768 32767

unsigned short int 16 2 0 65535

The long data types are not supported.

8.2.3.2 Pointer Types

All pointer types (i.e., types of the form \pointer to x") are repre-

sented by a single word (2 bytes, 16 bits) whose value is the address

of the object pointed to.

8.2.3.3 Floating Types

Floating types are not supported on the T2.

Developing T2 Programs 93

8.2.4 Compiler Error Messages

The following special messages may be output when the compiler is

working on a T2 program.

� no support for "double" types

� no support for "float" types

� no support for "long" types

� Warning: integer constant truncated to 16 bits at line

number

8.3 Linking T2 Tasks

Once a C program has been compiled into an object (.bin) �le, it

must be linked with any external functions it requires before it can

be run. This operation is performed by the linker, linkt.

Standard functions are provided in sacrtlt2.bin, the T2 stand-

alone run-time library. A single batch �le is provided to link together

as many as nine object �les with this library to produce an executable

(position-dependent) program.

To link a single T2 object �le produced with the t2c compiler use

the command:

t2clink object-�le

This is equivalent to the command:

linkt/m64k object-�le sacrtlt2

To link multiple T2 object �les use the command:

t2clink object-�le1 object-�le2 : : :

For example:

94 Chapter 8

C>t2clink main bits pieces

The t2clink batch �le assumes that the target T2 processor has

64KB of read-write memory. If this is not the case with your pro-

cessor, you must add appropriate switches to the command line, as

described below.

8.4 Linker Support for the T2

The linker is described in full in chapter 12. This section covers only

those facilities provided to support the T2 processors.

8.4.1 Linker Command Switches

The following command-line switches are only for use when linking

code for T2 processors:

/Msize de�ne size of read-write memory area (including on-chip

memory)

/Asize de�ne size of stack area

/FC optimise code area

/FA optimise stack (automatic) area

/FS optimise static data area

/FH optimise heap area

/Rsize de�ne size of read-only memory area

When you give the size of an area you can specify it either in bytes

(e.g., 4096) or in kilobytes (e.g., 4K).

8.4.1.1 Switch /Msize

This switch gives the total number of bytes of read-write memory

available to the program. The memory will be used to hold the static

data, heap and stack for the running program. In addition, it will

Developing T2 Programs 95

hold the executable code of the program unless the code is to be held

in read-only memory.

You must give a /M switch when linking for T2 systems unless you

intend to control the linker's memory allocation by means of modi�ed

/F switches.

The batch �le t2clink provides a default value of 64K for this switch

(/M64K) but you may override this default with another /M switch of

your own, e.g.,

C>t2clink main bits pieces/m24k

If more than one /M switch appears on a command line, only the last

will have any e�ect.

The linker will give a warning if you specify less than 2048 bytes

(the size of the on-chip RAM) or more than 65536 bytes of read-

write memory.

8.4.1.2 Switch /Asize

This switch controls the number of bytes of read-write memory to

be used for the stack (\automatic" storage in C terminology). The

linker will give a warning if you specify less than 128 bytes of stack.

Memory for the stack is taken from the read-write memory remaining

after the code and static data areas have been allocated.

If you do not specify this switch then the whole of the remaining

memory will be used for a combined heap and stack area. The stack

will grow towards the heap from the more positive end of the area

while the heap will grow towards the stack from the more negative

end of the area.

Heap Stack- �: : : : : : :

If you do give a /A switch, the given amount of memory will be

allocated to the stack and the whole of the remaining memory will

96 Chapter 8

be used for the heap. In this case the stack and heap areas will be

considered distinct and will not interact.

8.4.1.3 Switches /FC, /FA, /FS, and /FH

These switches are used to control the order in which the various

areas of the program are loaded into the available memory: /FC for

code, /FA for the stack (automatic) area, /FS for static data, and

/FH for the heap.

The linker will usually construct an executable image by laying out

the various areas (code, static data, heap, and stack) in memory,

starting at the most negative address usable|in the fast, on-chip

memory. Consequently the parts of the image which are placed �rst

will bene�t from the speed of this memory.

The /F switches give you control over the order in which the areas

will be laid out. Any area mentioned in a /F switch will be considered

a candidate for \optimisation"|you can think of the `F' as standing

for \fast". For example, the switches /FC/FS indicate that the code

and static data areas are to be optimised. The order in which you

give the /F switches is of no signi�cance.

The linker will lay out all of the optimised areas before it lays out any

non-optimised areas. The order in which areas (optimised or not)

are laid out depends on the presence or absence of the /A switch.

If you do not specify the /A switch, then the stack and heap areas

will be combined, as described above. In this case the linker will lay

out the areas in the order: code, static data, and then the combined

stack and heap.

If you do specify the /A switch, then the stack and heap areas will

remain distinct, and the linker will lay out the areas in the order:

stack, code, static data, and then heap.

Developing T2 Programs 97

The following pictures should clarify this procedure. Note that in

these pictures addresses grow more positive towards the right hand

side.

more negative

memory addresses

more positive

memory addresses
� -

C>linkt prog

Code Static Data Heap+Stack

C>linkt prog/fs

Static Data Code Heap+Stack

C>linkt prog/a8k

Stack Code Static Data Heap

C>linkt prog/a8k/fc

Code Stack Static Data Heap

C>linkt prog/a8k/fs/fa

Stack Static Data Code Heap

The system described is designed to allow the most common require-

ments to be speci�ed simply.

8.4.1.4 Modi�ed /F Switches

The /F switches may be modi�ed so that instead of simply marking

areas for optimisation they explicitly specify the memory locations

to be used.

To modify the switches you append an address and size speci�ca-

tion of the form start:size, where start is the address for the start

98 Chapter 8

(smallest address) of the area and size is the size of the area in bytes.

If start or size begin with a `#' character they will be interpreted

as hexadecimal, otherwise they will be interpreted as decimal. All

values of start and size must be even. Note that the start address

of the stack area is not the initial value for Wptr; that value will be

start + size. For example:

C>linkt x y z /fc#1000:80 /fh#2000:#2000 /fa#8000:4096 /fs0:8

The linker will check that these areas do not overlap and issue an

error message if they do. Similarly, the linker will issue an error

message if either the code area or the static data area is too small

for the linked image. The total size of the static data area for a task

will be:

2�modules +
modulesX

i=1

statici

There are several implications of modifying /F switches in this way:

1. If you specify one modi�ed /F switch then you must specify

and modify all four. The only exception to this rule is when

you are linking for ROM (described later);

2. There will be no automatic optimisation or memory allocation.

Memory allocation is fully under your control;

3. The stack and heap areas will be considered separate, even

though they may be adjacent. This means that while the

program is running the heap will never extend into the stack

area.

8.4.1.5 Switch /Rsize

The /R switch instructs the linker to generate an image suitable for

burning into ROM. The image size will be exactly the number of

bytes speci�ed in the /R switch.

Developing T2 Programs 99

When a ROM program starts execution, it copies its static data from

the ROM into read-write memory.

The code may either be left in the ROM or copied into the read-write

memory. This is controlled by the /FC switch. If no /FC switch is

speci�ed then the code will be executed from the ROM. If /FC is

speci�ed (modi�ed or not) then the code will be copied into the

read-write memory before being executed.

Note that when linking for ROM with modi�ed /F switches you may

omit the modi�ed /FC switch if you wish the code to be executed

from ROM. Of course, you should make sure that none of the areas

overlaps any ROM addresses.

8.4.2 The Bootstrap

Programs are loaded into T2 systems by a special piece of code called

the \bootstrap". This code needs to use about 160 bytes of read-

write memory while it is loading your program. The linker will

automatically arrange for the bootstrap to use part of the memory

that eventually will be used for your stack area or heap area. You

will get a fatal error from the linker if it �nds that neither of these

areas is large enough for the bootstrap, so you should ensure that

one or other of them is at least 160 bytes in size.

8.5 The Run-Time Library

The T2 is supported only by a stand-alone run-time library,

sacrtlt2.bin. This contains a subset of the functions described

in chapters 10 and 11.

As we noted above, a word on the T2 is 16 bits (2 bytes). This means

that functions such as chan_in_word will only transfer 2 bytes of

data.

100 Chapter 8

The following sections list the functions that are de�ned in the spec-

i�ed header �les. Discussions of each of the various modules of the

run-time library may be found in chapter 10, and each individual

function is described in chapter 11, which is arranged alphabetically

by function name.

8.5.1 Functions De�ned in alt.h

alt_nowait alt_nowait_vec alt_wait

alt_wait_vec

8.5.2 Functions De�ned in chan.h

chan_in_byte chan_in_byte_t chan_in_message

chan_in_message_t chan_in_word chan_in_word_t

chan_init chan_out_byte chan_out_byte_t

chan_out_message chan_out_message_t chan_out_word

chan_out_word_t chan_reset

8.5.3 Functions De�ned in chanio.h

_inmess _outbyte _outmess

_outword

8.5.4 Functions De�ned in ctype.h

isalnum isalpha isascii

iscntrl isdigit isgraph

islower isprint ispunct

isspace isupper isxdigit

tolower toupper

Developing T2 Programs 101

8.5.5 Functions De�ned in locale.h

localeconv setlocale

8.5.6 Functions De�ned in par.h

par_free par_malloc

8.5.7 Functions De�ned in sema.h

sema_init sema_signal sema_signal_n

sema_test_wait sema_wait sema_wait_n

8.5.8 Functions De�ned in setjmp.h

longjmp setjmp

8.5.9 Functions De�ned in signal.h

raise signal

8.5.10 Functions De�ned in stdlib.h

abs atexit atoi

bsearch calloc cfree

div exit free

malloc mblen mbstowcs

mbtowc qsort realloc

wcstombs wctomb

102 Chapter 8

8.5.11 Functions De�ned in string.h

memchr memcmp memcpy

memmove memset strcat

strchr strcmp strcpy

strcspn strlen strncat

strncmp strncpy strpbrk

strrchr strspn strstr

strtok

8.5.12 Functions De�ned in thread.h

thread_create thread_deschedule thread_priority

thread_restart thread_start thread_stop

8.5.13 Functions De�ned in timer.h

timer_after timer_delay timer_now

timer_wait

8.6 Running T2 Programs

Usually you would run T2 programs under the control of another

transputer (or completely stand-alone, e.g. from ROM). It is unlikely

that you would be able to run a T2 program directly from the server

running in the host.

There are two ways in which the T2 shown in �gure 8.1 can be loaded.

The �rst, and preferred, method is to use the general con�gurer and

the second method is to use a small program on the T8 to pass

the code through to the T2. These methods are described in the

following sections.

Developing T2 Programs 103

HOST

T8 T2

0

02

Figure 8.1: Example Network with T2

8.6.1 Using the Con�gurer to Boot a T2

The use of the general con�gurer, config, is discussed in chapter 5.

Details of the con�guration language, and more about the function-

ing of the con�gurer may be found in chapter 18.

The con�gurer can be used to boot a processor at the edge of a

network with code from a speci�ed �le. Processors using this mecha-

nism are declared in the con�guration �le using the BOOT attribute,

which is described in more detail in section 18.2.6.1.

The con�guration �le should describe the main network of T4 and T8

transputers. The T2 processor should be declared using the BOOT

attribute to specify the �le which contains the code for the T2.

The wire between the T2 and the main network should be declared.

The task in the main network which will communicate with the T2

task should have its ports bound to the appropriate link addresses.

You must use the actual hardware link addresses to do this.

For example, the main network in �gure 8.1 consists of a single T8

104 Chapter 8

so the con�guration �le could be as follows:

! Example of configuring with T2

processor host

processor root ! T8

processor P001 BOOT="t2code.b4" ! T2

wire ? host[0] root[0] ! connect PC to network

wire ? root[2] P001[0]

! Task declarations

task afserver ins=1 outs=1

task filter ins=2 outs=2 data=10K

task monitor ins=3 outs=3

! Assign software tasks to physical processors

place afserver host

place filter root

place monitor root

! Set up the connections between the tasks.

connect ? afserver[0] filter[0]

connect ? filter[0] afserver[0]

connect ? filter[1] monitor[1]

connect ? monitor[1] filter[1]

! bind ports to link to T2 processor

bind input monitor[2] value=&80000018 ! I/O to T2

bind output monitor[2] value=&80000008 ! over link 2

Here, monitor is a task compiled and linked for the T8 as described

in chapter 5. The monitor task would communicate with the task

on the T2 using its port pair 2. The T2 processor would be booted

with the code from the �le t2code.b4.

8.6.2 Piping Code into a T2

It may be preferable to use a program on the T8 to pass the code

through to the target T2. This mechanism is only suitable when the

target T2 is connected directly to the root transputer.

Developing T2 Programs 105

The program below shows how the T2 in �gure 8.1 can be loaded

from the T8. It passes the code of the �le named as a parameter to

output link 2 and then calls a function which the user would write

to communicate with the program in the T2.

#define TIMEOUT 31250 /* about 2 seconds */

#include <stdio.h>

#include <chan.h>

main(int argc, char *argv[])

{

FILE *t2f;

int n, e;

char buffer[256];

if (argc != 2) {

printf("T8: Wrong number of arguments\n"); return;

}

/*

** open the T2 image file

*/

if ((t2f = fopen(argv[1], "rb") == NULL) {

printf("Cannot access %s\n", argv[1]); return;

}

/*

** boot the image down link 2

*/

while (n = fread(buffer, 1, sizeof(buffer), t2f)) {

if (!chan_out_message_t(n, buffer, Link2Output, TIMEOUT)) {

printf("Time-out while booting T2\n"); return;

}

}

/*

** communicate with the T2

*/

User_Function();

}

This program would be compiled and linked for the T8 and then run

as follows:

C>afserver -:b progname.b4 code�le.b4

Here, progname is the pipe program listed above and code�le is the

name of the �le of code compiled and linked for T2 transputers.

106 Chapter 8

8.7 Parameters to Main

A T2 program will be invoked from the surrounding initialisation

code by a call to the function main. The call will pass in two chan-

nel pointer parameters boot_link_in and boot_link_out. These

parameters will contain respectively the addresses of the input link

from which the program was loaded and its corresponding output

link address.

void main(CHAN *boot_link_in, CHAN *boot_link_out)

{

...

}

If the T2 program has been loaded from ROM then both of these

parameters will have the value zero.

Note that the parameters passed to a T2 main function are quite

di�erent from those passed to a T4 or T8 main function, as described

in section 9.2.

Introduction

Overview

The chapters which follow provide detailed reference material for use

with the Parallel C compiler. They are intended for use by readers

who have already covered the \Getting Started" and \Tutorial" parts

of the manual, and have run at least some of the examples described

there.

� The compiler itself is described in chapter 9. This includes

descriptions of the language accepted by the compiler, the

option switches used to operate it and a complete list of the

error messages it can produce.

� The discussion of the compiler's associated run-time library is

divided into two chapters. An overview of the library, divided

into sections by function, is provided in chapter 10. A detailed

de�nition of every entry in the run-time library, arranged in

alphabetical order of name, follows in chapter 11.

� The utility programs provided with the compiler are described

in chapters 12 to 17.

� The con�guration software takes up two chapters in this man-

ual. First, a general description of the con�guration language

is given in chapter 18. This is followed by speci�c information

about the ood-�ll con�gurer (chapter 19).

108 Introduction

� A number of \black box" task images are provided in the

distribution disk. Task \data sheets" are provided for these

in chapter 20.

Standard Syntactic Metalanguage

In a formal description of a computer language, it is often conve-

nient to use a more precise language than English. This language-

description language is referred to as a metalanguage. The metalan-

guage which will be used in this manual is that speci�ed by British

Standard 6154[9]. A tutorial introduction to the standard syntactic

metalanguage is available from the National Physical Laboratory[10].

The BS6154 standard syntactic metalanguage is similar in concept

to many other metalanguages, particularly those of the well-known

Backus-Naur family. It therefore su�ces to give a very brief informal

description here of the main points of BS6154; for more detail, the

standard itself should be consulted.

1. Terminal strings of the language|those not built up by rules

of the language|are enclosed in quotation marks.

2. Non-terminal phrases are identi�ed by names, which may con-

sist of several words.

3. A sequence of items may be built up by connecting the com-

ponents with commas.

4. Alternatives are separated by vertical bars (`j').

5. Optional sequences are enclosed in square brackets (`[' and `]').

6. Sequences which may be repeated zero or more times are en-

closed in braces (`f' and `g').

7. Each phrase de�nition is built up using an equals sign to sep-

arate the two sides, and a semi-colon to terminate the right

hand side.

Chapter 9

C Compiler Reference

This chapter contains technical information about the way the C lan-

guage is implemented on the transputer. Note that the information

in this chapter applies only to the current version of the compiler; it

is not guaranteed that future versions of the compiler will behave in

the same way.

9.1 The C Language

The basis of the C language adopted by 3L for Parallel C is the one

given by Kernighan and Ritchie (the designers of the language) in

the �rst edition of The C Programming Language[1]. The de�nition

of C given in this book will be referred to as \K&R C".

3L have also included in the compiler the most important features

of the American national standard for the C language, as de�ned

by ANS X3.159-1989[3]. We shall refer to this standard dialect as

\ANSI C". ANSI C features which have been adopted by Parallel C

are discussed in section 9.1.1 below.

Although much of the power of C comes from the library functions for

input and output of data, string handling and so on supplied along

110 Chapter 9

with most compilers, K&R C does not de�ne a set of functions which

all compilers must provide. For this reason, the library functions

provided with Parallel C (see chapter 10) are based on the ANSI

standard. These have been supplemented with functions to support

\special" transputer facilities, and a number of functions which pro-

vide compatibility with older versions of the run-time library, or with

run-time libraries on other systems.

In order to use Parallel C and make best use of this manual, we

recommend that you should have access to the information in the

�rst edition of The C Programming Language[1]. The second edition

of the book[2], which describes ANSI C, may also be useful.

The di�erences between Parallel C and K&R C are described here.

9.1.1 ANSI Features

The following ANSI C features are supported by Parallel C. The

section numbers in the text refer to sections of the ANSI standard[3].

9.1.1.1 Trigraph Sequences

The ANSI trigraph sequences, as described in ANSI 2.2.1.1, are

recognised by the compiler.

9.1.1.2 Escape Sequences

All the ANSI escape sequences are recognised by the compiler, in-

cluding hexadecimal escape sequences of the form \xdd ; for example,

\x0D.

C Compiler Reference 111

9.1.1.3 Translation Limits

The maximum length of a string literal is about 4 KB; see

ANSI 2.2.4.1.

9.1.1.4 Keywords

The following identi�ers are reserved for use as keywords, and may

not be used otherwise:

asm double int typedef

auto else long union

break enum register unsigned

case extern return void

char float short volatile

const for sizeof while

continue fortran static

default goto struct

do if switch

Parallel C includes the ANSI C keywords const, enum, void and

volatile. The K&R keyword entry is not implemented. For the

uses of the asm keyword, see section 9.7. Although the fortran

keyword is recognised, it currently has no function in Parallel C.

9.1.1.5 Identi�ers

Two identi�ers are deemed by the compiler to be the same if their

�rst 255 characters match (K&R C says 8 characters). Any addi-

tional characters are ignored. For external linkage, only the �rst 31

characters of an identi�er are signi�cant. Case is signi�cant, even

for external identi�ers processed by the linker.

The ANSI standard allows compilers to restrict the number of sig-

ni�cant characters for external linkage to 6. For this reason, if C

112 Chapter 9

programs are to be portable to many di�erent compilers, they should

only use external identi�ers which are distinct in the �rst 6 characters

whether or not the distinction between upper and lower case letters

is ignored.

9.1.1.6 Types

All the ANSI-speci�ed integral types are implemented. This includes

int, short, char and long with the signed and unsigned versions

of each. short variables are 16-bit objects; long variables are the

same size as int variables.

long double declarations are accepted; they are treated as double.

Enumeration (enum) data types are accepted.

The void data type is implemented.

9.1.1.7 Constants

The ANSI su�xes to oating constants (`f', `l, `F', `L') and to integer

constants (`u', `l, `U', `L') are accepted by the compiler, although

such su�xed constants are not at present treated di�erently from

unsu�xed ones.

Wide character constants (e.g., L'a') and wide string literals (e.g.,

L"hello") are accepted, but are treated like the corresponding non-

wide elements.

Adjacent string literals are treated as a single literal. For example,

the following two statements have the same e�ect:

p = "Hello, world";

p = "Hello, ""world";

Note, however, that although ANSI allows white space to occur

between the two literals, the compiler does not at present accept

this.

C Compiler Reference 113

9.1.1.8 Conversions

The compiler follows the ANSI standard by performing the \inte-

gral promotions" on integer-type values before they are used in an

expression. This means that if the whole range of values of the type

can be represented by an int it is converted into an int; otherwise

it is converted into an unsigned int.

Only after this has been done are the necessary conversions for eval-

uating the expression performed. In particular, if at this stage one

of the operands is an unsigned int and the other an int, the int

will be converted to unsigned int.

This will make a di�erence to the value of expressions only in a small

number of cases. For example,

unsigned char c = 5;

int a, b = -1;

a = (c > b);

With K&R C, a is assigned the value 0 (false). Parallel C follows

ANSI C in assigning it the value 1 (true).

Full details of these conversions may be found in ANSI 3.2.1. Users

may also be interested in the corresponding section of the Rationale

for the standard, where this change is described as \the most serious

semantic change made by the Committee to a widespread current

practice".

Note that the integral promotions treat unsigned short values dif-

ferently for the T2 and T4/T8; for the former, they become unsigned

int, and for the latter, int.

9.1.1.9 float expressions

Parallel C follows ANSI by performing oating-point arithmetic

which involves only float values in single precision. This di�ers

114 Chapter 9

from K&R C, which performs all oating-point arithmetic in double

precision by default.

It is important to note that at present Parallel C does not support

single-precision oating-point constants; all oating-point constants

are treated as double precision. Consequently, any oating-point

expression involving constants are evaluated in double precision.

If necessary, you can invoke the compiler with the /Gd switch, which

will make it use double-precision arithmetic as required by K&R.

9.1.1.10 Selecting Structure and Union Members

Parallel C follows ANSI in its treatment of the `.' and \->" opera-

tors. The �rst operand of the `.' operator must be of structure or

union type, and the �rst operand of \->" must be of type pointer

to structure or union. The second operand in both cases must be

member of the appropriate type; Parallel C treats as an error any

expression of the form a.b or p.b, where b does not appear in the

list of members of the structure type designated by a or p.

It is possible to select the members of a structure value, such as

the result of a function or the value of an assignment or conditional

expression. Expressions of the form z++->a are also allowed.

The descriptions of the `.' and \->" operators in K&R sections 7.1

and 14.1 are both obsolete.

9.1.1.11 type name Syntax Relaxed

K&R gives the de�nition of the type name construct (used in casts

and for the sizeof operator) as:

type name =

type speci�er, abstract declarator;

C Compiler Reference 115

This allows only one type speci�er before the abstract declarator ,

disallowing expressions like:

sizeof(long int)

(unsigned short) small

Multiple type speci�ers like long int are allowed in this context by

ANSI C and by Parallel C.

9.1.1.12 Conditional Operator

Expressions of the form (x?a:b) where a and b are both structures

are accepted. The value of such an expression is of structure type,

which may be used, for example, in an assignment (see below). The

standard requires that the two structure operands are of the same

type.

Conditional expressions which have second and third operands of

type void are also allowed.

9.1.1.13 Assignment to Whole struct/union Variables

Parallel C follows ANSI in allowing the assignment operator `=' to

be used to assign a value to a whole struct variable at once. The

value could be the value of another struct variable; or it could be

a struct value, such as the result of a struct function or the value

of another assignment expression or a conditional expression. The

value must be of the same struct type as the variable to which it is

being assigned. For example:

struct { int p, q; } x, y ;

x.p = 3; x.q = 17;

y = x; /* struct assignment */

After this structure assignment, y.p has the value 3 and y.q has the

value 17.

116 Chapter 9

struct tag { int p, q; } ;

void clear(struct tag item)

{

item.p = 0; item.q = 0;

}

int example(void)

{

struct tag pair;

pair.p = 3; pair.q = 4;

clear(pair);

return(pair.p + pair.q);

}

Figure 9.1: Example of the use of struct arguments

Both assignments in the example below are incorrect because the

types of the operands for `=' do not match.

struct { int p, q; } x ;

struct { int a, b; } y ;

int i;

x = i; /* one integer, one struct */

x = y; /* same size, but different types */

Function arguments may also be struct types (K&R C allows only

pointers to structs as arguments). struct arguments are declared

and used in the same way as any other type.

The result returned by the function example in �gure 9.1 will be

7 because, like all other types of function arguments in C, struct

arguments are passed by value: clear cannot a�ect the contents of

the structure pair which is passed to it, since it works with a copy

of pair named item.

C Compiler Reference 117

9.1.1.14 Compound Assignment Operators

Assignment operators like \+=" are single tokens whose parts (`+'

and `=') may not be separated by white space. If \+ =" is written

instead of \+=", an error message will be printed by the compiler.

The anachronistic forms `=op' for the assignment operators, as de-

scribed in section 17 of K&R C are considered illegal. We suggest,

all the same, that for portability reasons assignments should not be

speci�ed using the notation x=-1; rather, the meaning should be

made clear by use of one of the following forms:

x -= 1; /* meaning x = x - 1 */

or x = -1; /* meaning x = (-1) */

9.1.1.15 Restrictions on struct Member Names Relaxed

In K&R C, the same member name may occur in di�erent structures

only if the �elds identi�ed by the member name and all preceding

�elds are the same. Parallel C follows ANSI in making no restric-

tions on the use of the same member name in di�erent structures.

Programmers who wish to port their programs to other C compilers

should bear this in mind.

9.1.1.16 const and volatile

The ANSI type quali�er keywords const and volatile are accepted

by the compiler in the appropriate contexts. However, they have no

e�ect.

9.1.1.17 Function Declarators

ANSI-style functions declarators with parameter type lists are ac-

cepted by Parallel C. These allow the compiler to check that actual

and formal argument types match in function calls and de�nitions.

118 Chapter 9

Parallel C follows ANSI by permitting functions which return struc-

ture values.

9.1.1.18 Anachronistic Form of Initialisations

The anachronistic form int x 3; for an initialisation, which is de-

scribed in section 17 of K&R C, is not allowed in Parallel C.

The correct modern form of this initialised declaration int x 3;

would be int x = 3;

9.1.1.19 Selection and Iteration Statements

Parallel C allows expressions of type float and double to be used

as control expressions in if and while statements and as the second

expression of a for statement.

9.1.1.20 Preprocessing Directives

Preprocessor directives may be preceded on a line by white space,

and the initial `#' character need not fall in the �rst column.

The #error preprocessor directive is supported. The syntax is:

#error text

A compiler error message is displayed containing the speci�ed text.

The #pragma preprocessor directive is accepted, although there are

currently no pragmas available to the user.

C Compiler Reference 119

9.1.1.21 Conditional Inclusion

The defined unary operator, as speci�ed in section 3.8.1 of the ANSI

standard, is recognised by the preprocessor. For example:

#if defined(DEBUG)

printf ("loop value=%d\n",i);

#endif

The #elif preprocessor directive is implemented.

9.1.1.22 Prede�ned Macro Names

Two of the prede�ned macros prescribed by ANSI are provided by

Parallel C.

__FILE__ expands to a character string literal which is the name of

the current source �le.

__LINE__ expands to the line number of the current source line (a

decimal constant).

9.1.2 Special Features

The following Parallel C features follow neither K&R C nor ANSI C.

9.1.2.1 Use of sizeof in Array Declarations

Constant expressions used in an array declaration may not contain

the sizeof operator. This example is illegal:

char v [sizeof(int)]; /* illegal example */

120 Chapter 9

9.1.2.2 Dollar Sign in Identi�ers

The dollar sign `$' may appear in identi�ers. The dollar sign is

treated as though it were a letter. The following are all acceptable

identi�ers:

$

rate$

$_max9

9.1.3 System-dependent Features

Using the features described in this section may cause di�erent e�ects

with di�erent C compilers.

9.1.3.1 Plain char Type Unsigned

The plain char data type is unsigned in Parallel C. Programs which

assume that plain chars are signed may need to be modi�ed.

9.1.3.2 All Bit Fields Unsigned

Parallel C requires that bit �elds in structures are integers. The

class of integer (int, short, long etc.) is ignored: all bit �elds are

taken to be of type unsigned int. Bit �elds speci�cally de�ned as

signed int will be marked as errors.

This restriction is permitted by K&R C (section 8.5), although

ANSI C requires that signed integer bit �elds are allowed.

9.1.3.3 >> Operator

The use of the >> operator results in a logical shift rather than an

arithmetic shift, that is, zeros are brought in at the most signi�cant

C Compiler Reference 121

end of the operand rather than copies of the sign bit. As a result,

the value of the expression (-1)>>1 is 7FFFFFFF16 (LONG_MAX) and

not FFFFFFFF16 (�1).

9.1.3.4 Register variables

The register storage class is ignored in Parallel C.

9.2 The C main Function

The C main program function has the following de�nition.

#include <chan.h>

main(int argc, char *argv[], char *envp[],

CHAN *in_ports[], int ins, CHAN *out_ports[], int outs);

argc and argv are described in section 3.4.2.

envp is always NULL.

in and out are vectors of pointers to channels. inlen and outlen

are the number of elements in in and out respectively. The C pro-

gram can send and receive messages across these channels using the

channel I/O functions described in section 10.5.

If your program is linked with the stand-alone library, main has the

same arguments. However, no command-line arguments are passed

to the program, and as a result argc is always 1, argv[0] is always

"", and argv[1] is always NULL.

9.3 Running the Compiler

The compiler is run by one of the commands t8c, t4c or t2c.

t8c generates object code for the T800 oating-point transputer.

122 Chapter 9

t4c generates object code for the T414 32-bit transputer.

t2c generates object code for the T212 16-bit transputer.

The command line used to invoke the compiler must specify a single

source �le name. Wild cards are not allowed.

Option switches may optionally be given on the command line.

Option switches are introduced by the `/' character; the available

switches are discussed in section 9.4 below.

If the source �le is successfully compiled, a zero exit status code is

returned to DOS. If errors are detected, the compiler returns an

exit status code of 1. This feature can be used in DOS batch �les to

check whether a compilation was successful.

The compiler creates a number of temporary �les as it works. Nor-

mally, these are placed in the current directory; however, the envi-

ronmental variable TMP may be used to make the compiler put them

in another directory. For example, to make the compiler place the

temporary �les in the root directory on disk D:, the following DOS

command could be used.

C>set TMP=D:\

The temporary �les are called ctemp.1, ctemp.2 and ctemp.3. Usu-

ally, the compiler will delete them at the end of the run, but occa-

sionally this may not be done; in this case, it is safe to delete them

yourself.

9.4 Compiler Switches

This section describes the switches available to control the behaviour

of the compiler. Switches are introduced by a `/' character and may

be typed in any order, before or after the source �le speci�cation.

Except as noted below, switches and their argument strings are not

case-sensitive; that is, lower-case letters have the same signi�cance

C Compiler Reference 123

as the corresponding upper-case letters. This means, for example,

that the following two switches would be treated the same:

/FBhello.bin

/fbHELLO.BIN

The format of the various switches is described using the following

notations:

fn AnMS-DOS �lename. It may be omitted in whole or in

part; the compiler's behaviour in this case is described

in section 9.4.2 below.

dir An MS-DOS �lename, which will be assumed to refer

to a directory.

mac Any sequence of characters which is acceptable to the

compiler as a macro name.

str Any sequence of characters which is acceptable to the

compiler as the value of a macro.

n A decimal integer.

An example of a command to invoke the compiler with switches:

C>t8c hello /dLEVEL=3 /flkeep /w

This will invoke the T8 compiler to compile hello.c, and place a

listing of the source �le with any error messages in keep.lis. Before

the compilation, a macro LEVEL will be de�ned with the value 3.

Compilation warning messages will be suppressed.

9.4.1 Default Switches

Switches are normally entered on the command line when the com-

piler is invoked. In practice, you may �nd you use some switches on

every compilation. To avoid entering the same switches again and

again, the compiler also allows switches to be entered through a DOS

124 Chapter 9

environmental variable. The contents of the environmental variable

TC, if any, are pre�xed to the arguments supplied on the command

line. For example, to make the compiler print its version number

(/I) and generate debug tables (/Zi) every time it is run, give DOS

the command: set TC=/i/Zi

Default options set in this way can be turned o� again using the

DOS command: set TC=

9.4.2 Controlling Output Files

The /F switch is used for specifying which output �les are to be

generated, and their names. Each of the varieties of /F may be

followed by a fn, but the complete MS-DOS path name may not be

necessary. The compiler supplies defaults, as follows:

� If no extension is given, the compiler supplies a default exten-

sion depending on the type of output �le: .lis for listing �les,

etc.

� If no �lename is given, the �lename of the source �le is used.

� If the drive speci�cation or directory speci�cation are omitted,

then the current drive and/or directory are used.

� If a drive speci�cation is given alone, then the output �le is cre-

ated in the current directory of the speci�ed drive, regardless

of the source �le's directory.

The following examples may clarify this. The `Supplied' string below

is assumed to be the argument of a /FL switch. The current drive

and directory are c:\michael, and the current directory on a: is

\output.

C Compiler Reference 125

Speci�ed source �le Supplied Output �le

dogs nothing c:\michael\dogs.lis

dogs cats c:\michael\cats.lis

dogs cats.out c:\michael\cats.out

dogs \stuff\ c:\stuff\dogs.lis

dogs a:\first\ a:\first\dogs.lis

dogs a: a:\output\dogs.lis

dogs a:cats a:\output\cats.lis

Notice that in examples like the fourth above, it is the fact that the

supplied string ends with a `\' which indicates that this is a directory

speci�cation. If it is omitted, output would be sent (in this case) to

c:\stuff.lis, even if a directory c:\stuff exists.

9.4.2.1 Switches /FB and /FO

These switches have the same e�ect. They instruct the compiler to

create an object �le in binary format. The default extension is .bin.

Notice that if no /FB or /FO switches are speci�ed, the behaviour

of the compiler is the same as if a /FB switch were used, with no

argument. In order to stop the compiler generating an object �le of

any kind, the /C switch must be used (see section 9.4.3).

9.4.2.2 Switch /FL

This switch makes the compiler produce a line-numbered source

listing �le. The listing �le contains any error messages produced

by the compiler, as well as the numbered source lines. The default

extension is .lis.

The listing �le produced for the hello.c program would look like

this:

Source file: HELLO.C

126 Chapter 9

Object file: HELLO.BIN

Switches: /T8 /FL

Compiled by: transputer C compiler, CC_transputer V2.2.2

1 main ()

2 {

3 printf ("Hello, world\n");

4 }

9.4.3 Controlling Object Code

9.4.3.1 Switches /T2, /T4, /T8 and /T8A

These switches can be used to specify which type of transputer the

program is to be compiled for. /T2, /T4 and /T8 are only permitted

with the tc command, as the t2c, t4c and t8c commands supply the

appropriate switches automatically, and these will, in fact, appear

in the \Switches:" line of the listing (see section 9.4.2.2).

The /T8A switch is valid with the t8c and tc commands. It makes

the compiler generate code to work round a oating-point �rmware

bug in Rev A of the T800 processor which a�ects integer-to-real

conversions.

9.4.3.2 Switch /S

By default, previous versions of the compiler followed the K&R C

rule that all oating arithmetic should be carried out in double-

precision. The /S switch was used to cause the compiler to perform

arithmetic in single-precision oating-point when both operands of

an operator were of type float.

The current version of the compiler by default follows the ANSI

standard and uses single-precision by default. As a result, the /S

switch has no e�ect; if you use it, a warning message will be printed

and the compiler's behaviour will be unchanged.

C Compiler Reference 127

To cause the compiler to follow the K&R method of performing

oating-point arithmetic, the /Gd switch should be used: see sec-

tion 9.4.3.3.

9.4.3.3 Switch /Gd

By default, the compiler now follows the ANSI standard in using

single-precision oating-point arithmetic when both operands of an

arithmetic operator are of type float.

Previous versions of the compiler, however, followed the K&R rule.

The C Programming Language[1] states that \all oating arithmetic

in C is carried out in double-precision; whenever a float appears in

an expression it is lengthened to double: : :". The compiler may be

made to follow the K&R rule by using the /Gd switch. This means

that an expression like a+b, where a and b are float, is evaluated by

�rst converting a and b to double and then performing the addition

using double-precision oating-point arithmetic.

The new default should result in faster program execution, but

because oating-point arithmetic works with approximations the

numerical result of the operation may be less accurate than that

obtained before. Users who are a�ected by this may prefer to use

the /Gd switch.

Note that even without /Gd, oating-point constants are still double,

and so an expression like 2.0*a will still be evaluated in double

precision (with a being converted to double). You can avoid this

happening by assigning the value 2.0 to a float temporary variable

beforehand (two say) and then writing the expression as two*a.

9.4.3.4 Switch /Gi

By default, the compiler will when possible expand calls to certain

library functions into in-line code which has the same e�ect. This

128 Chapter 9

speeds up execution by removing the overhead of the calling instruc-

tions. The /Gi switch suppresses this optimisation and makes the

compiler generate true function calls in these cases.

The following library functions may be expanded in-line.

abs chan_out_word thread_priority

ceil chan_reset thread_restart

chan_in_byte fabs thread_stop

chan_in_message floor timer_after

chan_in_word labs timer_delay

chan_init memcpy timer_now

chan_out_byte modf timer_wait

chan_out_message thread_deschedule

9.4.3.5 Switch /Gs

Variables of type short and unsigned short are now 16 bits wide

by default. If you need compatibility with earlier versions of the

compiler, you can use the switch /Gs. This will cause the compiler

to generate 32-bit short variables, as the earlier versions did.

Before using this switch, however, you should note that library func-

tions, such as printf and scanf, expect short variables to be 16

bits wide.

A built-in macro _3L_SHORT_BITS has the value 16 or 32, depending

on the width of short variables in the current compilation.

This switch has no e�ect on compilations for the T2, where short

and unsigned short variables are always 16 bits in length.

9.4.3.6 Switch /C

If this option switch is used, the compiler checks the source �le for

errors, but does not generate an object �le.

C Compiler Reference 129

9.4.4 Controlling Code Patch Sizes

Certain constant values in a program cannot be worked out by the

compiler, but must be �lled in (or patched) by the linker. The com-

piler leaves gaps for these values, and �lls the gaps with a special

code. In some circumstances, however, the linker may decide on

a patch value which is too large to �t in the gap provided by the

compiler. When this happens, the linker gives the following error

message:

FATAL ERROR(22): patch over valid code in module module

The /P switch controls the sizes of the gaps left by the compiler, so

that this situation can be avoided. There are two varieties.

9.4.4.1 Switch /PCn

This switch changes the size of the gap the compiler leaves for a

function call. The size of the gap limits the distance from the call

to the called function. Four bits of the displacement are stored in

every byte of gap, so the maximum displacement is 24n � 1 bytes.

n should be in the range 2 to 8. If the /PC switch is not used, the

compiler assumes a value of 6 for n, giving a maximum displacement

of 16MB. Similar negative displacements are also allowed. Smaller

values of n reduce the code size for external calls (resulting in faster

execution) but restrict the total size of the �nal program image. For

example, n = 5 allows displacements up to 1MB; n = 4 allows up to

64KB. Normally the default value of n should be adequate.

The compiler does not accept a /PC1 switch, as in this case not only

would the displacement be restricted to 15 bytes, but in addition

backward calls would not be possible.

130 Chapter 9

9.4.4.2 Switch /PMn

A linked program contains a module table, which has an entry for

every module in the program, including both the modules written

by the user and those extracted from libraries. Each module's entry

contains the address of the module's static data area. The �rst thing

which a subprogram does is to access this address, and to do this, it

must load the module number . These module numbers are assigned

by the linker, so the compiler cannot predict how large a module's

number will be. Once again, it leaves a gap, and the /PM switch

allows the user to specify how large this gap is. Four bits of the

module number are stored in every byte of gap, so the maximum

module number is 24n � 1 bytes. n should be in the range 2 to 8.

If the /PM switch is not used, the compiler assumes a value of 2 for

n, giving a maximum module number of 255. Larger /PM numbers

increase the maximum number of modules which can be linked into

one program, but make the program slightly larger and slower.

If the linker reports patch over valid code, as described above,

the likely cause is that the linked program contains more than 255

modules, including library modules. The programmer can cope with

this situation as follows:

� Use /PM to increase the maximum allowable module number.

For example, /PM3 will allow 4096 modules.

� Modules are assigned numbers in order, depending on their po-

sition in the linker's command line. It is essential that modules

from the C library should have module numbers which are less

than 255; they have already been compiled with /PM2, and this

cannot be changed. So the linker command line should have

the C library and harness �rst; then any user-written modules

and libraries, compiled with a larger /PM. For example:

C>linkt \tc2v2\crtlt8 \tc2v2\t8harn main @mysubs,main.b4

C Compiler Reference 131

9.4.5 Controlling Debugging

The following switches control the output of information required

by the decode program and by Tbug, 3L's interactive symbolic

debugger for the transputer.

9.4.5.1 Switch /Zd

This switch causes the compiler to include line-number tables in the

generated object �le. These tables are used by decode and by Tbug

to work out which piece of object code corresponds to each line of

the source program. If this switch is not used, this information will

not be available, and Tbug will not be able to display the source

version of the program.

9.4.5.2 Switch /Zi

This switch causes the compiler to include variable tables in the

generated object �le. These contain information about the names,

locations and types of the program's identi�ers. If this switch is not

used, Tbug will not be able to display the variables by name and in

the correct format.

The /Zi switch will also cause the compiler to output the line-

number tables. This means that if you use /Zi, you do not need

to use /Zd as well.

9.4.5.3 Switch /Zo

This switch causes the compiler to generate diagnostic information

in an older format which is not required for use with Tbug. This

facility is retained in order to maintain compatibility with the 3L

system programming environment, and is unlikely to be needed by

end-users.

132 Chapter 9

9.4.6 Controlling #include Processing

This section should be read in conjunction with section 9.6, where

include �le processing is discussed more fully.

9.4.6.1 Switch /Idir

This switch adds dir to the include list, that is, the list of \stan-

dard places" where the compiler looks for �les speci�ed in #include

lines. The dir string is assumed to be a directory, whether or not it

terminates with a `\'.

9.4.6.2 Switch /X

This switch excludes the \standard places" from the include list.

Directories added to the include list by means of the /Idir switch

are not a�ected, and will still be searched by the compiler.

9.4.7 Macro De�nitions

This section should be read in conjunction with section 9.5, where

prede�ned macros are discussed.

9.4.7.1 Switch /Dmac and /Dmac=str

The �rst form of the /D switch can be used to de�ne a macro with the

value `1'. The second form enables the user to de�ne a macro with

the value `str'. These de�nitions are done before the compilation of

the program. For example:

C>T8C/dDEBUG/Dhelp=3/dJOE=Jim CATS

C Compiler Reference 133

This is equivalent to coding the following lines at the top of the

program cats.c:

#define DEBUG 1

#define help 3

#define JOE Jim

Notice that the macro names and their values are case sensitive. If

there are any syntax errors in the de�nitions, these are reported on

the display and included on the listing (if any) in the usual way.

9.4.7.2 Switch /Umac

This switch unde�nes a prede�ned macro|see section 9.5 for a dis-

cussion of these. This means, for example, that the following switch:

C>t8c/U_transputer cats

is equivalent to coding the following line at the top of cats.c:

#undef _transputer

Once again, the name of the macro is case sensitive.

9.4.8 Information from the Compiler

9.4.8.1 Switch /I

This switch makes the compiler display a line containing its identity

and version. Please quote this information in any correspondence

about the compiler.

9.4.8.2 Switch /M

This switch causes the expanded form of lines containing macros

to be written to the listing �le. By default, macro expansions are

134 Chapter 9

not listed. If a /M is used without a /FL, the latter is assumed. An

example of a listing �le containing macro expansions is shown below.

Source file: MACRO.C

Object file: MACRO.BIN

Switches: /T8 /FL /M

Compiled by: transputer C compiler, CC_transputer V2.2.2

1 #define SEVENTEEN PLUS(TEN,SEVEN)

2 #define PLUS(a,b) ((a)+(b))

3 #define TEN 10

4 #define SEVEN 7

5

6 main()

7 {

8 printf("seventeen = %d\n", SEVENTEEN);

8" printf("seventeen = %d\n", PLUS(TEN,SEVEN));

8" printf("seventeen = %d\n", ((TEN)+(SEVEN)));

8" printf("seventeen = %d\n", ((10)+(SEVEN)));

8" printf("seventeen = %d\n", ((10)+(7)));

9 }

Notice that the compiler does not list the de�nitions of the prede�ned

macros, or of macros de�ned by /D switches.

9.4.8.3 Switch /V

Makes the compiler produce additional messages on the standard

output stream indicating how far compilation has progressed. By

default, only error messages are written to the standard output

stream and no messages are produced if no errors are detected.

Typical messages generated by use of the /V option are:

123 statements analysed; no errors detected

Code generation complete: starting object file generation

Object file complete: deleting scratch files

C Compiler Reference 135

9.4.8.4 Switch /W

/W suppresses warning messages. The form /Wn is allowed for com-

patibility with other compilers. /W0 is equivalent to /W. Other values

of n cause warning messages to be displayed.

9.5 Prede�ned Macros

The following macros are de�ned with the value `1' for every compi-

lation:

_transputer

_3L

The following macros are de�ned to indicate which processor the

current compilation is for:

Macro Compilations de�ned for

_IMST2 T2C, TC/T2

_IMST4 T4C, TC/T4

_IMST8 T8C, TC/T8, T8C/T8A, TC/T8A

_IMST8A T8C/T8A, TC/T8A

In addition, the macro _3L_SHORT_BITS has the value 16 or 32,

depending on the number of bits in a short variable for this compi-

lation (see section 9.4.3.5 above).

Any of these prede�nitions may be cancelled by the /Umac switch.

See section 9.4.7 for details.

9.6 Handling of #include Files

Handling of #include lines is discussed in The C Programming Lan-

guage[1] p. 207. When the compiler encounters an #include line, it

searches for the speci�ed �le in a sequence of directories known as

136 Chapter 9

the include list. This consists of the following, which are searched in

this order:

1. The current directory|except in the case of lines of this for-

mat:

#include <�lename>

2. The \standard places". These are de�ned in one of three ways.

� The user may de�ne the environmental variable 3LCC_INC

to specify a series of directories, by an MS-DOS command

like this:

C>SET 3LCC_INC=c:\root\branch;\cats

� If 3LCC_INC has no value, there is only one standard

place: directory \tc2v2. This directory is not searched if

3LCC_INC has been de�ned.

� If the /X compiler switch is used, the standard places are

excluded from the include list.

3. Directories which have been speci�cally added to the include

list at compilation time by means of the /I switch|see sec-

tion 9.4.6.

All the �lenames which are added to the include list, either by the

SET 3LCC_INC= command or by the /I compiler switch are assumed

to be directories, even if they do not end with a `\'; in this case,

the `\' is supplied by the compiler. If the �lename speci�ed in the

#include line includes a directory speci�cation, an attempt is made

to concatenate it to each of the directories in the include list in order

to �nd the �le. Such a �lename should not itself start with a `\'.

\tc2v2 is the default installation directory for Parallel C. For this

reason, it is also the default \standard place" to search for include

�les, especially header �les. Its name is built into the compiler,

and cannot be changed. For this reason, if you have installed the

C Compiler Reference 137

compiler in di�erent directory, you must de�ne 3LCC_INC to specify

your installation directory. If this is not done, the compiler will be

unable to �nd its header �les.

Note also that this default directory speci�cation does not include

a disk name. This implies that by default the compiler will only

search directory \tc2v2 on the current disk. This problem also

can be solved by de�ning 3LCC_INC to include the appropriate disk

name.

9.7 Assembly Language

This section shows you how to use the \in-line assembler" which is

built into the C compiler to write programs containing embedded

transputer assembly language instructions. It is assumed that you

are already familiar with the transputer's architecture and machine

code. If you are not familiar with these topics you will need to read

in addition the Inmos Compiler Writers' Guide[13].

If you use assembly language you may �nd the decode utility de-

scribed in chapter 14 useful. It allows you to disassemble the object

�les generated by the compiler and read the machine code contained

in them.

9.7.1 When to Use Assembly Language

There are two main reasons for using in-line assembly language in a

C program.

1. To take direct control of the hardware, for example to write a

function which sets the transputer error ag.

2. To improve the performance of short sections of critical code.

The C compiler's in-line assembler is suitable for both these tasks.

However, it is not intended for writing large sections of code in

138 Chapter 9

assembly language. If you need to do that, you should use a sep-

arate transputer assembler with its own macros, storage allocation

directives and direct access to external symbols.

9.7.2 Assembly Language Syntax

Assembly language instructions are inserted into a program using

the asm statement, which has the following syntax:

statement =

\asm", \{", instructions, \}";

instructions =

instruction, \;", [instructions];

There are two basic forms of instruction, reecting the division of

the transputer instruction set into direct instructions which have

an operand �eld, and the zero-address indirect instructions with

no operand �eld1 which take their operands from the three-register

evaluation stack.

instruction =

direct j indirect;

direct =

direct opcode, operand;

indirect =

indirect opcode;

Appendix E contains a list of the opcodes recognised by the compiler.

A function to set the transputer error ag could be written as:

void set_error_flag(void)

1Actually, there are only direct operations. All the indirect operations are

assembled as particular literal operand values for one direct instruction called

opr.

C Compiler Reference 139

{

asm { seterr; }

}

Two more example asm statements are shown below.

asm { seterr; stopp; }

asm { ldl 0; ajw -10; stl 2; ldc 123; stl 1; }

9.7.3 Literal Operands

The operand of a direct instruction can be any literal 32-bit integer

value. The assembler automatically generates any pfix or nfix

bytes required to encode large values.

operand =

constant;

Decimal, octal and hexadecimal constants can be used; oating-

point, character and string constants are not allowed. Some valid

examples are shown below.

#define XYZ 23

asm {

ldc 17; /* decimal */

ldc 0xff; /* hex */

ldc 0377; /* octal */

ldc XYZ; /* decimal 23, defined by macro */

}

Note that constant expressions like sizeof(int) or 10+7 are not

allowed as assembly language operands.

9.7.4 Variables as Operands

The assembler allows C variables to be used as operands for the

following direct instructions:

140 Chapter 9

ldl which loads a data word from memory and pushes it onto the

evaluation stack;

stl which pops a word from the evaluation stack and stores it in

memory;

ldlp which pushes a pointer to a word in memory onto the evalua-

tion stack.

The required syntax is:

instruction =

\ldl", identi�er j
\ldlp", identi�er j
\stl", identi�er;

We can now write a complete C example function which uses assem-

bly language to manipulate program variables.

main()

{

int a, b=123, c=456;

asm {

ldl b; ldl c; /* load b and c */

add; /* add them */

stl a; /* store result in a */

}

printf("a=%d\n", a);

}

9.7.4.1 Storage Class

An identi�er used as the operand of a ldl, ldlp or stl instruction

must be the identi�er of a variable. The variable can have storage

class auto, register or static2. An extern variable can also be

2The assembler automatically generates the extra ldl instruction required to

load the base address of the static area and converts the \local" operation into a

\non-local" one.

C Compiler Reference 141

used, but only in the scope of the declaration which actually allocates

storage for the variable. The following example is allowed:

int i = 17; /* storage for 'i' allocated here */

void fun(void)

{

asm { ldc 123; stl i; }

}

The next example is not allowed, because storage for j is not al-

located by the declaration in scope. That declaration contains an

explicit extern keyword, which means that storage for j is allocated

elsewhere (probably in a di�erent �le).

extern int j; /* refers to storage elsewhere */

void fun2(void)

{

asm { ldc 123; stl j; }

}

9.7.4.2 Type

Identi�ers used as operands for ldl, ldlp and stl must be declared

as variables. Function identi�ers, labels, structmember names, and

tags like struct tags cannot be used.

Otherwise the type of a variable is ignored when it is used as an

assembly language operand. The ldl and stl instructions always

load or store exactly one word, irrespective of how a variable was

declared. If an object (e.g., a struct) is longer than a word then

only the �rst word is accessed. Take care with char objects, which

are shorter than a word: the whole word beginning at the address of

the char will be loaded or stored to.

142 Chapter 9

9.7.5 Accessing Complex Structures

Expressions are not allowed as assembly language operands. The

following example shows some incorrect operands.

struct s { int value; struct s *link; };

int total=0;

void sum(struct s *p)

{

while (p) asm {

ldl p->value; /* wrong: p->value is an expression */

ldl total; /* ok */

add;

stl total;

ldl p;

ldnl link; /* wrong again: link is a member name */

stl p;

}

}

To make this example work, we can rewrite it as follows.

struct s { int value; struct s *link; };

int total=0;

void sum2(struct s *p)

{

while (p) asm {

ldl p; /* load pointer to base of struct */

ldnl 0; /* value: 0 offset from struct base */

ldl total;

add;

stl total;

ldl p; /* struct base addr again */

ldnl 1; /* link: offset=1 word */

stl p;

}

}

In general, an object whose address is given by a complex expression

(e.g., an array element) can be manipulated in assembly language

either by saving a pointer to the object beforehand in C and then

C Compiler Reference 143

accessing the object via the pointer, or by working out how the

compiler will allocate storage for the object and then calculating its

address in assembly language.

For example, to store the character `*' in element i of a char array

A we can use any of the following techniques.

1. Write in C.

char A[128];

int i;

void f1(void) { A[i] = '*'; }

2. Save a pointer to the object in C.

void f2(void) {

char *p = &A[i]; /* save pointer to it */

asm {

ldc 0x2A; /* ASCII '*' */

ldl p;

sb; /* store byte */

}

}

3. Calculate the object's address in assembly language.

void f3(void) {

asm {

ldc 0x2A; /* ASCII '*' */

ldl i;

ldlp A;

bsub; /* byte subscript: &A[i] */

sb; /* store byte */

}

}

Use methods 1 or 2 if at all possible. If you use method 3 you

may �nd that your program will not work with future versions of

the compiler because the way in which storage is allocated for some

object changes. If you do need to use method 3, the decode utility

described in chapter 14 can be used to �nd out how the compiler has

allocated storage for a program's variables.

144 Chapter 9

9.7.6 Labels and Jumps

In the examples given so far, C control statements (e.g., while) have

been used to control the execution of assembly language statements.

Sometimes though, you may need to program jumps in assembly

language. For example, you might want to avoid storing an interme-

diate result back into a local variable in order to be able to test its

value using a C conditional statement.

To make programming jumps easy, the j and cj instructions permit

C labels to be used as operands.

instruction =

\j", label j
\cj", label;

label =

identi�er;

An identi�er used as the operand of a j or cj instruction must

appear as a C statement label somewhere in the body of the enclosing

function.

The example below shows the list-summing function with its while

statement recoded in assembly language.

struct s { int value; struct s *link; };

int total=0;

void sum3(struct s *p)

{

loop: asm {

ldl p;

cj out;

ldl p;

ldnl 0; /* p->value */

ldl total;

add;

stl total;

ldl p;

ldnl 1; /* p->link */

C Compiler Reference 145

stl p; /* p = p->link; */

j loop;

}

out: ;

}

Note the forward reference to label out. Any identi�er which ap-

pears in an asm statement and which has not yet been declared is

automatically declared as a forward reference to a label, which must

be de�ned before the end of the function.

9.7.6.1 Labels within asm Statements

C labels must be attached to C statements. It is not possible to

label individual instructions within an asm statement. If you need

to do so, the instruction sequence must be split up into multiple

asm statements, each of which can be labelled. For example, the

following is incorrect:

asm {

ldc 17;

L: stl i; /* not allowed */

}

It is incorrect because a label has been put inside an asm statement.

It must be split up as follows:

asm { ldc 17; }

L: asm { stl i; }

9.7.6.2 Jump Optimisations

The assembler always generates minimum sized jumps. Note that it

may also delete unreachable jumps and merge jumps-to-jumps.

146 Chapter 9

9.7.7 Literal Machine Code

The assembler allows you to put literal machine code directly into

the object �le using the byte pseudo-operation.

instruction =

\byte", code list;

code list =

constant, f \,", constant g;

For example, the following asm statement outputs the actual machine

code for a ret instruction:

asm { byte 0x22, 0xF0; }

9.7.8 Errors

The messages produced by the compiler when it detects an error in

an assembly language statement are of the form:

* opcode: message at line n of file fn

The opcode, line and �le parts refer to the name and location of the

o�ending instruction; the various possible messages are included in

the full list of compiler error messages in section 9.9.4. The �lename

part of the message is omitted unless the error is within an #include

�le.

The following error message can appear if you mis-spell an identi�er

in an asm statement.

label "ident" is used in function "f " above but is not defined

there

This is because the mis-spelt identi�er is assumed by the compiler

to be a forward reference to a label.

C Compiler Reference 147

9.8 Data-type Representations

On all transputers, a byte is 8 bits. On the T4 and the T8, a word

is 32 bits (4 bytes), while on the T2, it is 16 bits (2 bytes).

9.8.1 Integral Data Types

On the T4 and the T8, the C integral (i.e., integer or character) data

types are represented by default as follows:

Type Bits Bytes Minimum Maximum

char 8 1 0 255

signed char 8 1 -128 127

short int 16 2 -32768 32767

unsigned short int 16 2 0 65535

int 32 4 �2147483648 2147483647

unsigned int 32 4 0 4294967295

long int 32 4 �2147483648 2147483647

If the compiler is invoked with the /Gs switch, short variables are

treated in a di�erent way:

Type Bits Bytes Minimum Maximum

short int 32 4 �2147483648 2147483647

unsigned short int 32 4 0 65535

In this case, unsigned short variables occupy 32 bits, but only the

16 least signi�cant bits are used in expressions. This interpretation

allows the compiler to use the fast integer load and store operations

for unsigned shorts, with only a simple additional masking step

required when the value is to be used.

On the T2, these data types are represented as follows:

148 Chapter 9

Type Bits Bytes Minimum Maximum

char 8 1 0 255

signed char 8 1 -128 127

int 16 2 -32768 32767

unsigned int 16 2 0 65535

short int 16 2 -32768 32767

unsigned short int 16 2 0 65535

The long data types are not supported on the T2.

9.8.2 Pointer Types

All pointer types (i.e., types of the form \pointer to x") are rep-

resented by a single word whose value is the address of the object

pointed to.

9.8.3 Floating Types

Floating types are not supported on the T2.

The transputer follows the IEEE oating-point standard[11] in de�n-

ing the representation of oating-point values. For a float variable,

the IEEE single-precision format is used; for a double, the double-

precision format. The way in which these standard formats are

represented in transputer memory is shown in �gure 9.2. Note that

a float occupies 4 bytes (32 bits) and a double occupies 8 bytes

(64 bits). long double is currently equivalent to double.

When the exponent �eld e is all ones (e = 255 for single precision,

e = 2047 for double precision) the value represented is an in�nity or

a Not-a-Number (NaN). For example, the following function detects

whether a given double value is an in�nity or NaN:

int is_inf_or_NaN(double d)

{

int second_word = ((int *)(&d))[1];

int e = (second_word >> 20) & 2047;

C Compiler Reference 149

1234567 0

 msb byte number lsb !

1

S

 �11�!

e

 ���������������52 bits���������������!

fraction

1

S

 �8�!

e

 ���23 bits���!

fraction

Figure 9.2: Representation of Floating-point Values

return (e==2047);

}

An in�nity is represented with a fraction of zero; the sign bit s then

indicates whether positive or negative in�nity is meant. A non-zero

fraction indicates a Not-a-Number; the sign bit s is ignored in this

case.

The following table lists all those NaNs de�ned by Inmos, in terms

of their hexadecimal representation for both single and double pre-

cision. Note that each of these representations consists of the appro-

priate e �eld being set to all bits one, with the addition of a single

extra bit set in the fraction �eld to indicate the type of exception.

150 Chapter 9

Single Double Description

7FC00000 7FF80000 00000000 divide zero by zero

7FA00000 7FF40000 00000000 divide in�nity by in�nity

7F900000 7FF20000 00000000 multiply zero by in�nity

7F880000 7FF10000 00000000 addition of opposite signed in�nities

7F880000 7FF10000 00000000 subtraction of opposite signed in�nities

7F840000 7FF08000 00000000 negative square root

7F820000 7FF04000 00000000 double to float conversion

7F804000 7FF00800 00000000 remainder from in�nity

7F802000 7FF00400 00000000 remainder by zero

7F800010 7FF00002 00000000 result not de�ned mathematically

7F800008 7FF00001 00000000 result unstable

7F800004 7FF00000 80000000 result inaccurate

When an in�nity or Not-a-Number is output by the standard run-

time library, a special string is output instead of a normal value. See

the description of fprintf (page 261) for details.

9.8.4 Alignment and Complex Types

All types except char are automatically word-aligned by the com-

piler. Bear in mind in the discussion below that on the T4 and the

T8, a word contains four bytes, 32 bits, whereas on the the T2 it

contains two bytes, 16 bits.

struct and union types are always rounded up to a whole number

of words, even if they contain only byte objects.

Successive bit �elds in a struct are allocated starting from the least

signi�cant (lowest addressed) end of a word. Only integer �elds are

allowed, and plain int �elds are treated as unsigned. On the T4

and the T8, �elds may not be wider than 32 bits; on the T2, the

limit is 16 bits.

Adjacent bit �elds are considered together when they are being

packed into words. A sequence of �elds occupying up to 8 bits is

packed into the next byte in the structure. Longer sequences are

aligned starting at the next word in the structure and padded out to a

C Compiler Reference 151

struct s1 { char first;

int bits1:7, bits2:7;

char last; };

struct s2 { char first, last;

int bits1:7, bits2:7; };

struct s3 { char first;

int bits1:7;

char last;

int bits2:7; };

Figure 9.3: E�ect of Alignment on struct Size

whole number of words (even if following char �elds could otherwise

be packed into this padding space). Figure 9.3 shows the e�ects of

this on the total size of structures. In s1 the �elds bits1 and bits2

together occupy 14 bits and are therefore aligned to start at the next

word boundary (o�set 1 word). They occupy the whole of this word,

forcing last into the next word (o�set 2 words), making s1 3 words

long after being rounded up.

In s2 the two char items first and last have been brought together

reducing the size of the struct to two words.

In s3 the bit �elds have been separated by last. This prevents the

bit �elds being combined into a unit of 14 bits, leaving them as two

byte-sized objects. On the T4 and the T8, the overall e�ect is to

reduce the size of the struct to four bytes (1 word).

9.9 Compiler Error Messages

This section shows how error conditions are reported by the compiler,

outlines ways of dealing with errors detected by the compiler and

lists the error messages which may be produced by the compiler

along with examples showing how they might come about.

152 Chapter 9

9.9.1 Compiler Error Message Format

This section describes the error reports displayed by the compiler

when it detects errors in the program it is trying to compile. Errors

which can be detected by the compiler in this way are the easiest

to correct. If an attempt is made to compile a program which does

not obey all of the rules of C, the compiler will display a message

indicating the nature of the fault and showing where in the program

the error was detected. For example, in the following program the

brackets which must surround the expression following the keyword

while have been omitted:

main()

{

int i = 0;

while i++ < 10

printf("hello, world\n");

}

The compiler will discover the error and display a message like this:

*"prog.c", line 5: while i++ < 10

^

(expected

The upward arrow character `^' points to the place where the error

was found.

Notice the format of the message: all of the messages which the

compiler can produce appear in a similar form. The �rst character

in the message is a marker which indicates how bad the error was|

an asterisk `*' is the normal sort of error; it means that the compiler

has detected a fault but is able to continue trying to compile the rest

of the program. The other markers which can appear are described

later.

Following the marker character there is the name of the �le in which

the error has occurred, followed by the line number in the original

C Compiler Reference 153

C program at which the error was detected; here the error is on

line �ve. Wherever possible the compiler displays the text of the

o�ending line after the line number, as in the example program, but

because the original text is stored in a �xed size memory area, this

cannot always be done. If the source text is no longer in memory it

is omitted from the error message.

The general form of compiler messages is therefore:

marker"�lename", line line-number: source-text

^

message-text

Here `^' points to the part of the source-text in error, message-text

is a brief explanation of the fault, and marker may be any of `*', `?'

or `!'.

Marker Meaning

`*' Error: compilation continues

`?' Warning: a part of the program is strictly correct, but

is dubious in some way. For example, if some part of a

program can never be reached.

`!' Fatal error. Compilation cannot continue after a fatal

error. Fatal errors indicate either that a program is too

large or complicated to be compiled in the amount of

memory available or that there is a fault in the compiler

itself which makes it unable to compile this program.

Section 9.9.3 gives information about what should be

done if any particular fatal error is reported.

The line number information can be used to locate the incorrect line

quickly with a text editor even when a program contains #include

statements, because each #include counts as a single line, no matter

how many lines the included �le contains. Look at two C program

�les called main.c (�gure 9.4) and error.h (�gure 9.5).

154 Chapter 9

#include "error.h"

main()

{

while count++ < 10

printf("hello\n");

}

Figure 9.4: File main.c

/* error included text */

auto int count;

Figure 9.5: File error.h

If we compile main, we will get the following error messages:

*"error.h", line 3: auto int count;

^

an external data definition may not have storage class "auto"

*"main.c", line 5: while count++ < 10

^

(expected

These messages indicate that in line three of the included �le

error.h the declaration of count is not allowed (because only

static or extern declarations are allowed at the outermost level

of a program), and in line �ve of main.c an opening bracket must

follow the keyword while.

9.9.2 Fixing Errors Detected by the Compiler

This section contains information about how the compiler handles

errors in the program which it is trying to compile. This information

should make it easier to understand the messages displayed by the

compiler, and so make it easier to �x incorrect programs.

C Compiler Reference 155

The compiler can detect two classes of error: errors in the form of

a program such as missing semicolons, mis-spelt keywords etc., and

errors where an identi�er of a particular type is used in the wrong

context, such as attempting to multiply a struct variable by a float

value or use an identi�er that has not been declared.

Errors of form (syntax errors) are detected when the compiler dis-

covers that the piece of program it is reading does not �t in the

context of the part of the program it has read already. When this

happens the compiler displays a message and starts reading on from

the point of the error, ignoring everything until it �nds a symbol

which could �t in at this point in the program; compilation then

continues as though there had been no error.

Because the compiler may ignore vital parts of the program (like

declarations) in recovering from an error, the best policy when �xing

errors reported by the compiler is to deal with them one by one,

starting with the �rst. Look at the part of the program indicated

by the error message and try to �nd out what is wrong with it, then

�x the problem and recompile the program. If errors are dealt with

sequentially like this, you will not waste time hunting for spurious

errors caused by the compiler skipping over some declarations and

then complaining about \undeclared identi�ers" in the rest of the

program. Look at the example below, where a comma in a declara-

tion has been mistyped as a dot.

main()

{

int length . breadth;

length = breadth ;

}

This compiler will display the following messages:

*"ex.c", line 3: int length . breadth;

^

; expected

*"ex.c", line 5: length = breadth ;

156 Chapter 9

^

"breadth" not declared

The �rst message indicates that a semicolon or comma must follow

each identi�er in a declaration; a dot is not allowed. Because the

compiler has skipped the declaration of breadth in order to get back

in step with the program, breadth appears not to be declared in line

�ve resulting in the second error message.

If you correct this program as suggested above, by starting with the

�rst error, �xing it and then recompiling the program then you will

never have to worry about �xing the second error: it will go away

automatically when the �rst error is �xed.

In certain cases the logic of the compiler will result in the same error

being reported more than once. The remedial action here is simply

to �x the error and ignore the duplicated messages.

9.9.3 List of Error Messages

The messages listed here may be issued by the compiler while a

program is being compiled.

Some messages contain special sequences like item-1 , item-2 etc.

These do not appear in the actual message displayed by the compiler,

rather they are replaced by appropriate text from the program. For

example, take the message:

"item-1" not declared

If it is the identi�er foo which has not been declared, the message

actually displayed will be:

"foo" not declared

Where feasible, the description of each message includes a sample

(meaningless) program which causes the message to be generated

during compilation.

C Compiler Reference 157

9.9.3.1 Program Errors

This section gives a list of messages which may be generated by the

compiler as a result of errors in the source program or limitations

imposed by the compiler.

� a bit-field must have an integer type

C allows an implementation to restrict the type of bit-�elds. Par-

allel C imposes the restriction that all bit-�elds must have a type

which yields integer values.

error()

{

struct thing { float wee:9; };

}

� a compiler-control (#) line may not begin with "item-1"

Compiler control lines are introduced by a hash character, `#', fol-

lowed by a keyword. This message indicates that a valid keyword

has not been found.

error()

{

#?rubbish

}

� a constant integer expression is required here

This message indicates that an identi�er or a string literal has been

found in a context which requires a constant integer expression.

error()

{

int a[12]; /* right */

int b[a]; /* wrong */

}

158 Chapter 9

� a decimal integer constant must not start with a 0

Because C uses a leading zero to mark the start of an octal constant,

as in 01777, you cannot use leading zeros in decimal constants. The

following example is therefore incorrect. It would be accepted if the

099 were replaced by 99.

error()

{

int i;

i = 099;

}

You would get the same error message if you accidentally typed an

`8' or a `9' as part of an octal constant. The compiler would take

the bad digit to mean that a decimal constant was intended, which

may not start with a `0'.

� a field may not exceed 32 bits

C limits the size of a bit �eld to the size of an int. On the T4 or

T8, this is 32 bits long.

error()

{

struct thing { int huge:999; };

}

� a field may not exceed 16 bits

C limits the size of a bit �eld to the size of an int. On the T2, this

is 16 bits long.

error()

{

struct thing { int huge:17; };

}

C Compiler Reference 159

� a function result of type "item-1" is not allowed

This message is generated when an attempt is made to de�ne a

function which returns an array or a function.

error()

{

int f()[17]; /* f cannot return an array of 17 items */

}

� a hexadecimal digit was expected after "\x"

The digits which follow \\x" in a hexadecimal escape sequence

\\xdd" within a character or string literal must be valid hexadecimal

digits: `0'{`9', `a'{`f', or `A'{`F'.

The example below is in error because `G' is not a valid hexadecimal

digit.

error()

{

printf("\xGG", 7);

}

� ANSI function definition may not include parameter

declarations

The cause of this message is a function de�nition which attempts

to declare its parameters using a mixture of the K&R and ANSI

notations.

int error(int i, float a)

int i;

float a;

{

return a*i;

}

� a number is required after #line

The #line preprocessor directive keyword must be immediately fol-

lowed by a decimal line number. Octal and hexadecimal forms are

160 Chapter 9

not allowed. Both uses of #line in the example below are incorrect.

error()

{

#line

#line "72"

}

� a parameter declaration may not be initialized

A parameter declaration simply gives information about the sort of

value being passed as a parameter, the actual value of the parameter

being given when the function is called. This message could be the

result of placing the declaration of what should be local variables

before the opening `{' of the function.

error(x)

int x = 3;

{

}

� a parameter may not have storage class "item-1"

This message indicates that a parameter type speci�cation has at-

tempted to give a parameter an invalid storage class. This can be

the result of confusing parameter speci�cations with local variable

declarations.

error(x)

static int x;

{

}

� a parameter type declaration was expected here

In ANSI parameter list declarations, the type of each parameter must

be speci�ed explicitly. The example below would generate this error

message because no type is given for b.

error(int a, b)

{

}

C Compiler Reference 161

In C, unlike some other languages, it is not presumed that b must

be int just because the previous parameter, a, has been declared as

int. If b is meant to be int, you must write:

ok(int a, int b)

{

}

� "item-1" already defined

This message is issued when an attempt is made to rede�ne the tag

of a struct or union.

error()

{

struct thing{int a,b;};

struct thing{float c,d;};

}

� "item-1" already defined as item-2 tag

This message reports inconsistent usage of tags, for example a

struct tag later used in a union declaration. Item-1 is the name of

the tag; item-2 is struct, union or enum depending on how item-1

was originally declared.

In the example below, the compiler will fault the union declaration,

reporting that foo was already de�ned as a struct tag.

error()

{

struct foo { int a, b; };

union foo { int class; double x; char y; };

}

� an empty enumerator list is not allowed

The list of enumeration constants in the declaration of an enumer-

ated type must not be empty; there must be at least one enumeration

constant.

error()

162 Chapter 9

{

enum transparent {};

}

� an empty structure is not allowed

Every struct must have at least one member; it is not possible to

have structures with no members.

error()

{

struct empty {};

}

� an external data definition may not have storage class

"item-1"

Variables declared outside a function may only have a limited selec-

tion of storage classes. This message indicates that such a declaration

has a prohibited storage class.

register int r;

error()

{

}

� an identifier list in a function declarator that is not

part of a function definition must be empty

A plain identi�er list can only appear in a function declarator that is

part of a K&R-style function de�nition. If the function declarator is

part of an ordinary declaration, as in the example below, the brackets

following the function name must be empty.

error()

{

int fun(a, b, c);

fun(1, 2, 3);

}

The correct way to declare fun here is: int fun();

C Compiler Reference 163

Parameter identi�ers can be used in ANSI-style function declarations

anywhere, but then a type must be given for each one, as in:

int fun(int a, int b, int c);

� an object of this type cannot be initialized

An attempt has been made to initialize (in a declaration) a type of

object which cannot be initialized. The example below is incorrect

because it attempts to initialize a function.

error()

{

int f() = 17;

}

� "item-1" and "item-2" are incompatible operand types for

the "item-3" operator

This message indicates that an attempt has been made to apply the

given operator to operands of inappropriate types.

error()

{

int z;

struct {int a,b;} x,y;

if (x<y) z=0; /* struct comparison not allowed */

}

� array dimension table full

There is a global limit on the overall complexity of array and struc-

ture declarations. This fatal error message is issued when the pro-

gram exceeds this complexity. The remedial action is to simplify the

program or split it into two or more separate �les.

It is not feasible to give a simple example of a program which would

generate this fault.

164 Chapter 9

� attempt to assign address to short or char

The address of an object is a value which will almost certainly be

too large to be assigned to a short or char sized object. While this

is not prohibited it will result in the pointer value being converted

into an int and then the more signi�cant bits being truncated. As

it is very likely that this e�ect will not be what was intended the

compiler will issue this warning.

warning()

{

int v;

static char text = "hello" /* wrong */

short s = &v; /* wrong */

char x = &v; /* wrong */

}

� attempt to divide by zero

The compiler has detected an attempt to divide by zero. Note that

this can happen in two distinct places in the compiler: in a context

where the result of the division is needed during the compilation, or

when the value is not strictly needed until the compiled program is

executed but the compiler is attempting to simplify the expression.

This particular error message is a result of a division by zero in the

�rst case.

error()

{

#if 1/0

#endif

}

The second case gives rise to a \Zero divide" message which is

described in section 9.9.3.3.

� auto/register arrays and structs may not be initialized

This message is issued when an attempt is made to initialize arrays or

structs with storage class auto or register. An initialized array or

C Compiler Reference 165

structure which is declared inside a function body must be explicitly

declared to be static or extern.

error()

{

int vector[3] = {1,2,3};

struct {int a,b;} s = {100,200};

}

� bad escape code \'item-1'

The given escape code has been detected in a string or character

constant but has no meaning. This is commonly caused by including

an escape character, `\', in a string without using another escape.

DOS In the following example, the fragment \\dir\myfile" should

be written \\\dir\\myfile".

error()

{

printf("cannot open \dir\myfile.dat\n");

}

� & before array or function ignored

When used on its own as an operand in an expression, the identi�er of

an array or function represents the address of that array or function.

This message indicates that an `&' operator has been ignored when

it has been used redundantly on an array or function.

error()

{

int ad;

int a[12];

ad = &a;

ad = &error;

}

166 Chapter 9

� both operands for pointer "-" must have the same type

When `-' is used to obtain the di�erence between two pointer values

the types of the two pointers must be identical.

error()

{

int x;

float *f;

double *d;

x = d-f;

}

� case "item-1": already defined

This message indicates that a switch statement contains two or more

actions de�ned for a particular case.

error()

{

int x;

switch (x) {

case 1 : x = 100;

case 1 : x = 200;

}

}

� "case" and "default" are only allowed inside a switch

statement

The keywords case and default are reserved for use within switch

statements and may not be used in any other contexts. The message

frequently indicates that a switch statement has been prematurely

terminated or has not been recognised because of a syntactic error.

error()

{

int x;

case 1 : x = 0;

default : x = 1;

}

C Compiler Reference 167

� 'item-1' character not allowed here

The given character is either a control character or the character

grave (``'). Such a character may only be used in very restricted

circumstances, for example inside a string. The most likely causes

for this error are typing a grave when a single quote character was

wanted or accidentally inserting control characters into the source

�le.

error()

{

`grave error;

}

� closing '>' expected

An include statement has attempted to specify a search of standard

places only by enclosing the �le name in `<' and `>'. The message

indicates that the compiler has found the opening `<' but not the

closing `>'. One cause of this error is not pressing the shift key when

typing the `>' character and getting `.' instead.

#include <thing.

error()

{

}

� comment not terminated by "*/"

This message is given if a comment is not terminated.

main{}

{

/* comment starts...

printf ("Hello\n");

}

� constant integer expression required here

This message is generated when the compiler is expecting an expres-

sion which can be evaluated at compile time to give an integer value

168 Chapter 9

but no such expression can be recognised.

main()

{

int x[1.5];

}

� constant integer value too large

This message indicates that overow occurred while processing an

integer constant. Currently this is only detected in the case of octal

or hexadecimal constants.

error()

{

int x = 0x123456789; /* more than 32 bits */

}

� corrupt syntax tree

This message indicates that an error has occurred in the compiler

itself.

It is not feasible to give a simple example of a program which would

generate this fault.

� declaration syntax fault

This message is generated whenever a declaration has been speci�ed

incorrectly. As there are many reasons for the error it is best to

examine the declaration at the point indicated by the upward arrow

in the compiler's report. If the cause of the error is not obvious the

formal de�nition of the syntax of the relevant declaration should be

checked.

error()

{

int a,;

}

C Compiler Reference 169

� #endif/#elif/#else without matching #if

The compiler control lines #else and #endifmust follow a matching

#if or #elif control line.

error()

{

#else

#endif

}

� #endif pending at end of file

This message is issued when the end of the source �le has been

reached and no #endif has been found to match a previous #if.

error()

{

#ifdef flag

}

� end of file in argument list of macro "item-1" at line

"item-2" (missing ")"?)

This message indicates that the end of the source �le has been found

before the compiler has found the closing parenthesis of a reference

to a macro.

error()

{

#define thing(x) 1-x

int a;

a = thing(x

}

� #error: item-1

The #error preprocessor directive causes an error message of this

form to be generated. Item-1 is the message text contained in the

#error directive. For example:

error()

170 Chapter 9

{

#error text of message

}

� error in format of integer suffix

The allowed formats for an integer su�x are laid down in sec-

tion 3.1.3.2 of the ANSI standard. This error message is given if

an integer su�x breaks these rules.

error ()

{

int i;

i = 5LUL;

}

� expanded macro line too long

This fatal error message indicates that the compiler's macro expan-

sion area has become full and further processing is impossible. The

usual cause for this is a recursive macro as in the following example.

error()

{

#define rubbish rubbish+1000

rubbish

}

� item-1 expected

The given item is expected at the indicated point in the program.

Note that there may be several di�erent items which would �t but

the compiler will only indicate the most likely one.

error()

{

int a /* semicolon omitted */

}

C Compiler Reference 171

� expected a string literal after #line n

The #line n preprocessor directive may optionally be followed by

a string literal representing a �le name. This warning message indi-

cates that something else was found, as in the example below. The

presumed name of the source �le is left unaltered.

warning()

{

#line 17 foo.c

}

Parallel C follows ANSI in warning about an example like this one,

although some other compilers will accept this older usage, with no

double quotes around the �le name.

� expression expected

The compiler expects to �nd an expression at the indicated point in

the program.

error()

{

case {

}

}

� expression of type "item-1" cannot be used as a function

This message is issued when an expression which is not a function is

applied to an argument list.

error()

{

17(0); /* 17 isn't a function */

}

� expression of type "item-1" used instead of "int"

This message is given when an expression of a type other than `int'

has been used in a context which requires a condition.

error()

172 Chapter 9

{

float f, g;

if (f) g = 0;

}

� expression syntax fault

An expression has been incorrectly speci�ed. This is usually the

result of a typographical error with operators. Check the form of

the operator you require and correct the expression accordingly.

error()

{

int a,b,c;

b = 12;

c = 5;

a = b+%c; /* rubbish */

}

� format is #include "file" or #include <file>

This message indicates that the �le reference in an #include com-

piler control line has not been speci�ed correctly. The two accept-

able forms are #include "�le" which will search for �le starting in

the current directory and then searching the standard place, and

#include <�le> which only searches the standard place.

error()

{

#include something

}

� { function-body } expected here; could be missing ;

after) above?

The opening brace, `{', of a function body could not be found follow-

ing the function heading. N.B., this message is unfortunately very

common, as it is easy to make a syntax error which makes a function

declaration look like a function header to the compiler.

extern f() /* ; omitted */

C Compiler Reference 173

int a;

double d;

g()

{

a = 17;

}

� function declarator required before '{'

This message was generated by earlier versions of Parallel C and

should no longer be encountered. It was issued when a declaration

appeared syntactically to be a function declaration but did not have

the type \function returning : : : ".

� identifier expected

This message indicates that the context demands an identi�er but

something else has been found.

error(1)

{

}

� identifier or {enum-list} required after 'enum'

Following the enum keyword there must be either an identi�er or a

list of enumeration constants enclosed in parentheses.

error()

{

enum colour {red, yellow, green, blue} /* right */

enum; /* wrong */

}

� identifier or {struct-decl-list} required after

'struct'/'union'

The keywords struct and union must be followed by either an

identi�er or a declaration of the contents of the structure or union.

error()

174 Chapter 9

{

struct;

union;

}

� implementation restriction: pointers to functions

cannot be initialized

This message was issued by previous versions of Parallel C. The

current versions of the compiler do not have this restriction and so

the message should never be generated.

� implementation restriction: "sizeof" not allowed in

this context

The current implementation of Parallel C does not permit the use of

the operator sizeof in a constant expression.

error()

{

int x;

int a[sizeof(x)];

}

� include stack underflow

This message indicates a malfunction in the compiler itself. The only

remedial action is to attempt to simplify the include �le structure of

the program.

It is not feasible to give a simple example of a program which would

generate this fault.

� "item-1" incompatible with type "item-2"

This message indicates that an incompatible combination of type

speci�ers has been given in a declaration.

error()

{

long char x;

}

C Compiler Reference 175

� initializer string longer than array

The string constant which has been used to initialize an array of

char contains more characters than there are elements in the array.

Note that there is always an invisible `\0' character on the end of

every string constant so that the number of characters it contains is

one larger than it may appear to the casual reader. The message is

simply a warning that the string constant will be truncated for the

purposes of initialization by ignoring one or more of the rightmost

characters.

warning()

{

static char x[3] = "1234";

}

� internal error

This message indicates that an error has occurred in the compiler

itself.

It is not feasible to give a simple example of a program which would

generate this fault.

� "item-1" is not in the parameter list of "item-2" and so

may not appear here

This message is generated when a parameter speci�cation following

a function heading attempts to describe an identi�er which has not

been given in the parameter-list of the function. This can be caused

by the incorrect placement of local variable declarations before the

opening brace (`{') of the function body compound statement, or by

mis-spelling an identi�er in the function heading or in its declaration.

error()

int p;

{

p = 0;

}

176 Chapter 9

� line break illegal in strings or character constants

This message is given when a string or character constant is not

terminated on the same line as it started on. Usually this will be

by mistake; however, a programmer might try to include a newline

character in a string or character constant by not terminating the

string. This should be done instead by using the \n escape sequence.

error()

{

printf("line 1\nline 2"); /* correct */

printf("line 1

line 2"); /* wrong */

printf("mistake); /* wrong */

}

� label "item-1" has already been defined in this function

Within any function a particular label may only be used once as the

pre�x to a statement. This message is the result of using the given

label as a pre�x on two or more statements.

error()

{

int x;

here: x = 1;

here: x = 2;

}

� label "item-1" is used in function "item-2" above but is

not defined there

The named function contains a goto statement or assembly-language

statement which references a label which has not been attached to

any statement within the function. Note that C restricts the use of

the goto statement to transfer control within a function; it is not

possible to use goto to transfer control out of a function.

error()

{

goto somewhere;

}

C Compiler Reference 177

Note that unknown identi�ers used in asm statements are implicitly

declared as labels in case they may be forward references to real

labels. This means that mis-spelling identi�ers in asm statements

may result in this message.

� left operand of "item-1" is not an lvalue

An lvalue is an expression referring to a manipulable region of stor-

age. This message indicates that the given operator demands an

lvalue but its operand does not refer to appropriate storage.

error()

{

int x;

&x = 12;

}

� left operand of '.' must be a structure

The operator `.' is used to select a particular �eld from a structure.

This message indicates that `.' has been used to select a �eld from

an object which is not a structure and therefore cannot have any

�elds to be selected.

error()

{

int x;

x.x = 0;

}

� macro expansion stack full

During macro expansion, the expanded macro with actual parame-

ters substituted for formals is held in a 4KB bu�er. This fatal error

message is issued when this bu�er has been �lled.

� macro text store full

This fatal error message is issued under two circumstances:

178 Chapter 9

1. The body of a #define macro is too long (currently the limit

is 1023 characters).

2. When expanding a function-like macro the size of the actual

arguments exceeds 1023 characters.

It is not feasible to give a simple example of a program which would

generate this fault.

� missing)

A right parenthesis has been omitted from an expression or param-

eter list. This is commonly caused by mismatching parentheses in

complex expressions or by forgetting to depress the shift key when

typing `)' and getting a di�erent character, `9' in the following ex-

ample.

error()

{

int a;

a = 2*(a+19;

}

� missing operand

An expression contains an operator which has not been given a

required operand.

error()

{

int a;

a = -); /* no operand for the "-" */

}

� "item-1" must be within a loop

The keywords break and continue are used to control the execution

of a loop (for, while, or do). This message indicates that break

or continue has been found but not within the body of a loop.

error()

C Compiler Reference 179

{

break;

}

� '%' must have integer operands

The modulus operator, `%', returns the remainder from the division

of its operands, both of which must yield integer values.

error()

{

int n;

n = 123 % 4.5;

}

� not a constant

This message is generated when a constant value was expected but

something else was found.

error()

{

int x;

switch (x) {

case x : x = 0;

}

}

� "item-1" not declared

This message indicates that an identi�er has been used without hav-

ing been declared previously. Note that in C the case of letters in

identi�ers is signi�cant. The error can be the result of mis-spelling

an identi�er or simply forgetting to declare it.

error()

{

int Thing;

thing = 0;

}

180 Chapter 9

� number of arguments does not match function prototype

This warning message indicates that the number of actual arguments

in a function call does not match the number of formal parameters

in a prototype for the function which is in scope at the point of call.

For example:

warning()

{

void f(int);

f(17, 99);

}

� number of macro actual parameters does not agree with

definition

This message is generated when a reference to a macro has been

given a number of parameters which is di�erent from the number of

parameters speci�ed when the macro was de�ned.

error()

{

#define mac(x) x+1

int a, b;

b = 0;

a = mac(b); /* right */

a = mac(a, b); /* wrong */

}

� no support for "double" types

This message is given for a T2 compilation if the program contains

a declaration of a double variable or function.

error()

{

double d;

}

C Compiler Reference 181

� no support for "float" types

This message is given for a T2 compilation if the program contains

a declaration of a float variable or function.

error()

{

float l;

}

� no support for "long" types

This message is given for a T2 compilation if the program contains a

declaration of a long int or unsigned long int variable or func-

tion.

error()

{

long int l;

}

� one or more #endif lines inserted before extra

#else/#elif here

This message is generated if an #else or #elif compiler control line

is found while the compiler was expecting an #endif control line.

The compiler assumes that the #endif for a previous #else has

been omitted and that the #else or #elif it has just found belongs

to an enclosing #if statement.

error()

{

#if 1

#else

#else /* no corresponding #if */

#endif

}

182 Chapter 9

� only "extern" or "static" functions are allowed

This message results from attempting to de�ne a function with a

storage class other than extern or static.

register error()

{

}

� only one "default" statement is allowed per switch

statement

The default statement pre�x is used to specify the action to be

taken in a switch statement when an actual case has not been explic-

itly handled by a case label. It follows that a second or subsequent

default must be in error.

error()

{

int x;

switch (x) {

default : x = 1;

default : x = 2;

}

}

� operand of "item-1" must be an lvalue

The operator item-1 requires an lvalue as its operand. An lvalue

is an expression referring to an object in memory which can be

manipulated. Note that a pointer expression is not an lvalue. To

use the memory pointed to by p as an lvalue, you must use the

expression (*p), which refers to the object pointed to by p.

The following example is incorrect because the value of the cast is

a pointer to the integer at address 16, not an lvalue. To use the

pointed-to word and increment the integer at address 16, we would

have to use the expression: ++(*(int *)16)

error()

{

C Compiler Reference 183

++(int *)16;

}

� operand of -> or unary * must have pointer type

The left-hand operand of the operators `->' and unary `*' must be

objects which have a pointer type. This message indicates that the

given operator has been given an operand which has not been de�ned

to be a pointer.

Unfortunately this message also results from errors in arrays. This

is because the C de�nition of array accesses is in terms of the unary

`*' and pointer `+' operators.

error()

{

int a;

struct point {int x,y;};

struct point b;

int x[10];

int p,q;

*a = 983;

b->x = 983;

a[p][q] = 983;

}

� operand of unary "item-1" must be an lvalue

An lvalue is an expression referring a region of storage which can be

manipulated. This message indicates that the context demands an

lvalue but the expression given does not refer to appropriate storage.

Note that a pointer value (yielded by `&') is not an lvalue.

error()

{

int x;

x = &12;

}

� "item-1" operator not allowed in a constant-expression

Only a limited number of operators may occur in expressions which

184 Chapter 9

must yield constant values at compile time. This message indicates

that such a constant expression contains a prohibited operator.

error()

{

int a[(1,2)];

}

� original and result types for cast must be scalar or

pointers

A cast may not involve array or function types, although pointer to

array and pointer to function types are permitted.

error()

{

(int []) 0; /* can't cast to an array of int */

}

� "item-1": parameter list does not match a previous

prototype

This warning message says that the (ANSI) parameter list given in

the declaration of function \item-1" does not match the parameter

list in a previous declaration of the same function. Either the pa-

rameter list has a di�erent number of arguments from the previous

declaration, or the usage of ellipsis to indicate a variable number of

arguments is inconsistent between the two declarations.

For example:

void fun1(int i);

void fun1(int i, double d);

Here, the two declarations of fun1 specify di�erent numbers of ar-

guments.

C Compiler Reference 185

� "item-1" previously declared as "item-2" may not be

redeclared as "item-3"

This message results from attempting to declare an object when it

has already been declared.

error()

{

int a;

float a;

}

� sizeof operand must be a type name or unary expression

The sizeof operator takes as its argument something which either

has or implies a requirement for a number of bytes of storage. It is

this number which is returned as the result. The message indicates

that the argument given to sizeof is not associated with a quantity

of storage.

error()

{

int a;

a = sizeof(else);

}

� statement expected here

A statement which controls another statement has been speci�ed

without any statement to be controlled.

error()

{

int x;

if (x) else;

}

� statement out of context

A statement has been found where a declaration was expected, for

example outside any function. This error may be reported if the

186 Chapter 9

compiler has got out of step with the program due to previous syntax

errors. If you are unsure of the cause of the error, �x any errors

reported previously and recompile.

The return statement in the example below would be faulted, be-

cause it is not inside the body of a function.

return 17;

error()

{

}

� storage class incompatible with a previous declaration

This message is issued when a declaration contains more than one

storage class speci�cation.

error()

{

static extern int x;

}

� string constant too long

This error message was output by earlier versions of the compiler

when it encountered a string literal which was longer than 255 char-

acters. Now, however, the only limitation on the size of a string

literal is the size of the logical line bu�er. As a result, this error

message should never be output.

� struct/union/enum tag "item-1" not defined yet

This message results from an attempt to declare a structure, union

or enumeration variable before the tag referred to in the declaration

has been declared. It is only possible to declare pointers to structures

and unions which have not yet been de�ned.

error()

{

C Compiler Reference 187

struct x p;

}

� structure of this type has no "item-1" field

The operator `.' has been used to select the named �eld from a

structure but the structure does not contain a �eld with that name.

error()

{

struct coord {float x, y;};

struct coord point;

point.z = 0;

}

� switch expression must have integer type

The expression used to select a particular case in a switch statement

must yield an integer value.

error()

{

float x;

switch (x) {

case 1 : x = 0;

}

}

� syntax error in compiler-control (#) line

This message is generated when part of a compiler control line can-

not be understood. The error could be caused by terminating an

#include control line with a semicolon.

error()

{

#include <fred>;

}

188 Chapter 9

� too many initializers for object of type "item-1"

This message indicates that a declaration has included an initializa-

tion which contains more items than the object being initialized.

static float n = {1,2}; /* n can only take 1 value not 2 */

error()

{

}

� too many macro parameters

The compiler currently limits the number of parameters in any macro

to 32. This fatal error message indicates that the limit has been

exceeded.

error()

{

#define silly(P1,P2,P3,P4,P5,P6,P7,P8,P9,\

P10,P11,P12,P13,P14,P15,P16,P17,P18,\

P19,P20,P21,P22,P23,P24,P25,P26,P27,\

P28,P29,P30,P31,P32,P33) 0

}

� too many names

The program has used so many identi�ers that the compiler's dic-

tionary has become full leaving no space for new identi�ers. It may

be possible to solve the problem by replacing some long identi�ers

with shorter ones or by splitting the �le being compiled into two or

more �les which can be compiled separately.

If neither of these alternatives works it will be necessary to compile

the �le on a system with more memory.

It is not feasible to give a program which demonstrates this error!

� too many nested #include files

This message results from an attempt to include a �le which needs

a �le to be included which needs a �le to be included and so on

C Compiler Reference 189

to the limit of the compiler's ability to open �les (currently eight

include �les open at once). One possible cause of this would be a �le

attempting to include itself! Remedial action is to reduce the depth

of include �le nesting, perhaps by textual substitution of one of the

more deeply-nested �les.

It is not feasible to give a simple example of a program which would

generate this fault.

� type "item-1" may not be "unsigned"

The keyword unsigned may only be applied to a restricted selection

of type verbs. In particular, float and double may not be speci�ed

as unsigned.

error()

{

unsigned int a; /* right */

unsigned short b; /* right */

unsigned char c; /* right */

unsigned float d; /* wrong */

unsigned double e; /* wrong */

}

� type "item-1" not allowed

This message is the result of attempting to declare an array of objects

which cannot be combined into arrays, functions for example.

error()

{

static int *x[12]();

}

� type of actual argument item-1, "item-2", does not match

prototype, "item-3"

This warning message indicates that the type of the item-1 th actual

argument in a function call does not match the type of the corre-

sponding formal parameter as given in a prototype for the function

190 Chapter 9

which is in scope at the point of call. Item-2 is the type of the actual

argument, item-3 is the type of the formal parameter.

In the example below, the compiler will warn of the attempt to pass

a character string literal, of type (char *), as an actual argument

where the function prototype requires an int.

warning()

{

void f(int);

f("wrong");

}

Note that the ANSI type checking rules applied by the compiler to

arguments where a function prototype is in scope are stricter than

the rules applied other contexts, like assignments. In particular,

pointers and integers, and di�erent pointer types, cannot be mixed

so freely.

� "item-1": type of parameter item-2, "item-3", does not

match prototype, "item-4"

This warning message indicates a mismatch between the type of a

parameter in the declaration of a function item-1 and the prototype

given for that parameter in some previous declaration of the same

function.

Item-2 is the number of the parameter which did not match; the

leftmost parameter in the declaration is parameter one. Item-3 is the

declared parameter type in the function declaration being processed;

item-4 is the conicting parameter type in the previous declaration

of the function.

For example:

void fun1(int);

void fun1(double);

Here, the compiler will warn that in the second declaration of fun1

the type of parameter one, \double", does not match the prototype,

\int", given in the �rst declaration.

C Compiler Reference 191

� type of return expression (item-1) incompatible with type

of "item-2" (item-3)

The type of the expression in a return statement is incompatible

with the type of the enclosing function. Item-1 is the type of the

expression, item-2 is the identi�er of the function, and item-3 is its

type. The example below is incorrect because x is a struct and

cannot be returned as the result of an int function.

int error()

{

struct { int a, b; } x;

x.a = 0; x.b = 17;

return x;

}

� unary "item-1" may not have an operand of type "item-2"

This message indicates that the given unary operator has been ap-

plied to an operand of the given type when such an operation is not

permitted.

error()

{

float f;

f = ~f; /* logical negation only applies to integers */

}

� union type objects may not be initialized

This message indicates that an attempt has been made to initialise

an object which is a union.

union x {int p; float q;};

union x thing = 12;

� unexpected colon in statement context

This message is issued when a colon is found in an unexpected posi-

tion. One reason for this error is accidentally typing a colon at the

192 Chapter 9

end of a statement rather than a semicolon.

error()

{

int x;

x = 0:

}

� unexpected end of file

This message results from the compiler reaching the end of the source

�le when it was expecting more input.

error()

{

int i;

i = 5;

� unimplemented feature item-1

The program contains a feature which is correct C but which has

not been implemented in the version of the compiler being used.

The only remedial action is to recast the indicated section of the

program in a di�erent form.

This message was issued by previous versions of Parallel C. The

current version of the compiler should not generate this message.

� unknown size

This messages indicates that a statement requires the size of an

object to be known while that statement is being compiled but the

actual size cannot be determined.

error()

{

int x;

x = sizeof(void);

}

C Compiler Reference 193

� value out of range

This message indicates that an initializing value is outside the range

of values that can be stored in the bit-�eld being initialized.

error()

{

static struct {int i:3; } x = {255};

}

� void arguments not allowed

In a function call, void actual arguments are explicitly prohibited,

for example:

error()

{

f((void)0);

}

9.9.3.2 System Errors

This section gives a list of the error messages that may be generated

during compilation as a result of the interaction between the compiler

and the operating system. These messages give information about

errors associated with the compilation process itself and are inde-

pendent of the C language and the general form of source programs.

All of these messages are introduced by the phrase: \Fatal Error --"

and result in the termination of the compilation.

� cannot open #include file "�lename"

An #include compiler control line has referenced a �le which cannot

be accessed. Check that the �lename has been spelled correctly and

that it exists in the relevant directory

Note that the �lename given in the error message is the full path

and name of the �nal �le the compiler attempted to access; forms of

194 Chapter 9

#include which require the compiler to search two or more directo-

ries will not necessarily report the same �lename string as speci�ed

by the programmer.

� /D and/or /U switches are too long

As the compiler scans any /D or /U switches typed by the user, it

converts them into #define and #undef compiler control lines, and

stores them in an internal bu�er. If this bu�er is �lled up, the

compiler reports this error. In practice, it is almost impossible to

make this happen.

� expecting patch size: /switch

After a /PC switch, the compiler expects to �nd a decimal integer

parameter. This error is reported if no such parameter is supplied.

� more than one source file specified

The compiler will only compile one source �le per run. Source �le

names on the command line are distinguished from switches by the

fact that they do not start with a /. A common cause of this error

is to type, for example:

C>t8c cats /fo dogs.bin

instead of:

C>t8c cats /fodogs.bin

There must not be a space before dogs.bin if it is to be regarded as

a parameter of the /fo switch.

� range for patch size is 1 to 8 bytes

The message indicates that the /PCn compilation option has been

speci�ed with an invalid value for the displacement value `n' . Refer

to section 9.4.4.1 for a discussion of this option.

C Compiler Reference 195

� : : : reason : : : ; please submit a CSR

This message indicates a fault in the compiler itself. In some cases

the reason may give a clue to a possible avoidance procedure but

in all cases such messages should by reported to 3L by means of a

Customer Software Report (CSR).

If any other error messages have been generated before this fatal

error message it is possible that a previous error has confused the

compiler. Correcting the other errors may remove the cause of this

message.

� target must be /T4 or /T8 only: /switch

This error is caused by using a switch like /T3, for example.

� target processor already specified: /switch

This could be caused by typing either of the following:

C>tc/t4/t8 cats

C>t4c/t8 cats

or similar things. Each would ag the /T8 switch as an error; the

�rst, because a /T4 switch has already been given, and the second

because the t4c command implicitly speci�es the T4 as the target

processor.

� unable to open �lename as listing file

The compiler was unable to open the named �le for output. This

might be caused, for example, by using an erroneous �lename:

C>t8c cats/fl99:zot

� unable to open �lename as source file

The given �lename has been speci�ed in the command which invoked

the compiler but such a �le cannot be accessed. Check that the

�lename has been spelled correctly and that it exists in the relevant

directory.

196 Chapter 9

� unknown switch /switch

The sequence of characters /switch was not recognised by the com-

piler as a valid switch.

9.9.3.3 Code Generator Errors

Once the syntactic and semantic phases of compilation have been

completed the compiler attempts to generate transputer instructions

for the program.

During this phase of compilation the compiler does not have access

to the source program and so error messages cannot include the

o�ending statement but simply give its line number.

� *attempt to access a word at an unaligned address at

line number

This message is issued when the program attempts to load or store

a word-sized object (for example, an integer) at an address which is

not aligned on a word boundary. On the T2, a word contains two

bytes, and this message will be given for any attempt to access a

word at an odd-numbered address. On the T4 and T8, a word may

only be accessed at an address which is divisible by four.

error()

{

char buffer[20];

*(int *)(buffer+7) = 200;

}

If this error occurs, processing of the program continues, so that

further errors can be detected, but no output �le is generated.

� Error: byte initialization too complex at line number

This message is issued when the initialization of a byte-sized object

(char) has speci�ed a value which cannot �t into a byte. Note that

C Compiler Reference 197

in Parallel C the range of values held in a byte-sized variable is 0 to

255 for a char and �128 to +127 for a signed char.

error()

{

static char c = 1000;

}

This is treated as a fatal error.

� Error: shift out of range at line number

This message is issued when the compiler tries to fold a constant

expression and discovers that the right-hand operand of a \<<" or

\>>" operator is outside the allowed range, which is 0 to 32 for the

T4 and T8, and 0 to 16 for the T2.

error()

{

int x;

x = 7<<50;

}

This is treated as a fatal error.

� Error: initialization too complex at line number

error()

{

static int i;

static int j = i;

}

This is treated as a fatal error.

� Error: Zero divide at line number

This message is issued when the compiler tries to fold a constant

expression and discovers that the divisor is zero.

error()

198 Chapter 9

{

int x,y;

x = 1/0;

}

This is treated as a fatal error.

� Warning: integer constant truncated to 16 bits at line

number

This message is output during a compilation for the T2, if the mag-

nitude of an integer constant is larger than 65535.

error()

{

int i;

i = 65535; /* no warning */

i = -65535; /* no warning */

i = 65536; /* warning */

i = -65536; /* warning */

}

This is not treated as an error; the constant is truncated, and com-

pilation continues.

9.9.4 Errors in Assembler Language

This section deals with a number of special errors which may occur

in assembler language. Other errors may occur in assembler lan-

guage, and these are reported and dealt with in the usual way. The

distinguishing mark of the errors dealt with in this section is that

they are recognised at a relatively late point in the compilation. For

this reason, although they are reported on the display, they are not

output to the listing �le. In order to save messages resulting from

these errors, the output to the display must be redirected into a �le,

like this:

C>t8c errprog/fl > errprog.err

C Compiler Reference 199

In this example, the listing, with any ordinary errors would be placed

in errprog.lis as usual. Assembler error reports of this kind would

be placed in errprog.err.

These error messages have the following format:

*opcode: message at line ln in file fn

opcode is replaced by the intruction mnemonic or pseudo-op coded

on the line where the error happened. ln speci�es the source line

number. The �le speci�cation is omitted unless the error happened

in an #include �le, in which case fn is the �lename in question.

In the descriptions below, only the message �eld is mentioned.

� constant expected after "-"

This error would be reported for code like the following:

asm {

ldc -foo;

}

Only a numeric constant is valid after the `-'.

� operand form

This error will be reported when an opcode which cannot have a

symbolic operand is given one. For example:

int foo;

asm {

ldnlp foo;

}

ldnlp is not one of the opcodes allowed to have a symbolic operand.

� constant expected

This error report occurs with the byte pseudo-op. For example:

int foo;

200 Chapter 9

asm {

byte foo;

}

The byte pseudo-op must be followed by a constant.

� operand type wrong

This is reported when an opcode which is allowed to be followed by

a symbolic operand is in fact followed by a label:

foo:

asm {

ldl foo;

}

� external operand not allowed

This error is reported when an opcode which is allowed to be followed

by a symbolic operand is followed by an identi�er with storage class

extern which is not allocated storage by the declaration currently

in scope.

extern int foo;

asm {

ldl foo;

}

� label required

This error may be reported for the j and cj opcodes. If these are

followed by a symbolic operand, it must be an identi�er de�ned as

a label.

int foo;

asm {

j foo;

}

C Compiler Reference 201

� unknown opcode

This error is reported for assembler statements whose opcodes do

not appear in the list in appendix E.

asm {

foo 123;

}

� syntax error

This error is reported when the format of the assembler statement

is so peculiar that the compiler cannot understand it at all.

int foo;

asm {

ldc 123 foo;

}

202 Chapter 9

Chapter 10

The C Run-Time Library

10.1 Introduction

10.1.1 Purpose of the Run-Time Library

The Parallel C run-time library is a collection of compiled func-

tions which perform commonly-used operations not included in the

C language itself: reading and writing data, and evaluation of math-

ematical functions like sin and cos are the most obvious instances.

The functions in the Parallel C run-time library fall into these cate-

gories.

ANSI functions are de�ned in the ANSI standard[3], chapter 4;

Parallel functions are required to support the special facilities of

the transputer: channel communications, thread control, etc.;

Compatibility functions are included for compatibility purposes

only, whether with earlier versions of Parallel C or with other

C language environments.

204 Chapter 10

ANSI functions and parallel functions are grouped by function (I/O,

string handling, etc) and discussed in general in this chapter. In

chapter 11 they are listed alphabetically and discussed in detail.

The compatibility functions are discussed separately in appendix F.

10.1.2 Versions of the Run-Time Library

The three processor types supported by Parallel C each have separate

run-time libraries. The linker will detect and prohibit an attempt to

link a program with the wrong version of the run-time library.

The T4 and T8 libraries each exist in two versions.

� The Full library contains all the functions listed in this chapter

and in appendix F. To make use of the full run-time library, a

program must communicate with the afserver, either directly

or through the �le-service multiplexer (see chapter 6).

� The Stand-alone library excludes all those functions which re-

quire the support of the afserver. Programs with no direct or

indirect connection to the afserver must be linked with this

variety of the run-time library. The functions it contains are

marked in chapter 11 and in appendix F.

Only a stand-alone library is provided for the T2.

The stand-alone library contains only essential initialisation code,

and the only I/O functions provided are those which use the trans-

puter's channel communication facility directly; see section 10.5 be-

low. This means that a program linked with the stand-alone library

cannot use standard I/O functions like printf, or utility functions

like exit.

The user-written function main is called by the stand-alone library

with exactly the same arguments as shown in section 9.2. However,

no command-line arguments are passed to the program, and as a

The C Run-Time Library 205

result argc is always 1, argv[0] is always "", and argv[1] is always

NULL.

The versions of the run-time library have the following names.

Full library Stand-alone library

T2 none sacrtlt2.bin

T4 crtlt4.bin sacrtlt4.bin

T8 crtlt8.bin sacrtlt8.bin

10.1.3 Conventions

This section describes how to use standard header �les in calling

library functions and how to interpret the notation used in chapter 11

to specify the number and types of arguments they require.

Run-time library functions are used in exactly the same way as user-

de�ned functions (most are in fact just normal C functions anyway).

To use a library function, a program must �rst declare the name

of the function to be used, and indicate that it is external to the

program (storage class extern).

So that the declarations of library functions in user programs are al-

ways correct, standardised header �les are provided with the system

for each group of library functions. Every function in the library is

associated with exactly one of these header �les. The programmer

uses the C #include statement to access the contents of the header

�le before making use of any of the functions declared there. As

well as containing the required function declarations, the header �le

will include declarations for any special data types required by its

functions and de�nitions of various related macros.

For example, consider the standard I/O functions. These are de-

clared in the header �le stdio.h. Before the �rst use of any of the

standard I/O functions, a program must contain the statement:

#include <stdio.h>

206 Chapter 10

This declares all of the standard I/O functions like printf and

getc as well as de�ning the macros EOF and NULL which are used

in communication between the I/O functions and user programs.

Programs should always use the header �les provided with the com-

piler rather than attempting to provide their own declarations for

library functions since the declarations of some functions will di�er

from the obvious declaration implied by the function synopses in

chapter 11.

The function synopses indicate how to call library functions. In-

formation about required argument types and function result types

is presented in the form of a C function declaration pre�xed by

#include statements which indicate which header �les, if any, must

be used in order to access the function. For example, the synopsis

for the fgets function looks like this:

#include <stdio.h>

char *fgets(char *str, int n, FILE *stream);

This means that fgets returns a result of type (char *) and has

three arguments of types (char *), int and FILE *, where FILE

is a data type declared in the header �le stdio.h. Similarly, the

synopsis for the printf function looks like this:

#include <stdio.h>

int printf(const char *format, ...);

The synopsis shows that printf's �rst argument must be a character

pointer, and that it is optionally followed by further arguments. The

additional arguments and their allowed types are discussed in the

text.

10.1.4 Header Files

The following ANSI header �les are supplied with the compiler.

They are normally held in the compiler's installation directory (see

chapter 1), which by default is \tc2v2.

The C Run-Time Library 207

assert.h locale.h stddef.h

ctype.h math.h stdio.h

errno.h setjmp.h stdlib.h

float.h signal.h string.h

limits.h stdarg.h time.h

In addition, the parallel functions of Parallel C are supported by the

following header �les, which are also held in the installation directory.

alt.h net.h serv.h

boot.h par.h thread.h

chan.h sema.h timer.h

dos.h

The following additional header �les, which support certain compat-

ibility functions, are discussed in appendix F.

ascii.h chanio.h varargs.h

The ANSI and parallel functions are described in the following sec-

tions which are arranged alphabetically by the names of the header

�les. The remainder of this section discusses the contents of four

header �les which for the most part contain only macro and type

de�nitions.

10.1.5 Errors <errno.h>

This header contains de�nitions of macros which relate to the re-

porting of error conditions. In addition, it provides access to errno;

users are advised not to access errno via a declaration of their own,

as in future versions it may not simply be the identi�er of an object.

208 Chapter 10

10.1.6 Limits <float.h> and <limits.h>

These headers de�ne a number of macros specifying the limits and

characteristics of numeric types. Details may be found in section

2.2.4.2 of the ANSI standard. Note that some of these have di�erent

values depending on the processor type and the compiler's command-

line switches.

10.1.7 Common De�nitions <stddef.h>

This header contains de�nitions of the following types and macros.

NULL the null pointer constant

offsetof return the o�set of a structure member from the start

of the structure

ptrdiff_t the type of the result of subtracting two pointers

size_t the type of the result of sizeof and offsetof

wchar_t the type of a wide character: see sections 10.18.7 and

10.18.8 below

NULL and offsetof will be discussed further in chapter 11.

10.2 Alt Package <alt.h>

The alt functions allow a program to input from whichever of a

group of channels becomes ready �rst. There are two sets of func-

tions. The nowait set returns a status value if none of the speci�ed

channels is ready to communicate. The others wait until a channel

becomes ready. There are two ways to specify which channels are

to be tested. The _vec functions use an array of pointers to the

channels, the others use a variable-length argument list of pointers

to channels.

The C Run-Time Library 209

alt_nowait is any one of a list of channels trying to send?

alt_nowait_vec is any one of an array of channels trying to send?

alt_wait await input from any one of a list of channels

alt_wait_vec await input from any one of an array of channels

10.3 Diagnostics <assert.h>

This header �le de�nes the assertmacro which assists the program-

mer in putting run-time diagnostics in a program.

assert program debugging function

10.4 Neighbouring Transputers <boot.h>

When a transputer is reset, and before it is booted, it executes special

\peek and poke" �rmware. When it is in this state, a neighbouring

transputer can inspect or alter the contents of its memory by using

the functions de�ned in this header �le.

boot_peek peek at memory of neighbouring transputer

boot_poke poke into memory of neighbouring transputer

10.5 Channels <chan.h>

The functions described here allow programs to access the trans-

puter's basic communication facility, which is to transfer a message

across a channel. The header �le <chan.h> de�nes the following:

� a type CHAN representing the channel data type

210 Chapter 10

� (CHAN *) literals for the input and output channels for each

of the four Inmos links attached to the transputer

� a (CHAN *) literal for the channel associated with the trans-

puter's external event mechanism

� a CHAN literal for initialising channels to their inactive state

� procedures to initialise and reset channels

� procedures to send and receive communications across chan-

nels, with variants to wait until the communication occurs or

to fail after some timeout interval.

The literals de�ned by <chan.h> are as follows; note that these

literals are not entered in the alphabetical list of library entry points.

Link0Input input channel associated with link 0

Link0Output output channel associated with link 0

Link1Input input channel associated with link 1

Link1Output output channel associated with link 1

Link2Input input channel associated with link 2

Link2Output output channel associated with link 2

Link3Input input channel associated with link 3

Link3Output output channel associated with link 3

EventReq channel associated with external events

NotProcess_P value to which channel words are initialised, and

to which channel words return after communications

using them have �nished. Comparing the contents

of a channel word with this value provides a test for

whether a thread is currently attempting to commu-

nicate over the channel.

The C Run-Time Library 211

The functions provided in the \chan" package are as follows:

chan_init initialise a channel word

chan_reset resets a channel, along with any link hardware asso-

ciated with it

chan_in_byte input a byte from a channel

chan_in_byte_t as above, with timeout

chan_in_word input a word from a channel

chan_in_word_t as above, with timeout

chan_in_message input a message from a channel

chan_in_message_t as above, with timeout

chan_out_byte output a byte to a channel

chan_out_byte_t as above, with timeout

chan_out_word output a word to a channel

chan_out_word_t as above, with timeout

chan_out_message output a message to a channel

chan_out_message_t as above, with timeout

10.6 Character Handling <ctype.h>

10.6.1 Character Testing Functions

The character testing functions described here are implemented as

macros. They return a nonzero value if their argument meets the

condition being tested and zero otherwise. The argument is a single

integer.

212 Chapter 10

isalnum determines if the argument is alpha-numeric

isalpha determines if the argument is alphabetic

iscntrl determines if the argument is an ASCII control char-

acter

isdigit determines if the argument is a digit

isgraph determines if the argument is a printing character but

not a space

islower determines if the argument is a lowercase letter

isprint determines if the argument is a printing character

ispunct determines if the argument is a punctuation character

isspace determines if the argument is a space, horizontal or

vertical tab, carriage return, form-feed or newline

isupper determines if the argument is an uppercase letter

isxdigit determines if the argument is a hexadecimal digit

character

10.6.2 Character Mapping Functions

tolower converts uppercase characters to lowercase; returns

lowercase characters unchanged

toupper converts lowercase characters to uppercase; returns

uppercase characters unchanged

10.7 Accessing DOS Functions <dos.h>

The functions described here allow a program running on a trans-

puter system which is hosted by an MS-DOS computer to access

The C Run-Time Library 213

the software interrupts, DOS function calls and memory of the host

system. The functions have been modelled after similar functions

provided in native MS-DOS C compilers.

All MS-DOS functions are accessed by sending a set of register values

to the host processor, executing a software interrupt instruction and

�nally receiving a set of modi�ed register values. Thus, to use these

functions a detailed knowledge of register uses and interrupt numbers

for the MS-DOS function you wish to use is required. One source of

this information is the IBM DOS Technical Reference[6].

The header �le de�nes a union type called REGS which de�nes the

register set of the host MS-DOS machine. Most of the functions

described here accept two such union objects as arguments; one for

the register values to be supplied to the interrupt routine and another

to be �lled with the register values after the interrupt has been called.

Each REGS object consists of two structs; one struct WORDREGS x

for the word registers (16-bit on MS-DOS machines) and another

struct BYTEREGS h overlaying this for the equivalent byte-length

registers. This overlaying arises from the fact that in the Intel 80x86

processors used to run MS-DOS, some of the 16-bit registers can also

be accessed as pairs of 8-bit registers. For example, the ax register

can be accessed as a high-order byte ah and a low-order byte al. As

well as the processor registers, a union REGS object also contains a

�eld representing the state of the processor c ag after the interrupt

has been executed.

Although these union and struct data types have been closely

modelled on the equivalent structures available to native MS-DOS

programmers, users should note that the registers in the structures

are in a di�erent order to that conventionally used under MS-DOS,

and there are some extra �elds. This di�erence simpli�es the job

of the C run-time system and should not be visible to programs

unless they initialise static objects of these types. Such programs

would have to be changed to using the correct ordering, which can

be determined from <dos.h>.

The 16-bit 80x86 registers such as ax are represented in these struc-

214 Chapter 10

tures by �elds declared as unsigned short. These will be either 16

or 32 bits wide, depending on whether the /Gs compiler switch is

used. The functions will work correctly in both cases, and programs

which access these data structures should not normally be aware of

the di�erence.

Host Interrupts The functions int86 and int86x call speci�ed

host software interrupts. The : : :x forms of these functions always

have an extra argument which speci�es the contents of the host

segment registers for the call; if the non-x form is used, the segment

registers will not be changed. The function segread is provided to

read the contents of the segment registers so that particular registers

can be changed while leaving the rest with their current values.

The functions intdos and intdosx are shorthand forms of int86

and int86x; they always use host software interrupt number 2116,

which is used for the main DOS function calls.

For the very simplest DOS function calls, the function bdos may be

used; this simply takes a DOS function number and values for the

dx and al registers, and causes the appropriate DOS function to be

executed.

Host Memory Some of the more complex interrupt calls, both

to MS-DOS and to add-on packages like MS-WINDOWS, require

parameters and data blocks to be passed in memory rather than

in registers. The Intel 80x86 architecture uses a 32-bit quantity to

specify an address in memory. The #include �le <dos.h> de�nes a

type called pcpointer (equivalent to long int) to represent these

quantities. The more signi�cant 16 bits of this object are a segment

number, the least signi�cant 16 bits are an o�set from the base of

that segment. These two �elds can be extracted using the C shifting

and masking operations. A pcpointer can be constructed from its

components in the same way.

The C Run-Time Library 215

If a block of memory is required as a parameter to an interrupt call,

it must �rst be acquired from MS-DOS. After use, the memory block

should be returned to MS-DOS so that it may be used again. These

operations can be performed either by the appropriate DOS function

calls (described in the DOS Technical Reference) or by the run-time

library functions alloc86 and free86.

Because the transputer and its host MS-DOS system do not have any

shared memory areas, information destined for a parameter block in

the MS-DOS host cannot be simply written into the block by normal

C assignment operations. Instead, a duplicate of the block is created

as a C structure in the transputer's memory, and a function is then

called to move the contents of the block in the transputer's memory

to its counterpart in the memory of the MS-DOS host. Similarly,

reading information from a block in host memory involves transfer-

ring the block into an identical structure in the transputer's memory

and then accessing the latter. These two operations are performed

by the run-time library functions to86 and from86.

Examples The following program calls MS-DOS function 216 (Dis-

play Output) to display the character `A' on the screen. The argu-

ment is passed in the dx register pair:

#include <dos.h>

main()

{

bdos(0x02, /* function */

'A', /* dx */

0); /* al unused */

}

This more complicated example uses MS-DOS function 916 (Print

String) to print the string \Hello" on the screen. The string to be

printed is written into a block of MS-DOS memory before the call:

#include <dos.h>

main()

{

char *str = "Hello$";

216 Chapter 10

union REGS r;

struct SREGS s;

pcpointer p;

/* allocate host storage and write string */

p = alloc86(strlen(str));

to86(strlen(str), str, p);

/* find current segment register values */

segread(s);

/* set up function call number */

r.h.ah = 0x09;

/* point at string to print */

r.x.dx = p & 0xffff; /* offset into ... */

s.ds = p >> 16; /* segment number */

/* perform the call */

int86x(0x21, /* DOS function call */

&r, /* registers in */

&r, /* registers out */

&s); /* segment registers */

/* free string memory in host */

free86(p);

}

The functions available in dos.h are as follows.

int86 perform host interrupt

int86x perform host interrupt with segment registers

segread read segment registers

intdos perform DOS function

intdosx perform DOS function with segment registers

bdos perform simple BDOS function

alloc86 allocate host memory block

The C Run-Time Library 217

free86 free host memory block

to86 transfer memory block to host

from86 transfer memory block from host

inp read from host I/O port

outp write to host I/O port

10.8 Localisation <locale.h>

The localisation facility of ANSI Cmakes it possible to vary a number

of aspects of the run-time library in order to follow local conventions

regarding the format of numbers, collating sequences when compar-

ing alphanumeric strings, the format of the time and date, and so

on. Currently, Parallel C implements the "C" and "" locales only, as

required by the ANSI standard.

As well as two functions, the header �le de�nes a type, lconv, which

contains �elds relating to the formatting of numbers, and a number

of macros which are used to specify aspects of the locale to change

or query. For details, see section 4.4 of the standard.

localeconv return details of numeric formatting conventions of

the current locale

setlocale change or query all or part of the locale

10.9 Mathematics <math.h>

The mathematical functions calculate various standard mathemati-

cal functions such as logarithms, sines, cosines etc. The header also

de�nes the macro HUGE_VAL as a double expression which is returned

as the result of some of the functions in certain conditions.

218 Chapter 10

10.9.1 Treatment of Error Conditions

Errors are handled by returning impossible or unusual result values

and setting an error code in the external integer variable errno.

10.9.2 Trigonometric Functions

The trigonometric functions operate on angles expressed in radians.

acos returns the arc cosine of the argument

asin returns the arc sine of the argument

atan returns the arc tangent of the radian argument

atan2 returns the arc tangent of the division of the argu-

ments

cos returns the cosine of the radian argument

sin returns a value that is the sine of the radian argument

tan returns the tangent of the argument

10.9.3 Hyperbolic Functions

cosh returns the hyperbolic cosine of the argument

sinh returns a value that is the hyperbolic sine of the ar-

gument

tanh returns the hyperbolic tangent of the argument

10.9.4 Exponential and Logarithmic Functions

exp returns the base e raised to the power of the argument

The C Run-Time Library 219

frexp split a oating-point number into a normalised frac-

tion and an integral power of 2

ldexp multiplies a oating-point number by an integral

power of 2

log returns the natural logarithm of the argument

log10 returns the base-ten logarithm of the argument

modf breaks the argument into integral and fractional parts

10.9.5 Power Functions

pow returns the value of the �rst argument raised to the

power of the second argument

sqrt returns the square root of the argument

10.9.6 Nearest Integer, Absolute Value and Remain-
der Functions

ceil returns the smallest value which is equal to or greater

than the argument

fabs returns the absolute value of the oating point argu-

ment

floor returns the largest integer which is less than or equal

to the argument

fmod calculates the oating-point remainder of the division

of its arguments

220 Chapter 10

10.10 Processor Farm Communications <net.h>

The functions described here allow tasks running under the ood-

�lling con�gurer's network protocol to communicate without know-

ing the exact details of that protocol.

net_broadcast send a message to every worker task

net_send send a message into the network

net_receive receive a message from the network

10.11 Synchronising Access to Run-Time

Library <par.h>

In a program in which many execution threads are active, access to

the C run-time library must be synchronised, so that only one thread

may be performing a library operation at one time. For example,

if two threads attempted to allocate a memory block at the same

time (say, using malloc) then the run-time library's data structures

could become corrupted. The required synchronisation is achieved

by a SEMA variable par_sema de�ned in the header �le <par.h>,

which should be used by any thread wishing to use the C run-time

library and released when it is �nished.

As an alternative, some of the more common functions used in

concurrently executing threads are available in an interlocked form,

which include these semaphore operations.

par_fprintf interlocked version of fprintf

par_free interlocked version of free

par_malloc interlocked version of malloc

par_printf interlocked version of printf

The C Run-Time Library 221

10.12 Semaphores <sema.h>

This group of functions allows a Parallel C program to create and ma-

nipulate semaphores, which can be used to synchronise the activity

of several concurrently executing threads. The header �le <sema.h>

declares a new type SEMA which is used by these functions.

sema_init initialise a semaphore

sema_signal perform the signal operation on a semaphore

sema_signal_n perform sema_signal n times

sema_test_wait check whether waiting on a semaphore would block

sema_wait perform the wait operation on a semaphore

sema_wait_n perform sema_wait n times

10.13 Emulating the filter Task <serv.h>

serv_filter generates Inmos �le protocol �lter threads

10.14 Nonlocal Jumps <setjmp.h>

These functions enable the programmer to save the current context

of the program, and subsequently to return to it. The header de�nes

a type jmp_buf, which is capable of holding all the information

necessary to recreate the context.

longjmp returns to the context saved by setjmp

setjmp saves the context of the calling function for a subse-

quent longjmp call

222 Chapter 10

10.15 Signal Handling <signal.h>

The signal handling package enables the programmer to create traps

for various signals. In the case of Parallel C, these events do not,

however, arise spontaneously, but have to be raised by the appropri-

ate function call.

The header de�nes macros which are used as identi�ers for the signals

which can be raised, and others which de�ne the action to be taken

when a signal is raised; see the synopses in chapter 11.

signal de�ne way in which a signal is to be handled from now

on

raise raise a signal

10.16 Variable Arguments <stdarg.h>

A function whose declaration contains an ellipsis \: : : " may be called

with varying numbers of arguments. The facilities described here

allow such a function to access its arguments.

The header <stdarg.h> de�nes a type va_list. The user function

should declare an object of this type, called the argument pointer,

and scan the variable-length argument list with it, using these func-

tions.

va_start initialise the argument pointer

va_arg �nd the next argument

va_end �nish accessing arguments

The C Run-Time Library 223

10.17 Input/Output <stdio.h>

The standard I/O functions provide a portable I/O interface for

C programs. They are available in the form described here in most

implementations of C. They also provide bu�ering between user pro-

grams and �les or devices. This means that I/O transfers to or from

real �les remain e�cient even if data is transferred between the �le

and the user program in small units (e.g., one byte at a time). On

output, user data is placed in a data bu�er allocated `behind the

scenes' by the standard I/O functions, until the bu�er becomes full,

at which point the contents of the bu�er are written en masse to

the �le. This technique achieves an overall speed-up because disk

devices are optimised for block transfers. The situation for input is

similar.

Other standard I/O functions allow random �le access and conver-

sion of numeric data between internal (binary) and external (char-

acter string) representations.

All of the functions described in this section require the calling pro-

gram to include the header �le stdio.h before they may be called.

Before a user of the standard I/O package can read or write the

data in a �le, a path to the �le must be opened by calling the fopen

function. The name of the �le is passed to fopen, which, if the

�le is accessible, returns a pointer to a structure of type FILE. This

�le pointer must be used by the calling program to refer to the �le

in subsequent I/O operations (fputc, for example, requires a �le

pointer argument to identify the �le which is to be written). The

data type FILE is declared in the header �le stdio.h.

After performing I/O on an open �le, the path to the �le may be

broken by closing the �le. Files should be closed when they are

no longer in use, since some implementations place a limit on the

number of �les which may be open at once. Files may be opened

again after they have been closed. Having more than one path open

to the same �le at any point in a program should be avoided, since

224 Chapter 10

#include <stdio.h> /* standard I/O declarations */

main()

{

FILE *fp; /* file pointer variable */

fp=fopen("fred", /* file name */

"w"); /* open for writing */

fprintf(/* formatted output routine */

fp, /* file pointer (identifies file) */

"Hi!\n" /* text string to be written */

);

fclose(fp); /* disconnect file */

}

Figure 10.1: An example of using fopen and fclose

some implementations may disallow or restrict this. Closing all �les

explicitly at the end of a program is, however, unnecessary; this is

done automatically by the standard I/O system.

Figure 10.1 gives an example where a �le named fred is opened,

some ASCII data is written out to it and the �le is closed. For

clarity, no error checking is performed.

For convenience, three �le pointers are always automatically opened.

These are declared in stdio.h as follows.

FILE *stdin; This is the standard input stream. By default on

most systems, stdin is connected to a terminal keyboard.

FILE *stdout; This is the standard output stream. stdout on

most systems is the display device (VDU or printer) of a ter-

minal.

FILE *stderr; This is the standard error stream, used by programs

for outputting error messages. It too is normally opened on the

terminal output device.

The C Run-Time Library 225

To simplify writing programs which read one sequential input �le,

process it and write another sequential output �le, most implemen-

tations of C provide some means external to a program (e.g., the

command language) to connect at run time �les or devices other

than the default to the standard input and output of a program.

This means that programs may be written and tested using the

terminal for standard input and output, then run unchanged using

�les for input and output, yet the program itself need not open �les.

Section 3.4 describes the mechanism used to rede�ne the standard

I/O streams.

10.17.1 Stream I/O

The model of I/O supported by the standard I/O package is known

as stream I/O .

In the stream I/O model, a �le is considered as a sequence of char

values. A notional �le pointer , maintained by the I/O functions,

indicates the character position within the �le at which the next

character will be read or written. The �le pointer is advanced au-

tomatically as characters are read or written. Random �le access is

supported by allowing user positioning of the �le pointer.

The basic operations provided by the standard I/O package in

support of the stream I/O model are therefore `read a character'

(fgetc), `write a character' (fputc), `reposition �le pointer' (fseek)

and `read �le pointer' (ftell). Other, higher level, operations (e.g.,

write a string) are built up directly from these primitive operations.

Because of this, calls on the character level functions and the higher

level functions may be freely intermixed and characters will still be

transferred in the expected order.

Devices such as terminals are included in the stream I/O model:

characters may be read or written from them as appropriate (in prin-

ciple, one at a time) but positioning operations are not supported.

226 Chapter 10

10.17.2 Binary I/O

The basic units in the above discussion of stream I/O are `characters':

values of type char. These are integers which stand for graphic char-

acter representations in the encoding scheme of the host computer

system (e.g., the ASCII encoding for `A' is 65, in the EBCDIC scheme

used by IBM it is 193). The C I/O system, however, does not require

that the values transferred be valid character representations. In

fact, any binary value which can be represented in a char variable

may be written to a �le (and later read back unaltered). In Parallel C

any value in the range 0 to 255 will �t in a char. Arbitrary binary

data can be stored in �les using the standard I/O system by recording

it as sequences of char values.

By default, Parallel C reads and writes MS-DOS text �les1. On

output, newline (`\n') characters are converted into carriage-return

line-feed sequences, and on input carriage-return line-feed sequences

are converted to single newline characters. If you need to process

binary data without conversion, you must inform the run-time li-

brary that a particular �le is to be processed as a binary �le. This

can be done by using the \binary" speci�er b in a call to fopen (for

example, fopen("x.bin", "rb").)

Files processed or created by redirecting the standard input, output

and error streams are always text �les. You cannot process binary

�les by redirecting standard input and standard output in this way.

10.17.3 Text I/O

Text I/O in C is simply a special case of the binary I/O discussed

above where the values transferred are restricted to the valid char-

acter codes for the host system.

1This default can be changed if desired, although this procedure is not rec-

ommended. For full details, refer to the description of the _fmode variable on

page 460.

The C Run-Time Library 227

Human-readable text �les are divided into lines. Line-breaks are

represented in the stream I/O model by the newline character, `\n'.

On output, newline characters may be included at arbitrary points in

the text. On input, programs detect the end of a line by comparing

characters being read with the value `\n'.

10.17.4 Operations on Files

remove removes a �le from the �le system

rename renames a �le

tmpfile create temporary binary �le

tmpnam generate unique �lename

10.17.5 File Access Functions

fclose closes a �le

fflush writes out any bu�ered information to the �le

fopen opens a �le

freopen reassigns the address of a FILE structure and reopens

the �le

setbuf associates a bu�er with an input or output �le

setvbuf determines how stream will be bu�ered

10.17.6 Formatted Input/Output Functions

fprintf performs formatted output to a speci�ed �le

fscanf performs formatted input from a �le

228 Chapter 10

printf performs formatted output to the standard output

device

scanf performs formatted input from the standard input de-

vice

sprintf performs formatted output to a character string in

memory

sscanf performs formatted input from memory

vfprintf similar to fprintf, but with a single argument instead

of a list of arguments

vprintf similar to printf, but with a single argument instead

of a list of arguments

vsprintf similar to sprintf, but with a single argument instead

of a list of arguments

10.17.7 Character Input/Output Functions

fgetc returns the next character from a �le; generates a true

function call

fgets reads a line from a �le; the line is terminated by a

NUL character

fputc writes a single character to a �le; generates a true

function call

fputs writes a string to a �le

getc returns the next character from a �le; implemented as

a macro

getchar returns the next character from the standard input

device

The C Run-Time Library 229

gets reads a line from the standard input device; the new-

line is replaced with a NUL character

putc writes a single character to a �le; implemented as a

macro

putchar writes a single character to the standard output device

puts writes a string to the standard output device; termi-

nates the string with a newline

ungetc writes a character to a �le bu�er and leaves the �le

positioned before the character

10.17.8 Direct Input/Output Functions

fread reads a speci�ed number of items from the �le

fwrite writes the speci�ed number of items to a �le

10.17.9 File Positioning Functions

fgetpos store value of �le position indicator

fseek places the �le pointer at a speci�ed byte o�set relative

to the beginning of the �le, the end of the �le or the

current location in the �le

fsetpos set �le position indicator

ftell returns the current byte o�set from the beginning of

the �le to the current location within the �le

rewind places you at the beginning of the �le

230 Chapter 10

10.17.10 Error Handling Functions

clearerr resets the error and end of �le indicators

feof tests for end-of-�le

ferror returns a nonzero integer if an error occurs during read

or write operations

perror writes (to stderr) the most recent error encountered

10.18 General Utilities <stdlib.h>

10.18.1 String Conversion Functions

atof converts an ASCII string to a double value

atoi converts an ASCII string to a int value

atol converts an ASCII string to a long value

strtod converts an ASCII string to a double value

strtol converts an ASCII string to a long int value

strtoul converts an ASCII string to an unsigned long int

value

10.18.2 Pseudo-Random Sequence Generation Func-
tions

rand pseudo-random number generator

srand change seed for rand

The C Run-Time Library 231

10.18.3 Memory Management Functions

Building complex dynamically changing data structures requires a

di�erent class of storage from static or extern variables (which

must be preallocated by the programmer when a program is writ-

ten and are therefore not exible enough) and auto or register

variables (which disappear when the procedure which created them

returns; some dynamic data structures must be operated on by many

procedures).

This extra storage class is generally referred to as heap storage (see

section 3.5). In C, heap storage is allocated by calling a library

function and remains allocated until it is explicitly released by calling

free.

calloc allocates and clears an area of memory

free deallocates allocated space

malloc allocates the speci�ed number of contiguous bytes of

memory

realloc changes the size of an allocated area

10.18.4 Communication with the Environment

abort abnormal program termination (unless trapped)

atexit set exit handler function

exit stop program

getenv access environment variables

system execute operating system command string

232 Chapter 10

10.18.5 Searching and Sorting Utilities

bsearch performs a binary search of an array

qsort sorts an array

10.18.6 Integer Arithmetic Functions

abs returns the absolute value of the integer argument

div compute quotient and remainder of an integer division

labs returns the absolute value of the long int argument

ldiv compute quotient and remainder of a long int divi-

sion

10.18.7 Multibyte Character Functions

In the present version of Parallel C, each multibyte character is one

byte in length. The same applies to wide characters.

mblen returns width of a multibyte character

mbtowc convert a multibyte character to a wide character

wctomb convert wide character to multibyte character

10.18.8 Multibyte String Functions

In the present version of Parallel C, multibyte strings and wide

character strings both consist of a sequence of one-byte characters.

mbstowcs convert multibyte string to wide character string

wcstombs convert wide character string to multibyte string

The C Run-Time Library 233

10.19 String Handling <string.h>

The C language itself allows the manipulation of single charac-

ters. Library functions are provided to allow C programs to process

variable-length strings of characters.

This header includes a de�nition of the macro NULL and of the type

size_t.

10.19.1 Copying Functions

memcpy copies a given number of bytes from one memory lo-

cation to another; unde�ned for overlapping blocks

memmove \safe" block move

strcpy copies one string to another

strncpy copies a maximum number of characters from one

string to another

10.19.2 Concatenation Functions

strcat concatenates two strings

strncat concatenates two strings up to a maximum number of

characters

10.19.3 Comparison Functions

memcmp compare two blocks of memory

strcmp performs lexicographic comparison of two ASCII strings

strcoll compare strings using collating sequence of current

locale

234 Chapter 10

strncmp performs lexicographic comparison of two ASCII strings

(up to a maximum number of characters)

strxfrm transform string using collating sequence of current

locale

10.19.4 Search Functions

memchr locate character in block of memory

strchr �nds a speci�ed character in a string

strcspn returns the length of the initial part of a string which

does not contain speci�ed characters

strpbrk locate �rst character from character set

strrchr �nd last copy of speci�ed character in string

strspn returns the length of the initial part of a string which

contains speci�ed characters

strstr locate substring within string

strtok returns a pointer to the �rst character of a token

10.19.5 Miscellaneous Functions

memset overwrites each byte of an object with a given charac-

ter code

strerror maps errno codes to strings

strlen returns the length of a string

The C Run-Time Library 235

10.20 Threads <thread.h>

The functions in this section allow a Parallel C program to create

new threads of execution within a single task.

Every thread executing on a transputer has a priority, which is either

\urgent" or \not urgent" The header �le <thread.h> de�nes the

literals THREAD_URGENT and THREAD_NOTURG to represent this.

thread_start general thread-starting facility

thread_create simpler shorthand version of thread_start

thread_priority returns current thread's priority

thread_deschedule make current thread momentarily unable to

execute

thread_restart restart a thread given a workspace pointer

thread_stop stop the current thread

10.21 Date and Time <time.h>

The following functions return information about the time.

clock returns processor time used

time returns the current calendar time

Note that the ANSI functions difftime, mktime, asctime, ctime,

gmtime, localtime and strftime are not yet implemented in Par-

allel C.

See also section 10.22 for functions associated with the transputer's

internal timers.

236 Chapter 10

10.22 Transputer Timers <timer.h>

Each transputer associates a hardware timer with the group of

threads executing at a particular priority. The timer associated

with high-priority threads has a resolution of 1�s, so that it ticks

one million times per second. The timer for low priority threads has

a resolution of 64�s and ticks 15625 times a second. The following

functions allow threads to manipulate the timer associated with the

priority at which they are executing.

timer_after indicates whether one time value is later than another

timer_delay wait at least a speci�ed number of ticks

timer_now returns the current timer value

timer_wait wait until current timer reaches some value

Chapter 11

Alphabetic List of

Run-time Library Entries

This chapter describes Parallel C's implementation of the ANSI

C run-time library functions, as described in chapter 4 of the

standard[3], and the functions supplied by 3L to support the special

facilities of the transputer. The functions are arranged in alphabet-

ical order; note that non-letters such as digits or `_' are regarded

as being \before" the alphabet. Thus, a function a_a would appear

before aaa, and functions whose names begin with `_' appear at the

start of the list.

This chapter does not describe functions which are included in the

library only to maintain compatibility with earlier versions of Parallel

C or other implementations of C. These are discussed in appendix F.

MACRO indicates a function which is implemented as a macro, and

so may not be rede�ned.

INLINE indicates a function which is a candidate for inlining. By

\inlining" is meant a technique whereby a call to the function results

in the code for that function being included in the program at that

point. Inlining will not be done if the compiler's /GI switch is used,

238 Chapter 11

or if the function is used as a procedure parameter; nor will it be

done, except in certain limited ways, if the appropriate header is not

included.

SA indicates a function which is available as part of both the stan-

dard (crtltx.bin) and the stand-alone (sacrtltx.bin) libraries,

and may thus be used from within a stand-alone task. Functions

without the SA mark may only be used within tasks linked with

the standard library (crtltx.bin).

T2 indicates a functionwhich is present in the T2 library, sacrtlt2.bin.

DOS indicates a function which is speci�c to the DOS operating sys-

tem, or (when used at the start of a paragraph) indicates a paragraph

of special interest to users of that operating system.

NEW indicates a library entry which is new with this release of

Parallel C.

NUL is used here to indicate a character value of zero, such as used

to terminate character strings. NULL, de�ned in <stddef.h> and

several other headers, represents a generic \null pointer" value.

_filer_handle return server stream id of �le descriptor

int _filer_handle(int fd, int *streamid);

fd must be a �le descriptor as returned by open, creat or fileno.

If it is not, _filer_handle returns 0 to indicate an error.

If fd is a valid �le descriptor, _filer_handle returns a non-zero

value to indicate success, and modi�es the value of the int pointed

to by streamid to be the afserver stream id on which the �le

is open. Note that an afserver \stream id" is di�erent from the

underlying DOS �le handle.

_filer_handle is not de�ned in a header �le.

Alphabetic List of Run-time Library Entries 239

abort NEW abnormal program termination

#include <stdlib.h>

void abort(void);

abort raises the signal SIGABRT. If this returns (that is, if no signal

handler has been nominated for SIGABRT by a call to signal) the

program is terminated, and the MS-DOS status is set to 1. Before

termination, all functions registered by atexit will be called, and

all the task's �les will be closed.

abs INLINE SA T2 integer absolute value

#include <stdlib.h>

int abs(int arg);

abs returns the absolute value of its integer operand. The result

returned by abs is not de�ned if arg is the largest negative integer.

acos SA calculates the arc cosine of its argument

#include <math.h>

double acos(double x);

acos returns the arc cosine in the range [0; �]. If x is outside the

range [� 1;+1], the value HUGE_VAL is returned, and errno is set to

the value EDOM.

alloc86 DOS allocate host memory

#include <dos.h>

pcpointer alloc86(int n);

This function allocates a block of at least n bytes in the base memory

of the MS-DOS host computer and returns a pointer to it. If the

240 Chapter 11

memory cannot be allocated, a null pcpointer is returned. The

allocated memory cannot be accessed directly by the transputer

program; rather, data can be moved between the transputer system

and the host by means of the functions to86 and from86.

Note that the Intel 80x86 architecture limits the amount of mem-

ory which can be contained in a single segment to 65536 (1000016)

bytes. DOS permits allocation of more than this amount of

memory using alloc86|always assuming that enough is free|

but care must be taken in accessing locations past the �rst

1000016 bytes of the allocated block. For example, the result of

alloc86(0x20000) (allocate 128KB of host memory) might be the

value (pcpointer)(0x1F300000). This is not a physical location

in the host, but a combination of a segment value (1F3016) and

an o�set (000016) from that segment. The corresponding physical

address is 1F30016. The physical location o�set 64KB from here is

physical address 2F30016, which might be expressed with a segment

value of 2F3016 and an o�set of 000016, although there are other

possibilities. The corresponding pcpointer value is 0x2F300000,

which is quite di�erent from the value obtained by directly adding

64KB to the original pcpointer value. Thus, pcpointer address

manipulation must always be performed by �rst reducing to the

appropriate physical address.

alt_nowait SA T2 is any one of a list of channels trying to send?

#include <alt.h>

int alt_nowait(int n, ...);

Use alt_nowait to �nd out which, if any, of a set of channels is

ready to communicate.

The parameter n is followed by a series of CHAN * arguments chan0,

chan1, : : : , which are pointers to the channels to be tested. n is the

number of channels to be tested; it must match the actual number

of channel pointers passed. For example: alt_nowait(2, c0, c1);

Alphabetic List of Run-time Library Entries 241

If a negative value is returned, no process was attempting to send a

message on any of the channels tested.

Otherwise, the returned value will be in the range 0: : : n � 1, indi-

cating which channel (chan0, chan1, : : :) is ready to communicate.

If more than one channel is simultaneously ready to communicate,

one will be arbitrarily chosen.

alt_nowait_vec SA T2 is any one of a group of channels trying to

send?

#include <alt.h>

int alt_nowait_vec(int n, CHAN *channels[]);

Use alt_nowait_vec to �nd out which, if any, of a set of channels

is ready to communicate.

The elements of the array channels are pointers to the channels to

be tested. n is the number of elements in the array. Note that the

channels themselves need not be in an array.

If a negative value is returned, no process was attempting to send a

message on any of the channels tested.

Otherwise, the returned value will be in the range 0: : : n � 1; it is

then an index into the channels array indicating which channel is

ready to communicate. If more than one channel is simultaneously

ready to communicate, one will be arbitrarily chosen.

alt_wait SA T2 await input from any of a list of channels

#include <alt.h>

int alt_wait(int n, ...);

Use alt_wait to block execution of the calling thread until any one

of a set of channels becomes ready to communicate. No processor

242 Chapter 11

time is consumed while waiting, so alt_wait is to be preferred over

a \busy wait" loop which repeatedly calls alt_nowait.

The parameter n is followed by a series of CHAN * arguments chan0,

chan1, : : : , which are pointers to the channels. n is the number

of channels; it must match the actual number of channel pointers

passed. For example: alt_wait(2, c0, c1);

alt_wait will only return when one or more of the speci�ed channels

becomes ready to communicate. If no communication is attempted

on any of these channels, it may never return.

If it does return, the returned value will be in the range 0: : : n�1, in-
dicating which channel (chan0, chan1,: : :) is ready to communicate.

If more than one channel is simultaneously ready to communicate,

one will be arbitrarily chosen.

alt_wait_vec SA T2 await input from any of a group of channels

#include <alt.h>

int alt_wait_vec(int n, CHAN *channels[]);

Use alt_wait_vec to block execution of the calling thread until

any one of a group of channels becomes ready to communicate.

No processor time is consumed while waiting, so alt_wait_vec

is to be preferred over a \busy wait" loop which repeatedly calls

alt_nowait_vec.

channels is an array of pointers to the channels. n is the number of

elements in the array. Note that the channels themselves need not

be in an array.

alt_wait_vec will only return when one or more of the speci�ed

channels becomes ready to communicate. If no communication is

attempted on any of these channels, it may never return.

It it does return, the returned value will be in the range 0: : : n�1; it

is then an index into the channels array indicating which channel is

Alphabetic List of Run-time Library Entries 243

ready to communicate. If more than one channel is simultaneously

ready to communicate, one will be arbitrarily chosen.

asin SA calculates the arc sine of its argument

#include <math.h>

double asin(double x);

asin returns the arc sine of its argument in the range [� �

2
;
�

2
]. If x

is outside the range [� 1;+1], the value HUGE_VAL is returned, and

errno is set to the value EDOM.

assert MACRO program debugging routine

#include <assert.h>

void assert(int expression);

If the macro identi�er NDEBUG is de�ned at the point in the source

�le where <assert.h> is included, use of the assert function will

have no e�ect.

The assert function puts diagnostics into programs. The expres-

sion argument is any scalar expression. When it is executed, if

expression is false (that is, evaluates to zero), assert writes a

message on the standard error stream and terminates the program.

The message gives the �lename and line number of the assert call

which failed.

No value is returned by assert.

244 Chapter 11

atan SA arc tangent

#include <math.h>

double atan(double x);

atan returns the arc tangent of x.

atan2 SA arc tangent of the division of its arguments

#include <math.h>

double atan2(double x, double y);

atan2 returns the arc tangent of x
y
in the range [� �; �]. If both

arguments are zero, the value HUGE_VAL is returned, and errno is

set to the value EDOM.

atexit T2 set exit handler

#include <stdlib.h>

int atexit(void (*func)(void));

The value of func is registered by the run-time library. The function

it points to will be called (with no arguments) at normal program

termination, when the main function returns or exit is called.

atexit returns 0 if func is registered successfully, otherwise it re-

turns a non-zero value.

Any number of functions may be registered. The same function may

be registered more than once.

atof SA convert string to oating point

#include <stdlib.h>

double atof(const char *nptr);

The string pointed to by nptr is converted to double-precision oat-

Alphabetic List of Run-time Library Entries 245

ing point representation. The format accepted by atof is the same

as that accepted by strtod; in fact, a call to atof is equivalent to

strtod(nptr, (char **)NULL)

atoi SA T2 convert string to integer

#include <stdlib.h>

int atoi(const char *nptr);

This function converts the string pointed to by nptr to integer repre-

sentation. The format accepted by atoi is the same as that accepted

by strtol, with a decimal base; in fact, a call to atoi is equivalent

to

(int)strtol(nptr, (char **)NULL, 10)

atol SA convert string to long integer

#include <stdlib.h>

long atol(const char *nptr);

This function converts the string pointed to by nptr to long int

representation. The format accepted by atol is the same as that

accepted by strtol, with a decimal base; in fact, a call to atol is

equivalent to

strtol(nptr, (char **)NULL, 10)

In Parallel C, atol is equivalent to atoi since sizeof(int) and

sizeof(long int) are the same.

246 Chapter 11

bdos DOS perform simple DOS function

#include <dos.h>

int bdos(int dosfn, int dosdx, int dosal);

This function performs a DOS function call interrupt on the host

with the ah register (specifying the DOS function call number) set

to dosfn, and with the dx and al registers set to dosdx and dosal

respectively. It returns the contents of the ax register after DOS has

processed the interrupt.

bdos is a shorthand form of the int: : : calls for the very simplest

DOS function calls only.

boot_peek SA peek in memory of neighbouring transputer

#include <boot.h>

int boot_peek(int ad, int val, CHAN *chan_in,

CHAN *chan_out);

This function reads a word of memory from address ad in a neigh-

bouring transputer into the variable pointed to by val. In order to be

able to do this, the neighbour transputer must have been recently

reset but not bootstrapped. In this special state, the transputer

processor executes special �rmware implementing a \peek and poke"

protocol described in the Transputer Reference Manual [12] and the

Compiler Writer's Guide[13]. The function returns a non-zero value

if the \peek" operation succeeds.

The neighbouring transputer is connected to the one on which the

boot_peek function is executed by an Inmos link, with which are as-

sociated an input and output channel chan_in and chan_out. If that

link does not lead to another transputer, or if the other transputer is

not executing the \peek and poke" �rmware, the boot_peek function

will time out after 30 ticks of the transputer timer associated with

the current thread's priority. This timeout period is around 2mS for

a non-urgent thread. If boot_peek times out, it returns zero.

Alphabetic List of Run-time Library Entries 247

boot_poke SA poke to memory of neighbouring transputer

#include <boot.h>

int boot_poke(int ad, int val, CHAN *chan_out);

This function writes the value val into the word of memory at

address ad in a neighbouring transputer. In order to be able to

do this, the neighbour transputer must have been recently reset but

not bootstrapped. In this special state, the transputer processor

executes special �rmware implementing a \peek and poke" protocol

described in the Transputer Reference Manual [12] and the Compiler

Writer's Guide[13]. The function returns a non-zero value if the

\poke" operation succeeds.

The neighbouring transputer is connected to the one on which the

boot_poke function is executed by an Inmos link, with which is

associated an output channel chan_out. If that link does not lead

to another transputer, or if the other transputer is not executing

the \peek and poke" �rmware, the boot_poke function will time out

after 30 ticks of the transputer timer associated with the current

thread's priority. This timeout period is around 2mS for a non-

urgent thread. If boot_poke times out, it returns zero.

bsearch SA T2 binary search

#include <stdlib.h>

void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,

int (*compar)(const void *,

const void *));

This function searches an array of objects for an element matching

a given key. The result of bsearch is a pointer to the array element

located by the search; if no match is found, a null pointer is returned.

bsearch is not limited to any particular data type; it is provided

with a comparison function which allows it to compare two objects

of the arbitrary type used by the program.

248 Chapter 11

The array to be searched starts at base and has nmemb elements,

each of size bytes. key points to the item to be searched for, which

must have the same type as the elements of the array being searched.

The compar argument points to a comparison function which, given

pointers to two objects of the same type as those pointed to by key

and base, returns a negative integer to indicate the �rst is \less

than" the second, a positive integer to indicate that the �rst object

is \greater than" the second, or 0 to indicate that the two objects

are \equal".

Before calling bsearch, the array must be sorted into ascending order

with respect to the comparison function pointed to by compar. This

operation can often be most easily performed by the qsort function

(see page 297) which can sort an arbitrary array into order. Like

bsearch, it uses a comparison function to determine the ordering to

be used.

calloc SA T2 allocates and clears an area of memory

#include <stdlib.h>

void *calloc(size_t nelem, size_t elsize);

calloc returns a pointer to enough space for nelem objects of size

elsize, or NULL if the request cannot be satis�ed. The storage is

initialised to zero.

ceil INLINE SA ceiling function

#include <math.h>

double ceil(double x);

ceil returns the smallest integer not less than x.

Alphabetic List of Run-time Library Entries 249

chan_in_byte INLINE SA T2 input a byte from a channel

#include <chan.h>

void chan_in_byte(char *b, CHAN *chan);

This function reads a single-byte message from the channel pointed

to by chan into the character variable pointed to by b.

chan_in_byte_t SA T2 input a byte from a channel, or timeout

#include <chan.h>

int chan_in_byte_t(char *b, CHAN *chan,

int timeout);

This function attempts to read a single-byte message from the chan-

nel pointed to by chan into the character variable pointed to by b. If

the communication does not take place within timeout ticks of the

timer associated with the priority of the current thread, the function

will terminate and return zero. If the communication succeeds within

the timeout interval, the function will return a non-zero value.

chan_init INLINE SA T2 initialise a channel word

#include <chan.h>

void chan_init(CHAN *chan);

This function initialises the channel word pointed to by its chan

argument. This operation consists of writing the special value

NotProcess_P into the channel word; this indicates that no threads

are currently attempting to communicate through this channel.

All channel words (i.e., all variables declared to be of type CHAN)

must be initialised before the �rst attempt to communicate through

them. If this is not done, the �rst attempt to communicate through

the channel will cause the transputer processor to crash.

250 Chapter 11

Note that the channel words bound to a program's input and output

ports are already initialised by the calling environment, and should

not be initialised again by the program.

chan_in_message INLINE SA T2 input a message from a channel

#include <chan.h>

void chan_in_message(int len, char *b,

CHAN *chan);

This function reads a message of length len bytes from the channel

pointed to by chan into the variable pointed to by b.

chan_in_message_t SA T2 input a message from a channel, or

timeout

#include <chan.h>

int chan_in_message_t(int len, char *b, CHAN *chan,

int timeout);

This function attempts to read a message of length len bytes from

the channel pointed to by chan into the variable pointed to by b. If

the communication does not take place within timeout ticks of the

timer associated with the priority of the current thread, the function

will terminate and return zero. If the communication succeeds within

the timeout interval, the function will return a non-zero value.

chan_in_word INLINE SA T2 input a word from a channel

#include <chan.h>

void chan_in_word(int *w, CHAN *chan);

This function reads a word-length message from the channel pointed

to by chan into the integer variable pointed to by w. For the T4 and

the T8, four bytes will be transferred; for the T2, two.

Alphabetic List of Run-time Library Entries 251

chan_in_word_t SA T2 input a word from a channel, or timeout

#include <chan.h>

int chan_in_word_t(int *w, CHAN *chan,

int timeout);

This function attempts to read a word-length message from the chan-

nel pointed to by chan into the integer variable pointed to by w. For

the T4 and the T8, four bytes will be expected; for the T2, two. If

the communication does not take place within timeout ticks of the

timer associated with the priority of the current thread, the function

will terminate and return zero. If the communication succeeds within

the timeout interval, the function will return a non-zero value.

chan_out_byte INLINE SA T2 output a byte to a channel

#include <chan.h>

void chan_out_byte(char b, CHAN *chan);

This function sends a single-byte message consisting of the value b

to the channel pointed to by chan.

chan_out_byte_t SA T2 output a byte to a channel, or timeout

#include <chan.h>

int chan_out_byte_t(char b, CHAN *chan,

int timeout);

This function attempts to send a single-byte message consisting of

the value b to the channel pointed to by chan. If the communication

does not take place within timeout ticks of the timer associated

with the priority of the current thread, the function will terminate

and return zero. If the communication succeeds within the timeout

interval, the function will return a non-zero value.

252 Chapter 11

chan_out_message INLINE SA T2 output a message to a channel

#include <chan.h>

void chan_out_message(int len, char *b,

CHAN *chan);

This function sends a message of length len bytes from the variable

pointed to by b to the channel pointed to by chan.

chan_out_message_t SA T2 output a message to a channel, or

timeout

#include <chan.h>

int chan_out_message_t(int len, char *b, CHAN *chan,

int timeout);

This function attempts to send a message of length len bytes from

the variable pointed to by b to the channel pointed to by chan. If the

communication does not take place within timeout ticks of the timer

associated with the priority of the current thread, the function will

terminate and return zero. If the communication succeeds within

the timeout interval, the function will return a non-zero value.

chan_out_word INLINE SA T2 output a word to a channel

#include <chan.h>

void chan_out_word(int w, CHAN *chan);

This function sends a word-length message consisting of the value

w to the channel pointed to by chan. For the T4 and the T8, four

bytes will be transferred; for the T2, two.

Alphabetic List of Run-time Library Entries 253

chan_out_word_t SA T2 output a word to a channel, or timeout

#include <chan.h>

int chan_out_word_t(int w, CHAN *chan,

int timeout);

This function attempts to send a word-length message consisting of

the value w to the channel pointed to by chan. For the T4 and

the T8, the message will be four bytes long; for the T2, two. If the

communication does not take place within timeout ticks of the timer

associated with the priority of the current thread, the function will

terminate and return zero. If the communication succeeds within

the timeout interval, the function will return a non-zero value.

chan_reset INLINE SA T2 reset a channel

#include <chan.h>

char *chan_reset(CHAN *chan);

This function resets the channel pointed to by chan. If the channel

is associated with an Inmos link, then the hardware of that link is

reset as well.

If a thread was attempting to communicate on the channel at the

time of the reset, then a handle to that thread (which is now sus-

pended) will be returned as the result of chan_reset. This handle

can be used to restart the suspended thread at a later date by passing

it to the function thread_restart.

If the channel was idle at the time of the reset (i.e., if no thread was

attempting to communicate on it) then the value NotProcess_P will

be returned.

254 Chapter 11

clearerr clear stream errors

#include <stdio.h>

void clearerr(FILE *stream);

clearerr resets any error indication on the named stream.

clock return processor time used

#include <time.h>

clock_t clock(void);

The clock function determines the processor time used. It returns

the elapsed time in seconds since an (unspeci�ed) base time as the

best approximation to the processor time used. The type (clock_t)

of the value returned by clock is int and CLK_TCK is 1.

The time in seconds is the value returned divided by the value of the

macro CLK_TCK (also de�ned by <time.h>).

cos SA cosine function

#include <math.h>

double cos(double x);

cos returns the cosine of its radian argument.

cosh SA hyperbolic cosine function

#include <math.h>

double cosh(double x);

cosh returns the hyperbolic cosine of its argument. If the magnitude

of x is too large, HUGE_VAL is returned, and errno is set to the value

of ERANGE.

Alphabetic List of Run-time Library Entries 255

div NEW SA T2 integer division

#include <stdlib.h>

div_t div(int dividend, int divisor);

This function divides dividend by divisor and returns both the

quotient and the remainder in a structure of type div_t. This type

is de�ned in <stdlib.h> and includes the following �elds:

int quot; /* contains the quotient */

int rem; /* contains the remainder */

If the division is inexact, the quotient returned is the integer of lesser

magnitude which is nearest to the algebraic quotient. If the result

cannot be represented, the behaviour of div is unde�ned.

errno SA current error number

#include <errno.h>

int errno;

Some run-time library functions return a simple true/false value to

indicate success or failure. For example, fopen (see page 260) returns

a pointer to a �le descriptor, or a null pointer for failure. Many

library functions also set the variable errno to indicate the type of

error in more detail. Some functions, like sqrt (see page 309), have

only one possible error type. In the case of sqrt, this is EDOM|

\domain error"|which is assigned to errno when the argument to

sqrt is negative. Some other functions, such as strtol, may have

several di�erent distinguishable error cases; strtol may set errno

either to EDOM or to ERANGE|\range error". The di�erent values of

errno are de�ned as macros in <errno.h>.

The values of errno which a particular function uses are described

along with the function. In this version of Parallel C, errno may

also be assigned a server status code by any function which requires

access to �le services. For example, a failed call to fopen might set

errno to 99 indicating \server operation failed".

256 Chapter 11

At entry to a program's main function, errno is zero. A run-time

library function which does not detect an error does not guarantee

to return errno to this initial state, although it may do so. Thus,

unless errno is zeroed immediately before a call to a run-time library

function, its value should only be examined if the call is otherwise

known to have failed, by examination of the function's return value.

exit T2 terminate execution

#include <stdlib.h>

void exit(int status);

exit is the normal means of terminating program execution. It calls

all the functions registered by calls to atexit (in reverse order of

registration), and then closes all the task's �les.

This call never returns.

status is used to tell the operating system what was the status of the

terminating program. The header <stdlib.h> de�nes two macros

so that this may be done in a machine-independant way. If status

is zero or EXIT_SUCCESS, the program is terminating successfully. If

status is EXIT_FAILURE it is terminating unsuccessfully.

DOS Under MS-DOS, the value of status is given to the MS-DOS

result code. 0 indicates success, and 1 indicates failure.

exp SA e
x function

#include <math.h>

double exp(double x);

exp returns the exponential function of x.

exp returns HUGE_VAL when the correct value is too large; errno is

set to ERANGE.

Alphabetic List of Run-time Library Entries 257

fabs INLINE SA oating absolute value

#include <math.h>

double fabs(double arg);

fabs returns the absolute value of arg.

fclose close a �le

#include <stdio.h>

int fclose(FILE *stream);

fclose causes any bu�ers for the speci�ed stream to be emptied, and

the �le to be closed. Bu�ers allocated by the standard I/O system

are freed.

fclose is called automatically upon calling exit.

fclose returns non-zero if stream is not associated with an output

�le, or if bu�ered data cannot be transferred to that �le.

feof MACRO is stream at end of �le?

#include <stdio.h>

int feof(FILE *stream);

feof returns non-zero when end of �le is read on the named input

stream, otherwise zero. It is implemented as a macro, and therefore

cannot be redeclared.

ferror MACRO tests for stream errors

#include <stdio.h>

int ferror(FILE *stream);

ferror returns non-zero when an error has occurred reading the

named stream, otherwise zero. Unless cleared by clearerr, the er-

258 Chapter 11

ror indication lasts until the stream is closed. ferror is implemented

as a macro.

fflush ush stream bu�er

#include <stdio.h>

int fflush(FILE *stream);

fflush causes any bu�ered data for the named output stream to be

written to the �le or device associated with that stream. The stream

remains open.

fflush is called automatically by close, and when all streams are

implicitly closed by exit.

EOF is returned if stream is not associated with an output �le or if

bu�ered data cannot be transferred to that �le.

fgetc read a character from a stream

#include <stdio.h>

int fgetc(FILE *stream);

fgetc returns the next character from the speci�ed input stream.

Successive calls return successive characters from the stream. fgetc

is a genuine function, unlike getc which is a macro.

EOF is returned at end of �le or if a read error occurs.

fgetpos NEW store value of �le position indicator

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

fgetpos stores the �le position in the object pointed to by pos. (The

type fpos_t is de�ned in stdio.h).

Alphabetic List of Run-time Library Entries 259

If successful, fgetpos returns zero. If it fails, it returns a non-zero

value, and sets errno to EBADF for a bad �le descriptor, or EINVAL

for any other error.

CAREFUL! Users should note that in the current version of Paral-

lel C, fgetpos should only be used with binary �les.

fgets read a string from a stream

#include <stdio.h>

char *fgets(char *str, int n, FILE *stream);

fgets reads a maximum of n � 1 characters from the stream and

stores them in the string str. Reading stops when a newline has been

stored or when an end-of-�le is encountered. The last character read

into str is followed by a NUL character.

fgets normally returns str. If an error occurs, or if an end-of-�le

is encountered before any characters have been read, fgets returns

NULL.

CAREFUL! Note that fgets behaves di�erently to gets (q.v.) with

respect to any terminating newline character: fgets keeps the new-

line, gets deletes it from the string.

floor INLINE SA oor function

#include <math.h>

double floor(double x);

floor returns the largest integer not greater than x, expressed as a

oating-point value.

260 Chapter 11

fmod SA oating-point remainder

#include <math.h>

double fmod(double x, double y);

fmod returns the remainder from x=y.

fopen opens a �le

#include <stdio.h>

FILE *fopen(const char *filename,

const char *type);

fopen opens the �le named by filename and associates a stream

with it. fopen returns a pointer to be used to identify the stream in

subsequent operations. fopen returns the pointer NULL if filename

cannot be accessed in the way requested.

type is a character string made up of the following parts:

� A speci�cation of whether the �le is to be opened for read-

ing (`r'), writing (`w') or appending (`a'). This speci�er must

appear as the �rst character in the type string.

� An optional \update" speci�er (`+'). If included, the �le is

opened for both reading and writing. If omitted, the �le is

opened in the mode described by the �rst character of type.

� An optional speci�cation of whether the �le is to be a text �le

(`t') or a binary �le (`b'). If this speci�er is omitted, the �le is

taken to be a text �le.1

The second and third parts of the type string may appear in any

order. For example, "r+b" and "rb+" are equivalent. Some examples

1This default behaviour can be changed if required when porting a large

application to the Parallel C environment; see the description of the _fmode

variable (page 460) for details.

Alphabetic List of Run-time Library Entries 261

of possible values for type are now given, along with a description

of their interpretation.

"r" open text �le for reading

"rt" open text �le for reading

"rb" open binary �le for reading

"rb+" open binary �le for update

"r+b" open binary �le for update

"w" truncate and write to, or create, text �le

"a" append to, or create, text �le

"ab" append to, or create, binary �le

fopen will fail if the �le is to be opened for reading (`r') and it does

not exist. For writing (`w') or appending (`a'), the �le will be created

if it does not exist.

CAREFUL! If a �le is open to read and write (the type argument

includes a `+') it is not possible to switch directly from reading to

writing or vice versa. Instead, there must be a call to fseek between

them. If this is not done, the results are unde�ned.

fprintf formatted output

#include <stdio.h>

int fprintf(FILE *stream, const char *format,

...);

The arguments which follow the format argument are output to the

speci�ed stream, using putc. The format argument controls the

way in which the following argument list is converted for output.

The format argument is a character string which contains two types

of object: plain characters, which are simply copied to the output

stream, and conversion speci�cations, each of which causes conver-

sion and output of the next argument.

Each conversion speci�cation is introduced by the character `%'. Fol-

lowing the `%' there may be the following, in the given order.

262 Chapter 11

Flags Field This optional �eld includes any of the following ags,

in any order:

- The value will be left-justi�ed.

+ The value will always start with a sign.

space If the value does not start with a sign, a space will be

placed before it.

Use an \alternate form" conversion. The alternate

forms depend on the conversion character, as follows:

o Increase speci�ed precision by one char-

acter, so that leading digit is always `0'.

x Precede non-zero value by `0x'.

X, p Precede non-zero value by `0X'.

e, E, f, g, G Output decimal point even if no digits

follow it.

g, G Do not remove trailing zeroes.

0 For the d, i, o, u, x, X, p, e, E, f, g, G conversion

characters, the value is padded with zeroes. If the `-'

ag appears as well, `0' is ignored. For the d, i, o, u,

x, X, p conversion characters, if a precision is speci�ed,

the `0' ag is ignored.

Field Width This optional �eld is a decimal integer; or an aster-

isk, in which case the value for the �eld width is obtained from the

next argument, which should be an int.

The converted value is padded on the left (or on the right, if the `-'

ag has been speci�ed). If a `0' ag is in force, padding will be with

`0' characters; otherwise, it will be with spaces.

Alphabetic List of Run-time Library Entries 263

Precision This optional �eld consists of a `.' and either a decimal

integer, or an asterisk, in which case the value for the precision is

obtained from the next argument, which should be an int. If only

a `.' is speci�ed, the precision is taken as zero.

The meaning of the precision depends on the conversion character,

as follows:

d, i, o, u, x, X

The minumum number of digits.

e, E, f The number of digits to appear after the decimal point.

g, G The maximum number of signi�cant digits.

s The maximum number of characters to be written from

a string.

Pre�xes This optional �eld may contain one of the following:

h The following `d', `i', `o', `u', `x' or `X' conversion char-

acter corresponds to a short int or unsigned short

int argument; or, the following `n' conversion charac-

ter corresponds to an argument which is a pointer to

a short int.

l The following `d', `i', `o', `u', `x' or `X' conversion char-

acter corresponds to a long int or unsigned long

int argument; or, the following `n' conversion charac-

ter corresponds to an argument which is a pointer to

a long int.

L The following `e', `E', `f', `g' or `G' conversion character

corresponds to a long double argument.

Conversion Character The conversion characters and their

meanings are:

264 Chapter 11

d, i The int argument is converted to decimal notation.

The default precision is 1.

o, u, x, X The unsigned int argument is converted to unsigned

octal (`o'), unsigned decimal (`u') or unsigned hexadec-

imal (`x' or `X'). The default precision is 1. When

writing a hexadecimal number, the letters abcdef are

used for x conversion, and ABCDEF for X conversion.

f The double argument is converted to decimal notation

in the form \[-]ddd.ddd" where the number of d's after

the decimal point is equal to the precision speci�cation

for the argument. The default precision is 6.

e, E The double argument is converted to decimal notation

of the form \[-]d.ddde[�]dd". There is one digit before
the decimal point and the number after is equal to the

precision speci�cation for the argument; the default

precision is 6. The `e' conversion character generates

`e' as the exponent character, while `E' generates `E'.

g, G The double argument is output in style `f' or `e'. The

precision speci�es the number of signi�cant digits; the

default is 1. Style `e' is only used if the exponent after

conversion is less than �4 or greate than or equal to

the precision. Style `E' is used in place of `e' if `G' is

speci�ed.

c The int argument is converted to unsigned char and

printed.

s The argument is taken to be a string (character

pointer) and characters from the string are printed

until a NUL character is reached or until the number

of characters indicated by the precision speci�cation is

reached; however, if the precision is zero or missing, all

characters up to a NUL are printed.

Alphabetic List of Run-time Library Entries 265

p The value of the pointer-to-void argument is printed

as a hexadecimal number. The default precision is 8.

n No output is performed. Instead, the number of char-

acters output by this call to fprintf is placed in the

int variable which the argument points at.

% Print a `%'; no argument is converted.

In no case does a non-existent or small �eld width cause truncation

of a �eld. The maximum length for a single converted argument is

512 characters.

fprintf returns the number of characters output, or a negative value

if an output error occurred.

The �rst call on fprintf, printf, sprintf, par_fprintf or

par_printf causes a 1KB bu�er to be allocated from the heap.

Output of Exceptional Values If fprintf is asked to output

a Not-a-Number or in�nity value using the `f', `e', `E', `g' or `G'

conversion characters, a special string is output instead of a value in

one of the normal formats. These strings are as follows:

266 Chapter 11

Description String

Positive in�nity +inf

Negative in�nity -inf

Divide zero by zero NaN:0/0

Divide in�nity by in�nity NaN:inf/inf

Multiply zero by in�nity NaN:0*inf

Add or subtract opposite signed in�nities NaN:inf+-inf

Square root of negative number NaN:-sqrt

Convert NaN from double to float NaN:convNaN

Remainder from in�nity NaN:reminf

Remainder from zero NaN:rem0

Result not mathematically de�ned NaN:undef

Result unstable NaN:unstable

Result inaccurate NaN:inacc

Unde�ned NaN NaN:???

fputc write a character to a stream

#include <stdio.h>

int fputc(int cval, FILE *stream);

fputc appends the character cval to the speci�ed output stream.

It returns the character written. fputc, unlike putc, is a genuine

function rather than a macro.

fputc returns EOF if an error occurs.

fputs write a string to a stream

#include <stdio.h>

int fputs(const char *str, FILE *stream);

fputs copies the NUL-terminated string str to the speci�ed output

stream. The NUL character which terminates the string is not written

to the stream.

Alphabetic List of Run-time Library Entries 267

Note that unlike puts, fputs does not append a newline to the

output string.

fread bu�ered binary input

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems,

FILE *stream);

fread reads nitems objects, each of size bytes, from the speci�ed

input stream into memory at location ptr. It returns the number of

complete items actually read. Zero is returned on error conditions

or end of �le.

For example, the following code fragment reads ten integer values

from the �le f into the integer array a:

#include <stdio.h>

FILE *f;

int a[10];

.

.

.

fread(a, sizeof(int), 10, f);

free SA T2 deallocates space obtained from the heap

#include <stdlib.h>

void free(void *ap);

free frees the space pointed to by ap, which will have been obtained

originally by a call to malloc, calloc or realloc. If ap is a null

pointer, no action is taken.

It is an error to attempt to free space not allocated by a call to

malloc, calloc or realloc.

268 Chapter 11

free86 DOS free host memory

#include <dos.h>

void free86(pcpointer p);

p should be a pcpointer previously returned by alloc86. This

function returns the block of host memory identi�ed by p to MS-

DOS for re-use.

freopen open a stream

#include <stdio.h>

FILE *freopen(const char *filename, const char *type,

FILE *stream);

freopen substitutes the named �le filename in place of the open

stream. It returns the original value of stream. The original stream

is closed.

freopen is typically used to attach the preopened constant names,

stdin, stdout and stderr to speci�ed �les.

type is a character string specifying the way in which the �le is to

be opened. Refer to the description of fopen (page 260) for a full

description of the type string.

freopen returns the pointer NULL if filename cannot be accessed.

frexp SA split oating-point number into separate parts

#include <math.h>

double frexp(double value, int *exp);

frexp breaks value into its normalised fraction and an integral

power of 2. The function returns the fractional part and the integral

part is pointed to by *exp.

Alphabetic List of Run-time Library Entries 269

from86 DOS transfer memory block from host

#include <dos.h>

int from86(int len, pcpointer there, char *here);

This function transfers len bytes of host memory starting at there

to a corresponding block starting at here in transputer memory. The

function returns the number of bytes actually transferred. The host

memory block used will normally have been previously allocated by

a call to alloc86.

fscanf formatted input

#include <stdio.h>

int fscanf(FILE *stream, const char *format,

...);

fscanf reads characters from the speci�ed input stream, interprets

them according to a format string and stores the results in the

variables pointed to by the arguments following format.

The format string is regarded as a sequence of directives, which are

processed one by one. fscanf tries to match each directive with

characters read from the input stream; the way in which this match-

ing is done depends on the directive. If a directive does not match

with characters from the input stream, we say that a matching error

has happened. In this case, the character which caused the error

is not read, and fscanf returns at once. There are three types of

directive:

� White space of any length will match white space of any length.

If the input stream does not have white space at this point, the

directive is ignored.

� A conversion speci�er, which is a sequence of characters start-

ing with a `%'. These are discussed below.

� Any other character will match the next character of the input

stream if they are the same.

270 Chapter 11

A conversion speci�er consists of the following, in this order:

1. A character `%'.

2. A optional character `*', indicating that the converted value is

not to be stored;

3. The �eld width: an optional non-zero integer which speci�es

the maximum allowable width of the input �eld;

4. A pre�x character, which may be one of the following:

h With conversion characters `d', `i' and `n', indi-

cates that the argument points to a short int.

With conversion characters `o', `u' and `x', indi-

cates that it points to an unsigned short int.

l With conversion characters `d', `i' and `n', indi-

cates that the argument points to a long int.

With conversion characters `o', `u' and `x', indi-

cates that it points to an unsigned long int.

With conversion characters `e', `f' and `g', indi-

cates that it points to a double.

L With conversion characters `e', `f' and `g', in-

dicates that the argument points to a long

double.

Each conversion speci�er will match a sequence of characters of

a particular format, and these characters are read from the input

stream. Reading stops when the �rst character which does not �t

into this format is encountered; this character is not read. It is a

matching error if no characters are read, that is, if not even one

character would �t the assumed format for this speci�er.

The character sequence which has been read is converted in one of

a variety of ways, and the resulting internal value is stored in the

variable pointed to by the next argument (unless a `*' was included

in the speci�er). If this variable is not of an appropriate type for the

value which has been converted, the e�ect is unde�ned.

Alphabetic List of Run-time Library Entries 271

The following speci�ers are recognised.

d Matches an optionally-signed decimal integer. The ar-

gument should be a pointer to an integer.

i Matches an optionally-signed integer with a format

such as would be acceptable to the strtol function

with a base value of 0. This means that strings start-

ing with \0x" or \0X" are interpreted as hexadecimal,

strings starting with `0' are interpreted as octal, and

others as decimal. The argument should be a pointer

to an integer.

o Matches an optionally-signed octal integer. The argu-

ment should be a pointer to an integer.

u Matches an optionally-signed decimal integer. The ar-

gument should be a pointer to an unsigned integer.

x Matches an optionally-signed hexadecimal integer with

a format such as would be acceptable to the strtoul

function with a base value of 16. This means that the

string may, but need not, start with \0x" or \0X". The

argument should be a pointer to an integer.

e, f, g Matches a oating-point number with a format such

as would be acceptable to the strtod function. This

means an optionally-signed string of digits, possibly

containing a decimal point, followed by an optional

exponent �eld consisting of an `E' or `e' followed by an

optionally-signed integer. The argument should be a

pointer to a oating-point variable.

s Matches a character string which includes no white

space. The argument should be a pointer to an array

of characters large enough to accept the string and a

terminating NUL character, which will be added.

272 Chapter 11

c Matches a sequence of characters of the length speci�ed

in the �eld width (1 by default). The argument should

be a pointer to an array of characters large enough to

accept the string. Note that unlike `s', the `c' speci�er

does not skip white space; to read the next non-space

character, use \%1s".

[This speci�er includes all the characters from the `[' up

to a later `]'. The characters between the brackets are

called the scan-set . The speci�er matches a sequence

of characters all of which are members of the scanset.

So, for example, \[aeiou]" would match a sequence of

vowels, of any length and in any order. The argument

should be a pointer to an array of characters large

enough to accept this sequence.

If the �rst character of the scan-set is a `^', then

the speci�er matches a sequence of characters none

of which are members of the scan-set. To enable the

scan-set to include a `]', the standard provides that if

the scan-set starts with `]' or \^]" this will not end

the speci�er and another `]' will be needed. In other

words, \[])>]" is a valid speci�er, de�ning a scan-set

consisting of `]', `)' and `>'.

p Matches a pointer value of the format output by a `p'

speci�er in a fprintf function call. The argument

should be a pointer to a pointer to void.

n The argument should be a pointer to an integer, and

in this integer is written the number of characters read

so far by this call to fscanf. No characters are read

by the n speci�er.

% Matches a `%' character. The complete speci�er must

be \%%". No argument is used.

The conversion speci�ers `E', `G' and `X' are treated as being equiva-

lent to `e', `g' and `x'. In addition, for compatibility purposes only,

Alphabetic List of Run-time Library Entries 273

`F' is accepted as being equivalent to `lf', that is, a oating-point

conversion which expects a pointer to double as the argument.

If an end-of-�le or input error occurs before any conversion is done,

fscanf returns EOF. Otherwise, it returns the number of input items

successfully converted and stored. The speci�er `n' and speci�ers

including a `*' do not count.

fseek reposition a stream

#include <stdio.h>

int fseek(FILE *stream, long int offset,

int whence);

fseek sets the �le position indicator of the speci�ed stream. The

new position is at the signed distance offset bytes from a loca-

tion speci�ed in whence. Three macros are provided for specifying

whence:

SEEK_SET the start of the �le

SEEK_CUR the current �le position

SEEK_END the end of the �le

fseek undoes any e�ects of ungetc.

fseek returns �1 for improper seeks, or zero for normal completion.

When operating on a text �le, fseek's arguments are limited in the

following ways:

� offset may only be 0.

� whence may only be SEEK_SET or SEEK_END.

The ANSI standard[3] also allows fseek to be applied to a text

�le with whence = SEEK_CUR and offset set to a value previously

obtained by applying ftell to the same stream. The current version

of Parallel C does not support this.

274 Chapter 11

fsetpos NEW set �le position

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

fsetpos sets the �le position of the speci�ed stream to the position

stored in the object pointed to by pos. This value should have been

stored by an earlier call to fgetpos.

If successful, fsetpos returns zero. If it fails, it returns a non-zero

value, and sets errno to EBADF for a bad �le descriptor, or EINVAL

for any other error.

CAREFUL! Users should note that in the current version of Paral-

lel C, fsetpos should only be used with binary �les.

ftell stream position enquiry

#include <stdio.h>

long int ftell(FILE *stream);

ftell returns the current value of the o�set relative to the beginning

of the �le associated with the named stream. This o�set is measured

in bytes.

When operating on a text �le, ftell may not give an accurate

position unless the current position is either at the beginning or

the end of the �le.

fwrite bu�ered binary output

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size,

size_t nitems, FILE *stream);

fwrite writes nitems objects, each of size bytes, from memory at

location ptr to the speci�ed output stream. It returns the number of

complete items actually written. Zero is returned on error conditions.

Alphabetic List of Run-time Library Entries 275

For example, the following code fragment writes the contents of the

integer array a into the �le f:

#include <stdio.h>

FILE *f;

int a[10];

.

.

.

fwrite(a, sizeof(int), 10, f);

getc MACRO read a character from a stream

#include <stdio.h>

int getc(FILE *stream);

getc returns the next character from the named input stream. Suc-

cessive calls on getc return successive characters from the stream.

getc is implemented as a macro.

EOF is returned on end of �le or when a read error is detected.

getchar MACRO read a character from standard input

#include <stdio.h>

int getchar(void);

getchar() is identical to getc(stdin). It returns the next character

from the standard input stream stdin. getchar is implemented as

a macro.

EOF is returned on end of �le or read error conditions.

276 Chapter 11

getenv access environment variable

#include <stdlib.h>

char *getenv(const char *name);

name is a pointer to a string which must be the name of an en-

vironment variable. If this environment variable is de�ned, getenv

returns a pointer to the corresponding global string value; otherwise,

a null pointer is returned. The getenv function allows a C program

to access the strings placed in the MS-DOS command processor's

environment by the MS-DOS SET, PROMPT and PATH commands.

Note that, under MS-DOS, the names of all environmental variables

are forced to be upper-case by the command processor. Thus, the

result of the following command would be the de�nition of a variable

called FRED to the value Mixed:

C>set fred=Mixed

If the named environment variable does not exist, getenv will return

a null pointer. Otherwise, getenv will return a pointer to the value

of the variable. For example, the following program fragment might

print out something like C:\COMMAND.COM, the location of the MS-

DOS command processor:

printf("%s\n", getenv("COMSPEC"));

Note that the string value pointed to by getenv will be valid only

until the next call on getenv. Subsequent calls on getenv will

overwrite the memory used for the original result. If you need to

make several calls to getenv, you should therefore copy the value

returned by getenv into a local string before making further calls.

gets read string from standard input

#include <stdio.h>

char *gets(char *str);

gets reads a string into str from the standard input stream stdin.

The string is terminated by a newline character, which is replaced

Alphabetic List of Run-time Library Entries 277

in str by a NUL character. gets returns its argument as result.

gets returns NULL on end of �le or error.

CAREFUL! Note that gets works di�erently to the similarly named

fgets (q.v.) in its treatment of the terminating newline character:

gets deletes the newline, fgets keeps it.

inp DOS read host I/O port

#include <dos.h>

int inp(unsigned int port);

The inp function reads a value from one of the host PC's byte input

ports. The port argument speci�es which port is to be read.

The value read is returned as the result of inp.

int86 DOS perform host interrupt

#include <dos.h>

int int86(int intno, union REGS *inregs,

union REGS *outregs);

This function calls host software interrupt number intno with the

general registers set to the values in inregs. The register values after

the interrupt has completed are placed in outregs and the function

returns the value of the ax register as its result.

Note that the host processor segment registers cs, ds, es and ss are

not set before the interrupt is called. If the segment registers are to

be used, you should use the int86x function instead.

278 Chapter 11

int86x DOS perform host interrupt with segment registers

#include <dos.h>

int int86x(int intno, unio REGS *inregs,

union REGS *outregs,

struct SREGS *segregs);

This function calls host software interrupt number intno with the

general registers set to the values in inregs and the segment registers

set to the values in segregs. The register values after the interrupt

has completed are placed in outregs and the function returns the

value of the ax register as its result.

This function is useful for DOS calls which take pointers to objects,

which are normally speci�ed as the combination of a 16-bit register

and a segment register. In the case where only some of the segment

registers are to be modi�ed, the function segread should be used

�rst to obtain the current values of the others. Failure to do this can

cause unpredictable behaviour.

intdos DOS perform DOS function

#include <dos.h>

int intdos(union REGS *inregs,

union REGS *outregs);

This function calls int86 specifying interrupt number 2116. This

is the software interrupt number by which DOS function calls are

accessed. intdos is thus a shorthand for a common use of int86.

Like int86, intdos returns the value of the host ax register after

the interrupt has been processed.

Alphabetic List of Run-time Library Entries 279

intdosx DOS perform DOS function with segment registers

#include <dos.h>

int intdosx(union REGS *inregs, union REGS *outregs,

struct SREGS *segregs);

This function calls int86x specifying interrupt number 2116. This

is the software interrupt number by which DOS function calls are

accessed. intdosx is thus a shorthand for a common use of int86x.

Like int86x, intdos returns the value of the host ax register after

the interrupt has been processed.

isalnum MACRO SA T2 is character alphanumeric?

#include <ctype.h>

int isalnum(int cval);

Returns 6= 0 if cval is a letter or a digit, 0 otherwise.

isalpha MACRO SA T2 is character alphabetic?

#include <ctype.h>

int isalpha(int cval);

Returns 6= 0 if cval is a letter, 0 otherwise.

iscntrl MACRO SA T2 ASCII control character?

#include <ctype.h>

int iscntrl(int cval);

Returns 6= 0 if cval is an ASCII control character (code less than

2016, or code 7F16), 0 otherwise.

280 Chapter 11

isdigit MACRO SA T2 is argument a digit?

#include <ctype.h>

int isdigit(int cval);

Returns 6= 0 if cval is one of the digits `0'{`9', 0 otherwise.

isgraph MACRO SA T2 printing ASCII character other than space?

#include <ctype.h>

int isgraph(int cval);

Returns 6= 0 if cval is a printing character, codes 2116 (`!') to 7E16
(`~') inclusive. Returns 0 otherwise.

DOS Note that this function treats the character values between 128

and 255 inclusive as non-printable, although most are visible on a

PC screen and on some printers.

islower MACRO SA T2 is character lowercase?

#include <ctype.h>

int islower(int cval);

Returns 6= 0 if cval is a lowercase letter, 0 otherwise.

isprint MACRO SA T2 printing ASCII character?

#include <ctype.h>

int isprint(int cval);

Returns 6= 0 if cval is a printing character, codes 2016 (space) to

7E16 (`~') inclusive. Returns 0 otherwise.

Alphabetic List of Run-time Library Entries 281

DOS Note that this function treats the character values between 128

and 255 inclusive as non-printable, although most are visible on a

PC screen and on some printers.

ispunct MACRO SA T2 punctuation character?

#include <ctype.h>

int ispunct(int cval);

Returns 6= 0 if cval is a punctuation character; otherwise 0. A

punctuation is de�ned as being any printing character (see isgraph)

which is not a letter, a digit or a space.

isspace MACRO SA T2 white space character?

#include <ctype.h>

int isspace(int cval);

Returns 6= 0 if cval is a space, horizontal or vertical tab, carriage

return, newline or form feed character, 0 otherwise.

isupper MACRO SA T2 is character uppercase?

#include <ctype.h>

int isupper(int cval);

Returns 6= 0 if cval is an uppercase letter, 0 otherwise.

isxdigit MACRO SA T2 printing hexadecimal digit?

#include <ctype.h>

int isxdigit(int cval);

Returns 6= 0 if cval is a printing hexadecimal digit, 0 otherwise.

282 Chapter 11

The printing hexadecimal digits are `0' to `9', `a' to `f' and `A' to `F'.

labs INLINE SA long int absolute value

#include <stdlib.h>

long int labs(long int j);

labs returns the absolute value of j.

If j is the most negative long int value, LONG_MIN, the result cannot

be represented and the value returned is unde�ned.

ldexp SA calculate x� 2exp

#include <math.h>

double ldexp(double x, int exp);

ldexp returns the result of x multiplied by the value of two raised

to the power exp. If the result is too large, the function returns

HUGE_VAL and errno is set to the value of ERANGE.

ldiv NEW SA long int division

#include <stdlib.h>

ldiv_t ldiv(long int dividend, long int divisor;

This function divides dividend by divisor and returns both the

quotient and the remainder in a structure of type ldiv_t. This type

is de�ned in <stdlib.h> and includes the following �elds:

long int quot; /* contains the quotient */

long int rem; /* contains the remainder */

If the division is inexact, the quotient returned is the integer of lesser

magnitude which is nearest to the algebraic quotient. If the result

cannot be represented, the behaviour of ldiv is unde�ned.

Alphabetic List of Run-time Library Entries 283

localeconv NEW SA T2 return numeric formatting parameters of

current locale

#include <locale.h>

struct lconv *localeconv(void);

localeconv returns a pointer to an object of type struct lconv.

The format of this structure is described in section 4.4 of the ANSI

standard[3], and the type is de�ned in locale.h. The �elds of this

structure contain information about the way in which numeric val-

ues, including monetary values, are output by the run-time library

with the current locale.

As the current version of Parallel C only supports locales "C" and

"", as laid down by the standard, and as both of these have the same

characteristics, the values returned for the various members of the

lconv structure are always those laid down in 4.4 of the standard.

log SA calculates log
e
x

#include <math.h>

double log(double x);

log returns the natural logarithm of x.

If x is negative, log returns HUGE_VAL, and errno is set to the value

of EDOM. If x is zero, it returns HUGE_VAL and sets errno to ERANGE.

log10 SA calculates log
10
x

#include <math.h>

double log10(double x);

log10 returns the base-ten logarithm of x.

If x is negative, log returns HUGE_VAL, and errno is set to the value

of EDOM. If x is zero, it returns HUGE_VAL and sets errno to ERANGE.

284 Chapter 11

longjmp SA T2 non-local goto

#include <setjmp.h>

void longjmp(jmp_buf env, int val);

This function, together with setjmp, is useful for dealing with errors

encountered in a low-level subroutine of the program.

longjmp restores the stack environment saved in its env argument by

an earlier call on setjmp. This has the e�ect of resuming execution

immediately after that setjmp call.

setjmp's caller can distinguish between the original return from

setjmp and the second return caused by longjmp by examining

setjmp's return value. This is always 0 for the initial return, and

the value of longjmp's val argument for subsequent returns. If val

is set to 0, longjmp will change it to a 1 in order to preserve this

condition.

The function which originally called setjmp must not itself have

returned before the call to longjmp. All accessible data still have

their values as of the time longjmp was called.

malloc SA T2 allocates the speci�ed number of contiguous bytes of

memory

#include <stdlib.h>

void *malloc(size_t nbytes);

malloc allocates space for an object whose size is speci�ed by

nbytes. The function returns a pointer to the start of the allocated

space. If the space cannot be allocated, the malloc function returns

a null pointer.

Space allocated by malloc is not initialised by the run-time library,

and may contain arbitrary values. If a zeroed area of storage is

required, the function calloc should be used. Note that the calloc

Alphabetic List of Run-time Library Entries 285

function has two arguments compared to malloc's one. Thus, calls

to malloc must be rewritten from malloc(n) to calloc(n,1).

CAREFUL! If a request for a zero-length block is made, a pointer to a

short|but real|block will be returned by malloc. Note, however,

that programs intended to be portable to other implementations

of C should not make the assumption that this is so; some other

implementations return a null pointer instead.

mblen NEW SA T2 return width of multi-byte character

#include <stdlib.h>

int mblen(const char *s, size_t n);

If s is a null pointer, mblen returns 0, indicating that, for the current

version of Parallel C, multibyte character codings are never state

dependent. Otherwise, it returns the width in bytes of the multibyte

character pointed to by s. In the current version, this will be 1,

unless s is pointing at a null character, in which case it will be 0.

mbstowcs NEW SA T2 convert multibyte string to wide character

string

#include <stdlib.h>

size_t mbstowcs(wchar_t *pwcs, const char *s,

size_t n);

The multibyte string pointed to by s is converted to a wide character

string and stored in the array pointed to by pwcs. Conversion stops

when a null character has been converted, or when n elements have

been converted. mbstowcs returns the number of elements converted,

excluding the terminating zero, if any.

Note that, in the present version of Parallel C, multibyte characters

and wide characters are both one byte in length and there is no

state-dependent encoding, so this function is equivalent to a string

286 Chapter 11

copy. All possible element values are valid, so no error return can

happen.

mbtowc NEW SA T2 convert multibyte character to wide character

#include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *s,

size_t n);

If s is a null pointer, mbtowc returns 0, indicating that, for the

current version of Parallel C, multibyte character codings are never

state dependent. Otherwise, it returns the width in bytes of the

multibyte character pointed to by s. In the current version, this will

be 1, unless s is pointing at a null character, in which case it will be

0.

In addition, the character pointed to by s will be converted to a

wide character and stored in the location pointed to by pwc. In the

current version, as both wide and multibyte characters are always

1 byte in length, this is equivalent to copying the character. The

argument n speci�es the maximum number of bytes to be scanned.

memchr SA T2 locate character in memory block

#include <string.h>

void *memchr(const void *s, int c, size_t n);

The memchr function searches for the value c (converted to an

unsigned char) in the n-byte memory block starting at s.

The function returns a pointer to the �rst occurrence of c within

the memory block. If the character is not located, a null pointer is

returned.

Alphabetic List of Run-time Library Entries 287

memcmp SA T2 memory block compare

#include <string.h>

int memcmp(const void *s1, const void *s2,

size_t n);

The memcmp function compares the �rst n bytes of the two objects

pointed to by s1 and s2. The result returned will be less than,

greater than, or equal to zero according to whether the object

pointed to by s1 is less than, greater than, or equal to the object

pointed to by s2.

The comparison operation is performed one character at a time; a

result will be returned when the �rst di�erence between the objects

is located.

CAREFUL! When comparing complex objects, particularly when

these were allocated using malloc from the heap, remember to take

account of the following:

1. \Holes" are sometimes introduced into struct or union ob-

jects by the compiler to ensure that �elds of the struct or

union are correctly aligned on appropriate address boundaries.

The contents of such \holes" are not de�ned, unless the struct

or union is statically allocated, or has been explicitly initialised

in its entirety by use of memset or calloc. For more detail on

alignment in structures, see section 9.8.

2. Character arrays used as string variables may contain string

values whose length is less than that of a previous string value

held in the same array. In this case, the value may be followed

by parts of the previous value, which may cause problems in a

comparison using memcmp.

288 Chapter 11

memcpy INLINE SA T2 memory block move

#include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

memcpy copies n characters from the object pointed to by s2 into the

object pointed to by s1. memcpy returns the value of s1.

CAREFUL! If the two objects pointed to by s1 and s2 overlap, the be-

haviour of memcpy is unde�ned. To copy from one object to another

which overlaps it, or when it is not known whether the two objects

overlap, you can use the memmove function instead of memcpy.

memmove SA T2 \safe" memory block move

#include <string.h>

void *memmove(void *s1, const void *s2,

size_t n);

memmove copies n characters from the object pointed to by s2 into

the object pointed to by s1. memmove returns the value of s1.

If the two objects pointed to by s1 and s2 overlap, memmove will still

perform the copy correctly. This is in contrast to memcpy, for which

the behaviour would be unde�ned. If it is known that the objects

pointed to by s1 and s2 de�nitely do not overlap, you can use the

faster memcpy function instead of memmove

memset SA T2 �ll object with repeated byte value

#include <string.h>

void *memset(void *ptr, int cval, size_t num);

The memset function copies the value of cval (converted to an

unsigned char) into each of the �rst num characters of the object

pointed to by ptr.

The memset function returns the value of ptr.

Alphabetic List of Run-time Library Entries 289

modf INLINE SA split argument into integral and fractional parts

#include <math.h>

double modf(double value, double *iptr);

modf splits value into its integral and fractional parts. The function

returns the signed fractional part and the integral part is pointed to

by *iptr.

net_broadcast SA send a ood-�lled network broadcast

#include <net.h>

int net_send(int nbytes, char *packet);

This function can be used by the master task of a ood-�lled appli-

cation to send a message to every worker task. It should not be used

by any worker task.

The message to be sent is found starting at the location pointed to by

packet. The nbytes parameter speci�es the length in bytes of the

message. This function is unlike net_receive and net_send in that

the nbytes parameter is not restricted to NET_MAX_PACKET_LENGTH.

This means that the programmer does not have to split the message

up into packets; this is done by net_broadcast. The worker tasks

receive the message by calling net_receive in the usual way, pos-

sibly several times; net_broadcast ensures that the when the last

packet is read, the complete parameter has the value 1 as usual.

The net_broadcast function can only be used when all the worker

tasks are known to be idle. Typically, this would be at the beginning

of the program run, before any work packets have been sent out.

Later, the master task can broadcast new data, provided a result

packet has been received corresponding to every work packet sent

out.

290 Chapter 11

net_receive SA receive a ood-�lled network message

#include <net.h>

int net_receive(char *packet, int *complete);

This function can be called by tasks participating in a ood-�lled

application to receive a message from the network; the function uses

the task's input port 0 to communicate with the router task.

The next (or only) packet of the message being received is read into

the bu�er pointed to by packet.

If net_receive is called by the master task it reads the next available

result packet returned by a worker task; if it is called from a worker

task, it reads the next work packet sent out by the master.

The size of the packet (in bytes) is returned as the result of the

function.

If the packet is the �nal or only packet of the message, the location

pointed to by complete will be set to 1; otherwise it is set to 0

and the receiving task must repeatedly call net_receive to read

the remaining part of the message.

No more than NET_MAX_PACKET_LENGTH bytes will be read into the

packet bu�er. Less space may be allocated if it is certain that the

sending task will not send messages longer than some smaller limit

(for example, if only �xed-length messages are being used).

net_send SA send a ood-�lled network message

#include <net.h>

int net_send(int nbytes, char *packet,

int complete);

This function can be called by tasks participating in a ood-�lled

application to send a message into the network; the function uses

the task's output port 0 to communicate with the router task. If

net_send is called by the master task, the message packet is sent to

Alphabetic List of Run-time Library Entries 291

any free worker task; if the function is called by a worker task, the

packet is sent back to the master task.

nbytes is the number of bytes of data in the bu�er pointed to by

packet. The complete argument should be 1, except for the case

described next.

nbytes cannot be longer that NET_MAX_PACKET_LENGTH, which is

de�ned in net.h to be 1024. If you need to send a longer message,

it must be broken up into a number of packets, each smaller than

this limit. These packets must then each be sent by a separate call

to net_send. The last packet of such a chained message should be

sent with complete set to 1; all the others should have complete

set to 0. The packet argument should be updated for each call to

point to the next part of the data to be sent. The routing software

guarantees that multiple packets sent in this way are always received

by the destination task in the same order they were sent.

If at all possible, you should try to design your application so that

chained messages are unnecessary. This is because a circuit has to

be held open between the two tasks until the last packet is sent. As

a result, sending long chained messages can clog up the network,

blocking packets being delivered to other nodes.

If nbytes is less than zero or greater than NET_MAX_PACKET_LENGTH

no message is sent and the function returns a negative value. Oth-

erwise the function returns the number of bytes sent, which will be

nbytes if no error occurs.

NULL MACRO null pointer constant

NULL is de�ned in stddef.h, and also in locale.h, stdio.h,

stdlib.h and string.h. It may be used as a null pointer value

of any type, such as, for example, (char *)0 or (int *)0.

292 Chapter 11

offsetof MACRO NEW SA T2 o�set of structure member

#include <stddef.h>

offsetof(type, member-designator);

This macro expands to a constant expression of type size_t, which

has the value of the o�set in bytes from the beginning of the structure

to member-designator . The member may not be a bit-�eld.

outp DOS write to host output port

#include <dos.h>

void outp(unsigned int port, int byte);

outp writes the low-order byte of the integer value given as its second

argument to one of the host PC's output ports. The �rst argument,

port, speci�es the target output port address.

par_free SA T2 deallocate space allocated by par_malloc

#include <par.h>

void par_free(char *ap);

par_free provides access to the function free in circumstances

where multiple threads are active; access to the memory alloca-

tion structures in the run-time library is interlocked through the

semaphore par_sema.

Alphabetic List of Run-time Library Entries 293

par_fprintf formatted output

#include <stdio.h>

#include <par.h>

int par_fprintf(FILE *stream, const char *format,

...);

par_fprintf provides access to the function fprintf in circum-

stances where multiple threads are active; access to the standard

I/O structures in the run-time library is interlocked through the

semaphore par_sema.

The �rst call on fprintf, printf, sprintf, par_fprintf or

par_printf causes a 1KB bu�er to be allocated from the heap.

par_printf formatted output on stdout

#include <par.h>

int par_printf(const char *format, ...);

par_printf provides access to the function printf in circumstances

where multiple threads are active; access to the standard I/O struc-

tures in the run-time library is interlocked through the semaphore

par_sema.

The �rst call on fprintf, printf, sprintf, par_fprintf or

par_printf causes a 1KB bu�er to be allocated from the heap.

par_malloc SA T2 allocate the speci�ed number of contiguous bytes

of memory

#include <par.h>

char *par_malloc(unsigned nbytes);

par_malloc provides access to the function malloc in circumstances

where multiple threads are active; access to the memory alloca-

tion structures in the run-time library is interlocked through the

semaphore par_sema.

294 Chapter 11

par_sema SA T2 semaphore for synchronising access to the run-time

library

#include <sema.h>

SEMA par_sema;

When more than one thread is running, steps must be taken to

ensure that only one thread at a time makes use of certain run-

time library functions. A thread can ensure that this rule is not

broken by waiting for the semaphore par_sema before using one of

these functions. After �nishing with the run-time library, the thread

should signal par_sema so that other threads can get access.

par_sema is also used by all the functions of the par package.

perror print error message

#include <stdio.h>

void perror(const char *s);

The perror function maps the value in the global variable errno

into a textual message, which is printed on the standard error stream

stderr.

If s is not a null pointer, perror �rst prints the string pointed to

by s followed by a colon and a space. Regardless of the value of s,

perror next prints a message corresponding to errno followed by a

new-line character.

The error messages produced by perror are the same as those which

can be obtained by calling the function strerror (see page 312) with

errno as argument.

For example, if the current value of errno is EDOM, a call such as

perror("myprog") might produce the following output:

myprog: domain error

Alphabetic List of Run-time Library Entries 295

pow SA calculates xy

#include <math.h>

double pow(double x, double y);

pow returns the value of x raised to the power of y.

If x is negative and y is not an integral number, pow returns HUGE_VAL

and sets errno to the value of EDOM. If x is zero, and y is zero or

negative, pow returns HUGE_VAL amd sets errno to EDOM. If the result

of the function is too large, pow returns HUGE_VAL and sets errno to

the value of ERANGE.

printf formatted output on stdout

#include <stdio.h>

int printf(const char *format, ...);

printf writes output to the standard output stream, stdout. It re-

turns the number of characters which have been output, or a negative

value if an output error occurred.

The arguments of printf have the same meaning as the fprintf

arguments of the same name. See the description of fprintf. A call

to printf is equivalent to a call to fprintf as follows:

fprintf(stdout, format, ...);

The �rst call on fprintf, printf, sprintf, par_fprintf or

par_printf causes a 1KB bu�er to be allocated from the heap.

putc MACRO writes a single character to a �le

#include <stdio.h>

int putc(int cval, FILE *stream);

putc appends the character cval to the speci�ed output stream. It

returns the character written.

296 Chapter 11

EOF is returned on error.

Because it is implemented as a macro, putc treats a stream ar-

gument with side-e�ects improperly. In particular, the following

example causes the pointer f to be incremented several times, which

is unlikely to be intended:

putc(c, *f++);

putchar MACRO write a character to standard output

#include <stdio.h>

int putchar(int cval);

putchar(cval) is a macro de�ned as putc(cval,stdout). The

character cval is written to the standard output stream, stdout

(normally the VDU).

EOF is returned on error.

puts write string to standard output

#include <stdio.h>

int puts(const char *pstr);

puts copies the NUL-terminated string pstr to the standard output

stream stdout and appends a newline character. The terminating

NUL character is not copied. stdout is normally the VDU.

puts appends a newline to the output string but fputs (q.v.) does

not.

Alphabetic List of Run-time Library Entries 297

qsort SA T2 \quick" sort

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,

int (*compar) (const void *,

const void *));

This function sorts an array of items into ascending order. The array

of items is pointed to by base; in the array, there are nmemb elements,

with each element in the array being size bytes long.

Note that the type of the elements in the array is completely general:

it might be int in a simple program or some complex struct type in

a more sophisticated program. The de�nition of \ascending order"

for this arbitrary data type is provided by the function compar which

is passed to qsort as a parameter.

The function pointed to by compar takes two arguments, each a

pointer to an item of the type which makes up the array pointed

to by base. The function returns an integer less than, equal to, or

greater than, zero according to whether the object pointed to by its

�rst argument is to be regarded as less than, equal to, or greater

than, that pointed to by its second argument. For example, the

following function could be used as a comparison function when it is

desired to sort an array of doubles into ascending order:

static int compare_doubles(double *d1, double *d2)

{

if (*d1 < *d2) return -1; /* less */

if (*d1 > *d2) return 1; /* greater */

return 0; /* else equal */

}

The corresponding call on qsort might be as follows, assuming an

array a of 1000 doubles:

qsort(a, 1000, sizeof(double), compare_doubles);

Although qsort nominally sorts the array into ascending order, it

can sort into any desired order by appropriate choice of the function

passed as the compar argument. The array of doubles used in the

298 Chapter 11

previous example could have been sorted into descending order of

absolute value using the following comparison function:

#include <math.h>

static int compare_abs_doubles(double *d1, double *d2)

{

if (fabs(*d1) < fabs(*d2)) return 1; /* less => more */

if (fabs(*d1) > fabs(*d2)) return -1; /* more => less */

return 0;

}

Here, fabs has been used to obtain the absolute value of the variables

pointed to by each argument. The sign of the return value is opposite

from that in the previous example to give the e�ect of reversing the

order in which qsort will sort the array.

Once an array has been sorted into the correct order using qsort, the

function bsearch (page 247) can be used to search for a particular

element within the array.

CAREFUL! It is not usually advisable to code as follows, for exam-

ple:

return *d1 - *d2;

This is because in some circumstances there could be an overow,

resulting in the items being sorted wrongly.

raise NEW SA T2 raise a signal

#include <signal.h>

int raise(int sig);

This function raises the signal speci�ed in sig. Macros are provided

to represent the allowed values of sig; they are SIGABRT, SIGFPE,

SIGILL, SIGINT, SIGSEGV and SIGTERM. The action taken when the

signal is raised depends on what action has been speci�ed for that

signal by a call to the signal function. If no such call has been

made, the default action will be taken; that is, to return to the

Alphabetic List of Run-time Library Entries 299

caller's program. If such a return is made, 0 is returned if the call

was successful, or 1 if there was an error.

Note that the allowed signals will only be raised in the current version

by means of calls to raise; they will never happen spontaneously.

rand SA pseudo-random number generator

#include <stdlib.h>

int rand(void);

rand function returns successive pseudo-random integers in the range

0 to RAND_MAX, a macro which is de�ned in <stdlib.h> to be 32767.

realloc SA T2 changes the size of an area allocated by malloc or

calloc

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

realloc changes the size of the object pointed to by ptr to the size

speci�ed by size. The function returns a pointer to the start of the

possibly moved object. If the space cannot be allocated, the realloc

function returns a null pointer and the object pointed to by ptr is

unchanged.

If ptr is a null pointer, the equivalent of a call to malloc is per-

formed, with the speci�ed value of size as the number of bytes

required.

300 Chapter 11

remove removes a �le from the �le system

#include <stdio.h>

int remove(const char *filename);

The remove function causes the �le whose name is the string pointed

to by filename to be removed. Subsequent attempts to open the

�le will fail, unless it is created anew.

Zero is returned if the �le has been removed, non-zero if the operation

failed.

rename rename a �le

#include <stdio.h>

int rename(const char *old, const char *new);

The �le named old is renamed new. old and new are pointers to NUL-

terminated character strings which must be valid host �le names.

Zero is returned if the rename operation succeeds, non-zero if it fails.

The host operating system determines whether or not a particular

�le renaming operation will succeed.

rewind reposition stream to beginning

#include <stdio.h>

void rewind(FILE *stream);

rewind(stream) is equivalent to (void)fseek(stream,0L,SEEK_SET).

It repositions stream to the �rst byte of the associated �le (byte 0).

It is a no-op if the stream is associated with a device rather than a

�le (e.g. the keyboard or the VDU).

Alphabetic List of Run-time Library Entries 301

scanf formatted input from stdin

#include <stdio.h>

int scanf(const char *format, ...);

scanf reads input from the standard input stream stdin. It reads

characters (via getc), interprets them according to the given format

and stores the resulting values in the locations pointed to by the

pointer arguments following format.

The exact meaning of the arguments to scanf is the same as that

of the arguments of the same name to the function fscanf. In fact,

the call

scanf(format, ...);

is equivalent to

fscanf(stdin, format, ...);

If an end-of-�le or input error occurs before any conversion is done,

fscanf returns EOF. Otherwise, it returns the number of input items

successfully converted and stored.

segread DOS read host segment registers

#include <dos.h>

void segread(struct SREGS *segregs);

This function reads the current values of the host 80x86 processor's

segment registers into segregs.

sema_init SA T2 initialise a semaphore

#include <sema.h>

void sema_init(SEMA *s, int v);

This function initialises the semaphore variable pointed to by s to

an initial state in which:

302 Chapter 11

� the queue of threads waiting for the semaphore is empty

� the value of the semaphore is v.

If a static or external semaphore is left uninitialised, it defaults

to an empty queue of threads and an initial value of 0. If an auto

semaphore is left uninitialised, the �rst sema_signal or sema_wait

operation on the semaphore will cause the transputer system to

behave unpredictably.

sema_signal SA T2 perform a signal operation on a semaphore

#include <sema.h>

void sema_signal(SEMA *s);

If there are threads waiting for the semaphore pointed to by s, one

of them will be chosen and made able to execute again. The value

of the semaphore under these conditions will always be 0, and will

remain unchanged.

Otherwise, when there are no threads waiting for the semaphore

pointed to by s, its value will simply be increased by 1.

Note that any particular semaphore must be accessed only by threads

executing at one particular priority. For example, it would be

acceptable for a set of \urgent" threads to synchronise through a

semaphore, or for a set of \not urgent" threads to do this, but not

for a mixture of threads executing at di�erent priorities. Threads

executing at di�erent priorities can synchronise by passing messages

along channels.

sema_signal_n SA T2 perform n signal operations on a semaphore

#include <sema.h>

void sema_signal_n(SEMA *s, int n);

This function calls the function sema_signal n times, in sequence.

Alphabetic List of Run-time Library Entries 303

The parameter n may be greater than or equal to zero.

sema_test_wait SA T2 test whether waiting on a semaphore would

block

#include <sema.h>

int sema_test_wait(SEMA *s);

If the semaphore pointed to by s has a non-zero count value,

sema_test_wait decrements the semaphore count and returns a

non-zero value.

Otherwise, the count in the semaphore is zero and a call on

sema_wait would have blocked. In this case, sema_test_wait sim-

ply returns 0.

This allows a task to check to see if waiting on a semaphore would

cause its execution to be suspended.

sema_wait SA T2 perform a wait operation on a semaphore

#include <sema.h>

void sema_wait(SEMA *s);

If the value of the semaphore pointed to by s is not zero, its value

is decreased by 1.

Otherwise, the value of the semaphore is 0. In this case, the value is

left unchanged and the current thread is added to the list of threads

waiting for the semaphore, and paused. It will be resumed by some

future call on sema_signal.

Programs should not rely on any relationship between the order in

which threads start to wait on a semaphore and the order in which

they will be resumed. At present, threads are simply \pushed down"

onto the list of waiting processes, so that the last thread to start

waiting on a semaphore will be the �rst to be resumed.

304 Chapter 11

Note that any particular semaphore must be accessed only by threads

executing at one particular priority. For example, it would be

acceptable for a set of \urgent" threads to synchronise through a

semaphore, or for a set of \not urgent" threads to do this, but not

for a mixture of threads executing at di�erent priorities. Threads

executing at di�erent priorities can synchronise by passing messages

along channels.

sema_wait_n SA T2 perform n wait operations on a semaphore

#include <sema.h>

void sema_wait_n(SEMA *s, int n);

This function calls the function sema_wait n times, in sequence. The

calling thread may be forced to wait at any point in the sequence.

The parameter n may be greater than or equal to zero.

serv_filter SA start Inmos �le server protocol �lter threads

#include <serv.h>

void serv_filter(CHAN *norm_in, CHAN *norm_out,

CHAN *wide_in, CHAN *wide_out);

A historical problem involving �rst-silicon T414A transputers was

solved by making the �le server protocol used by the afserver pro-

gram di�erent to the documented protocol used by user programs.

In programs which use the standard harness, the mismatch is han-

dled by a pair of \�lter" processes written in occam. In con�gured

programs, the mismatch is usually dealt with by the purpose-built

filter task.

This function allows a program to start a pair of threads which

emulate the function of these �lter processes or tasks. The workspace

for these threads is roughly 1200 bytes in total; this is allocated

Alphabetic List of Run-time Library Entries 305

from the heap. After the �lter threads have been started, control is

returned to the caller.

norm_in and norm_out are connected to the \normal" task (i.e.,

the one using the protocol as documented by Inmos) while wide_in

and wide_out are connected to the task using the T414A-tolerant

variant protocol. The latter will normally be the pair of physical

links connected to the host.

The sense of the in/out labels on the arguments to this function

is from the point of view of the tasks to which the �lter is being

attached. For example, norm_in is an input channel to the normal-

protocol task; it will therefore be an output channel to the task

containing the serv_filter call.

Note that the maximum size of a variable-length data item (speci�ed

by the record32.value protocol tag) which may be passed through

the �lter in either direction is 512 bytes. This restriction is the same

as that imposed by the occam version of the link �lter.

setbuf assign bu�ering to a stream

#include <stdio.h>

void setbuf(FILE *stream, char *buf);

setbuf is used after a stream has been opened but before it is read

or written. It causes the character array buf to be used instead of an

automatically allocated bu�er. If buf is the constant pointer NULL,

I/O will be performed without any bu�ering being interposed by the

stdio package. A macro BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A bu�er is normally obtained from malloc upon the �rst getc or

putc on the �le, except that output streams directed to the VDU

and the standard error stream stderr are normally not bu�ered.

306 Chapter 11

setjmp SA T2 save environment for longjmp

#include <setjmp.h>

int setjmp(jmp_buf env);

This function, together with longjmp, is useful for dealing with errors

encountered in a low-level subroutine of the program.

longjmp restores the stack environment saved in its env argument by

an earlier call on setjmp. This has the e�ect of resuming execution

immediately after that setjmp call.

setjmp's caller can distinguish between the original return from

setjmp and the second return caused by longjmp by examining

setjmp's return value. This is always 0 for the initial return, and

the value of longjmp's val argument for subsequent returns. If val

is set to 0, longjmp will change it to a 1 in order to preserve this

condition.

The function which originally called setjmp must not itself have

returned before the call to longjmp. All accessible data still have

their values as of the time longjmp was called.

setlocale NEW SA T2 query or change all or part of the locale

#include <locale.h>

char *setlocale(int category,

const char *locale);

setlocale enables the user to change or query all or part of the cur-

rent locale. The part of the locale to a�ect is speci�ed in category;

the following macros are provided to do this: LC_ALL, LC_COLLATE,

LC_CTYPE, LC_MONETARY, LC_NUMERIC and LC_TIME.

If a locale is speci�ed, the locale for the speci�ed category will

be changed to that locale, and the new locale will be returned. If

NULL is speci�ed for locale, the current value of the locale for that

category will be returned. If the request cannot be honoured, NULL

is returned.

Alphabetic List of Run-time Library Entries 307

In the current version of Parallel C, the only recognised locales are

"C" and ""; these have the same characteristics, as de�ned in section

4.4 of the ANSI standard[3].

setvbuf NEW determine how stream will be bu�ered

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int mode,

size_t size);

After the speci�ed stream has been opened, and before any other

I/O has been performed on it, the function setvbuf may be used to

change its bu�ering method to use the the speci�ed mode. Macros

are provided to specify the allowed modes; they are _IOFBF, _IOLBF

and _IONBF. Details may be found in section 4.9.5.6 of the ANSI

standard[3].

In the current version of Parallel C, calls to setvbuf are not hon-

oured, and a non-zero value is returned to indicate this.

signal NEW SA T2 de�ne method of handling signal

#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

signal de�nes how a speci�ed signal will be handled from now on.

The allowed values for sig are listed in the discussion of raise.

For the second argument, func, the programmer may specify the

macros SIG_DFL or SIG_IGN, both of which result in the speci�ed

signal being ignored. Alternatively, the name of a function, called

a signal handler , may be speci�ed. In this case, when the signal

is raised the signal handler is called. During the execution of the

signal handler, that signal is ignored. Execution of the signal handler

may be ended by calling longjmp, exit or abort; or by executing

308 Chapter 11

a return, in which case execution will resume from the point where

the signal was raised.

If there is an error in the call of signal, it will return the value of the

macro SIG_ERR, and set errno to EINVAL. Otherwise it will return

the value of the func argument.

In the present version of Parallel C, signals may only be raised by

calling the raise function. They do not happen spontaneously.

sin SA sine function

#include <math.h>

double sin(double x);

sin returns the sine of its radian argument.

sinh SA hyperbolic sine function

#include <math.h>

double sinh(double x);

sinh returns the hyperbolic sine of its argument. If the magnitude

of x is too large, HUGE_VAL is returned, and errno is set to the value

of ERANGE.

sprintf SA formatted output to a string

#include <stdio.h>

int sprintf(char *pstr, const char *format, ...);

sprintf writes formatted output into a character array via a pointer

pstr supplied by the caller. It returns the number of characters

written into the array.

Alphabetic List of Run-time Library Entries 309

The meaning of format string and the use of the other arguments is

as for fprintf.

The output string pstr is automatically terminated by a NUL charac-

ter. Note that this terminator is not included in the character count

returned by sprintf.

The �rst call on fprintf, printf, sprintf, par_fprintf or

par_printf causes a 1KB bu�er to be allocated from the heap.

sqrt SA calculates
p
x

#include <math.h>

double sqrt(double x);

sqrt returns the square root of x.

sqrt returns HUGE_VAL when x is negative; errno is set to EDOM.

srand SA new seed for rand function

#include <stdlib.h>

void srand(unsigned int seed);

The srand function uses its argument as a seed for a new sequence of

pseudo-random numbers to be returned by subsequent calls to rand.

sscanf formatted input from string

#include <stdio.h>

int sscanf(char *pstr, const char *format, ...);

sscanf reads input from the string pstr. It interprets the characters

it reads according to the given format string and stores the resulting

values in the locations pointed to by the pointer arguments following

format.

310 Chapter 11

The exact meaning of the arguments to sscanf is the same as for

fscanf.

If the end of the string is found before any conversion is done, fscanf

returns EOF. Otherwise, it returns the number of input items success-

fully converted and stored.

strcat SA T2 concatenates two strings

#include <string.h>

char *strcat(char *s1, const char *s2);

strcat appends a copy of string s2 to the end of string s1. A pointer

to the NUL-terminated result is returned.

strchr SA T2 �nd a speci�ed character in a string

#include <string.h>

char *strchr(const char *pstr, int cval);

strchr locates the �rst occurrence of cval (converted to a char)

in the string pointed to by pstr. The terminating NUL character is

considered to be part of the string. The function returns a pointer

to the located character, or a null pointer if the character does not

occur in the string.

strcmp SA T2 string compare

#include <string.h>

int strcmp(const char *s1, const char *s2);

strcmp compares its arguments and returns an integer greater than,

equal to, or less than 0, depending on whether s1 is lexicographically

greater than, equal to or less than s2.

Alphabetic List of Run-time Library Entries 311

strcoll SA T2 string compare using current locale's collating

sequence

#include <string.h>

int strcoll(const char *s1, const char *s2);

strcmp compares its arguments, interpreting both in the light of the

LC_COLLATE category of the current locale. It then returns an integer

greater than, equal to, or less than 0, depending on whether s1 is

lexicographically greater than, equal to or less than s2.

Note that as the current version of Parallel C only supports the "C"

and "" locales, strcoll is equivalent to a call on strcmp.

strcpy SA T2 string copy

#include <string.h>

char *strcpy(char *s1, const char *s2);

strcpy copies string s2 to s1, stopping after the NUL character has

been moved. s1 is returned. If copying takes place between objects

that overlap, the behaviour is unde�ned.

strcspn SA T2 �nd length of string that does not contain speci�ed

characters

#include <string.h>

size_t strcspn(const char *s1, const char *s2);

strcspn calculates the length of the initial part of the string pointed

to by s1 which consists of characters not from the string pointed to

by s2. The terminating NUL character is not considered part of s2.

The function returns the length of the part.

312 Chapter 11

strerror map error number to message

#include <string.h>

char *strerror(int errnum);

This function maps the error number in errnum into a textual er-

ror message string, to which it returns a pointer. For example,

an errnum argument of EDOM might return a pointer to the string

"domain error".

CAREFUL! The string whose address is returned by strerror must

not be modi�ed by the caller of strerror. In addition, subsequent

calls to strerrormay overwrite this string with a new error message.

Thus, if the result of strerror is not to be used immediately (for

example, to be printed out) it should be copied elsewhere until it is

needed to avoid being overwritten.

strlen SA T2 string length

#include <string.h>

size_t strlen(const char *pstr);

strlen returns the number of non-NUL characters in pstr.

strncat SA T2 string concatenate

#include <string.h>

char *strncat(char *s1, const char *s2,

size_t num);

strncat appends a copy of string s2 to the end of string s1. It copies

at most num characters. A pointer to the NUL-terminated result is

returned.

Alphabetic List of Run-time Library Entries 313

strncmp SA T2 string compare

#include <string.h>

int strncmp(const char *s1, const char *s2,

size_t num);

strncmp compares its arguments and returns an integer greater than,

equal to, or less than 0, depending on whether s1 is lexicographically

greater than, equal to or less than s2. At most num characters are

looked at.

strncpy SA T2 string copy

#include <string.h>

char *strncpy(char *s1, const char *s2,

size_t num);

strncpy copies string s2 to s1. Exactly num characters are copied:

s2 is truncated or NUL-padded as required. The target may not be

NUL-terminated if the length of s2 is n or more. s1 is returned.

strpbrk SA T2 locate �rst character from character set

#include <string.h>

char *strpbrk(const char *str, const char *cset);

The strpbrk function scans the string pointed to by str for the �rst

character in that string which is also contained in the string pointed

to by cset. It returns a pointer to this character once located. If the

string pointed to by str does not contain any of the characters from

the string pointed to by cset then strpbrk returns a null pointer.

The following example shows how strpbrk might be used to scan a

string, replacing any vowels with the character `*':

char str[] = "this is some example text";

char *p;

314 Chapter 11

while (p = strpbrk(str, "aeiouAEIOU"))

p = '';

After execution of this code fragment, the array str would contain

the string "th*s *s s*me *x*mpl* t*xt".

strrchr SA T2 �nd last copy of speci�ed character in string

#include <string.h>

char *strrchr(char *s, int c);

This function locates the last occurrence of c (converted to a char)

in the string pointed to by s. It returns a pointer to the located copy

of c. If no copy of c can be located in the string, a null pointer is

returned.

Note that strrchr treats the NUL character which terminates the

string pointed to by s to be part of that string; therefore, a call such

as strrchr(s,0) will locate that NUL terminator.

strspn SA T2 �nd length of string which contains speci�ed

characters

#include <string.h>

size_t strspn(const char *s1, const char *s2);

strspn calculates the length of the initial part of the string pointed

to by s1 which consists of characters from the string pointed to by

s2. The function returns the length of the segment.

Alphabetic List of Run-time Library Entries 315

strstr SA T2 locate substring within string

#include <string.h>

char *strstr(const char *str, const char *sub);

This function searches for the string pointed to by sub within the

string pointed to by str. If the substring cannot be located, a null

pointer is returned. Otherwise, strstr returns a pointer to the �rst

occurrence of the substring.

If sub points to an empty string (i.e., just to a NUL character) then

strstr returns str.

As an example of the use of strstr, consider the following code

fragment:

char *str = "The quick fox jumps.";

char *sub1 = "fox";

char *sub2 = "dog";

char *ans1 = strstr(str, sub1);

char *ans2 = strstr(str, sub2);

After the execution of this code fragment, ans1 will contain a pointer

to the part of str starting at \fox", i.e., "fox jumps.". On the

other hand, str does not contain the substring \dog", so ans2 will

contain a null pointer.

strtod NEW SA convert string to double value

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

Starting from the place pointed to by nptr, strtod skips over initial

white space, then attempts to interpret characters as forming part

of a oating-point constant. Conversion stops at the �rst character

which does not �t into the format of the constant.

The format expected is: an optional sign, a sequence of digits op-

tionally including a decimal point, then an optional exponent part,

316 Chapter 11

consisting of an `e' or `E', followed by an optionally-signed integer.

The value of this constant is returned as the value of the function,

and the object pointed to by endptr is set to point to the �rst

character which is not converted (unless endptr is null).

If no conversion could be performed or if the string is empty, zero is

returned, and the initial value of nptr is stored in the object pointed

to by endptr (unless endptr is null). If the value is out of range,

+HUGE_VAL or -HUGE_VAL, depending on the sign of the value, is

returned. If the value causes underow, zero is returned. In both

these cases, errno is set to ERANGE.

strtok SA T2 break strings into tokens

#include <string.h>

char *strtok(char *s1, const char *s2);

strtok breaks the string pointed to by s1 into tokens, each of which

is delimited by a character from the string pointed to by s2. The

�rst use of strtok must have s1 pointing at a string. Subsequent

use can either have s1 pointing at a new string or a null pointer as

its �rst argument. If a null pointer is used, the function starts from

the position the last call terminated. s2 can be di�erent for each

call. The function returns a pointer to a token or a null pointer if

there is no token found.

strtol SA convert string to long int

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr,

int base);

This function converts the initial portion of the string pointed to

by nptr to long int representation. First the string is split into

three parts: an initial string of white-space characters (which may

be empty), a subject string resembling an integer, to be decoded

Alphabetic List of Run-time Library Entries 317

using the radix information speci�ed in base, and a �nal string

which starts at the �rst character which is not acceptable in the

expected format of the subject string, and extends to and includes

the terminating NUL character of the input string. Then it attempts

to convert the subject string to an integer, and returns the result.

If the value of base is in the range 2{36, the expected form of

the subject string is a sequence of digits and letters representing

an integer with the radix speci�ed in base. The letters `a' to `z'

(or `A' to `Z') are ascribed the values 10{35. Only those characters

which are representations of values less than base are allowed. If

base has the value 16, the characters \0x" (or \0X") may precede

the sequence of letters and digits, but have no e�ect.

If the value of base is 0, the subject string is treated as hexadecimal

(if it starts with \0x" or \0X"), octal (if it starts with `0') or decimal

(for any other case). All other values of base are illegal.

Uppercase letters are everywhere equivalent to lowercase ones, and

the subject string may start with a plus or minus sign. However,

su�xes (like `L' or `U') are not allowed.

The function attempts to trap overows, and if this happens the

value LONG_MAX or LONG_MIN is returned (these are de�ned in

<limits.h>), and errno is set to ERANGE.

If the subject string is empty, or base has an illegal value, then zero

is returned and errno is set to EDOM. In this case, the object pointed

to by endptr is set to the value of nptr (unless endptr is equal to

NULL); in all other cases, including overows, this object is set to

the address of the start of the �nal string. The subject string will

be empty if, for example, the input string is empty or contains only

white space. Here are some other input strings whose subject strings

are empty:

-

+

0x

/

318 Chapter 11

- 1

0x-5

strtoul SA convert string to unsigned long int

#include <stdlib.h>

unsigned long int strtoul(const char *nptr,

char **endptr, int base)

char *nptr, **endptr;

int base;

This function operates in the same way as strtol, except:

� It returns an unsigned long int;

� In the event of an overow being trapped, the value returned

is always ULONG_MAX.

strxfrm NEW SA T2 transform string using locale's collating

sequence

#include <string.h>

size_t strxfrm(char *s1, const char *s2,

size_t n);

The function transforms the string pointed to by s2 and places the

result in the string pointed to by s1. The nature of this trans-

formation is controlled by the LC_COLLATE category of the current

locale, and the e�ect is that two strings which have been transformed

in this way can be correctly compared using strcmp. A maximum

of n characters is transformed, including the �nal null character;

in any case, transformation stops after a null character has been

converted. strxfrm returns the number of characters which have

been transformed, excluding the null character. The s1 argument

may be NULL if n is zero.

Alphabetic List of Run-time Library Entries 319

Note that, as the current version of Parallel C only supports the "C"

and "" locales, this function simply performs a copy operation.

system call command interpreter

#include <stdlib.h>

int system(const char *string);

string is passed to the host command-line interpreter and executed

as if it had been entered as a command. The string argument to the

system function should be a valid host command line.

system returns 0 if the server accepts the command; otherwise it

returns a nonzero value. Any host return code generated by the

command is not passed back to the calling program.

CAREFUL! Note that it is not normally possible to use a host com-

mand which involves the use of the transputer system. Attempting

to do this will normally result in the program calling system being

overwritten by the requested program: when the requested command

terminates, the server associated with the original program will not

be able to communicate with it and will probably appear to \hang".

DOS Remember that the backslash character `\' used in MS-DOS

�le names is an escape character in C string literals and must be

written as \\\". For example:

system("dir \\mydir*.c");

tan SA tangent function

#include <math.h>

double tan(double x);

tan returns the tangent of its radian argument. The magnitude of

the argument should be checked by the caller to make sure the result

is meaningful.

320 Chapter 11

tanh SA hyperbolic tangent function

#include <math.h>

double tanh(double x);

tanh returns the hyperbolic tangent of its argument. The magnitude

of the argument should be checked by the caller to make sure the

result is meaningful.

thread_create SA T2 create a simple thread

#include <thread.h>

char *thread_create(void (*fn)(), int wssize,

int nargs, ...);

The function fn is started as a new thread, running at the same

priority as the current thread, with a workspace of wssize bytes.

This workspace is taken from the heap (using par_malloc) and a

pointer to it is returned from thread_create so that, if desired,

the workspace can be returned to the heap (using par_free) once

the thread is known to have stopped. If there is insu�cient heap

space remaining to create the requested workspace, this function

will return NULL.

The nargs argument speci�es the number of arguments which are

to be passed to the new thread's function fn. The arguments them-

selves follow nargs. When counting the arguments for nargs, each

argument of whatever type counts for 1, except for arguments of

type double, which counts for 2.

This function is a shorthand way of calling the more general thread

creation function thread_start in the most usual circumstances.

CAREFUL! Because thread_create calls par_malloc to allocate the

workspace from the heap, and because par_malloc in turn waits for

the par_sema semaphore to protect its access to the common data

structures in the heap, a thread which calls thread_create should

not have claimed the par_sema semaphore. If it has, the call to

Alphabetic List of Run-time Library Entries 321

thread_create will never return because the second wait request

for par_sema will block unnecessarily.

thread_deschedule INLINE SA T2 make current thread

momentarily unable to execute

#include <thread.h>

void thread_deschedule(void);

This function causes a thread to become momentarily unable to

execute (usually for one timer tick); this will cause it to be de-

scheduled from the processor, thus allowing some other thread to

resume execution in its place. Eventually, the thread which called

thread_deschedule will resume.

This function can be used by a thread performing some background

computation to prevent it from \hogging" the processor to the detri-

ment of other threads executing at the same priority level. In e�ect,

a priority level even less urgent than THREAD_NOTURG can be achieved

for use by threads performing long-term CPU-intensive tasks whose

results are not expected to be immediately required.

thread_priority INLINE SA T2 return current thread's priority

#include <thread.h>

int thread_priority(void);

This function returns the priority of the current thread, which will

be either THREAD_URGENT or THREAD_NOTURG.

322 Chapter 11

thread_restart INLINE SA T2 restart a thread given its workspace

#include <thread.h>

void thread_restart(char *p);

p should be a pointer to the workspace of the thread which we

wish to restart. Currently, the only value that should be passed

to thread_restart is one produced by chan_reset.

This function can be used to restart threads which have been stopped

because the channel on which they were attempting to communicate

has been reset using a call to chan_reset, which returns a handle

suitable for use by thread_restart.

thread_start SA T2 start a general thread

#include <thread.h>

void thread_start(void (*fn)(), char *ws, int wssize,

int flags, int nargs, ...);

This function starts a new thread based on the function fn. The new

thread uses the area ws as its workspace. The size of the workspace

(wssize) is a number of bytes.

The new thread will stop either when it executes the function

thread_stop, or when fn returns.

The flags argument is a set of attributes for the new thread.

At present, the only attribute available is the thread's priority,

which should be either THREAD_URGENT or THREAD_NOTURG. Normally,

new threads should be started at the same priority as the current

thread. This is achieved by passing the result of the function

thread_priority described below as the value of this argument.

Other than the priority speci�cation, all bits in the flags argument

are reserved, and should be 0.

The nargs argument speci�es the number of arguments which are

to be passed to the new thread's function fn. The arguments them-

Alphabetic List of Run-time Library Entries 323

selves follow nargs. When counting the arguments for nargs, each

argument of whatever type counts for 1, except for arguments of

type double, which counts for 2.

The workspace supplied as the ws parameter must have been allo-

cated by the caller of thread_start. It may have been allocated in

any of a number of ways, including allocation from the heap using

malloc, or allocation as a simple static or automatic array variable.

See also the description of thread_create, which simpli�es thread

creation by starting a thread at the current priority and allocates

the thread's workspace from the heap.

thread_stop INLINE SA T2 stop the current thread

#include <thread.h>

void thread_stop(void);

This function stops the current thread. The current thread is also

stopped if its main function returns.

time DOS returns the current calendar time

#include <time.h>

time_t time(time_t *timer);

The time function determines the current calendar time. The type

(time_t) of the value returned by time is int. The value returned

is the number of seconds that have elapsed since 00:00:00 GMT on

1st January, 1970, according to the host system clock.

If the timer argument is not a null pointer, the result of time is also

assigned to the variable pointed to by time. Therefore, the time

function can be used in either of two ways, as shown in the following

324 Chapter 11

example, where the two statements each assign the current calendar

time to the variable t:

t = time((time_t *)0);

(void)time(&t);

DOS Although the PC software on which time depends attempts to

give you the time in GMT, by default it does this on the assumption

that you are in the Paci�c Standard Time zone. If you are not

actually in this time zone, you must make the system aware of the

fact. This is done by de�ning the MS-DOS environmental variable

TZ. For example, if you live in Great Britain, you could de�ne TZ

like this:

C>set tz=GMT

C>set tz=GMT1BST (during Summer Time)

timer_after INLINE SA T2 compare two transputer timer values

#include <timer.h>

int timer_after(int t1, int t2);

This function returns non-zero if timer value t1 is after timer value

t2, and zero otherwise.

timer_delay INLINE SA T2 delay for some number of timer ticks

#include <timer.h>

void timer_delay(int d);

This function causes the current thread to wait for at least d ticks

of the timer associated with the current thread's priority.

Alphabetic List of Run-time Library Entries 325

timer_now INLINE SA T2 return the current timer value

#include <timer.h>

int timer_now(void);

This function returns the value of the timer associated with the

current thread's priority.

For a high priority (\urgent") thread, the timer has a resolution of

1�s, so that it ticks one million times per second. For a low priority

(\not urgent") thread, the resolution is 64�s and only 15625 ticks

occur in one second.

timer_wait INLINE SA T2 wait until current timer reaches some

value

#include <timer.h>

void timer_wait(int t);

This function causes the current thread to wait until the value of

the timer associated with the the priority of the current thread is at

least t.

tmpfile NEW create temporary binary �le

#include <stdio.h>

FILE *tmpfile(void);

This function creates a temporary binary �le which will automati-

cally be deleted at the end of the program run. The �le is opened

for update with wb+ mode.

326 Chapter 11

tmpnam NEW generate unique �lename

#include <stdio.h>

char *tmpnam(char s);

This function generates a unique �lename which is not the name

of any existing �le. Despite the name of the function, a �le opened

with this name is not automatically deleted at the end of the program

run. If the argument s is a null pointer, the �lename is generated

in an internal bu�er; otherwise, s is assumed to be a pointer to an

array of at least L_tmpnam chars, and the �lename is written there.

The value returned is in both cases a pointer to the place where the

�lename has been written.

You may call tmpnam a maximum of TMP_MAX times, and each time

it will generate a di�erent �lename. The internal bu�er is only

guaranteed to remain unchanged until the next call to tmpnam.

In the current implementation, TMP_MAX is 1000016, and L_tmpnam is

9. The form of the generated �lenames is tmp$nnnn, where nnnn is

a hexadecimal number.

tolower SA T2 convert char to lower case

#include <ctype.h>

int tolower(int cval);

If cval is the ASCII code for an upper case letter, tolower returns

the code for the corresponding lower case letter. Otherwise, the value

of cval is returned unchanged.

Alphabetic List of Run-time Library Entries 327

toupper SA T2 convert char to upper case

#include <ctype.h>

int toupper(int cval);

If cval is the ASCII code for a lower case letter, toupper returns the

code for the corresponding upper case letter. Otherwise, the value

of cval is returned unchanged.

to86 DOS transfer memory block to host

#include <dos.h>

int to86(int len, char *here, pcpointer there);

This function transfers len bytes of transputer memory starting at

here to a corresponding block starting at there in host memory.

The function returns the number of bytes actually transferred. The

host memory block will normally have been allocated by a previous

call to alloc86.

ungetc push character back into input stream

#include <stdio.h>

int ungetc(int cval, FILE *stream);

ungetc pushes the character cval back on an input stream. That

character will be returned by the next getc call on that stream.

ungetc returns cval.

One character of pushback is guaranteed provided something has

been read from the stream and the stream is actually bu�ered. At-

tempts to push EOF are rejected.

fseek (q.v.) erases all memory of pushed back characters.

ungetc returns EOF if it can't push a character back.

328 Chapter 11

va_arg MACRO NEW SA T2 access next argument in

variable-length list

#include <stdarg.h>

type va_arg(va_list ap, type);

The va_arg macro is used to access the next argument in a variable-

length argument list. The parameter ap should be a variable of

the type va-list, which is de�ned in the <stdarg.h> header; it

must have been initialised by va_start. The macro expands into an

expression which has the value of the next argument and the speci�ed

type; if this is not in fact the type of the argument, or if there are

no more arguments, the behaviour is unde�ned. For example:

#include <stdarg.h>

void ourfunc (char *message, ...);

{

va_list ap;

int ival;

va_start (ap, message);

ival = va_arg (ap, int);

}

On each call of va_arg, the parameter ap is modi�ed to point to the

next argument in the list.

va_end MACRO NEW SA T2 �nish with variable-length argument

list

#include <stdarg.h>

void va_end(va_list ap);

When accessing a variable length argument list, a function should

call this macro once all the arguments have been processed. This

ensures a correct return to the calling function. The parameter ap

should be a variable of the type va-list, which is de�ned in the

<stdarg.h> header; it must have been initialised by va_start.

Alphabetic List of Run-time Library Entries 329

va_start MACRO NEW SA T2 initialise argument pointer

#include <stdarg.h>

void va_start(va_list ap, parmN);

va_start is called before accessing a variable-length argument list.

The parameter ap should be a variable of the type va_list, which

is de�ned in the <stdarg.h> header. The parameter parmN should

be the parameter in the variable-argument list immediately before

the \, : : : ".

vfprintf NEW formatted output using argument pointer

#include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE *stream, char *format,

va_list ap);

This function corresponds to fprintf, and performs formatted out-

put to the speci�ed stream. As with fprintf, the format argument

controls the conversions to be performed. However, the variable

argument list has been replaced by the single argument ap, which

should be an argument pointer initialised by va_start. For example:

#include <stdarg.h>

#include <stdio.h>

void error (char *func_name, char *format, ...)

{

va_list ap;

va_start (ap, format);

fprintf (stderr, "Error in %s: ", func_name);

vfprintf (stderr, format, ap);

va_end(ap);

}

The function returns the number of characters output, or a negative

value if an output error occurred.

330 Chapter 11

vprintf NEW formatted output to stdout using argument pointer

#include <stdarg.h>

#include <stdio.h>

int vprintf(char *format, va_list ap);

This function corresponds to printf, and performs formatted output

to the standard output stream, stdout. As with printf, the format

argument controls the conversions to be performed. However, as with

vfprintf, the variable argument list has been replaced by the single

argument ap, which should be an argument pointer initialised by

va_start.

The function returns the number of characters output, or a negative

value if an output error occurred.

vsprintf NEW SA formatted output to a string using argument

pointer

#include <stdarg.h>

#include <stdio.h>

int vprintf(char *pstr, char *format,

va_list ap);

This function corresponds to sprintf, and writes formatted output

into a character array via a pointer pstr supplied by the user. As

with sprintf, the format argument controls the conversions to be

performed. However, as with vfprintf, the variable argument list

has been replaced by the single argument ap, which should be an

argument pointer initialised by va_start.

The function returns the number of characters output, or a negative

value if an output error occurred.

Alphabetic List of Run-time Library Entries 331

wcstombs NEW SA T2 convert wide character string to multibyte

string

#include <stdlib.h>

size_t wcstombs(char *s, const wchar_t *pwcs,

size_t n);

The sequence of wide characters pointed to by pwcs is converted to a

multibyte string and stored in the array pointed to by s. Conversion

stops when a null character has been converted, or when the next

character stored would exceed the limit of n bytes. If the two string

overlap, the e�ect is unde�ned.

wcstombs returns the number of bytes stored, excluding the null

character, if any.

Note that, in the present version of Parallel C, multibyte characters

and wide characters are both one byte in length and there is no

state-dependent encoding, so this function is equivalent to a string

copy. All possible element values are valid, so no error return can

happen.

wctomb NEW SA T2 convert multibyte character to wide character

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

If s is a null pointer, mbtowc returns 0, indicating that, for the

current version of Parallel C, multibyte character codings are never

state dependent. Otherwise, it returns the width in bytes of the

multibyte character corresponding to value of wchar. In the current

version, this will always be 1.

In addition, the multibyte character corresponding to the value of

wchar will be stored at the location pointed to by s. In the current

version, as both wide and multibyte characters are always 1 byte in

length, this is equivalent to storing wchar at *s.

332 Chapter 11

Chapter 12

The Linker

The linker utility, linkt, is compatible with all versions of the 3L

compilers for C, Fortran and Pascal. It can be used in place of the

linker distributed with earlier versions of these compilers. The linker

is also compatible with Tbug, 3L's interactive source-level debugger.

The linker's function is to create an executable �le from a number of

object �les. It can also be used to create libraries of object modules,

which may themselves be searched by the linker when it is creating

executable �les.

12.1 Command Line

The linker is invoked by the command linkt. This command is

followed by an ordered list of items giving the names of the object

�les and libraries to be linked, the name to be used for the executable

�le, and switches to control the linking operation.

The name of the executable �le must be separated from the object

�le names by a comma `,'; each object �le may be separated from

the next by either a space or a plus sign, `+'. Switches all start with

334 Chapter 12

a slash, `/', and so do not need to be separated one from another,

but spaces may be inserted between them for clarity.

The following are all valid examples of link commands.

C>linkt prog.bin library.bin,prog.b4

C>linkt prog.bin+library.bin, prog.b4

C>linkt prog1.bin prog2.bin lib.bin, myprog.b4

C>linkt prog1.bin+prog2.bin+lib.bin, myprog.b4

C>linkt prog.bin lib.bin, myprog.b4 /Q/Smyprog.map/Okernel

C>linkt prog.bin lib.bin, myprog.b4 /Q /Smyprog.map /Okernel

The order of the object �le names in the link command is used to

order the placement of the information they contain in the resulting

executable �le. Often this ordering is of no interest but it can be used

to improve the performance of programs. This subject is discussed

further in section 12.6.

12.2 File Name Conventions

In order to simplify commands, the linker will insert �le name exten-

sions where none has been given. If an explicit extension has been

given it will be used without change.

The actual extension that will be appended to a �le name depends

on the sort of �le being identi�ed. The following table gives each

sort of �le known to the linker along with the appropriate extension.

executable �le .b4 object �le .bin

indirect �le .dat optimization �le .opt

input library �le .bin output library �le .lib

map �le .map

As a result the examples given previously would have the identical

e�ect if written in the following ways:

C>linkt prog library,prog

C>linkt prog+library, prog

C>linkt prog1 prog2 lib, myprog

The Linker 335

C>linkt prog1+prog2+lib, myprog

C>linkt prog lib, myprog /Q/Smyprog/Okernel

C>linkt prog lib, myprog /Q /Smyprog /Okernel

12.3 The Output File

The output from a linking operation is usually a �le containing a

complete program in a form ready for execution. This �le is called

an executable �le. The output may also be a library suitable for input

to a subsequent link operation. Section 12.5 describes libraries.

The name for the output �le is either speci�ed explicitly on the

command line (as in all the examples so far) or is inferred by the

linker from the name of the �rst object �le (or library �le) seen, by

removing any extension and then appending the extension .b4.

For example, each of the following commands generates an exe-

cutable �le named test.b4:

C>linkt test.bin fns.bin lib.bin, test.b4

C>linkt test fns lib, test

C>linkt test fns lib

C>linkt fns test lib, test

12.4 Indirect Files

It is quite common for programs to be built from a large number

of object �les, perhaps more than can comfortably be �tted into a

single linkt command line.

The linker addresses this problem with indirect �les, each of which

contains one or more �le names on separate lines. Indirect �les may

be given wherever object �les are expected and the �le names they

contain are interpreted as the names of object �les to be included in

the linking operation.

336 Chapter 12

In linker command lines, indirect �les are always marked with the

symbol `@' to distinguish them from other sorts of �le. It is also

possible to mark names within indirect �les in this way. Such names

are then taken to be the �le names of nested indirect �les. Indirect

�les may only be nested to a depth of 5.

For example, assume the �le list.dat contains the following:

file1.bin

file2

file3.xxx

In the following example, the �rst four commands will all have the

same e�ect, while the �fth command will generate an identical exe-

cutable �le but will write it to a �le named prog.b4:

C>linkt @list

C>linkt @list, file1.b4

C>linkt file1 file2 file3.xxx

C>linkt file1 file2 file3.xxx, file1.b4

C>linkt @list, prog

Note that in the examples above, the �rst object �le name in the

indirect �le will be the �rst object �le seen by the linker and so it

will be that �le name which will be used, if necessary, to deduce the

name for the output �le.

Indirect �les are also used to supply a list of optimization symbols

to the linker. This is described in section 12.6.

12.5 Libraries

It is often convenient to be able to treat a group of object �les as a

single unit known as a library �le. Accordingly, the linker provides

the option of combining object �les (and library �les) into a new

library �le rather than the more usual executable �le.

The Linker 337

Once a library �le has been generated it may be used wherever an

object �le is expected; unlike indirect �les there is no need to mark

the library �le name in any way.

Library �les have two advantages over indirect �les. Firstly, moving

a single library �le to another place is simpler than moving many

component object �les and making sure that the corresponding in-

direct �le is kept up to date. Secondly, accessing a single library �le

is faster than accessing an indirect �le and several object �les.

During the development of components which will eventually make

up a library, indirect �les may be more convenient as there will be

no need to re-link the library whenever a component object �le is

changed.

The linker command to create a library is similar to that used to cre-

ate an executable �le, but includes the switch /L. When this switch

is used the output �le will be a library �le and not an executable

�le. The name of the library �le will be deduced, if necessary, in the

same way as for executable �les; that is, from the name of the �rst

object �le or library �le found. The default extension .lib will be

added if no extension is given.

The example below shows a graphics library being built from a core

graphics module and two device driver modules. The library is then

linked in the ordinary way with a user program. Indirect �les are

used to simplify the required linker commands.

C>type graflib.dat

core.bin

tek.bin

hp.bin

C>linkt @graflib,graflib/L

C>type myprog.dat

myprog.bin

graflib.lib

library.bin

harn.bin

338 Chapter 12

C>linkt @myprog,myprog.b4

The switch /P can be used in place of /L and has exactly the same

meaning.

The following switches are ignored when the /L or /P switches are

used: /B, /C, /O, /S and /X. Section 12.10 contains a full description

of the switches.

If the /G option is used when creating a library, any debug infor-

mation present in the object �les is passed through into the library.

Otherwise this information is left out of the library.

12.6 The Executable Image

Unless otherwise instructed, the linker will place object �les it has

selected into the executable �le in the order in which those object

�les were speci�ed on the command line. This order is important if

a program wishes to make use of the on-chip RAM.

When the on-chip RAM is used to hold programs, the code which

has been placed at the beginning of an executable image is more

likely to reside in RAM than code towards the end. Hence, in order

to improve the performance of a program, the object �le containing

the code which is executed most frequently should be speci�ed as

the �rst object �le in the link command.

In many cases, it may not be easy or possible to know which order

to place the object �les in. For example, the user may know which

functions are executed most frequently, but not know which object

�les contain them, because they are part of a library. In this case,

the user can specify a symbol to search for, and the linker will look

for an object �le which contains a de�nition of that symbol. Symbols

used liked this are known as optimization symbols, and are speci�ed

by using the /O command-line switch. Note that the switch uses the

letter `O' and not the digit `0'.

The Linker 339

As an example, the following will place the object �les which contain

de�nitions of fread and malloc at the beginning of the resulting

executable �le t.b4:

C>linkt t library harn/Ofread/Omalloc

In this case, the object �le containing the external symbol fread is

placed at the start of the executable image. The object �le containing

the external symbol malloc is placed second in the executable image.

If an optimization symbol does not exist then the linker issues a

warning. Sometimes the object �le containing the symbol is not

needed in the executable image; in other words, there are no refer-

ences to it. In this case, if the object �le is part of a library, the

module is excluded from the executable image, and no warning is

issued. If, on the other hand, the symbol is found in an object �le

named in the command line or in an indirect �le, the object �le is

included in the executable image regardless.

Two or more optimization symbols may refer to the same object �le,

in which case the position of the object �le will be determined by

the position of the �rst symbol to refer to it.

After all optimization symbols have been processed and the object

�les which de�ne optimized symbols have been placed at the start

of the executable image, the linker will add the remaining object

�les to the executable image in the order they were found on the

command line. In the previous example this would mean that object

�le t would be the third object �le in the executable image and the

object �le harn would be the last.

It is often easier to place the list of optimization symbols in a �le

rather than keeping them on the command line. This may be done

using indirect �les in the same way as for object �les except that the

default extension is now .opt.

An example optimization �le optsyms.optmight contain the follow-

ing text:

fread

340 Chapter 12

malloc

This �le could then be used to optimize the position of the object

�les de�ning fread and malloc as in the following command:

C>linkt t library harn/O@optsyms

A warning is issued if the symbol is not de�ned in any of the object

�les.

12.7 Map Files

The linker can be requested to produce a map �le which will contain

a list of all the symbols (both code and data) that have been de�ned

in the executable image. The map �le will also contain information

about the sizes of the code and static areas for each object �le.

Map �les are requested with the /S switch. By default, the name

of the map �le is derived automatically from the �rst object �le

name. In the following example a map �le called test.map would

be generated.

C>linkt test library harn/S

Alternatively, the map �le name can be speci�ed explicitly on the

command line by placing a �le name immediately after the /S as in

the following example:

C>linkt test library harn/Smfile

The default extension .map will be added if no extension is given.

The above example would create a map �le called mfile.map.

12.8 T2 Support

A special set of linker command-line switches are used to support

the use of 16-bit transputers. These switches should only be used

The Linker 341

when linking code for T2 transputers; they should not be used when

linking code for T4 or T8 transputers.

The command-line switches for T2 support are described below.

12.8.1 Switch /Msize

This switch gives the total number of bytes of read-write memory

available to the program. The memory will be used to hold the static

data, heap and stack for the running program. In addition, it will

hold the executable code of the program unless the code is to be held

in read-only memory.

You must give a /M switch when linking for T2 systems unless you

intend to control the linker's memory allocation by means of modi�ed

/F switches.

The batch �le t2clink provides a default value of 64K for this switch

(/M64K) but you may override this default with another /M switch of

your own, e.g.,

C>t2clink main bits pieces/M24K

If more than one /M switch appears on a command line, only the last

will have any e�ect.

The linker will give a warning if you specify less than 2048 bytes or

more than 65536 bytes of read-write memory.

12.8.2 Switch /Asize

This switch controls the number of bytes of read-write memory to

be used for the stack (\automatic" storage in C terminology). The

linker will give a warning if you specify less than 128 bytes of stack.

Memory for the stack is taken from the read-write memory remaining

after the code and static data areas have been allocated.

342 Chapter 12

If you do not specify this switch then the whole of the remaining

memory will be used for a combined heap and stack area. The stack

will grow towards the heap from the more positive end of the area

while the heap will grow towards the stack from the more negative

end of the area.

Heap Stack- �
: : : : : : :

If you do give a /A switch, the given amount of memory will be

allocated to the stack and the whole of the remaining memory will

be used for the heap. In this case the stack and heap areas will be

considered distinct and will not interact.

12.8.3 Switches /FC, /FA, /FS, and /FH

These switches are used to control the order in which the various

areas of the program are loaded into the available memory: /FC for

code, /FA for the stack (automatic) area, /FS for static data, and

/FH for the heap.

The linker will usually construct an executable image by laying out

the various areas (code, static data, heap, and stack) in memory,

starting at the most negative address usable|in the fast, on-chip

memory. Consequently the parts of the image which are placed �rst

will bene�t from the speed of this memory.

The /F switches give you control over the order in which the areas

will be laid out. Any area mentioned in a /F switch will be considered

a candidate for \optimisation"|you can think of the `F' as standing

for \fast". For example, the switches /FC/FS indicate that the code

and static data areas are to be optimised. The order in which you

give the /F switches is of no signi�cance.

The linker will lay out all of the optimised areas before it lays out any

non-optimised areas. The order in which areas (optimised or not)

are laid out depends on the presence or absence of the /A switch.

The Linker 343

If you do not specify the /A switch, then the stack and heap areas

will be combined, as described above. In this case the linker will lay

out the areas in the order: code, static data, and then the combined

stack and heap.

If you do specify the /A switch, then the stack and heap areas will

remain distinct, and the linker will lay out the areas in the order:

stack, code, static data, and then heap.

The following pictures should clarify this procedure. Note that in

these pictures addresses grow more positive towards the right hand

side.

more negative

memory addresses

more positive

memory addresses
� -

C>linkt prog

Code Static Data Heap+Stack

C>linkt prog/FS

Static Data Code Heap+Stack

C>linkt prog/A8K

Stack Code Static Data Heap

C>linkt prog/A8K/FC

Code Stack Static Data Heap

C>linkt prog/A8K/FS/FA

Stack Static Data Code Heap

The system described is designed to allow the most common require-

ments to be speci�ed simply.

344 Chapter 12

12.8.4 Modi�ed /F Switches

The /F switches may be modi�ed so that instead of simply marking

areas for optimisation they explicitly specify the memory locations

to be used.

To modify the switches you append an address and size speci�ca-

tion of the form start:size, where start is the address for the start

(smallest address) of the area and size is the size of the area in bytes.

If start or size begin with a `#' character they will be interpreted

as hexadecimal, otherwise they will be interpreted as decimal. All

values of start and size must be even. Note that the start address

of the stack area is not the initial value for Wptr; that value will be

start + size. For example:

C>linkt x y z /FC#1000:80 /FH#2000:#2000 /FA#8000:4096 /FS0:8

The linker will check that these areas do not overlap and issue an

error message if they do. Similarly, the linker will issue an error

message if either the code area or the static data area is too small

for the linked image. The total size of the static data area for a task

will be:

2�modules +

modulesX

i=1

statici

There are several implications of modifying /F switches in this way:

1. If you specify one modi�ed /F switch then you must specify

and modify all four. The only exception to this rule is when

you are linking for ROM (described later);

2. There will be no automatic optimisation or memory allocation.

Memory allocation is fully under your control;

3. The stack and heap areas will be considered separate, even

though they may be adjacent. This means that while the

program is running the heap will never extend into the stack

area.

The Linker 345

12.8.5 Switch /Rsize

The /R switch instructs the linker to generate an image suitable for

burning into ROM. The image size will be exactly the number of

bytes speci�ed in the /R switch.

When a ROM program starts execution, it copies its static data from

the ROM into read-write memory.

The code may either be left in the ROM or copied into the read-write

memory. This is controlled by the /FC switch. If no /FC switch is

speci�ed then the code will be executed from the ROM. If a /FC

is speci�ed (modi�ed or not) then the code will be copied into the

read-write memory before being executed.

Note that when linking for ROM with modi�ed /F switches you may

omit the modi�ed /FC switch if you wish the code to be executed

from ROM. Of course, you should make sure that none of the areas

overlaps any ROM addresses.

12.9 Debug Tables

Object �les created using the 3L compilers may contain information

intended for use by Tbug, the 3L debugger. By default, the linker

will discard this information in order to produce small executable

�les.

The switch /G will make the linker incorporate any debugging infor-

mation present in the object �les into the output �le, which may be

either an executable �le or a library �le.

12.10 Summary of Switches

The operation of the linker can be controlled by means of switches.

Each switch starts with a slash character `/' and an identifying letter;

346 Chapter 12

it does not matter if this letter is given in upper case or lower case.

The switches can be placed anywhere in the command line but they

may not occur in indirect �les. No spaces are allowed between a

switch's identifying letter and the rest of the switch.

/Asize This switch de�nes the size of the stack area. This

should only be used when linking code for T2 trans-

puters.

/B�le-name This switch speci�es that the �le �le-name is to be

used in preference to the default bootstrap �le. There

is no default extension for �le-name.

/C This switch stops the linker adding the bootstrap �le

to the executable �le.

/FA This switch instructs the linker to optimise the stack

(automatic) area. This should only be used when link-

ing code for T2 transputers.

/FAstart:size

This switch de�nes the start address and size of the

stack area. This switch should be used along with the

other modi�ed /F switches and should only be used

when linking code for T2 transputers.

/FC This switch instructs the linker to optimise the code

area. This should only be used when linking code for

T2 transputers.

/FCstart:size

This switch de�nes the start address and size of the

code area. This switch should be used along with the

other modi�ed /F switches and should only be used

when linking code for T2 transputers.

/FH This switch instructs the linker to optimise the heap

area. This should only be used when linking code for

T2 transputers.

The Linker 347

/FHstart:size

This switch de�nes the start address and size of the

heap area. This switch should be used along with the

other modi�ed /F switches and should only be used

when linking code for T2 transputers.

/FS This switch instructs the linker to optimise the static

data area. This should only be used when linking code

for T2 transputers.

/FSstart:size

This switch de�nes the start address and size of the

static data area. This switch should be used along

with the other modi�ed /F switches and should only

be used when linking code for T2 transputers.

/G This switch results in the linker creating a debugger

information area in the executable or library �le. This

switch should not be used when linking code for T2

transputers.

/I This switch causes the linker to display its identity and

along with various statistics about the executable �le

such as the code and static sizes and the maximum

patch size used.

/L This switch makes the linker generate a library �le

rather than an executable �le.

/Msize This switch speci�es the size of read-write memory

area (including on-chip memory.) This should only be

used when linking code for T2 transputers.

/Ooptimization-symbol

This switch gives priority to the position in the

executable image of the object �le which de�nes

optimization-symbol .

348 Chapter 12

/O@optimization-�le

This switch gives priority to the position in the

executable image of the object �les which de�ne

the symbols whose names are contained in the �le

optimization-�le. The default extension for optimization-

�le is .opt.

/P This switch has the same e�ect has the /L switch.

/Q This switch suppresses all warning messages (see sec-

tion 12.13).

/Qn This switch suppresses every occurrence of warning

message number n (see section 12.13).

/Rsize This switch gives the size of the read-only memory

area. This should only be used when linking code for

T2 transputers.

/S This switch generates a map �le taking its name from

the �rst name in the list of object �les.

/Smap-�le This switch generates a map �le called map-�le. The

default extension for map-�le is .map.

/Xentry-point

This switch causes the linker to use the symbol entry-

point in preference to INMOS.ENTRY.POINT, which is

the default.

12.11 Using Batch Files

A batch �le is a convenient way of calling the linker with the ap-

propriate run-time library and harness. The linker accepts spaces

between object �le names, so the batch �le can pass more than one

parameter to the linker; unused parameters will be ignored. Switches

can appear in any position on the command line, so they can be

The Linker 349

passed as parameters to the batch �le. For example, the batch �le

tlink.bat might look like this:

C>linkt %1 %2 %3 %4 %5 %6 %7 %8 %9 library.bin harn.bin

The following example shows how the batch �le could then be used

to link two �les file1.bin and file2.bin into a library file1.lib:

C>tlink file1 file2/L

The batch �le will then invoke the linker with the following com-

mand:

linkt file1 file2/L library harn

It is not possible include a comma in a batch �le parameter. For this

reason, you cannot explicitly pass an output �le name to a batch �le

in its command line.

12.12 Duplicate De�nitions

A duplicate de�nition occurs if two or more object �les de�ne the

same symbol. The linker will issue a warning message about each

occurrence of a duplicate de�nition and will use the �rst de�nition

encountered. Object �les are processed in the order in which they

appear on the command line.

This facility can be useful when it is necessary to rewrite or alter an

object �le contained in a library. It can also be used to substitute

one object �le for another when creating a new library.

Occasionally, for example when several libraries are being used, it

may be desirable to suppress a very large number of duplicate de�-

nition warning messages. This can be done by using the switch /Q1.

This facility may be useful for OEM users of the linker.

350 Chapter 12

12.13 Messages

The linker may issue one or more messages during a linking opera-

tion. These messages are used to draw the user's attention to unusual

or incorrect situations.

There are two types of message: warnings, which indicate acceptable

but possibly erroneous conditions, and fatal errors which result from

conditions which are serious enough to terminate the linking opera-

tion. The /Q switch may be used to suppress all warning messages;

the form /Qn can be used to suppress all occurrences of message

number n.

In order to give as much useful information as possible, the linker will

often expand messages by including such things as symbol names and

numerical values. In the description of the messages, terms in italics

will be replaced appropriately according to the following scheme:

�lename The name of a �le, such as an object �le name

module The name of an object �le or a module within a library

number An integer value

switch A letter used to identify a command-line switch

symbol A symbol de�ned or referenced by an object �le or

module

text Various pieces of descriptive or illustrative text

type A code for a speci�c type of transputer, such as T414

WARNING (0): data symbol symbol referenced as a code

symbol in module

Description The given symbol has been de�ned as a data symbol

but the given module references it as a code symbol .

The Linker 351

User Action Check that the code symbol references are specifying

the correct symbol and that the symbol has been de-

�ned appropriately.

WARNING (1): using definition of symbol in module1,

ignoring duplicate in module2

Description The given symbol has already been de�ned by mod-

ule1 . Another de�nition has subsequently been found

in module2 . This latter de�nition will be ignored.

User Action Check that the correct de�nition is being used. If the

second de�nition was the one that was really wanted,

change the order of the object �les in the link command

so that the �le (or library) containing the wanted def-

inition comes before the unwanted de�nition.

FATAL ERROR (3): multiple INIT tags

Description This error indicates that an object �le is internally

inconsistent.

User Action Check that the �les being linked together are proper

object �les or libraries.

FATAL ERROR (4): multiple MAININIT tags

Description This error indicates that an object �le is internally

inconsistent.

User Action Check that the �les being linked together are proper

object �les or libraries.

352 Chapter 12

FATAL ERROR (5): object file �lename is corrupt; illegal

patch/number

Description This error indicates that an object �le is internally

inconsistent.

User Action Check that the �les being linked together are proper

object �les or libraries.

FATAL ERROR (6): object file �lename is corrupt; unknown

tag/number

Description This error indicates that an object �le is internally

inconsistent.

User Action Check that the �les being linked together are proper

object �les or libraries.

FATAL ERROR (7): incompatible processor types; type1 in

module1 and type2 in module2

Description Code compiled for one type of transputer may not be

able to execute correctly on a di�erent type of trans-

puter. This error indicates that object �les compiled

for a processor of type1 are being linked with object

�les compiled for a processor of type2 .

User Action Decide the type of the target processor and recom-

pile those object �les which had been compiled for a

di�erent processor type. Also check that the correct

run-time library has been speci�ed.

The Linker 353

FATAL ERROR (8): reserved symbol symbol defined in

module

Description The linker reserves certain symbols for its own use.

This error indicates that the given module has at-

tempted to de�ne such a symbol. The reserved symbols

all start with two consecutive underline characters.

Users should avoid using any symbols which start with

these characters.

User Action Avoid using the reserved symbol.

FATAL ERROR (9): internal error/number

Description This message is issued when the linker discovers that

its internal tables are in an inconsistent state.

User Action Submit a fault report to your distributor including the

exact text of the error message.

WARNING (10): module module refers to undefined symbol

symbol

Description The given module contains a reference to the given

symbol. By the time all of the object �les and libraries

given in the command line have been examined, no

module has been found which contains a de�nition of

the symbol. Although this is really a fatal error, it is

treated as a warning so that further unde�ned sym-

bols may be discovered and reported. A fatal error

(47 or 48) will be issued on the completion of the link

operation.

User Action Check that the module which de�nes the symbol has

been included in the link command and that the name

354 Chapter 12

of the symbol has been given correctly in both the mod-

ule which de�nes it and the module which references

it.

FATAL ERROR (11): multiple main static initialization

modules

Description This error indicates that an object �le is internally

inconsistent.

User Action Check that the �les being linked together are proper

object �les or libraries.

FATAL ERROR (12): entry point symbol symbol has not been

defined

Description The given symbol has been speci�ed as the entry-point

for the program being linked, either by default (in

which case the symbol will be INMOS.ENTRY.POINT)

or explicitly using the /X linker switch. This error

indicates that no module has de�ned that symbol.

User Action Check that the entry-point symbol has been speci�ed

correctly in the /X switch or that the list of object �les

to link includes one which de�nes the main entry point

(a C main function, a Fortran PROGRAM, or a Pascal

PROGRAM).

WARNING (13): no definition found for optimization

symbol symbol

Description The given symbol has been nominated for optimization

by means of the /O linker switch. The warning is issued

if no de�nition for that symbol has been found by the

end of the linking operation.

The Linker 355

User Action Check that the symbol has the correct spelling and that

the module containing its de�nition has been included

in the list of �les to be linked.

WARNING (14): cannot optimize position of debug area

Description It is not possible for the linker to optimize the position

of the debug area. This area is identi�ed by means of

a reserved symbol, __debug_area, which is de�ned by

the linker itself. The warning is issued if the name of

the debug area is nominated in a /O linker switch.

User Action Remove the debug area symbol from the list of opti-

mization symbols.

FATAL ERROR (15): no MAININIT found: language run-time

library missing?

Description This error indicates that the linker has been unable to

�nd the de�nition of an initialization module which is

assumed by the 3L compilers. The problem is usually

caused by omitting the run-time library from the list

of �les to be linked.

User Action Include the appropriate run-time library in the list of

�les to be linked.

FATAL ERROR (18): code position exceeds declared size in

module

Description This error is usually caused by an error during the

compilation of the given module.

User Action Recompile the given module and attempt the link op-

eration again. If the fault persists, please contact your

distributor.

356 Chapter 12

FATAL ERROR (21): not enough memory

Description This error indicates that the linker has run out of avail-

able memory.

User Action If the memory available on the transputer board is

more than 2MB use the mempatch program on the

linker to set the correct memory size for the linker.

The mempatch program is described in the 3L Parallel

language manuals.

FATAL ERROR (22): patch over valid code in module module

Description When compiling the instructions used to access exter-

nal objects, the compiler leaves a certain amount of

room for the linker to patch in the actual address of the

object. This error indicates that the size of the image

�le is such that the space left in the given module is

not big enough to hold the actual address.

User Action Recompile the o�ending module and increase the

amount of space left by the compiler for patches us-

ing the appropriate compile-time switch. Refer to the

compiler's documentation for details.

FATAL ERROR (23): internal limitation -- too many

references (number)

Description The linker cannot complete the linking operation be-

cause the �les being linked have more references to

external symbols than can be held in the linker's inter-

nal tables. The linker's tables have space for approxi-

mately 150,000 external references.

User Action The only appropriate action is to reduce the number

of external references by concatenating some of the

original source �les into a single �le.

The Linker 357

FATAL ERROR (24): internal limitation -- too many common

blocks (number)

Description The linker's internal tables used for describing de�-

nitions of and references to Fortran common blocks

have been �lled and so the linker cannot complete the

linking operation. The linker allows a total of approx-

imately 64,000 such references and de�nitions.

User Action The only appropriate action is to attempt to concate-

nate some of the source programs that reference the

same common blocks. For example, if �ve source pro-

grams refer to common block X then concatenating

those �les into a single source �le and recompiling

will reduce the number of references to common blocks

from �ve (one per original source �le) to one (in the

resulting combined �le).

FATAL ERROR (25): internal limitation -- unexpected end

of file/number

Description This error is the result of attempting to link a corrupt

object �le or a �le which is not an object �le.

User Action Check that all of the �les being linked are object �les.

FATAL ERROR (26): internal limitation -- vector size

(number) exceeds limit (number)

Description This error indicates that a record in the object �le

exceeds the maximum size allowed.

User Action Check that all �les being linked together are proper

object �les or libraries.

358 Chapter 12

FATAL ERROR (27): internal limitation -- too many

optimization symbols (number)

Description The linker can only process a limited number of opti-

mization symbols. The linker allows for approximately

1024 symbols. This error indicates that too many op-

timization symbols have been speci�ed.

User Action Remove some optimization symbols.

FATAL ERROR (30): all object files are libraries;

nothing to link

Description This error indicates that all of the �les given on the

command line are library �les.

User Action Add an object �le to the list of library �les, or, if you

mean to generate a new library �le, use the /L switch.

FATAL ERROR (31): unknown processor type type in module

Description The given module has indicated that the code it con-

tains is for a transputer of the given type. This type

does not correspond to a transputer known to the

linker.

User Action Recompile the o�ending module, specifying a known

transputer type.

FATAL ERROR (32): unable to write to file �lename

Description This error indicates that the named �le cannot be cre-

ated successfully.

User Action Check that the �le name has been speci�ed correctly

and that the device on which the �le is to reside has

enough free space.

The Linker 359

FATAL ERROR (33): internal limitation -- cannot process

more than number object files

Description The linker can only process the limited number of ob-

ject �les and libraries. The linker allows for approxi-

mately 16,000 �les. This error indicates that too many

object �les and libraries have been speci�ed.

User Action Combine some of the object �les into a single library

�le and use that library instead of the individual �les.

FATAL ERROR (34): unable to open �lename

Description This error is issued when the linker is unable to access

a �le.

User Action Check that the given �le exists and that its name has

been speci�ed correctly.

FATAL ERROR (35): internal limitation -- too many

modules (number)

Description The linker can only process a limited number of mod-

ules. The linker allows for approximately 16,000 mod-

ules. The error indicates that too many modules have

been speci�ed.

User Action Combine individual modules together at the source

code level.

FATAL ERROR (36): internal limitation -- too many

symbols (number)

Description The linker can only process a limited number of sym-

bols. The linker allows for approximately 128,000 sym-

bols. The error indicates that too many symbols have

been speci�ed.

360 Chapter 12

User Action Remove any unnecessary external symbols from the

source programs.

FATAL ERROR (37): command line: text expected

Description This error indicates that the command line has been

incorrectly formed.

User Action Correct the command line.

FATAL ERROR (38): cannot specify output file twice

Description This error indicates that two or more commas have

been found on the linker command line. A comma is

used to separate the name of the linker's output �le

from the �les to be linked, and there may only be one

such output �le.

User Action Check the format of the linker command line. In par-

ticular, make sure that the list of object �les does not

include commas.

FATAL ERROR (39): option /switch not recognised

Description The given switch is not a linker option.

User Action Correct the speci�cation of the option.

FATAL ERROR (40): internal limitation -- too many nested

data files

Description The linker imposes a limit on the depth to which data

�les (indirect �les) can be nested. Currently, this limit

is 5.

The Linker 361

User Action Replace the most deeply nested references to indirect

�les with their contents.

FATAL ERROR (47): 1 symbol undefined

Description This error is issued at the end of a linking operation in

which a single \unde�ned symbol" warning was pro-

duced

User Action Refer to WARNING (10)

FATAL ERROR (48): number symbols undefined

Description This error is issued at the end of a linking operation

in which several \unde�ned symbol" warnings were

produced.

User Action Refer to WARNING (10)

WARNING (51): object file �lename is corrupt; missing T2

items

Description This error should not occur.

User Action Submit a fault report to your distributor including the

exact text of the error message

WARNING (52): command line must specify memory size when

linking T2 objects

Description This error is issued when no /M option is given when

linking code for T2 transputers.

User Action Specify the memory size using the /M option on the

linker command line. This size should be between 2KB

and 64KB.

362 Chapter 12

FATAL ERROR (53): memory size specified (number) is less

than 2048 bytes

Description This error indicates that, when linking for T2 trans-

puters, the /M option was used to specify a memory

size smaller than the minimum of 2048 bytes.

User Action Use a larger value with the /M option switch on the

linker command line.

FATAL ERROR (54): memory size specified (number) is

greater than 64K bytes

Description This error indicates that the memory size given, us-

ing the /M option when linking for T2 transputers, is

greater than the address space of a 16-bit transputer.

User Action Use the /M option to specify a memory size between

2KB and 64KB.

FATAL ERROR (55): stack size specified (number) is less

than 128 bytes

Description This message indicates that, when linking for T2 trans-

puters, the size spec�ed for the stack area, using either

the /A or the /FA option switch, was less than the

minimum or 128 bytes.

User Action Change the option parameter to allow a larger stack.

FATAL ERROR (56): debug table generation disabled when

linking T2 objects

Description This message is issued when /G option was used when

linking code for T2 transputers. A fatal error (9) will

be issued on the completion of the link operation

The Linker 363

User Action Remove the /G option from the linker command line.

WARNING (59): image is larger than memory size specified

(number)

Description The size of the image exceeds the memory size speci�ed

with the /M option when linking code for T2 transput-

ers.

User Action Specify a larger memory size|this should of course

correspond to the memory size available on the target

transputer.

FATAL ERROR (60): area positions specified on command

line overlap

Description This indicates that when linking code for T2 transput-

ers the modi�ed /F switches have been used to de�ne

memory areas which overlap each other.

User Action Check the start address and size of each memory area

to determine which are overlapping. Change the start

address or size of one or more of the memory areas so

that there are no overlaps.

FATAL ERROR (61): /a cannot be used if area positions

are specified

Description The modi�ed /F switches have been used with the /A

switch on the command line when linking code for T2

transputers.

User Action When the modi�ed /F switches are used the /A switch

can be omitted. The /FA switch can be used to speci�y

the start address and size of the stack area.

364 Chapter 12

FATAL ERROR (62): /m cannot be used if area positions

are specified

Description The modi�ed /F switches have been used with the /M

switch when linking code for T2 transputers.

User Action When the modi�ed /F switches are used to specify each

of the memory areas the /M switch should be omitted.

FATAL ERROR (63): all area positions must be specified

Description One or more of the modi�ed /F switches has been

omitted from the command line.

User Action Supply all four of the switches, for a further description

of these see section 12.8.4.

FATAL ERROR (64): all area positions and sizes must be

word aligned

Description The modi�ed /F switches used de�ne a memory area

which does not begin and end on word boundaries.

This message only occurs when linking code for T2

transputers.

User Action Check that the start addresses and sizes of all the

memory areas are even.

WARNING (65): code size specified is smaller than actual

code size of number (hex) bytes

Description This message indicates that the space required for the

program code exceeds the size of the memory set aside

for code using the /FC switch.

User Action Increase the size of the code area speci�ed with the

/FC switch.

The Linker 365

WARNING (66): data size specified is smaller than actual

data size of number (hex) bytes

Description This message indicates that the static data require-

ment of the program being linked is exceeds the mem-

ory area set aside for static data using the /FS switch.

User Action Increase the size of the static data area speci�ed with

the /FS switch.

FATAL ERROR (67): memory area overlaps ROM area

Description The memory region speci�ed by one of the modi�ed /F

switches overlaps the ROM area, de�ned with the /R

switch. memory will be one of static data, stack,

code, or heap.

User Action Change the size or start address of the memory area

that overlaps the ROM. The size of the ROM deter-

mines its start address since its last address will be

FFFF.

FATAL ERROR (68): no space in heap or stack area for

bootstrap of length number bytes

Description The memory set aside for the stack is too small to hold

the bootstrap code.

User Action The bootstrap used for T2 transputers is usually

placed in the memory that will be used for stack and

heap when the program has been booted. In this case

the space is too small to hold the bootstrap so it should

be increased using the /A switch or the modi�ed /FA

and /FH switches.

366 Chapter 12

FATAL ERROR (69): ROM image requires a ROM size of

number (hex) bytes

Description This message indicates that the size of ROM speci�ed

with the /R switch is not big enough to hold the pro-

gram image.

User Action Increase the size of ROM used and change the /R

switch to reect this.

Chapter 13

The mempatch Utility

The linker program, linkt, normally produces an executable image

�le pre�xed by a short bootstrap program which allows the afserver

to load the image into an empty transputer: the bootstrap initialises

the transputer and reads in the rest of the image �le.

The bootstrap produced by the linker is designed to work with the

Inmos B004 transputer board, or with an exact copy. These boards

have either 1 or 2MB of RAM: the bootstrap may not work properly

with partially B004-compatible boards which have di�erent amounts

of memory.

This problem does not a�ect task image �les produced by the linker

for use with the 3L con�gurers, since the con�gurers ignore any

bootstrap code pre�xed to the input task images and add their

own bootstrap to the output application image �le. The con�gurer-

generated bootstrap can handle any amount of memory which is a

multiple of 64KB.

The linker-generated bootstrap is only used if a single image �le is

run on its own on one transputer as described in chapter 3. In that

case, the following problems may occur on a transputer board with

other than 1 or 2MB of RAM:

368 Chapter 13

� On systems with more than 2MB of memory, .b4 �les produced

by the linker will assume that only 2MB of memory is available;

the program will not be able to take advantage of the rest of

the physical memory in the con�guration.

� On systems with less than 1MB of memory, .b4 �les produced

by the linker will assume too much memory is available, and are

likely to fail when memory above the amount actually available

is used.

� On systems withmore than 1MB but less than 2MB of memory,

one or other of the above e�ects will be observed, depending

on the details of the board's address decoding hardware.

The mempatch utility allows you to modify .b4 �les so that they will

execute correctly with a particular memory con�guration other than

1 or 2MB.

The compiler, linker and other utilities provided in this release all

use the standard bootstrap, and may therefore require to be modi�ed

using mempatch if they are to be run on a transputer board with other

than 1 or 2MB of RAM. Note that 3L does not guarantee that the

compiler, linker and other programs will necessarily operate correctly

if insu�cient memory is available.

13.1 Identifying mempatch

If the mempatch utility is invoked without arguments, it will print

identifying information similar to the following:

C>mempatch

usage: mempatch filename.b4 kilobytes

e.g. mempatch myprog.b4 128

mempatch V1.2, Copyright (C) 1988, 3L Ltd.

A given version of mempatch can only be guaranteed to operate

correctly with particular versions of the 3L high-level languages.

The mempatch Utility 369

You should only use the version of mempatch supplied with this

release in conjunction with the corresponding compiler and linker.

mempatch will detect and reject any program image with which it is

not compatible.

13.2 Invoking mempatch

The mempatch utility is invoked with a command line of the following

form:

mempatch image-�le-name number-of-kilobytes

For example, to patch the �le myprog.b4 for a system with only

64 kilobytes of memory, the following command line would be used:

C>mempatch myprog.b4 64

standard secondary bootstrap recognised

image now patched to 64 kilobytes

Note that the full �lename of the program image �le|including any

.b4 extension|must be supplied.

13.3 Re-invoking mempatch

A program image �le may be patched more than once if, for example,

available memory in the target system changes. The program �le

myprog.b4modi�ed in the previous example might be modi�ed again

for a 128 kilobyte system as follows:

C>mempatch myprog.b4 128

previous patch value was 64 kilobytes

image now patched to 128 kilobytes

370 Chapter 13

Chapter 14

The decode Utility

A separate decoder utility is supplied with Parallel C which takes

as its input the binary output �le of the compiler, and produces a

listing including both the source code and the disassembled machine

code for each source line.

An example of decode's output may be found in �gure 14.1.

14.1 Usage

14.1.1 Compilation for the Decoder

The decoder uses the debugging information generated by the com-

piler to enable it to produce tables of variable locations and to

associate the binary code of the program with the lines of the source

�le.

For this reason, programs to be decoded should be compiled with

the Zi switch. For details, see section 9.4.5.

372 Chapter 14

14.1.2 Running the Decoder

The decoder is started by a command of this format:

decode �lename

Here, �lename is the name of a binary output �le from the compiler.

If no extension is typed, .bin is assumed.

The decoder attempts to �nd the source �le, using the source �le

name given at compilation time, which is stored in the binary �le.

It applies this name in the context of the current directory when the

decoder is run. Thus, if at compilation time the source �le was spec-

i�ed as down\cats, and the current directory when the decoder is

run is \mine, the decoder will attempt to open \mine\down\cats.c

as the source �le. The decoder should therefore be invoked with the

current directory set to be the directory which was current when the

�le being decoded was compiled.

If decode cannot �nd the source �le, it outputs a warning message

and produces a disassembly listing without source lines.

The decoder's output is normally sent to the display. It may, how-

ever, be redirected or piped in the usual way, for example:

C>decode cats > cats.lis

C>decode cats | more

14.2 Features of the decode Program

The line TOTALCODE 16 0 in the example reports the size of the

program code for the module: in this case, 176 (decimal) bytes. The

second number can be disregarded.

The line STATIC 0 in the example reports the size of the static space

required by the module. In this case, the module has no static

requirements. This value is expressed this time in words (decimal).

The decode Utility 373

Machine-code instructions are decoded into mnemonics. A complete

list of all mnemonics produced can be found in appendix E. The

decoder automatically merges pfix's and nfix's with the following

opcode. There is full support for all T2, T4 and T8 instructions,

including the T8's `fpu' operations. Unrecognised indirect instruc-

tions are decoded as `opr n', and unrecognised fpentry instructions

as `ldc n; fpentry'.

The destinations of j and cj instructions are shown as addresses in

hexadecimal, rather than relative displacements. Calls to external

symbols are shown symbolically if possible. The operand �elds of all

other direct instructions are shown in decimal.

The initialisation values of static data are shown in hexadecimal and

ASCII.

The source code contents of �les added to the program by means of

#include statement �les are not shown, but binary code generated

from them is decoded and appears at the right point in the main

source �le.

At the bottom of the decoder's output we see a decoded represen-

tation of the debugging information, including the names of the

functions and the displacements of the variables. The size of the

debugging information is not included in the TOTALCODE and STATIC

lines above.

14.3 Other Languages

The decoder can handle binary object �les which are of the format

described in the Inmos Stand-Alone Compiler Implementation Man-

ual [14]. As well as Parallel C, the 3L Fortran and Pascal compilers

generate binary �les of this kind, and these can therefore be decoded.

If source �les are available, the Fortran or Pascal source program will

be correctly included in the listing.

374 Chapter 14

Transputer DECODE (V1.4) of decodex.bin

ID T8 "occam 2 V2.1" "CC_transputer V2.2.2"

SC 0

TOTALCODE 16 0

STATIC 0

20 0000F pfix 0

1 void main ()

CODESYMB "main" 00000000

BE 60 00000 ajw -2

2 {

3 int a, b;

4 a = 100;

44 26 00002 ldc 100

D0 00004 stl 0

5 b = a/25;

70 00005 ldl 0

49 21 00006 ldc 25

FC 22 00008 div

D1 0000A stl 1

6 }

B2 0000B ajw 2

F0 22 0000C ret

Debugger Information

Begin Function main 00000000(14) ajw 2 UNKNOWN

SINT32 Wptr 00000000 a

SINT32 Wptr 00000004 b

End Function

Figure 14.1: Example of output from decode

The Inmos stand-alone occam 2 compiler also generates binary �les

in this format, and should therefore be decoded correctly, although

this cannot be guaranteed. The source programs are not shown,

as the occam compiler does not generate the necessary line-number

information.

The decoder cannot handle executable (.b4) �les.

Chapter 15

The worm Utility

The worm utility is for exploring transputer networks. In its simplest

form, it just counts the number of nodes in the network.

C>worm

one processor found

The /F option switch provides fuller information about each node,

including:

� processor type (T414 or T800);

� processor clock speed;

� amount of external memory, in kilobytes (K);

� the number of extra processor cycles (penalties) required to ac-

cess external memory as opposed to on-chip RAM (a minimum

of two for a T414 or T800);

� the number of nodes through which work packets in a ood-

con�gured application will be routed to get from the root

transputer to this node. This number of \hops" may be greater

376 Chapter 15

than the theoretical minimum imposed by the network con�g-

uration; it reects the network spanning tree constructed by

the ood-loading software.

On a single-processor system the output might look like this:

C>worm/f

one processor found

processor ROOT type=T414 20.0MHz, 3.0 penalties, 0 hops 2048K

links to HOST[0],-------,-------,-------

The link connections from each node are listed from left to right

in the order link 0, link 1, link 2, link 3. Here link 0 of the root

transputer is connected to the host computer's link adapter and

the other three links are unconnected. A dashed line, \-------"

indicates an unconnected link.

The /C option makes the worm generate the node interconnection

information in the form of a con�guration �le suitable for use with

the static con�gurer.

! one processor found

processor HOST

processor ROOT

wire ? ROOT[0] HOST[0]

15.1 Notes

The worm will not discover \bare" nodes with little or no external

memory. This is because the network loader on which it relies re-

quires about 5{10KB of external RAM to function properly.

There may be a short delay before network information is displayed.

This is because the worm waits for a certain amount of time before

deciding that a link over which nothing is being received is uncon-

nected and not just connected to a \slow" processor.

The worm writes its output on the standard output stream, normally

the screen. Its output may be redirected to a �le, or to a device

The worm Utility 377

like a printer, using the DOS `>' facility. For example, to put a full

description of a network into a �le called net.lis:

C>worm/f >net.lis

378 Chapter 15

Chapter 16

The tnm Utility

tnm shows the external symbols de�ned or referenced by an object

�le or library. For libraries, the names of the constituent object

modules are also shown.

tnm is invoked like this:

tnm �lename

The �lename must be the name of an object (.bin) �le produced

by the compiler, or a library �le produced by the linker. No default

extension is supplied by tnm.

Object �les and libraries are made up of sequences of object �le

records of various types. tnm scans the input �le and writes (to

standard output) the following types of record in a printable format.

Other record types are skipped.

COMPILER ID records show the target processor (T4 or T8) for which

a module was compiled, and the version of the compiler used to

compile it.

LIBRARY records delimit object modules within a library. They also

contain the name of the following object module, except for occam

380 Chapter 16

LIBRARY MODULE 1: \ims\bin\c\rtlt4\rename.bin

COMPILER ID occam 2 V2.1 CC_transputer V2.2.2

REF _put_int

REF _put_rec

REF strlen

REF _get_int

REF _iob

CODE SYMBOL rename

LIBRARY MODULE 2: \ims\bin\c\rtlt4\ctable.bin

COMPILER ID occam 2 V2.1 CC_transputer V2.2.2

REF _ctype

DATA SYMBOL _ctype

Figure 16.1: tnm Output

modules which do not have names and are therefore given numbers

instead.

REF records name external symbols referred to by the current module.

Note that simply referring to a symbol does not cause the module

which de�nes it to be loaded. Only symbols which are actually used

in \patch" records cause modules to be loaded. Patch records are

not shown by tnm, because each symbol may be used in many places

in an object �le, requiring many patch records which would obscure

the output produced.

CODE SYMBOL records de�ne the locations of external symbols in the

code area of the current module.

DATA SYMBOL records de�ne the locations of external symbols in the

static data area of the current module.

Figure 16.1 shows the start of the output produced by running tnm

on the standard C run-time library.

The output from tnm normally appears on the screen, but it may be

redirected to a �le or device using the DOS `>' facility, like this:

C>tnm \tc2v2\crtlt4.bin >rtl.lis

Chapter 17

The tunlib Utility

Individual object �les can be extracted from a library using the

tunlib command.

tunlib input-library output-library output-obj�le symbol

All four command-line arguments are required. No default exten-

sions are supplied by tunlib.

tunlib extracts an object module from the input-library and writes

it to the output-obj�le. The input-library, minus the extracted mod-

ule, is copied to the output-library.

The module to be extracted is speci�ed by giving the name of any

external symbol it de�nes. Symbol matching is case sensitive.

Do not use the same �le name as both an input �le and an output

�le. The e�ects of doing so are unde�ned.

In the example below, the module which de�nes the function

PlotPoint is extracted from a library called graphlib.bin and

written to an object �le of its own called point.bin. The remainder

of the library is written to a new �le, rest.bin.

C>tunlib graphlib.bin rest.bin point.bin PlotPoint

382 Chapter 17

If we had wanted simply to delete the module containing PlotPoint

from the library, we could have discarded the extracted object �le

by writing it to the null �le, like this:

C>tunlib graphlib.bin newlib.bin nul PlotPoint

newlib.bin is just graphlib.bin with the module which de�ned

PlotPoint removed.

Chapter 18

Con�guration Language

Reference

The 3L con�guration language is the language accepted by the vari-

ous 3L con�guration utilities. It is designed to allow easy description

both of physical processor networks and of user applications built up

out of tasks, without the user being concerned with the details of how

the tasks are actually loaded into the processor network.

Each of the con�guration utilities will, in general, accept a subset

of the language described here, according to its needs. For example,

the ood-�ll con�gurer accepts the barest descriptions of the user

tasks; it needs no description of the physical network because that

information will be discovered at load time.

18.1 Standard Syntactic Metalanguage

In a formal description of a computer language, it is often conve-

nient to use a more precise language than English. This language-

description language is referred to as a metalanguage. The metalan-

guage which will be used to describe the con�guration language is

384 Chapter 18

that speci�ed by British Standard 6154[9]. A tutorial introduction to

the standard syntactic metalanguage is available from the National

Physical Laboratory[10].

The BS6154 standard syntactic metalanguage is similar in concept

to many other metalanguages, particularly those of the well-known

Backus-Naur family. It therefore su�ces to give a very brief informal

description here of the main points of BS6154; for more detail, the

standard itself should be consulted.

1. Terminal strings of the language|those not built up by rules

of the language|are enclosed in quotation marks.

2. Non-terminal phrases are identi�ed by names, which may con-

sist of several words.

3. A sequence of items may be built up by connecting the com-

ponents with commas.

4. Alternatives are separated by vertical bars (`j').

5. Optional sequences are enclosed in square brackets (`[' and `]').

6. Sequences which may be repeated zero or more times are en-

closed in braces (`f' and `g').

7. Each phrase de�nition is built up using an equals sign to sep-

arate the two sides, and a semi-colon to terminate the right

hand side.

18.2 Con�guration Language Syntax

To simplify the explanation of the con�guration language, the formal

de�nition which follows in subsections 18.2.2 onwards deals only with

the higher level syntax of the language. At this level, we can deal

with how the signi�cant characters of the language are built up into

tokens and statements. The lower level syntax deals with the way in

Con�guration Language Reference 385

which multiple input �les are handled, with comments and with line

continuation. This topic is treated informally in subsection 18.2.1.

The high level syntax given here has an additional simpli�cation

intended to make it more readable. To show this, consider the

following syntax rule written in the BS6154 metalanguage:

example rule =

\first", \second";

Interpreted strictly, this rule would be satis�ed only by an input text

which read \firstsecond". In the syntax presented here, it should

be taken to match \first" followed by \second", but in such a way

that the two items are distinguishable. For example, the two words

here might be separated by a space character in the input �le. When

the two items are distinguishable in the input �le without a space

between them, then they may be abutted. This would be the case

for the two items in the following example:

second example rule =

\first", \=";

Valid input text for this rule could be, for example, \first=" or

\first =".

18.2.1 Low Level Syntax

The general form of a con�guration language \program" is designed

to be as simple as possible to use.

The following example show the ways in which the formatting, com-

menting and continuation facilities available in the con�guration

language can be used:

! this is an example of a comment

! a blank line follows...

! next, a statement continuation...

PROCESSOR -

386 Chapter 18

host

! now, both features in combination...

PROCESSOR - ! comment AND continuation

root

The above sequence is, to the con�gurer, exactly equivalent to the

following:

PROCESSOR HOST

PROCESSOR ROOT

The various facilities used above can be summarised as follows:

� Case of letters is not signi�cant to the con�gurer; in other

words, upper and lower case letters may be used interchange-

ably.

� White space within a line (space characters, tab characters and

so forth) is compressed; for example, three consecutive spaces

would be seen as one.

� Everything from an exclamation mark character `!' to the end

of the line is taken to be a comment, and is discarded.

� If the last non-whitespace character on a line is a hyphen `-',

the line is taken to be continued onto the next line.

� Continuation and commenting can be used together; the hy-

phen must then be the last non-whitespace character before

the comment.

In addition to these line formatting considerations, note that the

con�gurer can accept any number of input �les rather than simply

one. This facility is designed to allow di�erent parts of the descrip-

tion of an application to be held in separate �les. For example, the

description of the physical network might be held in one �le and

the description of the user's application in another. The con�gurer

simply treats each input �le in order as part of one long input stream.

Con�guration Language Reference 387

18.2.2 Numeric Constants

Several di�erent kinds of numeric constant are available to meet the

di�erent uses of constants within the con�guration language. For

example, a constant may be expressed in decimal notation or in

hexadecimal.

A special notation is provided to extend the decimal constant with a

scaling letter; this is most commonly used in speci�cations of memory

allocation, which are conveniently speci�ed in units of kilobytes or

megabytes. The scaling letters `K' and `M' scale the decimal con-

stant they follow by 1024 and 1024 � 1024 (1048576) respectively.

Note that it is not possible to add a scaling letter to a hexadecimal

constant; the con�gurer would interpret such a combination as the

hexadecimal constant followed by a single-character word containing

the scaling letter.

Although all numeric constants in the con�guration language repre-

sent integer values, a representation including a decimal point can

be used for input: the number is simply truncated towards zero

before use. For example, 1:6 would simply represent 1. Because this

truncation occurs after the scaling letter, if any, has been applied, the

decimal point can be used to express fractions of the scaling value.

For example, 1.6M would represent 1677721, which is the truncated

integer part of 1:6� 1024 � 1024.

constant =

decimal constant j hex constant;

hex constant =

\&", hex digits;

hex digits =

hex digit, f hex digit g;

hex digit =

digit j \A" j : : : j \F";

388 Chapter 18

decimal constant =

decimal digits, [\.", f decimal digit g], [scaling letter];

scaling letter =

\K" j \M";

decimal digits =

decimal digit, f decimal digit g;

decimal digit =

\0" j : : : j \9";

Some examples of numeric constants are given here, along with their

values, expressed in decimal.

10 10

&10 16

10K 10240

10M 10485760

1.6 1

1.6k 1638

18.2.3 String Constants

The only circumstance in which a string constant is required in

the con�guration language is when an operating system �le must

be identi�ed. Such string constants in the con�guration language

are simply enclosed in double quotes. No notation is available for

including double quotes within the string; this is unnecessary as MS-

DOS �le names may not contain this character.

The trailing string quote may be omitted if the string is terminated

by the end of the line.

string constant =

\"", f ? any ASCII character other than newline or

double quote ? g, [\""];

Con�guration Language Reference 389

Some examples of valid string constants are as follows:

"string"

"c:\mytasks\x.b4"

"fred.b4

Note that the case of the characters in �le names is signi�cant, even

though MS-DOS does not use this distinction. This is to help when

the software is ported to other environments.

18.2.4 Identi�ers

Each object in the physical transputer system (processors and wires)

and in the user's application (tasks and connections) has a unique

identi�er. This is used by the con�gurer in error reports, and is also

used to specify relationships between the objects. For example, a

wire runs between links on two named processors.

Identi�ers for objects in the con�guration language are simply se-

quences of letters, digits and the special symbols underline `_' and

dollar sign `$'. The sequence must start with a letter.

identi�er =

letter, f identi�er character g;

identi�er character =

letter j digit j \$" j _";

letter =

\A" j : : : j \Z";

Some examples of valid identi�ers follow. Note that the last three

examples would all be treated identically by the con�gurer, because

the case of letters is not signi�cant.

proc_5

do$work

root

a_very_long_name

390 Chapter 18

A_Very_Long_Name

A_VERY_LONG_NAME

Part of the syntax of each of the con�guration language statement

types which declare an object is the identi�er which is to be used to

refer to that object in later statements. For example, the identi�er

given to a processor is used again in placing tasks on that processor

or in wiring the processor's links to those of other processors.

It is sometimes convenient, when an object will not be referred to

later, to allow the con�gurer itself to choose an identi�er for an

object rather than for the user to invent meaningless identi�ers for

every object. The declaration statement types all allow a question

mark to be used in place of an identi�er.

new identi�er =

identi�er j \?";

Normally, this special form of identi�er is used when declaring wires

and connections, as there is at present no statement type which

refers back to these objects. Declarations of processors and tasks

will almost always require an explicit identi�er to be used, as these

identi�ers are used later when placing the tasks onto the network of

processors.

An example of using the question mark form of identi�er would be

as follows:

wire ? host[0] root[0]

This statement declares a wire running from link number 0 on pro-

cessor host to link number 0 on processor root. The con�gurer will

be able to report errors concerning this wire by reference to the line

number and �le name of the declaration, but the user will not be

able to refer to the wire again.

Con�guration Language Reference 391

18.2.5 Statements

Given the de�nitions of such primitives as numeric constants and

identi�ers, the high-level syntax of the con�guration language can

now be presented. The combined input �le consists of a number of

newline-separated statements, as follows:

input �le =

f [statement], newline g;

Note that the statement part of the above is optional, allowing for

blank lines appearing between statements. This may come about

either deliberately, perhaps to improve the readability of the input

�le, or because the line contained only a comment, which is of course

not visible at this level.

Each statement in the input �le is one of the following statement

types. The di�erent statement types are covered in the subsections

which follow.

statement =

processor statement j
wire statement j
task statement j
connect statement j
place statement j
bind statement;

There is no restriction on the order in which statements appear in

the input �le, except that no object may be referred to before it has

been declared.

18.2.6 PROCESSOR Statement

processor statement =

\PROCESSOR", new identi�er, f processor attribute g;

392 Chapter 18

processor attribute =

\TYPE", \=", processor type j
\BOOT", \=", boot �le speci�er j
\RAM", \=", constant;

processor type =

\PC";

boot �le speci�er =

string constant;

The PROCESSOR statement declares a physical processor. Every

processor in the physical network must be declared, including the

host processor from which the network is to be bootstrapped (nor-

mally an IBM PC-type machine). The con�gurer assumes that the

processor named host is the host processor; thus, each con�guration

must contain a statement as follows:

processor host

Most processors declared in a con�guration �le will be declared so

that user tasks can be placed on them by later statements. However,

it is sometimes necessary to simply describe the tasks placed on

a particular processor without causing them to be loaded into the

processor. For example, the physical network may contain some

processors which will already be executing tasks at the time the rest

of the network is bootstrapped.

A trivial example of this case is the host processor itself. In the case

of an IBM PC host processor, the host will usually be executing the

afserver program when the network is loaded, simply because that

is the program which loads the rest of the network. It is necessary

to be able to specify the afserver task to the con�gurer so that its

ports can be connected to ports in user tasks, but without forcing

the con�gurer to attempt to bootstrap the IBM PC. Similarly, some

processors in the network might be set to bootstrap from ROM rather

than from link; here, too, there is a need to describe the tasks running

in those processors without attempting to bootstrap them.

Con�guration Language Reference 393

A processor is declared to the con�gurer as having already been

bootstrapped by means of the TYPE attribute. For example, a

physical network containing one transputer and two IBM PCs might

be described as follows:

processor host

processor root_processor

processor other_IBM_PC type=pc

Note that the default for the host is that it is TYPE=PC already. The

default for all other processors is to be normal, bootable, transputer

processors.

Every processor is assumed to be able to support any user task placed

on it by the con�guration �le; speci�cally, there is no way to ask

the con�gurer to check the memory requirements of tasks placed

on the processor against the amount of physical memory available.

Similarly, although certain tasks may not be able to execute on

particular types of processor (for example, a task making use of the

oating point instructions found only on the T800 cannot execute on

a T414), the con�gurer cannot check for this and the responsibility

for ensuring a valid con�guration is the user's.

Every processor in the network is assumed to have four Inmos links,

numbered 0 to 3. These may be referred to (in the WIRE statement)

by means of a link speci�er construct, which consists of the processor

identi�er followed by the link number enclosed in square brackets:

link speci�er =

processor identi�er, \[", constant, \]";

For example, link number 3 of the processor called extra would be

speci�ed as extra[3].

18.2.6.1 BOOT Attribute

The BOOT attribute is used to indicate that a processor should not

be loaded in the conventional manner but should be booted with the

394 Chapter 18

contents of a named �le.

processor edge boot="sensor.b4"

processor gateway boot="anneal.app"

At load time a copy of the raw data in the boot �le is simply sent to

the processor: this can be any code suitable for booting a transputer,

including an application image �le generated by either the static or

ood-�ll con�gurers. In other words, a processor declared with the

BOOT attribute can be thought of as the root processor of a sub-

network to be booted using the named boot �le.

In this way, a main statically-con�gured network can include static

sub-networks or processor farm sub-networks \on the side". How-

ever, these sub-networks must be connected at the edge of the main

network. There must be only one connection between a sub-network

and the main network. If this restriction is not followed, the network

may fail to load.

Only the root processor of the sub-network should be described in

the main con�guration �le. If the boot �le for the sub-network is

a con�gured application, then a sub-network con�guration �le will

have been used to create it. If the static con�gurer was used for

the sub-network, the sub-network con�guration �le de�nes the sub-

network topology; this description must be accurate, as no checking

can be done during the main network con�guration. The processor

in the main network which has a BOOT attribute appears in the

sub-network con�guration �le as the host processor.

The task in the main network which is to communicate with the

root processor in the sub-network must have its ports bound to the

appropriate link addresses. The programmer must use the actual

hardware addresses for the links to do this. These addresses are as

follows:

Con�guration Language Reference 395

Output address Input address

Link 0 &80000000 &80000010

Link 1 &80000004 &80000014

Link 2 &80000008 &80000018

Link 3 &8000000C &8000001C

The main task of the sub-network application should be linked with

the stand-alone run-time library unless the task it will communicate

with in the main network can respond to server protocol (e.g., if the

main network task is a �le multiplexer).

As an example of a sub-network, if the upc application described

in chapter 5 were to be split into a main and sub-network using the

BOOT attribute, the main network con�guration �le would look like

this:

! MAINNET.CFG

! Configuration file for upper casing example

! using "boot=" to boot sub-network with upc

processor host

processor root

processor P001 BOOT="subnet.app"

wire ? host[0] root[0] ! connect PC to transputer

wire ? root[1] P001[2]

! Task declarations

task afserver ins=1 outs=1

task filter ins=2 outs=2 data=10K

task driver ins=3 outs=3

! Assign software tasks to physical processors

place afserver host

place driver root

place filter root

! Set up the connections between the tasks.

connect ? afserver[0] filter[0]

connect ? filter[0] afserver[0]

connect ? filter[1] driver[1]

396 Chapter 18

connect ? driver[1] filter[1]

! bind ports to link to sub-network root processor

bind input driver[2] value =&80000014 ! I/O over

bind output driver[2] value =&80000004 ! link 1

The sub-network con�guration �le would look like this:

! SUBNET.CFG

! Configuration file for uppercasing example. When

! configured this application can be used to boot a

! processor sub-network with the upc program.

processor host ! really root in main network

processor P001

wire ? host[1] P001[2]

! tasks

task driver ins=3 outs=3

task upc ins=1 outs=1 data=1k

place driver host

place upc P001

connect ? upc[0] driver[2]

connect ? driver[2] upc[0]

18.2.6.2 RAM Attribute

The RAM attribute overrides the default mechanism which dynam-

ically determines the amount of memory available to a processor at

boot time. The default mechanism probes memory to do this and

with certain board designs this is not desirable.

When the RAM attribute is used the con�gurer will assume that the

processor has the amount of memory speci�ed as the parameter to

the RAM attribute and the dynamic method of memory determina-

tion will not be used. For this reason, care should be taken to ensure

that the processor really does have the amount of memory speci�ed

with the RAM attribute.

Con�guration Language Reference 397

The following RAM attributes declare that processor pe1 has 4MB

of memory and processor pe2 has only 500KB of memory.

processor pe1 ram=4096K

processor pe2 ram=500K

Use of the RAM attribute may a�ect the size of the application �le

as it may cause extra loading software to be included.

18.2.7 WIRE Statement

wire statement =

\WIRE", new identi�er, link speci�er, link speci�er;

The WIRE statement declares a physical wire connecting links on

two physical processors. Each wire supports two connections, one in

either direction. The two link speci�ers in the WIRE statement may

therefore be interchanged without a�ecting the statement's meaning.

For example, the following statements both declare a wire named

yellow_wire running between link 2 of processor proc_one and

link 3 of processor proc_two:

wire yellow_wire proc_one[2] proc_two[3]

wire yellow_wire proc_two[3] proc_one[2]

Although it is only necessary to declare the wires which are actually

used by the application, in practice it is advisable to declare all the

wires. This is because the con�gurer may be able to use the extra

wires for booting the application, and as a result may be able to

reduce the size of the boot �le by eliminating some of the loading

software.

18.2.8 TASK Statement

task statement =

\TASK", new identi�er, f task attribute g;

398 Chapter 18

task attribute =

\INS", \=", constant j
\OUTS", \=", constant j
\FILE", \=", task �le speci�er j
\OPT", \=", opt area j
\URGENT" j
memory area, \=", memory amount;

opt area =

memory area j \CODE";

memory area =

\STACK" j \HEAP" j \STATIC" j \DATA";

memory amount =

constant j \?";

task �le speci�er =

identi�er j string constant;

The TASK statement declares a task, which may be either a user-

supplied task or one of the standard tasks provided with the con�g-

urer. Each task statement may contain a number of task attribute

clauses, each of which describes some aspect of the task. The task's

attributes may appear in any order within the statement.

18.2.8.1 INS Attribute

Each task declaration must include an INS attribute, which speci�es

the number of elements in the task's vector of input ports. If the

task needs no input ports (because it only requires to send messages

to other tasks, never to receive) then the number of input ports may

be speci�ed as 0.

Con�guration Language Reference 399

18.2.8.2 OUTS Attribute

Each task declaration must include an OUTS attribute, which spec-

i�es the number of elements in the task's vector of output ports. If

the task needs no output ports (because it only requires to receive

messages from other tasks, never to send) then the number of output

ports may be speci�ed as 0.

18.2.8.3 FILE Attribute

This attribute speci�es the �le in which the memory image of the

task is to be found. Task image �les are produced by the linker

program linkt.

The FILE attribute is ignored for any processor which is declared as

already having been bootstrapped, and may be omitted. This state

is assumed for the host processor and for any processor for which

the processor attribute type=pc has been speci�ed.

If the FILE attribute is omitted for a normal (bootable) processor,

the con�gurer will scan the current directory and the directories

speci�ed in the MS-DOS environmental variable PATH for a �le whose

name is the same as the task's name, with the su�x \.b4". The

search stops at the �rst directory in which a �le with the appropriate

name is found. For example, take the TASK statement TASK THIS

with no FILE attribute, with the MS-DOS PATH variable set up as

follows:

PATH=c:\mytasks;c:\dos;c:\tputer

In this case, the con�gurer would search for the task image in the

following �les, in order:

.\this.b4

c:\mytasks\this.b4

c:\dos\this.b4

c:\tputer\this.b4

400 Chapter 18

If the FILE attribute is present, its argument is either a string

constant, or a word with the same syntax as an identi�er. In the

former case, the string is the name of the �le which will be opened,

as in the following example:

task x file="c:\mytasks\mytask.b4" : : :

If the identi�er-like option is taken, the identi�er given is used in a

search through the MS-DOS PATH in the same way as the task's own

identi�er would have been if the FILE attribute had been omitted:

task x file=mytask : : :

18.2.8.4 Memory Size Attributes

The various memory size attributes specify the size of the various

areas used as workspace for the task, as well as specifying which

memory allocation strategy should be used.

The argument to one of the memory size attributes is an integer

expressing the number of bytes of memory to be allocated to the area

in question. Sizes smaller than 128 bytes will not be accepted, to pre-

vent accidental entry of unreasonably small amounts (for example,

by typing 1.6 instead of 1.6K). It is also possible to specify \the rest

of memory available on the processor" by entering a question mark

instead of an integer. Only one task may request this treatment on

any particular processor.

The single-vector allocation strategy is used if the DATA attribute

appears. In this strategy, the task uses a single area of memory for

all workspace requirements, whether stack, heap or static data. The

stack and heap are allocated at opposite ends of this area, and grow

towards each other. For example:

task x : : : data=50k : : :

The double-vector allocation strategy is used if the STACK and

HEAP attributes appear (STATIC is available as a synonym for

Con�guration Language Reference 401

HEAP). In this strategy, the stack occupies a separate area of mem-

ory to all the other workspace used by a task. This can be useful

when a task has a small stack requirement, as it can allow for the

stack area to be placed into the transputer's on-chip memory using

the task OPT attribute; this technique can produce large perfor-

mance bene�ts. An example of double-vector allocation is as follows:

task x : : : stack=1k heap=10k : : :

The two allocation strategies are mutually exclusive. Thus, if the

DATA size for the task is given, neither STACK nor HEAP should

appear. If the two-vector allocation strategy is chosen, both STACK

and HEAP must be speci�ed. If no memory size attributes at all

appear for a task, the default is the same as DATA=?; in other words,

single-vector allocation of the rest of memory available on the pro-

cessor.

18.2.8.5 OPT Attribute

This attribute speci�es that the memory area given as its argument

should be placed, if possible, into the transputer's on-chip memory

area. The CODE speci�er indicates the area of memory which will

contain the executing code of the task; the other memory area spec-

i�ers have the same interpretation as for the memory size attributes.

If not all of the memory areas speci�ed will �t into the on-chip

memory, then some will be placed instead into the slower external

memory, which is the default allocation for all memory areas. The

order of precedence between memory areas in the same task is: stack,

code, heap. In other words, if OPT=STACK and OPT=CODE are both

speci�ed, then the stack area is more likely to be placed in on-chip

memory. No order of precedence is guaranteed between memory

areas in di�erent tasks.

It is possible for only part of a memory area to be placed in the

on-chip RAM; this is useful in respect of the code area, where the

modules which appeared �rst in the linker command line will have

402 Chapter 18

been placed at the start of the code area. If the most critical pro-

cedures are placed in the �rst module, then the likelihood of their

being executed from on-chip memory will be increased.

The on-chip memory is quite small (2KB on the T414, 4KB on the

T800), so the OPT attribute should be used sparingly to ensure

that critical memory areas are not displaced into the slower external

memory by less critical memory areas.

An example of a critical task with small stack and large data re-

quirements might be as follows:

task t stack=1k heap=100k -

opt=stack opt=code

18.2.8.6 URGENT Attribute

This attribute speci�es that the task's initial thread is to be started

at the urgent priority level. The default is that the task's initial

thread is started at the not-urgent priority level. For example:

task x : : : urgent : : :

18.2.8.7 Port Speci�ers

After the declaration of a task, its ports may be referred to in much

the same way as the links of a processor, by a port speci�er construct

consisting of the task identi�er followed by a number enclosed in

square brackets:

port speci�er =

task identi�er, \[", constant, \]";

For example, either input or output port number 5 on task user

would be speci�ed as user[5].

Note that a port speci�er as given here does not indicate whether the

port concerned is an input port or an output port, that is, whether

Con�guration Language Reference 403

the index given is into the task's vector of input ports or into its

vector of output ports. This information is provided by the context

in which the port speci�er appears. In the CONNECT statement,

the port speci�er's direction is determined by its position within the

line. In the BIND statement, the port speci�er is preceded by a

direction word (INPUT or OUTPUT).

18.2.9 CONNECT Statement

connect statement =

\CONNECT", new identi�er, output port speci�er,

input port speci�er;

output port speci�er =

port speci�er;

input port speci�er =

port speci�er;

The CONNECT statement connects an output port on one task with

an input port on another task. For example:

connect ? afserver[0] filter[0]

connect ? filter[0] afserver[0]

Whereas the WIRE statement describes a hardware connection be-

tween links on two transputers, the CONNECT statement describes

a logical connection between two tasks. Two kinds of connection are

possible:

� A connection between two tasks on the same processor. In this

case, the con�gurer will create a channel word in memory, to

which both of the ports will pointed.

� A connection between tasks on adjacent processors, between

which there is a free wire.

In the second case, the con�gurer will map the connection onto a

wire. Each wire can support a total of two connections, one in each

404 Chapter 18

direction. If there is no spare wire for the connection, and error

message will be output.

Note that the order of the ports given in the CONNECT statement

is signi�cant, unlike the order of the links in the WIRE statement

which CONNECT otherwise resembles.

18.2.10 PLACE Statement

place statement =

\PLACE", task identi�er, processor identi�er;

processor identi�er =

identi�er;

task identi�er =

identi�er;

The PLACE statement determines which processor a particular task

is to execute on; every task must be placed on some processor. A

simple example of the use of this statement might be as follows:

place user_task root

place afserver host

Where multiple tasks which have the same image �le are placed on

the same processor, they all share a single instance of the image

code. This helps to save space and can be particularly useful for

the simulation of large regular systems on fewer processors than will

eventually be used.

Note that it is incorrect to PLACE a task on a processor which was

declared with a BOOT attribute or on any processor which can only

be reached from the host via processors declared with the BOOT

attribute.

Con�guration Language Reference 405

18.2.11 BIND Statement

bind statement =

\BIND", binding type, port speci�er, binding value;

binding type =

\INPUT" j \OUTPUT";

binding value =

\VALUE", \=", constant;

The BIND statement allows the contents of a port to be explicitly

set to some literal value. Normally, ports are only bound by means

of the CONNECT statement; ports left unbound are pointed at

unique transputer channel words so that attempts to send or receive

messages through them cause the minimum of harm; the thread

causing the attempt to communicate over the unbound port simply

pauses inde�nitely rather than causing failure of possibly all threads

running on the processor.

One application of the BIND statement is to give a task access to the

transputer's external event mechanism. This appears as a channel

word at address 8000002016. Input port 5 of task event_handler

could be initialised to point to this channel word as follows:

bind input event_handler[5] value=&80000020

Another application of the BIND statement is to pass an integer

parameter to a user task. Here, the same input port as before is

bound to the value 5:

bind input event_handler[5] value=5

This technique can be used to allow several otherwise identical tasks

to behave di�erently. For example, tasks executing on a fast proces-

sor can have this fact indicated to them by means of a parameter

value, and use a more processing-intensive algorithm for the solution

of some problem. Another use of this parameter facility is to \label"

each task with a unique identi�er.

406 Chapter 18

Note that if an arbitrary value is supplied for a port binding and an

attempt is then made to send or receive a message using that port,

the processor on which the task resides will most probably crash.

Chapter 19

Flood-Fill Con�gurer

Reference

There are two types of user task in a ood-�ll con�gured application.

One task, referred to as themaster, divides up the computation to be

performed into small work packets. The other task, which is known

as the worker, is replicated all over the network; it accepts work

packets originating from the master, performs some computation

and sends a reply packet or packets back.

19.1 User Task Protocol

This section describes the protocol used by the user tasks in a ood-

�lled application. Note that a di�erent protocol may well be used

by the router tasks, for example to avoid problems with T414A

restrictions on minimum length of messages sent across links.

408 Chapter 19

19.1.1 Master Task's Ports

The master task has two input ports and two output ports. The

input and output ports master[1] are connected in the usual way

to a �le server task such as afserver (probably via a protocol �lter

task such as filter).

The input and output ports master[0] are connected to the router

task. The router task is provided by the ood-�ll con�gurer, and has

the function of transporting work packets from the master through

the network to idle workers to be processed.

19.1.2 Worker Task's Ports

Each worker task has one input port and one output port. These

ports worker[0] are connected to the part of the routing system

which exists on each processing node of the network.

19.2 Packet Format

Work and response packets have identical format, consisting of a

�xed-length portion and an optional variable-length portion. The

two portions of the packet are send as separate messages. Each

packet starts with a message containing a 4-byte integer header, as

shown in Figure 19.1.

The various �elds of this 32-bit message are used as follows:

� The least-signi�cant sixteen bits of the message are used to

indicate the length of the data block following the header. If

the length is zero, no data block follows; otherwise this many

bytes of additional data follow as a separate message of that

length.

� Bit number 16 (value 0001000016) is always 1.

Flood-Fill Con�gurer Reference 409

15 (lsb) 0

Data Length

16

M

B

1

17

R

D

Y

18

B

C

31 (msb) 19

Must be Zero

Figure 19.1: Format of Packet Header

� Bit number 17 (value 0002000016) is set to 1 to signify that

the sending task is ready. A worker task can set RDY = 0 to

indicate that further response packets will be issued before the

next work packet will be accepted.

� Bit number 18 (value 0004000016) is set to 1 to signify that

this packet is a broadcast.

� Bits number 19-31 are always 0.

410 Chapter 19

Chapter 20

Task Data Sheets

This chapter contains descriptions of the standard \building block"

tasks which are provided with Parallel C.

The description of each task starts with a diagram indicating the way

in which the ports of the task should be connected to those of other

tasks. Small digits inside the box representing the task are used

to indicate port numbers corresponding to the connections visible

outside the box.

This diagrammatic description is then backed up by a detailed de-

scription of the function of the task, along with examples of how a

reference to the task might appear in a con�guration �le.

412 Chapter 20

Data Sheet: afserver

afserver
�

-
0

to
filter

The afserver task is used in con�gured applications to represent an

afserver program executing on the host computer. It is therefore

not provided in true task-image form.

The afserver task should be described to the con�gurer as follows:

task afserver ins=1 outs=1

place afserver host

The afserver program (and therefore the afserver task) provides

access to the host computer for tasks running in the transputer

system, with which it communicates over its port pair 0.

The protocol used by the afserver is a special variant of the Inmos

tagged �le-server protocol, adjusted to be tolerant of a problem in

the T414A which prevents one-byte messages being sent over links.

The afserver would therefore normally be attached to a filter

task so that this variant protocol could be converted back into the

protocol which is used by user tasks.

Task Data Sheets 413

Data Sheet: �lter

filter
�

-
1

�

-
0

to
afserver

to
user task

The filter task is used to convert between the two extant variants

of the Inmos tagged �le-server protocol. The two variants arise

because of a problem with T414A transputers, which cannot send

one-byte messages across links. A filter task would be described

in a con�guration �le as follows:

task filter ins=2 outs=2 data=10k

A filter task's port pair 0 communicates using the T414A-tolerant

variant of the Inmos protocol. This is normally attached to an

afserver task running on the host computer. Port pair 1 of a filter

task communicates using the standard version of the Inmos protocol.

Thus, if a filter task is interposed between an afserver and a

user task, they will be able to communicate normally although each

is using a di�erent protocol.

414 Chapter 20

Data Sheet: frouter

frouter
�

-
5

�

-
4

to
master

to
worker

\up" link

\down" links
?
6

0

?
6

1

?
6

2

6
?

3

The frouter task is used by the ood-�lling con�gurer as the stan-

dard task which resides on each node of a ood-�lled network and

manages the ow of work packets and responses through the network.

The attributes used by the ood-�lling con�gurer for the frouter

task are as follows:

task router file=frouter ins=6 outs=6 -

data=11k urgent

The following list summarises the way in which the frouter task is

used by the ood-�lling con�gurer:

0{2 Each of these pairs of \down" ports are either set to zero by the

loader, or are connected to the \up" ports of nodes deeper in

the network which were bootstrapped from this node. For each

non-zero port pair in this range, the frouter task will start a

pair of threads to carry packets to and from the subnetwork

attached through that link.

3 If this node is not the root of the network, these \up" ports

are connected to a pair of \down" ports of the router on the

Task Data Sheets 415

node which bootstrapped this node. In this case, the frouter

task will read work packets and send responses to the booting

node (and thus ultimately to the master task executing on the

root node) through this pair of ports. If this node is the root

of the network, these ports are set to zero by the loader and

are ignored by the frouter task: port pair 4 (attached to the

master task) will be used instead.

4 If this node is the root of the network, these ports are connected

to the master task. In this case, the frouter task will read

work packets and send responses to the master task through

this port pair. Otherwise, these ports are set to zero by the

loader and the frouter task will use port pair 3 to reach the

master task.

5 These ports are connected to the worker task executing on this

node.

The standard frouter task uses two protocols in communicating

with the tasks to which it is connected:

4{5 Port pairs connected directly to user tasks use the standard

\net" protocol described in section 19.1.

0{3 Port pairs connected to other routers through Inmos links use

a variant of the \net" protocol which is tolerant to the T414A

problem with one-byte messages. In this variant, a two-byte

message is actually transferred whenever the message header

indicates that a one-byte message should follow.

Note that a communications task like frouter should normally be

speci�ed as having the urgent attribute. This prevents worker tasks

in the network becoming idle because there is too little CPU time

available elsewhere in the network for the router to operate.

416 Chapter 20

Data Sheet: �lemux

filemux
to

afserver�

-
0

�
-

1

�
-

2

.

.

.

.

.

.

.

.

.

.

�
-

n

to
clients

The filemux task allows several client tasks to share a single �le

server task by merging (multiplexing) the clients' request streams

into a single stream of requests. This allows more than one task in a

Parallel C application to use standard �le I/O. Chapter 6 describes

various ways in which this can be done.

In a simple system, the \to afserver" ports are connected to the

afserver via a filter task. However, they may be connected to

any task which accepts the afserver protocol. In particular, they

may be connected up as the client of another filemux task to build

multiplexer chains.

In general, filemux simply passes on service requests from its clients

and forwards the responses. The exception is the \server terminate"

request. The multiplexer will only pass on \server terminate" once

all its clients have requested server termination.

Figure 20.1 shows the basic problem with which the multiplexer task

is intended to assist. Here, the task server runs on the host and

provides �le services via a protocol �lter task filter to a client

task client_1. The filter, client_1 and client_2 tasks all run

in the transputer system. The di�culty is in arranging that the

second client task client_2 can gain access to �les stored on the

host processor.

Task Data Sheets 417

One possibility is to connect the two client tasks together and ar-

range for client_2 to request �le services from client_1. An-

other possibility, illustrated in �gure 20.2, is to introduce a new

task multiplexer designed to solve this particular problem. The

multiplexer task is connected to both client tasks and passes their

�le service requests through to the �lter and thus the server on the

host system.

Although it is possible to build any required multiplexing system

by combinations of the 2 ! 1 multiplexer shown in �gure 20.2, the

filemux task is more general in that it can handle any number of

client tasks: it performs an n! 1 multiplexer function. Port pair 0

(i.e., input port 0 and output port 0) of the multiplexer is always

connected to the task from which �le services may be obtained; in

this example, the �lter task. All other port pairs supplied to the

multiplexer in con�guration language statements like ins=n, outs=n

are connected to a total of n� 1 client tasks. Any number of client

tasks may thus be served by one multiplexer as long as it is provided

with su�cient storage to support them all.

An example of a con�guration �le which represents the con�guration

of tasks shown in �gure 20.2 is given in �gure 20.3 (the processor

and place statements required have been omitted for clarity.)

The multiplexer task may also be used to support client tasks which

are not running in the root processor. When they are running in

server filter client_1

client_2

-

�
0 0

-

�
1 1

-

�
1

Figure 20.1: Limitation on Server Connections

418 Chapter 20

server filter
multi-

plexer

client_1

client_2

-

�
0 0

-

�
1 0

-

�
2 1

-

�
1 1

Host Root Processor

Figure 20.2: Using the Multiplexer

an adjacent processor and there is a spare wire connecting the two

processors, as in �gure 20.4, then no additional work needs to be

done; the con�gurer will simply run the connection between the client

and the multiplexer across any available wire. Note that each wire

between processors, de�ned in the con�guration �le, supports bi-

directional communication between two tasks, one on each processor.

However, if the client task is some distance away, the multiplexer

can be used in a 1 ! 1 con�guration (i.e., serving only one client)

to pass �le service requests through processors in the middle of the

network until �nally reaching the multiplexer in the root processor,

which is connected to the �lter task and thus the server as shown in

�gure 20.5. Thus, a network of transputers might contain a tree of

multiplexer tasks, each passing �le service requests up towards the

root. This kind of arrangement can be continued inde�nitely as long

as the server task has su�cient resources to handle all the clients

together.

As mentioned earlier, the multiplexer can be used in an n! 1 man-

ner. An example of its use with eight client tasks (i.e an 8! 1

multiplexer) is shown in �gure 20.6. It should be noted that the

multiplexer port pair 0 may be connected to one of the client port

pairs of another multiplexer task. This allows multiplexers to be

chained together to provide �le services across a network, if there

Task Data Sheets 419

task server ins=1 outs=1

task filter ins=2 outs=2 data=10k

connect ? filter[0] server[0]

connect ? server[0] filter[0]

task multiplexer file=filemux ins=3 outs=3 data=10k

connect ? filter[1] multiplexer[0]

connect ? multiplexer[0] filter[1]

task client_1 ins=2 outs=2 data=50k

connect ? multiplexer[1] client_1[1]

connect ? client_1[1] multiplexer[1]

task client_2 ins=2 outs=2 data=50k

connect ? multiplexer[2] client_2[1]

connect ? client_2[1] multiplexer[2]

Figure 20.3: Example Con�guration File

are su�cient links available to do this. Similarly, the client_8 task

might itself be a multiplexer providing �le services to tasks on an

adjacent processor.

420 Chapter 20

server filter
multi-
plexer

client
_1

client
_2

-

�0 0

-

�1 0

-

�2 1

-

�1 1

Host
Root

Processor

Second

Processor

Figure 20.4: Using the Multiplexer on an Adjacent Processor

server filter
multi-
plexer

client
_1

multi-
plexer

client
_2

client
_3

-

�0 0

-

�1 0

-

�2 0

-

�1 1

-

�2 1

-

�1 1

Host
Root

Processor

Second

Processor

Third

Processor

Figure 20.5: Using the Multiplexer from Within a Network

Task Data Sheets 421

to
afserver

multiplexer client_8

client
_1

client
_2

client
_3

client
_7

-

� 0

-

�8

6

?
1

1

6

?
1

2

6

?
1

3

6

?
1

7

: : :

: : :

Processor

Figure 20.6: Using an 8! 1 Multiplexer

422 Chapter 20

Data Sheet: stub

stub
�

-
0

to
client

Tasks which are not connected to the afserver or a �le multiplexer

task are normally linked with the stand-alone C run-time library.

There are some standard library functions like exit and sscanf

which do not strictly require �le server support but are not in the

stand-alone run-time library. The stub �ler task allows you to write

stand-alone tasks which make use of such functions.

All library functions which do not actually require afserver support

can be made available to a stand-alone task by linking it with the

full standard run-time library. If no functions like printf are called

which require server support, the standard library will only attempt

to communicate with the server when it tries to read command-line

arguments at program startup and set the exit status at shutdown.

The stub �ler task acts as a sink for these communications: it accepts

this limited subset of the afserver protocol from its client task and

sends back stylised dummy replies.

Note that if the stub �ler's client task does call a library function

which requires server support, e.g., fwrite, the stub �ler will either

send back a meaningless response, or terminate and leave the client

task deadlocked waiting for a response to its request.

The stub �ler task is connected to its client as shown in the example

below. The run-time library always uses output port 1 and input

Task Data Sheets 423

port 1 to communicate with the server, so the client's port pair 1

must be connected to the stub �ler's port pair 0.

task stub ins=1 outs=1 data=20k

task client ins=3 outs=3

connect ? client[1] stub[0]

connect ? stub[0] client[1]

The stub �ler and its client task act together like an ordinary stand-

alone task. In the example above the client task has been given

three input and three output ports. Port pairs 0 and 1 are reserved

for use by the run-time library, so port pair 2 is left free for commu-

nication with other tasks.

Use the stand-alone run-time library in preference to the stub �ler

if possible. It is simpler, and the memory used for the stub task

and some of the startup and shutdown overhead in the full run-time

library is saved.

The stub �ler can only be used with the static con�gurer, config; it

cannot be used with the worker task of a ood-�lled application. The

ood con�gurer, fconfig, will not allow you to specify that a task

other than the worker is to be replicated throughout the network.

424 Chapter 20

Appendix A

Distribution Kit

This appendix lists the �les which are installed on the user's hard

disk when the process described in chapter 1 is followed. Each �le

name is accompanied by a short description of the �le's function.

A.1 Directory \tc2v2

afserver.exe generic transputer board loader program

t2c.exe C compiler driver program for T2

t4c.exe C compiler driver program for T4

t8c.exe C compiler driver program for T8

tc.exe generic C compiler driver program

tc.b4 C compiler code for T4 and T8

linkt.b4 linker code

linkt.exe linker driver program

t2clink.bat batch �le to invoke linker for T2

t4clink.bat batch �le to invoke linker for T4

t8clink.bat batch �le to invoke linker for T8

t4ctask.bat batch �le to link a task for T4

t4cstask.bat batch �le to link a stand-alone task for T4

426 Appendix A

t8ctask.bat batch �le to link a task for T8

t8cstask.bat batch �le to link a stand-alone task for T8

t4harn.bin T4 harness code

t8harn.bin T8 harness code

crtlt4.bin C run-time library for T4 only

crtlt8.bin C run-time library for T8 only

sacrtlt2.bin stand-alone C run-time library for T2

sacrtlt4.bin stand-alone C run-time library for T4

sacrtlt8.bin stand-alone C run-time library for T8

alt.h run-time library header �les

ascii.h

assert.h

boot.h

chan.h

chanio.h

ctype.h

dos.h

errno.h

float.h

limits.h

locale.h

math.h

net.h

par.h

sema.h

serv.h

setjmp.h

signal.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

thread.h

time.h

Distribution Kit 427

timer.h

varargs.h

decode.b4 code of disassembler utility

decode.exe decode utility driver program

mempatch.b4 mempatch utility code

mempatch.exe mempatch utility driver program

tnm.b4 code of object �le analyser utility

tnm.exe tnm utility driver program

tunlib.b4 utility to extract object module from a library

tunlib.exe tunlib utility driver program

worm.b4 transputer network explorer utility

worm.exe worm utility driver program

config.exe con�gurer driver program

config.b4 con�gurer code

gloader.b4 loader code used by config

taskharn.t4 harness for tasks on T4

taskharn.t8 harness for tasks on T8

occharn.t4 harness for occam tasks on T4

occharn.t8 harness for occam tasks on T8

fconfig.exe ood con�gurer driver program

fconfig.b4 ood con�gurer

frouter.b4 standard ood router task

floader.b4 loader code used by fconfig

filemux.b4 �le server multiplexer task

filter.b4 afserver protocol �lter task

stub.b4 stub �ler task

A.2 Directory \tc2v2\examples

hello.c \hello, world" program

cga.c source package of functions to access PC's CGA

display hardware from the transputer. Provides an

example of use of DOS-access functions.

cga.h header �le for the above

428 Appendix A

mandelm.c source of \master" part of Mandelbrot example

mandelw.c source of \worker" part of Mandelbrot example

mandel.h header �le giving packet formats used by Mandel-

brot example

mandel.cfg con�guration �le for Mandelbrot example

fmandel.cfg con�guration �le for ood-�lled version of Mandel-

brot example

mandelt4.bat batch �le to compile, link and con�gure Mandelbrot

example for T4

mandelt8.bat same for T8

driver.c source of upper-case I/O task

upc.c source of upper-case conversion task

upc.cfg con�guration �le for upper-case example

upct4.bat batch �le to compile, link and con�gure upper-case

example

upct8.bat same for T8

Appendix B

Compatibility with

T414A and T800A

This appendix describes the problems which you may encounter if

you run Parallel C programs on early transputer chips.

We recommend that if you have one of the development systems

sold with these early pre-production processors, you should have

it upgraded with a production processor. Failing this, the various

problem areas are listed here so that you can program round them.

B.1 Problems with T414A

Note that the pre-production T414 (mask revision A) cannot simply

be replaced by a later revision T414 without making changes to the

support circuitry. This is because various details of the external

clock and phase-locked-loop circuitry di�er between the T414A and

all later transputer processors. For their own B004 board, Inmos can

provide an upgrade kit (IMS B901) which includes a T414B chip, an

extraction/insertion tool and full instructions on the modi�cations

required.

430 Appendix B

B.1.1 Restriction on Message Lengths

The T414A cannot reliably transmit a single-byte message across a

link. Message transfer across internal channels is not a�ected.

This problem should not a�ect users of single-transputer systems, as

the filter task used to communicate with the afserver task takes

care of this problem. Similarly, the private protocol used between

routers in a ood-�lled network avoids this problem by padding out

1-byte messages to two bytes for transmission. User tasks in both of

these cases are unaware of the protocol conversions.

This problem can be easily avoided in new systems by ensuring that

protocols never include single-byte messages.

B.1.2 Problems with Timers

B.1.2.1 Timer Rate Problem

In production transputers, the timer associated with high-priority

(\urgent") threads ticks once every 1�s, while the low-priority timer

(that associated with \not urgent" threads) ticks once every 64�s.

In the T414A, both timers tick every 1:6�s.

This problem will a�ect the functions in the timer package, those

functions in the chan package whose names end with _t, and the

functions in the boot package.

B.1.2.2 Short Delay Problem

The T414A cannot reliably delay for small amounts of time (below

about 5 ticks). When such an operation is attempted, the thread

requesting the operation may hang forever.

Compatibility with T414A and T800A 431

This problem a�ects the timer_wait and timer_delay functions

when small delays are speci�ed, and the thread_deschedule func-

tion, which is equivalent to a 1-tick delay.

B.2 Problems with T800A

B.2.1 Floating-Point Conversion Problems

The T800A has a problem in its oating-point microcode; the wrong

result may be obtained for expressions containing integer to oating-

point conversions.

The Parallel C compiler has an option switch to avoid such instruc-

tion sequences; refer to section 9.4.3 for details of the /T8A option.

Note that the run-time library supplied with Parallel C has been

compiled with this option and can therefore be used safely on a

T800A.

B.2.2 Instruction Decode Problems

The T800A decodes the move2dzero and move2dnonzero instruc-

tions wrongly, with the e�ect that when one is requested, the other is

executed. Later T800 processors decode these instructions correctly,

however.

Note that the /T8A compiler option does not change the behaviour

of the assembler with respect to these instructions. The compiler

always generates the code for the instruction as written.

432 Appendix B

Appendix C

Building a Network

In order to make use of the multi-processor facilities provided by

Parallel C, it is of course necessary to build a multi-transputer net-

work on which to run the programs. This appendix describes the

principles involved, and shows how to build such a network out of

plug-in transputer development cards for the IBM PC.

C.1 Network Principles

There are two sets of connections to make when building a net-

work of transputer processors. The most obvious of these are the

links connecting one transputer to another; it is through these wires

that the tasks running on each processor communicate with their

neighbours, and through which the network is bootstrapped. An

application running on a transputer network is usually aware of the

topology of link connections.

Less obviously, another set of connections must be made in order to

arrange that various system services are available to the network.

Speci�cally, each transputer processor has reset and analyse inputs

434 Appendix C

host

root
1

root
2

�
�
��

A
A
AA

WRONG

host

root

�
�
��

RIGHT

Figure C.1: \One Root" Condition

and an error output. The topology of the system service connections

need not be related to that of the link connections.

C.2 Network Requirements

C.2.1 Requirements for Links

When building a network, there are two conditions which the ar-

rangement of link connections must satisfy:

� Exactly one processor must be connected to the host processor.

The former is referred to as the root processor, because it

forms the root of the structure of processors in the network.

Figure C.1 shows two networks, one of which is not acceptable

because it attempts to have two root processors.

� Each processor in the network must be reachable by a series of

\hops" through links, starting at the host processor. In other

words, the network must be connected; i.e., have no isolated

nodes. Figure C.2 shows two networks, one of which is not

acceptable because it has isolated processors.

Building a Network 435

WRONG

root

host

extra
2

extra
1

RIGHT

root

host

extra
2

extra
1

Figure C.2: \Connected" Condition

up down

subsystem

Figure C.3: Inmos System Services Scheme

C.2.2 Requirements for System Services

The only requirement which Parallel C places on the arrangement of

system service connections is that, immediately prior to a network

being bootstrapped, all of the processors in that network must have

been reset. Parallel C makes no use of the transputer analyse and

error signals at present.

The reset signal may be carried to each of the processors in the net-

work in many di�erent ways. However, one popular scheme is shown

in �gure C.3. In this scheme, each processor has three connectors:

� UP leads to a processor closer to the host.

� DOWN leads to a processor further from the host.

436 Appendix C

u d u d u d u d

Figure C.4: System Service Daisy Chain

� SUBSYSTEM leads to a sub-tree of processors under the

control of this one.

The system service signals are carried through from \up" to \down"

so that several processors can be \daisy-chained" together. The

unconnected \up" port of such a chain can be used to control the

entire chain, as shown in �gure C.4.

The purpose of the \subsystem" connector is to allow one proces-

sor to control others; system service signals are sometimes, but not

always, also carried through to the \subsystem" connector.

C.3 Connecting a Network

This section describes how to connect up a network using boards

compatible with the Inmos IMS B004 development board for the

IBM PC. The B004 board is shown in �gure C.5.

At the far right-hand side of this board, visible from the back of the

PC in which the board has been installed, is an array of connectors

by which the board may be connected to other boards. There are

two columns of �ve connectors in this array, de�ned as follows:

PC link unused

Link 0 Link 1

Link 2 Link 3

PC Reset Subsystem

Up Down

Building a Network 437

View from Component Side

PC Bus Edge Connector

transputer

2MB of
Dynamic RAM

�
�
��*

�
�
���

Figure C.5: B004-type Single-transputer Development Board

Boards are supplied with two \jumper" plugs and three cables.

These objects are arranged so that they can only �t into the connec-

tors for which they are intended.

When only one development board is in use, the two jumpers are

installed. These connect \PC Link" to \Link 0" and \PC Reset" to

\Up"; in other words, the board will be reset by the PC in which it

is installed, which will load it through its link 0.

To extend this basic con�guration with another processor, the second

board could be placed in an adjacent PC bus slot (normally to the

right) and connections made to carry system services and application

messages. For example, link 1 on the root transputer (the original

one) could be connected to link 0 on the second board, and \Down"

on the root could be connected to \Up" on the add-on. If the two

boards are in adjacent slots in the PC card cage, these connectors

will be adjacent as well.

This scheme can be extended to any number of development boards;

the root (placed on the left) is controlled by the PC, while each board

other than the right-most passes the system service signals on to the

one on its right.

438 Appendix C

Appendix D

Summary of Option

Switches

D.1 Compiler Switches

Further information can be found in section 9.4, in the subsections

speci�ed below for each switch. In the table below, the following

notations are used to describe the formats of the switches.

fn An MS-DOS �lename. It may be omitted in whole

or in part; the compiler's behaviour in this case is

described in section 9.4.

dir An MS-DOS �lename, which will be assumed to refer

to a directory.

mac Any sequence of characters which is acceptable to the

compiler as a macro name.

str Any sequence of characters which is acceptable to the

compiler as the value of a macro.

n A decimal integer.

440 Appendix D

Switches and their arguments are not case sensitive, except as noted

in section 9.4.

/C 9.4.3 Check: do not generate object �le.

/Dmac 9.4.7 De�ne mac with the value 1.

/Dmac=str 9.4.7 De�ne mac with the value str .

/FBfn 9.4.2 Put binary object output in fn.

/FHfn 9.4.2 Put hexadecimal object output in fn.

/FLfn 9.4.2 Put listing in fn.

/FOfn 9.4.2 Identical to /FB.

/GI 9.4.3 Prevent in-line code generation for library func-

tion calls.

/GD 9.4.3 Perform all oating-point arithmetic in double

precision.

/GS 9.4.3 Generate 32-bit short variables.

/H Equivalent to /FH (obsolescent). A fn may not be

speci�ed.

/I 9.4.8 Print the compiler's identi�cation.

/Idir 9.4.6 Add dir to the #include list.

/L Equivalent to /FL (obsolescent). A fn may not be

speci�ed.

/M 9.4.8 Include macro expansions in the listing.

/PCn 9.4.4 Set the number of bytes required for an extern

function call.

/PMn 9.4.4 Set the number of bytes required for a module

number.

/S 9.4.3 Perform oating arithmetic in single precision

(ignored).

/T2 9.4.3 Generate object code for the T2 processor.

/T4 9.4.3 Generate object code for the T4 processor.

/T8 9.4.3 Generate object code for the T8 processor.

/T8A 9.4.3 Generate special object code for the Rev A T800

processor.

/Umac 9.4.7 Unde�ne a prede�ned macro.

/V 9.4.8 Verbose: display progress messages.

/Wn 9.4.8 Suppress warning messages below severity level

n.

Summary of Option Switches 441

/X 9.4.6 Discard the standard #include list.

/ZD 9.4.5 Generate line number tables for decode and de-

bugger.

/ZI 9.4.5 Generate line number tables and debug tables

for variables.

/ZO 9.4.5 Generate old format diagnostic information.

D.2 Linker Switches

The format of the linker's command line and full details of all the

switches are discussed in chapter 12. The following is a brief sum-

mary of the switches recognised by the linker.

Each switch starts with a slash character `/' and an identifying letter;

it does not matter if this letter is given in upper case or lower case.

The switches can be placed anywhere in the command line but they

may not occur in indirect �les. No spaces are allowed between a

switch's identifying letter and the rest of the switch.

When the size of an area is required, you may specify it either as

number of bytes (e.g., 4096) or a number of kilobytes (e.g., 4K).

/Asize This switch de�nes the size of stack area

/B�le-name This switch speci�es that the �le �le-name is to be

used in preference to the default bootstrap �le. There

is no default extension for �le-name.

/C This switch stops the linker adding the bootstrap �le

to the executable �le.

/FA This switch causes the linker to optimise the stack

(automatic) area.

/FC This switch causes the linker to optimise the code area.

442 Appendix D

/FH This switch causes the linker to optimise the heap area.

/FS This switch causes the linker to optimise the static

area.

/G This switch results in the linker creating a debugger

information area in the executable or library �le.

/I This switch causes the linker to display its identity and

along with various statistics about the executable �le

such as the code and static sizes and the maximum

patch size used.

/L This switch makes the linker generate a library �le

rather than an executable �le.

/Msize This switch de�nes the size of the read-write memory

area (including on-chip memory).

/Ooptimization-symbol

This switch gives priority to the position in the

executable image of the object �le which de�nes

optimization-symbol .

/O@optimization-�le

This switch gives priority to the position in the

executable image of the object �les which de�ne

the symbols whose names are contained in the �le

optimization-�le. The default extension for optimization-

�le is .opt.

/P This switch has the same e�ect has the /L switch.

/Q This switch suppresses all warning messages (see sec-

tion 12.13).

/Qn This switch suppresses output of message n (see sec-

tion 12.13).

/Rsize This switch de�nes the size of read-only memory area.

Summary of Option Switches 443

/S This switch generates a map �le taking its name from

the �rst name in the list of object �les.

/Smap-�le This switch generates a map �le called map-�le. The

default extension for map-�le is .map.

/Xentry-point

This switch causes the linker to use the symbol entry-

point in preference to INMOS.ENTRY.POINT, which is

the default.

D.3 afserver Switches

The �le server program, afserver, is used to load programs from

the MS-DOS host into the B004, and to enable programs on the

B004 to communicate with the MS-DOS �le system and devices.

The program should be called like this:

afserver command-line redirections

where:

command-line

is a sequence of switches and program parameters.

Anything which is not recognised as a switch is treated

as a program parameter. Switches are interpreted by

the afserver, and not passed to the program. Pro-

gram parameters are passed to the program, and are

ignored by the afserver.

redirections are used to redirect standard input and output in the

usual MS-DOS way. In the case of a Fortran program,

standard input and output are preconnected to units

5 and 6 respectively.

For example:

C>afserver -:b \tc2v2\tf.b4 /t8 test >errors.lis

444 Appendix D

Here, `-:b \tc2v2\tf.b4' is an afserver switch, and directs it to

boot a program, in this case the Fortran compiler. `/t8' and `test'

are parameters for the Fortran compiler, and `>errors.lis' redirects

the compiler's console output to the �le errors.lis.

Only afserver switches which are relevant to the Parallel C en-

vironment are discussed here. Further information may found in

the Stand-Alone Compiler Implementation Manual [14]. Note that

switches may start with `-:', as cited below, or `/:'. Switches must

be speci�ed in lower case.

-:b �le-name

Boot transputer. The afserver will boot the program

in �le-name into the transputer board and start it.

Normally, �le-name will be a .b4 �le output by the

linker or one of the con�gurers. Note that the complete

�le name must be speci�ed, including the extension.

If a -:b switch is not used, the afserver assumes that

the transputer board has already been booted, and will

try to communicate with the program there.

-:l link-address

Specify link address. By default, the afserver uses a

block of I/O addresses starting at either 15016 or 30016
to communicate with the transputer board. It decides

which by looking at the host's BIOS Machine ID . For

all hosts except the original IBM PC, 15016 is used.

However, the IBM PC uses these I/O addresses for

other purposes, and consequently when the machine

ID indicates that the host is an IBM PC, the afserver

uses 30016 instead. (There are special varieties of the

transputer boards to cope with this.) Unfortunately,

the machine ID's of certain IBM-compatible machines

(such as the Amstrad PC1512) indicate that they are

IBM PCs, even though they more closely resemble the

PC/AT. In this case, a -:l #150 switch may be used

to force the afserver to use the correct link address.

Summary of Option Switches 445

A hexadecimal link-address is indicated by preceding

it with `#'.

-:i Information. The afserver prints out its version num-

ber, etc.

-:o ags Set program ags. The ags are used to set modes for

program execution. At present, only two values are

recognised.

-:o 0 The default. Locate the program's stack

on the transputer's on-chip RAM.

-:o 1 Locate the whole of the program's stack

in external (o�-chip) storage, and use the

on-chip RAM for the start of the pro-

gram code.

More information about these ags may be found in

section 3.5.

D.4 General Purpose Con�gurer Switches

The General-Purpose Con�gurer, config, is used to assemble a net-

work of tasks into an application �le. Its operations are controlled

by instructions taken from a con�guration �le, which is written in a

special con�guration language. This is described fully in chapter 18.

The use of the con�gurer is described in chapter 5. The program

should be called like this:

config con�guration-�le application-�le switches

where:

con�guration-�le

is the name of the con�guration �le containing the

446 Appendix D

instructions for building this application. By conven-

tion, con�guration �les have the extension .cfg, but

the con�gurer does not assume this, and the whole �le

name must be give.

application-�le

is the name of the application �le to be created. Once

again, there is no default extension, and the whole

name must be supplied.

switches control the con�gurer's options.

Currently, only one option switch is recognised by the con�gurer.

/K Normally, the con�gurer removes dubugging informa-

tion from the task images it loads into the application

�le. The information is not needed, since Tbug loads

a networked application direct from the task-image

�les, and ignores the application �le. Omission of the

debugging information also makes the application �le

smaller.

This switch makes the con�gurer keep the debugging

information. At present we do not recommend using it;

it has been implemented now in preparation for future

developments in the 3L product range.

Appendix E

Transputer Instructions

This appendix provides a quick reference for the transputer instruc-

tion set as supported by Parallel C's asm statement. The syntax of

the asm statement is covered in detail in section 9.7.

It is not anticipated that this appendix would be used as the sole

reference for the transputer instruction set by a programmer un-

familiar with the transputer. For a detailed speci�cation of each

of the instructions available, refer to the Inmos Compiler Writer's

Guide[13].

Except for those listed in sections E.5 and E.6 below, all the instruc-

tions are available for T2, T4 and T8 transputers.

E.1 Pseudo-Instructions

Pseudo-instructions are instructions to the assembler, rather than

true transputer instructions. At present, only one pseudo-instruction

is implemented, as follows:

byte : : : : : : : : : : : : This instruction takes as argument a list of con-

stant values in the range 0 to 255. The assembler

448 Appendix E

copies the literal bytes into the instruction stream.

E.2 Pre�xing Instructions

The transputer instruction set is built up from 16 direct instructions,

each with a 4-bit argument �eld. The direct instructions include pre-

�x instructions which augment the 4-bit �eld in a direct instruction

which follows them by their own 4-bit argument �eld, e�ectively

allowing the argument to be extended to 32 bits.

Normally, the assembler will compute the pre�x instructions required

for operand values greater than 4 bits automatically. However, you

may wish to use explicit pfix and nfix instructions in conjunction

with with the byte pseudo-instruction to synthesise special instruc-

tion sequences, for example for future transputer processors with

additional instructions to those supported by Parallel C at present.

pfix : : : : : : : : : : : : pre�x

nfix : : : : : : : : : : : : negative pre�x

E.3 Direct Instructions

The direct instructions form the core of the transputer instruction

set. Each direct instruction has a single operand, normally an in-

teger constant, which will be encoded in the instruction itself and,

if it is larger than will �t into the 4-bit argument �eld of the direct

instruction, into a series of pfix and nfix instructions as well.

The transputer architecture is based around a three-register evalua-

tion stack and a single base register Wreg. The load and store \local"

instructions access a word in memory at a displacement from Wreg

given by the operand value used. The displacement is scaled by the

word size. The load and store \non-local" instructions use the top

Transputer Instructions 449

evaluation stack register (Areg) as the base instead of Wreg, allowing

computed base addresses to be used.

The operand of the j, cj and call instructions is interpreted as a

byte displacement from the instruction pointer (program counter)

register Iptr. ldpi is similar but takes its operand from Areg.

opr : : : : : : : : : : : : : :\operate": the argument to this instruction is a

code indicating a zero-operand indirect instruction

to be executed. Most of the transputer instruction

set is made up of these indirect instructions. Nor-

mally you would use the mnemonic for the spe-

ci�c indirect instruction which you require: the

assembler will encode this as an opr instruction

on your behalf. However, it is possible to use opr

explicitly, for example to synthesise the instruc-

tion sequence for a new indirect instruction not

supported by the T4 and T8 transputers.

ldc : : : : : : : : : : : : : : load constant

ldl : : : : : : : : : : : : : : load local word

stl : : : : : : : : : : : : : : store local word

ldlp : : : : : : : : : : : : load pointer to local word

adc : : : : : : : : : : : : : :add constant operand value to Areg

eqc : : : : : : : : : : : : : : test if Areg equals constant; Areg gets 1/0 result

j : : : : : : : : : : : : : : : : jump: the argument may be an identi�er indicat-

ing a label for the jump to go to; the assembler

will compute the displacement required.

cj : : : : : : : : : : : : : : : conditional jump: as with j, a label identi�er may

be used as argument to this instruction.

ldnl : : : : : : : : : : : : load non-local word

stnl : : : : : : : : : : : : store non-local word

ldnlp : : : : : : : : : : : load pointer to non-local word

call : : : : : : : : : : : : call

ajw : : : : : : : : : : : : : :adjust workspace pointer Wreg by constant operand

value (scaled by word length)

450 Appendix E

E.4 Operations

The instructions in this section are all indirect instructions built out

of the opr instruction. None of these instructions takes an argument;

instead, they work solely with the transputer evaluation stack.

The arithmetic instructions take their operands from the top of the

evaluation stack (Areg, Breg) and push the result value back on the

stack in Areg.

rev : : : : : : : : : : : : : : reverse top two stack elements

add : : : : : : : : : : : : : :add

sub : : : : : : : : : : : : : : subtract

mul : : : : : : : : : : : : : :multiply

div : : : : : : : : : : : : : :divide

rem : : : : : : : : : : : : : : remainder

sum : : : : : : : : : : : : : : sum

diff : : : : : : : : : : : : di�erence

prod : : : : : : : : : : : : product

and : : : : : : : : : : : : : :bit-wise and

or : : : : : : : : : : : : : : :bit-wise inclusive or

xor : : : : : : : : : : : : : :bit-wise exclusive or

not : : : : : : : : : : : : : :bit-wise not

shl : : : : : : : : : : : : : : shift left

shr : : : : : : : : : : : : : : shift right

gt : : : : : : : : : : : : : : : greater than (1/0 result in Areg)

lend : : : : : : : : : : : : loop end

bcnt : : : : : : : : : : : : byte count

wcnt : : : : : : : : : : : : word count

ldpi : : : : : : : : : : : : load pointer to instruction (Areg is byte displace-

ment from Iptr)

mint : : : : : : : : : : : : minimum integer

bsub : : : : : : : : : : : : byte subscript (Areg = Areg + Breg)

wsub : : : : : : : : : : : : word subscript (Areg = Areg + 4*Breg)

move : : : : : : : : : : : : move block of memory (src: Creg dest: Breg len:

Areg)

in : : : : : : : : : : : : : : : input message

Transputer Instructions 451

out : : : : : : : : : : : : : :output message

lb : : : : : : : : : : : : : : : load byte

sb : : : : : : : : : : : : : : : store byte

outbyte : : : : : : : : : output byte

outword : : : : : : : : : output word

gcall : : : : : : : : : : : general call (swap Areg$Iptr)

gajw : : : : : : : : : : : : general adjust workspace

ret : : : : : : : : : : : : : : return

startp : : : : : : : : : : start process

endp : : : : : : : : : : : : end process

runp : : : : : : : : : : : : run process

stopp : : : : : : : : : : : stop process

ldpri : : : : : : : : : : : load current priority

ldtimer : : : : : : : : : load timer

tin : : : : : : : : : : : : : : timer input

alt : : : : : : : : : : : : : :alt start

altwt : : : : : : : : : : : alt wait

altend : : : : : : : : : : alt end

talt : : : : : : : : : : : : timer alt start

taltwt : : : : : : : : : : timer alt wait

enbs : : : : : : : : : : : : enable skip

diss : : : : : : : : : : : : disable skip

enbc : : : : : : : : : : : : enable channel

disc : : : : : : : : : : : : disable channel

enbt : : : : : : : : : : : : enable timer

dist : : : : : : : : : : : : disable timer

csub0 : : : : : : : : : : : check subscript from 0

ccnt1 : : : : : : : : : : : check count from 1

testerr : : : : : : : : : test error false and clear

stoperr : : : : : : : : : stop on error

seterr : : : : : : : : : : set error

xword : : : : : : : : : : : extend to word

cword : : : : : : : : : : : check word

xdble : : : : : : : : : : : extend to double

csngl : : : : : : : : : : : check single

ladd : : : : : : : : : : : : long add

452 Appendix E

lsub : : : : : : : : : : : : long subtract

lsum : : : : : : : : : : : : long sum

ldiff : : : : : : : : : : : long di�erence

lmul : : : : : : : : : : : : long multiply

ldiv : : : : : : : : : : : : long divide

lshl : : : : : : : : : : : : long shift left

lshr : : : : : : : : : : : : long shift right

norm : : : : : : : : : : : : normalise

resetch : : : : : : : : : reset channel

testpranal : : : : : test processor analysing

sthf : : : : : : : : : : : : store high priority front pointer

stlf : : : : : : : : : : : : store high priority back pointer

sttimer : : : : : : : : : store timer

sthb : : : : : : : : : : : : store high priority back pointer

stlb : : : : : : : : : : : : store low priority back pointer

saveh : : : : : : : : : : : save high priority queue registers

savel : : : : : : : : : : : save low priority queue registers

clrhalterr : : : : : clear halt-on-error

sethalterr : : : : : set halt-on-error

testhalterr : : : : test halt-on-error

fmul : : : : : : : : : : : : fractional multiply

E.5 T4-only Instructions

The indirect instructions in this section may only be executed on T4

processors, although you may use them in asm statements even when

compiling for a di�erent processor.

unpacksn : : : : : : : :unpack single-length oating-point number

roundsn : : : : : : : : : round single-length oating-point number

postnormsn : : : : : post-normalise correction of single-length oating-

point number

ldinf : : : : : : : : : : : load single-length in�nity

cflerr : : : : : : : : : : check single-length oating-point in�nity or not-a-

number

Transputer Instructions 453

E.6 T8-only Instructions

The instructions in this section may only be executed on T8 pro-

cessors, although you may use them in asm statements even when

compiling for a di�erent processor.

E.6.1 Floating Point Instructions

The indirect instructions in this section provide access to the T8's

built-in oating-point processor. Note that the instructions begin-

ning with `fpu: : : ' are doubly indirect: they are accessed by loading

an entry code constant with a ldc instruction, then executing an

fpentry instruction, which is itself indirect. As with ordinary in-

direct instructions, this indirection is handled transparently by the

assembler, although the fpentry instruction is also available.

The oating point load and store instructions use the integer Areg

as a pointer to the operand location.

fpentry : : : : : : : : : oating point unit entry: used to synthesise the

`fpu: : : ' instructions.

fpdup : : : : : : : : : : : oating duplicate

fprev : : : : : : : : : : : oating reverse

fpldnlsn : : : : : : : :oating load non-local single

fpldnldb : : : : : : : :oating load non-local double

fpldnlsni : : : : : : :oating load non-local indexed single

fpldnldbi : : : : : : :oating load non-local indexed double

fpstnlsn : : : : : : : :oating store non-local single

fpstnldb : : : : : : : :oating store non-local double

fpurn : : : : : : : : : : : set rounding mode to round nearest

fpurz : : : : : : : : : : : set rounding mode to round zero

fpurp : : : : : : : : : : : set rounding mode to round positive

fpurm : : : : : : : : : : : set rounding mode to round minus

fpadd : : : : : : : : : : : oating-point add

fpsub : : : : : : : : : : : oating-point subtract

fpmul : : : : : : : : : : : oating-point multiply

454 Appendix E

fpdiv : : : : : : : : : : : oating-point divide

fpusqrtfirst : : : oating-point square root �rst step

fpusqrtstep : : : : oating-point square root step

fpusqrtlast : : : : oating-point square root end

fpremfirst : : : : : oating-point remainder �rst step

fpremstep : : : : : : :oating-point remainder iteration step

fpldzerosn : : : : : oating-point load zero single

fpldzerodb : : : : : oating-point load zero double

fpumulby2 : : : : : : :multiply by 2:0

fpudivby2 : : : : : : :divide by 2:0

fpuexpinc32 : : : :multiply by 232

fpuexpdec32 : : : : divide by 232

fpuabs : : : : : : : : : : oating-point absolute

fpldnladdsn : : : : oating load non-local and add single

fpldnladddb : : : : oating load non-local and add double

fpldnlmulsn : : : : oating load non-local and multiply single

fpldnlmuldb : : : : oating load non-local and multiply double

fpchkerr : : : : : : : : check oating error

fptesterr : : : : : : :test oating error false and clear

fpuseterr : : : : : : :set oating error

fpuclrerr : : : : : : :clear oating error

fpgt : : : : : : : : : : : : oating point greater than

fpeq : : : : : : : : : : : : oating point equality

fpordered : : : : : : :oating point orderability

fpnan : : : : : : : : : : : oating point not-a-number

fpnotfinite : : : : oating point �nite

fpur32tor64 : : : : convert single to double

fpur64tor32 : : : : convert double to single

fpint : : : : : : : : : : : round to oating integer

fpstnli32 : : : : : : :store non-local 32-bit integer

fpuchki32 : : : : : : :check in range of 32-bit integer

fpuchki64 : : : : : : :check in range of 64-bit integer

fprtoi32 : : : : : : : : convert oating to 32-bit integer

fpi32tor32 : : : : : convert 32-bit integer to 32-bit real

fpi32tor64 : : : : : convert 32-bit integer to 64-bit real

fpb32tor64 : : : : : convert 32-bit unsigned integer to 64-bit real

Transputer Instructions 455

fpunoround : : : : : convert 64-bit real to 32-bit real without rounding

E.6.2 Other T8-only Instructions

The indirect instructions in this section supplement the T4's integer

instruction set.

dup : : : : : : : : : : : : : :duplicate top of stack

move2dinit : : : : : initialise data for 2-dimensional block move

move2dall : : : : : : :2-dimensional block copy

move2dnonzero : : 2-dimensional block copy non-zero bytes

move2dzero : : : : : 2-dimensional block copy zero bytes

crcword : : : : : : : : : calculate Cyclic Redundancy Check (CRC) on

word

crcbyte : : : : : : : : : calculate CRC on byte

bitcnt : : : : : : : : : : count the number of bits set in a word

bitrevword : : : : : reverse bits in a word

bitrevnbits : : : : reverse bottom n bits in a word

wsubdb : : : : : : : : : : form double-word subscript

456 Appendix E

Appendix F

Compatibility Functions

F.1 Introduction

This appendix describes all those members of the run-time library

which are classi�ed as Compatibility functions. This means that

they are neither de�ned by the ANSI standard nor supplied by 3L

to support the special facilities of the transputer. Functions which

fall into one of these groups are dealt with in chapters 10 and 11.

Users should note that none of these functions are recommended

for general use. They are non-standard and likely to cause prob-

lems with portability, and the run-time library contains equivalent

functions with the same or more powerful facilities.

As we saw in chapter 10, declarations of the library functions are

held in a number of header �les. This applies to the compatibility

functions as well, and in the synopsis for each function below, the

appropriate header �le is indicated by a #include statement. In

addition, there are three header �les which are supplied only for the

compatibility functions. They will be considered next.

458 Appendix F

F.1.1 ASCII Control Codes <ascii.h>

This header �le contains macros de�ning symnbolic names for all the

ASCII control codes. The symbolic names de�ned are those shown

in the ASCII code chart in appendix H.

The header �le contains no function declarations.

F.1.2 Channel Communications <chanio.h>

This header �le gives access to a group of functions which were used

in the earlier versions of Transputer C to perform channel commu-

nications. Note that they require the inclusion of chan.h as well as

chanio.h.

_outword output a word to a channel

_outbyte output a byte to a channel

_inmess input a message from a channel

_outmess output a message to a channel

F.1.3 Variable Arguments <varargs.h>

This traditional method of accessing variable numbers of arguments

has been supplanted in ANSI C by the stdarg.h package.

The header de�nes a type, va_list, which can be used to de�ne a

pointer to access the arguments. The following macros are de�ned:

va_alist used in a function header to specify a variable argu-

ment list

va_dcl declares va_alist

va_start initialise a pointer to the start of the argument list

Compatibility Functions 459

va_arg return next argument

va_end �nish accessing arguments

As an example, consider the following function:

#include <varargs.h>

int func(va_alist)

va_dcl /* declare variable argument list */

{

va_list ap*; /* pointer to get arguments */

int arg;

va_start(ap); /* start getting arguments */

for (;;) {

arg = va_arg(ap, int); /* next argument */

if (arg == 0) break;

/* process argument */

}

va_end(ap); /* stop getting arguments */

}

F.2 Low-Level I/O

The low-level I/O functions transfer `raw' user data to or from �les

or devices in variable length blocks (down to one byte). The low-

level I/O functions are provided mainly for compatibility with other

implementations of C; normally, standard I/O should be used. In

low-level I/O �les are accessed via `�le descriptors', small integers

returned by the system when a �le is opened. Other functions are

provided to create new �les and directly control the position in a �le

where data transfers will take place.

The low-level I/O functions are:

close closes a �le

creat creates a new �le

isatty determines if a �le descriptor is associated with a ter-

minal

460 Appendix F

lseek places you at a byte o�set within a �le and returns

the new position as an integer

open opens a �le for reading, writing or both

read reads a speci�ed number of bytes from a �le and places

them in a bu�er

tell returns the current byte o�set within a �le

write writes a number of bytes from a bu�er to a �le

F.3 Alphabetic List of Compatibility Func-

tions

The format of the synopses presented here is the same as for those

in chapter 11. The boxed indicators have the same meanings.

_exit T2 terminate execution

void _exit(int status);

_exit closes all the task's �les then terminates program execution.

It never returns.

status is returned to the host operating system as the program

result code.

This function is provided for compatibility purposes only, and is

not recommended for use in new applications. exit should be used

instead.

_fmode set default �le type

extern int _fmode;

Compatibility Functions 461

The variable _fmode can be used to change the default behaviour of

the fopen function. _fmode can take two values, which are de�ned

in the �le <stdio.h> as O_TEXT and O_BINARY. Note that _fmode

itself is not declared by <stdio.h> and must therefore be explicitly

declared as described in the synopsis if it is to be used.

In the default state (_fmode equal to O_TEXT) a request to fopen

which does not explicitly request a binary �le will result in opening

a text �le. Some applications written for operating systems in which

no distinction is made between text and binary �les may have prob-

lems with this default, as the e�ect is to cause expansion of newline

characters to the host's local newline convention on output, and to

perform a reverse transformation on input.

If the _fmode variable is set to O_BINARY, the behaviour of fopen

is changed to opening in binary mode unless text mode is explicitly

requested. This means that newline translation to and from the

host's local conventions will not take place and an application which

makes the assumption that text and binary �les are not distinguished

may be more easily ported to the Parallel C environment.

The use of _fmode in this way should be regarded as a last resort

for use with applications too large to treat by the preferred method

of changing the type strings passed to calls on fopen to explicitly

request binary �le access. It is not recommended for use in new

applications.

_inmess SA T2 read message from channel

#include <chan.h>

#include <chanio.h>

void _inmess(CHAN *chanp, char buf[],

int nbytes);

Reads a message of length nbytes from the channel pointed to by

chanp into the bu�er buf.

462 Appendix F

This function is provided only for compatibility with older ver-

sions of the run-time library. New programs should use the equiv-

alent function chan_in_message. Note that the parameters to

chan_in_message appear in a di�erent order to those of _inmess.

_outbyte SA T2 write byte to channel

#include <chan.h>

#include <chanio.h>

void _outbyte(char b, CHAN *chanp);

Writes a single-byte message consisting of the value b to the channel

pointed to by chanp.

This function is provided only for compatibility with older versions

of the run-time library. New programs should use the equivalent

function chan_out_byte.

_outmess SA T2 write message to channel

#include <chan.h>

#include <chanio.h>

void _outmess(CHAN *chanp, char buf[],

int nbytes);

Writes a message of length nbytes from the bu�er buf to the channel

pointed to by chanp.

This function is provided only for compatibility with older ver-

sions of the run-time library. New programs should use the equiv-

alent function chan_out_message. Note that the parameters to

chan_out_message appear in a di�erent order to those of _outmess.

Compatibility Functions 463

_outword SA T2 write word to channel

#include <chan.h>

#include <chanio.h>

void _outword(int w, CHAN *chanp);

Writes a four-byte message consisting of the value w to the channel

pointed to by chanp.

This function is provided only for compatibility with older versions

of the run-time library. New programs should use the equivalent

function chan_out_word.

_tolower MACRO SA T2 convert char to lower case

#include <ctype.h>

int _tolower(int cval);

If cval is the ASCII code for an upper case letter, _tolower returns

the code for the corresponding lower case letter. Otherwise, the value

of cval is returned unchanged.

_tolower behaves like tolower but is implemented as a macro.

_toupper MACRO SA T2 convert char to upper case

#include <ctype.h>

int _toupper(int cval);

If cval is the ASCII code for a lower case letter, _toupper returns

the code for the corresponding upper case letter. Otherwise, the

value of cval is returned unchanged.

_toupper behaves like toupper but is implemented as a macro.

464 Appendix F

cfree SA T2 deallocates space obtained from heap

void cfree(char *ptr);

cfree has the same function as free. It frees the space pointed to

by ptr, which will have been obtained from the heap by a call to

malloc, calloc or realloc.

close close a �le

int close(int fildes);

Given a �le descriptor (fildes) as returned by open or creat, close

closes the associated �le, i.e. breaks the connection between the �le

descriptor (a small integer) and the �le itself. A close of all �les is

automatic on exit, but since there is a limit on the number of �les

which may be open at once, close is necessary for programs which

deal with many �les.

Zero is returned if a �le is closed, �1 is returned for an unknown �le

descriptor.

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. You can use the high-level

I/O functions instead of the low-level ones: the high-level equivalent

of close is fclose.

creat create a new �le

int creat(char *name, int mode);

creat creates a new �le or prepares to rewrite an existing �le called

name, given as the address of a NUL-terminated string.

The mode argument is currently ignored, but should be given by the

caller for portability. The call creat(name, mode) is equivalent to

Compatibility Functions 465

the call open(name, 3). See the description of open on page 469 for

details.

This function is provided for compatibility purposes only, and is

not recommended for use in new applications. You can use the

high-level I/O functions instead of the low-level ones: the high-level

equivalent of creat is fopen used with a type parameter including

a `w' character.

ecvt SA convert oating-point to string

char *ecvt(double value, int count, int *dec,

int *sign);

This function is provided for compatibility purposes only, and is not

recommended for use in new applications.

fcvt SA convert oating-point to string

char *fcvt(double value, int count, int *dec,

int *sign);

This function is provided for compatibility purposes only, and is not

recommended for use in new applications.

fdopen open a stream

#include <stdio.h>

FILE *fdopen(int fildes, char *type);

fdopen associates a stream with a �le descriptor obtained from open

or creat.

466 Appendix F

type is a character string specifying the way in which the �le is to

be opened. Refer to the description of fopen (page 260) for a full

description of the type string.

The type of the stream must agree with the way the �le was opened.

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. You can use the high-level

I/O functions instead of the low-level ones: the high-level equivalent

of fdopen is fopen.

fileno MACRO stream status enquiry

#include <stdio.h>

int fileno(FILE *stream);

fileno returns the low-level I/O \�le descriptor" associated with

the stream, see open. It is implemented as a macro.

fileno is used to obtain the low-level �le descriptor associated with

a high-level stream. The descriptor can be used in calls to the low-

level I/O functions (read, write etc.) when it is desired to mix

low-level and high-level operations.

This function is provided for compatibility purposes only, and is not

recommended for use in new applications.

gcvt SA convert oating-point to string

char *gcvt(double value, int digits,

char *buffer);

This function is provided for compatibility purposes only, and is not

recommended for use in new applications.

Compatibility Functions 467

getw read an integer from a binary �le

#include <stdio.h>

int getw(FILE *stream);

getw reads an integer value from the �le referred to by stream. The

format assumed for the integer is that produced by the putw function.

getw returns the integer value read; EOF is returned if a write error

occurs.

getw does not assume any particular alignment of the integer value

within the �le.

CAREFUL! The functions putw and getw should only be used on

binary �les. If they are used on a text �le, the binary data within

the integer may be corrupted because of the translation between new-

line characters and the host's line termination convention. Note also

that the value EOF is a valid integer value: if this is placed in a �le

by putw and read out using getw, it can be di�erent to determine

whether a true integer value is being read or the end of the �le has

been reached.

This function is provided for compatibility purposes only and is

not recommended for use in new applications, where the functions

fwrite and fread can be used to replace putw and getw respectively.

index SA T2 �nd character in string

char *index(char *s, char c);

This function searches the string s for the �rst occurrence of char-

acter c, and returns a pointer to it. If c does not occur in s, a null

pointer is returned.

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. It is identical to strchr

(page 310), which should be used instead.

468 Appendix F

isascii MACRO SA T2 is argument an ASCII character?

#include <ctype.h>

int isascii(int cval);

Returns 6= 0 if cval is an ASCII character (code less than 8016).

isatty is �le descriptor a terminal?

#include <stdio.h>

int isatty(int fildes);

isatty returns 1 if the �le descriptor fildes is associated with the

low-level standard input, standard output or standard error �les,

and 0 otherwise.

lseek move read/write pointer

long lseek(int fildes, long offset, int whence);

The �le descriptor refers to an open �le. The �le position for the �le

is set as follows:

whence = 0 : the pointer is set to offset bytes.

whence = 1 : the pointer is set to its current location plus offset.

whence = 2 : the pointer is set to the size of the �le plus offset.

The returned value is the resulting pointer location.

�1 is returned for an unde�ned �le descriptor or a seek to a position

before the beginning of the �le.

lseek is a no-op on devices (e.g., the VDU or keyboard) which are

not disk �les.

Compatibility Functions 469

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. You can use the high-level

I/O functions instead of the low-level ones: the high-level equivalent

of lseek is fseek.

open open for reading or writing

int open(char *name, int mode);

According to the mode parameter, open either creates a new �le with

the given name, or opens an existing �le either for reading, writing,

for both reading and writing.

name is the address of a string of ASCII characters representing a �le

name, terminated by an ASCII NUL character. The �le is positioned

at the beginning (byte 0). The returned �le descriptor must be used

for subsequent calls for other input-output functions on the �le.

The value �1 is returned if the �le does not exist or is unreadable

or if too many �les are already open.

The �le is opened in a way determined by the mode parameter. This

is made up of an access mode (0{3) added to optional �le-type ags.

The access mode is de�ned as follows:

0 Open the �le for reading only.

1 Open the �le for writing only.

2 Open the �le for both reading and writing.

3 Create the �le.

The �le-type ags|to be added to the basic access mode|determine

whether the �le is a text �le or a binary �le. The ags are de�ned in

<stdio.h> as O_TEXT and O_BINARY respectively. If neither �le-type

ag is given, the default �le-type is taken from the variable _fmode

(see page 460).

470 Appendix F

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. You can use the high-level

I/O functions instead of the low-level ones: the high-level equivalent

of open is fopen.

putw write an integer to a binary �le

#include <stdio.h>

int putw(int ival, FILE *stream);

putw outputs an integer value to the �le referred to by stream in a

format which can be read in again by the standard input function

getw.

putw returns the integer value written. EOF is returned if a write

error occurs.

putw neither assumes nor causes special alignment in the �le.

CAREFUL! The functions putw and getw should only be used on

binary �les. If they are used on a text �le, the binary data within

the integer may be corrupted because of the translation between new-

line characters and the host's line termination convention. Note also

that the value EOF is a valid integer value: if this is placed in a �le

by putw and read out using getw, it can be di�cult to determine

whether a true integer value is being read or the end of the �le has

been reached.

This function is provided for compatibility purposes only and is

not recommended for use in new applications, where the functions

fwrite and fread can be used to replace putw and getw respectively.

read read from �le

int read(int fildes, char *buffer, int nbytes);

A �le descriptor is an integer returned by a successful call on open or

Compatibility Functions 471

creat. buffer is the location of nbytes contiguous bytes into which

the input will be placed. It is not guaranteed that all nbytes bytes

will be read; for example if the �le descriptor refers to the keyboard

at most one line will be returned. In any event, the number of

characters actually read is returned.

Zero is returned when the end of the �le has been reached. If the

read was unsuccessful for any other reason, �1 is returned. Many

conditions may cause errors: physical I/O errors, bad bu�er address

etc.

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. You can use the high-level

I/O functions instead of the low-level ones: the high-level equivalent

of read is fread.

rindex SA T2 �nd character in string

char *rindex(char *s, char c);

This function searches the string s for the last occurrence of character

c, and returns a pointer to it. If c does not occur in s, a null pointer

is returned.

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. It is identical to strrchr

(page 314), which should be used instead.

tell return �le position

int tell(int fd);

fd is a �le descriptor returned by open or creat. tell returns the

current �le position (byte o�set) within that �le.

If an error occurs, tell returns a negative value.

472 Appendix F

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. You can use the high-level

I/O functions instead of the low-level ones: the high-level equivalent

of tell is ftell.

unlink remove a �le from the �le system

int unlink(char *s);

This function is identical to remove, that is, the �le identi�ed by

the string parameter s is deleted. If the �le cannot be removed, the

function returns �1.

This function is included only for compatibility purposes, and is not

recommended for new applications, which should use remove instead.

write write on a �le

int write(int fildes, char *buffer, int nbytes);

A �le descriptor is the integer returned by a successful call on open

or creat.

buffer is the address of nbytes contiguous bytes which are written

on the output �le. The number of characters actually written is

returned. It should be regarded as an error if this is not the same as

requested.

Write returns �1 on error: bad descriptor, bad bu�er address, bad

count, or physical I/O errors.

This function is provided for compatibility purposes only, and is not

recommended for use in new applications. You can use the high-level

I/O functions instead of the low-level ones: the high-level equivalent

of write is fwrite.

Appendix G

Mandelbrot Program

Listings

G.1 Mandelbrot Example Master Task

/*** MANDELM.C

*** Copyright (c) 1988 3L Ltd

*** Example program: Mandelbrot set evaluation and display.

*** NB: This application requires a Colour Graphics Adaptor.

*** The application
*** ---------------

*** The application consists of two tasks:

*** (1) MANDELM (this file). This is the master task, and runs in the
*** root transputer.

*** (2) MANDELW. This is the worker task, and runs in all the other

*** transputers of the net.

*** The flood configurer, FCONFIG, can be used to produce an executable
*** file which will automatically distribute the worker tasks across an

*** arbitrary network and route work packets from the master to the
*** workers.

*** It is also possible to run the application in a single transputer.
*** This will work automatically if the application is configured using

474 Appendix G

*** FCONFIG. Alternatively, a static single-transputer configuration

*** could be built by hand, using CONFIG. A suitable configuration file
*** may be found in MANDEL.CFG.

*** As well as various routines from the Parallel C run-time library,
*** MANDELM must be linked with the CGA primitives module, CGA.BIN.

*** A file MANDELM.LNK is supplied, which may be used to link MANDELM,
*** like this:

*** LINKT @MANDELM.LNK,MANDELM.B4

*** Functions of the tasks
*** ----------------------

*** MANDELM is told by the user which part of the Mandelbrot set to

*** evaluate. It then breaks this up into 100 packets, and sends them
*** to the network of MANDELW's. As the results from each return, they

*** displayed on the PC's screen.

*** Internals of MANDELM

*** --------------------

*** The task contains three threads.

*** (1) The MAIN thread.

*** This runs in the function main(). It intialises the other two threads
*** and then goes into a loop, once round for each Mandelbrot display.

*** For each, it gets instructions from the user, and then signals the
*** SEND thread to start work by using the parameters_are_ready semaphore.

*** It keeps track of completed work by examining tally_done, which is

*** incremented by RECEIVE everytime a RESULTS packet is displayed; when-
*** ever it notices that tally_done has changed, it updates the PC's

*** display; and when tally_done reaches 100, MAIN knows that the display
*** is complete.

*** (2) The SEND thread.
*** This knows when to start work by examining the parameters_are_ready

*** semaphore. It then breaks the job into 100 small jobs, places the
*** details into a COMMAND structure (defined in file MANDEL.H) and uses

*** the net_send function to send it off to the network of MANDELW's.
*** Notice the SEND does not specify WHICH worker task is to do any

*** particular job; this is decided by the network of router tasks.

*** (3) The RECEIVE thread.

*** This simply waits till a packet arrives from the network of MANDELW's
*** and then displays it. Each packet contains all the necessary

*** information to display it, so RECEIVE does not need to keep track of
*** which packet is which. Every time it does a display, RECEIVE

*** increments tally_done, so that MAIN can tell when the whole display

*** is complete.

*** Rev 001 21-Jul-89 ADC make send(), receive() 'void' instead of default

Mandelbrot Program Listings 475

*** 'int' to match thread_create() prototype for its

*** first (function pointer) parameter.
*** Rev 000 16-Dec-87 JF

***/

#include <stdio.h>
#include <dos.h>

#include <thread.h>
#include <sema.h>

#include <par.h>

#include <net.h>
#include "cga.h"

#include "mandel.h"

/* Interface to SEND thread */
static SEMA parameters_are_ready;

/* Interface to RECEIVE thread */
static int tally_done;

/* Current Mandelbrot and display parameters */

static float x_coord, y_coord, gap;

static int thresh1, thresh2, thresh3;

/* Define the way the job is broken into packets */
#define X_INCREMENT ((CGA_LORES_XMAX+1)/10)

#define Y_INCREMENT ((CGA_YMAX+1)/10)
#define PACKETS 100

/*

* This function is invoked by MAIN using thread_create to
* create the SEND thread.

*

*/

void send ()
{

int x, y;
COMMAND c;

for (;;) {

/* Wait here until MAIN signals it's okay to go ahead */
sema_wait (¶meters_are_ready);

/* Fill in the fixed parts of the command */

c.x_coord = x_coord;

c.y_coord = y_coord;
c.gap = gap;

476 Appendix G

/* Send off the packets to be done. Each includes the coordinates

of the top-left and bottom-right corners of the area to do.
This both tells the worker task what values to generate and

identifies the RESULTS packet when it arrives in the RECEIVE

thread (since there's no guarantee that the results will arrive
in the same order the commands are sent out) */

for (x = 0; x < CGA_LORES_XMAX; x += X_INCREMENT) {
c.tlx = x; c.brx = x + X_INCREMENT - 1;

for (y = 0; y <= CGA_YMAX; y += Y_INCREMENT) {
c.tly = y; c.bry = y + Y_INCREMENT - 1;

/* Send off the next packet */

net_send (sizeof(COMMAND), &c, 1);
}

}

}
}

/*

* This function is invoked by MAIN using thread_create to
* create the RECEIVE thread.

*

*/

void receive ()
{

RESULTS r;
int len, ready, x, y, i, n, colour;

for (;;) {

/* Thread will wait here till a packet arrives */
len=net_receive (&r, &ready);

i = 0;

/* The results packet includes the coordinates of the top-left

and bottom-right corners of the data, so we know where to
display it. */

for (y=r.tly; y<=r.bry; y++) {
for (x=r.tlx; x<=r.brx; x++) {

n = r.counts[i++];

/* Received 0 means 1; received 255 means 256 */
n += 1;

/* Decide on the colour <- thresholds, and display... */
colour = (n>=thresh1) + (n>=thresh2) + (n>=thresh3);

cga_lores_plot (x, y, colour);
}

}

/* Increment the tally of packets displayed */

tally_done += 1;

Mandelbrot Program Listings 477

}
}

/*

* The MAIN thread runs here
*

*/

main ()

{

float range;
int previous_tally;

/* Make sure we have text mode (and clear screen), then sign on */

video_mode (MONO_80COL_TEXT_MODE);

printf ("\nCopyright (c) 1988 3L Ltd\n\n");
printf ("Example program: Mandelbrot set evaluation and display\n");

printf ("NB: This program requires a Colour Graphics Adaptor\n\n");

/* Initialise this SEMA to 0 BEFORE we start the SEND thread.

This means it will wait until we tell it it's safe to go ahead */
sema_init (¶meters_are_ready, 0);

/* Now start the other two threads */
thread_create (send, 10000, 2,0,0);

thread_create (receive, 10000, 2,0,0);

for (;;) {

/* This will ensure that no other threads are using the C

run-time library (in fact, in this case they won't be,
but I have done it here as an example...) */

sema_wait (&par_sema);

printf ("\nInput X coordinate: "); scanf ("%f", &x_coord);
printf ("Input Y coordinate: "); scanf ("%f", &y_coord);

printf ("Input Y range: "); scanf ("%f", &range);
gap = range / (float)(CGA_YMAX+1);

y_coord = y_coord + range;

printf ("Threshold 1: "); scanf ("%d", &thresh1);

printf ("Threshold 2: "); scanf ("%d", &thresh2);
printf ("Threshold 3: "); scanf ("%d", &thresh3);

getchar (); /* Consume the final NL */

/* We have finished with the C RTL - release it */
sema_signal (&par_sema);

/* Into graphics (CGA low resolution) mode */
video_mode (CGA_LORES_GRAPHICS_MODE);

478 Appendix G

/* Before we set SEND going, reset the count of finished

packets to zero - RECEIVE will count it back up */
tally_done = 0;

/* All ready - set it going! */

sema_signal (¶meters_are_ready);

previous_tally = 0;

/* Until all the packets have been done, just keep updating the
display when necessary */

while (tally_done < PACKETS) {

while (tally_done==previous_tally) {
/* Wait here till something happens. Use thread_deschedule

to save cpu time */
thread_deschedule ();

}
/* Send the picture up to the PC's display memory */

cga_update ();

previous_tally = tally_done;
}

/* In case tally_done was updated to = PACKETS AFTER the last

cga_update, do another one to ensure the PC's display is

up-to-date */
cga_update ();

/* One again, wait for the RTL to be free; then beep and wait

till the user strikes any key */
sema_wait(&par_sema);

putchar ('\007');

getchar ();
sema_signal(&par_sema);

/* Clear the screen and set text mode again */

video_mode (MONO_80COL_TEXT_MODE);

}

}

Mandelbrot Program Listings 479

G.2 Mandelbrot Example Worker Task

/*** MANDELW.C

*** Copyright (c) 1988 3L Ltd

*** Example program: Mandelbrot set evaluation and display.

*** NB: This application requires a Colour Graphics Adaptor.

*** The application

*** ---------------

*** The application consists of two tasks:

*** (1) MANDELM. This is the master task, and runs in the root

*** transputer.
*** (2) MANDELW (this file). This is the worker task, and runs in all the

*** other transputers of the net. It uses the 'net_' library functions
*** to obtain work packets originating from MANDELM and send back

*** result packets.

*** A file MANDELW.LNK is supplied, which may be used to link MANDELW,

*** like this:

*** LINKT @MANDELW.LNK,MANDELW.B4

*** For further details, see the top of MANDELM.C.

*** Internals of MANDELW

*** --------------------

*** The task waits till a packet arrives. This is a COMMAND struct,
*** containing details of the portion of the Mandelbrot to do. It

*** then does the work, storing the results in a RESULTS struct, which

*** is then sent back to MANDELM.

***/

#include <net.h>
#include "mandel.h"

static COMMAND c;
static RESULTS r;

main ()

{

int x, y, count, n, ready;

float gap, x_coord, y_coord,
ac, bc, two=2.0, four=4.0, size, a2, b2, a, b;

480 Appendix G

for (;;) {

/* Task will wait here until a packet arrives */

n = net_receive (&c, &ready);

/* Unpack some of the parameters */
x_coord=c.x_coord;

y_coord=c.y_coord;
gap=c.gap;

/* The top-left and bottom-right coordinates are supplied

in the command packet */

n = 0;
for (y=c.tly; y<=c.bry; y++) {

bc = y_coord - y*gap;
for (x=c.tlx; x<=c.brx; x++) {

ac = x*gap + x_coord;
a = ac; b = bc; size = 0.0; count = 0;

/* Do calculation until more than 2.0 away or

until count reaches 256 */
a2 = a*a; b2= b*b;

while ((size < four) && (count < 256)) {
b = two*a*b + bc;

a = a2 - b2 + ac;

a2 = a*a; b2= b*b;
size = a2 + b2;

count++;
}

/* Stored 0 means 1; stored 255 means 256 */
r.counts[n++] = count-1;

}

}

/* Send the top-left and bottom-right coordinates back in the
RESULTS packet too, so that the RECEIVE thread of MANDELM can

identify the packet. */

r.tlx = c.tlx; r.tly = c.tly;
r.brx = c.brx; r.bry = c.bry;

net_send (16+n, &r, 1);

}

}

Mandelbrot Program Listings 481

G.3 Header File

/*** MANDELTY.H

*** Parallel Mandelbrots

*** These are the formats of the packets used to communicate between

*** the master task and the computation tasks.

*** Rev 000 6-Dec-87 JF Created

***/

typedef struct command_structure {

float x_coord, y_coord, gap;

int tlx, tly, brx, bry;
} COMMAND;

typedef struct results_structure {

int tlx, tly, brx, bry;
char counts[1008];

} RESULTS;

G.4 Con�guration File

Processor Host
Processor Root

Wire ? Host[0] Root[0]

Task Afserver Ins=1 Outs=1

Task Filter Ins=2 Outs=2 Data=10K

Task MandelM Ins=2 Outs=2 Data=500K
Task MandelW Ins=1 Outs=1 Stack=1K Heap=10K Opt=Stack Opt=Code

Connect ? Afserver[0] Filter[0]

Connect ? Filter[0] Afserver[0]
Connect ? Filter[1] MandelM[1]

Connect ? MandelM[1] Filter[1]

Connect ? MandelM[0] MandelW[0]
Connect ? MandelW[0] MandelM[0]

Place Afserver Host

Place Filter Root

Place MandelM Root
Place MandelW Root

482 Appendix G

Appendix H

ASCII Code Chart

0x0x 0x1x 0x2x 0x3x 0x4x 0x5x 0x6x 0x7x

0xx0 NUL DLE 0 @ P ` p

0xx1 SOH DC1 ! 1 A Q a q

0xx2 STX DC2 " 2 B R b r

0xx3 ETX DC3 # 3 C S c s

0xx4 EOT DC4 $ 4 D T d t

0xx5 ENQ NAK % 5 E U e u

0xx6 ACK SYN & 6 F V f v

0xx7 BEL ETB ' 7 G W g w

0xx8 BS CAN (8 H X h x

0xx9 HT EM) 9 I Y i y

0xxA LF SUB * : J Z j z

0xxB VT ESC + ; K [k {

0xxC FF FS , < L \ l |

0xxD CR GS - = M] m }

0xxE SO RS . > N ^ n ~

0xxF SI US / ? O _ o DEL

484 Appendix H

Bibliography

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Program-

ming Language, First Edition. Prentice-Hall, 1978. ISBN 0-13-

110163-3.

[2] Brian W. Kernighan and Dennis M. Ritchie. The C Program-

ming Language, Second Edition. Prentice-Hall, 1988. ISBN 0-

13-110362-8.

[3] American National Standard for Information Systems - Progam-

ming Language - C. American National Standards Institute, Inc,

1990. X3.159-1989.

[4] Disk Operating System Version 3.10 Reference. International

Business Machines, February 1985.

[5] Microsoft MS-DOS User's Reference. Microsoft Corporation,

1986. Document Number 410630013-320-R03-0686.

[6] Disk Operating System Version 3.00 Technical Reference. Inter-

national Business Machines, May 1984.

[7] A. M. Lister, Fundamentals of Operating Systems. Macmillan

Press, 1979. ISBN 0-333-27287-0.

[8] Andrew S. Tanenbaum, Operating Systems: Design and Imple-

mentation. Prentice-Hall, 1987. ISBN 0-13-637331-3.

486 Bibliography

[9] British Standard BS6154 : 1982: Method of De�ning Syntactic

Metalanguage. British Standards Institution, 1981. ISBN 0-580-

12530-0.

[10] R. S. Scowen. An Introduction and Handbook for the Standard

Syntactic Metalanguage. National Physical Laboratory Report

DITC 19/83, February 1983.

[11] ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-

Point Arithmetic. Institute of Electrical and Electronics Engi-

neers, 1985.

[12] Inmos Ltd. Transputer Reference Manual. Prentice-Hall, 1988.

ISBN 0-13-929001-X.

[13] Inmos Ltd. Transputer Instruction Set: A compiler writer's

guide. Prentice-Hall, 1988. ISBN 0-13-929100-8.

[14] Stand alone compiler implementation manual. Version 1.1, In-

mos Ltd., July 1987.

[15] TDS Compiler implementationmanual. Version 1.0, Inmos Ltd.,

November 19, 1986.

Index

`<', see I/O redirection

`>', see I/O redirection

`|', see I/O redirection

`@', see linking: with indirect �les

`%', see object �les: hexadecimal

`-', see afserver: options

`$', see identi�ers: dollar sign in

.b4, see executable �les,

task image �les,

application image �les

.bin, see object �les

.c, see source �les

.cfg, see con�guration �les

.dat, see linker: and indirect �les

.lib, see linker: creating library �les

.lis, see compiler: listing �les

.map, see linker: and map �les

.opt, see linker: and optimisation

�les

/
/C, 125, 128

/D, 132

/F, 124{126

/FB, 125

/FL, 125{126

/FO, 125

/Gd, 127

/Gi, 127

/Gs, 128

/I, 132{133, 136

/M, 133

/P, 129{130

/PC, 129

/PM, 130

/S, 126

/T2, 126

/T4, 126

/T8, 126

/T8A, 126

/U, 133, 135

/V, 134

/W, 135

/X, 132, 136

/Zd, 131

/Zi, 131

/Zo, 131

_

_3L_SHORT_BITS, 128

_exit, 460

_filer_handle, 238

_fmode, 226, 460

_inmess, 458, 461

_outbyte, 458, 462

_outmess, 458, 462

_outword, 458, 463

_tolower, 463

_toupper, 463

3
3LCC_INC, 4, 136

A
abort, 231, 239

abs, 232, 239

acos, 218, 239

afserver, 19

command-line parameters, 21

488 Index

invoking, 19, 46, 443

limit on open �les, 71

switches, 19, 21, 25, 46, 443

task data sheet, 412

version, 8

alloc86, 215{216, 239

alt_nowait, 209, 240

alt_nowait_vec, 209, 241

alt_wait, 209, 241

alt_wait_vec, 209, 242

application �les, see application

image �les

applications, 30

argc, 22, 121, 205

argv, 22, 121, 205

ASCII, 483

asin, 218, 243

assembler, 137

error messages, 198

labels and jumps, 144{145

literal bytes, 146, 448

opcodes, 447

operands, 139{142

syntax, 138

uses for, 137

assert, 209, 243

atan, 218, 244

atan2, 218, 244

atexit, 231, 244

atof, 230, 244

atoi, 230, 245

atol, 230, 245

autoexec.bat, 3{4

B
batch �les

for linker, 13, 16, 348{349

for running, 20

bdos, 214, 216, 246

binary �les, see object �les

BIND statement, 405

boot_peek, 209, 246

boot_poke, 209, 247

bootstrap

and the linker, 346

con�gurer, 367

for T2, 99

standard, 367{368

bootstraps, 346

broadcasts, see under processor

farms

bsearch, 232, 247

BUFSIZ, 305

byte, 147

BYTEREGS, 213

C
calloc, 231, 248

ceil, 219, 248

cfree, 464

CHAN, 49

chan_in_byte, 211, 249

chan_in_byte_t, 211, 249

chan_in_message, 211, 250

chan_in_message_t, 211, 250

chan_in_word, 211, 250

chan_in_word_t, 211, 251

chan_init, 211, 249

chan_out_byte, 211, 251

chan_out_byte_t, 211, 251

chan_out_message, 211, 252

chan_out_message_t, 211, 252

chan_out_word, 211, 252

chan_out_word_t, 211, 253

chan_reset, 211, 253

channels, 27{29, 209

clearerr, 230, 254

clock, 235, 254

close, 459, 464

command-line parameters, see main,

afserver

compiler, 89

and oating-point, 127

and processor types, 126

bit �elds, 120, 150

code gaps, 129

controlling verbosity, 134

debug tables, 131

default switches, 123

di�erences from K&R C, 110

Index 489

disassembling output from, 371

error message lists, 157, 193,

196, 198

error messages, 151{154, 156

�le defaults, 124

identifying, 133

inlining functions, 127

invoking, 12, 121

list of keywords, 111

listing �les, 125, 133

module numbers, 130

object �les, 125

options, 122

output �les, 124

representation of data types, 147

shifts, 120

size of external call, 129

size of module numbers, 130

special features, 119

switch summary, 439

switches, 122

temporary �les, 122

version, 8

see also #include, macros,

con�guration �les, 34, 38, 45, 77, 83

more than one transputer, 53

con�guration language

anonymous identi�ers, 390

�le layout, 385

identi�ers, 389

link speci�ers, 393

numeric constants, 387

port speci�ers, 402

statement syntax, 391

string constants, 388

syntax of, 383

con�gurer, 33{34, 37{38

and T2, 103

debug tables, 446

invoking, 44{45, 445

switches, 445

see also ood-�ll con�gurer,

CONNECT statement, 43, 403

connections between ports

declaring to con�gurer, 403

const, 111

conventions

�lename extensions, 14, 16, 18

cos, 218, 254

cosh, 218, 254

creat, 459, 464

D
data, see compiler: representation of

data types

debug tables, see under compiler,

linker, con�gurer

debugging

parallel systems, 63, 220

see also errors,

decode, 131

decode, 371

invoking, 372

disassembly, 371

distribution kit

contents, 425

installing, 1

testing, 7

div, 232, 255

DOS, see MS-DOS

dos.h, 214

E
ecvt, 465

entry, 111

enum, 111

environmental variables

3LCC_INC, 4, 136
TC, 124
PATH, 399
TMP, 122

EOF, 206

errno, 218, 255

error messages, see under compiler,

linker

redirecting, 13

errors

bizarre, 8, 20, 25, 394

linker, 350{351, 353{365

490 Index

patch over valid code, 129

program hangs, 25

EventReq, 210

example programs

\hello, world", 12

Mandelbrot, 77, 80, 83{84, 473

MS-DOS access, 215{216

multiplexer, 54{55

upper case, 31, 39{40

executable �les, 13, 335, 338{340

as MS-DOS commands, 20

created by linker, 16

rules for inferring name of, 335

running with afserver, 19
execution, see running

exit, 231, 256

exp, 218, 256

F
fabs, 219, 257

fclose, 227, 257

fcvt, 465

fdopen, 465

feof, 230, 257

ferror, 230, 257

fflush, 227, 258

fgetc, 228, 258

fgetpos, 229, 258

fgets, 228, 259

FILE, 223

filemux, 67{76

memory requirements, 69

task data sheet, 416

fileno, 466

filter, 38

task data sheet, 413

�lters, see I/O redirection

oating point

IEEE, 148

oating-point

constants, 114, 127

evaluation of expressions, 113,

127

format, 148

in�nity, 148, 265

Not-a-number, 148, 265

ood-�ll con�gurer, 80, 83, 407

heterogenous networks, 86

invoking, 84

task-task protocol, 407

see also processor farms,

floor, 219, 259

fmod, 219, 260

fopen, 227, 260

fprintf, 227, 261

fputc, 228, 266

fputs, 228, 266

fread, 229, 267

free, 231, 267

free86, 215, 217, 268

freopen, 227, 268

frexp, 219, 268

from86, 217, 269

frouter, 80

task data sheet, 414

fscanf, 227, 269

fseek, 229, 273

fsetpos, 229, 274

ftell, 229, 274

fwrite, 229, 274

G
gcvt, 466

general-purpose con�gurer, see

con�gurer

getc, 228, 275

getchar, 228, 275

getenv, 231, 276

gets, 229, 276

getw, 467

global I/O, 67{76

application termination, 72

see also filemux,

H
hardware

assumptions, xvi, 367

con�guration, 34, 40

troubleshooting, 8

Index 491

harness

standard, 17, 38{39

T4 and T8 versions, 17

task, 38, 44

heap storage, see under memory

host processor, 40

special treatment of, 46

I
I/O

global, see global I/O

redirection, see I/O redirection

I/O redirection, 13, 22{23

identi�ers

case distinction, 112

dollar sign in, 120

in con�guration language, 40, 43

reserved as keywords, 111

signi�cant characters, 111

#include

controlling, 132, 136

directory search, 135

index, 467

indirect �les, see under linker

in�nity, see under oating point

INMOS.ENTRY.POINT, 348

inp, 217, 277

installation

directory, 1, 3

int86, 214, 216, 277

int86x, 214, 216, 278

intdos, 214, 216, 278

intdosx, 214, 216, 279

interrupts, see under MS-DOS

isalnum, 212, 279

isalpha, 212, 279

isascii, 468

isatty, 459, 468

iscntrl, 212, 279

isdigit, 212, 280

isgraph, 212, 280

islower, 212, 280

isprint, 212, 280

ispunct, 212, 281

isspace, 212, 281

isupper, 212, 281

isxdigit, 212, 281

L
labs, 232, 282

ldexp, 219, 282

ldiv, 232, 282

library �les, 17, 336{338

changing, 17

compared to indirect �les, 337

creating, 17{18, 337{338, 347

debug information in, 338

extracting members, 381{382

inferring the name of, 337

listing contents, 379{380

using, 336

Link0Input, 210

Link0Output, 210

Link1Input, 210

Link1Output, 210

Link2Input, 210

Link2Output, 210

Link3Input, 210

Link3Output, 210

linker, 13{15, 17, 333, 350{351,

353{363, 365

and bootstraps, 346

and debug tables, 338, 345, 347

and indirect �les, 15, 18,

335{336

and library �les, 336

and map �les, 348

and optimization �les, 348

and patching gaps, 129{130

batch �les for, 13, 16

command line, 333{334

creating library �les, 17

duplicate de�nitions, 349

entry points, 348

error messages, 350{351,

353{363, 365

�le name conventions, 334{335

invoking, 16

libraries, see library �les

map �les, 340

492 Index

messages, 350

modi�ed /F switches, 344

more than one object �le, 14

optimization �les, 339{340

optimization symbols, 338{340,

347

ordering of object �les, 334

patch over valid code, 129

simple programs, 13

supports only 1MB or 2MB, 25

switches, 18, 345{348, 441{443

T2 support, 93{97, 340

version number, 347

linking

stand-alone tasks, 52

tasks, 44

links, 29, 393

linkt, 16

listing �les, see under compilers

localeconv, 217, 283

log, 219, 283

log10, 219, 283

longjmp, 221, 284

lseek, 460, 468

M
macros

de�ning, 132

listing expansions, 133

pre-de�ned, 91

prede�ned, 132{135

main, 22, 30, 121, 204

on T2, 106

malloc, 231, 284

master, 83

master task, 77{79, 408

see also processor farms,

mblen, 232, 285

mbstowcs, 232, 285

mbtowc, 232, 286

memchr, 234, 286

memcmp, 233, 287

memcpy, 233, 288

memmove, 233, 288

memory, 23

code storage, 23

estimating requirements, 65{66

external, 24{25

heap storage, 24

limits imposed by linker, 25

on-chip, 21, 24, 338

physical, 24

run-time library requirements,

23

speed of, 25

stack, 23

static storage, 23

storage areas, 23

mempatch, 25, 367{368

compatibility, 368

identifying, 368

invoking, 369

memset, 234, 288

messages, 27{28, 350{365

length of, 48

modf, 219, 289

MS-DOS

accessing functions of, 212

�lters, see I/O redirection, 23

search path, 3, 45, 399

versus PC-DOS, xviii

N
NaN, see under oating point

NDEBUG, 243

net package, 81

bu�er sizes, 81

multiple packets, 81

net_broadcast, 82, 220, 289

NET_MAX_PACKET_LENGTH, 81

net_receive, 78{81, 220, 290

net_send, 78{79, 81, 220, 290

Not-a-Number, see under oating

point

NotProcess_P, 210

NUL, 238, 483

NULL, 206, 208, 238, 291

O
object �les, 13, 16{17

Index 493

format of, 16

ordering of in executable �le,

334, 338{340

offsetof, 208, 292

on-chip memory, see memory:

on-chip

open, 460, 469

options, see compiler:switches,

linker:switches,

afserver:switches,

con�gurer:switches

outp, 217, 292

P
par_fprintf, 220, 293

par_free, 220, 292

par_malloc, 220, 293

par_printf, 220, 293

par_sema, 220, 294

PC-DOS, see MS-DOS

pcpointer, 214

perror, 230, 294

pipes, see I/O redirection

PLACE statement, 42, 404

port vectors, 31

portability, 112

ports, 30, 48{49, 402

binding, 31, 405

pow, 219, 295

printf, 228, 295

processes, 27{28

processor farms, 34{35, 77, 81{82,

289

and broadcasts, 82, 289

networking software, 80{81

routing software, 289

see also master task, worker

task, frouter, ood-�ll

con�gurer,

PROCESSOR statement, 40, 391

BOOT attribute, 393

RAM atrribute, 396

TYPE attribute, 393

processor type

compiling for, 13, 126

di�ering on-chip memory, 24

harnesses for, 17

linking for, 14, 16

run-time libraries for, 17

T2, 89{106

T414A, 38, 415, 429

T800A, 126, 429, 431

processors

declaring to con�gurer, 392

program parameters, see main,

afserver

ptrdiff_t, 208

putc, 229, 295

putchar, 229, 296

puts, 229, 296

putw, 470

Q
qsort, 232, 297

R
raise, 222, 298

rand, 230, 299

read, 460, 470

realloc, 231, 299

redirection, see I/O redirection

register, 121

REGS, 213

remove, 227, 300

rename, 227, 300

rewind, 229, 300

rindex, 471

root transputer, 40

run-time library, 13, 17

and afserver, 19
and processor types, 204

binary I/O, 226

channel I/O functions, 209

character testing functions, 211

compatibility functions, 457

conventions, 205

DOS functions, 212

full, 204

header �les, 206

494 Index

heap functions, 231

input/output, 223

list of functions, 238{261,

266{269, 273{316, 318{331,

460{472

mathematical functions, 217

memory requirements, 23

network functions, 220

parallel I/O functions, 220

purpose, 203

semaphore functions, 221

stand-alone, 51{52, 204

stream I/O, 225

string handling functions, 233

T2 version, 99

T4 and T8 versions, 17

text I/O, 226

thread functions, 235

time functions, 235

timer functions, 236

variable arguments, 222

running, 19{23, 44

o�-chip stack, 25

on T2, 102

on-chip stack, 24

S
scanf, 228, 301

scheduling

see also priority,

search path, see under MS-DOS

segread, 214, 216, 301

sema_init, 221, 301

sema_signal, 221, 302

sema_signal_n, 221, 302

sema_test_wait, 221, 303

sema_wait, 221, 303

sema_wait_n, 221, 304

semaphores, 33, 60, 80, 221

serv_filter, 221, 304

server, see afserver

setbuf, 227, 305

setjmp, 221, 306

setlocale, 217, 306

setvbuf, 227, 307

short integer variables, 112, 128, 147

signal, 222, 307

sin, 218, 308

sinh, 218, 308

size_t, 208

sizeof, 119

source �les

conversion from TDS, 12

creating, 12

sprintf, 228, 308

sqrt, 219, 309

srand, 230, 309

sscanf, 228, 309

stack, see under memory

stand-alone library, see run-time

library: stand-alone

standard error, 224

standard input, 22, 224

standard output, 22, 224

static storage, see under memory

stderr, 224

stdin, 22, 224

stdout, 22, 224

storage, see memory

strcat, 233, 310

strchr, 234, 310

strcmp, 233, 310

strcoll, 233, 311

strcpy, 233, 311

strcspn, 234, 311

strerror, 234, 312

strlen, 234, 312

strncat, 233, 312

strncmp, 234, 313

strncpy, 233, 313

strpbrk, 234, 313

strrchr, 234, 314

strspn, 234, 314

strstr, 234, 315

strtod, 230, 315

strtok, 234, 316

strtol, 230, 316

strtoul, 230, 318

strxfrm, 234, 318

Index 495

stub

task data sheet, 422

switches, see under compiler, linker,

afserver, con�gurer

system, 231, 319

T
T2, see processor type

T4, see processor type

T414A, see under processor type

t4clink, 13{14

t4cstask, 52

t4ctask, 44

t4master, 86

t4worker, 86

T8, see processor type

T800A, see under processor type

t8clink, 14

t8cstask, 52

t8ctask, 44

t8master, 86

t8worker, 86

tan, 218, 319

tanh, 218, 320

task data sheets, 411

afserver task, 412

filemux task, 416

filter task, 413

frouter task, 414

stub task, 422

task �les, see task image �les

task image �les, 30, 34, 45

locating, 45

locating with con�gurer, 399

TASK statement, 41, 397

FILE attribute, 83, 86, 399

INS attribute, 41, 398

memory size attributes, 400

OPT attribute, 401

OUTS attribute, 41, 49, 399

URGENT attribute, 402

taskharn.t4, 45

taskharn.t8, 45

tasks, 30{32

declaring to con�gurer, 398

normal versus stand-alone, 51

specifying memory

requirements, 400

versus threads, 60

see also task image �les, TASK

statement,

Tbug, 63, 131, 345, 347

TC, 124

TDS, 4, 12

tdslist, 12

tell, 460, 471

temporary �les, 122

thread_create, 235, 320

thread_deschedule, 235, 321, 431

THREAD_NOTURG, 235

thread_priority, 235, 321

thread_restart, 235, 322

thread_start, 235, 322

thread_stop, 235, 323

THREAD_URGENT, 235

threads, 33, 57, 80

creating, 57, 60

versus tasks, 60

time, 235, 323

timer_after, 236, 324

timer_delay, 236, 324, 431

timer_now, 236, 325

timer_wait, 236, 325, 431

timers, see under transputer

tmpfile, 227, 325

tmpnam, 227, 326

tnm, 379{380

to86, 217, 327

tolower, 212, 326

toupper, 212, 327

transputer

byte, 147

channels, 209

error ag, 20

links, 210

on-chip RAM, see memory:

on-chip

timers, 236

word, 147

496 Index

see also channels, links,

processor type,

see also processor type,

tunlib, 381{382

U
ungetc, 229, 327

unlink, 472

unsigned, 150

unsigned short, 147

URGENT, 402

V
va_alist, 458

va_arg, 222, 328, 459

va_dcl, 458

va_end, 222, 328, 459

va_start, 222, 329, 458

variables

stack, 23

static, 23

vfprintf, 228, 329

void, 111

volatile, 111

vprintf, 228, 330

vsprintf, 228, 330

W
wchar_t, 208

wcstombs, 232, 331

wctomb, 232, 331

WIRE statement, 40, 397

wires, 29

declaring to con�gurer, 397

word, 147

WORDREGS, 213

work packets, 77{79, 408

worker, 83

worker task, 77{79, 408

see also processor farms,

workspace, see memory: stack

worm, 375

write, 460, 472

