
Helios Standalone Support

PERIHELION SOFTWARE LTD

September 1991

Copyright

This document Copyright c© 1991, Perihelion Software Limited. All rights re-
served. This document may not, in whole or in part be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine read-
able form without prior consent in writing from Perihelion Software Limited,
The Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE, UK.

This manual is Edition 1.3, September 1991.

Acorn and ARM are trademarks of Acorn Computers Ltd.

Amiga is a registered trademark of Commodore-Amiga, Inc.

Apple is a registered trademark of Apple Computers, Inc.

Atari is a trademark of the Atari Corporation.

Commodore is a registered trademark of Commodore Electronics, Ltd.

Ethernet is a trademark of Xerox Corporation.

Helios is a trademark of Perihelion Software Limited.

IBM is a registered trademark of International Business Machines, Inc.

Inmos, occam, T414, T425 and T800 are trademarks of the Inmos group of companies.

Intel and iPSC are registered trademarks of Intel Corporation.

Macintosh is a trademark of Apple Computers, Inc.

Meiko and Cesius are trademarks of Meiko Limited.

Motorola is a trademark of Motorola, Inc.

MS-DOS is a registered trademark of The Microsoft Corporation.

Parsytec, Paracom and SuperCluster are trademarks of Parsytec GmbH.

POSIX refers to the standard defined by IEEE Standard 1003.1-1988;

Posix refers to the library calls based upon this standard.

Transtech is a trademark of Transtech Devices Ltd.

Sun, SunOs and SunView are trademarks of Sun Microsystems.

Telmat and T.Node are trademarks of Telmat Informatique.

Unix is a registered trademark of AT&T.

The X Window System is a trademark of MIT.

Printed in the UK.
PDF generated in AT (Vienna).

i

Acknowledgements

Helios Standalone Support was written by members of the Helios group at
Perihelion Software Limited. Helios software is available for multi-processor
systems hosted by a wide range of computer types. Information on how to
obtain copies of Helios software is available from Distributed Software Lim-
ited, The Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE, UK.
(Telephone: 0749 344345.)

ii

Contents

1 Introduction 2

2 Host support 3
2.1 Programmer interface . 3
2.2 Sarun . 4
2.3 Salink . 4

3 Virtual Helios environment 5

4 Limited standalone environment 6
4.1 salib.h . 7
4.2 sysinfo.h . 7
4.3 trace.h . 7
4.4 thread.h . 7
4.5 chanio.h . 8

5 Examples 9
5.1 Sarun . 9
5.2 Exploratory worm . 11

6 SALIB summary 12

1

Chapter 1

Introduction

The Helios standalone runtime system allows the user to run programs in naked
transputers without the need for Helios to be loaded. There are several reasons
for doing this. The processor may not have enough memory to run Helios (many
early transputer cards have only 256k), the program may need to control all
the resources of the processor itself (for example, a device interface) or the user
may want maximum performance from the program.

The standalone system may be used in two distinct ways. In the first an ex-
isting program is run alone for performance reasons and in the second a custom
program has been written. These two uses are reflected in the two environments
supplied to support standalone programming. The first is a virtual Helios envi-
ronment in which a program runs as if it were running under a limited version
of Helios. Such a program can be tested under Helios and then moved into a
standalone environment without recompilation or relinking. The second is a
more limited environment in which only a small subset of library routines are
available. This is much closer in style to that available under occam or any
other standalone language system.

2

Chapter 2

Host support

The standalone system is designed to be hosted from Helios. Therefore it will
only work in a hardware configuration consisting of at least two processors.

2.1 Programmer interface

The support provided to host programs consists of the header <linkio.h> and
the module sasup.o. The latter contains three procedures:

link_open
link_close
link_boot

The function link open (word linkno) opens the given link for raw I/O.
The result will be TRUE if it succeeds and FALSE if it fails. Similarly
link close (word linkno) closes the link down and returns it to its original
state. The function link boot (word linkno, char *file) runs the program
in the named file in the processor through the given link. The file must have
been generated by salink. The result of link boot is either zero if it succeeded
or an error number if it failed. The error numbers are as follows:

• Could not find /helios/lib/nboot.i.

• Could not read bootstrap.

• Could not open program file.

• Could not send bootstrap size.

• Could not send bootstrap.

• Could not send command to bootstrap.

• Could not send program.

The header file linkio.h, in addition to the function templates for the above
procedures, contains a set of macros to perform link I/O. These correspond to

3

CHAPTER 2. HOST SUPPORT 4

the macros available in chanio.h and are described in section 4.5. The variable
LinkTimeout controls the timeout applied to link transfers. It is initialised to
2*OneSec. The failure of link boot is commonly caused by the target processor
awaiting a bootstrap message when it is not in a reset state.

2.2 Sarun

This is a simple program which itself executes a standalone program. It takes
two arguments: a link number and a system file generated by salink. Once the
program has been run, sarun will transfer any data received on its standard
input through the link, and similarly transfer any data read from the link to
its standard output. The sarun program will terminate on EOF (or CTRL-D)
on its standard input. Therefore a standalone program may be placed in a
conventional shell pipeline or even in a CDL script. For example:

produce | sarun 2 munge | consume

The program munge will run on the processor through link 2. It will get
input from produce and its output will go to consume. Care must be taken
to ensure that sarun is executed on the correct processor.

2.3 Salink

The program salink is used to prepare a program for standalone execution. It
generates a system file which may be passed to link boot or to sarun. The
arguments are as follows:

salink [-t4|8] -o dest program

The program is a linked Helios program generated in the usual way. The -o
flag must be present (it introduces the output file). The -t flag is followed by
either 4 or 8, indicating whether the target processor is a T414/425 or a T800.

The program is examined by salink for references to shared library modules.
If these are present then a virtual Helios environment is built containing the
modules referenced. If the program contains no such references, it can be run
on its own and a minimal system is built around it.

Chapter 3

Virtual Helios environment

In this environment certain Helios programs may be run ‘standalone’ without
needing to be recompiled or relinked, although most operating system features,
such as message passing and file access, are absent. Instead the program is
linked with a special standalone version of the Kernel, System library and Posix
library. The usual versions of all other libraries are used.

The standalone Kernel lacks all the routines concerned with port manipu-
lation, message passing, event handling, and link configuration and allocation.
All other routines such as list handling, semaphores, link I/O and memory al-
location function as before. The absent functions, if called, generate a suitable
error. The standalone System library is almost entirely non-functional with the
exception of Malloc and Free. As in the Kernel, the absent functions will
generate an error if called.

The standalone Posix library is also non-functional, with the exception of the
routines read(), write(), close() and dup2(). All read and write operations
are translated into link transfers. The link used depends on the file descriptor.
File descriptors 0 and 1 (standard input and standard output) are mapped
onto the processor’s boot link. Descriptors 2 and 3 (stderr and stddbg) are
simply duplicates of descriptor 1. Descriptors 4 to 11 are mapped onto the
four links in numerical order so that link n may be read on descriptor 2n + 4
and written on descriptor 2n + 5. Descriptors may be closed and the mapping
rearranged using dup2() but new streams may not be opened.

All remaining libraries function exactly as before except that any routines
which make calls on now absent Kernel, System library or Posix library func-
tions will generate errors. Thus for example, the C library fopen() call will
fail. However, the standard C library streams stdin, stdout and stderr will
function normally by transferring data through the boot link. The virtual He-
lios environment may therefore be used to run programs which communicate
only through their standard I/O streams.

5

Chapter 4

Limited standalone
environment

The limited standalone environment provides a level of support equivalent to
that found in occam and other standalone transputer language systems. Run-
time support is limited to the facilities supplied by a small set of headers and a
simple library of procedures. These provide the means to use links and channels,
create new processes and perform other simple functions. The intended use for
this environment is in low-level hardware control or lightweight applications.

Definitions for this standalone environment are found in the headers chanio.h,
thread.h, trace.h, salib.h and sysinfo.h. Additionally, some of the routines
found in the following normal Helios headers are also supported: stdlib.h,
string.h, time.h, math.h, nonansi.h, setjmp.h, queue.h, sem.h, syslib.h.
The code is present in two libraries: salib and samath which come in both T4
and T8 versions.

To build a limited standalone program, compile the program as usual and
link it with the libraries. A system image is then generated by salink as before
and run via sarun. As an example, consider compiling the program worm.c.
The source is compiled in the usual way, to generate an object file: c -c -o
worm.o worm.c. This file must then be linked with sastart.o, salib and
(optionally) one of the math libraries to produce an executable program:

asm /helios/lib/sastart.o worm.o -l/helios/lib/salib
-l/helios/lib/samath.t4 -o worm

The -l flag indicates that salib and samath.t4 are libraries. Only the
modules actually referenced will be linked with the program. Finally, the pro-
gram must be passed to salink to generate a program which may be executed
standalone:

salink -o worm.sa worm

The following sections describe the standalone-specific routines in SALIB
under the headers used to define them.

6

CHAPTER 4. LIMITED STANDALONE ENVIRONMENT 7

4.1 salib.h

The header salib.h defines some miscellaneous routines, mostly concerned with
the memory management system. memtop may only be called before the first
call to malloc. It determines the size of the free memory and returns the
address of the first byte beyond the end of store. memtest performs a memory
test cycle on the supplied area of memory. malloc fast and free fast are used
to allocate and free areas of the fast RAM. Since these routines differ from
the Helios fast memory allocation routines, Accelerate must be used slightly
differently. Where the code under Helios might be:

Carrier *carrier;

carrier = AllocFast(size,&MyTask->MemPool);
Accelerate(carrier,fn,sizeof(int),x);
Free(carrier);

The code in the standalone environment is:

Carrier carrier;

carrier.Addr = malloc_fast(size);
carrier.Size = size;
Accelerate(&carrier,fn,sizeof(int),x);
free_fast(carrier.Addr);

4.2 sysinfo.h

The header sysinfo.h defines the SysInfo structure, which is initialised to
contain some useful values. These values are the base address of the free memory
in the processor, the address of the program’s module table and the identity of
the processor’s boot link. A pointer to the trace vector is also kept here but it is
only initialised if TraceInit is called. A macro called SYSINFO is supplied
to return the address of the SysInfo structure.

4.3 trace.h

The standalone library contains copies of the Trace, Mark and Halt rou-
tines defined in the Helios Kernel. These all place entries into a trace vector
at the top of the memory, which may be examined with the debugger. The
trace vector must be initialised with TraceInit before entries may be made.

4.4 thread.h

Most programs can use the Helios-compatible Fork procedure to create new
processes. However, the procedure thread create, defined in this header, may
be used where a more primitive form is required. Fork will normally allocate

CHAPTER 4. LIMITED STANDALONE ENVIRONMENT 8

the stack of a new process using malloc. If you do not want your program to
initialise the memory system then you may use thread create, which passes
a pointer to the top of the memory to be used as the stack. For example,

static char stack[2000];

thread_create(stack+2000, 1, fn, sizeof(x), x);

runs fn as a parallel process at low priority, using the array stack as its stack.
No vector stack is created and the module table is passed directly to the func-
tion. Therefore, any C program must be compiled with #pragma -s1 -f0 at
the top to switch off stack checking and the vector stack. The thread stop
procedure simply halts the calling process.

4.5 chanio.h

The chanio.h header defines a number of macros to be used for channel and link
I/O. These macros are named according to the following convention: medium direction item
where medium is either link or chan, direction is either in or out, and item
is byte, word, struct or data. The first argument is always either a pointer to
the channel or the number (0–3) of the link to be used for transfer. The second
argument is either the data item to be transferred, or a pointer to it. Where
item is data a third argument defines the size of the data to be transferred.
For example, the following code transmits a word, followed by a string, and
receives a data structure back from a link:

char *name;
struct Answer answer;

link_out_word(link,123);
link_out_byte(link,strlen(name));
link_out_data(link,name,strlen(name));

link_in_struct(link,answer);

The function alt performs an occam-style alternate on an array of channel
pointers. The first argument is a time interval in ticks of the current priority
clock. If it is zero, a non-timer alternate is performed. The second argument
is the size of the channel array. The third argument is a pointer to an array
of channel pointers. The result of the alt function is either the index in the
array of the channel which was selected, or -1 if a timeout occurred. Unlike the
occam construct, if a channel is selected, the input is not performed by the
alt routine, and must be performed by the subsequent code. The procedure
boot attempts to boot a copy of the program into the processor through the
link given.

Chapter 5

Examples

This chapter illustrates, with some examples, how the standalone system may
be used.

5.1 Sarun

The sarun program is used to load and execute a program on a naked processor.
It shows how the host support routines are used.

/* SARUN - 20/8/89 */

/* Program to load and run a stand alone program */

/* To compile: c sarun.c sasup.o -o sarun */

#include <stdio.h>

#include <stdarg.h>

#include <linkio.h>

#include <stdlib.h>

#include <sem.h>

#include <nonansi.h>

Semaphore sync; /* Termination synchronisation */

bool finished = FALSE; /* set True on EOF */

static int error(char *f,...)

{

va_list a;

va_start(a,f);

vfprintf(stderr,f,a);

putc(’\n’, stderr);

exit(1);

}

/* Input process */

/* Reads characters from STDIN and passes them through link */

void input(word link)

{

word c;

9

CHAPTER 5. EXAMPLES 10

do {

c = getchar();

if(c == EOF) break;

link_out_byte(link,c);

} while(!finished);

finished = TRUE;

Signal(&sync);

}

/* Output process */

/* Reads characters from link and prints them on STDOUT */

void output(word link)

{

word c = 0;

do {

word e = link_in_byte(link,c);

if(e < 0) continue; /* timeout, just loop */

putchar(c);

} while(!finished);

finished = TRUE;

Signal(&sync);

}

/* Main */

/* Get control of link, boot program through it, fork input and */

/* output processes and then wait for them to finish. */

int main(int argc, char **argv)

{

int e;

int link;

if(argc < 3) error("usage: sarun link bootfile");

link = atoi(argv[1]);

/* open the link for raw I/O */

if(!link_open(link)) error("failed to open link %d",link);

/* boot the program through it */

if((e=link_boot(link,argv[2]))!=0)

error("link_boot error %d",e);

/* now spool stdin into the link and */

/* anything from the link to stdout */

InitSemaphore(&sync,0);

Fork(2000,input,4,link);

Fork(2000,output,4,link);

Wait(&sync);

Wait(&sync);

if(!link_close(link)) error("failed to close link %d",link);

}

CHAPTER 5. EXAMPLES 11

5.2 Exploratory worm

This is a recoding into C of an occam worm. It has two parts: the program
explore which runs under Helios and the worm, which is run on naked proces-
sors. The program as it stands is intended to generate a resource map for an
unknown processor network. It assumes that Helios has been booted into the
first processor of the network and explore has been run there. It checks each
link, identifying booted processors and passing the worm through unused links.
Then a text resource map, which may be captured and compiled, is produced
as output. Another use of this worm is to flood-fill a processor network with
copies of a particular program. The worm may then generate a load balancing
task farm. The Helios standalone support package contains the source of the
worm. It is in the examples directory, under the directory sa. (For example:
/helios/users/guest/examples/sa.)

Chapter 6

SALIB summary

This chapter lists the functions supplied by SALIB under the headers used to
define them.

<stdlib.h>
void free(void *ptr);
void *malloc(size t size);
void *realloc(void *ptr, size t size);
void exit(int status);

<string.h>
void *memcpy(void *s1, const void *s2, size t n);
void *memmove(void *s1, const void *s2, size t n);
char *strcpy(char *s1, const char *s2);
char *strncpy(char *s1, const char *s2, size t n);
char *strcat(char *s1, const char *s2);
char *strncat(char *s1, const char *s2, size t n);
int memcmp(const void *s1, const void *s2, size t n);
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size t n);
void *memchr(const void *s, int c, size t n);
char *strchr(const char *s, int c);
size t strcspn(const char *s1, const char *s2);
char *strpbrk(const char *s1, const char *s2);
char *strrchr(const char *s, int c);
size t strspn(const char *s1, const char *s2);
char *strstr(const char *s1, const char *s2);
char *strtok(char *s1, const char *s2);
void *memset(void *s, int c, size t n);
size t strlen(const char *s);

<time.h>
extern clock t clock(void);

<math.h>
extern double acos(double x);
extern double asin(double x);
extern double atan(double x);
extern double atan2(double x, double y);
extern double cos(double x);
extern double sin(double x);
extern double tan(double x);

12

CHAPTER 6. SALIB SUMMARY 13

extern double cosh(double x);
extern double sinh(double x);
extern double tanh(double x);
extern double exp(double x);
extern double frexp(double value, int *exp);
extern double ldexp(double x, int exp);
extern double log(double x);
extern double log10(double x);
extern double modf(double value, double *iptr);
extern double pow(double x, double y);
extern double sqrt(double x);
extern double ceil(double x);
extern double fabs(double x);
extern double floor(double d);
extern double fmod(double x, double y);

<nonansi.h>
void *NewProcess(WORD stacksize, VoidFnPtr function, WORD argsize);
void RunProcess(void *process);
void ZapProcess(void *process);
WORD Fork(WORD stacksize, VoidFnPtr function, WORD argsize,. . .);
void Accelerate(Carrier *fastram, VoidFnPtr function, WORD argsize, . . .);
void AccelerateCode(VoidFnPtr function);
void IOdebug(const char *fmt,. . .);
void IOputs(char *s);
void IOputc(char c);

<setjmp.h>
extern int setjmp(jmp buf env);
extern void longjmp(jmp buf env, int val);

<queue.h>
PUBLIC void InitList(List *);
PUBLIC void PreInsert(Node *, Node *);
PUBLIC void PostInsert(Node *, Node *);
PUBLIC Node *Remove(Node *);
PUBLIC void AddHead(List *, Node *);
PUBLIC void AddTail(List *, Node *);
PUBLIC Node *RemHead(List *);
PUBLIC Node *RemTail(List *);
PUBLIC word WalkList(List *,WordFnPtr,. . .);
PUBLIC Node *SearchList(List *,WordFnPtr,. . .);

<sem.h>
PUBLIC void InitSemaphore(Semaphore *, word);
PUBLIC void Wait(Semaphore *);
PUBLIC void Signal(Semaphore *);
PUBLIC void SignalStop(Semaphore *);
PUBLIC word TestSemaphore(Semaphore *);

<syslib.h>
void Delay(word usec);

<salib.h>
extern void *memtop(void);
extern int memtest(word *base, int size);
extern void boot(int link);

CHAPTER 6. SALIB SUMMARY 14

extern void freestop(void *addr);

<sysinfo.h>
SYSINFO

<trace.h>
extern void TraceInit(void);
extern void Mark(void);
extern void Trace(int x,. . .);
extern void Halt(void);

<thread.h>
extern void thread create(void *stack, word pri, VoidFnPtr fn, word nargs,. . .);

<chanio.h>
chan out byte(c,b)
chan out word(c,w)
chan out data(c,d,s)
chan out struct(c,d)
chan in byte(c,b)
chan in word(c,w)
chan in data(c,d,s)
chan in struct(c,d)
link out byte(l,b)
link out word(l,w)
link out data(l,d,s)
link out struct(l,d)
link in byte(l,b)
link in word(l,w)
link in data(l,d,s)
link in struct(l,d)
extern int alt(int timeout, int nchans, Channel **chans);

Index

chanio.h - standalone header, 8

Environment
limited standalone, 6
virtual Helios - standalone, 5

Exploratory worm - standalone, 11

Host
support, 3

Programmer interface
standalone, 3

SALIB summary - standalone, 12
salib.h - standalone, 7
salink program - standalone, 4
sarun, 9
sarun program - standalone, 4
Standalone

chanio.h, 8
exploratory worm, 11
host support, 3
limited standalone environment, 6
programmer interface, 3
SALIB summary, 12
salib.h, 7
salink program, 4
sarun, 9
sarun program, 4
support, 2
sysinfo.h, 7
thread.h, 7
trace.h, 7
virtual Helios environment, 5

Support
standalone, 2

host support, 3
sysinfo.h (standalone), 7

thread.h, 7

trace.h (standalone), 7

Virtual Helios environment
standalone, 5

Worm (exploratory), 11

15

	Helios Standalone Support
	Copyright
	Acknowledgements
	Contents
	Chapter 1: Introduction
	Chapter 2: Host support
	2.1 Programmer interface
	2.2 Sarun
	2.3 Salink

	Chapter 3: Virtual Helios environment
	Chapter 4: Limited standalone environment
	4.1 salib.h
	4.2 sysinfo.h
	4.3 trace.h
	4.4 thread.h
	4.5 chanio.h

	Chapter 5: Examples
	5.1 Sarun
	5.2 Exploratory worm

	Chapter 6: SALIB summary
	Index

