
PA
R

T
 3
Virtuoso ™

The Virtual Single Processor Programming System

User Manual

Covers :

Virtuoso Micro ™

Virtuoso Classico ™
Version 3.11
Copyright 1996 Eonic Systems

Copyright 1996 Eonic Systems

PA
R

T
 3
Table of Contents

Introduction INT - 1
Release notes INT - 3

V.3.01 September 1992 .. INT - 3
V.3.05 January 1993 ... INT - 3
V.3.09 September 1993 .. INT - 3
V.3.09.1 November 1993 .. INT - 4
V.3.11 September 1996 .. INT - 4

Implementation-Specific Features INT - 5
Trademark Notices INT - 6
The history of Virtuoso INT - 7

Milestones ... INT - 8

Manual Format INT - 9
License agreement LIC - 1

OWNERSHIP AND CONDITIONS : .. LIC - 1
1. OWNERSHIP : ... LIC - 1
2. FEES : .. LIC - 1
4. CUSTOMER’S PRIVILEGES : ... LIC - 2
5. CUSTOMER OBLIGATIONS : ... LIC - 2
6. CUSTOMER PROHIBITIONS : .. LIC - 3
7. LIMITED WARRANTY : ... LIC - 4
8. GENERAL : .. LIC - 4

Part 1. The concepts P1 - 1
Installation P1 - 3

Installing the software ... P1 - 3
Kernel libraries provided ... P1 - 4
Confidence test .. P1 - 4
Virtuoso compilation symbols ... P1 - 5
The license agreement ... P1 - 6

Site developers license and runtimes ... P1 - 6
Support and maintenance ... P1 - 6

Cross development capability .. P1 - 6
The final reference ... P1 - 7

A short introduction P1 - 8
The one page manual .. P1 - 8
Underlying assumptions when programming ... P1 - 9

Virtuoso : an overview P1 - 10
Requirements for a programming system .. P1 - 10
Copyright 1996 Eonic Systems Virtuoso User Manual TOC - 1

The high level view : a portable set of services .. P1 - 10
A multi-tasking real-time microkernel as the essential module P1 - 10
Classes of microkernel services ... P1 - 11
The object as the unit of distribution ... P1 - 11

A multi-level approach for speed and flexibility .. P1 - 13
An execution trace illustrated ... P1 - 16
Processor specific support ... P1 - 17

Functional support from Virtuoso P1 - 18
Introduction .. P1 - 18
Parallel processing : the next logical step .. P1 - 18
What is (hard) real-time ? ... P1 - 20
The high demands of Digital Signal Processing ... P1 - 21
A first conclusion .. P1 - 22
Parallel programming : the natural way .. P1 - 22
About objects and services .. P1 - 23

The Virtuoso microkernel objects and the related services P1 - 23
Class Task .. P1 - 23

The task as a unit of execution .. P1 - 23
Priority and scheduling .. P1 - 24
Task execution management ... P1 - 25

Class Timer ... P1 - 26
Class Memory ... P1 - 27
Class Resource ... P1 - 29
Class Semaphore ... P1 - 29
Class Message ... P1 - 30

Once-only synchronization : the KS_MoveData() service P1 - 32
Class Queue ... P1 - 32
Class Special .. P1 - 33
Class Processor Specific .. P1 - 33

Low level support with Virtuoso .. P1 - 34
The ISR levels ... P1 - 35

Levels supported by the Virtuoso products. ... P1 - 37
Support for parallel processing .. P1 - 37
Target Environment .. P1 - 37
Virtuoso auxiliary development tools .. P1 - 37
Single processor operation .. P1 - 38
Virtual Single Processor operation ... P1 - 39
Heterogeneous processor systems .. P1 - 40

Simple Examples P1 - 42
Hello, world .. P1 - 42
Use of a Queue .. P1 - 44

Applications P1 - 46
Scalable embedded systems ... P1 - 46
Complex control systems ... P1 - 47
TOC - 2 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3
Simulation in the control loop ... P1 - 47
Fault tolerant systems .. P1 - 47
Communication systems .. P1 - 48

PART 2: Reference Manual P2 - 1
Virtuoso microkernel types & data structures P2 - 3

Microkernel types ... P2 - 3
Tasks .. P2 - 3

Task Identifier & Priority .. P2 - 4
Task group set .. P2 - 4
Task State ... P2 - 4
Task Entry Point .. P2 - 5
Task Abort Handler ... P2 - 5
Task Stack .. P2 - 5
Task Context ... P2 - 5

Semaphores ... P2 - 5
Mailboxes ... P2 - 6
Queues ... P2 - 8
Resources .. P2 - 8
Timers .. P2 - 9
Memory maps ... P2 - 10

Virtuoso microkernel services P2 - 11
Short overview .. P2 - 11
Important note .. P2 - 11
Task control microkernel services .. P2 - 12
Semaphore microkernel services ... P2 - 13
Mailbox microkernel services ... P2 - 14
Queue microkernel services ... P2 - 15
Timer management microkernel services .. P2 - 16
Resource management microkernel services .. P2 - 17
Memory management microkernel services ... P2 - 18
Special microkernel services .. P2 - 18
Drivers and processor specific services ... P2 - 18

Nanokernel types and datastructures P2 - 21
Nanokernel processes and channels ... P2 - 21
Nanokernel channels .. P2 - 21

Nanokernel services P2 - 23
Process management .. P2 - 23
ISR management ... P2 - 24
Semaphore based services .. P2 - 24
Stack based services ... P2 - 24
Linked list based services .. P2 - 24
Copyright 1996 Eonic Systems Virtuoso User Manual TOC - 3

Alphabetical List of Virtuoso microkernel services P2 - 25
KS_Abort ... P2 - 26
KS_AbortG .. P2 - 27
KS_Aborted ... P2 - 28
KS_Alloc ... P2 - 29
KS_AllocW .. P2 - 30
KS_AllocWT .. P2 - 31
KS_AllocTimer .. P2 - 32
KS_Dealloc ... P2 - 33
KS_DeallocTimer .. P2 - 34
KS_Dequeue ... P2 - 35
KS_DequeueW ... P2 - 36
KS_DequeueWT ... P2 - 37
KS_DisableISR ... P2 - 39
KS_Elapse .. P2 - 40
KS_EnableISR .. P2 - 41
KS_Enqueue ... P2 - 42
KS_EnqueueW ... P2 - 44
KS_EnqueueWT ... P2 - 46
KS_EventW ... P2 - 48
KS_GroupId .. P2 - 49
KS_HighTimer ... P2 - 50
KS_InqMap ... P2 - 51
KS_InqQueue ... P2 - 52
KS_InqSema ... P2 - 53
KS_JoinG .. P2 - 54
KS_LeaveG ... P2 - 55
KS_Linkin .. P2 - 56
KS_LinkinW .. P2 - 58
KS_LinkinWT .. P2 - 59
KS_Linkout .. P2 - 61
KS_LinkoutW .. P2 - 63
KS_LinkoutWT .. P2 - 64
KS_Lock .. P2 - 65
KS_LockW .. P2 - 66
KS_LockWT .. P2 - 67
KS_LowTimer ... P2 - 68
KS_MoveData ... P2 - 69
KS_Nop ... P2 - 71
KS_NodeId .. P2 - 72
KS_PurgeQueue ... P2 - 73
KS_Receive .. P2 - 74
KS_ReceiveData ... P2 - 76
KS_ReceiveW ... P2 - 78
KS_ReceiveWT ... P2 - 79
TOC - 4 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3
KS_ResetSema ... P2 - 81
KS_ResetSemaM .. P2 - 82
KS_RestartTimer ... P2 - 83
KS_Resume .. P2 - 84
KS_ResumeG ... P2 - 85
KS_Send ... P2 - 86
KS_SendW .. P2 - 88
KS_SendWT ... P2 - 89
KS_SetEntry .. P2 - 91
KS_SetPrio .. P2 - 92
KS_SetSlice .. P2 - 93
KS_SetWlper ... P2 - 94
KS_Signal ... P2 - 95
KS_SignalM .. P2 - 96
KS_Sleep .. P2 - 97
KS_Start .. P2 - 98
KS_StartG ... P2 - 99
KS_StartTimer ... P2 - 100
KS_StopTimer ... P2 - 101
KS_Suspend ... P2 - 102
KS_SuspendG .. P2 - 103
KS_TaskId ... P2 - 104
KS_TaskPrio ... P2 - 105
KS_Test .. P2 - 106
KS_TestMW .. P2 - 107
KS_TestMWT .. P2 - 108
KS_TestW ... P2 - 110
KS_TestWT ... P2 - 111
KS_Unlock .. P2 - 112
KS_User .. P2 - 113
KS_Wait .. P2 - 114
KS_WaitM ... P2 - 115
KS_WaitMT ... P2 - 116
KS_WaitT .. P2 - 118
KS_Workload .. P2 - 119
KS_Yield ... P2 - 120

Hostserver and netloader P2 - 121
Host server functionality ... P2 - 121

Resetting and booting the target ... P2 - 121
Network file ... P2 - 122

Host interface definition. .. P2 - 122
List of boards ... P2 - 123
List of nodes. ... P2 - 123
Root node definition. ... P2 - 124
List of comport links available for booting. .. P2 - 124
Copyright 1996 Eonic Systems Virtuoso User Manual TOC - 5

Host server interface .. P2 - 125
Host interface low level driver .. P2 - 125
Higher level drivers .. P2 - 126

Console input and output ... P2 - 127
Standard I/O driver .. P2 - 127
Graphics driver .. P2 - 127

Runtime libraries P2 - 128
Standard I/O functions ... P2 - 128

Implementation limits .. P2 - 128
Standard I/O functions .. P2 - 128

PC graphics I/O .. P2 - 131
Overview ... P2 - 131
Driver and mode selection .. P2 - 132
Read or write graphics parameters and context P2 - 134
Drawing pixels and lines ... P2 - 136
Drawing filled forms .. P2 - 138
Text plotting .. P2 - 139
Other graphical calls ... P2 - 139

System Configuration P2 - 141
System configuration concepts .. P2 - 141

Kernel objects ... P2 - 141
Sysdef : system definition file format .. P2 - 142

Description requirements for the kernel object types P2 - 144
Node description ... P2 - 145

Driver description ... P2 - 145
Link descriptions ... P2 - 146
The routing tables ... P2 - 148

Task definitions .. P2 - 149
Semaphore definitions ... P2 - 150
Resource definitions ... P2 - 150
Queue definitions ... P2 - 150
Mailbox definitions .. P2 - 151
Memory map definitions ... P2 - 151
Note on the size parameters .. P2 - 151
Other system information and system initialization .. P2 - 152

Debugging environment under Virtuoso P2 - 154
Task level debugger concepts ... P2 - 154
Entry into the debugger .. P2 - 154

Invoking the debugger from the keyboard .. P2 - 154
Invoking the debugger from within your program P2 - 155
Differences at system generation time .. P2 - 155
Debugger commands .. P2 - 156
Tasks .. P2 - 156
Queues ... P2 - 158
TOC - 6 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3
Semaphores .. P2 - 158
Resources ... P2 - 159
Memory Partitions ... P2 - 159
Tracing monitor ... P2 - 160
Mailboxes .. P2 - 164
Network buffers ... P2 - 164
Clock/Timers ... P2 - 164
Stack Limits ... P2 - 165
Zero Queue/Map/Resource Statistics ... P2 - 165
Other processor .. P2 - 166
Task Manager ... P2 - 166
Suspend .. P2 - 166
Resume ... P2 - 167
Abort .. P2 - 167
Start ... P2 - 167
Exit $TLDEBUG .. P2 - 167
Exit TLDEBUG .. P2 - 167
Help ... P2 - 167

The Workload Monitor .. P2 - 168

Practical hints for correct use P2 - 170
Flexible use of the messages ... P2 - 170

General features ... P2 - 170
Mailboxes .. P2 - 171
Using messages .. P2 - 171

On the abuse of semaphores ... P2 - 174
On using the single processor versions for multiple processors P2 - 174
Hints on system configuration .. P2 - 175
Customized versions and projects ... P2 - 176

Microkernel C++ interface P2 - 177
Microkernel C++ classes .. P2 - 177
Kernel object generation by sysgen ... P2 - 177
KTask ... P2 - 179
KActiveTask ... P2 - 180
KTaskGroup ... P2 - 180
KSemaphore .. P2 - 181
KMailBox .. P2 - 182
KMessage .. P2 - 183
KQueue .. P2 - 184
KMemoryMap ... P2 - 185
KResource .. P2 - 186
KTimer .. P2 - 187
A sample C++ application .. P2 - 188

Sysgen generated files .. P2 - 189
Changes to the program files .. P2 - 191

Traps and Pitfalls of C++ .. P2 - 197
Copyright 1996 Eonic Systems Virtuoso User Manual TOC - 7

Part 3: Binding Manual P3 - 1
Virtuoso on the Analog Devices 21020 DSP ADI - 1

Virtuoso implementations on the 21020 ..ADI - 1
DSP-21020 chip architecture ..ADI - 1
ADSP-21020 addressing modes ...ADI - 4
Special purpose registers on the ADSP-21020 ...ADI - 5

MODE1-register and MODE2-register ...ADI - 5
Arithmetic status register (ASTAT) ..ADI - 6
Sticky arithmetic status register (STKY) ..ADI - 7
Interrupt latch (IRPTL) and Interrupt Mask (IMASK)ADI - 8
Program memory / Data memory interface control registersADI - 9
PC stack (PCSTK) and PC stack pointer (PCSTKP)ADI - 9
Status Stack ...ADI - 9
USTAT ...ADI - 10

Relevant documentation ...ADI - 10
Version of the compiler ...ADI - 10
Runtime Environment ..ADI - 10

Data types ..ADI - 10
The Architecture file ...ADI - 11
Runtime header (interrupt table) ..ADI - 12

Assembly language interface ..ADI - 12
Developing ISR routines on the 21020 ...ADI - 15

Installing an ISR routine ...ADI - 15
Writing an ISR routine ..ADI - 15
Alphabetical list of ISR related services ...ADI - 18

The nanokernel on the 21020 ...ADI - 18
 Introduction ...ADI - 18
Internal data structures ..ADI - 19
Process managment. ...ADI - 20
Nanokernel communications ..ADI - 22
C_CHAN - counting channel ..ADI - 22
L_CHAN - List channel ..ADI - 23
S_CHAN - Stack channel ...ADI - 23
REGISTER CONVENTIONS ...ADI - 23
Interrupt handling ...ADI - 25
The ISR-level ...ADI - 26
Communicating with the microkernel ...ADI - 26
Virtuoso drivers on the 21020 ..ADI - 28

Alphabetical List of nanokernel entry points ADI - 30
_init_process ..ADI - 31
_start_process ...ADI - 32
ENDISR1 ...ADI - 33
K_taskcall ...ADI - 35
KS_DisableISR() ..ADI - 36
TOC - 8 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3
KS_EnableISR ...ADI - 37
PRHI_GET ...ADI - 38
PRHI_GETW ..ADI - 39
PRHI_POP ...ADI - 40
PRHI_POPW ..ADI - 41
PRHI_PUT ...ADI - 42
PRHI_PSH ...ADI - 43
PRHI_SIG ..ADI - 44
PRHI_WAIT ..ADI - 45
PRLO_PSH ..ADI - 46
YIELD ...ADI - 47

Predefined drivers ADI - 48
The timer device driver ...ADI - 48
The host interface device driver ...ADI - 49
Shared memory driver ..ADI - 50

Task Level Timings ...ADI - 50
Application development hints. ..ADI - 51

Virtuoso on the ADSP 2106x SHARC ADI - 1
Virtuoso implementations on the 21060 ..ADI - 1
SHARC chip architecture ..ADI - 1
Relevant documentation ..ADI - 1
Version of the compiler ..ADI - 1
SHARC silicon revisions ..ADI - 1
Developing ISR routines on the SHARC ...ADI - 3

General principles ..ADI - 3
Writing an ISR routine ..ADI - 4
Installing an ISR routine ...ADI - 5
List of ISR related services ..ADI - 6

The nanokernel on the 21060 ...ADI - 7
 Introduction ...ADI - 7
Internal data structures ..ADI - 8
Process management. ...ADI - 9
Nanokernel communications ..ADI - 11
SEMA_CHAN - counting or semaphore channelADI - 11
LIFO_CHAN - List channel ...ADI - 11
STACK_CHAN - Stack channel ...ADI - 12
Register conventions ..ADI - 12
Interrupt handling ...ADI - 14
The ISR-level ...ADI - 15
Communicating with the microkernel ...ADI - 15

Additional microkernel features on the 21060 ...ADI - 18
Use of the PC stack and the counter stack ..ADI - 18
Extended context ...ADI - 18
Copyright 1996 Eonic Systems Virtuoso User Manual TOC - 9

Alphabetical List of nanokernel entry points ADI - 19
start_process ...ADI - 20
ENDISR1 ...ADI - 21
K_taskcall ...ADI - 22
KS_DisableISR ..ADI - 23
KS_EnableISR ...ADI - 24
PRHI_GET ...ADI - 25
PRHI_GETW ..ADI - 26
PRHI_POP ...ADI - 27
PRHI_POPW ...ADI - 28
PRHI_PUT ...ADI - 29
PRHI_PSH ...ADI - 30
PRHI_SIG ..ADI - 31
PRHI_WAIT ...ADI - 32
PRLO_PSH ..ADI - 33
YIELD ...ADI - 34

Predefined drivers ADI - 35
Virtuoso drivers on the 21060 ...ADI - 35

The timer device driver ..ADI - 36
The host interface device driver ...ADI - 37
Netlink drivers ..ADI - 37
Raw Link drivers ..ADI - 39
Common remark for all link drivers ..ADI - 39

Task Level Timings ADI - 40
Application development hints. ADI - 42
Virtuoso on the Intel 80x86 I1 - 1

Notes over PC interrupt drivers ..I1 - 1
Warning when using Virtuoso on a PC ..I1 - 1

Virtuoso on the Motorola 56K DSP M1 - 1
Virtuoso versions on 56K ...M1 - 1
DSP 56001 Chip Architecture ..M1 - 1
DSP56001 software architecture ...M1 - 3

Addressing Modes ..M1 - 5
I/O Memory ...M1 - 6

PORT A ...M1 - 6
PORT B ...M1 - 6
PORT C ...M1 - 8

Exceptions ..M1 - 8
Relevant documentation ..M1 - 10
C calling conventions and use of registers ...M1 - 10

Storage Allocation ...M1 - 10
Register Usage ...M1 - 10
Subroutine Linkage ...M1 - 11
TOC - 10 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3
Preserved Registers ..M1 - 11
Register Return Values ..M1 - 11
Parameter Passing ..M1 - 11
Subroutine Call sequence ..M1 - 11

Procedure Prologue and Epilogue ..M1 - 12
Stack Layout ...M1 - 13

Interrupt Service Routines (ISR) ..M1 - 14
ISR Conventions ...M1 - 14

Alphabetical list of ISR related services ...M1 - 18
Developing ISR routines ...M1 - 23
The nanokernel on the 56002 ..M1 - 23
Predefined drivers ..M1 - 23

The timer device driver ..M1 - 24
The host interface device driver ..M1 - 24

Task Level Timings ..M1 - 25
Application development hints. ...M1 - 26

Virtuoso on the Motorola 68030 systems M2 - 1
Source files of the Virtuoso kernel ..M2 - 1
Building an application executable ...M2 - 2
Configuration of the processor boards CC-112 of CompControlM2 - 3
Additional information about the modules ..M2 - 5
Server program for CompControl VME system board, running on OS-9M2 - 9

 Purpose of the server program ..M2 - 10
 Source files for the server program ..M2 - 10
 Use of the server program ...M2 - 11

Virtuoso on the Motorola 96K DSP M3 - 1
Virtuoso versions on 96K ...M3 - 1
DSP 96002 chip architecture ..M3 - 1
DSP 96002 software architecture ...M3 - 3

DSP 96002 addressing modes ...M3 - 7
I/O memory and special registers ...M3 - 8
Expansion ports control ...M3 - 8
Exceptions ...M3 - 8

Relevant documentation ...M3 - 10
C calling conventions and use of registers ...M3 - 10

Storage Allocation ...M3 - 10
Segmentation model ...M3 - 10
Register usage ..M3 - 11
Subroutine linkage ..M3 - 11
Stack layout ...M3 - 13

Interrupt Service Routines (ISR) ..M3 - 15
ISR conventions ..M3 - 15

Alphabetical list of ISR related services ...M3 - 19
The Nanokernel ..M3 - 22
Developing ISR routines ...M3 - 24
Copyright 1996 Eonic Systems Virtuoso User Manual TOC - 11

The nanokernel on the 96002 ..M3 - 24
Predefined drivers ..M3 - 24

The timer device driver ...M3 - 25
The host interface device driver ..M3 - 25

Task Level Timings ..M3 - 26
Application development hints. ..M3 - 27

Virtuoso on the Motorola 68HC11. M4 - 1
Virtuoso on the Motorola 68HC16 microcontroller. M5 - 1
Virtuoso on the Mips R3000 systems. R1 - 1
Virtuoso on the INMOS T2xx, T4xx, T8xx. T8 - 1

Introduction ...T8 - 1
The transputer : an example component for distributed processingT8 - 1
Process control with transputers ...T8 - 2
A solution based on process priority ...T8 - 3
Modifying the FIFO scheduler on the transputer ...T8 - 4
The Virtuoso implementation ..T8 - 5
Requirements for embedded real-time systems ...T8 - 6
Small grain versus coarse grain parallelism ..T8 - 7
Additional benefits from Virtuoso on the transputer ..T8 - 8
Device drivers with Virtuoso on the INMOS transputer ...T8 - 8
Performance results ..T8 - 9

Single processor version. (v.3.0.) ..T8 - 9
The distributed version ...T8 - 10

Using the compiler libraries with Virtuoso ...T8 - 11
Specific Parallel C routines not to be used by the tasksT8 - 11
Specific routines of the INMOS C Toolset not to be used by the tasks.T8 - 12
Specific routines of the Logical Systems compiler not to be used by the tasks. ...T8 - 14

Virtuoso on the INMOS T9000 transputer T9 - 1
Virtuoso on the Texas Instruments TMS320C30 & C31 TI1 - 1

Virtuoso versions on TMS320C30/C31 ..TI1 - 1
TMS320C30 Chip Architecture ..TI1 - 2
TMS320C30 Software Architecture ..TI1 - 3

Addressing Modes ..TI1 - 4
Relevant documentation ..TI1 - 4
Application development hints ...TI1 - 4
Interrupt handlers and device drivers for Virtuoso on the TMS320C3x.TI1 - 7

Interrupt handling in Virtuoso. ...TI1 - 7
Parts of a device driver. ..TI1 - 10

Virtuoso on the Texas Instruments TMS320C40 TI2 - 1
Brief description of the processor architecture ...TI2 - 1

TMS320C40 Chip Architecture ...TI2 - 2
TMS320C40 Software Architecture ..TI2 - 3
TOC - 12 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3
Addressing Modes ... TI2 - 4
Relevant documentation .. TI2 - 4

Programming in C and assembly .. TI2 - 5
Data representation .. TI2 - 5
Big and Small Models .. TI2 - 5
Parameter passing conventions ... TI2 - 5
Memory sections for the C compiler and Virtuoso TI2 - 6

Programming the nanokernel TI2 - 8
Introduction .. TI2 - 8
Internal data structures .. TI2 - 9
Process management. .. TI2 - 10
Nanokernel communications ... TI2 - 11

C_CHAN - Counting channel ... TI2 - 12
L_CHAN - List channel ... TI2 - 12
S_CHAN - Stack channel ... TI2 - 13

Register conventions ... TI2 - 13
Interrupt handling .. TI2 - 15
Communicating with the microkernel .. TI2 - 17
Virtuoso drivers on TMS320C40 ... TI2 - 20

Alphabetical List of nanokernel entry points TI2 - 22
_init_process .. TI2 - 23
_start_process .. TI2 - 24
ENDISR0 .. TI2 - 25
ENDISR1 .. TI2 - 27
K_taskcall ... TI2 - 29
KS_DisableISR() .. TI2 - 30
KS_EnableISR ... TI2 - 31
PRHI_GET ... TI2 - 32
PRHI_GETW .. TI2 - 33
PRHI_POP ... TI2 - 34
PRHI_POPW .. TI2 - 35
PRHI_PUT ... TI2 - 36
PRHI_PSH ... TI2 - 37
PRHI_SIG .. TI2 - 38
PRHI_WAIT .. TI2 - 39
PRLO_PSH .. TI2 - 40
SETISR1 .. TI2 - 41
SYSDIS .. TI2 - 43
SYSENA ... TI2 - 44
SYSVEC ... TI2 - 45
YIELD ... TI2 - 47

Predefined drivers TI2 - 48
The timer device drivers .. TI2 - 48
Host interface device drivers ... TI2 - 48
Copyright 1996 Eonic Systems Virtuoso User Manual TOC - 13

Netlink drivers ..TI2 - 49
Raw link drivers ..TI2 - 49
Task Level Timings ..TI2 - 50

Glossary GLO - 1

Index IX - 1
TOC - 14 Virtuoso User Manual Copyright 1996 Eonic Systems

Introduction

PA
R

T
 3
Introduction

Virtuoso™ is a family of real-time processing programing systems. As this
family is expanding it became necessary to differentiate between the differ-
ent product offerings. The general philosophy however is the same: ease of
use and portability with no compromize on the performance.

Most of the products are available in three different implementations.

SP : Single Processor implementation.

These implementations do not assume the presence of any other processor
in the system. The Virtuoso kernel provides multi-tasking with preemptive
scheduling.

MP : Single Processor implementation with multi-processor extensions.

The multi-processor extensions enable fast and easy interprocessor commu-
nication, all in about 500 instructions. With minimum set-up times, it provides
for maximum performance by using the DMA engines when available. Com-
munication is point-to-point between directly connected processors.

VSP : Virtual Single Processor implementation.

The true solution for parallel processing is to implement the communication
as part of the kernel service, hence providing fully transparent parallel pro-
cessing. The VSP implementation provides this feature by way of fully dis-
tributed semantics, permitting to move kernel objects and/or changes to the
target topology without any changes to the source code.

The current product offerings are as follows :

Virtuoso Nano is based on the core nanokernel of the Virtuoso product
range. It can be very small (200 instructions) but is ultrafast. It provides for
true multitasking and interprocess communication services. The VSP imple-
mentation is still not larger than 1000 instructions.

Virtuoso Micro features a small but fast microkernel that provides preemp-
tive scheduling for a number of prioritized tasks. Well suited when preemp-
tive scheduling is needed and the appication has moderate interrupt
requirements..

Virtuoso Classico : a tight integration of Virtuoso’s nanokernel and Virtu-
oso’s microkernel. The microkernel provides fully distributed high level
semantics with no source code changes when kerrnel objects or user tasks
or moved in a processor network or when the system topology is changed.
Copyright 1996 Eonic Systems Virtuoso User Manual INT - 1

Introduction
Virtuoso Modulo 0 to VI contain a complete range of libraries in optimized
assembly covering vector and matrix functions, filters, FFT, EISPACK (eigen
value functions), BLAS (Basic Linear Algebra Subroutines, and 2-dimen-
sional image processing. All written in optimized assembly. Part of the librar-
ies were developed by Sinectoanalysis from Boston, MA and adapted for
Virtuoso. The package is complemented by a board specific host server that
boots the target network and provides standard I/O, PC graphics and heap
allocation functions.

For the rest of the manual, we will often use the term Virtuoso as the context
makes it clear what product offering is being discussed.

Virtuoso currently supports the following processors :

ARM, INMOS T2xx,T4xx, T8xx, T9000, TEXAS INSTRUMENTS
TMS320C30/C31/C40, Motorola 68xxx, 68HC11, 68HC16, Intel 80x86 (real
mode), MIPS R3000, Motorola 96K, 56K, Analog Devices 21020, 2106x,
Pine & OakDSPCore. (contact Eonic Systems or your distributor for a list).

Not all processors supported by Virtuoso are supported with all possible
implementations. A choice was made depending on the specific processor
architecture as well as on the typical use made of the processor. In all cases
is the microkernel available offering an identical interface from single 8bit
microcontrollers to mixed parallel processing networks of 32bit DSPs and
other processors.

As not all processor versions are fully upgraded to the latest version. Refer to
the release floppy or the previous manual if there is a inconsistency. Eonic
Systems is upgrading all versions to be source level compatible as much as
possible.

Eonic Systems International Inc. has taken up the challenge to continually
improve its product by further streamlining the code, by extending the func-
tionality and the flexibility of the kernel and by adding tools that will support
the designer during the development phase as well as during the rest of the
life cycle of the applications developed. Therefore, the current version is sub-
ject to modification and will be upgraded on a regular base.

For more information : info@eonic.com

For support, contact : support@eonic.com

WEB page : http://www.eonic.com
INT - 2 Virtuoso User Manual Copyright 1996 Eonic Systems

Release notes

PA
R

T
 3
Release notes

V.3.01 September 1992

This version does not contain many changes. In particular :

1. The I/O library was revised and extended;

2. Terminal type I/O is now a separate library;

3. The compile and development cycle has been shortened by streamlining the
makefiles and library decomposition;

4. The KS_Alloc kernel service was modified to allow deallocation when a task
is aborted;

5. A new universal network loader.

We made a lot of efforts to support even better DSP applications. In particu-
lar :

1. The ISR structure has been reviewed permitting to eliminate most of the
interrupt disabling times.

2. Light context tasks were introduced. These are used internally by the kernel
but can be defined and programmed as well by the user.

V.3.05 January 1993

The major novelty is the introduction of the nanokernel for the distributed ver-
sion. This consists of several light context tasks and enables very fast inter-
rupt servicing.

Following enhancements were added :

1. The router will use multiple paths, if possible.

2. A new service, the KS_MoveData was introduced

3. The transputer and C40 version can be used transparently on mixed net-
works.

4. Introduction of an Application Development Support Package consisting of a
Vector, Matrix and Flter library (separate product).

V.3.09 September 1993

The major change is the updating of the manual documenting the nanoker-
nel. For the single processor versions, the same hostserver and netloader is
being used as with the multiprocessor versions to improve the portability of
the applications. Following changes were made :

1. An improved *.NLI file format;

2. An improved tracing monitor.
Copyright 1996 Eonic Systems Virtuoso User Manual INT - 3

Release notes
V.3.09.1 November 1993

In this release all nanokernel services were implemented as traps. This has
the benefit that the total interrupt disabling time was reduced and that the
nanokernel code can be placed on any memory bank in relation to the pro-
gram code.

The manual was largely updated and covers the Virtuoso support packages
in a single manual. Virtuoso Nano is not yet documented in its VSP imple-
mentation

From this release on, every license includes free of charge a binary version
of Virtuoso Micro for use with Borland C under DOS, permitting an easy
cross development at the microkernel level.

V.3.11 September 1996

This release adds a C++ API to the microkernel services.

This reference part of this manual has been extensively revised,.

This version is the first version of Virtuoso to be tested production versions
of the Analog Devices 2106x processor.
INT - 4 Virtuoso User Manual Copyright 1996 Eonic Systems

Implementation-Specific Features

PA
R

T
 3
Implementation-Specific Features

As these manuals are generic, not all the software versions will correspond
fully with it. Some advanced features might be missing or implemented dif-
ferently depending on the actual target processor. Note however that later
versions are always supersets of the previous ones unless serious technical
reasons dictated syntax changes. Refer to your interface libraries for a cor-
rect definition of the syntax and the read.me files.

Eonic Systems International makes no warranty, expressed or implied, with
regard to this material including but not limited to merchantability or fitness
for a given purpose. The information in this document is subject to change
without notice. Eonic Systems International assumes no responsibility for
any errors which may appear herein. Eonic Systems International shall have
no liability for compensatory, special, incidental, consequential, or exemplary
damages.

This document may not be copied in whole or in part without the express
written permission of Eonic Systems International. The products described
in this document are and shall remain the property of Eonic Systems Inter-
national. Any unauthorized use, duplication, or disclosure is strictly forbid-
den.
Copyright 1996 Eonic Systems Virtuoso User Manual INT - 5

Trademark Notices
Trademark Notices

Virtuoso™ is a trademark of Eonic Systems Inc.

12210 Plum Orchard Drive, Silver Spring, MD 20904

Tel. (301) 572 5000, Fax. (301) 572 5005

e-mail: info@eonic.com. For support : support@eonic.com

WEB : http://www.eonic.com

Europe :

Nieuwlandlaan9, B-3200 Aarschot, Belgium.

Tel. : (32) 16.62 15 85. Fax : (32) 16.62 15 84

Copyright 1996 Eonic Systems, Inc.

Virtuoso Nano ™ is a trademark of Eonic Systems Inc.

Virtuoso Micro ™ is a trademark of Eonic Systems Inc.

Virtuoso Classico ™ is a trademark of Eonic Systems Inc.

Virtuoso Modulo ™ is a trademark of Eonic Systems Inc.

Virtuoso Molto ™ is a trademark of Eonic Systems Inc.

RTXC is a trademark of A.T. Barrett & Associates.

TRANS-RTXC is a trademark of Eonic Systems Inc.

RTXC/MP is a trademark of Eonic Systems Inc.

RTXCmon is a trademark of Eonic Systems Inc.
INT - 6 Virtuoso User Manual Copyright 1996 Eonic Systems

The history of Virtuoso

PA
R

T
 3
The history of Virtuoso

Welcome to the world of Virtuoso. We think that you have purchased one of
the most versatile and unique systems available for the implementation of a
real-time system, be it on a single or on a multi-processor target system.
Before we jump into the details, we would like to spend a few moments to
explain the philosophy behind Virtuoso.

In 1989, Intelligent Systems International (which later became Eonic Sys-
tems), was founded. At that time, the INMOS transputer was the only proces-
sor available with in-built support for parallel processing, however, it lacked
the ability to support tasks with multiple levels of priority. In order to apply
this technology to hard real-time applications, ISI wrote a multi-tasking ker-
nel for the transputer. Derived from RTXC, ISI added support for multiple
processors, and launched a product called TRANS-RTXC.

In addition, ISI started to port to a variety of other processors. This was pos-
sible because TRANS-RTXC was redesigned much more with portability in
mind, and re-named as RTXC/MP. It was available for targets ranging from 8-
bit microcontrollers to 32-bit multi-processor networks.

A major addition to the supported target processors was the Texas Instru-
ments TMS320C30 and C40. This brought RTXC/MP into the DSP world,
and to a new level of performance. However, the requirements of DSP appli-
cations needed a radical new approach in the implementation of the kernel.
On the one hand, DSP applications running on hundreds of processors
require a powerful and easily understood paradigm for distributed process-
ing; while on the other hand the need to process interrupts from many
sources requires an efficient, low-level approach. Often these apparently
conflicting requirements are present in the same system.

The result of these considerations was Virtuoso. The concepts behind Vir-
tuoso are some of the most advanced, and they combine to give very power-
ful and efficient support for real-time, DSP and parallel system design.

The ability to use any of the kernel services to access a kernel object located
on another processor in the system, no matter where it is located, frees the
programmer from considering the details of interprocessor communication.
Because the semantics of the kernel services were designed for distributed
operation, it is the only system that guarantees that the deterministic behav-
ior of the application is unchanged when the target network is changed. This
paradigm is called the Virtual Single Processor, as it allows a multi-proces-
sor target to be programmed exactly as if it were a single processor.

In the same context Virtuoso also provides multiple levels of support, allow-
ing a trade-off to made of ease of programming for performance. Two levels
Copyright 1996 Eonic Systems Virtuoso User Manual INT - 7

The history of Virtuoso
are dedicated to handling interrupts, one level consists of light context tasks
(called the nanokernel processes) and the highest level is the preemptive
priority driven C task level. This level has a rich set of semantics, is indepen-
dent of the network topology and hence is fully scalable.

Despite providing these rich features, Virtuoso is still one of the smallest
and fastest real-time operating systems available.

The latest addition to the family is Virtuoso Synchro, an application genera-
tor for synchronous dataflow applications. It supports the specification, simu-
lation, emulation and implementation of mono- and multi-rate DSP
applications on multi-processor targets, using a graphical user interface. The
generated code runs with minimum of input-to-output delays and memory
requirements, and can be used where even the smallest overhead from the
kernel would be unacceptable

Virtuoso is complemented by a range of support tools and libraries that
make Virtuoso a complete programming environment, designed to meet the
needs of the developer in a wide range of applications. What Virtuoso deliv-
ers today is the potential to combine the incremental processing from a sin-
gle processor to over a 1000 multi-processor network while meeting hard
real-time constraints.

We look forward to receiving your comments, opinions and suggestions
which might help us in the evolution of Virtuoso. As Virtuoso comes with 12
months support and upgrades, do not hesitate to contact us. It could save
you a lot of time and it could start a long lasting relationship.

Milestones
■ 1989: ISI founded

■ 1990: Release of TRANS-RTXC

■ 1992: Virtual Single Processor concept introduced

■ 1992: RTXC/MP ported to the TMS320C30 and C40

■ 1992: Release of 2nd generation kernel, Virtuoso
■ 1993: Nanokernel programming level introduced

■ 1994: Port to ADSP 21020 and 21060

■ 1995: Release of Virtuoso Synchro

■ 1995: ISI changed name to Eonic Systems, Inc.
INT - 8 Virtuoso User Manual Copyright 1996 Eonic Systems

Manual Format

PA
R

T
 3
Manual Format

This manual set is divided into three distinct parts.

PART 1 Virtuoso concepts

This part discusses the general philosophy behind Virtuoso. It gives infor-
mation on how Virtuoso operates, the concepts behind its design and how
the developer needs to use it. A short tutorial is included in order to prepare
the user who is not familiar with real time programming.

PART 2 Virtuoso Reference Manual

This part contains the reference part of the manual with a detailed discus-
sion of the way the Virtuoso kernel works, how to use the kernel services
and how to use the Virtuoso development tools.

PART 3 Virtuoso Binding Manual

Part 3 of this manual contains the specific information about installing and
using a given Virtuoso implementation for a given target processor with a
given C compiler. As this information may vary for different combinations of
processors and compilers, the contents of this part depends on the particular
combination you have licensed.

Other manuals include :

Virtuoso Technical Notes.

Virtuoso Modulo 0 - VI.
Copyright 1996 Eonic Systems Virtuoso User Manual INT - 9

Manual Format
INT - 10 Virtuoso User Manual Copyright 1996 Eonic Systems

License agreement

PA
R

T
 3
License agreement

EONIC SYSTEMS agrees to grant upon payment of fee, to the undersigned
CUSTOMER and CUSTOMER agrees to accept a non-transferrable and
non-exclusive license to use the Software, hereinafter referred to as the
Licensed Product, as listed in the license registration form and subject
license registration form is attached hereto and made a part of this Agree-
ment. In case of doubt, the items as mentioned on the invoice upon delivery
of the Software, shall be taken as the Licensed Product.

OWNERSHIP AND CONDITIONS :

1. OWNERSHIP :

Customer acknowledges that Eonic Systems retains all rights, title, and inter-
est in and to the Licensed Product and all related materials are and shall at
all times remain the sole and exclusive property of Eonic Systems. The
Licensed Product, the original and any copies thereof, in whole or in part,
and all copyright, patent, trade secret and other intellectual and proprietary
rights therein, are owned by and remain the valuable property of Eonic Sys-
tems. Customer further acknowledges that the Licensed Product embodies
substantial creative efforts and confidential information, ideas, and expres-
sions. Neither the Licensed Product nor this Agreement may be assigned,
sublicensed, or otherwise transferred by Customer without prior written con-
sent from Eonic Systems.

2. FEES :

For and in consideration of the rights and privileges granted herein, Cus-
tomer shall pay to Eonic Systems a license fee, due and payable upon exe-
cution of this Agreement, in the amount specified on the invoice.

3. DEFINITIONS :

3.1 SOURCE CODE is any representation of the Licensed Product that is
suitable for input to, or is produced as output from an assembler, compiler,
interpreter, source translator, or disassembler, either directly or indirectly on
any medium, regardless of type, including, but not limited to listings printed
on paper, and any magnetic or optical medium.

3.2 EXECUTABLE CODE is any representation of the Licensed Product
which can be directly executed by the instruction set of a computer or indi-
rectly by an interpreter in a computer. The storage or transmission medium
is not relevant to this definition and includes, but is not limited to, magnetic,
optical, Read-Only-Memory of all sorts, and Random Access Memory.
Copyright 1996 Eonic Systems Virtuoso User Manual LIC - 1

License agreement
3.3 OBJECT CODE is any form of the Licensed Product not included in the
definitions of SOURCE CODE or EXECUTABLE CODE above including, but
not limited to, object code files and object code libraries on any medium.

3.4 SITE is any single designated place of business where the Licensed
Product will be used by Customer in the development of Customer’s applica-
tion. The SITE is limited to a single building or department or group of
license users but Eonic Systems may, at its sole discretion, determine what
shall constitute the SITE.

4. CUSTOMER’S PRIVILEGES :

Regarding the Licensed Product, the Customer may :

4.1 Use any representation of the Licensed Product on one development
station at the Customer’s SITE.

4.2 Copy the Licensed Product for backup or archival purposes and to sup-
port Customer’s legitimate use of the Licensed Product.

4.3 Merge or otherwise combine the Licensed Product, in part with other
works in such a fashion as to create another work agreeing that any portion
of the Licensed Product so merged remains subject to the terms of this
Agreement. Whenever the source code of the Licensed Product is changed
during the work, CUSTOMER shall consult Eonic Systems to verify if the
changes are within the boundaries of the License Agreement.

4.4 Distribute on any medium the EXECUTABLE CODE derived from the
Licensed Product so long as the Licensed Product is an integral and indistin-
guishable part of the EXECUTABLE CODE and the applicable runtime
license fee has been paid to Eonic Systems.

4.5 Extend this Agreement to include more than one SITE by paying the
appropriate license fee for the Licensed Product for each additional SITE.

4.6 Extend this Agreement to include more than one development station by
paying an additional license fee for the Licensed Product for each additional
development station.

5. CUSTOMER OBLIGATIONS :

Regarding the Licensed Product, the Customer shall :

5.1 Include and shall not alter the Copyright or any other proprietary notices
on any form of the Licensed Product. The existence of any such copyright
LIC - 2 Virtuoso User Manual Copyright 1996 Eonic Systems

License agreement

PA
R

T
 3
notice shall not be construed as an admission or presumption of publication
of the Licensed Product.

5.2 Maintain appropriate records of the number and location of all copies
that it may make of the Licensed Product, and shall make these records
available to Eonic Systems upon reasonable request thereof.

5.3 Upon termination of this license, render written certification that all cop-
ies of the Licensed Product and any related materials, in any form, excluding
EXECUTABLE CODE have been destroyed.

5.4 Take appropriate action by agreement or otherwise, with its employees,
contractors, subcontractors, agents, or any other person or organization
under Customer’s control and having access to the Licensed Product, to sat-
isfy Customer’s obligations under this Agreement with respect to the use,
copying, protection, and security of the Licensed Product.

5.5. Pay to Eonic Systems a runtime license fee for every processor or com-
puter system executing any instance of the licensed product, be it as
OBJECT CODE and indistinguishable from the EXECUTABLE CODE as far
as the payment of said runtime license fees is not covered by any other
agreement between Eonic Systems and CUSTOMER.

6. CUSTOMER PROHIBITIONS :

Regarding the Licensed Product, the Customer shall not :

6.1 Permit any person or persons under its control to compromise the exclu-
siveness of the Licensed Product and the rights of Eonic Systems under the
law of this Agreement.

6.2 Provide or otherwise make available to another party, any SOURCE
CODE or OBJECT CODE or documentation which forms part of the
Licensed Product, whether modified or unmodified or merged with one or
more other works.

6.3 Use the benefits of the Licensed Product to engage in the development
of a product or products having the equivalent functional specification or
serving the same purpose as the Licensed Product so as to be in direct com-
petition with the Licensed Product.
Copyright 1996 Eonic Systems Virtuoso User Manual LIC - 3

License agreement
7. LIMITED WARRANTY :

NO WARRANTY OF THE LICENSED PRODUCT IS PROVIDED EXCEPT
AS STIPULATED HEREIN.

7.1 Eonic Systems provides the Licensed Product “As Is” without any war-
ranty, expressed or implied, including but not limited to, any warranty of mer-
chantability or fitness for a particular purpose.

7.2 Eonic Systems does not warrant that the functions contained in the
Licensed Product will meet Customer’s requirements, or that the operation of
the Licensed Product will be uninterrupted or error free.

7.3 Eonic Systems does warrant the media upon which the Licensed Prod-
uct is distributed to Customer to be free of defects in material and workman-
ship under normal use for a period of ninety (90) days from the date of
shipment of the Licensed Product to Customer. Eonic Systems will replace
such defective media upon its return to Eonic Systems.

7.4 Eonic Systems’ liability hereunder for damages, regardless of the form of
action, shall not exceed the amount paid by Customer for the Licensed Prod-
uct. Eonic Systems will not be liable for any lost profits, or for any claims or
demands against Customer. Eonic Systems shall not be liable for any dam-
ages caused by delay in delivery, installation or furnishing of the Licensed
Product under this Agreement. In no event will Eonic Systems be liable for
any kind of incidental or consequential, indirect, or special damages of any
kind.

8. GENERAL :

8.1 This Agreement is valid from the moment Customer has placed an order
and Eonic Systems has duly executed it. This Agreement will remain in effect
until Eonic Systems receives written notice of termination by Customer.
Eonic Systems may terminate this Agreement, effective upon written notice
thereof to Customer, if Customer neglects to perform or observe any of the
terms set forth in this Agreement. This Agreement shall automatically termi-
nate upon any act of bankruptcy by or against Customer, or upon dissolution
of Customer.

8.2 If any of the provisions, or portions thereof, of this Agreement are invalid
under any applicable statute or rule of law, they are, to that extent, deemed
to be omitted.

8.3 This Agreement shall be governed by the laws of the State of Belgium
and the relevant laws of the European Community and Customer expressly
LIC - 4 Virtuoso User Manual Copyright 1996 Eonic Systems

License agreement

PA
R

T
 3
submits to jurisdiction therein by process served by mail on Eonic Systems
at the address below.

8.4 If Customer issues a purchase order, memorandum, or other written doc-
ument covering the Licensed Product provided by Eonic Systems, it is spe-
cifically understood and agreed that such document is for Customer’s
internal purposes only and any and all terms and conditions contained
therein shall be of no force or effect.

8.4 This Agreement supersedes any and all prior representations, condi-
tions, warranties, understandings, proposals, or agreements between Cus-
tomer and Eonic Systems, oral or written, relating to the subject matter
hereof and constitutes the whole, full, and complete Agreement between
Customer and Eonic Systems.

8.5. The Licensed Product includes a 12 months period of support and main-
tenance provided Customer submits his questions in written form and Cus-
tomer duly returns the completed form to Eonic Systems that accompanies
the Licensed Product.
Copyright 1996 Eonic Systems Virtuoso User Manual LIC - 5

License agreement
RETURN A SIGNED COPY TO EONIC SYSTEMS TO VALIDATE THE 12 MONTHS
MAINTENANCE

IN WITNESS WHEREOF

the parties hereto have executed this Agreement by their duly authorized
representatives :

CUSTOMER (print) Authorized Signature

Address (print)

EONIC SYSTEMS, Nieuwlandlaan 9, B-3200 Aarschot, Belgium.

Date
LIC - 6 Virtuoso User Manual Copyright 1996 Eonic Systems

License agreement

PA
R

T
 3
RETURN A SIGNED COPY TO EONIC SYSTEMS TO VALIDATE THE 12 MONTHS
MAINTENANCE

EXHIBIT A : LICENSED PRODUCTS :

Product Serial Number Qty

1.___

2.___

LICENSED SITE : (print or type)

Company : __

Department : __

Address : __

State/Prov. : __

ZIP/Postal Code: __

Country : __

Telephone : __

Fax : __

e-mail : __

Technical Contact: __

FOR EONIC SYSTEMS USE ONLY :

Order/Date/Invoice: __

Date Shipped: __

Reseller : __

Date Reg. Received: __
Copyright 1996 Eonic Systems Virtuoso User Manual LIC - 7

License agreement
LIC - 8 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3
Virtuoso ™

The Virtual Single Processor Programming System

Covers :

Virtuoso Classico TM

Virtuoso Micro ™

Version 3.11

Part 1. The concepts
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 1

P1 - 2 Virtuoso User Manual Copyright 1996 Eonic Systems

Creation : February 5, 1990

Last Modification : September 6th, 1996

Installation

PA
R

T
 3
1. Installation

1.1. Installing the software

The Virtuoso Package is available in two types of licenses. The fist one only
contains the binary files while the second one is delivered with the source
code. The source code is delivered on a separate floppy. For the rest of this
manual we will simply refer to Virtuoso. To install the Virtuoso package on a
PC hosted system, follow this procedure :

1. Insert the floppy in the drive

2. Type “install”

Follow the instructions on the screen.

This will create the virtuoso directories on the requested drive and copy the
files onto the hard disk. If you want to install onto a different structures, edit
the install.bat file but be aware that the supplied makefiles assumes a subdi-
rectory structure as the one on the floppies. The installation on UNIX hosted
systems is similar, but uses a tar file.

Please read the readme file first, before you proceed any further.

Next, you will need to set up the paths. You need a path to the C compiler
(e.g. \tic440), the libraries (\lib) and to the directory of executable programs
(\bin). When using the PC graphics library, you also need to set up a path to
the Borland graphics driver (e.g. \bc\bgi.).

In the \examples directory, you can find small test programs. It is advised to
copy one of these into your own directory if you start programming.

IMPORTANT NOTE :

As your board might have a different memory lay-out and interprocessor
connections than those used to build the examples, please verify the mem-
ory layout and interprocessor connections (if any) so that they reflect your
own board and remake the examples.

Each directory is delivered with a makefile (Borland make.exe compatible).
“make' will generate a new binary. “make install” will copy the libraries to the
\lib directory. “make clean” will remove all files that can be regenerated.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 3

Installation
1.2. Kernel libraries provided

The following libraries are provided :

The Virtuoso kernel :

1. VIRTOS.LIB : no support for the task level debugger.

2. VIRTOSD.LIB : with support for the task level debugger.

Host access :

1. CONIO.LIB : simple console I/O, mainly used for terminal I/O

2. STDIO.LIB : C style I/O

3. BGI.LIB : Borland BGI graphics calls

To recompile the libraries, go to the SOURCE\Virtuoso directory and type
MAKE. This will display instructions on how to proceed.

Note : Other libraries are provided as well. These are target dependent. See
the relevant sections or the readme files.

1.3. Confidence test

1. Change to the EXAMPLES directory:

cd \VIRTUOSO\EXAMPLES\D1P

Note that \d1p is called \demo1p on older releases.

2. The sysdef definition file for the different system objects is already given.
From these Sysgen will construct the .C files and .H files needed for compila-
tion. Just invoke your text editor and view the definition file.

3. The different object definitions can now be viewed. For a better under-
standing it is advised to have a quick look at the relevant section in Part2 of
the manual.

4. After viewing the system definition file, you can invoke the Sysgen system
generation utility on the file. This generates automatically all include files,
There is a node.c and a node.h file for each processor in the system. You
can try as follows :

make

This will call the make utility that operates on the makefile. This will parse the
system definition file, compile, link and configure the test program.
P1 - 4 Virtuoso User Manual Copyright 1996 Eonic Systems

Installation

PA
R

T
 3
5. Run the final demonstration program, using one of the supplied *.bat pro-
gram. For example :

run test

This starts up the server program on the host and boots the demonstration
program onto the root processor. For example :

host_x -rlsz test.nli

Follow the instructions provided on the screen, while having a look at the rel-
evant sections of the Reference Manual.

To start developing a new application, it is recommended to start from an
example program, and to copy it to a new directory, where you will develop it.

6. The supplied test program runs as a program on a processor connected to
the host. Exit from the demo with CTRL-C or terminate the server to return to
DOS. While \d1p is not compiled with the debugger options, most other
examples are. The debugger is started by hitting the ESCAPE key.

A good way to familiarize yourself with Virtuoso is to play a bit with the exam-
ple programs. See what happens when you invoke the debugger while the
benchmark loop is running, or change the source to invoke the debugger
task from within another task. Using the debugger, inspect the different ele-
ments of the system while you look up the meaning of the information pro-
vided in Part 2 of the manual. You might find that the user interface is simple
but remember that this way any terminal can do the job, enabling Virtuoso to
be used in exactly the same way when developing software for different tar-
get processors using different host systems.

To really have a look at how a multitasking kernel works, we advise you to
select the L (List the last scheduling events) at different moments when the
benchmark is running. You will certainly remark the microsecond accuracy
with which the Virtuoso kernel is able to schedule the application tasks.
Another point to see is the protocol involved when using the server. However,
in this example, it perfectly demonstrates the interrupting nature of the pre-
emptive scheduler.

We hope you will enjoy using this product, remember our 12 months free
support service and we will greatly appreciate your comments or sugges-
tions for improving this product based on your experience in the field.

1.4. Virtuoso compilation symbols

When recompiling the Virtuoso kernel, you’ll have to enable or disable the
compile time switches. These are as follows :
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 5

Installation
TLDEBUG :

If defined includes support for the task level debugger.

TLMONIT

This switch does include the use of the tracing monitor.

The default delivered virtosd.lib always includes both switches.

1.5. The license agreement

1.5.1. Site developers license and runtimes

All Virtuoso products contain the same license agreement. This license
agreement is basically a site developers license that gives you the right to
install the software on one developer’s stations at the same site. The binary
version does not contains runtime royalties except those for developing. The
version with source code also contains runtime royalties for 100 target pro-
cessors. Above this amount, contact Eonic Systems or your distributor.

1.5.2. Support and maintenance

Any Virtuoso package is also delivered with 12 months support and mainte-
nance. To make you eligible for these 12 months support and upgrades, you
must sign and return the license agreement to Eonic Systems or to your dis-
tributor. So don’t wait any longer and mail this license form today.

From now on this means you can submit any problem you would encounter
by fax or by mail. If the problem is really holding you up, don’t hesitate to call.

In addition, during the 12 months following the delivery, we come out with
any upgrade (software or manual), we will ship you a new version (shipping
cost not included). Bugfixes are always fixed when reported.

1.6. Cross development capability

As the microkernel level is close to 100 % identical for all target processors,
we have seen that a number of our customers have continued to use our
evaluation kit on PC for cross development even if the target system is a rack
with several tens of processors. Therefore we decided to include this Borland
version (binary only) with any license delivered.
P1 - 6 Virtuoso User Manual Copyright 1996 Eonic Systems

Installation

PA
R

T
 3
1.7. The final reference

While every effort was made to have this manual reflect the Virtuoso pack-
age, the final reference is the source, especially as some target processors
or boards might impose small changes. So if you are not sure about a library
function, first take a look at the include files (*.h) and the examples.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 7

A short introduction
2. A short introduction

2.1. The one page manual

When using Virtuoso, the programmer will develop his program along the fol-
lowing steps. We outline here the steps for the use of Virtuoso Classico as
this entails all levels supported by Virtuoso.

1. Define the essential microkernel objects used as building blocks for the appli-
cation. These are the tasks, the semaphores, the queues, the mailboxes, the
resources and the timers. If the target is a multiprocessor system, the user
will need to define the network topology as well. This is achieved by prepar-
ing a description file (called “sysdef”) in text format. Sysgen (normally
invoked when calling the make utility), then reads the sysdef file and gener-
ate one *.c and one *.h include file per processor node. This work is facili-
tated by the use of a makefile and grouping the tasks in a library.

2. Write and debug the tasks, as normal independent programs that cooperate
using the microkernel services.

3. Develop lower level ISRs and drivers (can be nanokernel processes);

4. Compile and link.

5. Load the target system and run the application.

6. Debug and fine-tune it using the debugger and tracing monitor.

In order to exploit the real-time features, the Virtuoso microkernel is linked
with the user tasks and runs as a single executable image on each proces-
sor. This approach results in faster and smaller code, the latter being partic-
ularly important for real-time applications.

Virtuoso is not only used for single processor applications. For those appli-
cations requiring more than one processor, the tasks can communicate with
other connected processors, using the communication drivers included with
the MP implementations. The VSP implementations of Virtuoso also provide
support to execute fully transparently remote microkernel services from
within different processors, permitting to consider the whole network of pro-
cessors as a virtual single processor system. The system definition file that
is parsed by Sysgen contains all the hardware dependent information and
effectively shields the application from the underlying hardware.

For debugging and fine tuning, Virtuoso is delivered with a task level debug-
ger and tracing monitor. The use of these tools will help you in debugging the
system as well as optimizing its performance. If as a result tasks or other
objects are moved to other processors, the only work to do is to change the
system definition file, regenerate the system tables and recompile the appli-
cation. Developing applications with Virtuoso can be as easy as developing
P1 - 8 Virtuoso User Manual Copyright 1996 Eonic Systems

A short introduction

PA
R

T
 3
any other application under straight C.

IMPORTANT NOTE

Nevertheless, please read the manual before you start writing your pro-
grams.

2.2. Underlying assumptions when programming

When developing a multitasking application on a single processor, the pro-
grammer is free to program his tasks anyway he wants as long as he follows
the semantics of the microkernel services. When the target is a multiproces-
sor system and he wants to benefit from the transparent migration of tasks
and other Virtuoso objects from one processor to another, he has to keep in
mind that this imposes one important rule : not to use global pointers or glo-
bal data unless he explicitly wants to exploit the performance of local access
using pointers. The reason is that otherwise the program code is no longer
transparent to the location in the processor network because pointers are
local objects by definition. By the same token, memory allocation is a local
operation as well.

Note that when using local pointers, the program might require additional
synchronization or resource locking to assure the validity of the data. The lat-
ter requirements are also valid for systems with common memory. The
resource management services of Virtuoso can be used to implement this
protection.

Let’s illustrate this with a small example. Two tasks communicate using a
mailbox. When both tasks are on the same processor, it is possible not to
send the whole data from the sender to the receiver task, but only a pointer
to it. Provided the user takes the necessary precautions to avoid that the
data is overwritten by the sender before the receiver has effectively used it,
this can provide for very good performance. However if one of the tasks is
now moved to another processor, passing the pointer has become a mean-
ingless operation. Hence this program is not scalable. Using global variables
leads to similar problems. For above reason the semantics of Virtuoso reflect
the non-locality of pointers. If wished, the user can exploit it for maximum
performance but he will be warned because his program code will show it. In
any case, using local variables always lead to safer and more modular pro-
grams and is good programming practice anyway.

Similarly embedding task functions in a single large file leads to problems
when rebuilding the application. The safest practice is to compile each task
function separately and add them all to a single task library. Upon linking, the
linker will then only add the relevant task functions to the executable images,
avoiding the generation of unnecessary large executables.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 9

Virtuoso : an overview
3. Virtuoso : an overview

3.1. Requirements for a programming system

Processor technology is changing very rapidly. Processors are becoming
faster, microcontrollers are becoming more complex and richer in features,
but developers are left with the impossible task to keep up. In addition funda-
mental I/O bandwidth limitations force the designers to go parallel to reach
the required level of performance. The conclusion is clear : the only way to
shorten the development cycle is to use tools that relieve the developer from
the technology change. The ideal development tool must not only provide for
faster application development by giving the programmer a head start, but
should also be future proof. The requirements can be split in three areas :

1. A consistent high level API across all target processors

2. The utilities to debug and maintain the code

3. Target processor specific support for best performance.

3.2. The high level view : a portable set of services

3.2.1. A multi-tasking real-time microkernel as the essential module

In many applications sensors supply raw data, preprocessing algorithms fil-
ter and examine the data, control algorithms process the data and deduce
from it control commands, while additional functions deal with user interac-
tion, data logging or safety concerns. In most cases tight timing require-
ments need to be fulfilled especially if the system has to deal with events that
can happen at any time, regardless of the current function being executed at
that moment. A common and proven solution is to map the different functions
onto separate tasks, assign priorities to these tasks and to use a standard-
ized way of defining the interaction between the tasks. The core of this solu-
tion is the availability of a real-time microkernel that manages the timely
execution of the tasks and their interactions in a way that frees the applica-
tions programmer from the burden of doing it himself. It must also be noted
that for multiprocessor targets, multitasking is a must to achieve high perfor-
mance because without it, it is not possible to overlap computation and cal-
culation. As such the microkernel must correctly provide for priority driven
preemptive scheduling of the tasks, permit to transfer data between the
tasks in a synchronous and asynchronous way, coordinate tasks, deal with
timed events, allocate memory and protect common resources. In addition,
the microkernel should be small, secure and flexible while providing a very
fast response. Practice has shown that in general the same set of microker-
nel services is sufficient.
P1 - 10 Virtuoso User Manual Copyright 1996 Eonic Systems

Virtuoso : an overview

PA
R

T
 3
3.2.2. Classes of microkernel services

The Virtuoso programming system is built around a second generation real-
time microkernel. It provides the same API by way of a virtual single proces-
sor model independently of the number or type of interconnected processors
that are actually being used from single 8-bit microcontrollers to multi 32-bit
processor systems. This approach also means that the programmer can
continue to use his single processor experience and start using multiple pro-
cessors with a minimum of effort.

The Virtuoso programmer’s model is based on the concept of microkernel
objects. In each class of objects, specific operations are allowed. The main
objects are the tasks as these are the originators of all microkernel services.
Each task has a (dynamic) priority and is implemented as a C function.
Tasks coordinate using three types of objects : semaphores, mailboxes and
FIFO queues. Semaphores are signalled by a task following a certain event
that has happened, while other tasks can wait on a semaphore to be sig-
nalled. To pass data from one task to another, the sending task can emit the
data using a FIFO queue or use the more flexible mailboxes. While the first
type provides for buffered communication, mailboxes always provide a syn-
chronized service and permit the transfer of variable size data. Filtering can
be performed on the desired sending or receiving task, the type of message
and the size. Further services available with Virtuoso are the protection of
resources and the allocation of memory. The microkernel also uses timers to
permit tasks to call a microkernel service with a time-out. Depending on the
processor type, some microkernel calls also provide access directly to com-
munication hardware and high precision timers. The latter is used to directly
measure the CPU workload. Finally, the C programmer disposes of a stan-
dard I/O, graphics and runtime library of which some of the functions are
executed as remote procedure calls by a server program on a host machine.

3.2.3. The object as the unit of distribution

In a traditional single processor real-time kernel, objects are identified most
often by a pointer to an area in memory. This methodology cannot operate
across the boundaries of a processor as a pointer is by definition a local
object. Virtuoso solves this problem by a system-wide naming scheme that
relates the object to a unique identifier. This identifier is composed of a node
identifier part and an object identifier part. This enables the microkernel to
distinguish between requested services that can be provided locally and
those services that require the cooperation of a remote processor. As a
result, any object can be moved anywhere in the network of processors with-
out any changes to the application source code. A possible mapping of
objects into a real topology is illustrated in figure 1. Note that each object,
including semaphores, queues and mailboxes could reside as the only object
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 11

Virtuoso : an overview
on a node. The key to this transparency of topology is the use of a system
definition file (see below). In this context we emphasize that with Virtuoso the
node identifier is nothing more than an attribute of the object.

The transparent distributed operation would not work if the semantics of the
microkernel services and their implementation were not fully distributed. This
imposes a certain programming methodology. E.g. global variables or point-
ers are only allowed if the programmer very well knows that only local refer-
ences to it are used and the objects referencing to it will not be mapped over
more than one target processor. When common memory is used, the objects
must be protected using a resource lock

.

FIGURE 1 A possible mapping of objects onto a network

SamplingTask2
DisplayTask

SamplingTask1

ConsoleInputDriver

ConsoleOutputDriver

Sema1

Sema2

Sema3 MonitorTask

MailBox1

InputQueue

OutputQueue

+

+

+

Node#1

Node#2

Node#3

Node#4

Microkernel Object

Processor Node
P1 - 12 Virtuoso User Manual Copyright 1996 Eonic Systems

Virtuoso : an overview

PA
R

T
 3
3.3. A multi-level approach for speed and flexibility

As any designer knows, a single tool or method cannot cover all of the differ-
ent aspects of an application. In particular DSPs are increasingly used for
signal processing and embedded control at the same time. This poses quite
a challenge to the programming tool as it must handle timing constraints
expressed in microseconds. Traditionally this meant programming in assem-
bler at the interrupt level. One of the drawbacks of this approach is a lack of
modularity and hence the sheer impossibility to build complex multitasking
applications. Real-time multitasking kernels on the other hand provide for
modularity but impose an unacceptable overhead for handling fast interrupts
at the task level.

On parallel DSPs the situation is even more demanding than on single pro-
cessor DSPs. The reason is that interprocessor communication is generat-
ing interrupts that have to be processed at the system level. Hence a
minimum interrupt latency as well as interrupt disabling time is a must. As an
example consider the TMS320C40 DSP.This processor requires to handle
already up to 14 interrupts sources without any of them being related to
external hardware.

The Virtuoso programming system solves this Gordian Knot by providing an
open multilevel system built around a very fast nanokernel managing a num-
ber of processes . The user can program his critical code at the level he
needs to achieve the desired performance while keeping the benefits of the
other levels. Internally, the kernel manages the processor context as a
resource, only swapping and restoring the minimum of registers that is
needed. The different levels are described below. ISR stands for Interrupt
Service Routine.

LEVEL 1 : ISR0 level

This level normally only accepts interrupts from the hardware. Interrupts
need only be disabled during ISR0 (e.g. less than 1 microsecond on a C40).
The developer can handle the interrupt completely at this level if required or
pass it on to one of the higher levels. The latter is the recommended method
as it disables global interrupts for a much shorter time. This approach allows
to handle interrupts (in burstmode) at over 1 Million interrupts per sec on a
C40. The programmer himself is responsible for saving and restoring the
context on the stack of the interrupted task.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 13

Virtuoso : an overview
FIGURE 2 Multi level support mechanism in Virtuoso

LEVEL 2 : ISR1 level

The ISR1 level is invoked from ISR0. It is used for handling the interrupt with
global interrupts enabled. An ISR1 routine permits to raise an Event for a
waiting task. An ISR1 routine must itself save and restore the context but
permits interrupts to be nested. An ISR1 routine can be replaced by a
nanokernel process that is easier to program as the nanokernel takes care of
the context switch. When the processor supports multi-level interrupts, the
ISR1 level can be viewed as having itself multiple levels of priority. The use
of priority however should be limited only to determine what interrupts are
masked out when a given interrupt occurs.

LEVEL 3 : The nanokernel level (Processes)

This is a major breakthrough for DSP processors. The nanokernel level is
composed of tasks with a reduced context, called processes. These deliver a

Global Interrupts Enabled

Global Interrupts Disabled

Task

ISR1

ISR0

Sign

Event

Data

Micro
Kernel

Nano

Process

Kernel

Process

HW Interrupt

Task
Task
P1 - 14 Virtuoso User Manual Copyright 1996 Eonic Systems

Virtuoso : an overview

PA
R

T
 3
task switch in less than 1 microsecond on a C40. Several types of primitives
are available for synchronization and communication. Each process starts
up and finishes as a assembly routine, can call C functions and leaves the
interrupts enabled. Normally one will only write low level device drivers or a
very time critical code at this level. One of the processes is the microkernel
itself that manages the (preemptive) scheduling of the tasks (see below).

The following example tested on a 40 MHz C40 illustrates the resulting
unprecedented performance. Two processes successively signal and wait on
each other using a intermediate counting semaphore (Signal - Task switch -
Wait - Signal - Task switch - Wait). Round-trip time measured : 5775 nano-
seconds or less than one microsecond per operation.

Processes have the unique benefit of combining the ease of use of a task
with the speed of an ISR. In a multi-processor system they play an essential
role. Without the functionality of the processes, the designer has the option
or to program at the ISR level and hence often disabling interrupts because
of critical sections, or to program at the C task level but resulting in much
increased interprocessor latencies. This is due to the fact that in an multipro-
cessor system, interprocessor communication has to be regarded as high
priority interrupts because if not acted upon immediately, it can delay the
processor that is the source of the interrupt.

LEVEL 4 : The microkernel level (tasks)

This is the standard C level with over 70 microkernel services. This level is
fully preemptive and priority driven and each task has a complete processor
context. It provides a high level framework for building the application as
explained in the previous paragraph. Programming at this level provides for
full topology transparency and offers the highest degree of flexibility. The
overhead at this level comes not as much from the use of C and the heavier
register context but mainly from the heavier semantically context offered by
the microkernel services.

Good programming practice dictates a concern for portability and scalability
of the application. Hence, one should program as much as possible at the
microkernel level. Programming at the lower levels can be justified for two
reasons :

1. Faster response times;

2. Better performance.

Indeed the lowest levels will always preempt the higher levels and because
of the minimum context have a lower overhead. However these levels are
processor dependent (dictated by the use of assembly) and should only be
used when needed as portability and scalability are lost.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 15

Virtuoso : an overview
Most real-time kernels only provide a single ISR level and the C task level as
this is sufficient for supporting applications using standard microprocessors
and microcontrollers. This is also the case for ports of Virtuoso to this class
of processors.

3.4. An execution trace illustrated

FIGURE 3 An execution trace of a hypothetical Virtuoso program segment

In Figure 2, we illustrate a hypothetical example that illustrates the interac-
tion between the different levels. The order of magnitude of the timestep is
indicated in microseconds. As can be seen any lower level has an effective
higher priority than any higher level and can preempt an activity executing at
any higher level.

The processor accepts an interrupt (1). This can be an external interrupt, a
comport interrupt or a timer interrupt. The interrupt is passed on to a higher
level for further processing. This disables interrupts for less than one micro-
second on a C40, or about 1.5 microseconds on a 96K.

Task/Prio1
Task/Prio2
Task/Prio3
Task/Prio4

ISR0-1
ISR0-2
ISR0-3
ISR0-4

ISR1-1
ISR1-2
ISR1-3
ISR1-4

LiteTask1
LiteTask2
LiteTask3
Micro-Kernel

IdleTask

T=1

T=1

T=1

T=20

➌

❶
❶

❶
❶

❶

❶

➌ ➌➌➌

➍

➋
➋

➋

P1 - 16 Virtuoso User Manual Copyright 1996 Eonic Systems

Virtuoso : an overview

PA
R

T
 3
An ISR enters ISR1 level (2). This can only be to further process an interrupt
accepted by the ISR0 level. On processors with support for multi-level inter-
rupts an ISR executing at level 1 an be preempted by an interrupt of a higher
priority.

The microkernel is invoked (3). This can happen as a result of signal coming
from an ISR0, a microkernel service request from a task, a task entering a
wait state or an event raised by an ISR1 or a nanokernel process. The micro-
kernel is a nanokernel process that waits on any of these events to happen.

A nanokernel process is executed (4). In this example an ISR0 could have
triggered a receiver driver that passed on the packet to a transmitter driver to
forward the packet to another processor.

3.5. Processor specific support

If a target processor has specific hardware features that enable the program-
mer to take advantage of, most likely Virtuoso provides a set of services that
exploit these features. E.g. high precision timers and drivers for communica-
tion ports. See iface.h and the binding manual in part 3 for details.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 17

Functional support from Virtuoso
4. Functional support from Virtuoso

4.1. Introduction

Virtuoso is probably the first programming tool that provides hard real-time
capabilities to programmers of parallel systems without abandoning the
experience one has gained from programming multitasking applications on
single processor systems. As such Virtuoso comes in two versions. The first
one is dedicated to single processor targets, while the second version pro-
vides for a transparent distributed operation. In conjunction with the associ-
ated programming tools, it is also a tool that provides for easy programming
of parallel processing systems in general. For these reasons we call Virtuoso
the virtual single processor programming system. While the runtime library
that comes with a compiler only provides for low level services, Virtuoso pro-
vides for a complete programming framework. On the other hand Virtuoso is
much smaller and faster than a full operating system, because it only con-
centrates on the services needed for a real application and leaves the devel-
opment environment to the host station. Virtuoso can be regarded as a real-
time operating system where all objects (tasks, etc.) are defined at the initial-
ization of the system. In the future, Eonic Systems will release versions that
support dynamic creation and deletion of system objects, as well as fault tol-
erant versions.

During the design, major efforts also went into making sure that Virtuoso is a
future proof programming tool. With today’s very fast technological changes
this is a necessity, because technology can evolve faster than the time it
takes to design an application. Therefore, choices were made that enable
the user to develop his applications mostly independently of the technology
he uses. This was achieved by opting for the use of portable ANSI C as a
programming language and by adopting a virtual single processor model
even if multiple processors are involved. The fact that we have been able to
port Virtuoso to new processors in less than two weeks proves the point.

4.2. Parallel processing : the next logical step

Some people regard parallel processing as a new technology. The question
is whether this is really so. In our opinion, this is more a natural result of the
evolution of technology. The point is that because of the growing level of inte-
gration of VLSI devices, we have now mass volume production of complete
systems on a chip. In fact, a typical high end processor is now a completely
self contained computer with CPU, memory, specialized coprocessors and
even network facilities. As a result, the production cost of computers-on-a-
chip has become so low that we can start to use them as components. Most
P1 - 18 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
of the systems that use processors in numbers aim at providing more pro-
cessing power for a lower cost, simply because providing the same process-
ing power in a single very fast processing unit has reached a technological
barrier. This barrier is mostly an I/O barrier. For multiprocessor systems, this
can be the common bus. But even on single processor systems the speed of
the processor can be so high that no memory exists so that the processor
can operate with zero wait states. Today we can also apply computers as
components in application areas traditionally dominated by dedicated logic.
The reason being that in most applications the single chip processors are
more than fast enough even if the functionality is provided by means of a
program. As a result, it is now perfectly possible to replace traditional hard-
ware logic or circuitry by a reprogrammeble processor. While this does not
provide ultimate performance versus hardware, this is more than often offset
by the fact that one gains flexibility.

This shows that while every design tries to optimize the performance/cost
function, in practice one must distinguish the different aspects of the two fac-
tors. Performance and cost mean different things depending on the real
application at hand and depending on the particular phase of the product life
cycle. As such, a safety critical system has very different design criteria than
a parallel supercomputer, although the same components might be used. In
essence, to really estimate the performance/cost function one should inte-
grate over the whole life cycle of the application. The latter is broader than
simply the product life cycle because current technology is evolving so fast
that even during development it might make sense to change the technology
in use. The reason being that designing the application might take longer
than it takes the silicon industry to generate a new generation of processors.

Therefore, in general the statement is that the goal must be to maximize the
use of the resources (getting best “performance” out of the used material) for
a minimum life cycle cost (development, maintenance and upgrade costs) of
the application. The emphasis is on the application and not on a particular
system. A system today might use processing components that can change
over the life cycle of the application.

In the light of above, when designing an application today we are faced with
two major challenges : Firstly, the very rapid change of technology. Secondly,
while processors are becoming components, programming them to work
together is still a major intellectual challenge, to be compared with the design
of any complex system where different subunits interact.

What Virtuoso delivers is a tool that helps to meet these challenges in terms
of programming such a system. That is, it was designed to be able to solve
hard real-time problems. This kind of problem is the most difficult and more
general case when compared with other systems where the real-time
requirements are less stringent. In order to keep up with the technology,
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 19

Functional support from Virtuoso
portability was a major issue. The use of C is consistent with this objective as
today every new processor is released with a decent C compiler (even
DSPs). Finally, the problem of parallel and/or distributed programming has
been solved by the adoption of a virtual single processor model. Based on a
message passing mechanism, this is a very general approach that can be
ported to any environment (common memory, local memory and LANs).The
result is that Virtuoso provides for portable applications from simple 8bit
microcontrollers to systems with a large number of high end 32bit proces-
sors. It is also universal (independent of the processor or of the communica-
tion medium) and scalable (if more power is needed, one adds processors
and redistributes the workload).

4.3. What is (hard) real-time ?

Real-time systems are inherently more difficult to design because they must
not only deliver correct answers, but they must also provide the answers at
the right and at the predictable moment in time. Failing to meet these hard
real-time deadlines, can lead to fairly innocent effects as well as to catastro-
phes (example : airplane). We also know soft real-time systems. These sys-
tems must deliver the answer most of the time within a statistically defined
timing interval. Missing some of these intervals is acceptable in most cases.
A typical example is a terminal. One expects a reaction of the system within
2 seconds. Faster is better but occasional longer reaction times are toler-
ated, even a complete reboot if this is not needed too frequently (e.g. your
own PC). Virtuoso was designed to be able to meet hard real-time require-
ments, but this also entails the capability to meet soft real-time requirements!
How did technology provide solutions to meet hard real-time requirements?

A simple and crude approach is to use enough resources without imposing
limits to solve the problem. Theoretically, this is like using a Supercomputer
to add 2+2 in all cases where that operation is an important aspect of the
application. Clearly this is an overkill and a waste of resources. It is also very
likely that it won’t solve the problem as some applications simply require a
different type of solution (for example a distributed system). Or worse when
the reaction time is important, often fast processors are very bad at the inter-
rupt response level. The key is to develop smarter algorithms to solve the
problem. In the past this has been done with programming constructs like
super loops. In a super loop, all possible events are polled in a large loop,
each branch of the loop then handling the event. While this approach can
solve some soft real-time applications, it is not very flexible as a single
change to the system can require a complete review of the program as the
whole program’s timing behavior is affected. For hard real-time problems,
this means that the processor load had to be kept low so that in most cases
an acceptable performance can be obtained.
P1 - 20 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
Things changed when people started to realize that the best thing to do is to
model the real world problem more directly. The problem at hand can very
often be described by determining the different functions and agents of the
system. The better algorithms then map each function into a so-called task
and provide the capability to give the processor to the task that needs it most
(so called preemptive scheduling, as it enables that a given task is pre-
empted in order to switch to another task). This implies the use of a crite-
rium, in this case the assignment of a priority to each task.

A task is to be considered as an independent unit of execution that interacts
with other tasks or with the outside world using a predefined mechanism.
Conceptually, tasks must be looked upon as executing simultaneously or
overlapping in time. This means that on a single processor, a task switching
algorithm has to be implemented because the processor can only execute
one thing at a time and the concurrent behavior of the tasks must be simu-
lated. For a long time processors were rather slow so that task switching was
a heavy operation. Current microprocessors are much better at it and some,
like the transputer, even have direct support in hardware for doing it. Never-
theless, real-time kernels were brought to the market to provide this kind of
solution in a generic way.

In the solutions above, priorities are used by the task scheduler because
dealing directly with time bound constraints is very difficult. Some better
algorithms deal directly with time by using a deadline scheduler. This kind of
scheduler assigns the processor to the task with the nearest deadline. This
algorithm can also provide better performance under higher processor loads.
The Extended and Dynamic Support Package of Virtuoso will use this kind of
scheduler.

4.4. The high demands of Digital Signal Processing

Digital Signal Processing often impose demands that cannot be fulfilled by
traditional processors. Therefore Digital Signal Processors (DSPs) have
architectures that enable faster execution of algorithms combined with fast
handling of interrupts. As a result most DSPs have built in circuits that exe-
cute multiplication and addition in a single clock cycle, have multiple buses
for parallel data access and have DMA and/or communication hardware on
the chip. The combination of all these features imposes quite a challenge to
the software environment, especially in the context of the use of a C compiler
that was not always thought out with these demands in mind. Most real-time
kernels operate at the C level only and have an unacceptable overhead for
handling the high demands on DSPs. The Virtuoso system has solved this
problem by introducing an open four level support that tries to manage the
context as a resource, trading in performance for flexibility but only when the
application needs it at a certain point.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 21

Functional support from Virtuoso
4.5. A first conclusion

The real benefit from the use of Virtuoso is that it optimizes the use of the
resources (in this case mainly the processor) in a way that is fairly indepen-
dent of the processor technology. A question remains : how does one design
an application with a real-time kernel ?

The answer is that real-time kernels have evolved because practice has
shown what services a real-time kernel should provide. This means that one
divides up the application into tasks that interact by different methods. Most
interactions can be classified as “signals” (= event flags) and “communica-
tion”. As each task is given a priority, the scheduler then executes the task
that is runable with the highest priority first. The orderly execution of the pro-
gram is achieved through the interaction mechanisms. A major benefit is that
the different functions are isolated in tasks, while the interaction is also well
defined. The problems have more to do with erroneous programming of the
interactions so that they can eventually block the system (called deadlock).
Deadlock is not a property of the use of a kernel (at least it shouldn’t be), but
it is a programmer’s error.

In addition a real-time kernel must provide the means handling time based
events and the protection of common resources. Virtuoso has the right ker-
nel services for this. Nevertheless, while Virtuoso is based on a priority
based scheduling algorithm, we plan to introduce some refinements. The
first one is the use of priority inheritance. This mechanism is useful when
several tasks use the same resource. The basic algorithm will then tempo-
rarily assign a higher priority to lower priority tasks when they are blocking a
higher priority task from running because they have locked on a resource. In
order to implement support for earliest deadline scheduling, we have opted
for a simple scheme that works in conjunction with the priority based sched-
uling. This is achieved through additional kernel services that permit to bind
the execution of a task to a given time limit.

4.6. Parallel programming : the natural way

Some people still think parallel programs are hard to write. This attitude is
understandable if one realizes that older computer technology has more or
less dictated the sequential programming style. Sequential programming
languages reflect the one-instruction-at-a-time functional behavior of the
older sequential processors. Even simple multitasking was a costly function.
The net result is that most people have been forced for years to squeeze
their problem into the constraints of a sequential programming language.
Most problems however, especially in the world of control applications, are
inherently parallel. For example, a system will sample external signals, pro-
cess them and then output something to an external device. In this generic
P1 - 22 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
example, it is easy to distinguish three functions. So what is more natural
than to isolate these functions as three tasks ? The interaction between
these tasks is also fairly easy to describe if one defines these interactions as
local actions of each of these tasks. How much more difficult would this have
been using a sequential programming style ? Nevertheless, each task’s
internal function is probably best described using a sequential notation. As
such, most multitasking and real-time kernels have adopted this scheme.
Virtuoso is no exception to that except that Virtuoso also permits the applica-
tion to be distributed over several processors, so that eventually all tasks can
really execute in parallel.

4.7. About objects and services

4.7.1. The Virtuoso microkernel objects and the related services

As described above, Virtuoso provides a tool to organize the behavior of a
real-time program that is composed of several tasks. The philosophy behind
this is one of tasks that coordinate and synchronize through the common use
of so-called microkernel objects. Tasks themselves are also microkernel
objects but they play a dominant role. Together with the kernel they are the
originators of all the actions that use the microkernel objects to achieve the
desired result. Each type of microkernel object can be looked upon as being
part of a Class on which different operations are permitted. Each operation
must follow the specified semantics. Figure 1 shows the relationship (inde-
pendent of where the objects are located in the system) between a number
of tasks and the way they use objects to synchronize and communicate. In a
single processor system, all these objects are located on the same node, but
in a parallel processing system, Virtuoso permits these objects to be located
on any processor in the system, except when they are tied to the use of spe-
cific external hardware. This was possible through the use of unique names
for the objects. On the next pages we describe these classes in a general
way.

4.7.2. Class Task

4.7.2.a. The task as a unit of execution

In Virtuoso, a task is a program module which exists to perform a defined
function or a set of functions. A task is independent of other tasks but may
establish relationships with other tasks. These relationships may exist in the
form of data structures, input/output, or other constructs. A task executes
when the Virtuoso task scheduler determines that the resources required by
the task are available. Once it begins running, the task has control of all of
the needed system’s resources. But as there are other tasks in the system, a
running task cannot be allowed to control all of the resources all of the time.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 23

Functional support from Virtuoso
Thus, Virtuoso uses the concept of multitasking.

Multitasking appears to give the processor the apparent ability to be per-
forming multiple operations concurrently. Obviously, a processor cannot be
doing two or more things at once as it is a sequential machine. However, with
the functions of the system segregated into different tasks, the effect of con-
currency can be achieved. In multitasking, each task once given operating
control either runs to completion, or to a point where it must wait for an event
to occur, for a needed resource to become available, or until it is interrupted.
Efficient use of the processor can be obtained by using the time a task might
wait for an event to occur to run another task.

This switching from one task to another forms the basis of multitasking. The
result is the appearance of several tasks being executed simultaneously.

4.7.2.b. Priority and scheduling

When several tasks can be competing for the resource of execution time, the
problem is to determine how to grant it so that each gets access to the sys-
tem in time to perform its function. The solution most often used, is to assign
a priority to each task indicative of its relative importance to other tasks in
the system. Virtuoso uses a fixed priority scheme in which up to a user
defined maximum number of tasks may be defined. Tasks which have a
need to respond rapidly to events are assigned high priorities. Those that
perform non time critical functions are assigned lower priorities. Without a
kernel, most processors only know one priority level. The exception is the
transputer that uses two priority levels. In itself this is not sufficient to solve
all hard real-time applications, but it has proven to be helpful when designing
Virtuoso for the transputer. Virtuoso provides an efficient software based
way of assigning multiple priorities to tasks.

It is the priority of each task that determines when it is to run in the hierarchy
of tasks. When a task may run depends on what is happening to the tasks of
higher priority. Tasks are granted execution time in a strict descending order
of priority. While executing, a task may be interrupted by an event which
causes a task of higher priority to be runable. The lower priority task is
placed into a temporary state of suspension and execution control is granted
to the higher priority task. Eventually, control is returned to the interrupted
task and it is resumed at the point of its interruption. Thus, when any task is
given execution control, no higher priority task can be in a runable state. This
is an important point to remember. When all application tasks are in an
unrunable state, control is granted to the null task.

The null task is a do-nothing task which allows the system to run in an idle
mode while waiting for an event that will resume or start a higher priority
task. The null task is always the lowest priority task in the system and is
P1 - 24 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
always runable (the “main” part of your application program). It is a required
part of the system and may be customized by the user if special needs exist
(e.g. to halt the processor when idling). The only condition is that it must
never be blocked from running. In Virtuoso, the null task is also used to mea-
sure the workload of the local CPU.

4.7.2.c. Task execution management

Virtuoso provides a number of services that directly control the execution
state of a task. These services can operate asynchronously of the current
execution thread of the task. A task normally starts its life by a KS_Start()
call. This call can be invoked during start-up of the system (if defined so in
the system generation file) or at runtime from within another task. During its
life, a task can be suspended (i.e. blocked from running) and resumed after-
wards. When suspended, the task has no chance to become executable, so
this service must be used with caution. With the KS_SetEntry() service, one
can change the actual function of a task at runtime. After a subsequent
KS_Start() call, the task will then have a different function. Virtuoso also per-
mits to group tasks and has services that operate on a whole group within a
single call. Note especially the microkernel services KS_SetPrio() and
KS_Yield(). These enable to change the order of execution (in order of prior-
ity) at runtime. When tasks happen to have the same priority, they are sched-
uled in a round-robin fashion, i.e. they run until they are descheduled or until
they yield the CPU voluntarily. The user should base his program on any
order of execution when assigning equal priority to a number of tasks.

In addition, when a task issues a microkernel service that is not immediately
available, Virtuoso will put the task in a wait state. During the wait state,
another task can be rescheduled to continue its execution. The wait state
and suspend state can be coexisting. It is very important to know that when
several tasks are in a wait state while requesting the same service in con-
junction with the same microkernel object (e.g. a resource), they are inserted
in the wait list in order of their priority they had at the moment the wait state
was entered.

The figure below illustrates the possible Task states and the transition possi-
bilities.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 25

Functional support from Virtuoso
FIGURE 4 Task state transition diagram

In normal conditions, tasks should never terminate unless the system’s oper-
ation as a whole is terminated because the application requires it. Therefore,
aborting a task needs to be done with the right precautions. When a task is
aborted, all traces of its previous execution should be cleared from the sys-
tem. As such this is a service only to be used with care as it not only takes
much time, but the application must be written so that this operation will not
generate any unexpected side-effects (like tasks waiting on messages from
the aborted task). While the Virtuoso microkernel can clear the task, the
application might require specific actions. This is handled with the
KS_Aborted service call. When used, the microkernel will save the specified
task aborting entry point in a separate area. When the task is aborted, Virtu-
oso transfers control to this entry point and executes it with the current prior-
ity of the task. In the Abort function the user should deallocate all acquired
system resources such as memory and timers. Application specific mea-
sures can be programmed here to assure the continuity of the application.

4.7.3. Class Timer

This class of calls permits an application task to use a timer as part of its
function by allocating a Timer object. From then on, the timer can be started
to generate a timed event at a specified moment (one shot) or interval

RUNABLE

RUNNING
KS_Start

SUSPENDED**

ABORTEDKS_Abort

KS_Aborted

SCHEDULED

KS_Suspend
KS_Resume

WAITING**WAIT_END

KS_AnyServiceW(T)

*: For equal priority Tasks

DESCHEDULED | KS_Yield*

**: Can be coexisting

(if installed)

WAITING & SUSPENDED

KS_Suspend
KS_Resume

WAIT_END
P1 - 26 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
(cyclic). This event can then signal the associated semaphore. Timers are
mainly used to regulate the execution of tasks with respect to a required
timely behavior. While the timer objects are relatively simple in nature, using
them correctly can be tricky. The reason is that the designer not only needs
to know when to start a certain task, he must also take account of the worst
case execution delay of his task. A real system involves meeting deadlines
and missing a deadline simply means that the system has failed.

Virtuoso efficiently manages multiple timers using an ordered linked list of
pending timer events. A timer for an event is inserted into the linked list in
accordance with its duration. A differential technique is used so that the timer
with the shortest time to expiration is at the head of the list. Timed events
may even be simultaneous. Microkernel services for scheduling and cancel-
ling timed events are an integral part of the microkernel.

Most microkernel calls that involve the cooperation of another task or device
can be invoked to wait until synchronization is established. As this can cause
some tasks to be blocked indefinitely, it is possible to limit the waiting time to
a time interval provided as a parameter of the microkernel service that
caused the task to wait. This time interval is called a time-out and makes use
of the microkernel timers. When the time-out expires, the service returns
with an error code.

FIGURE 5 Types of timers

4.7.4. Class Memory

In any system, memory is a resource for which tasks are competing. Mem-
ory management is an area where various techniques can be applied. Many
techniques are very fast and utilize elegant models for allocation and deallo-

A cyclic timer

A one-shot timer

time

time
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 27

Functional support from Virtuoso
cation. Unfortunately, most have a common flaw, one which is very serious in
a deterministic environment: fragmentation. Fragmentation refers to the dis-
organization which occurs when memory is allocated from and released to a
common memory pool. At some moment it is possible that a request for a
certain block size fails because not enough contiguous memory exists even
though the total amount of free memory exceeds the requested block size.
There are re-organization and garbage collection techniques abounding but
they fail one major test of a real time system. The failure is in the time
required to repair the fragmentation. The amount of housekeeping time can-
not be controlled or even predicted. Consequently, the real time processing
of an event needing the memory is indeterminate if normal memory alloca-
tion techniques are used.

Virtuoso implements a form of dynamic memory management that partitions
the memory in static blocks. At system definition time, the available RAM
memory is divided into one or more memory maps where each map is logi-
cally made up of a number of fixed size blocks. The size of the blocks and
number of blocks per map is user defined. When a task requires memory for
local storage by the KS_Alloc() microkernel service, Virtuoso will allocate
memory (a single block) from the specific partition memory pool. A pointer to
the base address of the block is returned to the requesting task. If no mem-
ory is available in the specified partition, a NULL value (0) is returned. When
the memory is no longer needed by a task, the block can be released back to
the memory pool via the KS_Dealloc() microkernel service.

The partitioned memory technique, however, does not in itself prevent the
loss of an event due to unavailable memory. It is the responsibility of the sys-
tem designer to configure the system to have enough allocatable memory in
the appropriate partitions for the worst case conditions. Note that dynamic
memory allocation and deallocation is still possible by the use of resource
protection.
P1 - 28 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
FIGURE 6 Virtuoso allocates memory in user-defined fixed block sizes.

4.7.5. Class Resource

The resource protection calls are needed to assure that access to resources
is done in an atomic way. Unless the processor provides real physical protec-
tion, the locking and unlocking of a resource is in fact a convention that all
tasks using a resource must follow. A task can get the exclusive use of a
resource by using a KS_LockW() service call on it. After its use, the resource
must be released with an KS_Unlock() call. With this mechanism all critical
objects can be protected.

4.7.6. Class Semaphore

Semaphores are used to synchronize/handshake between two tasks and/or
events. A signalling task will signal a semaphore while there will be another
task waiting on that semaphore to be signalled. One can wait on a sema-
phore with a time-out or return from the wait if no semaphore is signaled.
This can be useful to make sure that the task doesn’t get blocked. Manual
resetting of the semaphore is also possible. With v.3.0 counting semaphores
are used. They permit the concurrent signalling of a semaphore while a (pri-
ority ordered) waiting list is kept of all tasks waiting on the semaphore.

MemoryMap2MemoryMap1

Block in use

Free Block
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 29

Functional support from Virtuoso
FIGURE 7 Semaphore level transition diagram

4.7.7. Class Message

Messages are used between a sender and a receiver task. This is done
using a mailbox. The mailbox is used as an intermediate agent that accepts
message headers. Message headers only contain the necessary information
about the actual message. This permits to match send and receive of a
sender-receiver pair. In the single processor RTXC, in reality a pointer is
passed from sender to receiver task. With Virtuoso an actual copy of the
data is made. This data is not part of the message header but is referenced
by it. In practice this involves more than one step. In a first step the message
is transmitted, while in a second step the data referenced by it, is transmit-
ted.

Semaphore
Level = 0

Semaphore

Level Incremented

Semaphore

Level Decremented

KS_Wait
KS_Signal

All semaphore

signals consumed

KS_Signal
P1 - 30 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
FIGURE 8 The mailbox permits a selective transport between two tasks.

This is to ensure that the receiver task is ready to accept the data, while
avoiding that routing buffers are needlessly being filled up. With the
KS_ReceiveW() call, the two operations are done automatically by the micro-
kernel, but the user must know beforehand where he wants the data to go.
He has the possibility to decide where to put the data by receiving the mes-
sage header separately. Depending on its contents, he can then decide on
where to put the data by issuing the ReceiveData() call.

Messages work with arbitrary sizes and permit a selective transport between
sender and receiver, including the specification of the priority of the mes-
sage.

In practice it was not possibly to use the single processor semantics of most
real-time kernels within Virtuoso. The reason is that one can’t pass pointers
from processor to processor. While the microkernel could test for locality, we
are forced to pass a copy in all cases because otherwise the programmer
looses the portability of his code (he would need to test to see if the mes-

Mailbox

 Sender
Sender

 Receiver
Receiver

The mailbox will synchronize sender and receiver tasks
that have matching message headers. The datatransfer
happens after synchronization, eventually in the background.

KS_ReceiveData

KS_Send KS_Receive

Sender
Task1

Sender
Task2

Receiver
Task1

Receiver
Task2

Requested

Requested

Msg_struc_S Msg_struc_R

data

data
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 31

Functional support from Virtuoso
sage came from a local or remote task and handle the message accord-
ingly). This would complicate his code too much while he would make a copy
in most cases anyway. So if he only wants to pass a pointer (because he
knows beforehand that he is on the same processor), he will need to pass
that pointer explicitly. For this reason the header contains a 32bit Info field.

4.7.7.a. Once-only synchronization : the KS_MoveData() service

The message mechanism is a very secure and flexible mechanism because
it synchronizes between sender and receiver before the receiver determines
the actual datatransfer. In repetitive situations, the synchronization and its
associated overhead can be eliminated using the KS_MoveData() service.
This service requires that all elements of the datatransfer have been fixed
once beforehand. As an example consider an image generating task that
copies the resulting image always to the same address in video memory.
The service can be invoked from anywhere in the system and will copy the
data for a given size from a source pointer on a given node to a destination
pointer on a node. When both pointers reside on the same processor, the
operation is performed using a straight memcopy().

FIGURE 9 The KS_Move Data() acts like a distributed memory copy operation

4.7.8. Class Queue

Queues are also used to transfer data (or whatever the data represents)
from any task to any other task but here the data is actually transferred in a
buffered and time ordered way. The advantage is that no further synchroni-
zation is required between the enqueuing and the dequeuing task, permitting
the enqueuer to continue (unless the queue was full). Another advantage of
this mechanism is that a queue also acts as a “port”. For example to access
the console from any node in the system, one simply enqueues or dequeues
the queue that is associated with the console. If used in conjunction with a
resource (to ensure the atomicity of the protocol), this permits easy imple-

KS_MoveData()
data

data

Processor A

Processor B
(A can be =B)
P1 - 32 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
mentation of a distributed service, such as the graphical server that comes
with Virtuoso.

While the single processor version impose no limit on the size of the ele-
ments, in the distributed version the size of the entries have been limited to
24 bytes for performance reasons. Buffered communication for larger sizes
can easily be handled by combining queues to pass the parameters and to
use the KS_MoveData() to move the actual data.

FIGURE 10 A FIFO queue acts as an ordered buffer between tasks.

This summarizes the normal microkernel objects that are used at the task
level to implement an application. Virtuoso also provides a set of additional
functions that can be used in conjunction. These are categorized in two
classes :

4.7.9. Class Special

These include less trivial operations. The KS_Nop() call is only there for
benchmark reasons, while the KS_User() permits the application program-
mer to run a function at the same priority of the microkernel. The latter one
must be used with caution as it disables preemption during the execution of
that critical function.

4.7.10. Class Processor Specific

Today’s processors often have a number of additional features or peripheral
device support built in on the chip. Because most of these are different from
processor to processor, we have listed them here. These include : the capa-
bility to measure time with a high precision and hence the capability to mea-
sure precisely the CPU workload. Other microkernel services provide

Enqueuing

Task

Dequeuing

Task

1234567

FIFO QUEUE

Enqueuing

Task

Dequeuing

Task
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 33

Functional support from Virtuoso
support to use the communication ports of the chips in an easy way. Finally,
Virtuoso also provides low level support for enabling and disabling interrupts
so that a Task can wait on an Event that is generated by the Interrupt Service
Routine. As most of these features are close to the hardware, see the next
paragraph for more details.

4.8. Low level support with Virtuoso

The unit of execution of Virtuoso is the task. The coordination of Virtuoso
tasks by the various objects permit a high level design of the application
independent of the actual target processor the application is running on.
From the viewpoint of the programmer, the task is a fairly large unit of execu-
tion. This grainsize must be large enough so that the overhead of requesting
microkernel services and the resulting context switches is acceptable. A
standard Virtuoso task is written in C and task swapping implies that a full
context is being saved (partly by the C compiler upon the function call and
partly by the microkernel to save the rest of the registers).

FIGURE 11 The four processor contexts considered by the Virtuoso system

ISR0

Interrupts disabled

ISR1

Interrupts

Level

Task
Level

Event

All registers (saved by microkernel)

Predefined subset of registers

As many as ISR1 needs

As many as ISR0 needs

(saved by IRS1)

(saved by IRS0)

(saved by nanokernel)

Signal

Process
enabled
P1 - 34 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
In practice, especially on DSPs and high end RISC processors, one also
needs units of execution with a smaller context and hence less context
switching time. These can only be obtained by writing assembly code (unfor-
tunately, we don’t control what context the compiler uses).

The Virtuoso kernel manages each part of the “context” as if it were part of
the CPU resource allocated to a unit of execution. As such, only those parts
that are required are saved and restored by the kernel.

In total, Virtuoso distinguishes four levels :

1. The ISR0 level; (ISR with global interrupts disabled)

2. The ISR1 level; (ISR with global interrupts enabled)

3. The Virtuoso nanokernel process level;

4. The Virtuoso microkernel C task level.

4.8.1. The ISR levels

At the ISR level, the user controls himself how much context he uses and he
is responsible himself for saving the context. In practice this can be 1 or 2
registers. ISR’s talk directly with the interrupt hardware of the processor. The
user should in most cases perform at most two actions at the ISR level :

1. Accept the interrupt (e.g. at the ISR0 level)

2. Handle the interrupt, if needed (e.g. at the ISR1 level)

On most processor types (e.g. microcontrollers) these two levels are not dis-
tinguished. When the ISR has completed a cycle (e.g. filled up a buffer area),
he must signal the microkernel by raising an event. The task that should fur-
ther process the data, must wait on it by issuing a KS_EventW(ISR) micro-
kernel service. When the event is raised, the task becomes runable again.
Note that interrupts are disabled during the execution time of the ISR if this
method is used. Hence, ISR’s should be kept short.

In order to accommodate more demanding applications (typically to be found
in the DSP area), interrupt levels were split. In these implementations, the
ISR0 only accepts the interrupt and then leaves further handling of the inter-
rupt to a level were interrupts are enabled again. This is a very short opera-
tion, hence interrupts are only disabled for a few clock cycles. In the next
step of processing the ISR1 level can be used. The ISR1 interrupt handler
will then typically fill up a buffer and transfer control to a waiting task (often
the driver associated with the hardware that generated the interrupt). Note
than when the ISR is very short, it is better to execute everything at the ISR0
level, because the transition to the ISR1 level requires a few processor
cycles. Also consider that some processors have up to 32 priority levels (with
interrupt capability) for handling interrupts. This basically means that one
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 35

Functional support from Virtuoso
disposes of ISR0 up to ISR32 to handle interrupts.

Instead of using an ISR1, the interrupt can be handled using a nanokernel
process. This has the low register requirements of an ISR but the program-
mer has additional services available that permit him to build up the interrupt
handling using other processes as a true multi-tasking program. This is very
useful for fast interrupt driven drivers. For example the interprocessor com-
munication drivers of Virtuoso are written as nanokernel processes.

At the end, but not necessary so, the ISR1 or the process can signal an
event on which a normal task is waiting to further process the interrupt at the
C level.

An important point to note is that Virtuoso does not impose any use of a cer-
tain level to address the application requirements. As the diagram below
illustrates, the user can choose any combination of levels to achieve the
required performance. He should try to program as much as possible at the
microkernel level as this level is fully portable and scalable. Lower levels
require more assembly, provide less flexibility but can provide the time criti-
cal performance needed for very fast reaction to interrupts.

FIGURE 12 Interrupt servicing :an open multi-level approach.

.

ISR0

ISR1

Nanokernel

Microkernel

Task

Process

Global

Interrupts

Enabled
P1 - 36 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
4.9. Levels supported by the Virtuoso products.

In order to provide an overview, following table summarizes what default lev-
els are supported in each Virtuoso product.

Nano Micro Classico

main() yes yes yes

microkernel no yes yes

nanokernel yes no yes

ISR0 yes yes yes

ISR1 yes no yes Multiple priorities when
supported by hardware.

4.10. Support for parallel processing

Virtuoso comes in three implementations. The first one (/SP) has only sup-
port for single processor system. The second one (/MP) adds multiprocessor
capabilities by providing low level drivers that permit to communicate
between directly connected processors. The third implementation (/VSP)
enables the user to access the defined objects and their services in a way
totally independent of the location of objects in the network. That is, the ker-
nel will automatically assure that the kernel service is executed even if the
cooperating objects are located on different nodes. As a result source code
of applications developed on the single processor version can be reused
without any modification.

4.11. Target Environment

The standard support package of Virtuoso is designed to mostly operate in
an embedded or semi-embedded processor environment. Over the life of the
system, the application will be mostly static. The processor may be a single
board microcomputer, a personal computer, a minicomputer or a large multi-
processor system. No assumptions are made about the configuration of the
target system. It is the responsibility of the user to define the target environ-
ment and to insure that all necessary devices have program support. User
interfaces can be built with the I/O and graphics library that has to be used
with a server program on a host computer (e.g. a PC or UNIX workstation).

4.12. Virtuoso auxiliary development tools

Before programming the application, the first thing done after a functional
analysis, is to translate the results of the analysis into the terms understood
by the system generation utility of Virtuoso. The result is the sysdef text file
in which the structure of the application (tasks, semaphores, topology, etc.)
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 37

Functional support from Virtuoso
is specified using a simple syntax. This file acts as a specification tool and as
a maintenance tool. It is part of the system because in order to change an
attribute of an object (e.g. the processor location or the stack size of a task),
one changes the file and invokes the system generation utility Sysgen on it
to regenerate all the necessary include files. The only thing left to do is to
write the actual code of the task’s function using the microkernel services.

The debugger is a task level debugger. When invoked it suspends all the
tasks in the system (on all processors) and permits the user to jump to any
processor in the system to examine the current state of all the defined
objects.

The tracing monitor is integrated with the debugger and permits to inspect a
system trace, in which the last 256 scheduling events were recorded.

Finally, Virtuoso intends to be more than a simple bare bones real time ker-
nel. Functions are provided that give access to system resources, normally
found on a host system. We strongly believe in this approach as it relieves
the target environment from the burden of the development utilities and
hence provides for a optimal use of the system resources.

The graphical server is an extension of the host server program that permits
to perform some elementary graphics on the host screen from any task in
the network. In general a standard I/O server (console I/O and simple file I/O
with the host file system) is always supplied.

Note that there also exists a complementary product that contains a general
purpose as well as specialized library of mathematical and signal processing
functions.

4.13. Single processor operation

In practice, the microkernel is like a part of the runtime library of the compiler
with the difference that we are really talking about tasks and not just func-
tions. The user must consider the microkernel as an activity with a higher pri-
ority than any of his application tasks. The microkernel is therefore written to
act upon events as fast as possible, minimizing the time that is spent in the
microkernel. As such whenever anything happens in the system that awakes
the microkernel, the task status can change. The result is that at this
moment the microkernel will determine whether the current task is still run-
able or whether any other task with a higher priority has become runable. If
so, the microkernel will switch the context to this task. If no other processors
are involved in a microkernel service, the operation is as follows. When call-
ing a microkernel service, the application task actually calls a microkernel
interface function. In this interface, the parameters of the required service
are copied to a parameter area and the microkernel is awakened by an inter-
P1 - 38 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
rupt. The microkernel will then examine the call and execute the required
actions. Eventually, a task swap can result. The microkernel can also be
awakened by other sources, such as a timed event, an interrupt generated
by external hardware or by data arriving on the communication ports. These
events can even be simultaneous. In the latter case the interrupts will result
in a command packet being put on the microkernel command queue. The
microkernel handles all the commands one by one until the command queue
is empty. It eventually swaps the context and returns the CPU to the highest
priority task that is runable.

4.14. Virtual Single Processor operation

Virtuoso provides the user with the same API (Application Programmers
Interface) whether used on a single or on a multiple processor system. For
the user the differences are minor, as the implementation of Virtuoso has
made it possible to provide a virtual single processor.

The main thing to remember is that once a single processor Virtuoso pro-
gram has been (properly) developed, the programmer will be able to keep
his source program mostly intact, when processors are added or when tasks
or other microkernel objects are reallocated to remotely placed processors.
Some reasons for using Virtuoso can be :

1. The need for more processing power or;

2. The need to place some processing power physically close to a monitored or
controlled unit.

Thanks to communication links like those on the transputer or on the
TMS320C40, this is done relatively easy. With Virtuoso, one can improve the
real-time characteristics while keeping the original single processor source
code intact ! Scalable processing power with scalable real-time software,
that’s what Virtuoso delivers.

The virtual processor model was obtained by using a system wide unique
naming scheme. All microkernel related objects are defined system wide,
including the tasks and their priorities, semaphores, queues, mailboxes and
resources. Hence, for the programmer, it is as if he is using a processor clus-
ter as a single real-time processing unit. The tricky thing is that the Virtuoso
microkernel does more than correctly scheduling the tasks as is done in the
single processor version.

Its operation is as follows :

First, for each microkernel service, the microkernel verifies whether the
requested resource or service is available locally or on some other proces-
sor. If it is locally available, it is handled the same way as a single processor
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 39

Functional support from Virtuoso
kernel would do. If it is not locally available, the microkernel service request
is transformed into a remote command packet. This command packet is
composed of a header and a body. The header contains the type of micro-
kernel service and its parameters, while the body contains the actual data to
be transferred, if any. As such, some microkernel commands contain no
body at all, as they simply transfer a microkernel service from one processor
to another (example : the KS_Start() call).

To achieve this kind of topology transparency, the microkernel has been
extended with an embedded router that will locate the processor where the
service or resource is located. The router will then select the communication
port to reach the desired processor. The router itself manages a pool of mes-
sage buffers. These buffers are dynamically allocated. In addition, the micro-
kernel messages indicate the priority of the requesting task. As such, the
outgoing buffers are rearranged so that older messages with a lower priority
will never block the more recent ones with a higher priority.

This can in practice be guaranteed because the granularity (and hence the
delay involved) of a communication is about the same as the invocation of a
microkernel service. Because communication is considered as a microkernel
activity, it is very unlikely that the routing will hold up any task. In practice, it
is so that Virtuoso can almost be considered as a system that implements
some kind of virtual common memory. This was achieved by implementing a
router that handles all data transport, including remote memory operations.
This way, memory copying and message routing are considered as the same
type of operation. The result is speed as these operations shortcut the lay-
ered architecture. The memory operations are the only active operations by
the router that involve part of microkernel services. All other messages are
passed on to the communication port drivers (e.g. links) or to the different
kernel-agents.

This mechanism of ordering all requests in order of priority is used at all
times and at all levels in the microkernel and guarantees that all higher prior-
ity related actions will precede lower priority related actions, even if they hap-
pen later in time. A single exception is that once a microkernel service is
being served in the microkernel, it will continue to run until the microkernel
action has finished. Note that meanwhile interrupts will still be accepted in
the background.

The different microkernel activities are event driven, avoiding any form of
active waiting or polling so that a suspended microkernel action will never
block the system.

4.15. Heterogeneous processor systems

The virtual single processor model is so powerful that Virtuoso even runs on
P1 - 40 Virtuoso User Manual Copyright 1996 Eonic Systems

Functional support from Virtuoso

PA
R

T
 3
systems with mixed types of processors. The key point is that the underlay-
ing mechanism used by the microkernel is message based. Therefore, to
transfer a command packet or data from one processor to another, the only
requirement is the presence of a (fast enough) communication port. This can
be common memory (like in VME systems), a serial link or a dual port RAM
interface. A typical example could be a system with several processors
depending on the function they have to fulfill. For example, control I/O func-
tions typically require less powerful processors while compute intensive cal-
culations can best be run on high speed processors like a DSP. Using
Virtuoso gives a uniform interface to the programmer, while he can modify
the target hardware without affecting much the source of his program.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 41

Simple Examples
5. Simple Examples

This section gives a simple example of programming with the Virtuoso micro-
kernel. It illustrates the steps needed to define, build and run an application
with a single task: the famous “hello, world” program. Then a more complex
example with two tasks communicating via a queue is explained.

5.1. Hello, world

This example illustrates a simple program that uses the stdio library to
print a string on the screen. Rather than start from scratch, it is easier to
copy various files from one of the example directories and modify them. The
files you need are normally as follows:

sysdef The system definition file.

makefile Build definition for the make utility. The use of
make is recommended, even in the simplest
applications, because of the dependencies that
arrise from the system definition file.

main1.c Standard main entry-point code, which is pro-
vided in source form for flexibility, although for
normal applications it does not need to be
changed.

The sysdef file is then edited to the following form:

NODE NODE1 C40

DRIVER NODE1 ‘HostLinkDma (2, 2, PRIO_DMA)’

DRIVER NODE1 ‘Timer0_Driver (tickunit)’

/* taskname node prio entry stack groups */

/* -- */

TASK STDIODRV NODE1 3 stdiodrv 256 [EXE]

TASK HELLO NODE1 10 hello 400 [EXE]

/* queue node depth width */

/* -- */

QUEUE STDIQ NODE1 64 4

QUEUE STDOQ NODE1 64 4
P1 - 42 Virtuoso User Manual Copyright 1996 Eonic Systems

Simple Examples

PA
R

T
 3
/* resource node */

/* ------------------------ */

RESOURCE HOSTRES NODE1

RESOURCE STDIORES NODE1

The task STDIODRV, the queues STDIQ and STDOQ and the resource HOS-
TRES and STDIORES are used in the run-time system to coordinate
accesses to the host. The only application task defined here is HELLO.

The body of the application task is as follows:

#include <_stdio.h>

void hello()

{
printf("hello, world\n");

}

Note that the stdio include file has a leading underscore, to differentiate it
from the include files that are often provided with compilers, so you can be
sure that the Virtuoso version of the file is used. Then a function called
hello() is defined. The name of the function is the same as the entrypoint
specified in the system definition file. The use of the stdio function
printf() is absolutely standard.

Next, modify the makefile . The code for the application tasks is compiled
into a library, controlled by the variable

TASKS = hello.obj

Assuming that the above file is called hello.c , default rules in the makefile
will compile and link the code automatically when make is invoked. To rebuild
everything, make will start by pre-processing the sysdef file, and running
sysgen . This will generate a C source file, node1.c and two headers,
node1.h and allnodes.h . The node1.c file contains configuration code
in C for one node, and the header files are to be included into the users code
in order to access kernel objects. None of these files should be edited by
hand.

Once the application is built, it may be run using the net loader and host
server, as follows:

boardhost -rls hello

The name of the server is target-specific, as is the file, in this case
hello.nli , which specifies the mechanism of loading the target hardware.
However, when the program runs, the expected greeting should appear on
the screen, whatever system is used.
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 43

Simple Examples
As it is designed for real-time applications, which normally run continuously,
there is no facility to terminate a Virtuoso program, so hit CTRL-C or CTRL-
BREAK, and press X to get back to the operating system prompt.

5.2. Use of a Queue

The above example does not show how tasks interact using the microkernel
objects. In this example a sender task sends a message to a receiving task
via a queue. To make things more interesting, the two tasks are placed on
different processors. The sysdef file is as follows:

NODE NODE1 C40

NODE NODE2 C40

NETLINK NODE1 ’NetLinkDma (4,PRIO_DMA)’ , NODE3 ’NetLinkDma
(0,PRIO_DMA)’

DRIVER NODE1 ’HostLinkDma (2, 2, PRIO_DMA)’

DRIVER NODE1 ’Timer0_Driver (tickunit)’

DRIVER NODE2 ’Timer0_Driver (tickunit)’

/* taskname node prio entry stack groups */

/* -- */

TASK STDIODRV NODE1 3 stdiodrv 256 [EXE]

TASK SENDER NODE1 10 sender 400 [EXE]

TASK RECEIVER NODE2 10 receiver 400 [EXE]

/* queue node depth width */

/* -- */

QUEUE STDIQ NODE1 64 4

QUEUE STDOQ NODE1 64 4

QUEUE DEMOQ NODE1 10 4

/* resource node */

/* ------------------------ */

RESOURCE HOSTRES NODE1

RESOURCE STDIORES NODE1

Here, the second node is defined at the begining of the file, and the netlink
driver is declared to set-up the connection between the two processors. The
two tasks, SENDER and RECEIVER are declared in the same way as the hello
task of the previous example, and the queue through which they are to com-
municate, DEMOQ, is also declared.
P1 - 44 Virtuoso User Manual Copyright 1996 Eonic Systems

Simple Examples

PA
R

T
 3
The sender task is implemented as follows:

#include <iface.h>

#include <_stdio.h>

#include "allnodes.h"

void sender()

{

 int data = 42;

 printf("Sending %d to queue\n", data);

 KS_EnqueueW(DEMOQ, &data, 4);

}

And the receiver is implemented as follows:

#include <iface.h>

#include <_stdio.h>

#include "allnodes.h"

void receiver()

{

 int data;

 KS_DequeueW(DEMOQ, &data, 4);

 printf("Received %d from queue\n", data);

}

Note that the queue is identified in the calls to the kernel services by use of a
C symbol with the same name as was used in the sysdef file. This is
declared in the header file allnodes.h . These microkernel object identifi-
ers can be accessed from code running on any node, due to the Virtual Sin-
gle Processor implementation. In this example, it does not matter on which
processor the queue is placed - both tasks can access it as if it were on the
same processor.

In the /SP or /MP versions of Virtuoso, the two tasks and the queue would all
have to be placed on the same processor.

The two tasks should be stored in separate files, so that when the code is
generated for the two nodes, each node is only linked with the functions it
needs, wth no dead code.

When the program is run, the following output should be seen:

Sending 42 to queue

Received 42 from queue
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 45

Applications
6. Applications

Virtuoso makes it much easier to use multiple processors to solve a single
problem. The result is the feasibility of a new range of applications that were
not possible before or not cost efficient.

FIGURE 13 With Virtuoso, processors can easily be added or moved.

6.1. Scalable embedded systems

Traditional embedded applications are based on a single processors or
microcontrollers. When the application requires more processing power the
designer has two different options :

1. Using a more powerful processor

2. Adding processors

The same problem arises when he needs to physically redistribute the pro-
cessing power for technical reasons. In both cases, with traditional proces-
sors, this will require a hardware redesign and probably a lot of programming
work because the underlying hardware has changed.

The third option is to use from the start on hardware that has interprocessor
capabilities, be it built in on the chip or with communication hardware at the
board level (transputers, C40, VME,...) The result is that when using Virtuoso

Command

Control
P1 P2

P3 P4

&

P1 - 46 Virtuoso User Manual Copyright 1996 Eonic Systems

Applications

PA
R

T
 3
from the start on, adding additional processing power is a matter of inserting
a board, while the application only needs to be reconfigured. Sysgen then
generates the new include files. The only thing left to do is to recompile and
link the whole program.

6.2. Complex control systems

Because Virtuoso provides the user with a virtual single processor model it
is now much easier to build distributed control systems, because it is no
longer important where a particular microkernel object is located in the sys-
tem. The programmer will see no logical difference between processing
nodes located in the same enclosure and processing nodes which are
located on remote sites and interconnected using optical fibers over several
km.

6.3. Simulation in the control loop

This is a promising area. Until now, most complex systems that need to be
controlled (electricity power plants, chemical plants) rely on an experienced
operators. But even with years of experience they can make mistakes, espe-
cially in exceptional conditions. Often it has been observed afterwards that
the operator error could have been prevented if the operator would have got
complete know-how of the behavior of the system in these exceptional con-
dition (e.g. a reactor failure). The same applies for a change in the desired
production level of a given product (e.g. cracking installation). The solution is
to use simulators that work in parallel with the control system. This is possi-
ble today but it requires a supercomputer to do it. With a parallel machine
this can be done in a cost efficient way, while Virtuoso provides the neces-
sary real-time characteristics.

6.4. Fault tolerant systems

Because Virtuoso provides complete transparency as to the location of
objects in the system, it is fairly straightforward to write application depen-
dent programs that have a degree of fault tolerance. The solution is simply to
provide passive (or active) backup copies of the active tasks on other pro-
cessors. As a result we have then hardware and software redundancy. On
each processor, monitoring tasks check the operational status of the proces-
sor. When a failure is detected, the tasks on the erroneous processor are
considered as terminated while the backup tasks are made executable. As
the location of queues, semaphores, mailboxes and resources is not visible
to the application task, it is fairly straightforward to write them in such a way
that the system continues only with a minor delay (the time needed to detect
the failure and to change the tasks’ execution state).
Copyright 1996 Eonic Systems Virtuoso User Manual P1 - 47

Applications
6.5. Communication systems

Another use of Virtuoso is to exploit the powerful routing capability, without
being concerned too much about the real-time facilities. The point is that Vir-
tuoso is a message based system. Hence it is quite forward to construct a
system where each node is running the Virtuoso protocol even if different
processor types are in use and even if different types of transmission media
are being used. On each node, one has to port the microkernel (fairly easy
because of the use of ANSI C) while to accommodate the different transmis-
sion media, one only has to implement a communication port driver. The cur-
rent version of Virtuoso could in principle accommodate 64K nodes with
each 64K tasks. In practice generating this kind of system will involve addi-
tional work to change the system generation utility to work more efficiently
and to write specific loaders. For smaller systems, using homogenous types
of processors and communication media, the current solution is more than
adequate.
P1 - 48 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3

Virtuoso ™

The Virtual Single Processor Programming System

User Manual

Covers :

Virtuoso Classico ™

Virtuoso Micro ™

Version 3.11

PART 2: Reference Manual
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 1

P2 - 2 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Creation date : February 5, 1990

Modification date : September 6, 1996

Virtuoso microkernel types & data structures

PA
R

T
 3
7. Virtuoso microkernel types & data structures

7.1. Microkernel types

In order to understand how Virtuoso works and how to build real-time
application systems around it, it is useful although not necessary to
understand how its various control and data structures work. This section
describes these structures and their relationships. The descriptions will
include:

Object Type Related C datatypes

Tasks K_TASK, K_TGROUP, K_PRIO

Semaphores K_SEMA

Mailboxes K_MBOX

Queues K_QUEUE

Memory Maps K_MAP

Resources K_RES

Timers K_TICKS

The second field in the list above is the predefined corresponding data type.
The Virtuoso microkernel services which deal with these classes of control
and data structures will be presented in a subsequent section. See also the
k_struct.h and k_types.h file for the full details.

7.2. Tasks

In a real-time application, the functions of the system are assigned to various
tasks. Virtuoso supports as many tasks as the user wants in a single
system.* The nature of each task is, of course, application dependent and
left to the imagination of the system designer. However, there are attributes

*. The number of tasks is in practice only dependent on the word size of
the processor used.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 3

Virtuoso microkernel types & data structures
that all tasks share. These include:

1. a task identifier

2. a priority level

3. a task group set

4. a task state

5. an entry point

6. a task abort handler

7. a task stack pointer and stack size

8. a task context

7.2.1. Task Identifier & Priority

Each task is identified by a numerical identifier which is a number combined
with a second field referring to the processor it is located on. The task
identifier serves as a reference during microkernel operations. Virtuoso uses
a fixed task numbering scheme, where the numbers are generated at
compile time, because it is low in overhead and quite adequate for most
applications.

Besides an identifier, each task also has a priority initially defined at system
generation time. On each processor the microkernel schedules the local
executable tasks in order of priority. While the priority is fixed at start time, it
can be altered by using the KS_SetPrio() microkernel service or dynamically
by the microkernel.

7.2.2. Task group set

Each task can be part of a number of task groups.The task group set is a 32
bit word of which each bit represents a task group. The existence of task
groups and the related microkernel services permit task operations in a
single atomic action.

7.2.3. Task State

Whenever the Virtuoso microkernel is looking for a task to execute, it
examines the execution state variable to see if the task is runable or not. The
execution state is contained in a single word and a value of 0 (zero) indicates
that the task is runable. Whenever the task state is different from zero, this
indicates that the task is suspended, waiting or aborted.

A task normally becomes runable after it has been started. Once runable,
the task will become active if it has the highest priority of all runable tasks. A
task becomes not runable if it is suspended or if it issues a microkernel
P2 - 4 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Virtuoso microkernel types & data structures

PA
R

T
 3
service that cannot be serviced immediately (hence waiting). When
suspended, a task can only become runable again by a KS_Resume()
service call. Normally, a task only terminates when it reaches the end of its
execution thread. Tasks can be aborted independently of their current point
of execution by a KS_Abort() service call. Once aborted, the task can only
be restarted by a KS_Start() service call.

7.2.4. Task Entry Point

The entry point is the address where the task is to begin execution. It
corresponds with the address of the C function that implements that task.
The entry point can be changed at runtime to provide a kind of dynamic
tasking.

7.2.5. Task Abort Handler

The task abort handler is an alternative entry point that can be installed at
runtime. This permits to execute asynchronously (but only once) application
dependent actions when the task has been aborted.

7.2.6. Task Stack

Each task must have a stack for its local workspace. The size of each task’s
stack is dependent on many things such as the maximum depth of nested
function calls and the maximum amount of working space needed for
temporary variables.

7.2.7. Task Context

The context of a task consists of the information needed to resume execution
of the task after it has been descheduled. On most processors, this
information consists of the values held in a subset of the processor’s
registers at the moment the task was descheduled.

7.3. Semaphores

There are several forms that a semaphore may take. Virtuoso uses counting
semaphores. The semaphore starts with a count of zero at the start of the
program. Whenever the semaphore is signalled using the KS_Signal() call,
the count is incremented by one and the signalling task eventually continues
execution. Whenever a task waits on a semaphore to be signalled (using the
KS_Wait() call), two possible situations can happen. When the semaphore
count is greater than zero, the count is decremented by one and the waiting
task continues its execution. Otherwise, the task is put into the semaphore
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 5

Virtuoso microkernel types & data structures
waiting list in order of its priority. When the semaphore is then signalled, the
task with the highest priority is removed from the waiting list. This algorithm
requires that the semantic meaning given to the event associated by the
semaphore is totally independent of the order in which tasks signal the
semaphore or wait on it. Virtuoso permits to signal a list of semaphores in a
single operation while a task can wait for any semaphore in a list of
semaphores to be signalled. If more than one is signalled, the first signalled
on the list is taken.

Semaphores are typically used to synchronize tasks to the occurrence of a
given event. One task may need to wait for the other to reach a certain point
before it can continue. Input/output operations are an example of this type of
synchronization. For instance, when an input operation is desired, the task
waits on the input to complete (the event) by associating the event with a
particular semaphore and suspending further processing until the the
semaphore is signalled. When the input operation is completed, the device
driver signals the semaphore associated with the event to indicate that the
data is available. This signalling causes the waiting task to resume,
presumably to process the input data.

7.4. Mailboxes

Mailboxes are the means by which data can be transmitted synchronously
from a sender to a receiver task. The actual message acts as a request for a
data transfer between a sender and a receiving task.

The data referenced by the message may contain whatever is required by
the receiver task and in whatever format. A mailbox acts as a ‘meeting place’
for tasks wishing to exchange a message or the data referenced by it. It
maintains two waiting lists : one for senders, and one for receivers. When a
new send or receive request arrives, the mailbox searches one of the lists for
a corresponding request of the other type. If a match is found, it is removed
from the waiting list, and the data transfer is started. When this has finished
both tasks are allowed to resume execution. If no match can be found, the
caller is suspended and put on a waiting list, or the operation fails.

The message is implemented using a datastructure that contains following
elements :

1. The size of the referenced data;

2. the pointer to the data at sender’s side

3. the pointer to the data at receiver’s side

4. the sending task

5. the receiving task

6. the info field (optional).
P2 - 6 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Virtuoso microkernel types & data structures

PA
R

T
 3
The sending task will fill in following elements when issuing a KS_Send()
call:

1. the data size;

2. the pointer to the data (possibly undefined if message size is zero)

3. the requested receiver task (the predefined ANYTASK, if any task will do)

4. the info field (optional).

The receiver task will fill in the following elements and issue a KS_Receive()
call:

1. the requested sender (the predefined ANYTASK, if any task will do);

2. the data size;

3. the starting address to which the data must be copied;

4. the info field (optional).

The mailbox will then try to match the sender and receiver messages and
copy the relevant sender message fields into the message structure of the
receiver if a match is found and vice versa. The message data will
automatically be copied starting at the specified address. The copy operation
will be limited by the smallest given size should the sizes not match. The
receiver can also inhibit this automatic data copying by filling in a NULL
pointer as the starting address. This way the receiver can inspect the
message and determine which action to take. The copying of the data is then
started by invoking the KS_ReceiveData() service after filling in the starting
address and the size. Note that the info field can be used to transmit a one
word message. If no data copying is necessary and the receiver has used a
NULL pointer, he still has to reschedule the sender by issuing the
KS_ReceiveData() service call with a zero size filled in. This call then acts as
an ACK for the sender.

The C syntax struct of the message header is as follows :

 typedef struct

 {

 INT32 size; /* size of message (bytes) */

 void *tx_data; /* pointer to data at sender side */

 void *rx_data; /* pointer to data at receiver side */

 K_TASK tx_task; /* sending task */

 K_TASK rx_task; /* receiving task */

 INT32 info; /* information field, free for user */

 } K_MSG;

Note that it is also possible to copy data directly using the KS_MoveData()
service. However this service requires that correct pointers are provided
using other techniques before. Because this technique permits to perform
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 7

Virtuoso microkernel types & data structures
this synchronization operation only once, it provides for much better
performance.

7.5. Queues

Virtuoso supports first-in-first-out (FIFO) queues having single or multiple
bytes per entry. The queues support both a single producer and a single
consumer as well as multiple producer/consumer services. Queues are
addressed with an identifier that is unique to each queue. Queue identifiers
are assigned in the system generation procedure. Virtuoso queues are
different from messages because queue entries act as buffers for the actual
data. Another difference is that the queue entries represent the chronological
order of processing. Also the priorities of the sender or receiver are not
considered. Queues are usually used to handle data such as character
streams input/output or other data buffering.

A queue is defined by two elements during the system generation process.
These are :

1. the queue size, giving the number of entries;

2. the queue entry size, giving the size of each entry.

In the current implementation, the entry size is limited to 24 bytes when
using the multiprocessor version of Virtuoso. There is no limitation when the
queue is local.

7.6. Resources

In any system which uses the concepts of multitasking, there is the inevitable
problem of two or more tasks competing for a single (physical) resource. A
resource might be an external device, a block of memory or a data structure.
These resources, as well as others like them, usually require that no other
task gains access to them during a critical period when a task is operating on
that resource. To do so might involve the corruption of a data structure or
garbling of the output. The case is more serious for write access to a
resource than for read access but the implications of either case cannot be
determined. The solution is to protect the physical resource while it is being
used by one task so that other tasks cannot gain either read or write access.

While the solution is obvious, the problem is how to grant protection in any
possible configuration of Virtuoso. Thus the construct called a logical
resource, or just simply resource. In Virtuoso, a resource can be anything:
memory, a device, a non-reentrant code section, or whatever. A typical
resource is the server interface to a host. All that is necessary for any such
resource needing protection is to be identified and given a name. It is the
responsibility of the programmer to provide such identification. The
P2 - 8 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Virtuoso microkernel types & data structures

PA
R

T
 3
programmer must insure that any use of the resource be preceded by a
Virtuoso microkernel service that locks out other users. Correspondingly,
when the task has finished using the resource, the Virtuoso function to
unlock the resource must follow. With these two simple functions, KS_Lock()
and KS_Unlock(), Virtuoso can protect a resource and at the same time
arbitrate which task is to get subsequent control when the critical period has
passed. Note that it is still the programmers responsibility that the resource
is correctly used. As such the logical resource is merely a flag. If bypassed,
you will get cases in which your physical resource is no longer protected !

When a task locks an idle (not being used) resource, Virtuoso sets the
current owner to the requesting task. Another task trying to lock the same
resource will then find the resource already in use. Virtuoso places the
second task into a resource wait list, and the task is inserted into the wait list
of the resource in order of its priority. When the resource is unlocked by its
current owner, Virtuoso will look for the next waiter in the list. If there is one,
it will become owner of the resource.

In practice, it is possible that situations arise in which resources are locked
by lower priority tasks while a higher priority task that wants to lock on it is
kept in the waiting list. Tasks of intermediate priority can then get hold of the
CPU and preempt the lower priority task. The result is that the higher priority
task can be kept for quite a long time from running even while the resource it
is waiting for is not used. The solution is then to raise temporarily the priority
of the lower priority task. This algorithm is called the priority inheritance
algorithm. A variant of this algorithm is planned to be available in a later
version of Virtuoso.In the current version, the programmer can achieve the
same result by raising the priority of the using task prior to the resource lock.
He must not forget to reset the priority afterwards.

7.7. Timers

In the descriptions of time based functions to follow, it will be important to
understand the conventions used by Virtuoso. All timers in Virtuoso are
either 16-bit or 32-bit values depending on the processor size. The two time
units used internally by Virtuoso are ticks (mostly maintained by a low
resolution clock driver) and the value of the high resolution timer hardware, if
any present. A tick gives the amount of time between clock generated
system interrupts, or equivalently, the period between clock interrupt service
requests.

The tick value is expressed as a number of high precision clock cycles in the
mainx.c file.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 9

Virtuoso microkernel types & data structures
7.8. Memory maps

The free RAM in a Virtuoso system may be divided into uniquely identifiable
maps. A map is addressed via an identifier which is assigned to it during the
system generation procedure. Each map may be subdivided into any
number of blocks of the same size. Thus, a request for memory from a
specific map results in the return of the address of one of the blocks in the
map. It is of no consequence which block is referenced since all blocks within
a map are of equal size. A map consists of a set of unused blocks, i.e., free
memory, and a set of used blocks.

A map is the structure which Virtuoso uses to manage the memory partition.
P2 - 10 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Virtuoso microkernel services

PA
R

T
 3
8. Virtuoso microkernel services

8.1. Short overview

This Section will describe the complete set of the Virtuoso microkernel
services. The microkernel services are divided into nine classes listed below
:

1. Task control

2. Semaphores

3. Messages & mailboxes

4. Queues

5. Timer management

6. Resources

7. Memory management

8. Processor specific

9. Special

Most of the services exist as three variant types, depending on what action
must be taken when the service cannot be provided immediately. The first
type of the service returns with an error code when the service is not
available. The second type will wait until the service is available. As this can
be forever, the third type of the service permits to limit the waiting period to a
certain time-interval, expressed in timer ticks.

The suffixes used to distinguish the three variant types are as follows :

1. No suffix : no waiting (returns an error when not serviced);

2. -W : wait till service available;

3. -WT : wait till service available or timeout expires.

Two other suffixes are used as well :

1. -M : to indicate that the service operates on a list

2. -G : to indicate that the service operates on a set of taskgroups.

8.2. Important note

While Virtuoso is ported as much as possible with the same API to all
processors, it is possible that particular processors have a slightly different
API, especially if the service is processor specific. Always verify the correct
syntax in the iface.h include file if you encounter errors when compiling. The
source is always the ultimate arbiter.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 11

Virtuoso microkernel services
8.3. Task control microkernel services

■ start a task from its entry point
void KS_Start(K_TASK task);

■ start a set of taskgroups
void KS_StartG(K_TGROUP taskgroup);

■ suspend a task
void KS_Suspend(K_TASK task);

■ suspend a set of taskgroups
void KS_SuspendG(K_TGROUP taskgroup);

■ resume a task
void KS_Resume(K_TASK task);

■ resume a set of taskgroups
void KS_ResumeG(K_TGROUP taskgroup);

■ abort a task
void KS_Abort(K_TASK task);

■ abort a set of taskgroups
void KS_AbortG(K_TGROUP taskgroup);

■ install an abort handler function
void KS_Aborted(void (*function)(void));

■ delay a task
void KS_Sleep(K_TICKS ticks);

■ yield processor to another task
void KS_Yield(void)

■ set timeslicing period
void KS_SetSlice(K_TICKS ticks,

 K_PRIO prio);
P2 - 12 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Virtuoso microkernel services

PA
R

T
 3
■ change a task’s priority
void KS_SetPrio(K_TASK task,

 int priority);

■ change a task’s entry point
void KS_SetEntry(K_TASK task,

 void (*function)(void));

■ add a task to a set of taskgroups
void KS_JoinG(K_TGROUP taskgroup)

■ remove a task from a set of taskgroups
void KS_LeaveG(K_TGROUP taskgroup)

■ get current task identifier
K_TASK KS_TaskId;

■ get current taskgroup mask
K_TGROUP KS_GroupId(void);

■ get current task’s priority
K_PRIO KS_TaskPrio;

■ get current task’s node identifier
K_NODE KS_NodeId;

8.4. Semaphore microkernel services

A complete set of microkernel services for using counting semaphores is
provided by Virtuoso.

■ signal semaphore
void KS_Signal(K_SEMA sema);

■ signal multiple semaphores
void KS_SignalM(K_SEMA *semalist);

■ test if a semaphore was signalled
int KS_Test(K_SEMA sema);
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 13

Virtuoso microkernel services
■ wait for a semaphore to be signalled
int KS_TestW(K_SEMA sema);

int KS_Wait(K_SEMA sema);

■ wait for a semaphore with timeout
int KS_TestWT(K_SEMA sema,

 K_TICKS ticks);

int KS_WaitT(K_SEMA sema,

 K_TICKS ticks);

■ wait for one of many semaphores
K_SEMA KS_TestMW(K_SEMA *semalist)

K_SEMA KS_WaitM(K_SEMA *semalist)

■ test for one of many semaphores and wait with timeout
K_SEMA KS_TestMWT(K_SEMA *semalist,

 K_TICKS ticks);

K_SEMA KS_WaitMT(K_SEMA *semalist,

 K_TICKS ticks);

■ return the current semaphore count
int KS_InqSema(K_SEMA sema);

■ reset a semaphore count to zero
void KS_ResetSema(K_SEMA sema);

■ reset multiple semaphores
void KS_ResetSemaM(K_SEMA *semalist);

8.5. Mailbox microkernel services

■ insert message into a mailbox
int KS_Send(K_MBOX mailbox,

 K_PRIO prio,

 K_MSG msgstruc);

■ insert message into mailbox and wait till done
int KS_SendW(K_MBOX mailbox,

 K_PRIO prio,

 K_MSG *msgstruc);
P2 - 14 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Virtuoso microkernel services

PA
R

T
 3

ation
■ insert message into mailbox and wait with timeout
int KS_SendWT(K_MBOX mailbox,

 K_PRIO prio,

 K_MSG *msgstruc,

 K_TICKS ticks);

■ receive message from mailbox if any
int KS_Receive(K_MBOX mailbox,

 K_MSG *msgstruc);

■ receive message from mailbox and wait till done
int KS_ReceiveW(K_MBOX mailbox,

 K_MSG *msgstruc);

■ receive message and wait with timeout
int KS_ReceiveWT(K_MBOX mailbox,

 K_MSG *msgstruc,

 K_TICKS ticks);

■ retrieve message data
void KS_ReceiveData(K_MSG *msgstruc);

■ copy data for size from a source address on a source node to a destin
address on a destination node
void KS_MoveData(int node,

 int size,

 void *source,

 void *destination,

 int direction);

8.6. Queue microkernel services

■ put an entry into a queue
int KS_Enqueue(K_QUEUE queue,

 void *source,

 int size);
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 15

Virtuoso microkernel services

eue
■ put an entry into a queue and wait till done
int KS_EnqueueW(K_QUEUE queue,

 void *source,

 int size);

■ put an entry into a queue and wait with timeout
int KS_EnqueueWT(K_QUEUE queue,

 void *source,

 int size,

 K_TICKS ticks);

■ get an entry from a queue
int KS_Dequeue(K_QUEUE queue,

 void *destination,

 int size);

■ get an entry from a queue and wait till done
int KS_DequeueW(K_QUEUE queue,

 void *destination,

 int size);

■ get an entry from a queue and wait with timeout
int KS_DequeueWT(K_QUEUE queue,

 void *destination,

 int size,

 K_TICKS ticks);

■ return the current number of queue entries
int KS_InqQueue(K_QUEUE queue);

■ remove all current entries and clear the list of the tasks waiting to dequ
voidKS_PurgeQueue(K_QUEUE queue);

8.7. Timer management microkernel services

These services are only available on processors where a timer exists, or a
periodic interrupt can be supplied to the processor. If these functions are not
available, then the timeout variants ow all waiting kernel functions do also
not exist.
P2 - 16 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Virtuoso microkernel services

PA
R

T
 3

at
■ allocate timer
K_TIMER *KS_AllocTimer(void);

■ deallocate timer
void KS_DeallocTimer(K_TIMER *timer);

■ Start timer with specified delay or cyclic period and signal semaphore
each period
void KS_StartTimer(K_TIMER *timer,

 K_TICKS delay,

 K_TICKS cyclic_period,

 K_SEMA sema);

■ reset and restart timer with new specified periods
void KS_RestartTimer(K_TIMER *timer,

 K_TICKS delay,

 K_TICKS cyclic_period);

■ stop the timer
void KS_StopTimer(K_Timer *timer);

■ compute elapsed time
K_TICKS KS_Elapse(K_TICKS *stamp);

■ return the low resolution time
K_TICKS KS_LowTimer(void);

8.8. Resource management microkernel services

■ request resource and lock
int KS_Lock(K_RES resource);

■ request resource and lock and wait till granted
int KS_LockW(K_RES resource);

■ request resource and lock and wait with timeout
int KS_LockWT(K_RES resource,

 K_TICKS ticks);

Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 17

Virtuoso microkernel services
■ release resource
void KS_Unlock(K_RES resource);

8.9. Memory management microkernel services

■ allocate block from a given map
void *KS_Alloc(K_MAP map,

 void **block);

■ allocate block from a given map
void *KS_AllocW(K_MAP map,

 void **block);

■ allocate block from a given map and wait until available
void *KS_AllocWT(K_MAP map,

 void **block,

 K_TICKS ticks);

■ return block to a map given set
void KS_Dealloc(K_MAP map,

 void **block);

■ inquire on blocks in use in Map
int KS_InqMap(K_MAP map);

8.10. Special microkernel services

This is a class of directives which are included for special purposes.

■ “do nothing” microkernel service (used for benchmarks)
void KS_Nop(void);

■ function executed with preemption disabled
int KS_User(int (*function)(void *0),

 void *arg);

8.11. Drivers and processor specific services

This class of microkernel services is only available for some processors and
their use is to enable user tasks to access the processor specific hardware
such as communication links and interrupt pins. See iface.h for the
processor specific function.
P2 - 18 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Virtuoso microkernel services

PA
R

T
 3

urn

rn

out

t
■ start a read operation of a block of size bytes from a given link and ret
the associated event number
int KS_Linkin(int link,

 int size,

 void *destination);

■ starts a write operation of a block of size bytes to a given link and retu
the associated event number
int KS_Linkout(int link,

 int size,

 void *source);

■ read a block of size bytes from a given link and wait until done
void KS_LinkinW(int link,

 int size,

 void *destination);

■ read a block of size bytes from a given link and wait until done or time-
expires, only for T800 and T9000
int KS_LinkinWT(int linkin,

 int size,

 void *destination,

 K_TICKS ticks);

■ writes a block of size bytes to a given link and wait till done
void KS_LinkoutW(int link,

 int size,

 void *source);

■ write a block of size bytes to a given link and wait until done or time-ou
expires, only on T800 and T9000
int KS_LinkoutWT(int linkout,

 int size,

 void *source,

 K_TICKS ticks);

■ enable an ISR
void EnableISR(int IRQ,

 void (*ISR)(void));
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 19

Virtuoso microkernel services
■ disable interrupt service routine
int DisableISR(int IRQ);

■ suspend the calling task until an event occurrs
void KS_EventW(int IRQ);

■ read the current high precision clock
int KS_HighTimer(void);

■ return the current CPU workload
int KS_Workload(void);

■ set the measuring interval for the workload monitor
void KS_SetWlper(K_TICKS period);
P2 - 20 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Nanokernel types and datastructures

PA
R

T
 3
9. Nanokernel types and datastructures

9.1. Nanokernel processes and channels

The nanokernel unit of execution can be considered as a light task, that is a
task with a light context as compared with the microkernel tasks. To avoid
any confusion and in analogy with the internal transputer architecture, the
following terminology is introduced :

1. ‘Processes‘ for designating the nanokernel (light) tasks;

2. ‘Channels‘ for designating the interprocess communication objects.

The nanokernel has been designed for minimal overhead when switching
between processes. This has been achieved by:

1. A small number of registers that have to be saved over a context switch;

2. A minimum semantic overhead

3. Small size, often fitting in internal RAM.

The small number of registers means that process code must be written in
assembly language. It is still possible to call C functions from within a
process, if certain rules are observed.

The minimum semantic overhead results from the following design options :

1. No preemption, but interruptible by interrupt service routines;

2. Strict FIFO scheduling;

3. Only one waiting process allowed when synchronizing with another process;

4. No time-outs;

5. No distributed operation.

These restrictions are not important if the microkernel level is present and if
nanokernel processes are used in an appropriate way. Overhead is reduced
by a factor of 10 when compared to similar microkernel operations. In
Virtuoso Nano, solely based on the nanokernel, some of these restrictions
were lifted. Refer to the product manual. The rest of this chapter is specific
for the nanokernel as used within Virtuoso Classico.

9.2. Nanokernel channels

Nanokernel processes can synchronize using three types of channels:

1. A counting semaphore channel;

2. A linked list channel;

3. A stack channel.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 21

Nanokernel types and datastructures
More details are available in part 3 for each processor type.
P2 - 22 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Nanokernel services

PA
R

T
 3
10. Nanokernel services

The nanokernel processes have a much simpler scheduling mechanism and
set of services than the microkernel tasks. Nanokernel processes are never
preempted by another nanokernel process (and hence are by definition
critical sections). Nanokernel processes only deschedule voluntarily upon
issuing a kernel service. They execute in pure FIFO order when executable.
Note however that they can be interrupted by an ISR level routine but will
themselves preempt any microkernel task when becoming executable.
Hence, consider the nanokernel level as a set of high priority processes
while the microkernel tasks have a low priority. Note that the microkernel
itself is a nanokernel process.

Most nanokernel services are assembly routines. As parameters are passed
using registers, no general syntax can be provided as it is processor
dependent. As they start up and terminate in assembly, a good know-how of
the target processor is required. In addition as registers are used to pass
parameters, be very careful when programing at this level !

Refer to part 3 of the manual for the details. In Virtuoso Nano, a more
complete nanokernel is used. Refer to its manual for details.

10.1. Process management

Note :

The actual syntax might be different depending on the target processor as
they depend on the registers and instructions available. The descriptions
below are therefore generic while the binding manual provides processor
specific descriptions.

init_process (void *workspace,

void entry(void),

int param1,

int param2,...);

/* Sets up a nanokernel process */

/* C function called from microkernel or main() level */

start_process (void *workspace);

/* Starts up a nanokernel process */

/* C function called from microkernel or main() level */

nanok_yield

/* Yield CPU to another nanokernel process*/
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 23

Nanokernel services
10.2. ISR management

end_isr0

/* Terminates a level 0 ISR */

end_isr1

/* Terminates a level 1 ISR */

set_isr1

/* Switch to ISR level 1 */

10.3. Semaphore based services

prhi_sig

/* Signal and increment semaphore */

prhi_wait

/* Wait on semaphore to be signalled */

10.4. Stack based services

prhi_psh

/* Push data onto a stack */

prhi_popw

/* Pop data from stack, wait if stack empty */

prhi_pop

/* Same as above but no waiting */

10.5. Linked list based services

prhi_put

/* Insert at head of linked list*/

prhi_getw

/* Get element from linked list, wait if list is empty */

prhi_get

/* Same as above but no waiting */
P2 - 24 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11. Alphabetical List of Virtuoso microkernel services

In the pages to follow, each Virtuoso microkernel service will be shown in
alphabetical order. Each Virtuoso microkernel service will be given in a
standard format:

• SUMMARY Brief summary of the service.

• CLASS. One of the Virtuoso microkernel service classes of which it is a member.

• SYNOPSIS The formal C declaration including argument typing.

• DESCRIPTION . . . A description of what the Virtuoso microkernel service does when invoked
and how a desired behavior can be obtained.

• RETURN VALUE . . The return values of the Virtuoso microkernel service.

• EXAMPLE One or more typical Virtuoso microkernel service uses. The examples
assume the syntax of C, but error handling is ignored, except for the service
under discussion.

On some common processors characters are stored one per word or sizeof
does not give the number of 8 bit bytes in a type. On these processors the
examples may need modification where a size parameter or structure is
used.

• SEE ALSO. List of related Virtuoso microkernel services that could be examined in con-
junction with the current Virtuoso microkernel service.

• SPECIAL NOTES . . Specific notes and technical comments.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 25

Alphabetical List of Virtuoso microkernel services
11.1. KS_Abort

• SUMMARY Abort a task.

• CLASS Task

• SYNOPSIS

void KS_Abort(K_TASK task);

• DESCRIPTION . . . The KS_Abort microkernel service is used to abort a task’s execution. If the
task has no abort handler, it will terminate execution immediately; otherwise
the abort handler function is executed, using the identity and priority level of
the aborted task.

• RETURN VALUE . . NONE

• EXAMPLE

K_TASK WORKTASK;

KS_Abort(WORKTASK); /* abort task WORKTASK */

KS_Abort(KS_TaskId); /* abort the current task */

• SEE ALSO. KS_AbortG

KS_Aborted

• SPECIAL NOTES . . Be very careful when using this service as the microkernel does not clean up
the current state.

It is illegal to abort a task while it is blocked in a waiting kernel service. The
task is not removed from the waiting list of the object. This means that
KS_Abort should only be used on a task that is executing or ready to
execute. A safe way to ensure this is to restrict the use of KS_Abort to
aborting the current task.

The parameter to this task must specify a local task. Supplying a remote task
will have unpredictable side effects.
P2 - 26 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.2. KS_AbortG

• SUMMARY Abort a task group.

• CLASS. Task

• SYNOPSIS

void KS_AbortG(K_TGROUP taskgroup);

• DESCRIPTION . . . The KS_Abort microkernel service is used to abort a task group or a set of
task groups in a single call. It is an atomic equivalent to calling KS_Abort for
every task in the set defined by the argument. See KS_Abort for details.

• RETURN VALUE . . NONE

• EXAMPLE

K_TGROUP WORKERS;

K_TGROUP SLAVES;

/*

 * abort all tasks in the WORKERS or SLAVES groups

 */

KS_AbortG(WORKERS | SLAVES);

• SEE ALSO. KS_Abort

KS_Aborted

• SPECIAL NOTES . . See the notes under KS_Abort.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 27

Alphabetical List of Virtuoso microkernel services
11.3. KS_Aborted

• SUMMARY Install abort handler function.

• CLASS Task

• SYNOPSIS

void KS_Aborted(void (*function)(void));

• DESCRIPTION . . . The KS_Aborted microkernel service installs an abort handler function for
the calling task. When the calling task is aborted by a KS_Abort or
KS_AbortG call, the abort handler function is executed using the task iden-
tity and priority level of the task that installed it. KS_Aborted can be called
any number of times; each subsequent call overwrites the previously
installed handler. KS_Aborted (NULL) removes any installed handler. The
microkernel removes an abort handler after it has been invoked, or when a
task terminates normally.

• RETURN VALUE . . NONE

• EXAMPLE

K_RES DISPLAY;

void DisplayAbort(void)

{

 /*

 * free the DISPLAY resource

 * safe if another task owns the display

 */

 KS_Unlock(DISPLAY);

}

void Display (void)

{

 KS_Aborted(DisplayAbort);

 KS_Lock(DISPLAY);

 ... do display actions

 KS_Unlock (DISPLAY);

}

• SEE ALSO. KS_Abort

KS_AbortG
P2 - 28 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.4. KS_Alloc

• SUMMARY Allocate a block of memory.

• CLASS. Memory

• SYNOPSIS

int KS_Alloc(K_MAP map,

 void **block);

• DESCRIPTION . . . The KS_Alloc microkernel service is used to allocate a block of memory from
a predefined memory map, without waiting.

• RETURN VALUE . . RC_OK if a block is available, RC_FAIL otherwise.

• EXAMPLE

typedef void * MyBlock;

MyBlock p;

K_MAP MAP1K;

int RetCode;

RetCode = KS_Alloc(MAP1K, &p);

if (RetCode != RC_OK) {

 printf("Out of memory\n");

}

• SEE ALSO. KS_AllocW

KS_AllocWT

KS_Dealloc

KS_InqMap
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 29

Alphabetical List of Virtuoso microkernel services
11.5. KS_AllocW

• SUMMARY Allocate a block of memory with wait.

• CLASS Memory management

• SYNOPSIS

int KS_AllocW(K_MAP map,

 void **block);

• DESCRIPTION . . . The KS_AllocW microkernel service is used to allocate a block of memory
from a predefined memory map. If the map is empty, the calling task is put on
a priority-ordered waiting list and is descheduled until a block becomes avail-
able.

• RETURN VALUE . . RC_OK.

• EXAMPLE

typedef void * MyBlock;

MyBlock p;

K_MAP MAP1K;

int RetCode;

RetCode = KS_AllocW(MAP1K, &p);

if (RetCode != RC_OK) {

 printf("Cannot allocate memory\n");

}

• SEE ALSO. KS_Alloc

KS_AllocWT

KS_Dealloc

KS_DeallocW

KS_DeallocWT
P2 - 30 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.6. KS_AllocWT

• SUMMARY Allocate a block of memory with timed out wait.

• CLASS. Memory management

• SYNOPSIS

int KS_AllocWT(K_MAP map,

 void **block,

 K_TICKS ticks);

• DESCRIPTION . . . The KS_AllocWT microkernel service is used to allocate a block of memory
from a predefined memory map. If the map is empty, the calling task is
descheduled and put on a priority-ordered waiting list. If no block is available
within the specified time out, the allocation fails but the task is allowed to pro-
ceed.

• RETURN VALUE . . RC_OK or RC_TIME if the call timed out.

• EXAMPLE

typedef void * MyBlock;

MyBlock p;

K_MAP MAP1K;

int RetCode;

RetCode = KS_AllocWT(MAP1K, &p, 100);

if (RetCode == RC_TIME) {

 printf("No memory available after 100 ticks\n");

}

• SEE ALSO. KS_Alloc

KS_AllocW

KS_Dealloc
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 31

Alphabetical List of Virtuoso microkernel services
11.7. KS_AllocTimer

• SUMMARY Allocate a timer and returns its address.

• CLASS Timer

• SYNOPSIS

K_TIMER *KS_AllocTimer(void);

• DESCRIPTION . . . The KS_AllocateTimer allocates a timer object from the timer pool and
returns its address or NULL if no timer is available.

• RETURN VALUE . . A pointer to a K_TIMER, or NULL.

• EXAMPLE

K_TIMER *MyTimer;

if ((MyTimer = AllocTimer()) == NULL) {

 printf("Fatal error : no more timers\n");

}

• SEE ALSO. KS_DeallocTimer

KS_StartTimer

KS_RestartTimer

KS_StopTimer

• SPECIAL NOTES . . The only legal use of a K_TIMER is as an argument to the microkernel ser-
vices listed above. Programs should not access the structure fields directly.
P2 - 32 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.8. KS_Dealloc

• SUMMARY Deallocate a block of memory.

• CLASS. Memory management

• SYNOPSIS

void KS_Dealloc(K_MAP map,

 void **block);

• DESCRIPTION . . . KS_Dealloc returns a memory block to the free pool of the specified map. A
task switch will occur if an higher priority task was waiting for a memory block
of the same partition.

• RETURN VALUE . . NONE.

• EXAMPLE

typedef void * MyBlock;

MyBlock p;

K_MAP MAP1K;

int RetCode;

RetCode = KS_AllocW (MAP1K, &p);

if (RetCode != RC_OK) {

 printf(“Cannot allocate memory\n”);

}

/*

 * code that uses memory block

 */

KS_Dealloc(MAP1K, &p);

• SEE ALSO. KS_Alloc

KS_AllocW

• SPECIAL NOTES . . The microkernel does not check the validity of the pointer argument. The
user should ensure that blocks are deallocated to the same memory partition
they were allocated from, and only once.

Using an invalid pointer will have unpredictable side effects.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 33

Alphabetical List of Virtuoso microkernel services
11.9. KS_DeallocTimer

• SUMMARY Deallocate a timer.

• CLASS Timer

• SYNOPSIS

void KS_DeallocTimer(K_TIMER *timer);

• DESCRIPTION . . . The KS_DeallocTimer microkernel service returns a timer object to the timer
pool.

• RETURN VALUE . . NONE.

• EXAMPLE

K_TIMER *my_timer;

my_timer = KS_AllocTimer(); /* get timer */

KS_StartTimer(my_timer,10,0,NULL);

KS_DeallocTimer(my_timer); /* return timer */

• SEE ALSO. KS_AllocTimer
P2 - 34 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.10. KS_Dequeue

• SUMMARY Get an entry from a FIFO queue.

• CLASS. Queue

• SYNOPSIS

int KS_Dequeue(K_QUEUE queue,

 void *data,

 int size);

• DESCRIPTION . . . The KS_Dequeue microkernel service is used to read a data element from a
FIFO queue. If the queue is not empty, the first (oldest) entry is removed
from the queue and copied to the address provided by the caller. If the queue
is empty, KS_Dequeue returns with an error code.

• RETURN VALUE . . RC_OK if operation succeeds, RC_FAIL otherwise.

• EXAMPLE

char *data;

K_QUEUE DATAQ;

if (KS_Dequeue(DATAQ, data, 1) == RC_OK) {

 if (*data == ’#’)

 startdemo ();

}

• SEE ALSO. KS_DequeueW

KS_DequeueWT

KS_Enqueue

KS_EnqueueW

KS_EnqueueWT

• SPECIAL NOTES . . The size parameter is the number of 8 bit bytes to be read. It should be equal
to the width of the queue (which implies dequeueing only one entry at a time)
or unpredictable side effects may occur.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 35

Alphabetical List of Virtuoso microkernel services
11.11. KS_DequeueW

• SUMMARY Get an entry from a FIFO queue with wait.

• CLASS Queue

• SYNOPSIS

int KS_DequeueW(K_QUEUE queue,

 void *data;

 int size)

• DESCRIPTION . . . KS_DequeueW is used to get an entry from a FIFO queue. If the queue is
EMPTY, the calling task is put into a waiting list in order of its priority. If the
queue is NOT EMPTY, the oldest entry in the queue is removed and returned
to the calling task.

• RETURN VALUE . . RC_OK.

• EXAMPLE

int command;

K_QUEUE COMMANDS;

int RetCode;

RetCode = KS_DequeueW(COMMANDS, &command, sizeof (int));

if (RetCode != RC_OK) {

 printf("problem reading from queue\n");

}

• SEE ALSO. KS_Dequeue

KS_DequeueWT

KS_Enqueue

KS_EnqueueW

KS_EnqueueWT

• SPECIAL NOTES . . The size parameter is the number of 8 bit bytes to be read. It should be equal
to the width of the queue (which implies dequeueing only one entry at a time)
or unpredictable side effects may occur.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
P2 - 36 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.12. KS_DequeueWT

• SUMMARY Get an Entry from a FIFO queue with timed out wait.

• CLASS. Queue

• SYNOPSIS

int KS_DequeueWT(K_QUEUE queue,

 void *data;

 int size,

 K_TICKS ticks)

• DESCRIPTION . . . KS_DequeueWT is used to get an entry from a FIFO queue. If the queue is
EMPTY, the calling task is put into a waiting list in order of its priority until the
QUEUE NOT EMPTY condition or until the timeout expires. If the queue is
NOT EMPTY, the oldest entry in the queue is removed and returned to the
calling task.

• RETURN VALUE . . RC_OK, or RC_TIME if the service timed out.

• EXAMPLE

int command;

int RetCode;

K_QUEUE COMMANDS;

K_SEMA OPERATOR_SLEEPS;

/*

 * read a command

 */

Retcode = KS_DequeueWT(COMMANDS, &command, sizeof (int), 100);

if (RetCode == RC_TIME) {

 /*

 * command was not supplied in time

 */

 KS_Signal(OPERATOR_SLEEPS);

}

• SEE ALSO. KS_Dequeue

KS_DequeueW

KS_Enqueue

KS_EnqueueW

KS_EnqueueWT
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 37

Alphabetical List of Virtuoso microkernel services
• SPECIAL NOTES . . The size parameter is the number of 8 bit bytes to be read. It should be equal
to the width of the queue (which implies dequeueing only one entry at a time)
or unpredictable side effects may occur.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
P2 - 38 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.13. KS_DisableISR

• SUMMARY Disable interrupt service routine.

• CLASS. Driver service.

• SYNOPSIS

void KS_DisableISR(int IRQ);

• DESCRIPTION . . . The KS_DisableISR microkernel service disables the specified interrupt rou-
tine, and removes the corresponding ISR from the interrupt handler table. As
a result, all subsequent interrupts from that source are ignored.

• RETURN VALUE . . None.

• EXAMPLE

KS_DisableISR(4)

printf(“Interrupt 4 now disabled”);

• SEE ALSO. KS_EnableISR

KS_EventW

• SPECIAL NOTES . . This service does not actually enter the microkernel and therefore cannot
cause a task switch.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 39

Alphabetical List of Virtuoso microkernel services
11.14. KS_Elapse

• SUMMARY Compute elapsed time.

• CLASS Timer

• SYNOPSIS

K_TICKS KS_Elapse(K_TICKS *reftime);

• DESCRIPTION . . . The KS_Elapse microkernel service returns the elapsed time between two or
more events. To get the elapsed time, one issues two calls. The first one is
required to set the beginning time and the returned value should be dis-
carded. The second and each subsequent call returns the number of clock
ticks between the previous time marker and the current system low timer.

• RETURN VALUE . . Elapsed time in system ticks.

• EXAMPLE

K_TICKS timestamp, diff1, diff2;

K_SEMA SWITCH;

(void) KS_Elapse(×tamp); /* determine reference time */

KS_TestW(SWITCH); /* wait for event */

diff1 = KS_Elapse(×tamp); /* time since first call */

KS_TestW(SWITCH); /* wait for event */

diff2 = KS_Elapse(×tamp); /* time since second call */

• SEE ALSO. KS_LowTimer

KS_HighTimer
P2 - 40 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.15. KS_EnableISR

• SUMMARY Install an interrupt service routine.

• CLASS. Processor specific

• SYNOPSIS

int KS_EnableISR(int IRQ,

 void (*ISR0)(void));

• DESCRIPTION . . . The KS_EnableISR microkernel service provides a safe way to install an
interrupt service routine. The operation may fail if the interrupt is already
enabled. Any previously installed handler should be removed first (using
KS_disableISR). An ISR can operate entirely in the background or it can
pass the interrupt on to a waiting task by generating an event.

• RETURN VALUE . . RC_OK or RC_FAIL.

• EXAMPLE

extern void ADC_ISR(void);

if (KS_EnableISR(4, ADC_ISR) != RC_OK) {

 printf("Unable to install the ADC ISR\n");

}

• SEE ALSO. KS_DisableISR

KS_EventW

Part 3 of this manual.

• Special Notes This service is processor specific and the prototype may vary between pro-
cessors.

This service does not actually enter the microkernel and therefore cannot
cause a task switch.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 41

Alphabetical List of Virtuoso microkernel services
11.16. KS_Enqueue

• SUMMARY Insert entry into a FIFO queue.

• CLASS Queue

• SYNOPSIS

int KS_Enqueue(K_QUEUE queue,

 void *data,

 int size);

• DESCRIPTION . . . The KS_Enqueue microkernel service is used to put an entry in a FIFO
queue. If the queue is not full the data is inserted at the end of the queue,
and the call returns. If the queue is full, KS_Dequeue returns with an error
code.

• RETURN VALUE . . RC_OK if operation succeeds, RC_FAIL otherwise.

• EXAMPLE

typedef struct{

 float X, Y;

} POINT;

POINT next_point;

K_QUEUE POSITION;

/*

 * put X,Y coordinates in the POSITION queue,

 * if queue is full we don’t care

 */

(void) KS_Enqueue(POSITION, &next_point, sizeof(POINT));

• SEE ALSO. KS_EnqueueW

KS_EnqueueWT

KS_Dequeue

KS_DequeueW

KS_DequeueWT

• SPECIAL NOTES . . The size parameter is the number of 8 bit bytes to be queued. It should be
equal to the width of the queue (which implies enqueueing only one entry at
P2 - 42 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
a time) or unpredictable side effects may occur.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 43

Alphabetical List of Virtuoso microkernel services
11.17. KS_EnqueueW

• SUMMARY Insert entry into a FIFO queue with wait.

• CLASS Queue

• SYNOPSIS

int KS_EnqueueW(K_QUEUE queue,

 void *data,

 int size);

• DESCRIPTION . . . KS_EnqueueW inserts an entry into a FIFO queue. If the queue is FULL, the
calling task is put into a waiting list in order of its priority. When the queue
becomes NOT FULL, the entry is inserted into the queue.

• RETURN VALUE . . RC_OK if operation succeeds, RC_FAIL otherwise.

• EXAMPLE

typedef struct{

 float X, Y;

} POINT;

POINT next_point;

K_QUEUE POSITION;

int RetCode;

/*

 * put X,Y coordinates in the POSITION queue,

 * if queue is full we wait for space

 */

RetCode = KS_EnqueueW(POSITION, &next_point, sizeof(POINT));

if (RetCode != RC_OK) {

 printf("failed to queue co-ordinates\n");

}

• SEE ALSO. KS_Enqueue

KS_EnqueueWT

KS_Dequeue

KS_DequeueW

KS_DequeueWT

• SPECIAL NOTES . . The size parameter is the number of 8 bit bytes to be queued. It should be
P2 - 44 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
equal to the width of the queue (which implies enqueueing only one entry at
a time) or unpredictable side effects may occur.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 45

Alphabetical List of Virtuoso microkernel services
11.18. KS_EnqueueWT

• SUMMARY Insert an entry into a FIFO queue with timed out wait.

• CLASS Queue

• SYNOPSIS

void KS_EnqueueWT(K_QUEUE queue,

 void *data;

 int size,

 K_TICKS ticks);

• DESCRIPTION . . . KS_Enqueue inserts an entry into a FIFO queue. If the queue is FULL, the
calling task is put into a waiting list in order of its priority until the QUEUE
NOT FULL condition or until the timeout expires. When the queue is NOT
FULL, the entry is inserted into the queue.

• RETURN VALUE . . RC_OK, or RC_TIME if timed out.

• EXAMPLE

typedef struct{

 float X, Y;

} POINT;

POINT next_point;

K_QUEUE POSITION;

int RetCode;

/*

 * put X,Y coordinates in the POSITION queue,

 * if queue is full we wait for a maximum of

 * 100 ticks.

 */

RetCode = KS_EnqueueWT(POSITION,

 &next_point,

 sizeof(POINT),

 100);

if (RetCode == RC_TIME) {

 printf("timed out queueing co-ordinates\n");

}

P2 - 46 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
• SEE ALSO. KS_Enqueue

KS_EnqueueW

KS_Dequeue

KS_DequeueW

KS_DequeueWT

• SPECIAL NOTES . . The size parameter is the number of 8 bit bytes to be queued. It should be
equal to the width of the queue (which implies enqueueing only one entry at
a time) or unpredictable side effects may occur.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 47

Alphabetical List of Virtuoso microkernel services
11.19. KS_EventW

• SUMMARY Wait for an event to be signalled.

• CLASS Processor specific

• SYNOPSIS

void KS_EventW(int IRQ);

• DESCRIPTION . . . This call will put the calling task in an EVENT WAIT State. When the event is
raised, or was raised before the service call, the call will return and the event
is cleared.

• RETURN VALUE . . NONE

• EXAMPLE

while (1) {

 KS_EventW(7); /* Wait for an event of type 7 */

 /*

 * do something with the event

 */

}

• SEE ALSO. KS_EnableISR

KS_DisableISR

• SPECIAL NOTES . . This service is processor specific and the prototype may vary according to
processor type.
P2 - 48 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.20. KS_GroupId

• SUMMARY Returns the taskgroup set of the task.

• CLASS. Task management

• SYNOPSIS

K_TGROUP KS_GroupId(void);

• DESCRIPTION . . . This microkernel service reads the taskgroup identifier of the calling task.
Each group is indicated by a bit set in the word.

• RETURN VALUE . . The taskgroup identifier.

• EXAMPLE

K_TGROUP SLAVES

if (KS_GroupId() & SLAVES) {

 /*

 * do some work since I am a SLAVE

 */

 work();

}

• SEE ALSO. KS_JoinG

KS_LeaveG

• SPECIAL NOTES . . This service is currently implemented as a macro.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 49

Alphabetical List of Virtuoso microkernel services
11.21. KS_HighTimer

• SUMMARY Read the processor’s high precision timer.

• CLASS Processor specific

• SYNOPSIS

int KS_HighTimer(void);

• DESCRIPTION . . . This service reads the processor’s high precision timer.

• RETURN VALUE . . The current high precision clock value.

• EXAMPLE

int TimeNow;

TimeNow = KS_HighTimer();

• SEE ALSO. KS_Elapse

KS_LowTimer

• SPECIAL NOTES . . The precision and return type are processor dependent. On some proces-
sors reading the high precision timer without using this service may cause
unpredictable side effects.

This service does not actually enter the microkernel and therefore cannot
cause a task switch.
P2 - 50 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.22. KS_InqMap

• SUMMARY Returns the number of free blocks in a map.

• CLASS. Memory management

• SYNOPSIS

int KS_InqMap(K_MAP map);

• DESCRIPTION . . . The KS_InqMap microkernel service returns the number of free blocks in the
memory map.

• RETURN VALUE . . Number of free blocks.

• EXAMPLE

typedef void * MyBlock;

MyBlock p;

K_MAP MAP3;

int FreeBlocks;

FreeBlocks = KS_InqMap(MAP3);

if (FreeBlocks > 10)

 KS_AllocW(MAP3, &p);

• SEE ALSO. KS_Alloc

KS_AllocW

KS_AllocWT

KS_Dealloc
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 51

Alphabetical List of Virtuoso microkernel services
11.23. KS_InqQueue

• SUMMARY Read the current queue depth.

• CLASS Queue

• SYNOPSIS

int KS_InqQueue(K_QUEUE queue);

• DESCRIPTION . . . The KS_InqQueue microkernel service allows the calling task to read the
current number of entries in a queue.

• RETURN VALUE . . Current number of entries in the queue.

• EXAMPLE

K_QUEUE CHARQ;

K_SEMA XOFF;

int depth;

depth = KS_InqQueue(CHARQ);

if (depth > 20)

 KS_Signal(XOFF);

• SEE ALSO. KS_PurgeQueue
P2 - 52 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.24. KS_InqSema

• SUMMARY Read the current semaphore count.

• CLASS. Semaphore

• SYNOPSIS

int KS_InqSema(K_SEMA sema);

• DESCRIPTION . . . The KS_InqSema microkernel service allows the calling task to read the cur-
rent count of the specified semaphore. It gives the difference between the
number of times a semaphore was signalled and the number of times a task
was waiting on that semaphore.

• RETURN VALUE . . Current semaphore count.

• EXAMPLE

K_SEMA TestSema;

int count;

count = KS_InqSema(TestSema);

if (count > 200)

 printf("Consumer tasks can’t follow events\n");

• SEE ALSO. KS_ResetSema

KS_ResetSemaM
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 53

Alphabetical List of Virtuoso microkernel services
11.25. KS_JoinG

• SUMMARY Add the calling task to the specified task groups.

• CLASS Task

• SYNOPSIS

void KS_JoinG(K_TGROUP);

• DESCRIPTION . . . This microkernel service sets the task group bits in the task group identifier.

• RETURN VALUE . . NONE

• EXAMPLE

K_TGROUP ALARM_GRP;

K_TGROUP ABORT_GRP;

KS_JoinG(ALARM_GRP | ABORT_GRP);

• SEE ALSO. KS_JoinG

KS_LeaveG

• SPECIAL NOTES . . This service is currently implemented as a macro, and cannot cause a task
switch.
P2 - 54 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.26. KS_LeaveG

• SUMMARY Remove the calling task from the specified task groups.

• CLASS. Task

• SYNOPSIS

(void) KS_LeaveG(K_TGROUP);

• DESCRIPTION . . . This microkernel service clears the specified taskgroup bits in the task group
identifier.

• RETURN VALUE . . NONE.

• EXAMPLE

KS_LeaveG(ABORT_GRP);

• SEE ALSO. KS_JoinG

KS_LeaveG

KS_GroupId

• SEE ALSO. This service is currently implemented as a macro, and cannot cause a task
switch.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 55

Alphabetical List of Virtuoso microkernel services
11.27. KS_Linkin

• SUMMARY Start to read a datablock from a link and continue.

• CLASS Processor specific

• SYNOPSIS

int KS_Linkin(int link,

 int size,

 void *datablock);

• DESCRIPTION . . . This call reads data from a processor link. The call returns immediately with
no descheduling of the calling task. It is possible to wait on the termination of
this event at a later stage of the program.

• RETURN VALUE . . Event number.

• EXAMPLE

int LinkEvent1, LinkEvent2;

int Block1[20];

int Block2[20];

LinkEvent1 = KS_Linkin (1, 20, Block1);

LinkEvent2 = KS_Linkin (2, 20, Block2);

/*

 * ... other code, not using Block

 */

/*

 * wait for data to be read

 */

KS_EventW(LinkEvent1);

KS_EventW(LinkEvent2);

• SEE ALSO. KS_LinkinW

KS_LinkinWT

KS_Linkout

KS_linkoutW

KS_LinkoutWT

iface.h

• SPECIAL NOTES . . Attempting to read from a link without using this service may cause unpre-
P2 - 56 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
dictable side effects on some processors.

The size parameter is the number of 8 bit bytes to be read.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 57

Alphabetical List of Virtuoso microkernel services
11.28. KS_LinkinW

• SUMMARY Read a datablock from a link with wait.

• CLASS Processor specific

• SYNOPSIS

void KS_LinkinW(int link,

 int size,

 void *datablock);

• DESCRIPTION . . . This call reads data from a processor link. The call returns when the dat-
ablock has been read in. Meanwhile the calling task is put in a LinkWait
State.

• RETURN VALUE . . NONE

• EXAMPLE

char buf[128];

/*

 * read 15 bytes from link 3

 * store it in buf

 */

KS_LinkinW(3,15,buf);

• SEE ALSO. KS_Linkin

KS_LinkinWT

KS_Linkout

KS_linkoutW

KS_LinkoutWT

iface.h

• SPECIAL NOTES . . Attempting to read from a link without using this service may cause unpre-
dictable side effects on some processors.

The size parameter is the number of 8 bit bytes to be read.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
P2 - 58 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.29. KS_LinkinWT

• SUMMARY Read a datablock from a link with timed out wait.

• CLASS. Processor specific

• SYNOPSIS

int KS_LinkinWT(int link,

 int size,

 void *datablock,

 K_TICKS ticks);

• DESCRIPTION . . . This call reads data from a processor link. The call returns when the dat-
ablock has been read in or when the timeout has expired. Meanwhile the
calling task is put in a LinkWait State.

• RETURN VALUE . . RC_OK if reading is finished before the timeout expires, RC_TIME other-
wise.

• EXAMPLE

char buf[128];

int RetCode;

/*

 * read 15 bytes from link 3

 * store it in buf

 * don’t wait more than 1000 ticks

 */

RetCode = KS_LinkinWT(3, 15, buf, 1000);

if (RetCode != RC_OK) {

 printf("timed out reading data\n");

}

• SEE ALSO. KS_Linkin

KS_LinkinW

KS_Linkout

KS_linkoutW

KS_LInkoutWT

iface.h

• SPECIAL NOTES . . This service is only implemented on transputers. Reading from a link without
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 59

Alphabetical List of Virtuoso microkernel services
using this service will have unpredictable side effects.

The size parameter is the number of 8 bit bytes to be read.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
P2 - 60 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.30. KS_Linkout

• SUMMARY Start to write a datablock to a link and continue.

• CLASS. Processor specific

• SYNOPSIS

int KS_Linkout(int link,

 int size,

 void *datablock);

• DESCRIPTION . . . This call writes data to a processor link. It is possible to wait on the termina-
tion of this event at a later stage in the program.

• RETURN VALUE . . Event number.

• EXAMPLE

int LinkEvent1, LinkEvent2 ;

int Block1[200];

int Block2[200];

/*

 * start output operations

 */

LinkEvent1 = KS_Linkout (1, 200, Block1);

LinkEvent2 = KS_Linkout (2, 200, Block2);

/*

 * ... other code, not using blocks

 */

/*

 * wait until link operation finishes

 */

KS_EventW(LinkEvent1);

KS_EventW(LinkEvent2);

/*

 * data in blocks can be overwritten

 */
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 61

Alphabetical List of Virtuoso microkernel services
• SEE ALSO. KS_LinkoutW

KS_LinkoutWT

KS_LinkinW

KS_LinkinWT

iface.h

• SPECIAL NOTES . . Attempting to write to a link without using this service may cause unpredict-
able side effects on some processors.

The size parameter is the number of 8 bit bytes to be written.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
P2 - 62 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.31. KS_LinkoutW

• SUMMARY Write a datablock to a link with wait.

• CLASS. Processor specific

• SYNOPSIS

void KS_LinkoutW(int link,

 int size,

 void *datablock);

• DESCRIPTION . . . This call writes data to a processor link. The call returns when the writing of
the datablock has finished. Meanwhile the calling task is put into the LINK-
WAIT state.

• RETURN VALUE . . NONE

• EXAMPLE

static char chanmessage[] = "This is a test message !\n";

int msgsize;

msgsize = strlen(chanmessage);

KS_LinkoutW(3, msgsize, chanmessage);

• SEE ALSO. KS_Linkout

KS_LinkoutWT

KS_LinkinW

KS_linkinWT

iface.h

• SPECIAL NOTES . . Attempting to read from a link without using this service may cause unpre-
dictable side effects on some processors.

The size parameter is the number of 8 bit bytes to be written.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 63

Alphabetical List of Virtuoso microkernel services
11.32. KS_LinkoutWT

• SUMMARY Write a datablock to a link with timed out wait.

• CLASS Processor specific

• SYNOPSIS

int KS_LinkoutW(int link,

 int size,

 void *datablock,

 K_TICKS ticks);

• DESCRIPTION . . . This call writes data to a processor link. The call returns when the writing of
the datablock has finished or when the timeout has expired. Meanwhile the
calling task is put into the LINKWAIT state.

• RETURN VALUE . . RC_OK if writing is finished before the timeout expires, RC_TIME otherwise.

• EXAMPLE

static char chanmessage[] = "This is a test message !\n";

int msgsize;

int RetCode;

msgsize = strlen(chanmessage);

RetCode = KS_LinkoutWT(3, msgsize, chanmessage, 100);

if (RetCode != RC_OK) {

 printf("write of message timed out\n");

}

• SEE ALSO. KS_Linkout

KS_LinkoutWT

KS_LinkinW

KS_LinkinWT

iface.h

• SPECIAL NOTES . . This service is only implemented on transputers. Reading from a link without
using this service will have unpredictable side effects.

The size parameter is the number of 8 bit bytes to be written.

Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.
P2 - 64 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.33. KS_Lock

• SUMMARY Lock a resource.

• CLASS. Resource

• SYNOPSIS

int KS_Lock(K_RES resource);

• DESCRIPTION . . . The KS_Lock microkernel service provides a generalized way of protecting a
logical resource. If the resource is busy at the time of request, the call
returns with an error code. If the resource is available, the resource is
marked BUSY to prevent others from using it. The logical resource can be
anything such as a shared database, non-reentrant code, an I/O server, etc.
Nested lock requests by the current owner are supported. KS_Unlock
requests by non-owners are ignored.

• RETURN VALUE . . RC_OK if successful, RC_FAIL if otherwise.

• EXAMPLE

K_RES GRAPHRES;

K_SEMA BUZZER;

/*

 * if display is in use, use buzzer to give warning

 */

if (KS_Lock(GRAPHRES) != RC_OK) {

 KS_Signal(BUZZER);

} else {

 display_warning();

 KS_Unlock(GRAPHRES);

}

• SEE ALSO. KS_LockW

KS_LockWT

KS_Unlock

KS_UnlockW

KS_UnlockW
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 65

Alphabetical List of Virtuoso microkernel services
11.34. KS_LockW

• SUMMARY Lock a resource with wait.

• CLASS Resource

• SYNOPSIS

int KS_LockW(K_RES resource);

• DESCRIPTION . . . The KS_LockW microkernel service provides a generalized way of protect-
ing a logical resource. If the resource is in use at the time of request, the call-
ing task is inserted into the waiting list in order of priority. If the resource is
available, the resource is marked BUSY to prevent others from using it. The
logical resource can be anything such as a shared database, non-reentrant
code, an I/O server, etc. Nested lock requests by the current owner are sup-
ported. KS_Unlock requests by non-owners are ignored.

• RETURN VALUE . . RC_OK.

• EXAMPLE

K_RES GRAPHRES;

(void) KS_LockW(GRAPHRES);

moveto(100,100);

lineto(200,100);

KS_Unlock(GRAPHRES);

• SEE ALSO. KS_LockW

KS_LockWT

KS_Unlock

KS_UnlockW

KS_UnlockW
P2 - 66 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.35. KS_LockWT

• SUMMARY Lock a resource with timed out wait.

• CLASS. Resource

• SYNOPSIS

int KS_LockWT(K_RES resource,

 K_TICKS ticks);

• DESCRIPTION . . . The KS_LockWT microkernel service provides a way of protecting a logical
resource. If the resource is already owned by another task at the time of
request, the calling task is inserted in the waiting list in order of priority. The
calling task is removed from the waiting list at the moment the resource
becomes available or if the time-out expires. If the resource is available, the
resource is marked BUSY to prevent others from using it. The logical
resource can be anything such as a shared database, non-reentrant code,
an I/O server, etc. Nested lock requests by the current owner are supported.
However, KS_Unlock requests by non-owners are ignored.

• RETURN VALUE . . RC_OK if successful, RC_TIME if not successful.

• EXAMPLE

K_RES GRAPHRES;

if (KS_LockWT(GRAPHRES, 100) == RC_OK) {

 moveto(100,100);

 lineto(200,100);

 KS_Unlock(GRAPHRES)

} else {

 printf("cannot lock graphical display\n");

}

• SEE ALSO. KS_LockW

KS_LockWT

KS_Unlock

KS_UnlockW

KS_UnlockW
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 67

Alphabetical List of Virtuoso microkernel services
11.36. KS_LowTimer

• SUMMARY Read the microkernel system timer.

• CLASS Timer

• SYNOPSIS

K_TICKS KS_LowTimer(void);

• DESCRIPTION . . . This call returns the current value in ticks of the microkernel system clock as
defined during system generation.

• RETURN VALUE . . The current system clock value.

• EXAMPLE

K_TICKS TimeNow;

TimeNow = KS_LowTimer();

• SEE ALSO. KS_Elapse

KS_HighTimer

• SPECIAL NOTES . . The precision is processor dependent.
P2 - 68 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.37. KS_MoveData

• SUMMARY Copy data.

• CLASS. Processor Specific

• SYNOPSIS

void KS_MoveData(int node,

 int size,

 void *source,

 void *destination,

 int direction);

• DESCRIPTION . . . Copy size bytes of data from a source address on a source node to a desti-
nation address on a destination node as indicated by the direction (RECV or
SEND) and wait until the operation is finished. When the direction is RECV
(receive), the node argument is the source node and the destination node is
the one on which the receiving task is residing. When the direction is SEND
(transmit), the node argument is the destination node and the source node is
the one on which the sending task is residing. With SEND, the service
returns when it is safe to overwrite the original data but the return does not
indicate the remote termination of the operation. With RECV the service
returns when all data has been moved to the destination area. On a single
processor the operation is implemented as a memcpy operation.

• RETURN VALUE . . NONE

• EXAMPLE

int VideoNode;

char Image1[1024]

char *DisplayMem;

KS_MoveData(VideoNode,1024, &Image1, DisplayMem, SEND);

• SEE ALSO. iface.h

• SPECIAL NOTES . . This service must be used with care. While it provides for the highest da-
tarates, copying to a wrong memory location can have unpredictable results.
Therefore the task that receives the data must provide the sending task with
a valid pointer. Note that the user must take account of the data representa-
tion. If the source and destination areas overlap, the results of this operation
are unpredictable.

The size parameter is the number of 8 bit bytes to be transferred.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 69

Alphabetical List of Virtuoso microkernel services
Care needs to be taken when specifying the size parameter on systems
where characters are stored one per word, or where sizeof does not return
the number of 8 bit bytes in a type.

This service is only available on Virtuoso Classico.
P2 - 70 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.38. KS_Nop

• SUMMARY No operation.

• CLASS. Special

• SYNOPSIS

void KS_Nop(void);

• DESCRIPTION . . . The KS_Nop microkernel service is included in the microkernel services for
completeness. It is used as a benchmark for measuring the minimum inter-
val to enter and exit the microkernel.

• RETURN VALUE . . NONE.

• EXAMPLE

int i;

K_TICKS timestamp, et;

KS_Elapse(×tamp);

for (i = 0; i = 10000; i++) {

 KS_Nop();

}

et = KS_Elapse(×tamp);

printf("10000 NOPs in %d ticks\n", et);
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 71

Alphabetical List of Virtuoso microkernel services
11.39. KS_NodeId

• SUMMARY Node identifier of the calling task.

• CLASS Task

• SYNOPSIS

extern K_NODE KS_NodeId;

• DESCRIPTION . . . The KS_NodeId microkernel variable provides a means of knowing which
node the task resides on.

• RETURN VALUE . . The node identifier.

• EXAMPLE

K_NODE MyNode = KS_NodeId;

• SPECIAL NOTES . . Modifying KS_NodeId will almost certainly have undesirable side effects. In
future versions this variable may become read-only or be replaced by a func-
tion call.
P2 - 72 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.40. KS_PurgeQueue

• SUMMARY Purge the queue of all entries

• CLASS. Queue

• SYNOPSIS

void KS_PurgeQueue(K_QUEUE queue);

• DESCRIPTION . . . The KS_PurgeQueue microkernel service forces a queue to a known
EMPTY state. The KS_Enqueue waiting list is purged of all waiters and all
entries are discarded.

• RETURN VALUE . . NONE

• EXAMPLE

K_QUEUE DATAQ;

K_TASK PUTTER, GETTER;

KS_PurgeQueue(DATAQ); /* reset DATAQ to empty and restart the
tasks*/

KS_Start(PUTTER); /* start producer task */

KS_Start(GETTER); /* start consumer task */

• SEE ALSO. KS_InqQueue

• SPECIAL NOTES . . Waiting tasks will receive RC_OK when they are restarted. This will be
changed in a future version to the correct value, RC_FAIL.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 73

Alphabetical List of Virtuoso microkernel services
11.41. KS_Receive

• SUMMARY Receive a message.

• CLASS Mailbox

• SYNOPSIS

int KS_Receive(K_MBOX mailbox,

 K_MSG *msgstruc);

• DESCRIPTION . . . The KS_Receive message microkernel service is used to retrieve a mes-
sage from a mailbox. If a matching message was found, the receiver’s
K_MSG will be updated using information from the sending task’s K_MSG. If
the receiving task has provided a valid destination pointer, the message data
will be copied automatically, the service returns and the sending task is
rescheduled. Otherwise, if the receiver has provided a NULL pointer, the
copying of the message data is delayed until the receiving task issues a
KS_ReceiveData service call. When the size given by the sender and
receiver differ, the copy operation is limited to the smallest size. If the send-
ing task was filled in as ANYTASK, the first matching message in the mailbox
will be received. The KS_Receive call returns with an error if no matching
message is available in the mailbox.

• RETURN VALUE . . RC_OK if successful, RC_FAIL if not successful.

• EXAMPLE

K_MSG msg;

char data[256];

msg.size = 256;

msg.tx_task = ANYTASK;

msg.rx_data = data;

if (KS_Receive (MAIL1, &msg)== RC_OK) {

 printf("Received %d bytes from %d\n",

 msg.size,

 msg.tx_task);

} else {

 printf("No matching message\n");

}

P2 - 74 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
• SEE ALSO. KS_Send

KS_SendW

KS_SendWT

KS_ReceiveW

KS_ReceiveWT

KS_ReceiveData

Practical hints section of this manual

• SPECIAL NOTES . . The size member is the number of 8 bit bytes in the message.

Care needs to be taken when specifying sizes on systems where characters
are stored one per word, or where sizeof does not return the number of 8 bit
bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 75

Alphabetical List of Virtuoso microkernel services
11.42. KS_ReceiveData

• SUMMARY Get the message data

• CLASS Mailbox

• SYNOPSIS

void KS_ReceiveData(K_MSG *msgstruc);

• DESCRIPTION . . . The KS_ReceiveData microkernel service is used to retrieve the message
data that belongs to the previously received message. The message data is
copied to the destination address provided by the receiving task and the
sending task is rescheduled. If the size member of the message structure is
set to zero, only the latter action is performed.

• RETURN VALUE . . NONE

• EXAMPLE

K_MSG msg;

K_MBOX MBOX1;

char data[256];

msg.size = 9999999;

msg.tx_task = ANYTASK;

msg.rx_data = data;

KS_ReceiveW (MBOX1, &msg);

if (msg.size > 256) {

 printf("message too large\n");

 msg.size = 0;

}

KS_ReceiveData(&msg);

• SEE ALSO. KS_Send

KS_SendW

KS_SendWT

KS_Receive

KS_ReceiveW
P2 - 76 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
KS_ReceiveWT

• SPECIAL NOTES . . The size member is the number of 8 bit bytes in the message.

Care needs to be taken when specifying sizes on systems where characters
are stored one per word, or where sizeof does not return the number of 8 bit
bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 77

Alphabetical List of Virtuoso microkernel services
11.43. KS_ReceiveW

• SUMMARY Receive a message with wait.

• CLASS Mailbox

• SYNOPSIS

int KS_ReceiveW(K_MBOX mailbox,

 K_MSG *msgstruc);

• DESCRIPTION . . . The KS_ReceiveW message microkernel service operates like the
KS_Receive microkernel service except that the call only returns when there
is a matching message in the mailbox.

• RETURN VALUE . . RC_OK.

• EXAMPLE

K_MSG msg;

K_MBOX MAIL1;

char data[256];

msg.size = 256;

msg.tx_task = ANYTASK;

msg.rx_data = data;

KS_ReceiveW(MAIL1, &msg);

printf ("Received %d bytes from %d\n", msg.size, msg.tx_task);

• SEE ALSO. KS_Send

KS_SendW

KS_SendWT

KS_Receive

KS_ReceiveWT

KS_ReceiveData

Section 7.5 of this manual.

• SPECIAL NOTES . . The size member is the number of 8 bit bytes in the message.

Care needs to be taken when specifying sizes on systems where characters
are stored one per word, or where sizeof does not return the number of 8 bit
bytes in a type.
P2 - 78 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.44. KS_ReceiveWT

• SUMMARY Receive a message with timed out wait.

• CLASS. Mailbox

• SYNOPSIS

int KS_ReceiveWT(K_MBox mailbox,

 K_MSG *msgstruc,

 K_TICKS ticks);

• DESCRIPTION . . . The KS_Receive message microkernel service operates like the
KS_ReceiveW microkernel service except that the waiting is limited to time-
out ticks.

• RETURN VALUE . . RC_OK if successful, RC_TIME if not successful.

• EXAMPLE

K_MSG msg;

K_MBOX MAIL1;

K_TASK ANYTASK;

char data[256];

msg.size = 256;

msg.tx_task = ANYTASK;

msg.rx_data = data;

if (KS_ReceiveWT (MAIL1, &msg, 100) == RC_OK) {

 printf("Received %d bytes from %d\n",

 msg.size,

 msg.tx_task);

} else {

 printf("Timed out on receive\n");

}

• SEE ALSO. KS_Send

KS_SendW

KS_SendWT

KS_Receive

KS_ReceiveW

KS_ReceiveData
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 79

Alphabetical List of Virtuoso microkernel services
• SPECIAL NOTES . . The size member is the number of 8 bit bytes in the message.

Care needs to be taken when specifying sizes on systems where characters
are stored one per word, or where sizeof does not return the number of 8 bit
bytes in a type.
P2 - 80 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.45. KS_ResetSema

• SUMMARY Reset the semaphore count to zero.

• CLASS. Semaphore

• SYNOPSIS

void KS_ResetSema(K_SEMA sema);

• DESCRIPTION . . . The ResetSema microkernel service resets the semaphore count to zero
and hence erases all previous signalling operations. This microkernel ser-
vice can be of use while recovering from a system error.

• RETURN VALUE . . NONE.

• EXAMPLE

K_SEMA DeviceReady;

KS_ResetSema(DeviceReady); /* reset semaphore */

KS_Wait(DeviceReady); /* and wait on it */

• SEE ALSO. KS_Signal

KS_Wait
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 81

Alphabetical List of Virtuoso microkernel services
11.46. KS_ResetSemaM

• SUMMARY Reset a list of semaphores.

• CLASS Semaphore

• SYNOPSIS

void KS_ResetSemaM(K_SEMA *semalist);

• DESCRIPTION . . . The ResetSemaM microkernel service performs like the KS_ResetSema
microkernel service except that it operates on a semaphore list. A sema-
phore list is an array of semaphores terminated by the predefined constant
ENDLIST. This microkernel service reduces the number of Virtuoso micro-
kernel service operations needed when multiple semaphores must be reset.

• RETURN VALUE . . NONE.

• EXAMPLE

K_SEMA event;

K_SEMA semalist[] = {

 SWITCH1,

 SWITCH2,

 SWITCH3,

 ENDLIST;

};

KS_ResetSemaM(&semalist); /* forget switch history */

event = KS_WaitM(semalist); /* wait for switches */

• SEE ALSO. KS_ResetSema

KS_Signal

KS_SignalM

KS_Wait

KS_WaitM
P2 - 82 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.47. KS_RestartTimer

• SUMMARY Restart a timer.

• CLASS. Timer

• SYNOPSIS

void KS_RestartTimer(K_TIMER *timer,

 K_TICKS delay,

 K_TICKS cyclic_period);

• DESCRIPTION . . . The KS_RestartTimer service restarts a timer with a new delay and optional
cyclic period. It does not matter if the timer has already expired or not. The
semaphore parameter given in a previous KS_StartTimer call remains in
effect.

• RETURN VALUE . . NONE.

• EXAMPLE

K_TIMER *timer4;

K_SEMA TRIGGER;

timer4 = KS_AllocTimer();

KS_StartTimer(timer4,10,0,TRIGGER); /* signal in 10 ticks */

....

KS_RestartTimer (timer4,10,0); /* restart countdown */

• SEE ALSO. KS_StartTimer

KS_StopTimer

• SPECIAL NOTES . . KS_RestartTimer should be used only after a KS_StartTimer call for the
same timer, otherwise the timer semaphore will be undefined.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 83

Alphabetical List of Virtuoso microkernel services
11.48. KS_Resume

• SUMMARY Resume a task.

• CLASS Task

• SYNOPSIS

void KS_Resume(K_TASK task);

• DESCRIPTION . . . The KS_Resume microkernel service clears the SUSPENDED state of a
task caused by a KS_Suspend microkernel service.

• RETURN VALUE . . NONE.

• EXAMPLE

K_TASK tapereader;

KS_Resume(tapereader); /* resume the task */

• SEE ALSO. KS_ResumeG

KS_Suspend

KS_SuspendG
P2 - 84 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.49. KS_ResumeG

• SUMMARY Resume a task group.

• CLASS. Task

• SYNOPSIS

void KS_ResumeG(K_TGROUP taskgroup);

• DESCRIPTION . . . The KS_ResumeG microkernel service clears the SUSPENDED state of a
task group. It is equivalent to calling KS_Resume for every task in the speci-
fied groups but guarantees that the operation is performed as a single
atomic action.

• RETURN VALUE . . NONE.

• EXAMPLE

K_TGROUP DEVICES;

KS_ResumeG(DEVICES); /* resume all device drivers */

• SEE ALSO. KS_ResumeG

KS_Suspend

KS_SuspendG
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 85

Alphabetical List of Virtuoso microkernel services
11.50. KS_Send

• SUMMARY Send a message to a mailbox.

• CLASS Mailbox

• SYNOPSIS

int KS_Send(K_MBOX mbox,

 K_PRIO prio,

 K_MSG *msg);

• DESCRIPTION . . . The KS_Send microkernel service inserts a message into the mailbox in
order of the indicated priority. If the receiver used a valid pointer as the desti-
nation address, the microkernel initiates a data copy operation limited to the
smallest of the message sizes indicated by the sender and receiver. At the
end of the datacopy the sending task is rescheduled. If the rx_task field in
the K_MSG was set to the predefined constant ANYTASK, the first receiver
of the waiting list with a matching sender field will receive the message. If no
receiver is waiting on a matching message, the call returns an error code
and no mailbox insertion is made.

• RETURN VALUE . . RC_OK if successful, RC_FAIL if not successful.

• EXAMPLE

K_MSG msg;

K_TASK RECEIVER;

char datastring[] = "testdata";

msg.size = strlen(datastring) + 1;

msg.tx_data = datastring;

msg.rx_task = RECEIVER;

if (KS_Send (BOX1, 2, &msg) == RC_OK) {

 printf("MSG Send OK, receiver was waiting\n");

• SEE ALSO. KS_SendW

KS_SendW

KS_Receive

KS_ReceiveW

KS_ReceiveWT

KS_ReceiveData
P2 - 86 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
• SPECIAL NOTES . . The size member is the number of 8 bit bytes in the message.

Care needs to be taken when specifying sizes on systems where characters
are stored one per word, or where sizeof does not return the number of 8 bit
bytes in a type.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 87

Alphabetical List of Virtuoso microkernel services
11.51. KS_SendW

• SUMMARY Send a message and wait for receiver.

• CLASS Mailbox

• SYNOPSIS

int KS_SendW(K_MBOX mbox,

 K_PRIO prio,

 K_MSG *msg);

• DESCRIPTION . . . The send message and wait microkernel service is similar to the send mes-
sage microkernel described above, except that the sending task will wait
until a receiver is ready to accept the message.

• RETURN VALUE . . RC_OK.

• EXAMPLE

K_MSG msg;

K_TASK LOWTASK;

K_MBOX POBOX9;

char datastring[] = "testdata";

msg.task = LOWTASK;

msg.size = strlen(datastring) + 1;

msg.data = datastring;

(void)KS_SendW(POBOX9, 3, &msg);

printf("Message transmitted and received\n");

• SEE ALSO. KS_Send

KS_SendWT

KS_Receive

KS_ReceiveW

KS_ReceiveWT

• SPECIAL NOTES . . The size member is the number of 8 bit bytes in the message.

Care needs to be taken when specifying sizes on systems where characters
are stored one per word, or where sizeof does not return the number of 8 bit
bytes in a type.
P2 - 88 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.52. KS_SendWT

• SUMMARY Send a message with timed out wait.

• CLASS. Mailbox

• SYNOPSIS

int KS_SendWT(K_MBOX box,

 K_PRIO prio,

 K_MSG *msg,

 K_TICKS ticks);

• DESCRIPTION . . . The KS_SendWT microkernel service is similar to the KS_SendW microker-
nel service described above, except that the waiting time is limited to the
number of ticks specified. If the call times out, no message is left in the mail-
box.

• RETURN VALUE . . RC_OK if successful, RC_TIME if timed out.

• EXAMPLE

K_MSG msg;

K_MBOX BOX1;

K_TASK RECEIVER;

char datastring[] = "testdata";

msg.size = strlen(datastring) + 1;

msg.tx_data = datastring;

msg.rx_task = RECEIVER;

if (KS_SendWT (BOX1, 2, &msg, 100) == RC_OK) {

 printf("MSG sent OK, receiver was waiting\n");

} else {

 printf("Timed out no receiver\n");

• SEE ALSO. KS_Send

KS_SendWT

KS_Receive

KS_ReceiveW

KS_ReceiveW
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 89

Alphabetical List of Virtuoso microkernel services
• SPECIAL NOTES . . The size member is the number of 8 bit bytes in the message.

Care needs to be taken when specifying sizes on systems where characters
are stored one per word, or where sizeof does not return the number of 8 bit
bytes in a type.
P2 - 90 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.53. KS_SetEntry

• SUMMARY Set the entry point of a task.

• CLASS. Task

• SYNOPSIS

void KS_SetEntry(K_TASK task,

 void (*function)(void));

• DESCRIPTION . . . The KS_SetEntry function will set the entry point of a task to a given func-
tion. At the next KS_Start call for the given task, the task will execute the
specified function.

• RETURN VALUE . . NONE.

• EXAMPLE

extern void new_function (void);

K_TASK LOWTASK;

KS_SetEntry(LOWTASK, new_function);

KS_Abort(LOWTASK);

KS_Start(LOWTASK); /* starts in new_function() */

• SEE ALSO. KS_Start

KS_Aborted

• SPECIAL NOTE. . . You can only set the entry point of a local task. Attempting to set the entry
point of a non-local task will have unpredictable side effects.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 91

Alphabetical List of Virtuoso microkernel services
11.54. KS_SetPrio

• SUMMARY Change the priority of a task.

• CLASS Task

• SYNOPSIS

void KS_SetPrio(K_TASK task,

 int priority);

• DESCRIPTION . . . The KS_SetPrio microkernel service will change the priority of the specified
task. A task switch will occur if the calling task is no longer the highest prior-
ity runable task.

• RETURN VALUE . . NONE.

• EXAMPLE

int MyPrio;

MyPrio = KS_TaskPrio(); /* save my priority * /

KS_SetPrio(KS_TaskId, 3); /* raise my priority */

KS_Lock(FILERES);

readfile();

KS_Unlock (FILERES);

KS_SetPrio(KS_TaskId, MyPrio); /* reset my priority */

• SEE ALSO. KS_TaskPrio

• SPECIAL NOTES . . This microkernel service does not modify the order of insertion in any of the
waiting lists. If KS_SetPrio is used to raise the probability of becoming run-
able, if must be used before invoking the desired microkernel service. Gener-
ally speaking changing the priority of a task must be used with caution and
only used for addressing time limited scheduling problems.

A low numeric value is a high priority. Thus the highest priority task has a
priority of one.
P2 - 92 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.55. KS_SetSlice

• SUMMARY Set timeslicing period.

• CLASS. Task

• SYNOPSIS

void KS_SetSlice (K_TICKS ticks,

 K_PRIO prio);

• DESCRIPTION . . . The KS_SetSlice kernel service will timeslice equal priority tasks if they have
a priority lower than the one indicated. Note that if there is only one task with
the same priority that is runnable, the service will have no effect as the task
will be rescheduled immediately.

• RETURN VALUE . . NONE.

• EXAMPLE

/*

 * set the timeslice period to 300 ms

 * for all tasks with a priority below 20

 */

KS_SetSlice(300, 20);

• SEE ALSO. KS_Yield

• SPECIAL NOTE. . . A low numeric value is a high priority. Thus the highest priority task has a pri-
ority of one.

This service is only available in Virtuoso Classico.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 93

Alphabetical List of Virtuoso microkernel services
11.56. KS_SetWlper

• SUMMARY Set workload period.

• CLASS Special

• SYNOPSIS

void KS_SetWlper(int period);

• DESCRIPTION . . . The KS_SetWlper microkernel service is used to specify the workload mea-
suring interval. The KS_Workload service will return the average workload
over the last full period and the current one. The period must be specified in
milliseconds and be between 10 and 1000 milliseconds..

• RETURN VALUE . . NONE.

• EXAMPLE

/*

 * set the workload period to 300 ms

 */

KS_SetWlper(300);

• SEE ALSO. KS_Workload

The workload monitor section in the debugging chapter of this manual.

• SPECIAL NOTES . . The actual range of the period is processor dependent as each processor
has a different granularity for its timer.
P2 - 94 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.57. KS_Signal

• SUMMARY Signal a semaphore.

• CLASS. Semaphore

• SYNOPSIS

void KS_Signal(K_SEMA sema);

• DESCRIPTION . . . The KS_Signal microkernel service is used to signal a semaphore. If the
semaphore waiting list is empty, the semaphore counter is incremented, oth-
erwise the first (highest priority) waiting task is rescheduled.

• RETURN VALUE . . NONE.

• EXAMPLE

K_SEMA SWITCH;

KS_Signal(SWITCH); /* signal semaphore SWITCH */

• SEE ALSO. KS_SignalM

KS_ResetSemaM

KS_Test

KS_Test(M)(W)(T)
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 95

Alphabetical List of Virtuoso microkernel services
11.58. KS_SignalM

• SUMMARY Signal a list of semaphores.

• CLASS Semaphore

• SYNOPSIS

void KS_SignalM(K_SEMA semalist);

• DESCRIPTION . . . The KS_SignalM microkernel service is equivalent to (but much faster than)
calling KS_Signal for every semaphore in the list. The signaling of the sema-
phores is atomic if this service is used instead of multiple KS_Signal calls. A
semaphore list is an array of semaphores terminated by the predefined con-
stant ENDLIST.

• RETURN VALUE . . NONE.

• EXAMPLE

K_SEMA Alarms[] = {

 ALARM1,

 ALARM2,

 PANIC,

 ENDLIST

}

KS_SignalM(Alarms);

• SEE ALSO. KS_Signal

KS_ResetSemaM

KS_Test

KS_Test(M)(W)(T)
P2 - 96 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.59. KS_Sleep

• SUMMARY Deschedule for a number of ticks.

• CLASS. Task

• SYNOPSIS

void KS_Sleep(K_TICKS ticks);

• DESCRIPTION . . . The KS_Sleep microkernel service deschedules the calling task (itself) and
reschedules it after the specified number of ticks. It allows a task to delay
execution for a certain time in a simple way, without using timers or sema-
phores.

• RETURN VALUE . . NONE

• EXAMPLE

KS_Sleep(100); /* delay for at least 100 ticks */

• SEE ALSO. KS_Suspend

• SPECIAL NOTES . . A sleep of zero ticks is equivalent to a call to KS_Yield.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 97

Alphabetical List of Virtuoso microkernel services
11.60. KS_Start

• SUMMARY Start a task

• CLASS Task

• SYNOPSIS

void KS_Start(K_TASK task);

• DESCRIPTION . . . The KS_Start task microkernel service is used to start a task from its begin-
ning. The specified task is made runable and its entry point is called. If the
task is of higher priority than the current task, a context switch is performed
and the new task runs, otherwise control is returned to the caller.

• RETURN VALUE . . NONE

• EXAMPLE

K_TASK SHUTDOWN;

KS_Start(SHUTDOWN); /* start SHUTDOWN */

• SEE ALSO. KS_Abort

• SPECIAL NOTES . . This is NOT a recommended way to start a task at short notice (or to perform
a ‘programmed’ task switch). A much faster way to start execution of a task is
to start it before it is actually needed, and make it wait on a semaphore or
use a KS_Suspend/KS_Resume pair.

If this service is used in an attempt to restart a task that is already running
the result is unpredictable (but almost certainly not what was wanted).
P2 - 98 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.61. KS_StartG

• SUMMARY Start a group of tasks.

• CLASS. Task

• SYNOPSIS

void KS_StartG(K_TGROUP group);

• DESCRIPTION . . . The KS_StartG microkernel service is used to start a group (or a number of
groups) of tasks. This is much more efficient than starting each task individu-
ally, as at most one task switch will be needed. Its use also guarantees that
on each node marking the tasks READY is an atomic operation.

• RETURN VALUE . . NONE

• EXAMPLE

K_TGROUP WORKERS;

K_TGROUP SLAVES;

KS_StartG(WORKERS | SLAVES);

• SEE ALSO. KS_Abort

• SPECIAL NOTES . . If this service is used in an attempt to restart a task that is already running
the result is unpredictable (but almost certainly not what was wanted).
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 99

Alphabetical List of Virtuoso microkernel services
11.62. KS_StartTimer

• SUMMARY Start a timer.

• CLASS Timer

• SYNOPSIS

void KS_StartTimer(K_TIMER *timer,

 K_TICKS delay,

 K_TICKS cyclic_period,

 K_SEMA sema);

• DESCRIPTION . . . KS_StartTimer starts the timer with an initial delay, specified in ticks, (one
shot operation) and from then on with an optional cyclic period. The sema-
phore will be signalled each time the timer triggers.

• RETURN VALUE . . NONE.

• EXAMPLE

K_TICKS *timer4;

K_SEMA MySema;

timer4 = KS_AllocTimer();

/*

 * signal Mysema after 100 ticks,

 * and then every 20 ticks

 */

KS_StartTimer (timer4, 100, 20, MySema);

• SEE ALSO. KS_RestartTimer

KS_StopTimer

• SPECIAL NOTES . . The delay and cyclic period should be greater than zero, or unpredictable
side effects may occur.
P2 - 100 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.63. KS_StopTimer

• SUMMARY Stop a timer.

• CLASS. Timer

• SYNOPSIS

void KS_StopTimer(K_TIMER *timer);

• DESCRIPTION . . . KS_StopTimer removes an active timer from the timer queue. If the timer has
already expired, this call has no effect.

• RETURN VALUE . . NONE.

• EXAMPLE

K_TIMER *timer4;

K_SEMA MySema;

timer4 = KS_AllocTimer();

/*

 * signal MySema after 100 ticks,

 * and then every 20 ticks

 */

KS_StartTimer(timer4, 100, 20, MySema);

....

KS_StopTimer(timer4);

/*

 * no more signals to MySema now

 */

• SEE ALSO. KS_StartTimer
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 101

Alphabetical List of Virtuoso microkernel services
11.64. KS_Suspend

• SUMMARY Suspend execution of a task

• CLASS Task

• SYNOPSIS

void KS_Suspend(K_TASK task);

• DESCRIPTION . . . The KS_Suspend microkernel service causes the specified task to be placed
into a suspended state. The suspended state will remain in force until it is
removed by a KS_Resume or KS_Abort microkernel service. A task may
suspend itself.

• RETURN VALUE . . NONE.

• EXAMPLE

K_TASK DETECT;

KS_Suspend(DETECT); /* suspend task DETECT */

KS_Suspend(KS_TaskId); /* suspend myself */

• SEE ALSO. KS_SuspendG

KS_Resume

KS_ResumeG
P2 - 102 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.65. KS_SuspendG

• SUMMARY Suspend execution of a group of tasks.

• CLASS. Task

• SYNOPSIS

void KS_SuspendG(K_TGROUP group);

• DESCRIPTION . . . The KS_SuspendG microkernel service is equivalent to calling KS_Suspend
for every task that is a member of the specified group(s). The service is per-
formed atomically on each node.

• RETURN VALUE . . NONE

• EXAMPLE

K_TGROUP CONTROL;

KS_SuspendG(CONTROL); /* suspend all tasks in CONTROL group */

• SEE ALSO. KS_Suspend

KS_Resume

KS_ResumeG
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 103

Alphabetical List of Virtuoso microkernel services
11.66. KS_TaskId

• SUMMARY Read task identifier.

• CLASS Task

• SYNOPSIS

K_TASK KS_TaskId;

• DESCRIPTION . . . The KS_TaskId microkernel variable contains the calling task’s identifier.

• RETURN VALUE . . NONE

• EXAMPLE

printf("Hi, I am task %08x\n", KS_TaskId);

• SEE ALSO. KS_TaskPrio

KS_NodeId

• SPECIAL NOTES . . This variable should be treated as read-only. This may be enforced by future
versions of the microkernel, or the variable may be replaced by a function.
P2 - 104 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.67. KS_TaskPrio

• SUMMARY Read current task priority.

• CLASS. Task

• SYNOPSIS

int KS_TaskPrio;

• DESCRIPTION . . . The KS_TaskPrio microkernel variable contains the calling task’s current pri-
ority.

• RETURN VALUE . . NONE.

• EXAMPLE

K_MBOX BOX1;

K_MSG msg;

...

KS_SendW(BOX1,KS_TaskPrio,&msg);/* Send at current priority */

• SEE ALSO. KS_SetPrio

• SPECIAL NOTES . . This variable is actually accessed via a macro and should be treated as
read-only. This may be enforced by future versions of the microkernel, or the
variable may be replaced by a function.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 105

Alphabetical List of Virtuoso microkernel services
11.68. KS_Test

• SUMMARY Test a semaphore.

• CLASS Semaphore

• SYNOPSIS

int KS_Test(K_SEMA sema);

• DESCRIPTION . . . The KS_Test microkernel service is used to test whether a specified event
has occured. The event must be associated with the given semaphore. If the
semaphore count is greater than zero, the call returns RC_OK and the
semaphore count is decremented by one. Otherwise the calling task returns
with an RC_FAIL.

• RETURN VALUE . . RC_OK or RC_FAIL.

• EXAMPLE

K_SEMA semaphore;

if (KS_Test(semaphore) == RC_OK) {

 printf("semaphore was signalled\n");

} else {

 printf("semaphore not signalled\n");

}

• SEE ALSO. KS_TestW

KS_TestWT

KS_TestMW

KS_TestMWT

KS_Signal

KS_SignalM

• SPECIAL NOTES . . In Virtuoso Micro this service is implemented as a macro.
P2 - 106 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.69. KS_TestMW

• SUMMARY Test multiple semaphores.

• CLASS. Semaphore

• SYNOPSIS

K_SEMA KS_TestMW(K_SEMA *list);

• DESCRIPTION . . . The KS_TestMW microkernel service performs the same function as the
KS_TestW microkernel service except that it uses a semaphore list. This
function operates as a logical OR. The occurrence of an event associated
with any one of the semaphores in the list will cause resumption of the wait-
ing task.

• RETURN VALUE . . Semaphore identifier of the event that occurred.

• EXAMPLE

K_SEMA Event;

K_SEMA List1 [] = {

 SWITCH1,

 SWITCH2,

 TIMERA,

 ENDLIST

};

Event = KS_TestMW(List1); /* wait for any of 3 events */

• SEE ALSO. KS_Test

KS_TestWT

KS_TestMWT

KS_Signal

KS_SignalM

• SPECIAL NOTES . . In the situation where multiple events occur, only the first one will be
returned. The rest will be serviced correctly on subsequent KS_Test(M)(W)
calls. Note that a significant overhead can result when the semaphores
reside on remote processors.

In Virtuoso Micro this service is implemented as a macro.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 107

Alphabetical List of Virtuoso microkernel services
11.70. KS_TestMWT

• SUMMARY Test multiple semaphores with timed out wait.

• CLASS Semaphore

• SYNOPSIS

K_SEMA KS_TestMWT(K_SEMA *list,

 K_TICKS ticks);

• DESCRIPTION . . . The KS_TestMWT microkernel service performs the same function as the
KS_TestMW microkernel service except that the waiting time is limited to the
specified number of ticks. This function operates as a logical OR. The occur-
rence of an event associated with any one of the semaphores in the list, or a
timeout, will cause resumption of the waiting task.

• RETURN VALUE . . Semaphore identifier of the event that occurred, or the predefined constant
ENDLIST if timed out.

• EXAMPLE

K_SEMA Event;

K_SEMA List1[] = {

 SWITCH1,

 SWITCH2,

 TIMERA,

 ENDLIST

};

Event = KS_TestMWT(List1, 100);

if (Event == ENDLIST) {

 printf("Timed out after 100 ticks\n");

} else {

 printf("one of the three events happened\n");

}

• SEE ALSO. KS_Test

KS_TestMW

KS_TestMWT

KS_Signal

KS_SignalM
P2 - 108 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
• SPECIAL NOTES . . In the situation where multiple events occur, only the first one will be
returned. The rest will be serviced correctly on subsequent KS_Test calls.
Note that a significant overhead can result when the semaphores reside on
remote processors.

In Virtuoso Micro this service is implemented as a macro.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 109

Alphabetical List of Virtuoso microkernel services
11.71. KS_TestW

• SUMMARY Test a semaphore.

• CLASS Semaphore

• SYNOPSIS

int KS_TestW(K_SEMA sema);

• DESCRIPTION . . . The KS_TestW microkernel service is used to make a task wait for a speci-
fied event to occur. The event must be associated with the given semaphore.
If the semaphore count is greater than zero, the call returns immediately and
the semaphore count is decremented by one. Otherwise the calling task is
put into the semaphore waiting list in order of the task priority.

• RETURN VALUE . . RC_OK.

• EXAMPLE

K_SEMA ADC_SEMA;

KS_TestW(ADC_SEMA);

• SEE ALSO. KS_Test

KS_TestWT

KS_TestMW

KS_TestMWT

KS_Signal

KS_SignalM

• SPECIAL NOTES . . In Virtuoso Micro this service is implemented as a macro.
P2 - 110 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.72. KS_TestWT

• SUMMARY Test a semaphore with time out.

• CLASS. Semaphore

• SYNOPSIS

int KS_TestWT(K_SEMA sema,

 K_TICKS ticks);

• DESCRIPTION . . . The KS_TestWT microkernel service is used to make a task wait for a speci-
fied event to occur. The event must be associated with the given semaphore.
If the semaphore count is greater than zero, the call returns immediately and
the semaphore count is decremented by one. Otherwise the calling task is
put into the semaphore waiting list in order of the task priority. The task is
removed from the waiting list when the semaphore is signalled or when the
timeout expires.

• RETURN VALUE . . RC_OK if the semaphore was signalled, RC_TIME if timed out.

• EXAMPLE

K_SEMA ADC_SEMA;

if (KS_TestWT(ADC_SEMA, 10) == RC_TIME) {

 printf("No ADC event in 10 ticks\n");

}

• SEE ALSO. KS_Test

KS_TestW

KS_TestMW

KS_TestMWT

KS_Signal

KS_SignalM

• SPECIAL NOTES . . In Virtuoso Micro this service is implemented as a macro.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 111

Alphabetical List of Virtuoso microkernel services
11.73. KS_Unlock

• SUMMARY Release logical resource.

• CLASS Resource

• SYNOPSIS

void KS_Unlock(K_RES resource);

• DESCRIPTION . . . The KS_Unlock microkernel service decrements the lock level of a logical
resource. If the new lock level is zero, the resource is unlocked and available
for other users. The call is ignored if the calling task is not the owner of the
resource.

• RETURN VALUE . . NONE

• EXAMPLE

K_RES DATABASE;

KS_Lock(DATABASE); /* grab shared resource */

Add_Record(); /* and update it */

KS_Unlock(DATABASE); /* now release it for other tasks */

• SEE ALSO. KS_Lock

KS_LockW

KS_LockWT

• SPECIAL NOTES . . Upon unlocking, the resource is allocated to the next task in the (priority
ordered) waiting list.
P2 - 112 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.74. KS_User

• SUMMARY Execute function at microkernel level.

• CLASS. Special

• SYNOPSIS

int KS_User(int (*function)(void *),

 void *ArgList)

• DESCRIPTION . . . The KS_User microkernel service is used to execute a user function at the
priority level of the microkernel. All microkernel service requests (from ISR’s,
other nodes, or the timer system) will be queued until the user function
returns. The user function should be short, and must not issue any microker-
nel service calls. Practically speaking, during the execution a preemption of
tasks is disabled.

• RETURN VALUE . . The return value of the function.

• EXAMPLE

struct arg {

} MyArgs;

extern int MyFunction(MyArgs *);

result = KS_User(MyFunction, &MyArgs);

• SPECIAL NOTE. . . The second parameter to the user function should be a pointer to a structure
containing any parameters the function needs. Needless to say, grave disor-
der will result if the caller and the routine do not agree on the structure lay-
out.

This service cannot be used to run a the function on a remote node.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 113

Alphabetical List of Virtuoso microkernel services
11.75. KS_Wait

• SUMMARY Wait on a semaphore.

• CLASS Semaphore

• SYNOPSIS

int KS_Wait(K_SEMA sema);

• DESCRIPTION . . . The KS_Wait microkernel service is used to test whether a specified event
has occurred. The event must be associated with the given semaphore. If
the semaphore count is greater than zero, the call returns RC_OK and the
semaphore count is decremented by one. Otherwise the calling task returns
with an RC_FAIL.

• RETURN VALUE . . RC_OK or RC_FAIL.

• EXAMPLE

K_SEMA semaphore;

if (KS_Wait(semaphore) == RC_OK) {

 printf("semaphore was signalled\n");

} else {

 printf("semaphore not signalled\n");

}

• SEE ALSO. KS_WaitT

KS_WaitM

KS_WaitMT

KS_Signal

KS_SignalM

• SPECIAL NOTES . . In Virtuoso Classico this service is implemented as a macro.
P2 - 114 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.76. KS_WaitM

• SUMMARY Wait on a list of semaphores.

• CLASS. Semaphore

• SYNOPSIS

K_SEMA KS_WaitM(K_SEMA *list);

• DESCRIPTION . . . The KS_WaitM microkernel service performs the same function as the
KS_Wait microkernel service except that it uses a semaphore list. This func-
tion operates as a logical OR. The occurrence of an event associated with
any one of the semaphores in the list will cause resumption of the waiting
task.

• RETURN VALUE . . Semaphore identifier of the event that occurred, or the predefined constant
ENDLIST if no semaphore was signalled.

• EXAMPLE

K_SEMA Event;

K_SEMA List1[] = {

 SWITCH1,

 SWITCH2,

 TIMERA,

 ENDLIST

};

Event = KS_WaitM(List1); /* test for any of 3 events */

• SEE ALSO. KS_Wait

KS_WaitT

KS_WaitMT

KS_Signal

KS_SignalM

• SPECIAL NOTES . . In the situation where multiple events occur, only the first one will be
returned. The rest will be serviced correctly on subsequent KS_Wait(M)
calls. Note that a significant overhead can result when the semaphores
reside on remote processors.

This call is only available on Virtuso Micro.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 115

Alphabetical List of Virtuoso microkernel services
11.77. KS_WaitMT

• SUMMARY Wait on multiple semaphores with time out.

• CLASS Semaphore

• SYNOPSIS

K_SEMA KS_WaitMT(K_SEMA *list,

 K_TICKS ticks);

• DESCRIPTION . . . The KS_WaitMT microkernel service performs the same function as the
KS_WaitM microkernel service except that the waiting time is limited to the
specified number of ticks. This function operates as a logical OR. The occur-
rence of an event associated with any one of the semaphores in the list, or a
timeout, will cause resumption of the waiting task.

• RETURN VALUE . . Semaphore identifier of the event that occurred, or the predefined constant
ENDLIST if timed out.

• EXAMPLE

K_SEMA Event;

K_SEMA List1[] = {

 SWITCH1,

 SWITCH2,

 TIMERA,

 ENDLIST

};

Event = KS_WaitMT(List1, 100);

if (Event == ENDLIST) {

 printf("Timed out after 100 ticks\n");

} else {

 printf("one of the three events happened\n");

}

• SEE ALSO. KS_Wait

KS_WaitM

KS_Signal

KS_SignalM

• SPECIAL NOTES . . In the situation where multiple events occur, only the first one will be
returned. The rest will be serviced correctly on subsequent KS_Wait(M)
calls. Note that a significant overhead can result when the semaphores
P2 - 116 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
reside on remote processors.

In Virtuoso Classico this service is implemented as a macro.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 117

Alphabetical List of Virtuoso microkernel services
11.78. KS_WaitT

• SUMMARY Wait on a semaphore with time out.

• CLASS Semaphore

• SYNOPSIS

int KS_WaitT(K_SEMA sema,

 K_TICKS ticks);

• DESCRIPTION . . . The KS_WaitT microkernel service is used to make a task wait for a speci-
fied event to occur. The event must be associated with the given semaphore.
If the semaphore count is greater than zero, the call returns immediately and
the semaphore count is decremented by one. Otherwise the calling task is
put into the semaphore waiting list in order of the task priority. The task is
removed from the waiting list when the semaphore is signalled or when the
timeout expires.

• RETURN VALUE . . RC_OK if the semaphore was signalled, RC_TIME if the call timed out.

• EXAMPLE

K_SEMA ADC_SEMA;

if (KS_WaitT(ADC_SEMA, 10) == RC_TIME) {

 printf("No ADC event in 10 ticks\n");

}

• SEE ALSO. KS_Wait

KS_WaitM

KS_WaitMT

KS_Signal

KS_SignalM

• SPECIAL NOTES . . In Virtuoso Classico this service is implemented as a macro.
P2 - 118 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Alphabetical List of Virtuoso microkernel services

PA
R

T
 3
11.79. KS_Workload

• SUMMARY Read the current workload.

• CLASS. Special

• SYNOPSIS

int KS_Workload(void);

• DESCRIPTION . . . The workload microkernel service returns the current workload as a number
ranging from 0 to 1000. Each unit equals .1 % of the time the CPU was not
idling during the last workload measuring interval.

• RETURN VALUE . . The measured workload.

• EXAMPLE

int wl;

wl = KS_Workload();

• SEE ALSO. KS_SetWlper
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 119

Alphabetical List of Virtuoso microkernel services
11.80. KS_Yield

• SUMMARY Yield the CPU to another task

• CLASS Task

• SYNOPSIS

void KS_Yield(void);

• DESCRIPTION . . . The KS_Yield microkernel service will voluntary yield the processor to the
next equal priority task that is runable. Using KS_Yield, it is possible to
achieve the effect of round robin scheduling. If no task with the same priority
is runable and if no task switch occurs, the calling task resumes execution.

• RETURN VALUE . . NONE

• EXAMPLE

KS_Yield();

• SEE ALSO. KS_SetSlice
P2 - 120 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Hostserver and netloader

PA
R

T
 3
12. Hostserver and netloader

12.1. Host server functionality

The host server is a program that does not run on the target but on a host
computer, e.g. a PC or workstation. It communicates with the target using
the available communication mechanism (most often a serial line, an ISA bus
interface, or a VME interface). Some custom solutions can be more compli-
cated and communicate between the target and the host computer using
intermediate processors, ethernet, etc.

The host server is optional when developing programs with Virtuoso (as all
Virtuoso code is rommable) but it greatly helps during the development and
maintenance phase.

The host server provides two main functions :

1. Resetting and booting the target;

2. Providing runtime I/O and executing Remote Procedure Calls.

The host server is board and host dependent. We will use the generic name
HOST_X to describe its use. Note that on older versions of the software, a
different syntax for the options maybe in use.

12.1.1. Resetting and booting the target

The command line syntax is as follows :

HOST_X [- options] <network file>

Options are :

-r : Reset and set up all boards listed in the network file.

-l : Load the executable files on all nodes listed in the network file.

-s : Enable server functions. If this option is not given, the program
will terminate after loading the network.

-v : Make the program more verbose

-q : Make the program less verbose

-z : Single node operation, no call to netload() in main1.c. Normally
used for single processor targets.

Options can be separated (-l -s -q), or combined (-lsq), and may be given
in any order.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 121

Hostserver and netloader
A network file must have the extension .NLI. You don’t have to type it as it will
be appended by the host program.

Note also that in older versions of the software, the single processor versions
did not take the *.NLI file but the executable image file as first parameter. To
facilitate portability we are applying the multiprocessor approach for single
as well as the multiprocessor packages, even if this means that the node
information and the interconnection topology is not used.

Examples :

HOST_X <ENTER>

displays the help message

HOST_X test <ENTER>

reads and syntax checks the network file ‘test.nli’

HOST_X -rlsvv test <ENTER>

runs the application described in ‘test.nli’, shows full
details of booting operations, and provides services to
application.

12.2. Network file

The network file (*.NLI) is board and target dependent. See the read.me files
and the examples for the right contents to use with your board. We provide
here a generic explanation.

Network (.NLI) files are text files that can be created using a program editor.
Most of the data is in tabular form, with fields separated by spaces or tabs.
Comment lines (# as first printing character) can be freely inserted.

All *.NLI file can have different sections. But not all boards require the same
set to be defined in the *.NLI file !

12.2.1. Host interface definition.

 <INTERFACE_TYPE> <IO_ADDRESS>

Examples :

LINKC012 150 /* HEMA TA1 transputer link interface */

MEGALINK 200 /* Sang Megalink */

HEPC2 300 /* Hunt Engineering HEPC2 */
P2 - 122 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Hostserver and netloader

PA
R

T
 3
12.2.2. List of boards

Example :

TYPE ID IOB_0 IOB_1 DPRAM CTRL CONF

#--------------------------------

DPCC40 B1 300 0 D400 0800 0000

DPCC40 B2 340 0 0000 0 0

TYPE : keyword for board definition

ID : name for the board

IOB_0 : PC I/O Block 0 address. This will be required for all boards.

I0B_1 : PC I/O Block 1 address. Required if you use DB40.EXE

DPRAM : This is the SEGMENT address of the Dual Port Ram on the PC
side. This is required on the root node only.

CTRL : Value written to the Control Register after reset.

CONF : Value written to the Config Register after reset.

See the DPCC40 manual for a detailed description of CTRL and CONF.

12.2.3. List of nodes.

Example :

TYPE ID LOCATION SITE LBCR GBCR IACK FILE

#------------------- -----------------------------------

TIM40 NODE1 B1 PRI 3deba050 32778010 80000000 test1.out

TIM40 NODE2 B1 SEC 3deba050 32778010 80000000 test2.out

TYPE : keyword for node definition

ID : symbolic name of the node

LOCATION : symbolic name of board and site (PRI or SEC), if any

MEMORY CONTROL WORDS (target dependent)

The following three values are required by all C40 boot loaders.

LBCR : local bus control register
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 123

Hostserver and netloader
GBCR : global bus control register

IACK : iack address

FILE : the executable file to be loaded on the node.

Note : on some recent board specific ports, two files need to be defined. The
first one is the bootstrap loader, while the second one is the executable
image.

12.2.4. Root node definition.

ROOTNODE <symbolic name of root node>

Example :

ROOTNODE NODE1

The root node is the node that is directly interfaced to the host.

When booting, the root node is loaded first, then all others are booted from
one of their comports.

When the application is running, driver tasks placed on the root node will
interface to the server program on the host, and provide services for the C40
network.

12.2.5. List of comport links available for booting.

Example :

NODE PORT NODE PORT

#-----------------------

BOOTLINK NODE1 1 NODE2 4

BOOTLINK NODE2 1 NODE3 4

BOOTLINK : keyword for bootlink definition

NODE : symbolic name of node

PORT : comport number

You don’t have to specify all available comport links, a minimal set that con-
nects all nodes is all that is required. The hostprogram will find out the short-
est path to boot each node.
P2 - 124 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Hostserver and netloader

PA
R

T
 3
12.3. Host server interface

The hostserver is accessed from the target using a low level driver. This
driver establishes a protocol between the server and the target. The target
always takes the initiative. This is done by writing to a memory location
called TXDATA using the call_server() function. The reply from the server
can be read in the RXDATA memory location. Access to the host as well as
to the memory locations must be protected by locking on the HOSTRES
resource.

The host server functionality can easily be extended by the user. See the
\user subdirectory. You will need to recompile the host server.

12.4. Host interface low level driver

These functions permit a direct access to the host server. They are intended
for the kernel developer and are only available on the root processor.

void server_echo (unsigned c);

As many entries as indicated by the parameter of the function are trans-
ferred from the array TXDATA to the host server. The host server will
then return a copy of that packet to the array RXDATA.

void server_exit (int c);

#define server_terminate ()server_exit (0);

This function will terminate the host server. The value of its parameter
is used as a return value for the server program.

This macro will terminate the host server and return 0 (zero) to the envi-
ronment of the server program.

int server_getarg(int argnum, char *buffer, int buflen);

It can be used for reading arguments following the network filename on
the host program commandline. The function returns nonzero if the
argument is present, and zero otherwise. Argument 0 is the *.NLI file-
name.

int server_getenv (int *srce, char *dest, int len);

It can be used for reading arguments following the network filename on
the host program commandline. The function returns nonzero if the
argument is present, and zero otherwise. Argument 0 is the *.NLI file-
name.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 125

Hostserver and netloader
void call_server (void);

This function transfer the contents of the TXDATA memory area to the
hostserver and returns when the reply has been written in RXDATA.

void server_system (char *comm);

This function will execute the command pointed to by the parameter (in
text format) in the environment of the host program and return the value
of that system call.

void server_putchar (int c);

This function requests the host server to put a character on the host
server screen.

void server_putstring (char *s);

This function requests the host server to put the string that is pointed to
by the parameter, on the host server screen.

int server_pollesc (void);

int server_pollkey (void);

These functions poll the host server for a keyboard input, the escape
key (used for starting the debugger), resp.

UNS32 server_time (void);

This function requests the environment of the host program, the calen-
dar time and returns that value.

12.5. Higher level drivers

Three drivers are provided that communicate with the hostserver using the
call_server() function of the low level driver. Thanks to the use of system
wide queues they permit any task to access the hostserver, even if is located
on a processor node that is not connected to the host. These drivers are Vir-
tuoso tasks. They must be defined in the SYSDEF file together with the used
queues and resources.
P2 - 126 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Hostserver and netloader

PA
R

T
 3
Driver Use Input queue Outputqueue Resource

CONODRV Console_out CONOQ CONRES

CONIDRV Console_in CONIQ CONRES

STDIODRV Std I/O STDIQ STDOQ STDIORES

GRAPHDRV Graphics GRAPHIQ GRAPHOQ GRAPHRES

Note : The Borland PC version simulates the hostserver using a hostserver
task. The interface also uses two semaphores to synchronize the communi-
cation. See the section on the 80X86 version for more details.

12.5.0.a. Console input and output

The console drivers provide a character based input and output with the
hostserver. The following functions are provided :

KS_EnqueueW(CONOQ, char, sizeof(char))

Output a character. Can be used from a remote processor.

KS_DequeueW(CONIQ, char, sizeof(char))

Input a character. Can be used from a remote processor.

printl(char *string, K_RES CONRES, K_QUEUE CONOQ)

Output a string ofcharacters.

For formatting the string use the sprintf() function from the stdio library.

These character based functions are used by the Virtuoso Task Level debug-
ger when used with a terminal connection. While its operation is slower than
using std I/O, it has the advantage that the full stdio.lib is not needed. This
reduces memory requirements as well as permits an easy port when that
target is only accessible using a terminal.

12.5.0.b. Standard I/O driver

This driver provides standard I/O. They should not be used with the console
drivers as first characters might be lost. The following section details the
available functions.

12.5.0.c. Graphics driver

This driver implements an emulation of Borland DOS graphics calls. The fol-
lowing section lists the available calls.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 127

Runtime libraries
13. Runtime libraries

13.1. Standard I/O functions

13.1.1. Implementation limits

These functions provide the same functionality as the equivalent ones pro-
vided with the runtime library of your compiler. Note however that they were
adapted to work in conjunction with the multitasking and distributed environ-
ment of Virtuoso and use the host server program. See the manual of the
compiler for a description.

#define BUFSIZ = 512 /* Default buffer size use by
“setbuf” function */

#define MAXBLKSIZE 0x4000 /* internal use */

#define MAXPACKETLEN 256 /* internal use */

#define MAXFILEPTRS 32 /* internal use */

#define MAXSTRINGLEN 240 /* maximum string length */

#define MAXPATHLEN 220 /* maximum path length */

#define MAXFMODELEN 20 /* internal use */

These limitations find their origin in the communication protocol. The com-
munication protocol uses 64 words. The first word is the header, followed by
a command and/or the data.

13.1.2. Standard I/O functions

/* _stdio.h - standard input/output functions */

FILE *fopen (

const char *path,

const char *mode);

FILE *freopen (

const char *path,

const char *mode,

FILE *stream);

int fclose (

FILE *stream);

int fgetc (

FILE *stream);
P2 - 128 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Runtime libraries

PA
R

T
 3
int fputc (

int c,

FILE *stream);

int ungetc (

int c,

FILE *stream);

char *fgets (

const char *string,

int n,

FILE *stream);

int fputs (

const char *string,

FILE *stream);

char *gets (

char *string);

int puts (

const char *string);

size_t fread (

void *ptr,

size_t size,

size_t nmembs,

FILE *stream);

size_t fwrite (

const void *ptr,

size_t size,

size_t nmembs,

FILE *stream);

int fgetpos (

FILE *stream,

fpos_t *pos);

int fsetpos (

FILE *stream,

const fpos_t *pos);

int feof (

FILE *stream);

int ferror (

FILE *stream);

int fflush (

FILE *stream);
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 129

Runtime libraries
int fseek (

FILE *stream,

long int offset,

int origin);

long ftell (

FILE *stream);

void setvbuf (

FILE *stream,

char *buf, int mode,

size_t size);

int rename (const char *old,

const char *new);

int unlink (const char *name);

int fileno (FIE *stream);

fstat (int filedesc,

struct stat *info);

stat (const char *name,

struct stat *info);

#define getc fgetc

#define putc fputc

#define getchar() getc (stdin)

#define putchar(c) fputc (c,stdout)

#define rewind(f) fseek (f,0,SEEK_SET)

#define setbuf(f,b) setvbuf (f,b,_IOFBF,BUFSIZ)

#define remove(f) unlink(f);

int fprintf (

FILE *F,

const char *format, ...);

int vfprintf (

FILE *F,

const char *format,

va_list vargs);

int printf (

const char *format, ...);

int vprintf (

const char *format,

va_list vargs);

int sprintf (

char *s,

const char *format, ...);
P2 - 130 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Runtime libraries

PA
R

T
 3
int vsprintf (

char *s,

const char *format,

va_list vargs);

13.2. PC graphics I/O

13.2.1. Overview

From version 1.2 on, an optional graphical server is included. The distributed
graphics server introduced with version 1.2 enables you to perform graphics
operations on the PC screen from any task on any processor in the system.

The interface is not designed for heavy-duty graphics work but will be useful
in many applications, e.g. to provide an attractive ‘human interface’.

The graphics server works as follows:

1. Application tasks use the function calls defined in GRINT.C. These
functions format your data into command packets that are send to a
graphics driver task.

2. Two queues (GRAPHOQ and GRAPHIQ) establish the system wide
connection between the application tasks and the driver task.

3. The driver task, GRAPHDRV, executes on the root processor and
communicates with the host PC server program. GRAPHDRV should
run at fairly high priority, normally just below the console drivers.

4. The PC server program has been recompiled with the Borland C++
compiler, and is extended to interface to the Borland BGI drivers.
These drivers do the actual plotting on the screen. The extended
server is fully compatible with the standard version, and you can use it
to run the compiler tools as well.

The two queues must be protected by a resource named GRAPHRES. This
is necessary for two distinct reasons:

1. The queues are 4 bytes wide, and a graphic command packet can
take any number of words. While a packet is being sent to the driver,
other tasks must be blocked from interfering.

2. Tasks should not be allowed to modify the graphics context (current
color, position, textsize, etc.) while another task is using the graphics
server. For this reason, a lock and unlock call built into every function
would not be sufficient.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 131

Runtime libraries
To use the graphics calls, you should:

1. Lock GRAPHRES

2. Restore your graphics context (if necessary)

3. Perform the plotting actions

4. Save the graphics context (if necessary)

5. Unlock GRAPHRES

The original Borland functions used to read the current context are some-
what impractical if frequent saving and restoring is required. For this reason,
these calls have been modified to use a more symmetric syntax. Most of
these now take the same predefined struct as a parameter for both reading
or writing a selected part of the context. For some other calls, the syntax has
been modified for technical reasons, e.g. it doesn’t make sense to have
pointers into to the PC memory space on a transputer.

Most graphics functions are of void type and will not even wait for anything to
return on the GRAHIQ queue. This means that graphics actions are not nec-
essarily executed when the interface functions return. To wait until execution
has finished (e.g. after a change to text mode, and before using the console
driver), use a value returning call such as graphresult (). This will deschedule
the calling task until the result is available.

The best way to explore the graphics server is to use one of the demonstra-
tion programs as a starting point and play with it. Much practical information
can be found in GRINT.H. The next section gives only a short description of
all functions, classified by type. For detailed information you should consult
the documentation supplied with the Borland compiler.

13.2.2. Driver and mode selection
void detectgraph (

int *driver,

int *mode);

Tests the graphics hardware and returns the correct driver number for
the installed graphics adapter, and the highest mode number available
from this driver. The returned driver value will be zero, if the BGI
library is unable to use the hardware.

void initgraph (

int driver,

int mode);

Switches to graphics display using the selected driver and mode. The
driver parameter should be the value returned by detectgraph (), or
the predefined constant DETECT (see GRINT.H).In the latter case,
P2 - 132 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Runtime libraries

PA
R

T
 3
the graphics library will use detectgraph() to find out about the hard-
ware. The mode number can be any mode supported by that driver.
This call clears the display and presets all graphics parameters to
their default values.

void setgraphmode (int mode);

Switches to the selected display mode using the current driver. This
can only be used if the graphics system is already initialized, i.e. after
a call to initgraph ().

void restorecrtmode (void);

Switches back to the screen mode, that was active before the graph-
ics system was initialized. This will normally be a text mode. The cur-
rent driver remains installed, and you can return to a graphics display
using setgraphmode ().

void closegraph (void);

Closes the current graphics driver. To use graphics again, a call to init-
graph () must be used.

void setactivepage (int page);

If the graphics adapter supports multiple pages, this call can be used
to select the page used by the plotting routines, i.e. the page that is
written to.

void setvisualpage (int page);

If the graphics adapter supports multiple pages, this call can be used
to select the page used by the video display circuits, i.e. the currently
displayed page.

void graphdefaults (void);

sets all graphics settings to their defaults.

The next two calls exist mainly for the benefit of the debugger task, which
has to be able to switch to text mode at any moment. If correctly used, as
described below, these calls can be ‘nested’ and used in application code as
well.

int savescreen (void);

Switches to text mode after having saved the current graphics screen
and context in DOS memory. This calls returns non zero only if it actu-
ally did save the graphics screen and context. In this case, it should
be matched afterwards by a call to restscreen ().A zero return value
indicates that the call was not necessary (already in text mode), or
that not enough DOS memory was available.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 133

Runtime libraries
int graphresult (void);

Returns an error code for the last unsuccesful graphics operation.

13.2.3. Read or write graphics parameters and context
void getmodepars (struct modepars *mpars);

Obtains parameters describing the current graphics mode. This can
be used to make a program adapt itself to the available hardware, and
so be more ‘portable’. See GRINT.H for details on the values returned
in the modepars structure. The pixel aspect ratio parameters
describes the relative visual size in X and Y of a pixel. This can be
used to obtain the same scaling in X and Y.

void setviewport (struct viewport *vport);

Sets the viewport for the following plot actions. A ‘viewport’ is a rect-
angular part of the screen. The origin (the point referenced by coordi-
nates (0, 0)) is set at the upper left corner of this rectangle. If the ‘clip’
field is not zero, all following plot actions are limited to the area deter-
mined by the viewport.

void getviewport (struct viewport *vport);

Reads the current viewport and ‘clip’ option.

void setallpalette (struct palette *pal);

Sets the current palette. The palette determines the mapping of color-
numbers to visual colors. The coding depends heavily on the selected
driver and mode. For details, see GRINT.H and documentation sup-
plied with your hardware.

void getallpalette (struct palette *pal);

Reads the current palette.

void setpalette (

int colornum,

int color);

Sets the current color mapping for one color only.

void setrgbpalette (

int color,

int r,

int g,

int b);

As setpalette, but for the IBM 8514 adapter (driver 6) only.
P2 - 134 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Runtime libraries

PA
R

T
 3
void setfillstyle (struct fillstyle *fstyle);

The ‘fillstyle’ determines how filled object are plotted. You can select
the color to be used, a number of standard patterns, or set a user fill
pattern. The user fill pattern is an 8 by 8 pixel pattern, represented as
an 8 character array. See GRINT.H for parameter details.

void getfillstyle (struct fillstyle *fstyle);

Reads the current fillstyle.

void getuserpars (struct userpars *upars);

Reads the current user parameters. See the USERPARS typedef for
details. There is no corresponding setuserpars () - these values can
be set by the five next calls documented below.

void setcolor (int color);

Sets the current line and text color. The solid filling color is set by the
setfillstyle function.

void setbkcolor (int color);

Sets the current background color.

void setlinestyle (

int style,

int patt,

int thick);

Sets the line drawing parameters. You can select the line thickness, a
number of standard patterns, or a user-defined pattern.

void settextstyle (

int font,

int direct,

int size);

Sets the text plotting parameters. There are five standard fonts sup-
plied with BGI drivers. Font 0 is an 8 by 8 pixel bitmap font. The others
are ‘line’ fonts. You can also specify the direction of the text and its
size.

void settextjustify (

int horiz,

int vert);

Selects text justifications options for the outtext() function.

void setwritemode (int mode);

Sets writemode for plotting operations. This can be ‘overwrite’ (mode
= 0) or ‘exclusive or’ (mode = 1).
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 135

Runtime libraries
void getcurrcoords (struct point *xy);

Reads the current graphics position.

13.2.4. Drawing pixels and lines
void putpixel (

int x,

int y,

int color);

int getpixel (

int x,

int y);

Plots or read pixel.

void moveto (

int x,

int y);

void moverel (

int dx,

int dy);

Moves to absolute or relative position.

void lineto (

int x,

int y);

void linerel (

int dx,

int dy);

void line (

int x1,

int y1,

int x2,

int y2);

void rectangle (

int left,

int top,

int right,

int bot);
P2 - 136 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Runtime libraries

PA
R

T
 3
void circle (

int xc,

int yc,

int r);

void arc (

int xc,

int yc,

int a0,

int a1,

int r);

void ellipse (

int xc,

int yc,

int a0,

int a1,

int xr,

int yr);

Draws full lines, rectangle, circle, circular arc, or elliptical arc. using
current color and linestyle.

Notes:

1. xc, yc = centre of circle or ellipse, a0, a1 = start and end angle of arc,

2. r, xr, yr = radii.

The driver performs any necessary aspect ratio corrections, so a circle will
always be a real circle and not an ellipse, even with non-square pixels. The
next function can be used to read the x, y values calculated by the driver:

void drawpoly (

int npoints,

int *points);

Draws polygon. The second parameter is an array of integers, with
alternating x and y coordinates. To obtain a closed polygon, repeat
the first point at the end. This is much more faster than repeated line
drawing calls.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 137

Runtime libraries
13.2.5. Drawing filled forms
void pieslice (

int xc,

int yc,

int a0,

int a1,

int r);

void sector (

int xc,

int yc,

int a0,

int a1,

int xr,

int yr);

void fillellipse (

int xc,

int yc,

int xr,

int yr);

void bar (

int left,

int top,

int right,

int bottom);

void bar3d (

int left,

int top,

int right,

int bottom,

int depth,

int topflag);

void fillpoly (

int n,

int *points);

void floodfill (

int x,

int y,

int border);

Draws filled shapes using the current fill color or pattern.
P2 - 138 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Runtime libraries

PA
R

T
 3
13.2.6. Text plotting
int installuserfont(char *name);

Adds a user-supplied font to the list of five standard fonts known by
the driver.

void setusercharsize (

int multx,

int divx,

int multy,

int divy);

This function can be used for fine scaling of a ‘line font’. It has no
effect on bitmapped fonts.

void textdimensions (

char *text,

int *x,

int *y);

Requests pixel dimensions of text.

void outtext (char *text);

void outtextxy (

int x,

int y,

char *text);

Outputs a text at current position or at x, y.

13.2.7. Other graphical calls

The next three calls can be used to implement a simple ‘icon’ system.

int getimage(

int left,

int top,

int right,

int bottom);

Saves part of the screen to DOS memory. This function allocates a
block of memory on the host PC and saves part of the graphics
screen to this area. Returns 0 if the allocation failed, a block number
otherwise. The size of a block is limited to 64K minus a few bytes.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 139

Runtime libraries
void putimage(

int left,

int top,

int block,

int op);

Puts a previously saved block on the screen at left, top, using a
selected logical operation (see GRINT.H for details). The block
remains in DOS memory and can be replotted any number of times.

void freeimage(int block);

Forgets saved blocks and releases the DOS memory they use.

void cleardevice (void);

void clearviewport (void);

These calls are supposed to fill the entire screen or the current view-
port with the current background color. There seems to be some prob-
lems (at least in the EGA-VGA driver) with these calls, and the best
thing is to avoid using them. An alternative way to clear (part of) the
screen is to plot a solid rectangle (bar).

void getarccoords (struct arccoords *arc);

Returns the actual start and end coordinates used for plotting circle or
ellipse based objects (e.g. arc, pieslice, etc.).
P2 - 140 Virtuoso Reference Manual Copyright 1996 Eonic Systems

System Configuration

PA
R

T
 3
14. System Configuration

14.1. System configuration concepts

Central to the concept of Virtuoso is the use of a system generation tool that
provides two basic functions to the designer. Firstly, it provides a means to
change the system configuration without the need to change the application
program, by regenerating all the necessary system files automatically. Sec-
ondly, it generates all necessary tables and code to initialize the application.

The system generation tool enables the user to write topology independent
code, so that when processors are added or removed and kernel objects
(such as tasks, queues, etc.) are moved or their attributes changed, the
application source code does not need modification.

To define a Virtuoso system configuration a system definition file is used. In
this file, following a simple syntax, the user should describe his application in
terms of topology and kernel objects with their attributes. When done, Sys-
gen is invoked to parse the system definition file and to generate all neces-
sary include files.

14.1.1. Kernel objects

The concept of the Virtuoso kernel is those of objects that are used by the
programmer to achieve the desired result. Each object is of a predefined
type and the application task can invoke the kernel services to operate on
these objects. During the system definition phase, the user must supply the
names and attributes of each object. This will automatically create the kernel
objects as datatypes in C syntax in the include files. The predefined kernel
objects are listed and explained below. The names of the kernel object relate
with the predefined kernel datatypes.

NODE Virtuoso network node where an instance of the kernel is run-
ning

NETLINK defines a communication channel between two nodes.

DRIVER defines a driver function.

TASK keyword for a Virtuoso task.

RES keyword for a Virtuoso resource.

MAP keyword for a Virtuoso memory map.

MAILBOX keyword for a Virtuoso message mailbox.

QUEUE keyword for a Virtuoso message queue.

SEMA keyword for a Virtuoso semaphore.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 141

System Configuration
Note that the K_TICKS are defined in the mainx.c file by the user.

14.2. Sysdef : system definition file format

The system definition file can be made with any text editor.

Many of the kernel objects are known to the kernel by an identifier. This is
generally an integer, e.g. a 32 bit word. The higher bits represent the node
identifier, while the lower bits represent the object identifier. The identifiers
are automatically assigned by Sysgen and must be unique in the system.
Therefore, when adding or deleting an object, make sure that Sysgen is
invoked so that all include files are regenerated.

Sysgen will require the entry of names for the various system objects. All
names follow a standard naming convention. A name is a maximum of 10
characters (if you need more, Sysgen can be adapted), the first of which
must be alphabetic. No embedded spaces are allowed while upper and
lower case can be used. A name must be unique. All attributes of an object
are numbers. Note that the system definition file syntax follows some con-
ventions of C. As a result, you can define numbers as symbolic names, use
include files, and use comments. Entries must be separated by one or more
spaces and must start with a keyword followed by the symbolic name and
the attributes. Note that some definitions and configuration data must be
specified in the main#.c file.

Note that on single processor versions or versions that support only one type
of processor, some of the entries need not to be defined as these are known
by default. As such there are no node and link definitions and the node iden-
tifier is not present as an attribute of the objects. As an example we provide
here a possible system definition file.

/* Example System Definition File */

#define BYTE 1

#define WORD 4

NODE ROOT T8

NODE NODE2 T8

NODE NODE3 C40

NODE NODE4 C40

NETLINK

ROOT ‘NetLink_Driver (1)’ , NODE2 ‘NetLink_Driver (3)’
P2 - 142 Virtuoso Reference Manual Copyright 1996 Eonic Systems

System Configuration

PA
R

T
 3
NETLINK

ROOT ‘Netlink_Driver(2)’ > NODE3 ‘NetLinkDma (3,1)’

NETLINK

ROOT ‘Netlink_Driver(2)’ < NODE3 ‘NetLinkDma (0,1)’

NETLINK

NODE3 ‘NetLinkDma(1,1)’ , NODE4 ‘NetLinkDma (4,1)’

/*

DRIVER ROOT ‘HL03_Driver ()’

*/

DRIVER ROOT ‘HostLinkDma (0, 3, PRIO_ALT)’

DRIVER NODE1 ‘RawLinkDma (2, PRIO_DMA)’

DRIVER NODE2 ‘RawLinkDma (5, PRIO_DMA)’

DRIVER ROOT ‘Timer0_Driver (tickunit)’

DRIVER NODE2 ‘Timer0_Driver (tickunit)’

/* taskname node prio entry stack groups */

/* -- */

#ifdef DEBUG

TASK TLDEBUG ROOT 1 tldebug 400 [SYS EXE]

TASK POLLESC ROOT 1 pollesc 128 [EXE]

#endif

TASK CONIDRV ROOT 2 conidrv 128 [EXE]

TASK CONODRV ROOT 3 conodrv 128 [EXE]

TASK GRAPHDRV ROOT 4 graphdrv 128 [EXE]

TASK WLMON1 ROOT 10 wlmon 256 [WLM]

TASK WLMON2 NODE2 10 wlmon 256 [WLM]

TASK MASTER ROOT 5 master 256 [EXE]

TASK WLGEN ROOT 20 wlgen 256 [EXE]

TASK DIGIT11 ROOT 15 digit11 256 [DIG]

TASK DIGIT12 NODE2 14 digit12 256 [DIG]

TASK DIGIT13 NODE3 13 digit13 256 [DIG]

TASK DIGIT14 NODE2 12 digit14 256 [DIG]

TASK DIGIT15 ROOT 11 digit15 256 [DIG]

TASK DIGIT41 NODE2 15 digit41 256 [DIG]

TASK DIGIT42 NODE3 14 digit42 256 [DIG]

TASK DIGIT43 NODE2 13 digit43 256 [DIG]
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 143

System Configuration
TASK DIGIT44 ROOT 12 digit44 256 [DIG]

TASK DIGIT45 NODE4 11 digit45 256 [DIG]

/* queue node depth width */

/* ------------------------------------ */

#ifdef DEBUG

QUEUE DEBUGIN ROOT 16 4

#endif

QUEUE CONIQ ROOT 16 1

QUEUE CONOQ ROOT 256 1

QUEUE GRAPHIQ ROOT 16 4

/* map node blocks blsize */

/* ------------------------------------ */

MAP MAP1 ROOT 4 1K

/* mailbox node */

/* --------------------------- */

MAILBOX MAILB1 ROOT

/* sema node */

/* ------------------------ */

SEMA CTICK ROOT

SEMA SM11 ROOT

SEMA SM12 NODE2

SEMA SM13 NODE3

SEMA SM14 NODE4

SEMA SM15 ROOT

SEMA SM16 NODE1

/* resource node */

/* ------------------------- */

RESOURCE HOSTRES ROOT

RESOURCE CONRES ROOT

RESOURCE GRAPHRES ROOT

14.2.1. Description requirements for the kernel object types

The relative order of the definitions is not important, except that all NODEs
P2 - 144 Virtuoso Reference Manual Copyright 1996 Eonic Systems

System Configuration

PA
R

T
 3
should be defined before anything else.

14.2.2. Node description

Virtuoso nodes are composed of a processor with its local memory and com-
munications ports. They are identified by a symbolic name followed by their
type if the distinction is relevant.

The syntax of a NODE definition is :

• syntax NODE <name> <type>

• name. The symbolic name

• type. A processor type. e.g. C40 for TMS320C40.

This information is not actually used in this version. More parameters may be
used in future versions, e.g. the number of task priorities (currently fixed at
64).

• example

NODE ROOT T8

NODE NODE2 T8

NODE NODE3 C40

NODE NODE4 C40

This describes 4 nodes, of which two are TMS320C40 DSPs and two are
T800 transputers.

14.3. Driver description

Drivers are defined with their exact C syntax and parameters as they are
intended to be used in the application.

The syntax of a DRIVER definitions is :

• syntax DRIVER <node> ‘<driver(param1, param2, ...)>’

• node The symbolic name for the node.

• driver. The C function call for the driver. Parameters must be correct for the applica-
tion at hand. The default drivers are declared in iface.h.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 145

System Configuration
• example

DRIVER ROOT ‘HostLinkDma (0, 3, PRIO_ALT)’

DRIVER NODE1 ‘RawLinkDma (2, PRIO_DMA)’

DRIVER NODE2 ‘RawLinkDma (5, PRIO_DMA)’

DRIVER NODE1 ‘Timer1_Driver (tickunit)’

14.3.1. Link descriptions

Each Virtuoso node is connected with other Virtuoso nodes through links. A
link is a communication channel composed of a physical carrier between two
ports. Each port is processor dependent and requires a specific driver to be
installed on the port.

Two types of links are distinguished :

1. Netlinks : exclusively used by the Virtuoso system, and only indirectly
by the user upon issuing a kernel service. A Virtuoso specific kernel
protocol is used. The netlink connections are described as pairs of
ports owned by the nodes the driver resides on. SYSGEN.EXE will
find all shortest routes from any node to any other, and compile the
routing tables. An error will be reported if the network is not fully con-
nected

2. Rawlinks : exclusively used by the application tasks for direct commu-
nication with a task on a neighboring processor or an I/O device. The
datatransfer is a raw bit protocol. The raw links are only indicated by
their driver.

Note : the physical carrier for any type of link can be any type of hardware
(e.g. twisted wire, cable, bus connector, common memory). The only require-
ment is a correctly working driver.

The syntax of a NETLINK definitions is :

• syntax NETLINK

<node1> ‘<driver1>’ <connector> <node2> ‘<driver2>’

• node1, node2 The two connected nodes

• driver1, driver2. . . . The drivers used on the respective nodes

• connector The <connector> can be :

, : bidirectional link

> : unidirectional link (from left to right)
P2 - 146 Virtuoso Reference Manual Copyright 1996 Eonic Systems

System Configuration

PA
R

T
 3
< : unidirectional link (from right to left)

Note that the driver description between quotes must be syntactically correct
as it is copied literally into the nodex.c file by sysgen. The separator symbol
is defined as follows :

• example

NETLINK

ROOT ‘NetLink_Driver(1)’ , NODE2 ‘NetLink_Driver (3)’

/* bidirectional link between ROOT and NODE2 */

NETLINK

ROOT ‘Netlink_Driver(2)’ > NODE3 ‘NetLinkDma
(3,PRIO_DMA)’

/* Unidirectional link between ROOT and NODE3 */

NETLINK

ROOT ‘Netlink_Driver(2)’ < NODE3 ‘NetLinkDma
(0,PRIO_DMA)’

NETLINK

NODE3 ‘NetLinkDma(1,PRIO_ALT)’, NODE4
‘NetLinkDma(4,PRIO_ALT)’

DRIVER ROOT ‘RawLinkDma (4, PRIO_DMA)’

DRIVER NODE4 ‘RawLinkDma (5, PRIO_DMA)’

This describes the following network :
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 147

System Configuration
14.3.2. The routing tables

On each processor, the kernel uses a local routing table to know how to
reach other processors. This means that there is no master processor in the
system.

Virtuoso uses a local routing schema. Basically it is a table indexed by the

1 3

2

3

0

ROOT NODE2

NODE3
NODE4

14

HOST

0 3

5

4

Server

4

4 5

5

Netlink

Rawlink

Host Interface

I/O Reg
P2 - 148 Virtuoso Reference Manual Copyright 1996 Eonic Systems

System Configuration

PA
R

T
 3
Processor Number, where each entry presents the local driver that can be
used to forward further the packet to the target node. Parallel routes with the
same minimal length are included. Below is the routing table for NODE3 of
the previous example. The routing tables are part of the generated nodex.c
file and should not be modified by the user.

static int R0001 [] = { 0, -1 };

static int R0002 [] = { 4, 5, -1 };

static int R0003 [] = { 1, -1 };

int *RouteInd [] =

{

R0001,

R0002,

NULL,

R0003

};

Obviously, some ports are not part of the routing network. It could be con-
nected to a peripheral device or simply be left unconnected.

Note that unless there are specific reasons (such as to optimize the network
traffic to suit better the application), the routing tables should never be
edited.

14.4. Task definitions

• syntax TASK <name> <node_name> <priority> <entry_point> <taskgroups>

• name The name used for reference by the application source code for explicit refer-
ence to the task in the Virtuoso function calls. It is also optionally used by the
debugging task.

• node_name The network node the task is residing on.

• priority The priority of the task at boot time. The task’s priority is a number ranging
from 1 (highest priority) to 64 or 255 (lowest priority). Equal priorities may be
specified.

• entry _point The task entry point is the name of the “main()” routine for the task. It follows
normal C conventions for function names.

• stack Size The task stack size in bytes may be defined. The default size is 512 bytes.
Note that an some word oriented 32 bit processors, the stack increments in
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 149

System Configuration
words with 1 word being 4 bytes.

• taskgroups (optional) A task can be part of a taskgroup. The following groups are predefined:

SYS: this includes all the tasks that are not blocked when the task level
debugger is invoked (normally only the debugger task).

EXE: this includes all the tasks that must start up at system initialization.

FPU: this includes all the tasks that use the extended context, e.g. tasks that
use the Floating Point with CPU context on every task switch. Real-time sys-
tems, typically have only a small number of the tasks in the entire suite of
tasks which require floating point support. Context switch time is minimized
by performing the FPU context swap only on demand.

• example TASK TLDEBUG ROOT 1 tldebug 400 [SYS EXE]

14.5. Semaphore definitions

• syntax SEMA <name> <node>

• name The name of the semaphore according to the standard name convention.

• node This is the network node the semaphore is placed on.

• example SEMA ALARM P345

14.6. Resource definitions

• syntax RES <name> <node>

• name The name of the Resource according to the standard name convention.

• node This is the network node that manages the access to the resource. E.g.
when the resource is the console, the node is the one on which the drivers
are placed for accessing the console.

• example RES HOSTRES ROOT

14.7. Queue definitions

• syntax QUEUE <name> <node> <width> <depth>:

• name The name of the Queue according to the standard name convention.

• width The width of the queue is defined as the number of words in a single entry.
P2 - 150 Virtuoso Reference Manual Copyright 1996 Eonic Systems

System Configuration

PA
R

T
 3
The number must be nonzero.

• depth The depth field defines the number of entries in the queue. The depth must
be nonzero. The memory space required for the queue body is the product of
the width times the depth.

• example QUEUE CONOQ ROOT 4 1

14.8. Mailbox definitions

• syntax MAILBOX <name> <node>

• name The name of the Mailbox according to the standard name convention.

• node This is the network node the mailbox is placed on.

• example MAILBOX slave 3

14.9. Memory map definitions

• syntax MAP <name> <#blocks> <size> <node>

• node This is the network node the memory map is placed on.

• name The name of the Memory Partition according to the standard name conven-
tion.

• #blocks The number of blocks in each map. The count must be nonzero. The mem-
ory space required for the map is the product of count and size fields.

• size The size field defines the size of a memory block in bytes. The minimum
block size is 4 bytes.

• example MAP ADBuffer 6 16 ROOT

14.10. Note on the size parameters

As Virtuoso supports processors that allow byte aligned addressing as well
as processors that only allow word aligned addressing, there is a potential
problem. This is due to the fact that the sizeof() function always gives the
size in as a difference between consecutive addresses. Hence on e.g. a DSP
like the 96K a char is represented as a 32bit word with the most left 8bit rep-
resenting the char (from 0 to 255) and this has a size of 1. While this is gen-
erally not a problem when working with integers, it can be a problem when
transferring between two different types of processors.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 151

System Configuration
14.11. Other system information and system initialization

At the moment of writing, some of the necessary system information has to
be defined in the mainx.c file.

This mainx.c file is the actual program that is executed. It starts by initializing
the kernel, the drivers and the ISR system. Some of the global system vari-
ables and constants are defined here as well. These depend on the target
processor as well as on the application. For example:

/*

 * Internal timer clock frequency of 8.333 MHz

 */

#define CLCKFREQ 8333000

/*

 * K_TICK period in microseconds

 */

#define TICKTIME 1000

/*

 * K_TICK frequency in Hertz

 */

#define TICKFREQ 1000

/*

 * K_TICK in CLCKFREQ units

 */

#define TICKUNIT 8333

/*

 * number of timers

 * You need at least one timer for each timer

 * that can allocated at the same time plus

 * one timer for each task that may call a WT

 * service at the same time

 */

#define NTIMERS 20

/*

 * number of command & mail packets.

 * Each packet is 52 bytes long

 */

#define NCPACKS 20
P2 - 152 Virtuoso Reference Manual Copyright 1996 Eonic Systems

System Configuration

PA
R

T
 3
/*

 * the size of data packets in BYTES.

 * This MUST be the same value on all nodes

 */

#define DATALEN 1024

/* data packets are used to buffer raw and message data

 * passing through a node

 * (not at the endpoints - if you have less than three

 * nodes, you don’t need data packets).

 * 4 buffers for each concurrent data transmission will

 * usually be enough.

 */

#define NDPACKS 5

/*

 * number of multiple wait packets

 */

#define NWPACKS 20

See part 3 (the Virtuoso Binding Manual) for more details.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 153

Debugging environment under Virtuoso
15. Debugging environment under Virtuoso

15.1. Task level debugger concepts

The task level debugger provides snapshots of the Virtuoso object states. It
can be called from within the program or from the keyboard. The debugger
operates as a task and is usually set up as the task with the highest priority
on the root node. On other nodes in the system, specific peek-poke functions
are linked in with the Virtuoso kernel so the debugger task on the root can
exam the object states on any node in the system. Whenever The debugger
runs, it freezes the rest of the system thereby permitting coherent views of
the Virtuoso kernel objects. The debugger is not intended as a replacement
for other debugging tools but is meant to assist the user in tuning the perfor-
mance or checking out problems within the Virtuoso environment.

The debugger outputs on the screen of the PC or workstation that acts as
the host of the target board. Some versions also work with a simple charac-
ter terminal. Because the debugger usually operates as the highest priority
task in the system, all other tasks are suspended. Interrupts are serviced as
usual while the debugger is active, but the system TICKS timer will ignore its
interrupt, so that it is effectively halted. Therefore, time spent in the debugger
is invisible at the task level.

Tightly integrated with the task level debugger is the tracing monitor. This
lists an execution trace of the events that were seen at the microkernel level
(and sometimes at the ISR level).

The task level debugger and tracing monitor can be removed by relinking the
application without the debugger and tracing specific parts. Disabling the
DEBUG switch in the makefile will automatically regenerate a new applica-
tion without the debugger and tracing monitor. Make sure that you follow the
outline for the makefile and sysdef file of the examples provided

15.2. Entry into the debugger

15.2.1. Invoking the debugger from the keyboard

The POLLESC task driver will intercept the ESCAPE key, and start the
debugger when this key is pressed. Note that this happens only 1O times per
second and that ongoing activity that uses the host resource (like stdio) will
be finished first before the debugger can get access to the host and starts
up.
P2 - 154 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Debugging environment under Virtuoso

PA
R

T
 3
Once the debugger is entered, the version of the debugger is displayed as :

VIRTUOSO TL Debugger 3.09 NODE 1 NODE1

Started by user interrupt

From the command prompt, the user may enter any of the primary debugger
commands which appear in the following paragraph. All commands must be
terminated by an Enter key. The question mark “?” displays the list of avail-
able commands.

In each command, the user can scroll up and down using the “+” and “-”
keys.

15.2.2. Invoking the debugger from within your program

The task level debugger task can be started by enqueueing the local NodeId
in the DEBUGIN queue. The advantage of this method is the debugger is
started almost immediately,

Example :

K_Node k;

k = KS_NodeId;

KS_Enqueue(DEBUGIN, &k, 4);

Note :

Wirh older versions of Virtuoso, semaphores were used to start up the task
level debugger. Refer the previous version of the manual if you still have an
older version.

15.2.3. Differences at system generation time

In order to use the debugger, you must create a task (normally called TLDE-
BUG) on the root processor and give it the highest priority in the system. The
entry point for the debugger task is a Virtuoso library function named tlde-
bug. Next there is a POLLESC task that scans the keyboard fro the ESCAPE
key. You also need to define a queue (normally called DEBUGIN) for the
debugger as well. Finally your application must be linked with a version of
the Virtuoso library that includes the debug code.

The example programs provided with the distribution show how this can be
organized in such a way that a simple modification of the makefile is all you
need to build a system with or without debugger.

Note that on older versions of Virtuoso (v.3.0) a slightly different mechanism
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 155

Debugging environment under Virtuoso
was used. This used a semaphore instead of a queue to start up the debug-
ger. Refer to the examples or the read.me files.

15.2.4. Debugger commands

Entering a response of “H” (or “h”) followed by a carriage return to the TLDE-
BUG prompt causes the debugger command menu to be displayed. It
appears as:

VIRTUOSO TL Debugger 3.09 NODE 1 NODE1

Started by user interrupt

A - Allocation of memory

C - Clock & Timers

K - Stack use

L - Monitor listing

M - Mailboxes

N - Network info

O - Other node

Q - Queues

R - Resources

S - Semaphores

T - Task status

X - Exit debugger

Z - Reset Counts

$ - Task Manager Mode

? - This help screen

15.2.5. Tasks

Selection of this option produces a snapshot of the state of all the tasks in
the system as shown below. The snapshot contains three columns of infor-
mation:

 Name the task’s symbolic name

 Prio the current task priority

 State current task state
P2 - 156 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Debugging environment under Virtuoso

PA
R

T
 3
Example :

 VIRTUOSO TL Debugger 3.09 NODE 1 NODE1 TASK STATES

 # Name Prio State

--

 0 TLDEBUG 11 +

 1 POLLESC 1 - Waiting for Timer

 2 CONIDRV 2 - Waiting for Resource

 3 CONODRV 3 - Waiting for Dequeue

 4 GRAPHDRV 4 -

 5 WLMON1 10 - Waiting for Resource

 6 MASTER 5 - Waiting for Sema

 7 WLGEN 20 - Waiting for Dequeue

 8 DIGIT11 15 - Waiting for Resource

 9 DIGIT13 13 - Waiting for Sema

10 DIGIT14 12 - Waiting for Sema

11 DIGIT15 11 - Waiting for Sema

12 DIGIT22 14 - Waiting for Sema

13 DIGIT24 12 - Waiting for Sema

14 DIGIT31 15 - Waiting for Resource

15 DIGIT33 13 - Waiting for Sema

16 DIGIT35 11 - Waiting for Sema

17 DIGIT42 14 - Waiting for Sema

The legitimate state descriptions are:

- Task suspended by debugger

+ Task active

Inactive Task not started

Terminated Task terminated

Suspended Task suspended

Waiting for Timer Sleep state

Waiting for Driver Waiting on return of driver function

Waiting for Datamove Waiting on return of KS_MoveData

(may be part of service using mailbox)

Waiting for Event Waiting on return of KS_EventW

Waiting for Enqueue Waiting on return of KS_Enqueue(W)(T)

Waiting for Dequeue Waiting on return of KS_Dequeue(W)(T)

Waiting for Send Waiting on return of KS_Send(W)(T)

Waiting for Receive Waiting on return of KS_Receive(W)(T)

Waiting for Sema Waiting on return of KS_Wait(T)
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 157

Debugging environment under Virtuoso
Waiting for Semalist Waiting on return of KS_WaitM(T)

Waiting for Resource Waiting on return of KS_Lock

Waiting for Allocation Waiting on return of KS_Alloc(W)

Waiting for Network Waiting for network reply - transient state

15.2.6. Queues

This command produces a snapshot of the queues in the system as shown
below. Six columns are used in the snapshot.

Name the queue’s symbolic name

Ncurr the current number of entries in the queue

Nmax the maximum number of entries ever been in use

Size the queue size as defined at system generation

Count the number of times the queue was enqueued or dequeued.

Waiters a list of waiting tasks to enqueue or dequeue.

The Queue snapshot appears as:

>q

QUEUE STATES

Name Level Nmax Size Count Waiters

CONIQ 0 0 32 1

CONOQ 0 121 256 731 CONODRV

DEMOQX1 0 953 4 45 QUEUETST

DEMOQX4 0 1000 8 87

15.2.7. Semaphores

The semaphores’ state are represented in four columns:

Name the semaphore’s symbolic name

Level the current level value of the semaphore

Count the total number of times the semaphore was signalled

Waiters the tasks waiting on the semaphore to be signaled

> s

SEMAPHORE STATES

Name Level Count Waiters

SEM0 0 123 TEST1

SEM1 0 0
P2 - 158 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Debugging environment under Virtuoso

PA
R

T
 3
SEM2 3 0

SEM3 3 0

SEM4 0 0

DEBUGGO 0 1

15.2.8. Resources

The resource states are provided in 5 columns.

Name the symbolic name

Count the number of KS_Lock (W) requests that were made

Confl the number of times the resource was locked when a
KS_Lock(W) request was made

Owner the current owner task

Waiters the tasks in the resource waiting list

> r

RESOURCE STATES

Name Count Confl Owner Waiters

--

 0 HOSTRES 26370 83 TLDEBUG

 1 CONRES 0 0

 2 GRAPHRES 574 449 TLDEBUG BALL1 BALL3 ...

15.2.9. Memory Partitions

The memory partition information is given six columns:

Name the map’s symbolic name

NCurr the number of blocks in use

Nmax the maximum number of blocks ever used

Size the size of the map as defined at system generation

Count the numbers of time a block of the map was allocated or deallo-
cated

Waiters the list of waiting tasks
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 159

Debugging environment under Virtuoso
> a

MAP STATES

 # Name Ncurr Nmax Size Count Waiters

 0 MAP1 2 3 4 7

 1 MAP2 40 40 40 67 Task3

15.2.10. Tracing monitor

The tracing monitor is a part of the Virtuoso Task Level Debugger. During
normal kernel activities, relevant information about the system is saved in a
circular buffer, so that the recent history of the system can be traced back.
The main access point to this information is through the List monitor com-
mand of the debugger. This was explained above.

The monitor is configured by two defines in the MAIN#.C files. These can be
modified if necessary.

• MONITSIZE the length of the circular buffer used to store monitoring information (number
of items stored).

• MONITMASK the type of information to be traced. This value can be any combination (bit-
wise OR) of the following values (defined in iface.h):

#define MON_TSWAP 1 /* task swaps */

#define MON_STATE 2 /* task state changes */

#define MON_KSERV 4 /* kernel service calls */

#define MON_EVENT 8 /* events */

#define MON_ALL 15 /* all the above */

MONITMASK is used to initialize a global variable ‘int monitmask’, that can
be modified at run time, e.g. if you want to monitor only part of an applica-
tion.

• Note Each traced event adds a few micoseconds to the execution time !

The following information is listed :

the event number in the trace

dt the time difference in high precision timer ticks with the previous
event

time the absolute time of the event

object the kernel object related to the action

action what happened, described below
P2 - 160 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Debugging environment under Virtuoso

PA
R

T
 3
The ‘object‘ and ‘action’ fields depend on the type of information.

For task swaps, object is the task name, and action will be the string
“Swapped in”. The task name “-- idle --” refers to the NULL task.

For task state changes, object is the task name, and action will be the name
of the bit that was changed, prefixed by ‘+’ (bit set), or ‘-’ (bit reset). A task is
ready to run if all its state bits are reset. The state bits are described in sec-
tion 14.2.5 above.

For events, the object field is not used, and the action field shows the event
number.

The MON_KSERV option shows all commands received by the kernel on the
current processor. Some of these correspond to kernel services requested
by local tasks. In this case, the object field shows the task name. Others are
commands that arrive from other processors in the network In this case, the
node ID of the source of the command will be shown. The commands,
shown in the action field, are:

NOP KS_Nop

USER KS_User

READWL KS_Workload

SIGNALS KS_Signal

SIGNALM KS_SignalM

RESETS KS_ResetSema

RESETM KS_ResetM

WAITS_REQ KS_Wait(T)

WAITS_RPL internal message for KS_Wait(T)

WAITS_TMO id.

WAITMANY KS_WaitM(T)

WAITM_REQ internal message for KS_WaitM(T)

WAITM_RDY id.

WAITM_CAN id.

WAITM_ACC id.

WAITM_END id.

WAITM_TMO id.

INQSEMA KS_InqSema

LOCK_REQ KS_Lock(W)(T)

LOCK_RPL internal message for KS_Lock(W)(T)

LOCK_TMO id.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 161

Debugging environment under Virtuoso
UNLOCK KS_Unlock

ENQUE_REQ KS_Enqueue

ENQUE_RPL internal message for KS_Enqueue(W)(T)

ENQUE_TMO id.

DEQUE_REQ id.

DEQUE_RPL id.

DEQUE_TMO id.

QUE_OP KS_InqQueue or KS_PurgeQueue

SEND_REQ KS_Send(W)(T)

SEND_RPL internal message for KS_Send(W)(T)

SEND_TMO id.

SEND_ACK id.

RECV_REQ KS_Receive(W)(T)

RECV_RPL internal message for KS_Receive(W)(T)

RECV_TMO id.

RECV_ACK id.

ELAPSE KS_Elapse

SLEEP KS_Sleep

WAKEUP internal message for KS_Sleep

TASKOP all operations on a single task

GROUPOP all operations on a task group

SETPRIO KS_SetPrio

YIELD KS_Yield

ALLOC KS_Alloc(W)(T)

DEALLOC KS_DeAlloc(W)(T)

TALLOC KS_AllocTimer

TDEALLOC KS_DeallocTimer

TSTART KS_StartTimer

TSTOP KS_StartTimer

DRIV_REQ driver call starts

DRIV_ACK driver call returns

ALLOC_TMO internal message for KS_Alloc(W)(T)

REMREPLY internal message (many services)

DEBUG_REQ internal message used by debugger task

DEBUG_ACK id.

TXDATA_REQ KS_MoveData

TXDATA_ACK internal message for data transfer protocol
P2 - 162 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Debugging environment under Virtuoso

PA
R

T
 3
RXDATA_REQ KS_MoveData

RXDATA_ACK internal message for data transfer protocol

RAWDATA_REQ id.

RAWDATA_ACK id.

DATAWAIT id.

EVENTWAIT KS_EventW

An example is given below :

> l

 VIRTUOSO TL Debugger 3.09 NODE 1 NODE1

 TL MONITOR

 # dt time object action

--

 1004 8181 67020119 -- idle -- Swapped in

 1005 10002 67030121 Event # 48

 1006 9998 67040119 Event # 48

 1007 10000 67050119 Event # 48

 1008 10000 67060119 Event # 48

 1009 10000 67070119 Event # 48

 1010 10000 67080119 Event # 48

 1011 2538 67082657 Event # 14

 1012 89 67082746 GRAPHDRV - Event

 1013 102 67082848 GRAPHDRV Swapped in

 1015 139 67083142 TLDEBUG - Dequeue

 1016 114 67083256 TLDEBUG Swapped in

 1017 156 67083412 TLDEBUG LOCK_REQ

 1018 129 67083541 TLDEBUG + Resource

 1019 137 67083678 GRAPHDRV Swapped in

 1020 148 67083826 GRAPHDRV UNLOCK

 1021 133 67083959 TLDEBUG - Resource

 1022 106 67084065 TLDEBUG Swapped in

 1023 145 67084210 TLDEBUG GROUPOP

The trace above retraces the execution history on a 40 MHz TMS20C40 at
the moment the task level debugger was called.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 163

Debugging environment under Virtuoso
Note:

On target boards with no high precision timer, Virtuoso often implements a
low resolution timer (e.g. with a tick of 1 millisecond). As a result, the timing
interval rather coarse grain and it is the order of the events that is the most
relevant information.

15.2.11. Mailboxes

This command lists the current requests for sending and receiving mes-
sages in a particular mailbox.

Name the mailbox’ symbolic name

Count the number of current entries

Waiters List of waiting tasks

Waiters - W tasks waiting for return of KS_Send(W)(T)

Waiters - R tasks waiting for return of KS_Receive(W)(T)

Example :

> m

 MAILBOX STATES

 # Name Count Waiters

--

0 GETPOSM 504 W

 R BALL2 BALL4 BALL6 BALL8

1 REPORT 508 W

R MASTER

15.2.12. Network buffers

(Subject to change).

15.2.13. Clock/Timers

This debugger command will list the remaining events on the timer list. Four
informations are provided:

Time the remaining time before the timer event will arrive

Repeat an eventual periodically scheduled timer interval

Action the action to be done when the timer event arrives
P2 - 164 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Debugging environment under Virtuoso

PA
R

T
 3
Object the type of object on which the actions applies.

The possible actions are:

TO xxx Kernel service xxx times out

Wakeup KS_Sleep ends

Timed Signal Associated semaphore will be signalled

> c

Time Repeat Action Object

145 - Wakeup CONDEMO

15.2.14. Stack Limits

This function is intended to assist the user in tuning the use of RAM needed
for stack space by tasks as well as by Virtuoso. The snapshot consists of
four columns.

Task the task’s symbolic name

Current the current amount of stack being used

Used the maximum amount of stack ever used

Size the defined stack size

> k

 STACK STACKS

 Task Current Used Size

 TLDEBUG 45 201 256

 CONODRV 16 38 64

 CONIDRV 16 35 64

 HIQTASK 16 45 64

 HIMTASK 16 45 64

 SEMATAS 64 16 64

 CONDEMO 60 227 256

15.2.15. Zero Queue/Map/Resource Statistics

This command will cause all of the usage statistics for queues, memory par-
titions, and resources to be reset.

No other user input is required.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 165

Debugging environment under Virtuoso
15.2.16. Other processor

When invoked, you are prompted for a valid processor number and the
debugger interface is opened on the requested processor. From then on, all
debugging commands will be executed on the requested processor.

Example :

> o2

15.2.17. Task Manager

Note : not always implemented.

Task Manager Mode allows the user to do some types of task management
operations via the debug console. Selection of this command causes a spe-
cial prompt to indicate that the debugger is in Task Manager Mode. The
prompt appears as:

TLDEBUG: 1>$

$TLDEBUG

The Task Manager Mode menu may be displayed by responding to the
prompt with a “H” (or “h”) followed by an Enter key. The Task Manager Mode
menu is displayed as shown below.

S - Suspend

R - Resume

A - Abort

T - Start

X - Exit $TLDEBUG

Except for the Exit (X) command, all of the commands in the Task Manager
Mode require that a task number be entered. The task identifier prompt
appears as:

Task >

The user’s response to the prompt is a decimal task number or the task ‘s
symbolic identifier as defined during the system generation procedure. The
entry is terminated by an Enter key.

15.2.18. Suspend

Execution of this command causes the specified task to be suspended. The
task cannot be restarted until it is resumed by another task or by operator
P2 - 166 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Debugging environment under Virtuoso

PA
R

T
 3
command via the debugger.

15.2.19. Resume

This command removes the state of suspension on the specified task. If no
other blocking condition exists, the task is made ready to run.

15.2.20. Abort

This command causes the specified task to be aborted. The waiting lists are
cleared and the task abort handler will become executable upon leaving the
debugger. This command is not implemented for all target processors.

15.2.21. Start

A task may be restarted by the selection of this command. The specified task
is started at the entry point specified during the system generation proce-
dure. This command is not implemented for all target processors.

NOTE:

The Abort and Start commands should be used with caution. As the normal
flow of execution is suspended when in the debugger. Therefore, after abort-
ing a task, the user should exit from the debugger to allow the task to termi-
nate normally before restarting the task.

15.2.22. Exit $TLDEBUG

This command causes the Task Manager Mode to terminate. The standard
debugger command prompt is reissued.

15.2.23. Exit TLDEBUG

Invocation of this command causes the debugger to unblock all other tasks
and to suspend operations. Control is given to the highest priority task that is
runnable.

15.2.24. Help

This command causes the debugger Command Menu to be displayed.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 167

Debugging environment under Virtuoso
15.3. The Workload Monitor

Two kernel services have been added for reading the workload on a proces-
sor.

int KS_Workload (void);

This returns the average workload as an integer value from 0 to 1000 and is
to be read as tens of percentage.

void KS_SetWlper (int T);

This sets the workload measuring interval to T ms. T will automatically be
reduced to the nearest limit of the range 10 ... 1000 ms if a value outside this
range is given. The default value is 100 ms.

Note :

For calibration reasons, the current implementation is based on the pres-
ence of a high resolution timer. The workload measurement is not imple-
mented on target processors that only have a low resolution timer.

The workload monitor works as follows:

At any moment a processor executing a Virtuoso application can be occu-
pied in one of three different ways. It can

1. execute kernel code,

2. execute a microkernel task,

3. or be ‘idle’.

While it is ‘idle’, the processor actually executes the lowest priority microker-
nel task in the system, sometimes called the ‘nulltask’. This task is created
automatically by the kernel, and it is in fact task (N +1), not zero. In the mon-
itor listings it is shown as ‘- idle -’. It is in fact the continuation of the C main ()
function after it has installed the kernel and started the user tasks.

The nulltask code is little more than an endless loop, counting its own num-
ber of iterations. By reading the iteration counter at times t0 and t1, we can
determine the amount of time, Ti, a processor has been idle during the inter-
val t0 ... t1.

The workload is then calculated as follows:

W = 1 - (Ti / (t1 - t0))

The kernel function KS_Workload () actually returns the integer value
1000*W.
P2 - 168 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Debugging environment under Virtuoso

PA
R

T
 3
The measuring interval can be changed by a calling the kernel function
KS_SetWlperiod (T). The default value is 100 ms, while legal values for T
range from 10 to 1000 ms. Every T ms, the kernel takes a look at the itera-
tion counter in the nulltask. It keeps a record of the two most recent values,
and of the times when these were read. When workload() is called, the
returned value is computed from the current time and iteration count, and the
values taken at the start of the last full interval. The actual measuring period
can therefore be any value from T to 2T.

To obtain meaningful results, the workload measuring interval should be sig-
nificantly longer than the time ‘granularity’ of your application. A special situ-
ation arises when some tasks are executed at a constant frequency (e.g.
when scheduled by a periodic timer). In this case it is sometimes possible to
observe interference patterns between the task and the workload monitor
period As an extreme case, consider what will happen if both periods are
more or less equal. If too short a measuring interval is used, the results will
be largely determined by the phase relationship between the two periodic
events. This could give a very misleading indication of the real average work-
load.

Note also that in communication intensive parts of the application, the work-
load can be relatively high even if the application tasks are not very busy.
This is caused by the communication drivers that are part of the kernel.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 169

Practical hints for correct use
16. Practical hints for correct use

16.1. Flexible use of the messages

16.1.1. General features

The Virtuoso message system has been designed to fully support the ’Vir-
tual Single Processor Model’, which is the very essence of Virtuoso. To
achieve this, it has the following key features:

1. Messages are synchronous: both tasks involved in a message
exchange are descheduled until the transfer of data is finished.

2. The default action by the kernel is always to copy the message data,
even if the sending and receiving tasks are running on the same pro-
cessor. The user must explicitly indicate that he wants it otherwise.

3. All stages of the message mechanism are prioritized: a high priority
message is never forced to wait while a lower priority operation occu-
pies the network resources.

Synchronous operation enables the kernel to defer the actual copying of the
data until both sides are ready for the transfer. As a result, it is not possible to
flood the network buffers with messages that nobody wants to receive.

Always passing messages ‘by value’ facilitates the design of user code that
will work on any node. If a copy of the message data is made, the receiver is
free to specify the exact destination of the data. If only a pointer is passed,
the receiving task has no such choice, and special code will be needed to
handle this situation. In many cases, a copy would still be required for the
receiver to function correctly.

Both features also cooperate to ensure that correct behavior of an applica-
tion does not depend on the hidden sequentialisation which is imposed when
sender and receiver are on the same node.

It is still possible to pass messages ‘by reference’, if your application
demands it. This, however, has to be done explicitly. In this way, the use of a
node-dependent operation is clearly documented in the source code.

In many applications the message system will be the primary user of the net-
work resources. In these circumstances, prioritizing is essential to preserve
the real time nature of the kernel.
P2 - 170 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Practical hints for correct use

PA
R

T
 3
16.1.2. Mailboxes

When two tasks want to exchange a message, they do not talk to each other
directly. They will both use the services of an intermediate object, called a
‘mailbox’. Mailboxes provide a degree of isolation between the two parties
involved in a data transfer. As an example, a mailbox could be associated
with a device. Tasks wishing to use the device would then not need to know
the task identity of the device driver. This could even change at run time with-
out the ‘clients’ of the device being aware of the replacement. Note also that
a mailbox can reside on a processor node where neither the sender nor the
receiver reside.

A mailbox acts as a ‘meeting place’ for tasks wishing to transmit or receive a
message. It maintains two waiting lists: one for senders, and one for receiv-
ers. When a new send or receive request arrives, the mailbox searches one
of the lists for a corresponding request of the other type. If a match is found,
it is removed from the waiting list, and the data transfer is started. When this
has finished both tasks are allowed to resume execution. If no match can be
found, the caller is suspended and put on a waiting list, or the operation fails.

In above scheme, one should consider the data copy as a side effect of
obtaining a match between a sender and a receiver message request. The
sender and the receiver exchange the request in the mailbox. Therefore, the
message operation is actually composed of the two requests and an even-
tual copy of the data referenced by the message.

16.1.3. Using messages

The receiving task may want to take different actions depending on the size,
type, or sender of the message. It is possible for the receiver to obtain the
requested message first, and delay the copy until it has decided what to do
with the data. When the ‘rx_data’ field in the requested message of the
receiver is NULL, the kernel will return to the receiving task without perform-
ing the data copy, and the sending task will not be rescheduled.

The receiver can then base its decision on the ‘size’, ‘info’ or ‘tx_task’ fields
of the message, which will have been updated by the kernel. Finally it issues
a KS_ReceiveData call to obtain the data and to reschedule the sending
task. This is illustrated in the following example.

This receiver inspects the ‘tx_task’ field to separate messages from a num-
ber of senders. One of the sending tasks uses the ‘info’ field to specify an
array index.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 171

Practical hints for correct use
void Receiver() {

 K_MSG M;

 MyType MyArray[100];

M.tx_task = ANYTASK;

M.rx_data = NULL;

M.size = 999999; /* larger than any expected message */

KS_ReceiveW(MAILBOX1, &M);

switch (M.tx_task) {

 case SENDER1:

 /*

 * put data in MyArray, at index given by sender

 */

 M.rx_data = &MyArray[M.info];

 KS_ReceiveData(&M);

 ...

 break;

 case SENDER2:

 /*

 * allocate space, then receive data

 */

 M.rx_data = KS_AllocW(MAP_2);

 KS_ReceiveData(&M);

 ...

 KS_Dealloc(MAP_2, M.rx_data);

 break;

 default:

 /*

 * unknown sender, dump message

 */

 M.size = 0;

 KS_ReceiveData (&M);

 }

}

If a receiving task does not really need a private copy of the message data in
order to function correctly, it can be written in such a way that a copy is made
only if the sender is on a different node. The next example shows how this
can be achieved. As in the previous example, the receiver calls KS_Receive
with its data pointer equal to NULL. When the call returns, the receiver
inspects the message to see whether the sending task is on the same node.
P2 - 172 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Practical hints for correct use

PA
R

T
 3
If it is, the receiver uses the pointer provided by the sender to access the
data, and reschedules the sender by performing a KS_ReceiveData call with
the data size set to zero. Otherwise the receiver uses KS_ReceiveData in
the normal way, to obtain a copy of the data and reschedule the sender.

Note that it is not necessary to modify the sending task in order to use this
method.

void Receiver() {

 K_MSG M;

 MYTYPE MyData, *MyPtr;

 int SameNode;

 M.tx_task = ANYTASK;

 M.rx_data = NULL;

 M.size = sizeof (MYTYPE);

 KS_ReceiveW(MAILBOX1, &M);

 SameNode = (KS_NodeId(M.tx_task) == KS_NodeId(M.rx_task));

 if (SameNode) {

 MyPtr = M.tx_data;

 } else {

 M.rx_data = MyData;

 KS_ReceiveData(&M);

 MyPtr = M.rx_data

 }

 /*

 * use message, access via MyPtr

 */

 if (SameNode) {

 M.size = 0;

 KS_ReceiveData(&M);

 }

}

If both tasks are known to be on the same node, this could be simplified fur-
ther, as shown below. Note that a KS_ReceiveData call (with size = 0) is still
necessary.

This is the recommended way to pass messages ‘by reference’, as it is trans-
parent to the sender, and leaves the ‘info’ field available for other purposes.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 173

Practical hints for correct use
void Receiver() {

 K_MSG M;

 MYTYPE *MyPtr;

 M.tx_task = ANYTASK;

 M.rx_data = NULL;

 M.size = 0;

 KS_ReceiveW(MAILBOX1, &M);

 MyPtr = M.tx_data;

 /*

 * use message, access via MyPtr

 */

 KS_ReceiveData(&M); /* will reschedule sender, acts as an ack */

}

16.2. On the abuse of semaphores

In order to synchronize tasks, one might be tempted to use semaphores. If
however, also data is to be transferred following the synchronization, one
should be aware that the use of a semaphore is superfluous as the data
transfer itself will synchronize the two tasks.

Even more, a semaphore will not assure perfect synchronization as a sema-
phore is counting. Hence, a task could signal more than once while the syn-
chronizing task has not even started up. When using queues to transfer data,
one obtains this effect as long as the queue is not full. On the other hand, a
message transfer will assure perfect synchronization as the sending as well
as the receiver task synchronize at the same time.

16.3. On using the single processor versions for multiple processors

If you only need a few processors and if you need to minimize on memory
usage at all cost, it might be advisable to use the multi processor version of
Virtuoso (/MP implementations). The difference is that the (/VSP) distributed
version of the kernel has an embedded router enabling to keep the original
Virtuoso source code programs while you only will need to reallocate the dif-
ferent tasks, queues, semaphores, etc. So simply by adding processors and
by invoking the configurer of the compiler, the system will run faster without
changing any of the source code (provided you used separate compilation in
the first phase). Of course, this kernel uses more memory.

In order to use the single processor version on multiple processor, you will
develop the program running on each processor as usual and configure the
system using the configurer from the compiler. This time however, you will
need to use the kernel services KS_LinkinW() and KS_LinkoutW() or equiva-
P2 - 174 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Practical hints for correct use

PA
R

T
 3
lent to communicate between the different Virtuoso tasks. So it is best to
keep this interaction as simple as possible, preferably under the form of block
transfers. The reason is first of all that you are talking to the naked hardware,
just as you would do without support from the kernel. So both receiving and
sending tasks need to speak the same protocol. If for example, the length of
the block sent is different from the length of the message received, the com-
munication might stall and never terminate. Normally, this is called deadlock.
Normally, you can detect this with the debugger. Note however that the
debugger can only be used on the root processor, while with the distributed
version, the debugger task can be invoked on each processor.

In addition, as you are using a priority based scheduler, the timing behavior
might change! Remember that with the single processor version, you loose
the prioritizing capability of the routing system. Hence, the programmer him-
self must ensure that the link communication does not jeopardize the real
time performance.

When you keep these guidelines in mind, using the single processor version
of Virtuoso on multiple processors, should be not much of a problem.

16.4. Hints on system configuration

Although Virtuoso permits you to place tasks, semaphores, mailboxes and
queues on any processor you want, the actual placement will influence the
system’s performance.

As a general rule, you are advised to place all semaphores, mailboxes and
queues on the same processor as the tasks that use them or at least with a
minimum of communication distance between them. In general, it is best to
place the queues, mailboxes and semaphores on the processors that con-
tain the receiving tasks.

Note that you can force the routing a little bit by carefully moving a kernel
object to node part of the communication path you want to be used. This
works well for all command packets, however datatransfer always happens
using the shortest path. If you want to privilege certain data transfers, you
should assign a higher priority to the message.

As to the global system configuration, best is to keep the main control pro-
gram centrally located and close to the host server if fast operator interaction
or filing on the host system is required.

In general one can see that system performance will benefit if highly interac-
tive tasks are grouped together while less interactive tasks are placed more
remotely. In general this means that computation intensive tasks should be
distributed evenly over the system while receiving a lower priority.
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 175

Practical hints for correct use
Note however that this is only a guideline, especially as some of the require-
ments impose a compromise between conflicting demands. No algorithm
exists to find the optimum solution. For the moment, use your common
sense and the debugging monitor to fine tune the system.

16.5. Customized versions and projects

Virtuoso is delivered as a standard kernel with standard features and pro-
vides an adequate solution in most circumstances. This is especially true for
embedded systems, where maximum performance is desired while memory
usage is minimized and the system is rather static over its life time.

In some cases, more functionality is wished, such as:

1. capability to monitor the system at runtime

2. capability to dynamically change the system

3. capability to use a different scheduling algorithm

Eonic Systems is aware of these special requirements, especially as most of
these less standard features are typical for distributed and parallel process-
ing systems. As such, Eonic Systems is already working on new Virtuoso
versions that support dynamic real time features and fault-tolerance. Cus-
tomers with special needs can be supported in different ways:

1. by adapting the kernel themselves

2. by buying a customized version

3. talking to our team to find an alternative but equivalent solution

As the kernel itself is highly modular, although compact, most customer spe-
cific functions can be provided on short notice.

If you would prefer Eonic Systems to integrate the kernel as part of a full cus-
tom solution, this can be negotiated. For more information contact Eonic
Systems or your distributor.
P2 - 176 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
17. Microkernel C++ interface

17.1. Microkernel C++ classes

In section 7.1. on page 3 an overview was given of the microkernel objects
and their services. The C++ interface for the microkernel provides a tighter
coupling between an object type and its services. Also, global C++ objects
representing each kernel object defined by the user in the sysdef file can be
generated automatically by the sysgen tool.

The following table indicates the relationship between kernel object types
and the corresponding C++ class that encapsulates these objects:

Kernel Object Type Related C++ class(es)

Tasks KTask, KActiveTask

Task Groups KTaskGroup

Semaphores KSemaphore

Mailboxes KMailBox

Queues KQueue

Memory Maps KMemoryMap

Resources KResource

Timers KTimer

At this moment, no C++ class has been provided for encapsulating sema-
phore lists. One extra class is available that provides a C++ shell for the
KMSG datastructure. This class is named KMessage.

The C++ classes have been designed to introduce minimal overhead both in
memory usage (code and data size) and run-time behavior. This is accom-
plished by making extensive use of inlined functions.

In the following section, we will indicate how sysgen takes care of generating
the C++ objects corresponding to the ones defined by the user in the sysdef
file. Thereafter, we will give a reference type overview of the microkernel
classes and their functions. Finally, a complete example on how to use the
interface is given.

17.2. Kernel object generation by sysgen

Sysgen normally generates a number of C andheader files to define kernel
object ID’s and data structures. Using command line switches, it becomes
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 177

Microkernel C++ interface

ible

.

ect
rac-

possible to have sysgen generate C++ header and implementations files that
declare and define the C++ kernel objects.

In order to generate the C++ files, the user must pass the flag -oCH to sys-
gen. The usual C files and header files are still needed to make a valid appli-
cation, so one should always use -ochCH as command line flags to generate
all necessary files.

When given the C and H parameters to the -o flag, sysgen will generate the
following files:

■ vkobjcts.hpp:this file contains the declarations for the kernel objects that are vis
to all nodes of the target. This are all objects defined in the sysdef file, with the
exception of the memory map objects.

■ vkobjcts.cpp: this file defines and initializes the objects declared in vkobjcts.hpp
The correct parameters are passed to the constructors of the objects.

■ vkobnnnn.hpp: this file declares the objects that are local to node nnnn. This is
restricted to the memory maps objects.

■ vkobnnnn.cpp: this file defines and initializes the objects declared in vkobnnnn.hpp.
The correct parameters are passed to the constructors of the objects.

The objects defined in the files written by the sysgen correspond to objects
defined in the sysdef file. The only exception is the object representing the
active task. The name of the object representing the currently active task is
ActiveTask. The names of the other C++ objects are related to the name ID’s
given in this sysdef file.

The cpp files where these objects are defined and initialized makes the rela-
tionship between the object names and the name ID’s very explicit. The
argument to the constructor for a global kernel object is indeed the name ID
of the object. If the user wants to control the naming of the C++ objects, he
must understand the mechanism that maps an ID name to a C++ object
name.

The C++ object name is constructed from the sysdef name ID using the fol-
lowing scenario:

1. If the first three or more characters of the ID name are identical to the
first characters of the object class name (without the leading K of
course) then these characters will be replaced by the class name. The
remainder of the ID name will be converted to lowercase, except for
the first character, which is forced to uppercase.
Examples: QUEUE1 becomes Queue1. The ID MAILBRESULT of a mailbox obj
is seen as MAILB + RESULT. As the first five characters match the first five cha
ters of “mailbox”, sysgen will generate the name MailboxResult for this mailbox
object.

2. If the last three or more characters of the ID name are identical to the
P2 - 178 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3

rce.
first characters of the object class name, then these identical charac-
ters will be replaced by the class name. The remainder of the ID name
will be converted to lowercase, except for the first character, which is
forced to uppercase.
Examples: HIPRIOTASK becomes HiprioTask, HOSTRES becomes HostResou

3. In case we don’t find (part) of the object type name in the Id given by
the user, we convert the ID name to lowercase, except the first which
is converted to uppercase, and append the object type name.
Example: a task object named MASTER becomes MasterTask.

For a complete example listing, we refer to section 17.13. on page 188.

17.3. KTask

The class that encapsulates kernel tasks has the name KTask. The class
definition is as follows:

class KTask

{

private:

K_TASK m_TaskID;

// construction/destruction

public:

KTask(K_TASK taskid);

// access functions

public:

K_TASK GetID() const;

// operations

public:

void SetEntryFunction(void (*taskentryfunction)(void));

void SetPrio(int priority);

void Start();

void Abort();

void Suspend();

void Resume();

}

The constructor takes the task ID number as an argument. The GetID()
member function allows retrieving the ID of a task object. Other member
functions called upon a KTask object will result in kernel service calls with
the task ID of the task object as the first argument. The mapping between
member functions and kernel services is the following:

task.SetEntryFunction(...) calls KS_SetEntry(TASKID, ...)
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 179

Microkernel C++ interface
task.SetPrio(...) calls KS_SetPrio(TASKID, ...)

task.Start() calls KS_Start(TASKID)

task.Abort() calls KS_Abort(TASKID)

task.Suspend() calls KS_Suspend(TASKID)

task.Resume() calls KS_Resume(TASKID)

17.4. KActiveTask

The KActiveTask class is introduced to cover the kernel services that operate
on the task that calls the service. There is thus only one instance of this
class, and this object is always named ActiveTask in the files generated by
sysgen. The class definition looks as follows:

class KActiveTask

{

private:

// construction/destruction

public:

// access functions

public:

KTask GetTask();

K_PRIO GetPriority() const

UNS32 GetGroupMask();

// operations

public:

void JoinGroup(KTaskGroup group);

void LeaveGroup(KTaskGroup group);

}

The GetTask() member is used to retrieve a KTask object representing the
current task. This (temporary) object can then be used to call kernel services
mapped to the KTask class.

GetPriority() returns the priority of the current running task. GetGroupMask()
returns an unsigned integer that holds a bit mask, where each bit that is set
to one indicates a group that the task belongs to.

JoinGroup can be used to associate the active task with the taskgroup given
in the argument. LeaveGroup removes this association.

17.5. KTaskGroup

The class that is used to make objects corresponding to groups of tasks has
P2 - 180 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
the name KTaskGroup. The class definition is as follows:

class KTaskGroup

{

private:

K_TGROUP m_TaskGroupID;

// construction/destruction

public:

KTaskGroup(K_TGROUP taskid);

// access functions

public:

K_TGROUP GetID() const;

// operations

public:

void Start();

void Abort();

void Suspend();

void Resume();

//implementation:

private:

}

The constructor takes the task group ID number as an argument. The
GetID() member function allows to retrieve the ID of a task group object.
Other member functions called upon a KTaskGroup object will result in ker-
nel service calls with the task group ID of the task group object as the first
argument. The mapping between member functions and kernel services is
the following:

taskgroup.Start() calls KS_Start(TASKGROUPID)

taskgroup.Abort() calls KS_Abort(TASKGROUPID)

taskgroup.Suspend() calls KS_Suspend(TASKGROUPID)

taskgroup.Resume() calls KS_Resume(TASKGROUPID)

17.6. KSemaphore

Objects representing kernel semaphores are of the class type KSemaphore.
The class definition is as follows:
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 181

Microkernel C++ interface
class KSemaphore

{

private:

K_SEMA m_semaphoreID;

// construction/destruction

public:

KSemaphore(K_SEMA semaid);

// access functions

public:

K_SEMA GetID();

int GetCount();

// operations

public:

void Reset();

void Signal();

int TestW();

int TestWT ();

// old, for compatibility

int Wait();

int WaitT();

}

The constructor takes the sempahore ID number as an argument. The
GetID() member function allows to retrieve the ID of a semaphore object.
Other member functions called upon a KSemaphore object will result in ker-
nel service calls with the semaphore ID of the semaphore object as the first
argument. The mapping between member functions and kernel services is
the following:

semaphore.GetCount() calls KS_InqSema(SEMAID)

semaphore.Reset() calls KS_ResetSema(SEMAID)

semaphore.Signal() calls KS_Signal(SEMAID)

semaphore.TestW() calls KS_TestW(SEMAID)

semaphore.TestWT(...) calls KS_TestWT(SEMAID, ...)

semaphore.Wait() calls KS_Wait(SEMAID)

semaphore.WaitT(...) calls KS_WaitT(SEMAID, ...)

17.7. KMailBox

Objects representing kernel mailboxes are of the class type KMailBox. The
class definition is as follows:
P2 - 182 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
class KMailBox

{

private:

K_MBOX m_MailBoxID;

// construction/destruction

public:

KMailBox(K_MBOX mailboxid);

// access functions

public:

// operations

public:

int Send(K_PRIO priority, K_MSG* message);

int SendW(K_PRIO priority, K_MSG* message);

int SendWT(K_PRIO priority,

K_MSG* message,

K_TICKS timeout);

int Receive(K_MSG* message);

int ReceiveW(K_MSG* message);

int ReceiveWT(K_MSG* message, K_TICKS timeout);

}

The constructor takes the mailbox ID number as an argument. Other mem-
ber functions called upon a KMailBox object will result in kernel service calls
with the mailbox ID of the mailbox object as the first argument. The mapping
between member functions and kernel services is the following:

mailbox.Send(...) calls KS_Send(MBID, ...)

mailbox.SendW(...) calls KS_SendW(MBID, ...)

mailbox.SendWT(...) calls KS_SendWT(MBID, ...)

mailbox.Receive(...) calls KS_Receive(MBID, ...)

mailbox.ReceiveW(...) calls KS_ReceiveW(MBID, ...)

mailbox.ReceiveWT(...) calls KS_ReceiveWT(MBID, ...)

17.8. KMessage

The KMessage class provides a C++ interface to the K_MSG data structure.
Because public derivation is used, one can still access all members of the
K_MSG structure directly. A conversion operator to a pointer to a K_MSG is
also provided, so one can use a KMessage object wherever a pointer to a
K_MSG structure is needed. The class interface for KMessage is defined as
follows:
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 183

Microkernel C++ interface
class KMessage

: public K_MSG

{

private:

// construction/destruction

public:

KMessage();

KMessage(K_MSG message);

// access functions

public:

INT32 GetSize() const;

INT32 GetInfo() const;

KTask RequestedSender() const;

KTask RequestedReceiver() const;

// conversion operators:

public:

operator K_MSG*();

// operations

public:

void ReceiveData();

}

Most of the operators are defined as const, and do not allow any changes to
be made to the data members of the K_MSG class. If they have to be
changed, one must use the data members of the K_MSG class directly. An
extra functionality is also that the KMessage class creates and returns KTask
objects with the task IDs as defined in the K_MSG struct. The correspon-
dence between the access function of the KMessage class and the data
members of the K_MSG struct are as follows:

message.GetSize() corresponds to msg.size

message.GetInfo() corresponds to msg.info

message.RequestedSender() corresponds to msg.tx_task

message.RequestedReceiver() corresponds to msg.rx_task

17.9. KQueue

Objects representing kernel queues are of the class type KQueue. The class
definition is as follows:
P2 - 184 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
class KQueue

{

private:

K_QUEUE m_QueueID;

// construction/destruction

public:

KQueue(K_QUEUE queueid);

// access functions

public:

K_QUEUE GetID();

// operations

public:

int Enqueue(void* data, int size);

int EnqueueW(void* data, int size);

int EnqueueWT (void* data, int size, K_TICKS timeout);

int Dequeue(void* data, int size);

int DequeueW(void* data, int size);

int DequeueWT (void* data, int size, K_TICKS timeout);

void Purge();

int NumberOfEntries();

}

The constructor takes the queue ID number as an argument. Other member
functions called upon a KQueue object will result in kernel service calls with
the queue ID of the queue object as the first parameter. The mapping
between member functions and kernel services is the following:

queue.Enqueue(...) calls KS_Enqueue(QID, ...)

queue.EnqueueW(...) calls KS_EnqueueW(QID, ...)

queue.EnqueueWT(...) calls KS_EnqueueWT(QID, ...)

queue.Dequeue(...) calls KS_Dequeue(QID, ...)

queue.DequeueW(...) calls KS_DequeueW(QID, ...)

queue.DequeueWT(...) calls KS_DequeueWT(QID, ...)

queue.Purge() calls KS_PurgeQueue(QID)

queue.NumberOfEntries() calls KS_InqQueue(QID)

17.10. KMemoryMap

Objects representing kernel memory maps are of the class type KMemory-
Map. The class definition is as follows:
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 185

Microkernel C++ interface
class KMemoryMap

{

private:

K_MAP m_MemMapID

// construction/destruction

public:

KMemoryMap(K_MAP memmapid);

// access functions

public:

// operations

public:

void Alloc(void** memblockaddress);

void AllocW(void** memblockaddress);

void AllocWT(void** memblockaddress, K_TICKS timeout);

void Dealloc(void** memblockaddress);

int NumberOfFreeBlocks();

}

The constructor takes the memory map ID number as an argument. Other
member functions called upon a KMemoryMap object will result in kernel
service calls with the memory map ID of the memory map object as the first
parameter. The mapping between member functions and kernel services is
the following:

memmap.Alloc(...) calls KS_Alloc(MMID, ...)

memmap.AllocW(...) calls KS_AllocW(MMID, ...)

memmap.AllocWT(...) calls KS_AllocWT(MMID, ...)

memmap.Dealloc(...) calls KS_Dealloc(MMID, ...)

memmap.NumberOfFreeBlocks () calls KS_InqMap(MMID)

17.11. KResource

Objects representing kernel resource are of the class type KResource. The
class definition is as follows:
P2 - 186 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
class KResource

{

private:

K_RES m_ResourceID

// construction/destruction

public:

KResource(K_RES resourceid);

// access functions

public:

K_RES GetID();

// operations

public:

void Lock();

void LockW();

void LockWT(K_TICKS timeout);

void UnLock();

}

The constructor takes the resource ID number as an argument. Other mem-
ber functions called upon a KResource object will result in kernel service
calls with the resource ID of the resource object as the first parameter. The
mapping between member functions and kernel services is the following:

resource.Lock() calls KS_Lock(RESID)

resource.LockW() calls KS_LockW(RESID)

resource.LockWT(...) calls KS_LockWT(RESID, ...)

resource.UnLock() calls KS_UnLock(RESID)

17.12. KTimer

Objects representing kernel timers are of the class type KTimer. The class
definition is as follows:
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 187

Microkernel C++ interface
class KTimer

{

private:

K_TIMER* m_pTimer;

// construction/destruction

public:

KTimer();

~KTimer();

// access functions

public:

// operations

public:

void Start(K_TICKS delay, K_TICKS period, KSemaphore
sema);

void Restart(K_TICKS delay, K_TICKS period);

void Stop();

}

It is important to note that the calls to KS_AllocTimer en KS_DeallocTimer
are wrapped in the constructor respectively destructor of the KTimer object.
This implies that if a KTimer object goes out of scope, the timer that was
wrapped by it cannot be used anymore, because it will be explicitly deallo-
cated. If one wants to use one specific timer from different places in a pro-
gram, one will either have to allocate a global timer object statically, or one
must use the operator new to allocate a KTimer object on the heap. In the
latter case, the (pointer to) the KTImer object can be freely passed around,
but it becomes also the responsibility of the programmer to delete the
KTimer object when it is not used anymore.

The mapping between member functions and kernel services is thus the fol-
lowing:

constructor calls KS_AllocTimer()

destructor calls KS_DeallocTimer(KTIMER*)

timer.Start(...) calls KS_StartTimer(KTIMER*, ...)

timer.Restart(...) calls KS_RestartTimer(KTIMER*, ...)

timer.Stop() calls KS_Stoptimer(KTIMER*)

17.13. A sample C++ application

The D1P sample (test) program (included in the distribution of Virtuoso Clas-
sico) calls most of the kernel services. A C++ version of this program, called
D1Pobj is also included. We will highlight the differences between the two
P2 - 188 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3

el

.cpp

he
ly

 file.
versions here. We will first focus on the files generated by sysgen in the two
cases, and then we will discuss the changes in the program files.

17.13.1. Sysgen generated files

the sysdef file for the D1p and the D1Pobj sample programs are the identical.
Therefore, the *.C and *.H files generated by sysgen are identical. For
D1Pobj, we specify the -ochCH flags to sysgen to let it also generate *.CPP
and *.HPP files. The following lines in the makefile reflect this (the parts
changed from D1P are underlined):

The sysdef file for the D1P and D1Pobj sample is given below. Based on this
sysdef file, sysgen will write the C++ specific files vkobjcts.cpp, vkobjcts.hpp,
vkob1.cpp and vkob1.hpp. The following observations can be made from
these three files:

■ The mapping of name ID’s of kernel objects given in the sysdef file to C++ kern
object names in the *.CPP files.

■ The presence of all kernel objects, except memory maps, in vkobjcts.cpp. Vkob1
contains the node-specific memory map object.

■ The correct initialization of all C++ objects by passing the correct ID (name) in t
definition of the objects. This explicit passing of the name ID also allows explicit
defines the name mapping between ID names and C++ object names.

■ The presence of one C++ object in vkobjcts.cpp that is not defined in the sysdef
This is the ActiveTask object representing the currently active task.

These C++ files generated by sysgen also have to be compiled and linked in
in the executables. In general, the (compiled) vkobjcts.cpp file must be
included in the executable for all nodes. The node specific file(s)
vkobnnnn.cpp must only be linked in with the executable that has to run on
node nnnn. The user bears the responsibility to edit the makefile in an appro-
priate way.

A consequence of the fact that almost all kernel objects are defined in vkob-
jcts.cpp is that all nodes will carry the overhead associated with the C++
objects, irrespective of the fact that the C++ object is used or not. Although
the overhead per object is small,* it may be too large in those cases where a
lot of objects are defined and not much memory is present at all nodes. In
these cases, the user has the possibility to make node specific versions of
the vkobjcts.cpp file, with those objects that are not referenced at a given

allnodes.h: sysdef

pp -v sysdef $(DD)

sysgen -ochCH sysdef.pp

$(RM) sysdef.pp
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 189

Microkernel C++ interface

ytes,
tines.
*. The actual overhead is compiler dependent. The overhead of 1 C++ object is at least 4 b
but most of the memory overhead is actually caused by the size of the C++ initialization rou

Sysdef

/* taskname node prio entry stack groups */
/* --- */
TASK STDIODRV ROOT 3 stdiodrv 128 [EXE]
TASK HIQTASK ROOT 4 hiqtask 128
TASK HIMTASK ROOT 5 himtask 128
TASK HISTASK ROOT 6 histask 128
TASK MASTER ROOT 7 master 400 [EXE]

/* queue node depth width */
/* -- */

QUEUE STDIQ ROOT 64 WORD
QUEUE STDOQ ROOT 64 WORD
QUEUE DEMOQX1 ROOT 1000 BYTE
QUEUE DEMOQX4 ROOT 1000 WORD

/* map node blocks blsize */
/* -- */
MAP MAP1 ROOT 4 1K

/* sema node */
/* --------------------------- */
SEMA SEM0 ROOT
SEMA SEM1 ROOT
SEMA SEM2 ROOT
SEMA SEM3 ROOT
SEMA SEM4 ROOT

/* mailbox node */
/* --------------------------- */
MAILBOX MAILB1 ROOT

/* resource node */
/* --------------------------- */
RESOURCE HOSTRES ROOT
RESOURCE STDIORES ROOT
RESOURCE DEMORES ROOT

vkob1.cpp

/*
-- FILE MADE BY VIRTUOSO SYSGEN Version 3.00
-- DO NOT MODIFY - EDIT SOURCE FILE ("sysdef") AND REMAKE
*/

#include "node1.h"
#include "vkob1.hpp"
#include "VKMemMap.hpp"

/* Node ROOT */
KMemoryMap Map1Memorymap(MAP1);
P2 - 190 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
node stripped out. It is then also the users responsibility to remake these
stripped down files each time the vkobjcts.cpp file is regenerated.

17.13.2. Changes to the program files

The file with the main function is situated in main1.c for the D1P sample, and
in main1.cpp for the D1Pobj sample. Two blocks of changes can be distin-
guished here. The first is related to the fact that main1.cpp is a C++ file that
must link with C functions. The second change involves the use of the C++
objects to start the tasks in the EXE group.

vkobjcts.cpp

/*
-- FILE MADE BY VIRTUOSO SYSGEN Version 3.00
-- DO NOT MODIFY - EDIT SOURCE FILE ("sysdef") AND REMAKE
*/

/* System wide kernel objects */
#include "vkobjcts.hpp"
#include "vkacttsk.hpp"
#include "vktask.hpp"
#include "vktskgrp.hpp"
#include "vkmbox.hpp"
#include "vksema.hpp"
#include "vkres.hpp"
#include "vktimer.hpp"
#include "vkqueue.hpp"
#include "allnodes.h"

KActiveTask ActiveTask;

KTaskGroup ExeTaskgroup(EXE_GROUP);
KTaskGroup SysTaskgroup(USR_GROUP);
KTaskGroup FpuTaskgroup(FPU_GROUP);

/* Node ROOT 0x00010000 */
KTask StdiodrvTask(STDIODRV);
KTask HiqTask(HIQTASK);
KTask HimTask(HIMTASK);
KTask HisTask(HISTASK);
KTask MasterTask(MASTER);
KQueue StdiqQueue(STDIQ);
KQueue StdoqQueue(STDOQ);
KQueue Demoqx1Queue(DEMOQX1);
KQueue Demoqx4Queue(DEMOQX4);
KSemaphore Semaphore0(SEM0);
KSemaphore Semaphore1(SEM1);
KSemaphore Semaphore2(SEM2);
KSemaphore Semaphore3(SEM3);
KSemaphore Semaphore4(SEM4);
KResource HostResource(HOSTRES);
KResource StdioResource(STDIORES);
KResource DemoResource(DEMORES);
KMailBox Mailbox1(MAILB1);
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 191

Microkernel C++ interface
In main1.c, we find the following lines:

In main1.cpp, these lines are wrapped in an extern “C” construct to ensure
proper linkage:

In the main() function, the tasks in the EXE group are started. This is accom-
plished by the following call in main1.c:

KS_StartG (EXE_GROUP);

In main1.cpp, the C++ object encapsulating to the EXE task group is used to
start all the tasks in the EXE group:

ExeTaskgroup.Start();

In test1.cpp, we find similar extern “C” constructs as in main1.cpp. We also
discover extensive use of the C++ objects to perform the benchmarking tests
of the D1P sample. These changes are highlighted in the file listing given
below.

It is clear from this modified sample that the use of the C++ interface to Virtu-
oso allows a more object-centered way of writing the code. It is also possible
to write simplified code with less pointers or “address-of” operators. All the
mailbox operations that send or receive a message in the test1.cpp file can
actually pass a KMessage object as an argument, instead of a pointer to a
K_MSG structure. This implies that one can simply write “Message” as a
parameter, instead of “&Message”, which improves code readability.

#include "iface.h"
#include "node1.h"
#include "_stdio.h"

...

extern int kernel_init (void);
extern int kernel_idle (void);
extern int netload (void);

extern "C" {
#include "iface.h"
#include "_stdio.h"
 extern int kernel_init (void);
 extern int kernel_idle (void);
 extern int netload (void);
}

P2 - 192 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
test1.cpp

extern "C"
{
#include <string.h>
#include <_stdio.h>
#include "iface.h"
#include "node1.h"
}

#include "vkobjcts.hpp"
#include "vkob1.hpp"
#include "vkmsg.hpp"

extern "C" void stdiodrv (void);
extern "C" void hiqtask (void);
extern "C" void himtask (void);
extern "C" void histask (void);
extern "C" void master (void);

static char string [100];
static char text2 [4096];
static KMessage Message;

#define FORMAT "%-60s - %5d\n"

#ifdef DEBUG
static void start_debug ()
{

K_TASK k = KS_TaskId;
KS_Enqueue (DEBUGIN, &k, sizeof (K_TASK));

}
#else
 static void start_debug () { }
#endif

void message_test (int size)
{

int i, t;
Message.rx_task = ANYTASK;
Message.tx_data = string;
Message.size = size;
KS_Elapse (&t);
for (i = 0; i < 1000; i++)
Mailbox1.Send (1, Message);
t = KS_Elapse (&t);
t *= ticktime;
t /= 1000;
printf ("%20d bytes :%40d\n", size, t);
KS_Sleep (250);

}

Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 193

Microkernel C++ interface
 void benchm (void)
{

K_TICKS et;

...

Message.rx_task = ANYTASK;
Message.tx_data = string;
Message.size = 0;
puts ("send message to waiting high priority task and wait -");
KS_Sleep (250);
HimTask.Start();
KS_Sleep (100);
KS_Elapse (&et);
for (i = 0; i < 1000; i++)
{

Mailbox1.SendW (1, Message);
}
et = KS_Elapse (&et);
et *= ticktime;
et /= 1000;
printf (" Header only :%40d\n", et);
KS_Sleep (250);
message_test (8);

...
message_test (4096);

KS_Elapse (&et);
for (i = 0; i < 1000; i++)

Demoqx1Queue.EnqueueW (string, 1);
et = KS_Elapse (&et);
et *= ticktime;
et /= 1000;
printf (FORMAT, "enqueue 1 byte", et);
KS_Sleep (250);

...

HiqTask.Start ();
KS_Elapse (&et);
for (i = 0; i < 1000; i++)

Demoqx1Queue.EnqueueW (string, 1);
et = KS_Elapse (&et);
et *= ticktime;
et /= 1000;
printf (FORMAT, "enqueue 1 byte to a waiting higher priority

task", et);

...

test1.cpp
P2 - 194 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
KS_Elapse (&et);
for (i = 0; i < 1000; i++)

Semaphore1.Signal();
et = KS_Elapse (&et);
et *= ticktime;
et /= 1000; /* convert to us */
printf (FORMAT, "signal semaphore", et);
KS_Sleep (250);
Semaphore1.Reset();
HisTask.Start();
KS_Elapse (&et);
for (i = 0; i < 1000; i++)

Semaphore1.Signal();
et = KS_Elapse (&et);
et *= ticktime;
et /= 1000; /* convert to us */
printf (FORMAT, "signal to waiting high pri task", et);
KS_Sleep (250);

...

KS_Elapse (&et);
for (i = 0; i < 1000; i++)

Semaphore4.Signal();
et = KS_Elapse (&et);
et *= ticktime;
et /= 1000;
printf (FORMAT, "signal to waitm (4), with timeout", et);
KS_Sleep (250);

test1.cpp
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 195

Microkernel C++ interface
KS_Elapse (&et);
for (i = 0; i < 5000; i++)
{

DemoResource.LockW();
DemoResource.Unlock();

}
et = KS_Elapse (&et);
et *= ticktime;
et /= 10000;
printf (FORMAT, "average lock and unlock resource", et);
KS_Sleep (250);
KS_Elapse (&et);

for (i = 0; i < 5000; i++)
{

Map1Memorymap.AllocW(&p);
Map1Memorymap.Dealloc(&p);

}
et = KS_Elapse (&et);
et *= ticktime;
et /= 10000;
printf (FORMAT, "average alloc and dealloc memory page", et);
KS_Sleep (250);
}

void hiqtask(void)
{

int i;
for (i = 0; i < 1000; i++)

Demoqx1Queue.DequeueW (text2, 1);
for (i = 0; i < 1000; i++)

Demoqx1Queue.DequeueW (text2 ,4);
}

void himtask (void)
{

int i, size;
KMessage Message;
Message.tx_task = ANYTASK;
Message.rx_data = text2;
Message.size = 0;
for (i = 0; i < 1000; i++)

Mailbox1.ReceiveW (Message);
for (size = 8; size <= 4096; size <<= 1)
{

Message.size = size;
for (i = 0; i < 1000; i++)
{

Mailbox1.ReceiveW (Message);
}

}
}

test1.cpp
P2 - 196 Virtuoso Reference Manual Copyright 1996 Eonic Systems

Microkernel C++ interface

PA
R

T
 3
17.14. Traps and Pitfalls of C++

Caution is required when a developer wishes to use global or static variables
that are instances of C++ classes. Initialisation of C++ objects that are not
allocated on the stack is done before the main() routine is executed. The
C++ compiler will generate initialisation code for all global or static C++
objects. This code will initilaise these C++ objects by calling their constructor
(with the parameters supplied by the user).

C++ object initialisation code will thus run before the main() routine is exe-
cuted, and thus also before the kernel is initialised. One may thus not use
any kernel service calls in the constructors of objects that have global or
static scope. If any C++ object initialisation requires calling kernel services,

void histask (void)
{

int i;
K_SEMA slist [5];
slist [0] = SEM1;
slist [1] = SEM2;
slist [2] = ENDLIST;
slist [3] = ENDLIST;
slist [4] = ENDLIST;
for (i = 0; i < 1000; i++) Semaphore1.Wait();
for (i = 0; i < 1000; i++) Semaphore1.WaitT(5000);
for (i = 0; i < 1000; i++) KS_WaitM (slist);
for (i = 0; i < 1000; i++) KS_WaitMT (slist, 5000);
slist [2] = SEM3;
for (i = 0; i < 1000; i++) KS_WaitM (slist);
for (i = 0; i < 1000; i++) KS_WaitMT (slist, 5000);
slist [3] = SEM4;
for (i = 0; i < 1000; i++) KS_WaitM (slist);
for (i = 0; i < 1000; i++) KS_WaitMT (slist, 5000);

}

void master (void)
{
int k;
puts ("Type '#' to start a benchmark sequence");
puts ("Demo can be terminated with ^C\n");
while (1)
{
k = server_pollkey ();
if (k) server_putchar (k);
if (k == '#') benchm ();
}
}

test1.cpp
Copyright 1996 Eonic Systems Virtuoso Reference Manual P2 - 197

Microkernel C++ interface
then a separate initialisation member function must be added to the class.
The programmer must then call this initialisation function on his objects after
the kernel_init() call in the main() routine.

An example:

Wrong:

/* allocate a global object, and call its constructor.
Constructor calls some kernel services, based on the parameters
passed. */
MyClass aGlobalObject(param1, param2, param3);

int main ()
{
 netload ();
 kernel_init ();

if (K_ThisNode == 0x00010000) KS_StartG (EXE_GROUP);
 kernel_idle ();
 return 0;
}

Correct:

/* allocate a global object, and call its default constructor.
Default constructor calls no kernel services. */
MyClass aGlobalObject;

int main ()
{
 netload ();
 kernel_init ();

/* Explicitly call initialsation function that will call
some kernel services, based on the parameters passed. */
aGlobalObject.Init(param1, param2, param3);
if (K_ThisNode == 0x00010000) KS_StartG (EXE_GROUP);

 kernel_idle ();
 return 0;
}

P2 - 198 Virtuoso Reference Manual Copyright 1996 Eonic Systems

PA
R

T
 3
Virtuoso ™

The Virtual Single Processor Programming System

Covers :

Virtuoso Classico ™
Virtuoso Micro ™

Version 3.11

Part 3: Binding Manual
Copyright 1996 Eonic Systems Virtuoso Binding Manual P3 - 1

P3 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
18. Virtuoso on the Analog Devices 21020 DSP

18.1. Virtuoso implementations on the 21020

At this moment, both VIRTUOSO MICRO as VIRTUOSO CLASSICO exists
for the ADSP-21020. These implementations contain the microkernel and
the nanokernel and are dedicated to single processor and multiprocessor
systems. Until now, the implementation of VIRTUOSO CLASSICO for multi-
processor systems is restricted to communication by shared memory.

18.2. DSP-21020 chip architecture

This section contains a brief description of the ADSP-21020 processor archi-
tecture. It is not intended to be a replacement of the Processor’s User Man-
ual, but as a quick lookup for the application programmer. Detailed
information can be found in the “ADSP-21020 User’s Manual” from Analog
Devices, Inc.

The ADSP-21020 is the first processor in the Analog Devices ADSP-21000
family of floating-point digital signal processors. The technological founda-
tion for the ADSP-21020 is the powerful Harvard architecture. The processor
has two distinct but similar memory interfaces: one for program memory,
which contains both instructions and data, and one for data memory, which
contains data only. Each address space on the ADSP-21020 can be divided
into banks for selection. The program memory address space is divided into
two banks. The data memory is divided into four banks. (see also chapter
about the architecture file)

The computation units of the ADSP-21020 provide the numeric processing
power for performing numerically operations. The 21020 contains three com-
putation units:

■ an arithmetic / logic unit (ALU)

■ a multiplier

■ a shifter

The computation units are arranged architecturally in parallel. The output of
any computation unit may be the input of any computation unit on the next
cycle. The computation units input data from and output data to a register
file, that contains sixteen 40-bit registers and sixteen alternate registers. The
register file is accessible to the ADSP-21020 program and data memory
data buses for transferring data between the computation units and external
memory or other parts of the 21020.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 1

Virtuoso on the Analog Devices 21020 DSP
Both fixed-point and floating-point operations are supported. Floating-point
data can be either 32 or 40 bits wide. Extended precision floating-point for-
mat (8 bits of exponent and 32 bits of mantissa) is selected if the RND32 bit
in the MODE1 register is cleared. If this bit is set, the normal IEEE-precision
is used (8 bits of exponent and 24 bits of mantissa). Fixed-point numbers are
always represented in 32-bit format and occupy the 32 most significant bits
in the 40-bit data field. They may be treated as fractional or integer numbers
and as unsigned or twos-complement.

The ALU performs arithmetic operations on fixed-point or floating-point data
and logical operations on fixed-point data. ALU-instructions are:

 REGISTER

 FILE
 multiplier shifter ALU

BUS

Connect

Program

Sequencer

Timer Cache

DAG 1 DAG 2

DMA-bus (32 bits)

PMA-bus (24 bits)

PMD-bus (48 bits)

DMD-bus (40 bits)

JTAG (test & emulation)
ADI - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
■ floating-point (fixed-point) addition, substraction, add / substract, aver-
age

■ floating-point manipulation: binary log, scale, mantissa

■ fixed-point add with carry, substract with borrow, increment, decre-
ment

■ logical AND, OR, XOR, NOT

■ functions: absolute value, pass, min, max, clip, compare

■ format conversion

■ reciprocal and reciprocal square root

The multiplier performs fixed-point or floating-point multiplication and fixed-
point multiply / accumulate operations. Fixed-point multiply / accumulate
operations may be performed with either cumulative addition or cumulative
substraction. This can be accomplished through parallel operation of the
ALU and the multiplier. The most important multiplier instructions are:

■ floating-point (fixed-point) multiplication

■ floating-point (fixed-point) multiply / accumulate with addition, round-
ing optional

■ rounding result register

■ saturating result register

■ clearing result register

The shifter operates on 32-bit fixed-point operands. Shifter operations
include:

■ shifting and rotating bits

■ bit manipulation: bit set, bit clear, bit test, ...

The register file provides the interface between the processor buses (DMD-
bus and PMD-bus) and the computation units. It also provides temporary
storage for operands and results. The register file consists of 16 primary and
16 alternate registers. All registers are 40 bits wide. The application develop-
per can use the alternate register set to facilitate the context switching. The
alternate registers can be activated by setting two bits (bit 7 and bit 10) in
MODE1 register.

Managing the sequence of the program, is the job of the program sequencer.
The program sequencer selects the address of the next instruction. It also
performs some related functions:

■ incrementing the fetch address

■ maintaining stacks

■ evaluating conditions
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 3

Virtuoso on the Analog Devices 21020 DSP
■ decrementing loop counter

■ calculating new addresses

■ maintaining instruction cache

■ handling interrupts

More information about the program sequencer architecture can be found in
the ‘User’s Manual’ from Analog Devices, Inc.

The ADSP-21020 has also two data address generators (DAG1 & DAG2).
The first data address generator produces 32-bit addresses for data mem-
ory, while the second data address generator produces 24-bit addresses for
program memory. Each DAG contains four types of registers: index (I), mod-
ify (M), base (B) and lenght (L) registers. An I register acts as a pointer to
memory, while the M-register controls the step size for advancing the pointer.
B registers and L registers are only used for circular buffers. B holds the
starting address, while L contains the length of the circular buffer. The appli-
cation developper can also use the alternate registers, provided for each
DAG. This facilitates context switching. Again, more information about that
issue can be found in the Analog Devices ‘User’s Manual’.

The ADSP-21020 has a programmable interval timer that can generate peri-
odic interrupts. Three registers control the timer period:

■ TPERIOD : contains the timer period (32-bit register)

■ TCOUNT: the counter register (32-bit register)

■ MODE2: contains the timer enable bit (bit 5)

When the timer is enabled, TCOUNT is decremented each clock cycle. An
interrupt is generated when TCOUNT reaches zero. Next, TCOUNT is
reloaded with the value of TPERIOD.

The instruction cache is a 2-way cache for 32 instructions. The operation of
the cache is transparant to the user. The processor caches only instructions
that conflict with program memory data accesses. The cache is controlled by
two bits in the MODE2 register:

■ CADIS (bit 4): Cache disable bit

■ CAFRZ (bit 19): Cache freeze bit

An IEEE JTAG boundary scan serial port provides both system test and on-
chip emulation capabilities.

18.3. ADSP-21020 addressing modes

As already explained in the previous chapter, the 21020-processor has two
ADI - 4 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
data address generators. This DAGs allow the processor to address memory
indirectly. An instruction specifies a DAG register containing an address
instead of the address value itself.

The first DAG is used in combination with the data memory, while the second
DAG produces 24-bit addresses for program memory.

Other functions supported by the DAGs are:

■ circular buffers, using the L-registers and B-registers

■ DAG1 can support bit-reverse operations. This operation places the
bits of an address in reverse order to form a new address.

There are two ways in which an I-register can be modified, using an M-regis-
ter:+

■ pre-modify without update: PM (M, I) & DM (M, I)

■ post-modify: PM (I, M) & DM (I, M)

18.4. Special purpose registers on the ADSP-21020

The ADSP-21020 is provided with some special purpose registers. This
paragraph contains a brief overview of these registers.

18.4.1. MODE1-register and MODE2-register

MODE1 and MODE2 are both 32-bit registers, that enable various operating
modes of the ADSP-21020.

■ MODE1:

Bit Name Definition

0 Reserved

1 BR0 Bit-reverse for I0

2 SRCU Alternate register select

3 SRD1H DAG1 alternate register select (7-4)

4 SRD1L DAG1 alternate register select (3-0)

5 SRD2H DAG2 alternate register select

6 SRD2L DAG2 alternate register select

7 SRRFH Register file alternate select

10 SRRFL Register file alternate select

11 NESTM Interrupt nesting enable

12 IRPTEN Global interrupt enable
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 5

Virtuoso on the Analog Devices 21020 DSP
13 ALUSAT Enable ALU saturation

14 Reserved

15 TRUNC truncation / rounding

16 RND32 single / extended precision

■ MODE2:

Bit Name Definition

0 IRQ0E IRQ0 = edge / level sensitive

1 IRQ1E IRQ1 = edge / level sensitive

2 IRQ2E IRQ2 = edge / level sensitive

3 IRQ3E IRQ3 = edge / level sensitive

4 CADIS Cache disable

5 TIMEN Timer enable

6-14 Reserved

15 FLAG0O FLAG0

16 FLAG1O FLAG1

17 FLAG2O FLAG2

18 FLAG3O FLAG3

19 CAFRZ Cache freeze

20-31 Reserved

18.4.2. Arithmetic status register (ASTAT)

ASTAT is a 32-bit register, in which the bits can be set as a result of an ALU
operation. An overview of the bits in the ASTAT-register is given below:

Bit Name Definition

0 AZ ALU result zero or underflow

1 AV ALU overflow

2 AN ALU result negative

3 AC ALU fixed-point carry

4 AS ALU X input sign

5 AI ALU floating-point invalid operation

6 MN multiplier result negative

7 MV multiplier overflow

8 MU multiplier floating-point underflow

9 MI multiplier floating-point invalid oper.
ADI - 6 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
10 AF ALU floating-point operation

11 SV shifter overflow

12 SZ shifter result zero

13 SS shifter input sign

14-17 Reserved

18 BTF bit test flag for system registers (RO)

19 FLG0 FLAG0 value

20 FLG1 FLAG1 value

21 FLG2 FLAG2 value

22 FLG3 FLAG3 value

23 Reserved

24-31 CACC bits

18.4.3. Sticky arithmetic status register (STKY)

STKY is also a 32-bit register. The bits can be set by ALU-operations. By
reading this register, the service routine for one of these interrupts can deter-
mine which condition caused the interrupt. The routine also has to clear the
STKY bit so that the interrupt is not still active after the service routine is
done. An overview of the bits is given below:

Bit Name Definition

0 AUS ALU floating-point underflow

1 AVS ALU floating-point overflow

2 AOS ALU fixed-point overflow

3-4 Reserved

5 AIS ALU floating-point invalid operation

6 MOS multiplier fixed-point overflow

7 MVS multiplier floating-point overflow

8 MUS multiplier floating-point underflow

9 MIS multiplier floating-point invalid oper.

10-16 Reserved

17 CB7S DAG1 circular buffer 7 overflow

18 CB15S DAG2 circular buffer 15 overflow

19-20 Reserved

21 PCFL PC stack full

22 PCEM PC stack empty
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 7

Virtuoso on the Analog Devices 21020 DSP
23 SSOV status stack overflow

24 SSEM status stack empty

25 LSOV loop stack overflow

26 LSEM loop stack empty

27-31 Reserved

18.4.4. Interrupt latch (IRPTL) and Interrupt Mask (IMASK)

These two registers are used in combination with interrupts. Both are 32-bit
registers. Each bit in the registers is representing an interrupt. The interrupt
bits are ordered by priority (highest ->lowest). Setting bits in the IRPTL acti-
vates an interrupt. Example:

Bit set IRPTL SFT0I; /* activates software interrupt */

Bit clr IRPTL SFTOI; /* clears a software interrupt */

An interrupt can also be masked. Masked means that the interrupt is dis-
abled. Interrupts that are masked are still latched, so that if the interrupt is
later unmasked, it is processed. Example:

Imask: 1 = unmasked (enabled), 0 = masked (disabled)

/* Interrupts 0 and 1 are not maskable */

Bit (IR#) Address Function

0 0x00 Reserved for emulation

1 0x08 Reset

2 0x10 Reserved

3 0x18 Status stack / loop stack / PC stack

4 0x20 High priority timer

5 0x28 IRQ3 asserted

6 0x30 IRQ2 asserted

7 0x38 IRQ1 asserted

8 0x40 IRQ0 asserted

9 0x48 Reserved

10 0x50 Reserved

11 0x58 Circular buffer 7 overflow interrupt

12 0x60 Circular buffer 15 overflow interrupt

13 Reserved

14 0x70 Low priority timer

15 0x78 Fixed-point overflow
ADI - 8 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
16 0x80 Floating-point overflow exception

17 0x88 Floating-point underflow exception

18 0x90 Floating-point invalid exception

19-23 0x98-0xb8 Reserved

24-31 0xc0-0xf8 User software interrupts (0-7)

18.4.5. Program memory / Data memory interface control registers
■ PMWAIT: 14-bit register, that controls the wait states and the wait

mode of the program memory banks. Bits 12-10 set also the program
memory page size.

■ DMWAIT: 24-bit register, that controls the wait states and the wait
mode of the data memory banks. Bits 22-20 set also the data memory
page size.

■ PMBANKx: defines the begin of the program memory banks.

■ DMBANKx: defines the begin of the data memory banks.

18.4.6. PC stack (PCSTK) and PC stack pointer (PCSTKP)

The 21020-ADSP is provided with two registers that control the stack man-
agment:

■ PCSTK: top of PC stack (24 bits wide and 20 deep)

■ PCSTKP: PC stack pointer (5 bits)

PC stack holds return addresses for subroutines and interrupt services and
top-of-loop addresses for loops. The PC stack is popped during return from
interrupts (RTI), return from subroutine (RTS) and termination of loops.
When the PC stack is full, the ‘full’ flag is set in the STKY-register so that an
interrupt can be generated.

The PCSTKP is a 5-bit readable and writeable register that contains the
address of the top of the PC stack.

Note: This PC-stack is not very useful in a multitasking environment. If
instructions that invoke the PC-stack are used, one has to save that PC-
stack when a task is swapped out. (see further)

18.4.7. Status Stack

The status stack is five levels deep and is used for interrupt servicing. The
ADSP-21020 automatically saves and restores the status and mode regis-
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 9

Virtuoso on the Analog Devices 21020 DSP
ters of the interrupted program. The four external interrupts and the timer
interrupt automatically push ASTAT and MODE1 onto the status stack.
These registers are automatically popped from the status stack by the inter-
rupt return instruction (RTI).

18.4.8. USTAT

The User Status Registers, USTAT1 and USTAT2, are general-purpose reg-
isters that can be used for user status flags. These system registers are set
and tested using system instructions.

18.5. Relevant documentation

1. “ADSP-21020 User’s Manual”, Analog Devices, Inc., 1991

2. “ADSP-21000 Family C Tools Manual”, Analog Devices, Inc., 1993

3. “ADSP-21000 Family Assembler Tools & Simulator Manual”, Analog
Devices, Inc., 1993

4. “ADSP-21000 Family C Runtime Library Manual”, Analog Devices,
Inc., 1993

18.6. Version of the compiler

Analog Devices, Inc. has different versions of the G21k compiler. We used
version 3.0.

18.7. Runtime Environment

This section contains following topics:

■ Data types

■ Architecture file

■ Runtime header

18.7.1. Data types

The ADSP-21020 can process 32-bit operands, with provisions for certain
40-bit operations. The arithmetic types supported directly are listed below.
All other arithmetic data types are mapped onto these types.

■ type float: IEEE-754 standard single-precision floating-point. It has a
24-bit signed magnitude fraction and a 8-bit exponent. Operations on
double-precision numbers are calculated with software emulation.

■ type int: a fixed-point 32-bit two’s complement number
ADI - 10 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
■ type complex: this type is a numerical C extension to the Standard C.
A complex number is seen as two ‘float’ or ‘int’ numbers.

Underlying types are:

C data type representation

int 32-bit two’s complement number

long int 32-bit two’s complement number

short int 32-bit two’s complement number

unsigned int 32-bit unsigned magnitude number

unsigned long int 32-bit unsigned magnitude number

char 32-bit two’s complement number

unsigned char 32-bit unsigned magnitude number

float 32-bit IEEE single-precision number

double 64-bit IEEE double-precision number

long double 64-bit IEEE double-precision number

complex int two 32-bit two’s complement numbers

complex float two 32-bit IEEE single-precision numbers

18.7.2. The Architecture file

The architecture file describes the memory configuration. This configuration
is read by the compiler and the linker to determine the memory specification
of the target system. For example, you may specify the memory size, mem-
ory type, and the number of wait states used in the different banks of data
and program memory. The architecture file uses two directives to handle
these memory specifications:

■ .SEGMENT: tells the linker, which memory segments may be used.

■ .BANK: specifies the physical memory on the target board.

The architecture file also uses two other directives, which identify your sys-
tem:

■ .SYSTEM: name of your ADSP-21020 system.

■ .PROCESSOR: defines the processor_type (21020 / 2106x)

More information about writing and understanding architecture files can be
found in the “ ADSP-21020 Family Assembler Tools and Simulator Manual “
and in the “ ADSP-21020 Family C Tools Manual ” from Analog Devices.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 11

Virtuoso on the Analog Devices 21020 DSP
18.7.3. Runtime header (interrupt table)

A portion of memory is reserved for the interrupt table. The interrupt table is
where the linker puts the code in the runtime header: “020_hdr.obj”. This
runtime header is automatically linked in when you invoke the compiler.

18.8. Assembly language interface

This paragraph shortly shows how to interface assembly language code with
C code. It gives an overview of the most important things, you must keep in
mind, when you are writing C-callable assembly functions.

There are two registers, called the stack pointer and the frame pointer, that
are used to manipulate the runtime stack:

■ i7: points to the top of the stack

■ i6: points to the start of the frame for the current function

Register i13 is used by the C calling protocol to contain the function return
address. When this register is used later on, it must be placed on the stack
on function entry.

The compiler makes also some assumptions about how functions treat regis-
ters. There are two classes of registers:

■ Compiler registers: these registers are preserved across function
calls.

■ Scratch registers: these registers are not preserved across function
calls. (See User’s Manual for detailled list)

Registers may be saved by pushing them on the stack. You can use the fol-
lowing instruction:

■ dm (i7, m7) = r3; places r3 onto the stack and decrements the pointer.

■ r3 = dm (1, i7); reads the stack. The stackpointer is not incremented.

■ modify (i7, 1); increments the stack.

In the C environment, arguments are passed to functions by placing them in
registers or on the stack, according to following rules:

1. At most three arguments are passed in registers. (R4, R8, R12)

2. Once one argument has been passed on the stack, all remaining
arguments are on the stack.

3. All values wider than 32 bits are passed on the stack.

The return value of the function must be placed in the appropriate registers.
If a single word is being returned, it must be returned in register R0. If a two
ADI - 12 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
word value is being returned, it must be returned in registers R0 and R1.

The calling protocol in a C environment involves several steps:

1. The arguments to the function must be passed.

2. The return address must be loaded into register i13.

3. The frame pointer must be adjusted. The current function’s frame
pointer, I6 is written into R2, and the current stack pointer, i7, is writ-
ten into i6 to create the called function’s frame pointer.

4. When the function returns, it’s necessary to adjust the stack pointer.

5. In order for C functions to link with assembly functions, use the .global
and .extern assembly language directives. The name has to start with
an underscore in assembly.

There is also a possibility to use in-line assembly into your C code. This is
done using the asm() construct. Example:

asm (“ bit set mode1 IRPTEN;”);

/* enables interrupts */

To conclude, an example of a C-callable function is given.

/* int add (int a, int b) */

.segment /pm seg_pmco;

.global _add;

_add:

 dm(i7,5) = r2 /* stores old frame pointer */

 dm(-1,i6) = i13; /* stores return address */

 dm(-2,i6) = r4;

 dm(-3,i6) = r8;

 dm(-4,i6) = r0;

 r4 = r4+r8;

 r0 = r4;

 jump(m14,i13)(DB); /* delayed jump to return address */

 i7 = i6;

 i6 = dm(0,i6); /* adjusts stack */
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 13

Virtuoso on the Analog Devices 21020 DSP
.endseg;

FIGURE 14 Stack usage

i7 (stack pointer)

i6 (frame pointer)
R2

i13

r4

r8
r0

PCSTACK
ADI - 14 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
18.9. Developing ISR routines on the 21020

18.9.1. Installing an ISR routine

The best place to install and enable an interrupt service routine (ISR), is in
the main() function, where predefined drivers, like the driver for the timer
interrupt, are installed and enabled.

It is possible that additional initialisation of registers and/or peripheral I/O
has to be done. The best way is to write a C-callable procedure, that does
the necessary additional initialisations, and call this procedure after the call
to KS_EnableISR() . An example of this method is the installation of the
timer ISR in procedure main() :

#include “iface.h”

extern void timer0_irqh (void);

extern void timer0_init (void);

...

int main (void)

{

...

init_server();

KS_EnableISR (4, timer0_irqh);

timer0_init();

...

}

Note: In VIRTUOSO CLASSICO, there is a function provided that does the
work: ‘timer0_drv().’ This function installs and initialises the timer. The host
interrupt service routine is installed and enabled by using the function
init_server().

18.9.2. Writing an ISR routine
A. VIRTUOSO MICRO

It is very easy to develop ISR routines for the ADSP-21020. You just have to
keep the right things in mind. An example of an ISR is given and explained
below:

example 1: signalling ISR
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 15

Virtuoso on the Analog Devices 21020 DSP
#include <def21020.h>

#define HOSTSIG 8 /* defines event number for host */

.segment /pm seg_pmco;

.extern _kernel_sign_entry; /* external function */

.global _rxhost_irqh; /* makes it C callable */

.endseg;

.segment /pm seg_pmco;

_rxhost_irqh:

 dm(i7,m7) = ASTAT;

 dm(i7,m7) = MODE1;

 dm(i7,m7) = r2;

 dm(i7,m7) = r4;

 r4 = i4;

 dm(i7,m7) = r4;

 jump _kernel_sign_entry (DB);

 r4 = HOSTSIG; (1)

 bit CLR MODE1 IRPTEN; (2)

First, ASTAT and MODE1 have to be pushed on the stack. This is to make
sure that these registers are correctly saved in all cases. Which registers
have to be preserved by an ISR depends on the class of the ISR and on
which registers are used in the ISR. If the ISR stands on its own (no signal is
made to the kernel), only those registers must be preserved that are used by
the ISR. In the case the ISR gives a signal to the kernel, all registers that are
used by the ISR must be preserved, except the registers R2, R4, I4: these
registers must always be saved at the start of a signalling ISR, regardless if
they are used by the ISR or not, because the kernel is relying on the fact that
they are saved. The ISR ends with a kernel_sign_entry. The kernel expects
the event signal number in register R4 . In this example, the event (8) is sig-
nalled to the kernel, for further processing. At that moment interrupts are dis-
abled. Note also the use of the delayed branch. Instructions (1) and (2) are
executed before the jump.

example 2: non-signalling ISR (using R2, R4)

#include <def21020.h>

#define HOSTSIG 8 /* defines event number for host */

.segment /pm seg_pmco;

.global _irq_service; /* makes it C callable */

.endseg;

.segment /pm seg_pmco;

_irq_service:
ADI - 16 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
 dm(i7,m7) = ASTAT;

 dm(i7,m7) = MODE1;

 dm(i7,m7) = r2;

 dm(i7,m7) = r4;

 < body of ISR >

r4 = dm(1,i7);

r2 = dm(2,i7);

MODE1 = dm(3,i7);

ASTAT = dm(4,i7);

modify (i7,4);

RTI;

Note also that for this release of Virtuoso Micro for the ADSP-21020, it is
needed to disable interrupts before signalling the kernel. When interrupts are
enabled, it is possible that an interrupt of higher priority interrupts one of
lower priority. Entering the kernel is a critical section and may not be inter-
rupted. Therefore, at that moment interrupts must be disabled. Because, it is
advised to disable interrupts in a period as short as possible, it must be done
just before the jump. The kernel will re-enable interrupts as soon as the criti-
cal section is executed.

B. VIRTUOSO CLASSICO

There are two differences between writing IRQ’s for VIRTUOSO MICRO and
for VIRTUOSO CLASSICO:

1. different set of registers that must be saved.

2. the way, the kernel is entered.

an example: host-interrupt service routine

#include <def21020.h>

#include <macro.h> /* macro’s for nanokernel */

.segment /pm seg_pmco;

.global _rxhost_irqh;

.endseg;

.segment /dm seg_dmda;

.var HOST_EVENT = 8;

.extern _K_ArgsP; /* channel for the kernel */

.endseg;

.segment /pm seg_pmco;
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 17

Virtuoso on the Analog Devices 21020 DSP
_rxhost_irqh:

/* registers that MUST be saved by the IRQ */

dm(i7,m7) = MODE1;

dm(i7,m7) = ASTAT;

dm(i7,m7) = r0;

dm(i7,m7) = r1;

dm(i7,m7) = r2;

dm(i7,m7) = r4;

dm(i7,m7) = r8;

dm(i7,m7) = r12;

r4 = i4;

dm(i7,m7) = r4;

dm(i7,m7) = i12;

/* registers that MUST be saved by the IRQ */

i4 = dm(_K_ArgsP);

r2 = dm(HOST_EVENT);

PRHI_PSH; /* pushes event on kernel-channel */

ENDISR1; /* ends the interrupt routine */

endseg;

For more information: see also the chapter upon the nanokernel.

18.9.3. Alphabetical list of ISR related services
1. _kernel_sign_entry : entering the kernel from within an ISR

2. KS_EventW (int IRQ) : waits on an interrupt at the task level

3. KS_EnableISR(int IRQ, void (*ISR) (void))): installs the ISR

4. KS_DisableISR(int IRQ): disables the ISR

See part 2 for details.

18.10. The nanokernel on the 21020

18.10.1. Introduction

The nanokernel provides the lowest level of functionality in the Virtuoso sys-
tem. It is designed to perform extremely fast communication and context
swapping for a number of processes. It also provides the entry points neces-
sary to integrate interrupt handlers with the rest of the system. The prices to
pay for speed is that the nanokernel processes and interrupt handlers must
obey very strict rules regarding to their use of CPU registers and the way
ADI - 18 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
they interact with each other.

From the point of view of the nanokernel, an application program consists of
a collection of three types code modules:

■ a single low priority process (PRLO-process).

■ any number of high priority processes (PRHI-process).

■ any number of interrupt handlers.

It is important to understand what exactly is meant by a process. A process
is a thread of execution that has both an identity and a private workspace.
These two properties (logically equivalent) make it possible for a process to
be swapped out, and wait for an external event while another process is
allowed to continue. Interrupt handlers in contrast, do not have a private
workspace.

The PRHI processes are scheduled in strict FIFO order, and must observe
the special register conventions mentioned above. The PRLO process is
assumed to be a C function (using the compiler register conventions), and
must always be ready to execute. You can compare it with the Idle-process of
the microkernel.

All communication inside the nanokernel is performed using channels. Sev-
eral types exit. The simplest type is used for synchronization and corre-
sponds to a counting semaphore. The other types are used for data transfer.
The possiblity is provided that a user can add his own channel types.

The microkernel, who manages the tasks is build as an application on top of
the nanokernel. The main component is a PRHI process that executes com-
mands it receives from a channel. When the channel is empty, the microker-
nel looks for the next task to run, replaces the nanokernel IDLE-process by
that task and performs the additional register swappings required for C tasks.

The nanokernel is not ‘aware‘ of the manipulations performed by the micro-
kernel. As far as it concerned, there is only one PRLO-process, which it exe-
cutes whenever no PRHI-process is ready to continue. This makes it
possible to use the nanokernel on its own.

18.10.2. Internal data structures

The user does not normally need to access the internal data structures used
by the nanokernel. The documentation in this section is provided only for a
better understanding of how the nanokernel operates.

A process is represented by a pointer to a Process Control Structure (PCS).
For PRHI processes, the PCS occupies the first six words of its stack. Two
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 19

Virtuoso on the Analog Devices 21020 DSP
entries are placed at the top by reason of a decrementing stackpointer. A
static PCS is used for the Idle-process. More details on the PCS will be intro-
duced in the section on process management.

A channel is represented by a pointer to a Channel Data Structure (CDS).
The first word of a CDS is a pointer to the PCS of a process waiting on that
channel, or NULL. Other fields depend on the type of the channel and will be
introduced in the section on nanokernel communications.

The following static variables are used by the nanokernel to keep track of the
state of the system:

NANOK_PRHI: Pointer to the PCS of the current PRHI-process, or NULL if
there is none.

NANOK_HEAD: Head pointer for a linked list of PRHI-processes that are
ready to run. When the current PRLO-process is swapped out, the PRHI-
process at the head of the list is removed, and becomes the current process.

NANOK_TAIL: Tail pointer for a linked list of PRHI-processes that are ready
to run. When a process becomes ready to execute, it is added to the tail of
the list.

NANOK_PRLO: Pointer to the PCS of the PRLO-process. This is a constant
as far as the nanokernel is concerned. The microkernel modifies this pointer.

NANOK_CRIT: This is the number of interrupt handlers running with global
interrupts enabled that are not yet terminated. The process swapping is dis-
abled while this value is not zero. On the 21020, the return address of the
interrupt is stacked on the PC-stack. So, we do not need an extra variable for
this purpose. PCSTKP equals NANOK_CRIT.

Symbolic constants for accessing kernel variables and elements of a PCS
are defined in the file: ‘nanok.h’

18.10.3. Process managment.

The nanokernel variable are initialized as follows:

NANOK_PRHI = 0;

NANOK_HEAD = 0;

NANOK_TAIL = &(NANOK_HEAD)

NANOK_PRLO = &(PCS for IDLE process)

NANOK_CRIT = PCSTKP = 0;

This means that when an application is started, the idle-process of the
ADI - 20 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
nanokernel will start.

In the current version of the nanokernel, all PRHI-processes must be created
and started by the PRLO-process. Three steps are required to create a pro-
cess:

■ create a stack for the process.

■ initialise the PCS

■ start the process

The stack can be placed anywhere in memory. It can be a C-array of inte-
gers, a memory block allocated by malloc.

The function _init_process (stack, stacksize, entry, i1, i2) is used to initialize
the PCS. It writes the following values to the first 10 words of the stack:

PR_LINK : link pointer

PR_SSTP: saved stack pointer

PR_PI0: saved i0

PR_PI1: saved i1

PR_PI2: saved i2

PR_MODE1: saved MODE1-register

PR_ASTAT: saved ASTAT-register

PR_BITS: flags

PR_PEND: pointer to terminate code

PR_PRUN: pointer to entry point

Calling _start_process (stack) starts the process. As the caller is the PRLO-
process, there can be no other PRHI process and the new process will start
execution immediately. Control returns to the caller when the new process
terminates or deschedules by waiting on a channel.

The first time a PRHI process is swapped in, it continues from its entry point.
The stack pointer will point to the PR_PEND field in the PCS. A process ter-
minates by returning to the address in this field. The code at NANOK_TRMP
invokes the nanokernel swapper to switch to the next process. To restart a
terminated process, repeat the calls to _init_process() and _start_process().

When a PRHI process is swapped in, i0 points to the start of the PCS. A pro-
cess can create local variables by incrementing the initial stack pointer by
the number of words required.

Note: On the 21020, the stacksize is also a parameter. This is because of the
fact that the stackpointer is moving from the top to the bottom of the stack.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 21

Virtuoso on the Analog Devices 21020 DSP
18.10.4. Nanokernel communications

A channel type is defined by a data structure and a number of nanokernel
services that operate on it. Each instance of the data structure is called a
channel. Channels provide both porcess synchronization and data communi-
cation.

The nanokernel does not itself use or create channels. However, the ser-
vices that operate on channels should be considered part of the nanokernel,
as they may modify the process FIFO or invoke the nanokernel swapper.

All channels have an internal state. What exactly is represented by the state
depends on the type of the channel - typically this will be the occurence of an
event or the availability of data. An operation on a channel can consist of any
combination of the following action types:

Wait: The process is said to ‘wait on a channel’

Signal: Signalling action. This action can reschedule a
process.

Test and modify: modifies or tests the state of a
channel.

Three channel types are predefined in the current nanokernel implementa-
tion. It is possible to create new channel types if necessary; an example will
be given at the end of this chapter. A full description of the nanokernel ser-
vices for each of these channel types can be found in the alphabetical list in
the next chapter.

18.10.5. C_CHAN - counting channel

This is an implementation of a counting semaphore. It is typically used by
interrupt handlers to reschedule a process that was waiting for the interrupt.
The C_CHAN structure has two fields:

CH_PROC: pointer to the PCS of the waiting process or
NULL

CH_NSIG: event counter

Two nanokernel services are available for this channel type:

PRHI_WAIT: waiting action

PRHI_SIG: signalling action
ADI - 22 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
18.10.6. L_CHAN - List channel

This type of channel maintains a linked list of memory blocks, using the first
word in each block as a link pointer. The microkernel uses this type to imple-
ment its free list of command packets, data packets and timers. If used for
data communication, it behaves as a LIFO buffer.

The L_CHAN structure has two fields:

CH_PROC: pointer to the PCS of a waiting process or NULL

CH_LIST: pointer to the first element of the linked list
or NULL

The nanokernel services that operate on this type are:

PRHI_GETW: wait action

PRHI_GET: test and modify action

PRHI_PUT: signal action

18.10.7. S_CHAN - Stack channel

This type of channel uses a memory block as a data stack. The microkernel
uses a stack channel to input commands from tasks and the network drivers,
and to receive events from interrupt handlers.

The S_CHAN structure has three fields:

CH_PROC: pointer to the PCS of a waiting process or NULL

CH_BASE: pointer to the base of the stack

CH_NEXT: pointer to the next free word on the stack

The nanokernel services that operate on this type are:

PRHI_POPW: wait action

PRHI_POP: test and modify

PRHI_PSH: signal action

18.10.8. REGISTER CONVENTIONS

In order to understand the register conventions adopted by the Virtuoso
nanokernel, the following register sets should be introduced:

Csave: r3, r5, r6, r7, r9, r10, r11, r13, r14, r15, mrf, i0, i1, i2, i3, i5, i8, i9, i10,
i11, i14, i15, m0, m1, m2, m3, m8, m9, m10, m11, mrf, mrb, mode1, mode2,
ustat1, ustat2,
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 23

Virtuoso on the Analog Devices 21020 DSP
Cfree: r0, r1, r2, r4, r8, r12, i4, i12, m4, m12

Sysset: PCSTKP, IRPTL, IMASK, ...

Nswap: r3, r5, r6, r7, r9, r10, r11, r13, r14, r15, i3, i5, i8, i9, i10, i11, i14, i15,
m0, m1, m2, m3, m8, m9, m10, m11, USTAT1, USTAT2, mr0f, mr1f, mr2f,
mr0b, mr1b, mr2b, MODE2

Intset: MODE1, ASTAT, r0, r1, r2, r4, r8, r12, i4, i12

The Csave and Cfree sets are defined by the procedure calling standard of
the C-compiler. Csave is the set of registers that are preserved across a sub-
routine call - if a function uses any of these, it must restore the initial value on
return. Cfree is the set of registers that are freely available to all functions -
the caller of a subroutine is responsible for preserving them if necessary.
The definition of these two sets largely determine what the microkernel is
expected to do when swapping tasks. When a task is swapped out as a
result of calling a kernel service (which to the task is just a C function), only
the Csave set need be saved. When a task is preempted (which means that
an interrupt handler has woken up the kernel), the Cfree set must be saved
as well. Actually, since most of the microkernel is written in C, the Cfree set
must be saved before the actual service requested by the interrupt handler is
called.

Note: ST is included in the Cfree set because it contains the flags tested by
the conditional instructions (bits 0-6). Other bits in ST have system control
functions, and should be treated as part of Sysset.

The Sysset register are used for system and periperhal control only. They
are never swapped, and shoul be regarded as global resources. Only very
low level routines (such as hardware drivers) will ever need to access these
registers.

The INTSET registers are those that must have been pushed on the stack
when an interrupt handler terminates and wakes up the kernel by calling one
of the ENDISR services (this is discussed in more detail in the section on
interrupt handling below). At that point, the nanokernel needs some registers
to work with. It would be a waste of time to pop all registers saved by the
ISR, only to have to push them again when entering the kernel.

The registers in Nswap are saved and restored by the nanokernel when
swapping processes. For the PRLO process (assumed to be a C-function,
using i0 as its frame pointer) the nanokernel will save and restore i0 in the
normal way. When a PRHI-process is swapped in, i0 will be set to point to its
process control structure. A PRHI-process can use i0 to access local vari-
ables created in its workspace, and should normally not modify this register.
ADI - 24 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
If it does, the initial value can always be reloaded from NANOK_PRHI. I0
must point to the PCS whenever the process calls a nanokernel service and
when it terminates.

The Nswap register set is always available, but note the special use of i0.

If a PRHI process is swapped in as the result of a C-function call by the
PRLO-process, then the Cfree set is available for use by the PRHI process.
This means that the process can safely call any C-function. It should of
course save those registers in Cfree that it wants to preserve across the call.

If a PRHI process is swapped in as the result of an interrupt handler calling
an ENDISR service, then the INTSET registers are available to the PRHI-
process. Before calling a C-function, the process must save the set Cfree-int-
set, and it must restore the same registers before it is swapped out (this is
always possible, since a PRHI-process is never preempted).

18.10.9. Interrupt handling

In the Virtuoso system model, interrupt handlers are the interface between
asynchronous events and the processes that are waiting for then. To be use-
ful, most interrupt handlers will have to interact with the rest of the system at
some time. Using flags to be ‘polled’ by the foreground process is usually not
an acceptable practice in a real-time system. This method introduces a
‘superloop’ structure into the application, with all its inherent problems.

In a system using the nanokernel, interrupt handlers can communicate with
processes using the same channel operations that are available to pro-
cesses. However, there are some restrictions.

In contrast to a process, an interrupt service routine does not have a private
workspace, it executes on the stack of whatever process was interrupted. An
ISR on the 21020 can be interrupted by an ISR of higher priority. So, any
number of interrupt handlers can be piled on top of each other on the same
stack, owned by the current process. This has some important conse-
quences:

1. If an ISR calls a channel service that has a signal action, any process
swap that results from this call must be delayed until all interrupt han-
dlers have terminated. These implies that only the PRHI_type of
channel operations can be used, as these do not invoke the swapper
for a signal action (there is no need to swap, as the caller already has
the highest priority). When the last stacked interrupt terminates, the
swapper must be called to verify if a swap from the PRLO-process to
a PRHI-process is necessary.

2. An ISR must never call any channel service that has a wait action.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 25

Virtuoso on the Analog Devices 21020 DSP
Doing so would also block all other interrupt handlers that are stacked
below it, as well as the current process. Another way of seeing this is
that an ISR cannot wait for something because it doesn’t have a sepa-
rate identity - the producer of the external event (another ISR) has no
means of representing who is waiting for it.

Note: The 21020 is provided with a system stack. When an external or a
timer interrupt arrives, MODE1 and ASTAT are pushed on that system stack.
The pull-operation is performed by the RTI. In our version of the kernel,
MODE1 and ASTAT are always pushed on the stack of the task. This is done
to be sure that they are saved.

18.10.10. The ISR-level

The 21020 has only one ISR-level. When entering the interrupt handler, glo-
bal interrupts are enabled. An interrupt of higher priority can interrupt an
interrupt of lower priority.

An interrupt ends by the nanokernel function ‘ENDISR1’. At that point, the
nanokernel will verify if a process swap is required and allowed. The condi-
tion tested is the logical AND of:

■ NANOK_PRHI = 0; /* The current process is a PRLO-process */

■ NANOK_HEAD != 0; /* There is a PRHI-process */

■ NANOK_CRIT = 0; /* There are no nested interrupts anymore */

In case of a swap, the interrupt is finished and the PRHI-process is swapped
in. If there are nested interrupts, first all interrupts are finished.

See also the chapter about ‘ writing IRQ’s for VIRTUOSO CLASSICO and
MICRO’.

18.10.11. Communicating with the microkernel

As mentioned before, the VIRTUOSO microkernel is implemented as a
PRHI-process. It uses a single stack based channel to receive commands
from the tasks, the network drivers, other PRHI-processes and interrupt han-
dlers. A pointer to this channel is exported in the C-variable K_ArgsP.

Two types of data can be pushed onto this channel:

1. Small integers (0-63) are interpreted as events. Events are simple binary
signals that a task can wait for using the KS_EventW()-service. Most events
will be generated by interrupt handlers and driver processes. For the 21020
version, event numbers have been assigned as follows:
ADI - 26 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
■ 0-31: all interrupts provided by the 21020.

■ 48 : timer event.

■ rest: are free.

2. All other values pushed onto the microkernel input channel are interpreted
as a pointer to a command packet. Command packets are the primary form
of communication used within the Virtuoso system. They are used by the
tasks to request microkernel services, sent across the Virtuoso network to
implement remote kernel calls, and put on waiting lists to represent a task
that is waiting for something. It is outside the scope of this manual to present
a complete description of the command packet data format. The basic struc-
tures and the command codes are defined in K_STRUCT.H

The microkernel maintains a list of free command packets, implemented as a
list based channel. A pointer to this channel is exported in the C variable
K_ArgsFreeP. Other PRHI-processes can get command packets from this
pool, but they must never wait on the channel (i.e. always use PRHI_GET). If
the list is empty, correct behavior is to call YIELD and try again later.

In the Virtuoso network, the Srce field of a command packet identifies the
sending node, and it is used as a return path for reply messages. The same
field also has a secondary function: since all packets sent or received
through the network are allocated from the K_ArgsFree list, they should be
deallocated after use. The network transmitters always free a packet after it
has been sent. The microkernel deallocates a packet if the Scre field is not
zero. Consequently, command packets not allocated from the free list must
have their Scre field set to zero to prevent deallocation.

Note: we are aware of the fact that this logic is a bit confusing. Future ver-
sions of the microkernel will probably use a separate flag to indicate if a
packet was dynamically allocated.

Interrupt handlers and PRHI processes can request a microkernel service by
building a command packet, and pushing a pointer to it on the microkernel
input channel. The only services that can be safely called are the equivalents
of KS_Signal and KS_SignalM. Also note that using events will be faster
than signals.

The code fragments below show how to perform a KS_Signal() or
KS_SignalM() call from within the ISR. In this example the command packet
is created and initialized in C, but the same thing could be done entirely in
assembly language

The function ‘install_my_isr()‘ is called to initialize the command packet and
install the ISR:
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 27

Virtuoso on the Analog Devices 21020 DSP
K_ARGS CP1, *CP1P;

K_SEMA SLIST1 [] = {SEMA1, SEMA2, ..., ENDLIST};

extern void my_isr (void);

void install_my_isr(...)

{

 ...

 /* create a pointer to the command packet */

CP1P = &CP1;

/* initialize CP1 for a KS_Signal (SEMA1) service */

CP1.Srce = 0;

CP1.Comm = SIGNALS;

CP1.Args.s1.sema = SEMA1;

/* or for a KS_SignalM (SLIST1) service */

CP1.Scre = 0;

CP1.Comm = SIGNALM;

CP1.Args.s1.list = SLIST1;

/* install the ISR */

KS_EnableISR (..., my_isr);

...

}

For the ISR, something like the code listed below will be
required:

.extern _CP1P;

.extern _K_ArgsP;

.global _my_isr

...

_my_isr:

...

i4 = dm(_K_ArgsP); i4 contains pointer to channel

r2 = dm(_CP1P); r2 contains data

PRHI_PSH; signals semaphore

...

18.10.12. Virtuoso drivers on the 21020

Drivers are the interface between the processor and peripheral hardware,
and the application program. They normally serve two purposes: data-com-
munication and synchronization. As polling is not a recommended practice in
a real-time system, most drivers will use interrupts in one way or another.

The virtuoso system does not provide a standard interface to drivers - this
ADI - 28 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Analog Devices 21020 DSP

PA
R

T
 3
allows the application writer to optimize this important part of their implemen-
tation. Some basic services, that will be required for almost all drivers, are
provided. Most low-level details have already been described in the previous
sections on interrupt handling and communication with the microkernel. At
the higher level, a typical driver can usually be divided into three functional
parts:

1. The first component is a function to install the driver. This should initialize
the hardware and any data structures used, and install interrupt handlers for
the driver. A call to this function is usually placed inside a driver statement in
the system definition file. The SYSGEN-utility copies this call into a function
named init_drivers() it generates in the node#.c files. The init_drivers() sub-
routine is called by kernel_init() just before it returns.

2. Most drivers will provide one or more subroutines that can be called from
the task level, and that implement the actual functionality of the driver. At
some point, these functions will call KS_EventW() or KS_Wait() to make the
calling task wait for the completion of the driver action.

3. One or more interrupt handlers are required to generate the events or sig-
nals waited for by these subroutines.

In the simplest case, the only actions required from the ISR will be to service
the hardware and to reschedule a waiting task, and all data handling and
protocol implementation can be done at the task level. This method can be
used if the interrupt frequency is not too high (< 1000Hz).

For higher data rates, some of the task code should be moved to the ISR, in
order to reduce the number of task swaps. In most cases, the actions,
required from the interrupt handler will not be the same for each interrupt,
and some form of state machine will have to be implemented into the ISR.

If the number of possible states grows, it is often much easier to use one or
more PRHI-processes to implement the protocol. Processes can wait for
interrupts at any number of places in their code, and each of these points
represents a state of the system. As an example, the virtuoso network driver
have been designed using this method.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 29

Alphabetical List of nanokernel entry points
19. Alphabetical List of nanokernel entry points

In the pages to follow, all Virtuoso nanokernel entry points are listed in
alphabetical order. Most of these are 21020-call, some are C callable.

• BRIEF Brief functional description

• CLASS One of the Virtuoso nanokernel service classes of which it is a member.

• SYNOPSIS The ANSI C prototype (C callable), or

Assembly language calling sequence

• RETURN VALUE . . The return value, if any (C callable only).

• ENTRY CONDITIONSRequired conditions before call

• EXIT CONDITIONS. Conditions upon return of the call

• DESCRIPTION . . . A description of what the Virtuoso nanokernel service does when invoked
and how a desired behavior can be obtained.

• EXAMPLE One or more typical Virtuoso nanokernel service uses.

• SEE ALSO. List of related Virtuoso nanokernel services that could be examined in con-
junction with the current Virtuoso nanokernel service.

• SPECIAL NOTES . . Specific notes and technical comments.
ADI - 30 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.1. _init_process

• BRIEF Initialize a nanokernel process

• CLASS. Process management

• SYNOPSIS void _init_process (void *stack, int stacksize, void entry(void), int i1, int i2);

• DESCRIPTION . . . This C function initializes the process control structure of a process. It must
be called before the process is started using start_process (). The entry
point, the stacksize, the initial values for i1 and i2 and some internal vari-
ables are written to the PCS.

• RETURN VALUE . . none

• EXAMPLE In this example, two processes using the same code but different parameters
are initialized and started.

int adc1[100]; /* stack for first process */

int adc2[100]; /* stack for second process */

extern void adc_proc (void); /* process code */

extern struct adc_pars ADC_Params [2]; /* parameter structs */

_init_process (adc1,100, adc_proc, &ADC_Params [0], 0);

_init_process (adc2,100, adc_proc, &ADC_Params [1], 0);

_start_process (adc1)

_start_process (adc2)

• SEE ALSO. _start_process

• SPECIAL NOTES . .
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 31

Alphabetical List of nanokernel entry points
19.2. _start_process

• BRIEF Starts a nanokernel process from the low priority context

• CLASS Process management

• SYNOPSIS void _start_process (void *stack);

• DESCRIPTION . . . Starts a nanokernel process by making it executable. The process must
have been initialized before. The process will start executing immediately.
This call returns when the started process deschedules or terminates.

• RETURN VALUE . . none

• EXAMPLE

int wsp1[100]

int wsp2[100]

extern void proc1 (void);

extern void proc2 (void);

int N = 1000;

_init_process (wsp1,100, proc1, 0, N)

_init_process (wsp2,100, proc2, 0, N)

_start_process (wsp1)

_start_process (wsp2)

• SEE ALSO. _init_process ()

• SPECIAL NOTES . . This function cannot be used from within a high priority nanokernel process.
It must be called from the C main () function or by a microkernel task only.
ADI - 32 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.3. ENDISR1

• BRIEF Terminates an ISR and conditionally invokes the process swapper

• CLASS. Interrupt service management

• SYNOPSYS ENDISR1

ENDISR1 is defined in macro.h

• DESCRIPTION . . . This entry point must be called to terminate an ISR running at level 1 (global
interrupts enabled). It decrements the level 1 interrupt counter and preforms
a nanokernel process swap IFF

■ the calling ISR interrupted the PRLO process

■ a high priority process is ready to execute

• ENTRY CONDITIONSThe ISR should have saved the interrupted context so that the exit sequence
listed below would correctly terminate the ISR.

• EXIT CONDITIONS . This call terminates the ISR and does not return.

• EXAMPLE This ISR accepts the IIOF0 external interrupt and sends a signal to two hi-
priority processes.

#include “def21020.h”

#include “macro.h”

.segment /pm seg_pmco;

.global _rx_host_irqh;

.endseg;

.segment /dm seg_dmda;

.var HOST_EVENT = 8;

.extern _K_ArgsP;

.endseg;

.segment /pm seg_pmco;

_rx_host_irqh:

 dm(i7,m7) = MODE1; /* register of the INTSET that must

 dm(i7,m7) = ASTAT; be saved */

 dm(i7,m7) = r0;

 dm(i7,m7) = r1;

 dm(i7,m7) = r2;

 dm(i7,m7) = r4;

 dm(i7,m7) = r8;

 dm(i7,m7) = r12;

 r4 = i4; dm(i7,m7) = r4;

 dm(i7,m7) = i12;
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 33

Alphabetical List of nanokernel entry points
 i4 = dm(_K_ArgsP); /* i4 contains the channel */

 r2 = dm(HOST_EVENT); /* r2 contains data */

 PRHI_PSH; /* signals channel */

 ENDISR1; /* ends interrupt*/

.endseg;

• SEE ALSO.

• SPECIAL NOTES . . A normal interrupt exit (popping saved registers and RETI) is not allowed for
an ISR running at level 1.
ADI - 34 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.4. K_taskcall

• BRIEF Send a command packet to the microkernel process

• CLASS. Process communication

• SYNOPSYS void K_taskcall (K_ARGS *A);

• DESCRIPTION . . . This C-callable function is used by all KS_ services to send command pack-
ets to the microkernel process.

• RETURN VALUE . . none

• EXAMPLE

• SEE ALSO. PRLO_PSH

• SPECIAL NOTES . . This function must be called by microkernel tasks only.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 35

Alphabetical List of nanokernel entry points
19.5. KS_DisableISR()

• BRIEF Remove an ISR from the interrupt vector table

• CLASS Interrupt service management

• SYNOPSYS void KS_DisableISR (int isrnum);

• DESCRIPTION . . . This C function is equivalent to KS_EnableISR (isrnum, NULL). The interrupt
is disabled, and the corresponding entry in the interrupt vector table is
cleared.

• RETURN VALUE . . none

• EXAMPLE

KS_DisableISR (8) ; /* remove the host-interrupt */

• SEE ALSO. KS_EnableISR,

• SPECIAL NOTES . . Interrupt numbers are:

■ 0..31 for interrupts enabled in the IRPTL- register
ADI - 36 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.6. KS_EnableISR

• BRIEF Install an ISR and enable the corresponding interrupt.

• CLASS. Interrupt service management

• SYNOPSYS void KS_EnableISR (int isrnum. void isr (void));

• DESCRIPTION . . . This C function is used to install, remove, or replace an interrupt handler. It
takes two parameters: an interrupt number, and a pointer to an ISR. The
pointer is entered into the interrupt vector table, and if it is not zero.

• RETURN VALUE . . none

• EXAMPLE

extern void _host_irqh(void);

KS_EnableISR (8, _host_irqh);

• SEE ALSO. KS_DisableISR

• SPECIAL NOTES . . Interrupt numbers are:

■ 0..31 for interrupts enabled in the IRPTL register
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 37

Alphabetical List of nanokernel entry points
19.7. PRHI_GET

• BRIEF Remove next packet from linked list channel

• CLASS Process communication

• SYNOPSIS PRHI_GET

PRHI_GET is defined in macro.h

• DESCRIPTION . . . If the channel is not empty, the first packet is removed from the linked list, the
Z flag is reset, and a pointer to the packet is returned. If the channel is
empty, the Z flag is set and a NULL pointer is returned. The calling process
is never swapped out as a result of calling this service.

• ENTRY CONDITIONS

i4 = pointer to linked list channel struct

• EXIT CONDITIONS. If the list is not empty:

r8 is corrupted

r2 = pointer to removed list element

the Z flag is cleared

If the list is empty

r8 is corrupted

r2 = 0

the Z flag is set

• EXAMPLE

#include “macro.h”

i4 = dm (CHANNEL);

PRHI_GET;

• SEE ALSO. PRHI_GETW, PRHI_PUT

• SPECIAL NOTES . . This service must not be called from the low priority context.
ADI - 38 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.8. PRHI_GETW

• BRIEF Get next packet from linked list channel, or deschedule

• CLASS. Process communication

• SYNOPSIS PRHI_GETW

PRHI_GETW is defined in macro.h

• DESCRIPTION . . . If the channel is not empty, the first packet is removed from the linked list and
a pointer to it is returned. If the channel is empty, the calling process is
swapped out and set to wait on the channel. It will be rescheduled by the
next call to the PRHI_PUT service on the same channel.

• ENTRY CONDITIONS

i4 = pointer to linked list channel struct

i0 = pointer to PCS of calling process

• EXIT CONDITIONS .

r2 = pointer to list element

r8, r1 are corrupted

• EXAMPLE

#include “macro.h”

i4 = dm (CHANNEL);

PRHI_GETW;

• SEE ALSO. PRHI_GET, PRHI_PUT

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 39

Alphabetical List of nanokernel entry points
19.9. PRHI_POP

• BRIEF Remove next element from a stack channel

• CLASS Process communication

• SYNOPSIS PRHI_POP

PRHI_POP is defined in macro.h

• DESCRIPTION . . . If the stack is not empty, the top element is removed and returned to the
caller. The Z flag is reset. If the stack is empty, the Z flag is set and an unde-
fined value is returned. The calling process is never swapped out as a result
of calling this service.

• ENTRY CONDITIONS

i4 = pointer to stack channel struct

• EXIT CONDITIONS. If the stack is not empty:

r8, r0, r1are corrupted

r2 = the element removed from the stack

the Z flag is cleared

If the stack is empty:

r8,r0,r1 are corrupted

r2 = undefined

the Z flag is set

• EXAMPLE

#include “traps.inc”

i4 = dm(CHANNEL);

PRHI_POP;

• SEE ALSO. PRHI_POPW, PRHI_PSH

• SPECIAL NOTES . . This service must not be called from the low priority context.
ADI - 40 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.10. PRHI_POPW

• BRIEF Remove next element from a stack channel, or deschedule

• CLASS. Process communication

• SYNOPSIS PRHI_POPW

PRHI_POPW is defined in macro.h

• DESCRIPTION . . . If the stack is not empty, the top element is removed and returned to the
caller. If the stack is empty, the calling process is swapped out and set to wait
on the channel. It will be rescheduled by the next call to the PRHI_PSH ser-
vice on the same channel.

• ENTRY CONDITIONS

i4 = pointer to stack channel struct

i0 = pointer to PCS of calling process

• EXIT CONDITIONS .

i1 = element removed from the stack

r0, r1, r8 are corrupted

• EXAMPLE

#include “macro.h”

i4 = dm(CHANNEL);

PRHI_POPW;

• SEE ALSO. PRHI_POP, PRHI_PSH

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 41

Alphabetical List of nanokernel entry points
19.11. PRHI_PUT

• BRIEF Add a packet to a linked list channel

• CLASS Process communication

• SYNOPSIS PRHI_PUT
PRHI_PUT is defined in macro.h

• DESCRIPTION . . . If a process is waiting on the channel, the pointer to the packet is passed on,
and the waiting process is rescheduled. Otherwise the packet is linked in at
the head of the list. In either case, control returns to the caller.

• ENTRY CONDITIONS

i4 = pointer to channel

r2 = pointer to packet to add to the list

• EXIT CONDITIONS.

r0, r1, r8 are corrupted

All other registers are preserved

• EXAMPLE

#include “macro.h”

i4 = dm (CHANNEL);

r2 = dm (PACKET);

PRHI_PUT

; the packet is added to the list

• SEE ALSO. PRHI_GET, PRHI_GETW

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.

The first word of the packet is used as a link pointer, and will be overwritten.
ADI - 42 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.12. PRHI_PSH

• BRIEF Push a word on a stack channel

• CLASS. Process communication

• SYNOPSIS PRHI_PSH

PRHI_PSH is defined in macro.h

• DESCRIPTION . . . If a process is waiting on the channel, the data word is passed on, and the
waiting process is rescheduled. Otherwise the data word is pushed on the
stack. In either case, control returns to the caller.

• ENTRY CONDITIONS

i4 = pointer to channel

r2 = data word to push

• EXIT CONDITIONS .

r0, r1, r4 and r8 are corrupted

All other registers are preserved

• EXAMPLE

#include “macro.h”

.extern _K_ArgsP ; microkernel input stack

; send a command packet to the microkernel

; assume i0 points to the command packet

i4 = dm (_K_ArgsP);

r2 = dm (0,i0);

PRHI_PSH;

• SEE ALSO. PRHI_POP, PRHI_POPW

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 43

Alphabetical List of nanokernel entry points
19.13. PRHI_SIG

• BRIEF Send an event on a signal channel

• CLASS Process communication

• SYNOPSIS PRHI_SIG

PRHI_SIG is defined in macro.h

• DESCRIPTION . . . If a process is waiting on the channel, it is rescheduled (put at the tail of the
process FIFO). Otherwise the event count is incremented. In either case,
control returns to the caller.

• ENTRY CONDITIONS

i4 = pointer to channel

• EXIT CONDITIONS.

r0, r1, r2 are corrupted

All other registers are preserved

• EXAMPLE

#include “macro.h”

i4 = dm (SYNC_CHAN);

PRHI_SIG;

• SEE ALSO. PRHI_WAIT

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.
ADI - 44 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.14. PRHI_WAIT

• BRIEF Consume an event from a signal channel, or deschedule

• CLASS. Process communication

• SYNOPSIS PRHI_WAIT

PRHI_WAIT is defined in macro.h

• DESCRIPTION . . . If the event counter is not zero, it is decremented an control returns to the
caller. If the event counter is zero, the calling process is swapped out and set
to wait on the channel. It will be rescheduled by the next call to the
PRHI_SIG service on the same channel.

• ENTRY CONDITIONS

i4 = pointer to signal channel struct

i0 = pointer to PCS of calling process

• EXIT CONDITIONS .

r0, r1, r2 are corrupted

• EXAMPLE

#include “macro.h”

; wait for event on SYNC_CHAN

i4 = dm(SYNC_CHAN);

PRHI_WAIT;

; the event has happened

• SEE ALSO. PRHI_SIG

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 45

Alphabetical List of nanokernel entry points
19.15. PRLO_PSH

• BRIEF This call is for internal use only, and is not exactly the equivalent of
PRHI_PSH for the PRLO process. This call assumes that a PRHI process is
waiting on the channel, and will crash the system if there isn’t. PRLO_PUSH
is used by the K_taskcall function to send command packets from a task to
the microkernel process.
ADI - 46 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
19.16. YIELD

• BRIEF Yield CPU to next nanokernel process

• CLASS. Process management

• SYNOPSIS YIELD

YIELD is defined in macro.h

• DESCRIPTION . . . The calling process is swapped out and added to the tail of the process
FIFO. The process at the head of the FIFO is swapped in. This may be the
same process, if it was the only one ready to execute.

• ENTRY CONDITIONS

i0 = pointer to PCS of calling process

• EXIT CONDITIONS .

r1, r2, r0 are corrupted

• EXAMPLE This example shows how to avoid a redundant YIELD operation, by testing
the process FIFO

#include “nanok.h”

#include “macro.h”

;

r0 = dm(NANOK_HEAD);

r1 = 0;

comp(r0,r1); ; test head of process FIFO

if eq jump label;

YIELD ; yield if there is another process

label: ...

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 47

Predefined drivers
20. Predefined drivers

Two devices drivers are already added to this release of the Virtuoso kernel.
They are:

■ the timer device driver

■ the host interface device driver

■ a communication driver based on shared memory (present in VIR-
TUOS CLASSICO VSP)

The timer device driver is needed for time-out features of some kernel ser-
vices and for kernel timer services. The host interface device driver is written
to be able to communicate between the host server program and the target
board. The shared memory driver was especially written for IXTHOS-21020
boards. The IXD-7232 was provided with two 21020 processors, that can
communicate using shared memory. This driver can be extended for other
types of communication.

20.0.1. The timer device driver

The timer driver is already installed and enabled in procedure main() of the
examples that accompany the release of the Virtuoso kernel. If the timer ISR
is installed and enabled, the application programmer can read out the timer
in high and in low resolution.

The two procedures to read out the timer value are:

■ KS_HighTimer ()

■ KS_LowTimer ()

In high resolution, the number of timer counts are returned. On the 21020,
the count is equal to a period of the clock frequency.

In low resolution, the number of kernel ticks are returned. A kernel tick is a
multiple of timer count and defined in the main() function. As this value is a
32-bit wraparound value, it is more intresting to calculate the difference
between two values read out consecutively. However, to facilitate this, kernel
service KS_Elapse() is written for this purpose.

See the Alphabetical List of Virtuoso kernel services earlier in this manual
for a full description of these kernel services.

The timer device driver reserves event signal number 4 or 14 (depending on
the priority) for its use. As the host interface uses event number 8, selecting
4 will allow the timer interrupt to interrupt the host interface ISR, while select-
ADI - 48 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Predefined drivers

PA
R

T
 3
ing 14 can delay the processing of the timer ISR.

Note: In our newest versions of VIRTUOSO CLASSICO and MICRO, the
timer is always signalling event number 48.

20.0.2. The host interface device driver

The host interface driver is installed by calling procedure init_server() .
In the examples that accompany the release of the Virtuoso kernel, the
installation of the host interface is done in procedure main() .

The host interface driver can be used on two levels. The lowest level needs
only one kernel resource, HOSTRES, which secures the use of the low level
host interface. This kernel resource must always be locked by the task that
wants to make use of the host interface, and unlocked if this task has fin-
ished using the host interface. A list of low level procedures are at the dis-
posal of the application programmer to do simple character-oriented I/O:

■ server_putch()

■ server_pollkey()

■ server_terminate()

■ server_pollesc()

These procedures will do the locking and unlocking of HOSTRES, so that
HOSTRES is transparent to the application programmer, using the low level
host interface.

Also installed in the examples is an easy-to-use character-oriented I/O inter-
face, based on two tasks, conidrv and conodrv , two queues, CONIQ and
CONOQ, two resources, HOSTRES and CONRES, and a procedure called
printl() . This higher level interface driver makes use of the low level inter-
face procedures.

It is possible to use an even lower level of the host interface. Doing this, the
application programmer can build other host interfaces that do more than
character-oriented I/O. The minimum that is needed to make use of the low-
est level host interface, is the kernel resource HOSTRES, to secure the use
of the interface, and the procedure, named call_server() . Note, how-
ever, that HOSTRES is not needed if only one task makes use of the lowest
level host interface and if the Task Level Debugger is not present. It is not the
intention of this manual to lay out the internals of the host interface and the
communication protocol between the host server program and the target
board(s). Please contact Eonic Systems if more information is wanted on
this topic.

For more details on the different levels of the host interface, see “Host server
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 49

Predefined drivers
low level functions” and “Simple terminal oriented I/O” in the chapter of
“Runtime libraries”.

The host interface device driver reserves event signal number 8 for its own
use.

20.0.3. Shared memory driver

This driver was specific written for IXTHOS boards. These boards are pro-
vided with two 21020 processors. Each of these processors, have their own
program and data memory space. Beside that, there is a pool of shared
memory present. Both processors can access the shared memory. In Virtu-
oso Classico, the shared memory is used for communication. The customer
can install the driver by adding to the SYSDEF-file:

NETLINK NODE1 ‘MemLink()’, NODE2 ‘MemLink()’

20.1. Task Level Timings

Following is a list of task level timings of some of the kernel services pro-
vided by Virtuoso. These timings are the result of a timing measurement on
a ADSP-21020 board with a clock speed of 25MHz. The kernel used for
these timings is the VIRTUOSO Microkernel.

All timings are in microseconds. The C compiler used is the G21k C Com-
piler v.3.0 from Analog Devices.

Minimum Kernel call

Nop (1) 5

Message transfer

Send/Receive with wait

Header only (2) 34

16 bytes (2) 37

128 bytes (2) 46

1024 bytes (2) 118

Queue operations

Enqueue 1 byte (1) 9

Dequeue 1 byte (1) 9

Enqueue 4 bytes (1) 9

Dequeue 4 bytes (1) 10

Enqueue/Dequeue (with wait) (2) 35

Semaphore operations

Signal (1) 6
ADI - 50 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Predefined drivers

PA
R

T
 3
Signal/Wait (2) 28

Signal/WaitTimeout (2) 34

Signal/WaitMany (2) 37

Signal/WaitManyTimeout (2) 43

Resources

Lock or Unlock (1) 7

Note :

(1): involves no context switch

(2): involves two context switches. Timing is round-
trip time.

20.2. Application development hints.

The easiest way to start is to copy and modify one of the supplied examples.
Some of the necessary files have fixed names, so each application should
be put in a separate directory.

The following files will be needed for each application:

SYSDEF:

The VIRTUOSO system definition file. The SYSGEN utility will read this file
and generate NODE1.C and NODE1.H.

MAIN1.C:

This contains some more configuration options, and the C ‘main’ function.
Copy from one of the examples.

A number of configuration options are defined in this file, so they can be
changed without requiring recompilation of all sources (this would be neces-
sary if SYSDEF is modified).

CLCKFREQ : this should be defined to be the clock frequency of the hard-
ware timer used to generate the TICKS time.

TICKTIME : the TICK period in microseconds.

TICKUNIT: the TICK period in CLCKFREQ units.

TICKFREQ: the TICK frequency in Hertz.

The number of available timers, command packets and multiple wait packets
are also defined in this file. How much you need of each depends on your
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 51

Predefined drivers
application, but the following guidelines may be followed:

Timers are used to implement time-outs (at most one per task), and can also
be allocated by a task.

A command packet will be needed for each timer allocated by a task. Com-
mand packets used for calling a kernel service are created on the caller’s
stack and should not be predefined.

A multiple wait packet will be needed for each semaphore in a KS_WaitM
service call (for as long as it remains waiting).

MAIN1.C also defines some variables used by the console driver tasks, the
clock system, the debugger task, and the graphics system. These are
included automatically if you use the standard names for the required kernel
objects.

XXX.ACH: specifies architecture file0

MAKEFILE:

The makefiles supplied in the EXAMPLES directory can easily be modified
for your application. They also show how to organize things so you can
optionally include the task level debugger. If you want to include the task
level debugger, put the corresponding definitions out of comment:

VIRTLIB = $(LIBS)\virtosd.lib

DD = -dDEBUG

DDD = -P “DEBUG”

and put the other definition in comment:

VIRTLIB = $(LIBS)\virtos.lib

whereby # is the comment sign.

There are also two define-statements in the ‘mainx.c’-file, that the customer
can change in order to personalize the debugger: (only implemented in VIR-
TUOSO CLASSICO)

define MONITSIZE 1024 /* number of monitor records */

define MONITMASK MONALL - MONEVENT /* defines the
quantity of information */

Then remake the application, just by doing:

MAKE <Enter>.
ADI - 52 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Predefined drivers

PA
R

T
 3
LINKFILE: list of the object versions of all source files to be linked along.

YOUR SOURCE FILES : In the examples, this is just test.c

After you have done make-ing your application, you can run the application
by typing:

> 21khost -rlsi test
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI - 53

Predefined drivers
ADI - 54 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
21. Virtuoso on the ADSP 2106x SHARC

21.1. Virtuoso implementations on the 21060

At this moment, both VIRTUOSO MICRO/SP and VIRTUOSO CLASSICO/
VSP exist for the ADSP 2106x. The former only includes a microkernel,
while the latter uses both a microkernel and nanokernel. Until now, the
implementation of VIRTUOSO CLASSICO/VSP only uses link ports to com-
municate between nodes. This chapter only covers Virtuoso Classico/VSP
for SHARC.

21.2. SHARC chip architecture

This section contains a brief description of the SHARC processor architec-
ture. It is not intended to be a replacement of the Processor’s User Manual,
but as a quick lookup for the application programmer. Detailed information
can be found in the “ADSP-2106x SHARC User’s Manual” from Analog
Devices, Inc.

<SECTION TO BE COMPLETED - PLEASE REFER TO THE SHARC
USER MANUAL >

21.3. Relevant documentation

1. “ADSP-2106x SHARC User’s Manual”, Analog Devices, Inc., 1995
2. “ADSP-21000 Family C Tools Manual”, Analog Devices, Inc., 1995
3. “ADSP-21000 Family Assembler Tools & Simulator Manual”, Analog

Devices, Inc., 1995
4. “ADSP-21000 Family C Runtime Library Manual”, Analog Devices,

Inc., 1995

21.4. Version of the compiler

Analog Devices, Inc. has different versions of the G21k compiler. In the final
release, version 3.2d was used.

21.5. SHARC silicon revisions

We recommend the use of production silicon (rev 2.0 and on) with Virtuoso
Classico /VSP. Earlier revisions exhibit anomalies that could cause system
failures.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 1

Virtuoso on the ADSP 2106x SHARC
P
M

 A
dd

re
ss

 B
us

 (
P

M
A

)
 2

4

D
M

 A
dd

re
ss

 B
us

 (D
M

A
)

 3
2

P
M

 D
at

a
B

us
 (

P
M

D
)

D
M

 D
at

a
B

us
 (

D
M

D
)

P
R

O
C

E
S

S
O

R
 P

O
R

T
I/O

 P
O

R
T

S
E

R
IA

L
P

O
R

T
S

(2
)

LI
N

K
 P

O
R

T
S

 (6
)

IN
S

T
R

U
C

T
IO

N
C

A
C

H
E

32
 x

 4
8-

B
it

D
A

G
2

8
x

4
x

24
D

A
G

1
8

x
4

x
32

T
IM

E
R

D
M

A
C

O
N

T
R

O
LL

E
R

A
dd

r
B

us
M

u
x

3
2

4
8

IO
P

R
E

G
IS

T
E

R
S

C
on

tro
l,

S
ta

tu
s,

 &
D

at
a

B
uf

fe
rs

6 6 3
64

A
D

D
R

D
A

T
A

A
D

D
R

D
A

T
A

7
JT

A
G

T
es

t &
E

m
ul

at
io

n

M
U

LT
IP

LI
E

R
B

A
R

R
E

L
S

H
IF

T
E

R
AL

U

D
A

T
A

R
E

G
IS

T
E

R
F

IL
E

16
 x

 4
0-

B
it

C
or

e
P

ro
ce

ss
or

D
ua

l-P
or

te
d

S
R

A
M

Tw
o

In
de

pe
nd

en
t,

D
ua

l-P
or

te
d

Bl
oc

ks

BLOCK 0

BLOCK 1

E
xt

er
na

l P
or

t

H
O

S
T

 IN
T

E
R

F
A

C
E

P
R

O
G

R
A

M
S

E
Q

U
E

N
C

E
R

 M
U

LT
IP

R
O

C
E

S
S

O
R

IN
T

E
R

F
A

C
E

4
8

IO
D

4
8

IO
A

1
7

IOD

EPD

DMD

PMD

EPA

IOA

I/O
 P

ro
ce

ss
or

32
/4

0

P
M

A

E
P

A

D
M

A

P
M

D

E
P

D

D
M

D

D
at

a
B

us
M

u
x

B
u

s
C

on
ne

ct
(P

X
)

ADI 2 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
21.6. Developing ISR routines on the SHARC

21.6.1. General principles

When using Virtuoso Classico, there are basically 2 types of ISRs that can
be used:

■ ISRs that modify the status of a kernel object

■ ISRs that don’t.

The second type is the easiest to implement, as they do not require an inter-
face to the kernel. The ISR consists of 4 parts:

■ Pushing a number of registers on the stack,

■ Performing whatever operation that is necessary,

■ Restoring the registers from the stack,

■ Return from the interrupt.

In this case, any register can be used, as long as it gets restored to its origi-
nal value before returning from the interrupt.

The first type of ISR requires an interface to the nanokernel, and needs to be
much more structured. It consists of 3 parts:

■ Saving a number of registers on the stack. What registers and the
order in which they need to be saved is fixed.

■ Performing whatever operation that is necessary - including the modi-
fication of the status of one or more kernel objects.

■ Transfer control to the nanokernel, which will decide on the next step.

The list of registers that need saving is called INTSET. It contains the follow-
ing registers (in order): MODE1, ASTAT, r0, r1, r2, r4, r8, r12, i4, 12. Also see
21.7.8., "Register conventions" on page 12.

The second part of the ISR requires a lot more knowledge of the internals of
the nanokernel and microkernel. For more information, check 21.7., "The
nanokernel on the 21060" on page 7.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 3

Virtuoso on the ADSP 2106x SHARC
21.6.2. Writing an ISR routine

To illustrate, here are 2 examples, one of each category.

First example: a simple ISR, no kernel entry:

#include <def21060.h>

.segment /pm seg_pmco;

.global _simple_isr;

.endseg;

.segment /dm seg_dmda;

.extern _CountP;

.endseg;

.segment /pm seg_pmco;

_simple_isr:

dm(i7,m7) = r0;

r0 = i0;

dm(i7,m7) = r0;

i0 = _CountP;

r0 = dm(m5,i0);

r0 = r0 + 1;

dm(m5,i0) = r0;

r0 = dm(1,i7);

i0 = r0;

r0 = dm(2,i7);

modify(i7,2);

rti;

.endseg;

Second example: as an example for an ISR that does enter the kernel, here
is the host-interrupt service routine used in Virtuoso Classico/VSP for
SHARC:

#include <def21060.h>

#include “macro.h”/* macro’s for nanokernel */

#include “event.h”

.segment /pm seg_pmco;

.global _rxhost_irqh;
ADI 2 - 4 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
.endseg;

.segment /dm seg_dmda;

.extern _K_ArgsP; /* channel for the kernel */

.endseg;

.segment /pm seg_pmco;

_rxhost_irqh:

/*begin - registers that MUST be saved by the IRQ */

dm(i7,m7) = MODE1;

dm(i7,m7) = ASTAT;

dm(i7,m7) = r0;

dm(i7,m7) = r1;

dm(i7,m7) = r2;

dm(i7,m7) = r4;

dm(i7,m7) = r8;

dm(i7,m7) = r12;

r4 = i4;

dm(i7,m7) = r4;

dm(i7,m7) = i12;

/* end - registers that MUST be saved by the IRQ */

i4 = dm(_K_ArgsP);

r2 = HOST_EVENT;

PRHI_PSH; /* pushes event on kernel-channel */

ENDISR1; /* ends the interrupt routine, transfers control to nanokernel*/

.endseg;

21.6.3. Installing an ISR routine

Installing an ISR requires a call to KS_EnableISR(). The arguments to this
function are the IRQ number, as defined in IMASK, and a pointer to the func-
tion which is to serve as the ISR.

ISRs can be installed and enabled in any part of the code of the application.
To keep a good overview, however, it is preferable to install/enable them in a
central place, like a ‘master’ task, or in the main() function.

It is possible that additional initialisation of registers and/or peripheral I/O
has to be done. The best way is to write a C-callable procedure, that does
the necessary additional initialisations, and call this procedure before or after
the call to KS_EnableISR().
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 5

Virtuoso on the ADSP 2106x SHARC
21.6.4. List of ISR related services
1. ENDISR1: Entering the kernel from within an ISR.

2. KS_EventW (int event) : Waits for an event at the task level.

3. KS_EnableISR (int IRQ, void (*ISR) (void))): Installs the ISR.

4. KS_DisableISR (int IRQ): Disables the ISR.

See 21.7., "The nanokernel on the 21060" on page 7 for more details.
ADI 2 - 6 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
21.7. The nanokernel on the 21060

21.7.1. Introduction

The nanokernel provides the lowest level of functionality in the Virtuoso sys-
tem. It is designed to perform extremely fast communication and context
switching for a number of processes. It also provides the entry points neces-
sary to integrate interrupt handlers with the rest of the system. The price to
pay for speed is that the nanokernel processes and interrupt handlers must
obey very strict rules regarding to their use of CPU registers and the way
they interact with each other.

From the point of view of the nanokernel, an application program consists of
a collection of three types code modules:

■ a single low priority process (PRLO-process).

■ any number of high priority processes (PRHI-process).

■ any number of interrupt handlers.

It is important to understand what exactly is meant by a process. A process
is a thread of execution that has both an identity and a private workspace.
These two properties (logically equivalent) make it possible for a process to
be swapped out, and wait for an external event while another process is
allowed to continue. Interrupt handlers in contrast, do not have a private
workspace.

The PRHI processes are scheduled in strict FIFO order, and must observe
the special register conventions mentioned above. The PRLO process is
assumed to be a C function (using the compiler register conventions), and
must always be ready to execute. You can compare it with the IDLE-task of
the microkernel.

All communication inside the nanokernel is performed using channels. Sev-
eral types exit. The simplest type is used for synchronization and corre-
sponds to a counting semaphore. The other types are used for data transfer.
The possibility is provided that a user can add his own channel types.

The microkernel, managing the tasks, is built as an application on top of the
nanokernel. The main component is a PRHI process that executes com-
mands it receives from a channel. When the channel is empty, the microker-
nel looks for the next task to run, replaces the nanokernel IDLE-process by
that task and performs the additional register swappings required for C
tasks.

The nanokernel is not ‘aware’ of the manipulations performed by the micro-
kernel. As far as it concerned, there is only one PRLO-process, which it exe-
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 7

Virtuoso on the ADSP 2106x SHARC
cutes whenever no PRHI-process is ready to continue. This makes it
possible to use the nanokernel on its own.

21.7.2. Internal data structures

The user does not normally need to access the internal data structures used
by the nanokernel. The documentation in this section is provided only for a
better understanding of how the nanokernel operates.

A process is represented by a pointer to a Process Control Structure (PCS).
For PRHI processes, the PCS occupies the first eight words of its stack. Two
entries are placed at the top because of the decrementing stackpointer. A
static PCS is used for the Idle-process. More details on the PCS will be intro-
duced in the section on process management.

A channel is represented by a pointer to a Channel Data Structure (CDS).
The first word of a CDS is a pointer to the PCS of a process waiting for that
channel, or NULL. Other fields depend on the type of the channel and will be
introduced in the section on nanokernel communications.

The following static variables are used by the nanokernel to keep track of the
state of the system:

NANOK_PRHI: Pointer to the PCS of the current PRHI-process, or NULL if
there is none.

NANOK_HEAD: Head pointer for a linked list of PRHI-processes that are
ready to run. When the current PRLO-process is swapped out, the PRHI-
process at the head of the list is removed, and becomes the current process.

NANOK_TAIL: Tail pointer for a linked list of PRHI-processes that are ready
to run. When a process becomes ready to execute, it is added to the tail of
the list.

NANOK_PRLO: Pointer to the PCS of the PRLO-process. This is a constant
as far as the nanokernel is concerned. The microkernel modifies this pointer.

NANOK_CRIT: This is the number of interrupt handlers running with global
interrupts enabled that are not yet terminated. The process swapping is dis-
abled while this value is not zero. On the 21060, this field is not necessary,
because IMASKP contains all necessary information on the interrupt nesting
state.

Symbolic constants for accessing kernel variables and elements of a PCS
are defined in the file ‘nanok.h’
ADI 2 - 8 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
21.7.3. Process management.

The nanokernel variables are initialized as follows:

■ NANOK_PRHI = 0;

■ NANOK_HEAD = 0;

■ NANOK_TAIL = &(NANOK_HEAD)

■ NANOK_PRLO = &(PCS for IDLE process)

■ NANOK_CRIT = 0;

This means that when an application is started, the idle-process of the
nanokernel will start.

In the current version of the nanokernel in Virtuoso Classico/VSP for
SHARC, all PRHI-processes must be created and started by the PRLO-pro-
cess. Two steps are required to create a process:

■ create a stack for the process.

■ initialise the PCS, and start up the process

The stack can be placed anywhere in memory. It can be a C-array of inte-
gers or a memory block allocated by malloc.

The function start_process (*stack, stacksize, entry, i1, i2) is used to initialize
the PCS and start the process. It writes the following values to the first 8
words of the stack (see FIGURE 15 on page 10):

PR_LINK: 0 link pointer
PR_SSTP: (see figure) saved stack pointer
PR_PI3: 0 saved i3, not used for prhi
PR_PI1: i1 initial / saved i1
PR_PI2: i2 initial / saved i2
PR_MODE1: MODE1 saved MODE1
PR_ASTAT: ASTAT saved ASTAT
PR_BITS: 0 user flags, not used for prhi

The following 2 words are written at the top of the stack:
PR_PEND: NANOK_TRMP pointer to terminate code
PR_PRUN: entry pointer to entry point

After the initialisation, start_process starts the process. As the caller is the
PRLO-process, there can be no other PRHI process and the new process
will start execution immediately. Control returns to the caller when the new
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 9

Virtuoso on the ADSP 2106x SHARC
process terminates or is descheduled by waiting for a channel.

FIGURE 15 Process Control Structure of a process.

When a process is swapped in, the nanokernel simply pops the first entry on
the stack, and the process starts at that address. When the process termi-
nates, it should perform some clean-up actions. As the pointer to the termi-
nation code is already pushed onto its stack, the process simply needs to
pop that last entry from the stack end jump to that address. At that point, it
will jump to the process termination code.

To restart a terminated process, repeat the call start_process().

When a PRHI process is swapped in, i3 points to the start of the PCS. A pro-
cess can create local variables by incrementing its stack pointer by the num-
ber of words required.

Note: On the 21060, the stacksize is also a parameter. This is because of
the stackpointer is moving from the top to the bottom of the stack.

i7 (stack pointer)

Process Control Structure

i3 (start of PCS)

PR_PEND

PR_PRUN

PR_LINK

PR_SSTP

PR_PI3

PR_PI2

PR_PI1

PR_MODE1

PR_ASTAT

PR_BITS

...
...

S
TA

C
K

 S
IZ

E

ADI 2 - 10 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
21.7.4. Nanokernel communications

A channel type is defined by a data structure and a number of nanokernel
services that operate on it. Each instance of the data structure is called a
channel. Channels provide both process synchronization and data commu-
nication.

The nanokernel does not itself use or create channels. However, the ser-
vices that operate on channels should be considered part of the nanokernel,
as they may modify the process FIFO or invoke the nanokernel swapper.

All channels have an internal state. What exactly is represented by the state
depends on the type of the channel - typically this will be the occurrence of
an event or the availability of data. An operation on a channel can consist of
any combination of the following action types:

Wait: The process is said to ‘wait for a channel’
Signal: Signalling action. This action can reschedule a process.
Test and modify: modifies or tests the state of a channel.

Three channel types are predefined in the current nanokernel implementa-
tion in Virtuoso Classico/VSP. It is possible to create new channel types if
necessary; an example will be given at the end of this chapter. A full descrip-
tion of the nanokernel services for each of these channel types can be found
in the alphabetical list in the next chapter.

21.7.5. SEMA_CHAN - counting or semaphore channel

This is an implementation of a counting semaphore. It is typically used by
interrupt handlers to reschedule a process that was waiting for the interrupt.
The C_CHAN structure has two fields:

CH_PROC: pointer to the PCS of the waiting process or NULL
CH_NSIG: event counter

Two nanokernel services are available for this channel type:

PRHI_WAIT: waiting action
PRHI_SIG: signalling action

21.7.6. LIFO_CHAN - List channel

This type of channel maintains a linked list of memory blocks, using the first
word in each block as a link pointer. The microkernel uses this type to imple-
ment its free list of command packets, data packets and timers. If used for
data communication, it behaves as a LIFO buffer.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 11

Virtuoso on the ADSP 2106x SHARC
The LIFO_CHAN structure has two fields:

CH_PROC: pointer to the PCS of a waiting process or NULL
CH_LIST: pointer to the first element of the linked list or NULL

The nanokernel services that operate on this type are:

PRHI_GETW: wait action
PRHI_GET: test and modify action
PRHI_PUT: signal action

21.7.7. STACK_CHAN - Stack channel

This type of channel uses a memory block as a data stack. The microkernel
uses a stack channel to input commands from tasks and the network drivers,
and to receive events from interrupt handlers.

The STACK_CHAN structure has three fields:

CH_PROC: pointer to the PCS of a waiting process or NULL
CH_BASE: pointer to the base of the stack
CH_NEXT: pointer to the next free word on the stack

The nanokernel services that operate on this type are:

PRHI_POPW: wait action
PRHI_POP: test and modify
PRHI_PSH: signal action

21.7.8. Register conventions

In order to understand the register conventions adopted by the Virtuoso
nanokernel, the following register sets should be introduced:

CSAVE: r3, r5, r6, r7, r9, r10, r11, r13, r14, r15, i0, i1, i2, i3, i5, i8, i9, i10, i11,
i14, i15, m0, m1, m2, m3, m8, m9, m10, m11, mrf, mrb, MODE1, MODE2,
USTAT1, USTAT2

CFREE: r0, r1, r2, r4, r8, r12, i4, i12, m4, m12

SYSSET: IRPTL, IMASK,...

NSWAP: i1, i2, i3, i7, MODE1, ASTAT

INTSET: MODE1, ASTAT, r0, r1, r2, r4, r8, r12, i4, i12

The CSAVE and CFREE sets are defined by the procedure calling standard
ADI 2 - 12 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
of the C-compiler. CSAVE is the set of registers that is preserved across a
subroutine call - if a function uses any of these, it must restore the initial
value on return. CFREE is the set of registers that are freely available to all
functions - the caller of a subroutine is responsible for preserving them if
necessary. The definition of these two sets largely determine what the micro-
kernel is expected to do when swapping tasks. When a task is swapped out
as a result of calling a kernel service (which to the task is just a C function),
only the CSAVE set need be saved. When a task is preempted (which
means that an interrupt handler has woken up the kernel), the CFREE set
must be saved as well. Actually, since most of the microkernel is written in C,
the CFREE set must be saved before the actual service requested by the
interrupt handler is called.

The SYSSET register are used for system and peripheral control only. They
are never swapped, and should be regarded as global resources. Only very
low level routines (such as hardware drivers) will ever need to access these
registers.

The INTSET registers are those that must have been pushed on the stack
when an interrupt handler terminates and wakes up the kernel by calling the
ENDISR1 service (this is discussed in more detail in the section on interrupt
handling below). At that point, the nanokernel needs some registers to work
with. It would be a waste of time to pop all registers saved by the ISR, only to
have to push them again when entering the kernel.

The registers in NSWAP are saved and restored by the nanokernel when
swapping processes. For the PRLO process (assumed to be a C-function,
using i3 as its frame pointer) the nanokernel will save and restore i3 in the
normal way. When a PRHI-process is swapped in, i3 will be set to point to its
process control structure. A PRHI-process can use i3 to access local vari-
ables created in its workspace, and should normally not modify this register.
If it does, the initial value can always be reloaded from NANOK_PRHI. I3
must point to the PCS whenever the process calls a nanokernel service and
when it terminates.

The NSWAP register set is always available, but note the special use of i3.

If a PRHI process is swapped in as the result of a C-function call by the
PRLO-process, then the CFREE set is available for use by the PRHI pro-
cess. This means that the process can safely call any C-function. It should of
course save those registers in CFREE that it wants to preserve across the
call.

If a PRHI process is swapped in as the result of an interrupt handler calling
an ENDISR service, then the INTSET registers are available to the PRHI-
process. Before calling a C-function, the process must save the set CFREE-
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 13

Virtuoso on the ADSP 2106x SHARC
INTSET, and it must restore the same registers before it is swapped out (this
is always possible, since a PRHI-process is never preempted).

21.7.9. Interrupt handling

In the Virtuoso system model, interrupt handlers are the interface between
asynchronous events and the processes that are waiting for them. To be
useful, most interrupt handlers will have to interact with the rest of the sys-
tem at some time. Using flags to be ‘polled’ by the foreground process is
usually not an acceptable practice in a real-time system. This method intro-
duces a ‘superloop’ structure into the application, with all its inherent prob-
lems.

In a system using the nanokernel, interrupt handlers can communicate with
processes using the same channel operations that are available to pro-
cesses. However, there are some restrictions.

In contrast to a process, an interrupt service routine does not have a private
workspace, it executes on the stack of whatever process was interrupted. An
ISR on the 21060 can be interrupted by an ISR of higher priority. So, any
number of interrupt handlers can be piled on top of each other on the same
stack, owned by the current process. This has some important conse-
quences:

1. If an ISR calls a channel service that has a signal action, any process
swap that results from this call must be delayed until all interrupt han-
dlers have terminated. These implies that only the PRHI_type of
channel operations can be used, as these do not invoke the swapper
for a signal action (there is no need to swap, as the caller already has
the highest priority). When the last stacked interrupt terminates, the
swapper must be called to verify if a swap from the PRLO-process to
a PRHI-process is necessary.

2. An ISR must never call any channel service that has a wait action.
Doing so would also block all other interrupt handlers that are stacked
below it, as well as the current process. Another way of seeing this is
that an ISR cannot wait for something because it doesn’t have a sep-
arate identity - the producer of the external event (another ISR) has
no means of representing who is waiting for it.

Note: The 21060 is provided with a system stack. When an external or a
timer interrupt occurs, MODE1 and ASTAT are pushed on that system stack.
The pop-operation is performed by the RTI. In our version of the kernel,
MODE1 and ASTAT are always pushed on the stack of the interrupted pro-
cess.
ADI 2 - 14 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
21.7.10. The ISR-level

The 21060 has only one ISR-level. When entering the interrupt handler, glo-
bal interrupts are enabled. An interrupt of higher priority can interrupt an
interrupt of lower priority.

An interrupt ends with a call to the nanokernel function ‘ENDISR1’. At that
point, the nanokernel will verify if a process swap is required and allowed.
The condition tested is the logical AND of:

■ NANOK_PRHI = 0;/* The current process is a PRLO-process */

■ NANOK_HEAD != 0; /* There is a PRHI-process */

■ NANOK_CRIT = 0; /* There are no more nested interrupts */

In case of a swap, the interrupt is finished and the PRHI-process is swapped
in. If there are nested interrupts, first all interrupts are finished.

NOTE: As NANOK_CRIT is not used in the nanokernel on 21060, the last
test has been replaced by a check of IMASKP.

21.7.11. Communicating with the microkernel

As mentioned before, the VIRTUOSO microkernel is implemented as a
PRHI-process. It uses a single stack based channel to receive commands
from the tasks, the network drivers, other PRHI-processes and interrupt han-
dlers. A pointer to this channel is exported in the C-variable K_ArgsP.

Two types of data can be pushed onto this channel:

1. Small integers (0-63) are interpreted as events. Events are simple binary
signals that a task can wait for using the KS_EventW()-service. Most events
will be generated by interrupt handlers and driver processes. For the 21060
version, event numbers have been assigned as follows:

■ 8: host event.

■ 10-15: event numbers for KS_LinkOutW

■ 16-21: event numbers for KS_LinkInW

■ All other events (0-31) are reserved for the kernel

■ 48: timer event.

■ rest (32-63, except 48): are free.

All event numbers used by the kernel - and reserved for the kernel - are
defined in “event.h”.

2. All other values pushed onto the microkernel input channel are interpreted
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 15

Virtuoso on the ADSP 2106x SHARC
as a pointer to a command packet. Command packets are the primary form
of communication used within the Virtuoso system. They are used by the
tasks to request microkernel services, sent across the Virtuoso network to
implement remote kernel calls, and put on waiting lists to represent a task
that is waiting for something. It is outside the scope of this manual to present
a complete description of the command packet data format. The basic struc-
tures and the command codes are defined in K_STRUCT.H

The microkernel maintains a list of free command packets, implemented as
a list based channel. A pointer to this channel is exported in the C variable
K_ArgsFreeP. Other PRHI-processes can get command packets from this
pool, but they must never wait for the channel (i.e. always use PRHI_GET).
If the list is empty, correct behavior is to call YIELD and try again later.

In the Virtuoso network, the Srce field of a command packet identifies the
sending node, and it is used as a return path for reply messages. The same
field also has a secondary function: since all packets sent or received
through the network are allocated from the K_ArgsFree list, they should be
deallocated after use. The network transmitters always free a packet after it
has been sent. The microkernel deallocates a packet if the Scre field is not
zero. Consequently, command packets not allocated from the free list must
have their Scre field set to zero to prevent deallocation.

Note: we are aware of the fact that this logic is a bit confusing. Future ver-
sions of the microkernel will probably use a separate flag to indicate if a
packet was dynamically allocated.

Interrupt handlers and PRHI processes can request a microkernel service by
building a command packet, and pushing a pointer to it on the microkernel
input channel. The only services that can be safely called are the equiva-
lents of KS_Signal and KS_SignalM. Also note that using events will be
faster than signalling.

The code fragments below show how to perform a KS_Signal() or
KS_SignalM() call from within the ISR. In this example the command packet
is created and initialized in C, but the same thing could be done entirely in
assembly language

The function ‘install_my_isr()‘ is called to initialize the command packet and
install the ISR:

K_ARGS CP1, *CP1P;

K_SEMA SLIST1 [] = {SEMA1, SEMA2, ..., ENDLIST};

extern void my_isr (void);

void install_my_isr(...)

{

ADI 2 - 16 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the ADSP 2106x SHARC

PA
R

T
 3
 ...

 /* create a pointer to the command packet */

CP1P = &CP1;

/* initialize CP1 for a KS_Signal (SEMA1) service */

CP1.Srce = 0;

CP1.Comm = SIGNALS;

CP1.Args.s1.sema = SEMA1;

/* or for a KS_SignalM (SLIST1) service */

CP1.Scre = 0;

CP1.Comm = SIGNALM;

CP1.Args.s1.list = SLIST1;

/* install the ISR */

KS_EnableISR (..., my_isr);

...

}

For the ISR, something like the code listed below will be required:

.extern _CP1P;

.extern _K_ArgsP;

.global _my_isr

...

_my_isr:

...

i4 = dm(_K_ArgsP); i4 contains pointer to channel

r2 = dm(_CP1P); r2 contains data

PRHI_PSH; signals semaphore

...
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 17

Virtuoso on the ADSP 2106x SHARC
21.8. Additional microkernel features on the 21060

21.8.1. Use of the PC stack and the counter stack

It is possible to use these stacks at the task level. They are part of the nor-
mal task context, and are swapped accordingly.

This implies that it is also allowed to use all optimisation levels provided for
by the compiler.

There is one restriction to the use of the PC stack: the nanokernel and
microkernel use it internally, so all tasks should leave 2 entries on the PC
stack for internal use.

21.8.2. Extended context

It is also possible to use the circular buffer mechanism at the task level.
Because this implies adding the m, l and b registers to the task swap set
(CSAVE), considerably increasing the time necessary to perform a task
swap, this is kept as an option for the programmer. An extra system group
has been defined to serve this purpose. This task group is called ‘FPU’.
Tasks that require circular buffering, should be defined as members of this
group in SYSDEF.

There are some limitations, however:

■ i6 and i7 should never be used for circular buffering.

■ m6 and m7 are supposed to keep their original values.

■ before calling a kernel service in a task using circular buffering, all l
registers should be set to 0, and m5, m6, m7, m13, m14 and m15
should be set to their default values. This is required by the C-com-
piler.
ADI 2 - 18 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
22. Alphabetical List of nanokernel entry points

In the pages to follow, all Virtuoso nanokernel entry points are listed in
alphabetical order. While some are C-callable, most of them are not.

• BRIEF Brief functional description

• CLASS. One of the Virtuoso nanokernel service classes of which it is a member.

• SYNOPSIS The ANSI C prototype (C-callable), or

Assembly language calling sequence

• RETURN VALUE . . The return value, if any (C-callable only).

• ENTRY CONDITIONSRequired conditions before call

• EXIT CONDITIONS . Conditions upon return of the call

• DESCRIPTION . . . A description of what the Virtuoso nanokernel service does when invoked
and how a desired behavior can be obtained.

• EXAMPLE One or more typical Virtuoso nanokernel service uses.

• SEE ALSO. List of related Virtuoso nanokernel services that could be examined in con-
junction with the current Virtuoso nanokernel service.

• SPECIAL NOTES . . Specific notes and technical comments.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 19

Alphabetical List of nanokernel entry points
22.1. start_process

• BRIEF Initialize and start a nanokernel process

• CLASS Process management

• SYNOPSIS void start_process (void *stack, int stacksize, void entry(void), int i1, int i2);

• DESCRIPTION . . . This C function initializes the process control structure of a process, and
subsequently starts it. The entry point, the stacksize, the initial values for i1
and i2 and some internal variables are written to the PCS. This call returns
when the started process deschedules or terminates.

• RETURN VALUE . . none

• EXAMPLE In this example, two processes using the same code but different parame-
ters are initialized and started.

int adc1[100];/* stack for first process */

int adc2[100];/* stack for second process */

extern void adc_proc (void); /* process code */

extern struct adc_pars ADC_Params [2]; /* parameter structs */

start_process (adc1,100, adc_proc, &ADC_Params [0], 0);

start_process (adc2,100, adc_proc, &ADC_Params [1], 0);

• SEE ALSO.

• SPECIAL NOTES . . This function cannot be used from within a high priority nanokernel process.
It must be called from the C main () function or by a microkernel task only.
ADI 2 - 20 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
22.2. ENDISR1

• BRIEF Terminates an ISR and conditionally invokes the process swapper

• CLASS. Interrupt service management

• SYNOPSYS ENDISR1

ENDISR1 is defined in macro.h

• DESCRIPTION . . . This entry point must be called to terminate an ISR. A nanokernel process
swap is performed IFF

■ the calling ISR interrupted the PRLO process,

■ a high priority process is ready to execute,

■ there are no more nested interrupts.

• ENTRY CONDITIONSThe ISR should have saved the interrupted context so that the exit sequence
listed below would correctly terminate the ISR.

• EXIT CONDITIONS . This call terminates the ISR and does not return.

• EXAMPLE

• SEE ALSO.

• SPECIAL NOTES . .
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 21

Alphabetical List of nanokernel entry points
22.3. K_taskcall

• BRIEF Send a command packet to the microkernel process

• CLASS Process communication

• SYNOPSYS void K_taskcall (K_ARGS *A);

• DESCRIPTION . . . This C-callable function is used by all KS_ services to send command pack-
ets to the microkernel process.

• RETURN VALUE . . none

• EXAMPLE

• SEE ALSO. PRLO_PSH

• SPECIAL NOTES . . This function must be called by microkernel tasks only.
ADI 2 - 22 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
22.4. KS_DisableISR

• BRIEF Remove an ISR from the interrupt vector table

• CLASS. Interrupt service management

• SYNOPSYS void KS_DisableISR (int isrnum);

• DESCRIPTION . . . Disables the specified interrupt in IMASK, and clears the corresponding
entry in the interrupt vector table.

• RETURN VALUE . . none

• EXAMPLE

KS_DisableISR (15);/* Disable ISR for link buffer 3/DMA Channel 5*/

• SEE ALSO. KS_EnableISR,

• SPECIAL NOTES . . Interrupt numbers are defined by their bit position in IMASK.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 23

Alphabetical List of nanokernel entry points
22.5. KS_EnableISR

• BRIEF Install an ISR and enable the corresponding interrupt.

• CLASS Interrupt service management

• SYNOPSYS void KS_EnableISR (int isrnum. void isr (void));

• DESCRIPTION . . . This C function is used to install or replace an interrupt handler. It takes two
parameters: an interrupt number, and a pointer to an ISR. The pointer is
entered into the interrupt vector table.

• RETURN VALUE . . none

• EXAMPLE

extern void _host_irqh(void);

KS_EnableISR (8, _host_irqh);

• SEE ALSO. KS_DisableISR

• SPECIAL NOTES . . Interrupt numbers are defined by their bit position in IMASK.
ADI 2 - 24 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
22.6. PRHI_GET

• BRIEF Remove next packet from linked list channel

• CLASS. Process communication

• SYNOPSIS PRHI_GET

PRHI_GET is defined in macro.h

• DESCRIPTION . . . If the channel is not empty, the first packet is removed from the linked list,
the Z flag is reset, and a pointer to the packet is returned. If the channel is
empty, the Z flag is set and a NULL pointer is returned. The calling process
is never swapped out as a result of calling this service.

• ENTRY CONDITIONS

i4 = pointer to linked list channel struct

• EXIT CONDITIONS . r0, r2, r8, i4 ASTAT are corrupted

If the list is not empty:

r2 = pointer to removed list element
the Z flag is cleared

If the list is empty:

r2 = 0
the Z flag is set

• EXAMPLE

#include “macro.h”
i4 = dm (CHANNEL);
PRHI_GET;

• SEE ALSO. PRHI_GETW, PRHI_PUT

• SPECIAL NOTES . . This service must not be called from the low priority context.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 25

Alphabetical List of nanokernel entry points
22.7. PRHI_GETW

• BRIEF Get next packet from linked list channel, or deschedule

• CLASS Process communication

• SYNOPSIS PRHI_GETW

PRHI_GETW is defined in macro.h

• DESCRIPTION . . . If the channel is not empty, the first packet is removed from the linked list
and a pointer to it is returned. If the channel is empty, the calling process is
swapped out and set to wait for the channel. It will be rescheduled by the
next call to the PRHI_PUT service on the same channel.

• ENTRY CONDITIONS

i4 = pointer to linked list channel struct
i3 = pointer to PCS of calling process

• EXIT CONDITIONS.

i1 = pointer to list element
r0, r1, r2,r8, ASTAT, i4 are corrupted

• EXAMPLE

#include “macro.h”
i4 = dm (CHANNEL);
PRHI_GETW;

• SEE ALSO. PRHI_GET, PRHI_PUT

• SPECIAL NOTES . . This service must not be called from the low priority context or by an ISR.
ADI 2 - 26 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
22.8. PRHI_POP

• BRIEF Remove next element from a stack channel

• CLASS. Process communication

• SYNOPSIS PRHI_POP

PRHI_POP is defined in macro.h

• DESCRIPTION . . . If the stack is not empty, the top element is removed and returned to the
caller. The Z flag is reset. If the stack is empty, the Z flag is set and an unde-
fined value is returned. The calling process is never swapped out as a result
of calling this service.

• ENTRY CONDITIONS

i4 = pointer to stack channel struct

• EXIT CONDITIONS . r8, r0, r1, r2 i4, ASTAT are corrupted

If the stack is not empty:

r2 = the element removed from the stack
the Z flag is cleared

If the stack is empty:

r2 = undefined
the Z flag is set

• EXAMPLE

#include “macro.h”
i4 = dm(CHANNEL);
PRHI_POP;

• SEE ALSO. PRHI_POPW, PRHI_PSH

• SPECIAL NOTES . . This service must not be called from the low priority context.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 27

Alphabetical List of nanokernel entry points
22.9. PRHI_POPW

• BRIEF Remove next element from a stack channel, or deschedule

• CLASS Process communication

• SYNOPSIS PRHI_POPW

PRHI_POPW is defined in macro.h

• DESCRIPTION . . . If the stack is not empty, the top element is removed and returned to the
caller. If the stack is empty, the calling process is swapped out and set to
wait for the channel. It will be rescheduled by the next call to the PRHI_PSH
service on the same channel.

• ENTRY CONDITIONS

i4 = pointer to stack channel struct
i3 = pointer to PCS of calling process

• EXIT CONDITIONS.

i1 = element removed from the stack
r0, r1, r2, r8, ASTAT, i4 are corrupted

• EXAMPLE

#include “macro.h”
i4 = dm(CHANNEL);
PRHI_POPW;

• SEE ALSO. PRHI_POP, PRHI_PSH

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
ADI 2 - 28 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
22.10. PRHI_PUT

• BRIEF Add a packet to a linked list channel

• CLASS. Process communication

• SYNOPSIS PRHI_PUT
PRHI_PUT is defined in macro.h

• DESCRIPTION . . . If a process is waiting for the channel, the pointer to the packet is passed on,
and the waiting process is rescheduled. Otherwise the packet is linked in at
the head of the list. In either case, control returns to the caller.

• ENTRY CONDITIONS

i4 = pointer to channel
r2 = pointer to packet to add to the list

• EXIT CONDITIONS .

r0, r1, r8, i4, ASTST are corrupted

• EXAMPLE

#include “macro.h”
i4 = dm (CHANNEL);
r2 = dm (PACKET);
PRHI_PUT
; the packet is added to the list

• SEE ALSO. PRHI_GET, PRHI_GETW

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.

The first word of the packet is used as a link pointer, and will be overwritten.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 29

Alphabetical List of nanokernel entry points
22.11. PRHI_PSH

• BRIEF Push a word on a stack channel

• CLASS Process communication

• SYNOPSIS PRHI_PSH

PRHI_PSH is defined in macro.h

• DESCRIPTION . . . If a process is waiting for the channel, the data word is passed on, and the
waiting process is rescheduled. Otherwise the data word is pushed on the
stack. In either case, control returns to the caller.

• ENTRY CONDITIONS

i4 = pointer to channel
r2 = data word to push

• EXIT CONDITIONS.

r0, r1, r4 and r8 are corrupted
All other registers are preserved

• EXAMPLE

#include “macro.h”
.extern _K_ArgsP ; microkernel input stack
; send a command packet to the microkernel
; assume i0 points to the command packet
i4 = dm (_K_ArgsP);
r2 = dm (0,i0);
PRHI_PSH;

• SEE ALSO. PRHI_POP, PRHI_POPW

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.
ADI 2 - 30 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
22.12. PRHI_SIG

• BRIEF Send an event on a signal channel

• CLASS. Process communication

• SYNOPSIS PRHI_SIG

PRHI_SIG is defined in macro.h

• DESCRIPTION . . . If a process is waiting for the channel, it is rescheduled (put at the tail of the
process FIFO). Otherwise the event count is incremented. In either case,
control returns to the caller.

• ENTRY CONDITIONS

i4 = pointer to channel

• EXIT CONDITIONS .

r0, r1, r2, i4, ASTAT are corrupted
All other registers are preserved

• EXAMPLE

#include “macro.h”
i4 = dm (SYNC_CHAN);
PRHI_SIG;

• SEE ALSO. PRHI_WAIT

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 31

Alphabetical List of nanokernel entry points
22.13. PRHI_WAIT

• BRIEF Consume an event from a signal channel, or deschedule

• CLASS Process communication

• SYNOPSIS PRHI_WAIT

PRHI_WAIT is defined in macro.h

• DESCRIPTION . . . If the event counter is not zero, it is decremented an control returns to the
caller. If the event counter is zero, the calling process is swapped out and
set to wait for the channel. It will be rescheduled by the next call to the
PRHI_SIG service on the same channel.

• ENTRY CONDITIONS

i4 = pointer to signal channel struct
i3 = pointer to PCS of calling process

• EXIT CONDITIONS.

r0, r1, r2 are corrupted

• EXAMPLE

#include “macro.h”
; wait for event on SYNC_CHAN
i4 = dm(SYNC_CHAN);
PRHI_WAIT;
; the event has happened

• SEE ALSO. PRHI_SIG

• SPECIAL NOTES . . This service must not be called from the low priority context or by an ISR.
ADI 2 - 32 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
22.14. PRLO_PSH

• BRIEF This call is for internal use only, and is not exactly the equivalent of
PRHI_PSH for the PRLO process. This call assumes that a PRHI process is
waiting for the channel, and will crash the system if there isn’t. PRLO_PUSH
is used by the K_taskcall function to send command packets from a task to
the microkernel process.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 33

Alphabetical List of nanokernel entry points
22.15. YIELD

• BRIEF Yield CPU to next nanokernel process

• CLASS Process management

• SYNOPSIS YIELD

YIELD is defined in macro.h

• DESCRIPTION . . . The calling process is swapped out and added to the tail of the process
FIFO. The process at the head of the FIFO is swapped in. This may be the
same process, if it was the only one ready to execute.

• ENTRY CONDITIONS

i3 = pointer to PCS of calling process

• EXIT CONDITIONS.

• EXAMPLE This example shows how to avoid a redundant YIELD operation, by testing
the process FIFO

#include “nanok.h”
#include “macro.h”
;
r0 = dm(NANOK_HEAD);
r1 = 0;
comp(r0,r1); ; test head of process FIFO
if eq jump label;
YIELD ; yield if there is another process
label: ...

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
ADI 2 - 34 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Predefined drivers

PA
R

T
 3
23. Predefined drivers

23.1. Virtuoso drivers on the 21060

Drivers are the interface between the processor and peripheral hardware,
and the application program. They normally serve two purposes: data-com-
munication and synchronization. As polling is not a recommended practice in
a real-time system, most drivers will use interrupts in one way or another.

The Virtuoso system does not provide a standard interface to drivers - this
allows the application writer to optimize this important part of their implemen-
tation. Some basic services, that will be required for almost all drivers, are
provided. Most low-level details have already been described in the previous
sections on interrupt handling and communication with the microkernel. At
the higher level, a typical driver can usually be divided into three functional
parts:

1. The first component is a function to install the driver. This should initialize
the hardware and any data structures used, and install interrupt handlers for
the driver. A call to this function is usually placed inside a driver statement in
the system definition file. The SYSGEN-utility copies this call into a function
named init_drivers() it generates in the node#.c files. The init_drivers() sub-
routine is called by kernel_init() just before it returns.

2. Most drivers will provide one or more subroutines that can be called from
the task level, and that implement the actual functionality of the driver. At
some point, these functions will call KS_EventW() or KS_Wait() to make the
calling task wait for the completion of the driver action.

3. One or more interrupt handlers are required to generate the events or sig-
nals waited for by these subroutines.

In the simplest case, the only actions required from the ISR will be to service
the hardware and to reschedule a waiting task, and all data handling and
protocol implementation can be done at the task level. This method can be
used if the interrupt frequency is not too high (< 1000Hz).

For higher data rates, some of the task code should be moved to the ISR, in
order to reduce the number of task swaps. In most cases, the actions,
required from the interrupt handler will not be the same for each interrupt,
and some form of state machine will have to be implemented into the ISR.

If the number of possible states grows, it is often much easier to use one or
more PRHI-processes to implement the protocol. Processes can wait for
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 35

Predefined drivers
interrupts at any number of places in their code, and each of these points
represents a state of the system. As an example, the Virtuoso network driver
have been designed using this method.

A number of device drivers are provided with this release of Virtuoso Clas-
sico /VSP for SHARC:

■ the timer device driver,

■ two host interface device drivers,

■ unidirectional DMA-based link drivers, both for internal and external
memory,

■ a bidirectional link driver (internal memory only),

■ a unidirectional core-based link driver,

■ a unidirectional DMA-based RawLink driver.

23.1.1. The timer device driver

void timer_drv (int timer_prio);

Because of the possibility to use 2 different priorities for the timer IRQ, a
parameter had to be added to the driver. The possible values of timer_prio
are TMZLI, indicating a low timer priority, or TMZHI, indicating the high timer
priority.

The timer device driver is needed for time-out features of some kernel ser-
vices and for kernel timer services.

The two procedures to read out the timer value are:

■ KS_HighTimer ()

■ KS_LowTimer ()

In high resolution, the number of timer counts are returned. On the 21060,
the count is equal to a period of the clock frequency.

In low resolution, the number of kernel ticks are returned. A kernel tick is a
multiple of timer count and defined in the main() function. As this value is a
32-bit wraparound value, it is more interesting to calculate the difference
between two values read out consecutively. However, to facilitate this, ker-
nel service KS_Elapse() is written for this purpose.

See the Alphabetical List of Virtuoso kernel services earlier in this manual for
a full description of these kernel services.

Event number 48 is reserved exclusively for the timer device driver.
ADI 2 - 36 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Predefined drivers

PA
R

T
 3
23.1.2. The host interface device driver

Two host interface drivers are currently available:

■ void BW21k_host(int irq_num);

■ void Alex21k_host(int irq_num);

The former is used for all currently supported Bittware boards (EZ-Lab,
Snaggletooth and Blacktip), while the latter is to be used for the ALEX Com-
puter Systems SHARC1000 board

The use of the host interface device driver is required on the root if the host
services are to be used.

The parameter passed to the driver is the IRQ number on which the ISR is to
be installed. For the Bittware and Alex boards, this value should be 8 by
default.

For more details on the use of the host interface, see “Host server low level
functions” and “Simple terminal oriented I/O” in the chapter of “Runtime
libraries”.

The host interface device driver reserves event signal number 8 for its own
use.

23.1.3. Netlink drivers

The NETLINK drivers are used by the kernel to communicate with other
SHARCs running Virtuoso Classico/VSP. Several types are available:

1. void NetLink (int link_no, int buffer _no, int direction, int speed);

This is the unidirectional core driver for the link ports. It does not use DMA.

The arguments:

■ link_no, buffer_no: link/buffer you wish to use.

■ direction: RX for receive, TX for transmit.

■ speed: SSPEED for single speed, DSPEED for double speed.

2. void NetLinkDMA (int link_no, int buffer_no, int direction, int speed);

This is the unidirectional DMA driver for the link ports. It can only be used for
transfers from or to the internal SHARC memory.

The arguments:
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 37

Predefined drivers
■ link_no, buffer_no: link/buffer you wish to use.

■ direction: RX for receive, TX for transmit.

■ speed: SSPEED for single speed, DSPEED for double speed.

3. void NetLinkDMAExt (int link_no, int buffer_no, int direction, int speed);

This is the unidirectional DMA driver for the link ports. This driver can be
used for transfers from or to the internal and external SHARC memory.

The transfers to external memory are handled in 2 steps. First, data is trans-
ferred to/from internal memory (using DMA). In the second step, the data is
transferred to/from internal from/to external memory, also using DMA.

The arguments:

■ link_no, buffer_no: link/buffer you wish to use.

■ direction: RX for receive, TX for transmit.

■ speed: SSPEED for single speed, DSPEED for double speed.

4. void NetLinkDMAExtC (int link_no, int buffer_no, int direction, int speed);

This is the unidirectional DMA driver for the link ports. This driver can be
used for transfers from or to the internal and external SHARC memory.

The transfers to external memory are handled in 2 steps. First, data is trans-
ferred to/from internal memory (using DMA). In the second step, the data is
transferred to/from internal from/to external memory. This last step is a core
transfer.

The arguments:

■ link_no, buffer_no: link/buffer you wish to use.

■ direction: RX for receive, TX for transmit.

speed: SSPEED for single speed, DSPEED for double speed.

5. void NetLinkDMA2 (int link_no, int buffer_no, int token, int speed);

This is the bidirectional driver for the link ports. You may experience prob-
lems with this drivers if you are using pre rev 2.0 silicon.

The arguments:

■ link_no, buffer_no: link/buffer you wish to use.

■ token: initial location of the token. Token exchange is performed auto-
matically, but the driver needs the initial position. Values: TOKEN /
NOTOKEN.
ADI 2 - 38 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Predefined drivers

PA
R

T
 3
■ speed: SSPEED for single speed, DSPEED for double speed.

For updates on the status of the bidirectional link driver, check the readme
file included with your release.

23.1.4. Raw Link drivers

void RawLinkDMA (int link_no, int buffer_no, int speed);

This is the RAW DMA link driver for the link ports.

The arguments:

■ link_no, buffer_no: link/buffer you wish to use.

■ speed: SSPEED for single speed, DSPEED for double speed.

This driver does not implement any protocol, it allows the programmer to
transfer (receive and transmit) specified amounts of data over the link port.
Also, it is not allowed to use a RawLinkDMA on a link that is used as a
NETLINK.

The services which use this driver are:

■ KS_Linkin(W) (int buffer, int length, void *addr);

■ KS_Linkout(W) (int buffer, int length, void *addr);

The specified lengths are in WORDS, not bytes.

23.1.5. Common remark for all link drivers

It is currently not possible to use DSPEED drivers on rev 1.x silicon. This will
work on rev 0.6 and probably also on later (rev 2.0 and on) revisions.

It is possible to assign any link port to any link buffer. The driver will check if
the requested buffer is already assigned to any other link. If so, it will simply
return, and the driver is not loaded. This could prevent your application from
running correctly, so please check the buffer assignments carefully.

It is now required that a section called ‘packets’ is allocated in internal mem-
ory to hold all the packets used by the kernel. This is done in the architecture
file used to link the application. This section holds command and datapack-
ets used to communicate between the kernel and nanokernel processes.
The size of a command packet is fixed at 16 words, and the size of a data
packet is defined in ‘mainx.c’ (in bytes). If there is not enough room in this
section, the kernel will not operate correctly. Also see the provided exam-
ples.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 39

Task Level Timings
24. Task Level Timings

Following is a list of task level timings of some of the kernel services pro-
vided by Virtuoso. These timings are the result of a timing measurement on
a rev 1.2 ADSP-21062 board with a clock speed of 40MHz. The kernel used
for these timings is the VIRTUOSO Microkernel.

All timings are in microseconds. The C compiler used is the G21k C Com-
piler v.3.2d from Analog Devices.

minimum VIRTUOSO call time 5

SEND/RECEIVE WITH WAIT (MAILBOX SERVICES)
header only :** 39
8 bytes : ** 40
16 bytes : ** 40
32 bytes :** 40
64 bytes :** 41
128 bytes :** 41
256 bytes : ** 43
512 bytes : ** 46
1024 bytes :** 53
2048 bytes : ** 65
4096 bytes : ** 91

QUEUE OPERATIONS
enqueue 1 byte * 8
dequeue 1 byte * 8
enqueue 4 bytes * 8
dequeue 4 bytes * 8
enqueue 1 byte to a waiting higher priority task ** 26
enqueue 4 bytes to a waiting higher priority task ** 26

SEMAPHORE OPERATIONS
signal semaphore * 7
signal to waiting high pri task ** 25
signal to waiting high pri task, with timeout ** 33
signal to waitm (2) ** 58
signal to waitm (2), with timeout ** 65
signal to waitm (3) ** 72
ADI 2 - 40 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Task Level Timings

PA
R

T
 3
signal to waitm (3), with timeout ** 78
signal to waitm (4) ** 85
signal to waitm (4), with timeout ** 92

RESOURCE OPERATIONS
average lock and unlock resource * 6

MEMORY MAP OPERATIONS
average alloc and dealloc memory page * 6

Note :
*: involves no context switch
**: involves two context switches. Timing is round-trip time.
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 41

Application development hints.
25. Application development hints.

The easiest way to start is to copy and modify one of the supplied examples.
Some of the necessary files have fixed names, so each application should
be put in a separate directory.

The following files will be needed for each application:

SYSDEF:

The VIRTUOSO system definition file. The SYSGEN utility will read this file
and generate NODE1.C and NODE1.H.

MAIN1.C:

This contains some more configuration options, and the C ‘main’ function.
Copy from one of the examples.

A number of configuration options are defined in this file, so they can be
changed without requiring recompilation of all sources (this would be neces-
sary if SYSDEF is modified).

CLCKFREQ : this should be defined to be the clock frequency of the hard-
ware timer used to generate the TICKS time.

TICKTIME : the TICK period in microseconds.

TICKUNIT: the TICK period in CLCKFREQ units.

TICKFREQ: the TICK frequency in Hertz.

The number of available timers, command packets and data packets are
also defined in this file. How much you need of each depends on your appli-
cation, but the following guidelines may be followed:

Timers are used to implement time-outs, and can also be allocated by a
task.

A command packet will be needed for each timer allocated by a task. Com-
mand packets used for calling a kernel service are created on the caller’s
stack and should not be predefined.

MAIN1.C also defines some variables used by the console driver tasks, the
clock system, the debugger task, and the graphics system. These are
included automatically if you use the standard names for the required kernel
ADI 2 - 42 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Application development hints.

PA
R

T
 3
objects.

XXX.ACH: specifies architecture file.

MAKEFILE:

The makefiles supplied in the EXAMPLES directory can easily be modified
for your application. They also show how to organize things so you can
optionally include the task level debugger. If you want to include the task
level debugger, put the corresponding definitions out of comment:

VIRTLIB = $(LIBS)\virtosdr.lib
DD = -dDEBUG
DDD = -P “DEBUG”

and put the other definition in comment:

VIRTLIB = $(LIBS)\virtosr.lib

whereby # is the comment sign.

There are also two define-statements in the ‘mainx.c’-file, that the customer
can change in order to ‘personalise’ the debugger:

define MONITSIZE 1024 /* number of monitor records */
define MONITMASK MONALL - MONEVENT /* what will be monitored */

Then remake the application, just by doing:

MAKE <Enter>.

LINKFILE: list of the object versions of all source files to be linked in the exe-
cutables.

After you have done make-ing your application, you can run the application
by typing:

> 21khost -rlsi test
Copyright 1996 Eonic Systems Virtuoso Binding Manual ADI 2 - 43

Application development hints.
ADI 2 - 44 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Intel 80x86

PA
R

T
 3
26. Virtuoso on the Intel 80x86

26.1. Notes over PC interrupt drivers

ISR_C.C : code that installs the ISR’s (Interrupt Service Routines) coded in
the ISR_A.ASM file.

ISR_A.ASM : code for the interrupt routines that handle the DOS timer.

Virtuoso takes over the 18.2 Hz timer from DOS (it effectively doesn’t run
anymore) and upscales it to 1000 Hz for internal use. For some purposes
DOS however needs this timer (e.g. when you use the floppy disk inside Vir-
tuoso, the disk spinning motor would run forever because the time-out value
is never reached as the associated timer doesn’t run). For this reason the
ISR adjusts from time to time the correct time in the 18.2 Hz timer.

26.2. Warning when using Virtuoso on a PC

When you use Virtuoso on a PC, you must be aware that DOS is still there to
provide access to the host resources, such as the disk. The problem is that
whenever you issue a service request to DOS, you enter a critical section
and all kernel activity is suspended. For example when you write a file, DOS
initiates an access to the disk. As long as this operation is not finished, DOS
waits. So, while you can use Virtuoso to develop the logic of a real-time
application, you can’t really use it to build a hard real-time application on a
PC. This can only be achieved on boards that don’t require DOS. Note that
none of the real-time kernels on the market achieve this. Whatever solution
is chosen, it can’t solve the fundamental problem that DOS is sitting there. At
best you can use a real-time kernel on a PC to achieve a soft real-time appli-
cation, unless you don’t make any DOS call.

In Virtuoso, DOS services (stdio and graphics) are accessed through a DOS
server task. This task is normally defined with the highest priority.
Copyright 1996 Eonic Systems Virtuoso Binding Manual I1 - 1

Virtuoso on the Intel 80x86
I1 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
27. Virtuoso on the Motorola 56K DSP

27.1. Virtuoso versions on 56K

Virtuoso Micro/SP is available for the 56K. A port of the nanokernel on 56K is
available in a single-processor version, Virtuoso Nano/SP.

27.2. DSP 56001 Chip Architecture

This section contains a brief description of the DSP5600x processor architec-
ture. It is not intended to be a replacement of the Processor’s User Manual,
but as a quick lookup for the application programmer. Detailed information
can be found in the “DSP56000/DSP 56001 User’s Manual” from Motorola.

The DSP56001 has a Harvard architecture (separated program and data
addressing) with multiple internal buses.

Interfacing to the outside world is done via one 47-pin expansion port (port A)
and 24 additional I/O pins, which are divided between ports B and C. Of the
24 pins, 15 are assigned to port B. These pins can be used as general-pur-
pose I/O pins or as host MPU/DMA interface pins. Port C consists of 9 pins,
also usable as general I/O pins or as SCI (Serial Communications Interface)
and SSI (Synchronous Serial Interface) pins.

The heart of the processor consists of 3 execution units operating in parallel:
the data arithmetic logic unit (ALU), the address generation unit (AGU) and
the program controller. In addition to these 3 execution units, the 56K has also
six on-chip memories, three on-chip MCU-style peripherals (SCI, SSI, host
interface), a clock generator, and seven buses.

The main components of the DSP56001 are:

■ Data and Address Buses

■ Data ALU

■ Address Generation Unit

■ X Data Memory

■ Y Data Memory

■ Program Controller

■ Program Memory

■ I/O:

Memory Expansion (Port A)
General Purpose I/O (Ports B and C)
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 1

Virtuoso on the Motorola 56K DSP
Host Interface
Serial Communication Interface
Synchronous Serial Interface

The major components of the Data ALU are as follows:

■ Four 24-bit input registers

■ A parallel, single-cycle, nonpipelined multiply-accumulator/logic unit
(MAC)

■ Two 48-bit accumulator registers

■ Two 8-bit accumulator extension registers

■ Two data bus shifters/limiter circuits

The major components of the Address Generation Unit are:

■ Address Register Files

■ Offset Register Files

■ Modifier Register Files

■ Address ALU

■ Address Output Multiplexer

DSP56000 Block Diagram:

ADDRESS
GENERATION

UNIT

ON-CHIP
PERIPHERALS
HOST,SSI,SCI,
PARALLEL I/O

INTERNAL DATA
BUS SWITCH

AND BIT
MANIPULATION

UNIT

DATA ALU
24x24+56->56-BIT MAC

TWO 56-BIT ACCUMULATORS

EXTERNAL
DATA BUS
SWITCH

BUS
CONTROLLER

EXTERNAL
ADDRESS

BUS
SWITCH

YAB

XAB

PAB

YDB

XDB

PDB

GDB

PROGRAM CONTROLLER

P
R

O
G

R
A

M
R

O
M

3.
75

K
x2

4

X
 M

E
M

O
R

Y
R

A
M

2
56

x2
4

Y
 M

E
M

O
R

Y
R

A
M

2
5

6x
2

4

ROM
256x24

ROM
256x24

PROGRAM
ADDRESS

GENERATOR

PROGRAM
DECODE

CONTROLLER

PROGRAM
INTERRUPT

CONTROLLER

ADDRESS

PORT B
OR HOST

PORT C
AND/OR
SSI,SCI

DATA

16 BITS

24 BITS

P
O

R
T

 A
M1 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
27.3. DSP56001 software architecture

The programming model indicates that the DSP56001processor architecture
can be viewed as three functional units operating in parallel, i.e. the Data ALU,
the AGU, and program controller. The goal of the instrucion set is to keep
each of the units busy each instruction cycle, achieving maximum speed and
minimum program size.

The eight main data ALU registers (X0..1, Y0..1, A0..1,B0..1) are 24 bits wide.
The A and B registers have extension registers, which are 8 bits wide each.
When these extensions are used as source operands, they occupy the low-
order portion of the word, and the high-order portion is sign extended. When
used as destination operands, only the low-order portion of the word is
received, while the high order portion is not used.

The 24 AGU registers are 16 bits wide, and may be accessed as word oper-
ands for address, address modifier and data storage. When used as a source
operand, the registers occupy the low-order portion of the word, and the high-
order portion is zero-filled. When used as destination operand, the registers
only receive the low-order part of the word, the high-order part is not used.

The program control registers:

■ the 8-bit OMR (Operating Mode Register) may be accessed as a word
operand, but not all 8 bits are defined.

■ the LC (Loop Counter), LA (Loop Address Register), SSH (System
Stack High) and SSL (System Stack Low) registers are 16 bits wide
and may be accessed as word operands. When used as a source
operand, these registers occupy the low-order portion of the 24-bit
word, the high-order portion is zero. When used as a destination oper-
and, they receive the low-order portion of the 24-bit word, and the
high-order portion is not used.

The Loop Counter Register is a special 16-bit counter used to specify
the number of times a program loop is to be repeated. The Loop Address reg-
ister indicates the location of the last instruction word in a hardware program
loop.

The System Stack is a separate internal memory, divided into 2 16-bit
wide parts, each 15 locations deep. The SSH stores the PC contents, and the
SSL stores the stores the SR contents for subroutine calls and long interrupts.
In order to be able to use this hardware stack and the associated commands
(hardware DO loops, ...) in a multitasking environment, it is saved, along with
other registers, to the user stack of the calling task when this is swapped out.
This way, no conflicts can occur if the next task also makes use of the hard-
ware stack.
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 3

Virtuoso on the Motorola 56K DSP
The SP (Stack Pointer) register is a 6-bit register that may be accessed
as a word operand. It indicates the location of the top of the SS and the status
of the stack (empty, full, underflow and overflow conditions).

■ the PC (Program Counter) is a special 16-bit program control register
is always referenced implicitly as a short-word operand. It contains
the address of the next location to be fetched from program memory
space.

■ the 16-bit SR (Status Register) has the MR (System Mode Register)
occupying the high-order 8 bits and the CCR (Condition Code Regis-
ter) occupying the lower 8 bits. The SR may be accessed as a word
operand. The MR and CCR may be accessed individually as word
operands.

The MR is a special-purpose register defining the current system state
of the processor. Special attention is given to the Interrupt Mask Bits. These
reflect the current priority level of the processor and indicate the IPL (Interrupt
Priority Level) needed for an interrupt source to interrupt the processor. These
bits can be modified under software control.

The CCR is a special-purpose register that defines the current user
state of the processor.

Contents of the Status Register:

Bit Nr. Code Meaning Register

15 LF Loop Flag MR

14 * Reserved MR

13 T Trace Mode MR

12 * Reserved MR

11 S1 Scaling Mode MR

10 S2 Scaling Mode MR

9 I1 Interrupt Mask MR

8 I0 Interrupt Mask MR

7 * Reserved CCR

6 L Limit CCR

5 E Extension CCR

4 U Unnormalized CCR

3 N Negative CCR

2 Z Zero CCR

1 V Overflow CCR

0 C Carry CCR
M1 - 4 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
27.3.1. Addressing Modes

The DSP56K provides three different addressing modes:

■ Register Direct

■ Address Register Indirect

■ Special

Register Direct

■ Data or Control Register Direct

■ Address Register Direct

Address Register Indirect

■ No Update (Rn)

■ Postincrement by 1 (Rn)+

■ Postdecrement by 1 (Rn)-

■ Postincrement by Offset Nn (Rn)+Nn

■ Postdecrement by Offset Nn (Rn)-Nn

■ Indexed by Offset Nn (Rn+Nn)

■ Predecrement by 1 -(Rn)

Special Addressing

■ Immediate Data

■ Absolute Address

■ Immediate Short

■ Short Jump Address

■ Absolute Short

■ I/O Short

■ Implicit Reference

The DSP56K address ALU supports linear, modulo, and reverse-carry arith-
metic types for all address register indirect modes. These arithmetic types
easily allow the creation of data structures in memory for FIFOs, delay lines,
circular buffers, stacks and bit-reversed FFT buffers. Each address register
Rn has its own modifier register Mn associated with it. The contents of this
modifier register determines the type of arithmetic to be performed for
addressing mode calculations.
The following modifier classes are supported:

■ Linear Modifier

■ Modulo Modifier

■ Reverse Carry Modifier
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 5

Virtuoso on the Motorola 56K DSP
27.3.2. I/O Memory

The on-chip peripheral registers occupy the top 64 locations of the X data
memory ($FFC0-$FFFF).

The off-chip peripheral registers should be mapped into the top 64 locations
to take advantage of the move peripheral data instruction (MOVEP).

27.3.2.1. PORT A

Port A is the memory expansion port that can be used for either memory
expansion or for memory-mapped I/O. An internal wait-state generator can
can be programmed to insert up to 15 wait states (BCR register) if access to
slower memory or I/O devices is required. The Bus Wait signal allows an
external device to control the number of wait states inserted in a bus access
operation. Bus arbitraion signals allow an external device to use the bus while
internal operations continue using internal memory.

The expansion bus timing is controlled by the Bus Control Register (BCR),
located at X:$FFFE.

This BCR consists of 4 subregisters:

Subregister Bits Controls Location of Memory

External X Memory 12-15 External X Data Memory X:$200 - X:$FFC0

External Y Memory 8-11 External Y Data Memory Y:$200 - Y:$FFC0

External P Memory 4-7 External Program Memory P:$F00 - P:$FFFF

External I/O Memory 0-3 External Peripherals Y:$FFC0 - $FFFF

27.3.2.2. PORT B

General-Purpose I/O

Port B can be viewed as 3 memory-mapped registers that control 15 I/O pins.
After a reset, port B is configured as general-purpose I/O with all 15 pins as
input by clearing all 3 registers.
M1 - 6 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
The 3 registers are:

Location Bits Use

Port B Control Register (PBC) X:$FFE0 0 0: Parallel I/O

1: Host Interface

Port B Data Direction Register X:$FFE2 0-14 0: Input

(PBDDR) 1: Output

Port B Data Register X:$FFE4 0-14 Data

Host Interface

The HI is a byte-wide, full-duplex, double-buffered, parallel port which may be
directly connected to the data bus of a host processor. It is asynchronous and
consists of 2 banks of registers - one bank accessible to the host processor,
and a second bank accessible to the DSP CPU.

The DSP CPU views the HI as a memory-mapped peripheral occupying 3 24-
bit words in data memory space. It may be used as a normal memory-
mapped peripheral, using polling or interrupt techniques. The memory-map-
ping allows the DSP CPU to communicate with the HI registers using stan-
dard instructions and addressing modes. The MOVEP instruction allows HI-
to-memory and memory-to-HI transfers without using an intermediate regis-
ter.

The 3 registers are the following:

Location Bits Use

Host Control Register (HCR) X:$FFE8 3-4 DSP CPU HI flags

2 Host Command Interrupt

1 Host Transmit Interrupt

0 Host Receive Interrupt

Host Status Register (HSR) X:$FFE9 7 DMA

3-4 HOST HI flags

2 Host Command Pending

1 Host Transmit Data Empty

0 Host Receive Data Full

Host Receive Data Register X:$FFEB

Host Transmit Data Register X:$FFEB
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 7

Virtuoso on the Motorola 56K DSP
27.3.2.3. PORT C

Port C is a triple-function I/O port with nine pins. Three of these nine pins can
be configured as general-purpose I/O or as the serial communications inter-
face (SCI). The other six pins can be configured as general-purpose I/O or as
the synchronous serial interface.

Port C can be viewed as 3 memory-mapped registers that control 9 I/O pins.
After a reset, port C is configured as general-purpose I/O with all 9 pins as
input by clearing all 3 registers.

The 3 registers are:

Location Bits Use

Port C Control Register (PCC) X:$FFE1 0-2 0: Parallel I/O

1: SCI

3-8 0: Parallel I/O

1: SSI

Port C Data Direction Register X:$FFE3 0-9 0: Input

(PCDDR) 1: Output

Port C Data Register X:$FFE5 0-8 Data

27.3.3. Exceptions

Exceptions may originate from any of the 32 vector addresses listed in the fol-
lowing table. The corresponding interrupt starting address for each interrupt
source is shown also.

Interrupt Starting IPL Interrupt Source

Address

$0000 3 Hardware RESET

$0002 3 Stack Error

$0004 3 Trace

$0006 3 SWI

$0008 0-2 IRQA

$000A 0-2 IRQB

$000C 0-2 SSI Receive Data
M1 - 8 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
$000E 0-2 SSI Receive Data with Exception Status

$0010 0-2 SSI Transmit Data

$0012 0-2 SSI Transmit Data with Exception Status

$0014 0-2 SCI Receive Data

$0016 0-2 SCI Receive Data with Exception Status

$0018 0-2 SCI Transmit Data

$001A 0-2 SCI Idle Line

$001C 0-2 SCI Timer

$001E 3 NMI - Reserved for Hardware Development

$0020 0-2 Host Receive Data

$0022 0-2 Host Transmit Data

$0024 0-2 Host Command (Default)

$0026 0-2 Available for Host Command

$003C 0-2 Available for Host Command

$003E 3 Illegal Instruction

The 32 interrupts are prioritized into 4 levels. Level 3, the highest priority level
is not maskable. Levels 2-0 are maskable. The priority level of an interrupt can
be programmed to 0,1,2 or disabled.

Interrupts are processed in the following way:

■ a hardware interrupt is synchronized with the DSP clock, and the
interrupt pending flag for that particular interrupt is set. An interrupt
source can have only 1 interrupt pending at any given time.

■ all pending interrupts are arbitrated to select the interrupt which will
be processed. The arbiter automatically ignores any interrupts with an
IPL lower than the interrupt mask level in the SR and selects the
remaining interrupt with the highest IPL.

■ the interrupt controller freezes the PC and fetches 2 instructions at the
2 interrupt vector addresses associated with the selected interrupt.

■ the interrupt controller puts the 2 instructions into the instruction
stream and releases the PC. The next interrupt arbitration is then
begun.

Two types of interrupt may be used: fast and long. The fast routine consists of
the 2 automatically inserted interrupt instruction words. In this case, the state
of the machine is not saved on the stack.

A JSR within a fast interrupt routine forms a long interrupt. A long interrupt
routine terminates with an RTI instruction to restore the PC and SR from the
System Stack and return to normal program execution.
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 9

Virtuoso on the Motorola 56K DSP
27.4. Relevant documentation

1. “DSP56000/DSP56001 Digital Signal Processor User’s Manual”, Motorola
Inc., 1990.

2. “G56KCC - Morotola DSP56000/DSP56001 Optimizing C compiler User’s
Manual”, Motorola Inc., 1991.

27.5. C calling conventions and use of registers

This section contains the following topics:

■ Storage Allocation

■ Register Usage

■ Subroutine Linkage

■ Procedure rologue and Epilogue

■ Stack Layout

27.5.1. Storage Allocation

The Basic C data types are implemented as follows:

char 24 bits, signed

unsigned char 24 bits, unsigned

short 24 bits, signed

unsigned short 24 bits, unsigned

int 24 bits, signed

unsigned int 24 bits, unsigned

long 48 bits, signed

unsigned long 48 bits, unsigned

float 48 bits

double 48 bits

pointer (address) 24 bits, max value 0xFFFF

27.5.2. Register Usage

The compiler register reserves the following machine registers for particular
uses:
M1 - 10 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
Register Use

R0 Frame Pointer

R6 Stack Pointer

R7 Structure Return Address

R1-R5, R7 Register promotion by optimiser

N0-N7 Code Generator Temporary

M0-M7 Unused by compiler, dangerous side effects

A 48-bit function return value, float, double or long

A1 24-bit and 16-bit return value, integer or pointer

B,X,Y 48-bit register promotion by optimiser

X1,X0,Y1,Y0 24-bit register promotion by optimiser

27.5.3. Subroutine Linkage

27.5.3.1. Preserved Registers

Every register in the set performs a specific function, thus requiring the pro-
grammer to preserve any register that is to be directly used in in-line and out-
line assembly language code.

27.5.3.2. Register Return Values

A 48-bit function return value, float, double or long

A1 24-bit and 16-bit return value, integer or pointer

27.5.3.3. Parameter Passing

Information passed to C subroutines is stored in a parameter data space
which is similar to the local data space. However, the data is in reverse order
and each parameter is referenced via a negative offset from the frame pointer.
Actual parameters are pushed onto the activation record in reverse order by
the calling subroutine. (see 4.6.1 in “G56KCC - Motorola DSP56000/
DSP56001 Optimizing C Compiler User’s Manual”)

27.5.3.4. Subroutine Call sequence

Every time a C language subroutine is called, a strict calling convention is fol-
lowed. The subroutine calling sequence is broken down into 3 sub-sequences
that are strictly defined.
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 11

Virtuoso on the Motorola 56K DSP
■ Caller Sequence

The caller portion of the subroutine calling sequence is responsible for:

3. pushing arguments onto the activation record - in reverse order,

4. the actual subroutine call,

5. stack pointer adjustment.

Additional caller sequence when the subroutine called will return a structure:

6. allocate space in the caller’s activation record to store the return structure,

7. pass the return value address in accumulator A.

■ Callee Sequence

During the initial portion of the subroutine calling sequence, the callee is
responsible for:

8. saving the return address (ssh) and the old frame pointer (R0),

9. updating frame and stack pointers,

10.saving the following registers, as required: B1, B0, X1, X0, Y1, Y0, R1-R5
and R7.

■ Return Sequence

During the final portion of the subroutine calling sequence, the callee is
responsible for:

11.placing the return value in accumulator A,

12. testing the return value. This optimises the case where function calls are
arguments to conditional operators.

Additional callee sequence when the subroutine called will return a structure:

13. the return value is not passed in accumulator A. A copy of the return struc-
ture is placed into the space allocated in the caller’s activation record and
pointed to by accumulator A.

27.5.4. Procedure Prologue and Epilogue

A leaf routine is a subroutine that makes no further subroutine calls. When the
compiler identifies such routines, the prologue and epilogue code are opti-
mized (no save and restore of the ssh).
M1 - 12 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
For routines which have local variables packed in registers, a move instruction
will be generated to save the register upon entry and restore it before exiting.

For all non-leaf routines, a move must be emitted to save ssh on the stack.
When local variables exist that couldn’t be packed in registers, code must be
emitted to save and restore the frame pointer and the stack pointer

27.5.5. Stack Layout

Interfacing C and Assembly allows the user to utilize the benefits of both lan-
guages in programming tasks. When interfacing C and Assembly, it is essen-
tial that Assembly language, that is called from C, must match the compiler’s
conventions. Although not strictly required, it is recommended that all
assembly language routines use the standard stack usage conventions, so
that these routines can be called from within C code or vice versa.

Here is an example of a C program calling an assembly language routine:

extern int asmsub ();

main ()

{

int i, arg1, arg2, arg3;

i = asmsub (arg1, arg2, arg3);

...

}

The assembly language routine is declared as an ordinary external C rou-
tine. According to the compiler’s naming conventions, the C code will contain
a call to a global symbol named Fasmsub. That is, the compiler prepends an
upper case letter F to each C procedure name. Therefore the assembly lan-
guage must define a global symbol of this name, that is:

XDEF Fasmsub

Fasmsub:

< entry code (prologue) >

< body of routine >

< exit code (epilogue) >

When a subroutine is called, a new copy of the so-called subroutine activation
record is put on the run-time stack, and returning from the subroutine
removes the activation record. An activation record is the run-time represen-
tation of a C subroutine. Typically, such a record consists of the following ele-
ments:

■ Parameter data space: Information passed to C subroutines is stored
in a parameter data space which is similar to the local data space.
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 13

Virtuoso on the Motorola 56K DSP
However, the data is in reverse order and each parameter is refer-
enced via a negative offset from the nframe pointer. Actual parame-
ters are pushed onto the activation record in reverse order by the
calling subroutine.

■ Old frame pointer. The old frame pointer provides a dynamic link to
the calling subroutine’s activation record. Once the called subroutine
has completed execution, the frame pointer will be updated with this
value

■ Return address - which is pushed on the DSP’s system stack high
register. This is the return address to the calling subroutine. The
return address is not saved for leaf subroutines.

■ Local data space. The location of C variables that have a lifetime that
extends only as long as the subroutine is active and that could not be
explicitly promoted to register storage class by the optimiser.

■ Register spill and compiler temporary space. This area is utilised by
the compiler to store intermediate results and preserve registers.
Note: The frame pointer (R0) points to the first element in the local
data space.
Note 2: The stack pointer (R6) points to the next available data mem-
ory location.

By default, global and static data elements are located below the run-time
stack and each element is referenced by a unique label that is known at com-
pile-time.

27.6. Interrupt Service Routines (ISR)

The two ISR levels that are normally supported by Virtuoso (ISR0 and ISR1)
are not present in the version for the DSP56000 processor, since the
DSP56000 supports multiple interrupt levels on its own. For more details on
the different interrupts supported by the DSP56000, see section 27.3.3. of
this manual, or, even more in detail, the DSP56000 User’s Guide from Motor-
ola.

27.6.1. ISR Conventions

When using self-written ISRs in conjunction with the Virtuoso kernel, there
are certain conventions to follow:

■ Registers that must be preserved in an ISR.

■ Interrupts that must be disabled at certain sections in the ISR code.

Saving or preserving registers
M1 - 14 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
There are two sorts of ISRs that can be written:

1. ISRs that stand on their own and do not make use of the kernel to give
signals

2. ISRs giving signals to the kernel

In both cases, the Stack Pointer (R6) must first be incremented, prior to sav-
ing any register at the start of an ISR. This is because a critical section exists
in the epilogue code of a procedure:

move (R6)-

move y:(R6),<reg>

This instruction sequence restores a previously saved register. If an interrupt
occurs in between these two instructions, the Stack Pointer points to the
address where the value of the preserved register is written and the first
move in the ISR to save a register will overwrite that value, if no prior incre-
ment of R6 is done. The same goes for the preservation of SSH.

Keeping this potential danger in mind, the following prologue code must be
used for an ISR of the first class (no kernel interaction):

move (R6)+ ; prior increment of the SP

move <reg>,y:(R6)+ ; repeat this instruction for

; every register that must be

; saved

At the end of the ISR, right before the RTI instruction, following epilogue
code must be used:

move (R6)-

move y:(R6)-,<reg> ; repeat this instruction for

; every register that is saved

; in the prologue code of the

; ISR

Note, that this epilogue code is not critical anymore, provided the prologue of
all ISRs start with an increment of the Stack Pointer (R6).

Which registers have to be preserved by an ISR depends on the class of ISR
an on which registers are used in the ISR. If the ISR stands on its own (no
signal is made to the kernel), only those registers must be preserved that are
used by the ISR. In this case, the prologue and epilogue code just described
are to be used. In the case the ISR gives a signal to the kernel, all registers
that are used by the ISR must be preserved, except the registers R1, R2, B
and X: these registers must always be saved at the start of a signalling ISR,
regardless if they are used by the ISR or not, because the kernel is relying
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 15

Virtuoso on the Motorola 56K DSP
on the fact that they are saved. The kernel expects in register B1 the event
signal number, which can range from 0 to 63 inclusive. So, for a signalling
ISR, next conventions must be followed:

1. First increment the Stack Pointer R6.

2. Save registers X, B, R1 and R2 in this sequence.

3. Save all other registers used by the ISR.

4. Do whatever has to be done (body of ISR).

5. Restore all registers except R2, R1, B and X. Note, however, that the
last register restore may NOT contain a decrement of the Stack
Pointer, because this decrement would be one too much.

6. Load register B1 with the event signal number (value 0 - 63).

7. Jump to label Fkernel_sign_entry , to give the signal.

An example is given for each class of ISR.

Example 1 : a non-signalling ISR uses registers N0, N2, R0 and R1.

move (R6)+ ; prior increment of R6

move N0,y:(R6)+ ; save N0

move N2,y:(R6)+ ; save N2

move R0,y:(R6)+ ; save R0

move R1,y:(R6)+ ; save R1

<body of ISR>

move (R6)- ; post-decrements are faster

move y:(R6)-,R1 ; restore R1

move y:(R6)-,R0 ; restore R0

move y:(R6)-,N2 ; restore N2

move y:(R6)-,N0 ; restore N0

rti ; finito

Example 2 : a signalling ISR using R4 and M4 as extra registers.

move (R6)+ ; prior increment of R6

move X,l:(R6)+ ; save X

move B10,l:(R6)+ ; save B

move B2,y:(R6)+ ;

move R1,x:(R6) ; save R1

move R2,y:(R6)+ ; save R2

move R4,y:(R6)+ ; save R4

move M4,y:(R6)+ ; save M4

<body of ISR>

move (R6)- ; post-decrements are faster
M1 - 16 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
move y:(R6)-,M4 ; restore M4

move y:(R6),R4 ; restore R4 - NO DECREMENT!

move #SIGNUM,B1 ; load B1 with event signal

; number

jmp Fkernel_sign_entry ; signal the kernel

If a C procedure is called from an ISR, all registers that are not preserved
across a procedure call (see paragraph 27.5.3. for a list of preserved regis-
ters), have to be saved. However, for a signalling ISR, it is not advised to
make a subroutine jump to a C function from within the ISR as this would
introduce needless overhead of context saving. The kernel, when jumped to
by label Fkernel_sign_entry , will perform a context save for all non-pre-
served registers. In this case, it is advised to make a task that waits for an
event, with kernel service KS_EventW(n) , and that calls this C function
after it is waked up by a signal to event number n.

Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 17

Virtuoso on the Motorola 56K DSP
27.7. Alphabetical list of ISR related services

Fkernel_sign_entry

/* for entering the kernel from within an ISR */

/* single processor version only */

KS_EventW()

/* for waiting for an interrupt at the task level */

KS_EnableISR()

/* for installing an ISR */

KS_DisableISR()

/* for removing an ISR */
M1 - 18 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
27.7.1. Fkernel_sign_entry

• SYNOPSIS Label jumped to when entering the kernel from within an ISR

• BRIEF This service gives a signal to the kernel with an event code numbered
between 0 and 63 inclusive. A task can wait for the occurrence of such a sig-
nal by using kernel service KS_EventW(n) .

• EXAMPLE

• SEE ALSO. KS_EventW

• SPECIAL NOTES . . The kernel signalling service assumes that certain conventions are followed
by the ISR:

1. Stack Pointer R6 must be incremented at the very start of the ISR

2. Registers X, B, R1 and R2 have to be saved at the start of the ISR,
after the prior increment of R6, with the sequence as indicated (see
also previous paragraph)

3. Prior to jumping to the entry Fkernel_sign_entry , register B1
must be loaded with the event number (between 0 and 63 inclusive)

4. A JMP instruction must be used to jump to the entry
Fkernel_sign_entry , not a JSR instruction. The System Stack of
the processor will be managed by the kernel, so that, when returning
from interrupt, the correct program address will be loaded in the Pro-
gram Counter

This kernel service is only callable from an ISR written in assembly when
used with the single processor version (with no nanokernel).
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 19

Virtuoso on the Motorola 56K DSP
27.7.2. KS_DisableISR

• BRIEF Disables to ISR to be triggered by interrupt

• SYNOPSYS

void KS_DisableISR (int IRQ);

• DESCRIPTION . . . This C-callable service disables an ISR by writing an ILLEGAL instruction at
the appropriate place in the interrupt vector table. Also, for the following inter-
rupts, the corresponding bits in the IPR register of the processor will be
changed accordingly:

■ IRQA

■ IRQB

■ Host Command

Other interrupts can also be disabled by this service, but only in the sense
that the JSR instruction at the corresponding place in the interrupt vector
table will be overwritten by an ILLEGAL instruction.

• RETURN VALUE . . NONE

• EXAMPLE

KS_DisableISR (9);

• SEE ALSO. KS_EnableISR

• SPECIAL NOTES . .
M1 - 20 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
27.7.3. KS_EnableISR

• BRIEF Enables an ISR to be triggered by an interrupt

• SYNOPSYS

void KS_EnableISR (int IRQ,

void (*ISR)(void),

int PrioLevel,

int Mode);

• DESCRIPTION . . . This C-callable kernel service installs an ISR by writing a JSR instruction at
the appropriate place in the interrupt vector table and setting the IPR register
of the processor with the correct bit-values for the actual interrupt. This ser-
vice may be used to install following interrupts, together with their priority
level and interrupt mode (if appropriate):

■ IRQA

■ IRQB

■ Host Command

Other interrupts can also be installed by this service, but for them the priority
level and interrupt mode is not applicable and the arguments PrioLevel and
Mode are not used.

• RETURN VALUE . . NONE

• EXAMPLE

extern void ISRDMACh1(void);
KS_EnableISR (9, ISRDMACh1, 2, 0) ;
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 21

Virtuoso on the Motorola 56K DSP
27.7.4. KS_EventW

• BRIEF Waits for event associated with ISR

• SYNOPSIS

KS_EventW(int IRQ)

• DESCRIPTION . . . This C-callable kernel service can be used by a an application task to wait
for a signal, given by an ISR. It forms a pair with kernel service
Fkernel_sign_entry.

• EXAMPLE.

• SEE ALSO. Fkernel_sign_entry

• SPECIAL NOTES . .
M1 - 22 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
27.8. Developing ISR routines

When developing Interrupt Service Routines, the ISR conventions, described
in paragraph 27.6.1. have to be followed.

The best place to install and enable an ISR, is in procedure main() , where
predefined drivers, like the driver for the timer interrupt, are installed and
enabled.

It is possible that additional initialization of registers and/or peripheral I/O
has to be done. The best way to do this, is writing a C-callable procedure,
that does the necessary additional initializations, and call this procedure
after the call to KS_EnableISR() . An example of this method is the installa-
tion of the timer ISR in procedure main() :

#include “iface.h”

extern void timer0_irqh (void);

extern void timer0_init (void);

...

int main (void)

{

...

KS_EnableISR (4, timer0_irqh, IPLEVEL2, IPMNEDGE);

timer0_init();

...

}

note: When the timer is implemented by means of the
internal timer (DSP56002), the first argument
of the KS_EnableISR() and KS_DisableISR() has
to be 30. See section ‘The timer device driver’.

27.9. The nanokernel on the 56002

Virtuoso Nano/SP is available on the E-tools Minikit. Documentation is pro-
vided separately with this product.

27.10. Predefined drivers

Two devices drivers are already added to this release of the Virtuoso kernel.
They are:

■ the timer device driver

■ the host interface device driver
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 23

Virtuoso on the Motorola 56K DSP
The timer device driver is needed for time-out features of some kernel ser-
vices and for kernel timer services. The host interface device driver is written
to be able to communicate between the host server program and the
DSP56000 target board.

27.10.1. The timer device driver

Only the DSP56002 processors with versions from D41G have an internal
timer. For the older 5600x processors, the implementation of the timing func-
tions depends on what is provided by the boards. For example, the 56001
LSI board provides a hardware timer which is connected with the IRQB inter-
rupt line.

This difference of timer implementation results in a few consequences for the
microkernel services, as will be explained later in this section.

The timer driver is always installed and enabled in procedure main() by
means of the KS_EnableISR() service. If the internal timer is used, the first
parameter of this function is 30, because the timer interrupt vector address is
30. On the other hand, if the timer is implemented by means of an external
counter and IRQB, then the first argument has to be 4. If the timer ISR is
installed and enabled, the application programmer can read out the timer in
high and in low resolution.

■ In low resolution, the number of kernel ticks (default milli seconds) are
returned. As this value is a 48 bit wraparound value, it is more inter-
esting to calculate the difference between two values which were read
out consecutively. However, to facilitate this, kernel service
KS_Elapse() is written for this purpose. The services KS_Sleep() and
KS_LowTimer() also use this low resolution service.

■ The KS_HighTimer() service provides a high resolution timer by
returning the number of timer counts. The units of this value depends
of the clock speed of the counter. This service is not provided when
the internal timer is used since this counter can not be read. In this
case the high resolution timer value will be equal to the low resolution
value.

See the Alphabetical List of Virtuoso kernel services earlier in this manual
for a full description of these kernel services.

The timer device driver reserves event signal number 48 for its use.

27.10.2. The host interface device driver

The host interface driver is installed by calling procedure init_server() .
In the examples that accompany the release of the Virtuoso kernel, the
M1 - 24 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
installation of the host interface is done in procedure main() .

The host interface driver can be used on two levels. The lowest level needs
only one kernel resource, HOSTRES, which secures the use of the low level
host interface. This kernel resource must always be locked by the task that
wants to make use of the host interface, and unlocked if this task has fin-
ished using the host interface. A list of low level procedures are at the dis-
posal of the application programmer to do simple character-oriented I/O:

■ server_putchar()

■ server_pollkey()

■ server_terminate()

■ server_pollesc()

These procedures will do the locking and unlocking of HOSTRES, so that
HOSTRES is transparent to the application programmer, using the low level
host interface.

Also installed in the examples is an easy-to-use character-oriented I/O inter-
face, based on two tasks, conidrv and conodrv , two queues, CONIQ and
CONOQ, two resources, HOSTRES and CONRES, and a procedure called
printl() . This higher level interface driver makes use of the low level inter-
face procedures.

It is possible to use an even lower level of the host interface. Doing this, the
application programmer can build other host interfaces that do more than
character-oriented I/O. The minimum that is needed to make use of the low-
est level host interface, is the kernel resource HOSTRES, to secure the use
of the interface, and the procedure, named call_server() . Note, how-
ever, that HOSTRES is not needed if only one task makes use of the lowest
level host interface and if the Task Level Debugger is not present. It is not the
intention of this manual to lay out the internals of the host interface and the
communication protocol between the host server program and the target
board(s). Please contact ISI if more information is wanted on this topic.

For more details on the different levels of the host interface, see “Host server
low level functions” and “Simple terminal oriented I/O” in the chapter of
“Runtime libraries”.

The host interface device driver reserves event signal number 16 for its own
use.

27.11. Task Level Timings

Following is a list of task level timings of some of the kernel services pro-
vided by Virtuoso. These timings are the result of timing measurement on a
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 25

Virtuoso on the Motorola 56K DSP
DSP56002 board with a clock speed of 40 MHz and zero wait state program-
and data-memory.

All timings are in microseconds. The C compiler used for the DSP56002
environment, is the G56KCC from Motorola.

Minimum Kernel call

Nop (1) 10

Message transfer

Send/Receive with wait

Header only (2) 71

16 bytes (2) 75

128 bytes (2) 80

1024 bytes (2) 126

Queue operations

Enqueue 1 byte (1) 22

Dequeue 1 byte (1) 23

Enqueue 4 bytes (1) 26

Dequeue 4 bytes (1) 26

Enqueue/Dequeue (with wait) (2) 64

Semaphore operations

Signal (1) 16

Signal/Wait (2) 52

Signal/WaitTimeout (2) 70

Signal/WaitMany (2)(3) 74

Signal/WaitManyTimeout (2)(3) 92

Resources

Lock or Unlock (1) 16

Note :

One byte is one 24-bit word on the DSP56000.

(1): involves no context switch

(2): involves two context switches. Timing is round-
trip time.

(3): Length of semaphore list is 2.

27.12. Application development hints.

The easiest way to start is to copy and modify one of the supplied examples.
Some of the necessary files have fixed names, so each application should
be put in a separate directory.
M1 - 26 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 56K DSP

PA
R

T
 3
The following files will be needed for each application:

SYSDEF:

The VIRTUOSO system definition file. The SYSGEN utility will read this file
and generate NODE1.C and NODE1.H.

MAIN1.C:

This contains some more configuration options, and the C ‘main’ function.
Copy from one of the examples.

A number of configuration options are defined in this file, so they can be
changed without requiring recompilation of all sources (this would be neces-
sary if SYSDEF is modified).

CLCKFREQ : this should be defined to be the clock frequency of the hard-
ware timer used to generate the TICKS time.

TIICKTIME : the TICK period in microseconds.

TIICKUNIT:the TICK period in CLCKFREQ units.

TICKFREQ:the TICK frequency in Hertz.

The number of available timers, command packets and multiple wait packets
are also defined in this file. How much you need of each depends on your
application, but the following guidelines may be followed:

Timers are used to implement time-outs (at most one per task), and can also
be allocated by a task.

A command packet will be needed for each timer allocated by a task. Com-
mand packets used for calling a kernel service are created on the caller’s
stack and should not be predefined.

A multiple wait packet will be needed for each semaphore in a KS_WaitM
service call (for as long as it remains waiting).

MAIN1.C also defines some variables used by the console driver tasks, the
clock system, the debugger task, and the graphics system. These are
included automatically if you use the standard names for the required kernel
objects.

CRT056l.ASM:

start-up assembly code
Copyright 1996 Eonic Systems Virtuoso Binding Manual M1 - 27

Virtuoso on the Motorola 56K DSP
MAKEFILE:

The makefiles supplied in the EXAMPLES directory can easily be modified
for your application. They also show how to organize things so you can
optionally include the task level debugger. If you want to include the task
level debugger, put the corresponding definitions out of comment:

VIRTLIB = $(LIBS)\virtosd.lib

DD = -dDEBUG

DDD = -P “DEBUG”

and put the other definition in comment:

VIRTLIB = $(LIBS)\virtos.lib

whereby # is the comment sign. Then remake the application, just by doing:

MAKE <Enter>.

LINKFILE:

List of the object versions of all source files to be linked along.

YOUR SOURCE FILES :

In the examples, this is just test.c
M1 - 28 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 68030 systems

PA
R

T
 3
28. Virtuoso on the Motorola 68030 systems

Virtuoso has been ported to a 68030 based system of CompControl hosted
by OS/9. The operation is similar except that common memory regions are
used to communicate between the different processor boards.

This document file contains additional information concerning the Virtuoso
kernel.

28.1. Source files of the Virtuoso kernel

The source files of the Virtuoso kernel are compiled with the GNU C-com-
piler. Following source files have to be present in order to be able to make
the relocatables:

.a files:

kernel.a mbint2.a starter2.a timer1.a

.c files:

charconv.c condrv.c dllist.c event.c hint.c iface.c
mail.c mmap.c nodeinit.c printf.c printl.c
queue.c res.c rtxcmain.c signal.c task.c
ticks.c tldebug.c tlmonit.c tstdio.c

.h files:

dllist.h iface.h k_struct.h k_types.h siotags.h
stdarg.h tlmonit.h tstate.h tstdio.h

makefiles:

Virtuoso.mak Virtuoso_d.mak

listfiles:

relocs.lst relsdbg.lst

Two makefiles are present. Each of them makes relocatables from the
source files. “Virtuoso.mak” builds relocatables for a version without the Vir-
tuoso task level debugger; “Virtuoso_d.mak” builds relocatables for a version
with the debugger.

Each makefile will build a library from the relocatables. The list of relocat-
ables is found in files “relocs.lst” (for the version without debugger) and “rels-
dbg.lst” (for the version with debugger). At the present time the libraries
Copyright 1996 Eonic Systems Virtuoso Binding Manual M2 - 1

Virtuoso on the Motorola 68030 systems
cannot be used yet to build executable applications, since the order of the
relocatables in the libraries is not yet optimal.

The makefiles presume following directory structure:

/h0

/

VIRTUOSO

/

GNUC

/

RELS ---------- RELS_NODBG

The source files and makefiles reside in subdirectory GNU C. Relocatables
compiled without debugger option go into subdirectory RELS_NODBG;
those compiled with debugger option go into subdirectory RELS.

28.2. Building an application executable

Two demos on the disk can serve as a guide to build an application. Each of
the demos can be built with or without the task level debugger incorporated.
The makefiles of these demos presume the following directory structure:

/h0

/

VIRTUOSO

/

TEST ---------TEST_SIO

RELS ---------RELS_NODBG -------RELS -------RELS_NODBG

Following source files must be present in the source directories TEST and
TEST_SIO:

.c files:

demo.c driv1.c node1.c

.h files:

dllist.h iface.h k_struct.h k_types.h node1.h siotags.h
tstdio.h

makefiles:

makefile nodbg.mak
M2 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 68030 systems

PA
R

T
 3
link list files:

demo.lnf demo_nodbg.lnf

The include files “siotags.h” and “tstdio.h” are only needed in directory
TEST_SIO.

Source file “demo.c” contains the source code for the application. “node1.c”
and “node1.h” are files that are created by the system generation utility. At
this moment however, the system generation utility is not yet ready, so that
the present version of “node1.c” and “node1.h” are customized for the demo-
applications. In “node1.c” one can find the definitions of all kernel objects
used in the application: the task control blocks, queues, memory maps, mail-
boxes, semaphores, resources and the names of the kernel objects for
debugging purposes.

Since no OS-9 kernel is present on the target processor board, the applica-
tion, with the Virtuoso kernel, will have to be able to run on its own. There-
fore, the link option -r is used in the makefiles to build a raw binary file for a
non-OS-9 target system.

When building an application, care must be taken during linking phase. The
order in which the relocatables are linked into one application executable is
not important, except for one module: “starter2.r”. This module must
ALWAYS be the FIRST MODULE in the link list, because this module con-
tains the startup code of the kernel and calls to initialization routines.

More on this later.

28.3. Configuration of the processor boards CC-112 of CompControl

In order to use the capabilities of the CC-112 processor boards for applica-
tions with the Virtuoso kernel, following configuration is needed:

On the main processor board running the server program and the OS-9 ker-
nel:
Copyright 1996 Eonic Systems Virtuoso Binding Manual M2 - 3

Virtuoso on the Motorola 68030 systems
1. watchdog jumper: disabled (connected)

2. EPROM jumpers : configured for 1 Mbit EPROM

3. SCSI jumper : connected

4. cache jumper : disabled (connected)

5. Boot-ROM initialization parameters:

6. Processor Module Name : CC112

7. Display NVDev contents on Reset/Poweron : y

8. Boot from floppy disk SCSI port : y

9. Boot from hard disk SCSI port : y

10. Boot from EPROM : n

11. Boot from VMEnet port : n

12. Host SCSI ID : 7

13. Hard disk controller SCSI ID : 0

14. Floppy disk controller SCSI ID : 1

15. Reset SCSIbus on Reset/PowerOn : y

16. Reset VMEbus on Reset/PowerOn : y

17. DPR Supervisory Access : y

18. DPR Non-privileged Access : y

19. DPR Extended Access : y

20. DPR Standard Access : y

21. VMEbus DPR Base Address : 08000000

22. Bus Request Level : 3

23. Bus Request/Release Mode :

24. Request Direct - Release On Request

25. Interrupt Handler VMEbus mask :

26. Level(s) 7,6,5,4,3,2,1 enabled

27. Interrupt Handler Local mask : Level(s) 7,1 enabled

28. VMEnet port : 08000080
M2 - 4 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 68030 systems

PA
R

T
 3
On the target processor board running the application with Virtuoso:

1. watchdog jumper: disabled (connected)

2. EPROM jumpers : configured for 1 Mbit EPROM

3. SCSI jumper : connected

4. cache jumper : enabled (not connected)

5. Boot-ROM initialization parameters:

6. Processor Module Name : CC112

7. Display NVDev contents on Reset/Poweron : y

8. Boot from floppy disk SCSI port : n

9. Boot from hard disk SCSI port : n

10. Boot from EPROM : n

11. Boot from VMEnet port : n

12. Host SCSI ID : 7

13. Hard disk controller SCSI ID : 0

14. Floppy disk controller SCSI ID : 1

15. Reset SCSIbus on Reset/PowerOn : n

16. Reset VMEbus on Reset/PowerOn : n

17. DPR Supervisory Access : y

18. DPR Non-privileged Access : y

19. DPR Extended Access : y

20. DPR Standard Access : y

21. VMEbus DPR Base Address : 08400000

22. Bus Request Level : 2

23. Bus Request/Release Mode :

24. Request Direct - Release On Request

25. Interrupt Handler VMEbus mask : All levels disabled

26. Interrupt Handler Local mask : Level(s) 7,5,1 enabled

27. VMEnet port : 08000080

28.4. Additional information about the modules

starter2.a

As already mentioned earlier, this module must be the first one linked into an
executable. This is because it contains the initialization that is normally done
by the start routine for an application that is built to run on OS-9 (cfr. the
module cstart.r).

Initialization of the data area, uninitialized as well as initialized, must now be
done by the application itself (OS-9 isn’t there anymore to do this job). This
module will calculate and fill-in the global data pointer in register a6 of the
Copyright 1996 Eonic Systems Virtuoso Binding Manual M2 - 5

Virtuoso on the Motorola 68030 systems
processor.

When an application is built to run on a non-OS-9 target system, the block of
initialized data will follow immediately after the object code of the application:

---> increasing address --->

 |------------------| size of -------| size of -------| initialized |

 | application code | un-initialized | initialized----| data------- |

 |----------------- | data block---- | data block-----| block------ |

 |----------------- | (1 longword) --| (1 longword) --|------------ |

To find the block of initialized data, the starter routine will search for the first
initialized data value. This is a value defined in this module (the hex. value
FEEDC0DE). This is another reason why this module must be linked first in
the executable. Once this value is found, its address is used as the global
data pointer and filled in register a6.

The data block of the initialized data however, is not yet at the right place.
The application expects that the global data pointer in register a6 will point to
the first byte of the un-initialized data block. The ordering of the data blocks
expected by the application is such, that the block of un-initialized data
comes first, then the block of initialized data follows.

Therefore, the block of initialized data will be moved in a higher address
space with the amount of bytes equal to the size of the un-initialized data
block. Then the address space between the application code and the moved
block of initialized data will serve as the block of un-initialized data. This
address space is then filled with zeros.

The start routine is entered via an exception of the VME-mailbox memory. At
the end of the start routine a ‘return-from-exception’, or RTE, causes the pro-
cessor to return to its normal processing state. This mechanism will now be
used to go to the C-routine ‘main()’, by overwriting the normal RTE- return
address with the address of ‘main()’.

Further initializations performed by the start routine are:

1. - initialization of the VME-mailbox;

2. - correction of all the pointer values in the initialized data block

 (see additional information concerning the module “nodeinit.c”).

mbint2.a

The VME-mailbox address space is only used as a trigger, to initiate a mail-
box exception. The actual mailbox is fixed at address 0x08000100 and has a
M2 - 6 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 68030 systems

PA
R

T
 3
maximum length of 64 32-bit words. In the mailbox exception routine the
exception is translated to a kernel-signal (signal code 1), so that an applica-
tion task can wait on it by using kernel service KS_Event() with parameter
value 1. After being awaken from an event-signal 1, the application task can
get the information with kernel service KS_Linkin(). The information that is
read, is formatted in the Eonic Systems-proprietary protocol.

During a mailbox exception handle, the exception handler will lock the mail-
box, to prevent accidentally overwriting by processes on other boards. This
locking is done by writing a non-zero value at a fixed address 0x08000080.
Other processor boards, or the server program on the main processor board,
willing to use the mailbox, will therefore have to check the value at this
address, prior to write information in the mailbox. Only if the value is zero,
the mailbox is free to be written in.

timer1.a

The timer interrupt routine works on interrupts coming from the DUART on
the processor board. The DUART is programmed as a timer to give regular
interrupts each 1 millisecond.

The system level debugger, present in the EPROM’s of the processor board,
can be consulted by pushing the “abort” button on the front of the processor
board. This however, can be done only once, because the system level
debugger will stop the timer actions of the DUART. It is not possible to return
from the system level debugger to the application, by entering the command
‘g’ of the debugger, as the application is completely paralyzed. The proces-
sor board must then be reset and the server program must reload and restart
the application from the beginning.

The timer interrupt routine has a special feature built-in for visual inspection
of its healthiness. Somewhere in the code of the timer interrupt routine a
subroutine jump is done to a routine called “heartbeat”. This routine changes
a LED in the front of the processor board each half second. If this feature is
not desired, the BSR-instruction to the ‘heartbeat’- routine is to be put in
comment.

kernel.a

This is the very core of the Virtuoso kernel. All interrupt routines (at this
moment only the mailbox- and the timer-interrupt routine) and Virtuoso ker-
nel service requests enter this module. The kernel service requests are
translated to a processor TRAP, so that all kernel services are processed in
the supervisory state of the processor, together with the interrupt process-
ing.

The kernel initialization routine also contains initialization of the cache con-
Copyright 1996 Eonic Systems Virtuoso Binding Manual M2 - 7

Virtuoso on the Motorola 68030 systems
trol register of the processor. This will only go for the 68030 processor type.
If cache operation is not desired, two instructions within the kernel initializa-
tion routine must be put in comment:

 move.l #$3919,d0

 movec d0,CACR

The last instruction of the kernel initialization routine transfers the processor
state to User Mode. This instruction must always be the last instruction
before the RTS-instruction. This module also contains a copy-routine, called
“fastcopy”. It copies blocks of memory as fast as possible, by copying 4 bytes
at a time, if the block to be copied is more than 3 bytes long. This routine is
used several times in the kernel to copy for instance a kernel message body.
It is a C-callable routine, so that applications can easily use it too.

charconv.c, printf.c

Because several standard C-functions written for the OS-9 environment use
OS-9 features, some functions used by the application are re-written:

atoi()

printf()

The idea behind it is to have the greatest possible independency of OS-9
libraries for an application written to run on Virtuoso on the target processor
board.

condrv.c

Console input and output is queue-driven in Virtuoso. Two tasks, one for con-
sole input, the other for console output, run at a high priority to handle con-
sole I/O. Communication with these two tasks is done via a Input- resp.
Output-queue. If console input/output is not needed in the application, the
console tasks and queues can be removed from the system description files
(node1.c and node1.h). In this case this module is not needed too.

hint.c

Kernel service KS_Linkin is serially oriented: reading out of the VME-mail-
box message can be done in more than one step, by calling KS_Linkin se-
veral times. This is particularly interesting to process the Eonic Systems-pro-
prietary protocol, because the length of an Eonic Systems-proprietary proto-
col message is given in the first word of the message itself. Therefore a read-
out of such a message has to be done in two steps.

After reading out the last piece of the message, kernel service
KS_FreeMailbox() must be called in order to reset an internal read-pointer to
an initial value. This service will also unlock the mailbox, so that a new mes-
sage can be entered in the mailbox. So, KS-FreeMailbox() must not be for-
M2 - 8 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 68030 systems

PA
R

T
 3
gotten.

nodeinit.c

This module contains part of the initialization sequence of the system. It will
correct all pointers within the block of initialized data. Because the execut-
able of an application is built from relocatables, initialized pointers will not
have an absolute address value. A correction factor must be added to the
pointers.

The correction factor is not equal for all initialized pointers: For pointers to
data structures, the global data pointer must be added; for pointers to func-
tions and to constant strings, the application start-address must be added.
Both correction factors are calculated by the start routine in module
“starter2.a” and are called “GlobDataPtr” and “StartOfCode”.

Constant strings however, can always be used, without the need to add a
correction factor, as these strings are incorporated into the modules them-
selves. So for example:

 sprintf (Buffer, “Hello World\n”);

can be written in the application without any problem.

rtxcmain.c

This module contains the main-function “main()”. Here, all initialization rou-
tines for the kernel structures are called. In “main()”, the DUART is also ini-
tialized and programmed to give tick-interrupts every 1 millisecond. Finally,
all tasks of the EXE-group will be started.

As “main()” is part of the idle-task of the kernel, “main()” will never be exit-ed.
Instead an endless loop is called that performs some statistics.

tldebug.c, tlmonit.c

These modules are only needed when the task level debugger of Virtuoso is
wanted.

tstdio.c

This module contains all standard Input/Output services supported by Virtu-
oso. If no standard I/O is wanted, this module must not be linked with the
application.

28.5. Server program for CompControl VME system board, running on
OS-9

This document file contains additional information concerning the structure
Copyright 1996 Eonic Systems Virtuoso Binding Manual M2 - 9

Virtuoso on the Motorola 68030 systems
and internals of the server program for Virtuoso.

28.5.1. Purpose of the server program

The server program resides on the first VME card in a VME node and has
several tasks. It is written to run on the host operating system OS-9. In this
way, one can view the server program as a bridge between Virtuoso, running
on the other processor boards in the node, and the file system of OS-9, the
text-output on the console screen and the keyboard-input.

Following list of features are supported by the server program:

1. loading an application, including the Virtuoso kernel, from disk and putting it
on another processor board via the VME-bus. At startup time, the target pro-
cessor board has no operating system running on it and has only a system
level debugger in its EPROM’s;

2. starting a target processor board that has just received its application soft-
ware from the server program. This can be achieved by use of the interrupt
vector of the VME mailbox that is present on a processor board of CompCon-
trol;

3. on request of an application running on another processor board, putting
characters on the console screen;

4. catching key-presses from the keyboard and sending the key-code to the tar-
get processor board;

5. on request of an application running on another processor board, performing
standard Input/Output functions, hereby eventually accessing the file system.

Communication between the server program and target processor boards
will be done via the VME mailboxes on the processor boards by the use of
an Eonic Systems-proprietary communication protocol.

28.5.2. Source files for the server program

Following source files have to be present in the source directory of the server
program, in order to be able to make an executable:

server.c : C-source file of the server program

hstdio.c : C-source file of the standard Input/Output interface rtxh.h :
include file with additional definitions

siotags.h : include file with the standard Input/Output tags

makefile : makefile for the server program server.lnf: link list file for the
server program. The makefile presumes that the directory structure for the
server program is as follows:
M2 - 10 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 68030 systems

PA
R

T
 3
/h0/SERVER/CMDS

/h0/SERVER/SOURCE/RELS

The makefile also presumes that the mailbox-driver routines reside in direc-
tory /h0/MBDRIVER and that OS-9 libraries are to be found in directory /h0/
LIB.

28.5.3. Use of the server program

The server program can be started just by typing “server”. If one starts the
server this way, the name of the executable for the target processor board
will be prompted for. Alternatively, the name of the executable can be given
as a parameter, for example: server demo .

If the target processor board has to get a fresh executable, it always has to
be reset first.

Some options can be used on the server program:

/c : the server presumes that the target processor board has already running
an application on it, and will not load an executable on the target processor
board. The server will signal the target board that it has started again and
resumes operation. With this option, no executable file name is to be given.

/pn : before triggering the target board, the server will pause for n seconds.

/axxxxxxxx: specifies the absolute address at which the application will be
loaded. xxxxxxxx is the address in hexadecimal format. If this parameter is
not given, a default absolute address will be taken: 08003000.

The server can be interrupted or stopped by entering ^C or ^E. When one
does this, the server will prompt “x to exit, c to continue”, so that the operator
can still change his mind here. If after all the server is stopped, it can always
be restarted to resume its duties with the option /c .
Copyright 1996 Eonic Systems Virtuoso Binding Manual M2 - 11

Virtuoso on the Motorola 68030 systems
M2 - 12 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
29. Virtuoso on the Motorola 96K DSP

29.1. Virtuoso versions on 96K

At this moment, two versions exist for the 96K. Both contain the microkernel.
The first one is dedicated to single processor systems and does not contain
the nanokernel level. This is the version described.

The second version contains the nanokernel and is suited for multiprocessor
targets as well (with fully distributed semantics). The section on this version
is under preparation.

29.2. DSP 96002 chip architecture

This section contains a brief description of the DSP9600x processor archi-
tecture. It is not intended to be a replacement of the Processor’s User Man-
ual, but as a quick lookup for the application programmer. Detailed
information can be found in the “DSP96002 User’s Manual” from Motorola.

The DSP96002 has a Harvard architecture (separated program- and data-
addressing) with multiple internal buses. The interface to the outside world is
done via two programmable ports. The concept of the processor family, to
which this processor belongs, defines as its core a Data ALU, Address Gen-
eration Unit (AGU), Program Controller and associated Instruction Set. The
On-Chip Program Memory, Data Memories and Peripherals support many
numerically intensive applications, however they are not considered part of
the core.

The DSP96002 supports IEEE 754 Single Precision (8 bit Exponent and 24
bit Mantissa) and Single Extended Precision (11 bit Exponent and 32 bit
Mantissa) Floating-Point and 32 bit signed and unsigned fixed point arith-
metic, coupled with two identical external memory expansion ports.

The major components of the DSP96002 are:

■ Data Buses and Address Buses

■ Data ALU

■ Address Generation Unit (AGU)

■ X Data Memory

■ Y Data Memory

■ Program Control and System Stack

■ Program Memory

■ Port A and Port B External Bus Interfaces
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 1

Virtuoso on the Motorola 96K DSP
■ Internal Bus Switch and Bit Manipulation Unit

■ I/O Interfaces

FIGURE 16 does not give all details of the DSP96002 Block Diagram. See
figure 3-1 in the DSP96002 User’s Manual for full details

FIGURE 16 DS96002 simplified Block Diagram.

The major components of the DATA ALU unit are:

■ Data ALU Register File

■ Multiply Unit

■ Adder Unit

■ Logic Unit

■ Format Converter

■ Divide and Square Root Unit

■ Controller and Arbitrator

The Adder Unit has also a Barrel Shifter. The major components of the

Internal Memory
X data: 512x32
Y data: 512x32
Prgm: 1024x32

Ext.
Addr.
Switch

Ext.
Addr.
Switch

Ext.
Data
Switch

Ext.
Data
Switch

Host
Interf.

Host
Interf.

Address
Generation
Unit

DMA
Controller

Switch &
Bit manip.

DATA
ALU

Program controller
OnCE
Debug
Contr.

Clock
Gen.
M3 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
Address Generation Unit (AGU) are:

■ Address Register Files

■ Offset Register Files

■ Modifier Register Files

■ Temporary Address Registers

■ Modulo Arithmetic Units

■ Address Output Multiplexers

29.3. DSP 96002 software architecture

The programmer can view the DSP 96002 architecture as 3 execution units
operating in parallel. The 3 execution units are the

■ Data ALU

■ Address Generation Unit

■ Program Controller

The DSP 96002 instruction set has been designed to allow flexible control of
these parallel processing resources. Many instructions allow the program-
mer to keep each unit busy, thus enhancing program execution speed. The
programming model is shown in FIGURE 17 and FIGURE 18.

The ten Data ALU registers, D0-D9, are 96-bits wide and may be treated as
30 independent 32-bit registers or as ten 96-bit floating point registers. Each
96-bit register is divided into 3 sub-registers: high, middle and low.

The eight address registers, R0-R7, are 32-bits wide and may contain
addresses or general purpose data. The 32-bit address in a selected
address register is used in the calculation of the effective address of an oper-
and.

The eight offset registers, N0-N7, are 32-bits wide and may contain offset
values used to increment and decrement the corresponding address regis-
ters in address register update calculations or they may be used for general
purpose storage.

The eight modifier registers, M0-M7, are 32-bits wide and may contain val-
ues which specify address arithmetic types used in address register update
calculations (i.e., linear, reverse carry, and modulo) or they may be used for
general purpose storage. When specifying modulo arithmetic, a modifier reg-
ister will also specify the modulo value to be used.

The Status Register is a 32-bit register consisting of an 8-bit Mode register
(MR), an 8-bit IEEE Exception register (IER), an 8-bit Exception register
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 3

Virtuoso on the Motorola 96K DSP
(ER) and an 8-bit Condition Code register (CCR). Special attention is given
here to the Interrupt Mask bits, I1 and I0, in the Mode register (MR). These
bits reflect the current priority level of the processor and indicate the interrupt
priority level (IPL) needed for an interrupt source to interrupt the processor.
The current priority level of the processor may be changed under software
control. The interrupt mask bits are set during processor reset.

FIGURE 17 DSP96002 Programming Model - Program Controller

The Loop Counter (LC) is a 32-bit special purpose register used to specify
the number of times a hardware program loop is to be repeated. The Loop
Address Register (LA) is a 32-bit register that indicates the location of the
last instruction word in a hardware program loop.

The System Stack is a separate internal memory which stores the PC and
SR for subroutine calls and long interrupts. The stack will also store the LC
and LA registers in addition to the PC and SR registers for program looping.
The System Stack memory is 64 bits wide and 15 locations deep. The Stack
Pointer (SP) is a 32-bit register that indicates the location of the top of the
system stack and the status of the stack (underflow, empty, full, and overflow
conditions).

FIGURE 18 DSP 96002 Programming Model - Data ALU and Address Generation
Unit

PC

LA LC

MR IER ER CCR OMR

SP

*

*

31

31 31

31

31 31

31

31

0

0

0

0

0

0

0

05

771523

1

15

SYSTEM STACK
(SS)
M3 - 4 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
FIGURE 19 Interrupt Mask bits I1 and I0

The SR format is shown hereunder.

Bit Nr. Code Meaning

DATA ALU

D9.M D9.LD9.H
D8.M D8.LD8.H
D7.M D7.LD7.H
D6.M D6.LD6.H
D5.M D5.LD5.H
D4.M D4.LD4.H
D3.M D3.LD3.H
D2.M D2.LD2.H
D1.M D1.LD1.H
D0.M D0.LD9.H

95 0

031031031

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

ADDRESS GENERATION UNIT

031

N7
N6
N5
N4
N3
N2
N1
N0

031

M7
M6
M5
M4
M3
M2
M1
M0

031

R7
R6
R5
R4
R3
R2
R1
R0

I1 I0 Exceptions permitted Exceptions masked

0 0
0 1
1 0

1 1

IPL 0,1,2,3
IPL 1,2,3

IPL 2,3

IPL 3

None
IPL 0

IPL 0,1

IPL 0,1,2
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 5

Virtuoso on the Motorola 96K DSP
31 LF Loop Flag

30 * Reserved

29 I1 Interrupt Mask

28 I0 Interrupt Mask

27 FZ Flush to Zero

26 MP Multiply

25 * Reserved

24 * Reserved

23 * Reserved

22 R1 Rounding Mode

21 R0 Rounding Mode

20 SIOP IEEE Invalid Operation

19 SOVF IEEE Overflow

18 SUNF IEEE Underflow

17 SDZ IEEE Divide-by Zero

16 SINX IEEE Inexact

15 UN CC Unordered Condition

14 NAN Not-A-Number

13 S NAN Signaling NaN

12 OP ERR Operand Error

11 OVF Overflow

10 UNF Underflow

9 DZ Divide-by Zero

8 INX Inexact

7 A Accept

6 R Reject

5 LR Local Reject

4 I Infinity

3 N Negative

2 Z Zero

1 V Overflow

0 C Carry

Bit 0-7: CCR Bit 8-15: ER

Bit 16-23: IER Bit 24-31: MR
M3 - 6 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
29.3.1. DSP 96002 addressing modes

The DSP96002 instruction set contains a full set of operand addressing
modes. All address calculations are performed in the Address Generation
Unit to minimize execution time and loop overhead.

Address register indirect modes require an offset and a modifier register for
use in address calculations. These registers are implied by the address reg-
ister specified in an effective address in the instruction word. Each offset reg-
ister Nn and each modifier register Mn is assigned to an address register Rn
having the same register number n.

The addressing modes are grouped into three categories:

■ Register Direct

■ Address Register Indirect

■ PC Relative and Special

The Register Direct addressing modes are:

■ Data or Control Register Direct

■ Address Register Direct

The Address Register Indirect modes are:

■ No Update : (Rn)

■ Postincrement by 1 : (Rn) +

■ Postdecrement by 1 : (Rn) -

■ Postincrement by Offset Nn : (Rn) + Nn

■ Postdecrement by Offset Nn : (Rn) - Nn

■ Indexed by Offset Nn : (Rn + Nn)

■ Predecrement by 1 : - (Rn)

■ Long Displacement : (Rn+Label)

The PC Relative modes are:

■ Long Displacement PC Relative

■ Short Displacement PC Relative

■ Address Register PC Relative

Special Addressing modes are:

■ Immediate Data

■ Immediate Short Data

■ Absolute Address
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 7

Virtuoso on the Motorola 96K DSP
■ Absolute Short Address

■ Short Jump Address

■ I/O Short Address

■ Implicit Reference

The DSP96002 Address Generation Unit supports linear, modulo and bit-
reversed address arithmetic for all address register indirect modes. Address
modifiers determine the type of arithmetic used to update addresses.
Address modifiers allow the creation of data structures in memory for FIFOs
(queues), delay lines, circular buffers, stacks and bit-reversed FFT buffers.
Each address register Rn has its own modifier register Mn associated with it.

Following modifier classes are supported by the DSP96002:

■ Linear Modifier

■ Reverse Carry Modifier

■ Modulo Modifier

■ Multiple Wrap-Around Modulo Modifier

29.3.2. I/O memory and special registers

Internal I/O peripherals occupy the top 128 locations in X memory space.
External I/O peripherals occupy the top 128 locations in Y memory space.

Register IPR in the X DATA memory space is used to program the Interrupt
Priority for the DMA channels, the Host interfaces and the external interrupts
IRQA, IRQB and IRQC. IPR is located on address X:$FFFFFFFF.

Register PSR is the Port Select Register, and is located on address
X:$FFFFFFFC. Every memory space (X, Y and P) is divided into 8 equal
portions of each 0.5 gigawords in length. PSR is used to map each of those
portions onto the two ports A and B.

29.3.3. Expansion ports control

The DSP 96002 has two external expansion ports (Port A and Port B). Each
port has a bus control register (BCRA and BCRB) where memory wait states
may be specified. BCRA and BCRB are located on addresses
X:$FFFFFFFE and X:$FFFFFFFD respectively.

29.3.4. Exceptions

Exceptions and interrupts are prioritized: a higher priority interrupt can sus-
pend the execution of the interrupt service routine of a lower priority inter-
M3 - 8 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
rupt. The priority level of an interrupt can be programmed to be at level 0, 1,
2 or to be disabled. Level 3 has the highest priority level and is unmaskable.
This level is used by the RESET interrupt and by several exceptions, like
Stack Error, Illegal Instruction and (F)TRAPcc. Each interrupt or exception
starts at its own vector address. Following is a list of all interrupts and their
starting address:

Starting Address Interrupt Source

$FFFFFFFE Hardware RESET

$00000000 Hardware RESET

$00000002 Stack Error

$00000004 Illegal Instruction

$00000006 (F)TRAPcc

$00000008 IRQA

$0000000A IRQB

$0000000C IRQC

$0000000E Reserved

$00000010 DMA Channel 1

$00000012 DMA Channel 2

$00000014 Reserved:

$0000001A Reserved

$0000001C Host Interrupts:

$0000003E Host Interrupts

$00000040 Reserved

$000000FE Reserved

$00000100 User Interrupt Vector

$000001FE User Interrupt Vector

During an interrupt instruction fetch, instruction words are fetched from the
interrupt starting address and interrupt starting address +1 locations. While
these two interrupt instructions are being fetched, the Program Counter is
inhibited from being updated and so, the interrupt instructions are just
inserted in the normal instruction stream.

Two types of interrupt routines may be used: fast and long. The fast routine
consists of only the two automatically inserted interrupt instruction words. A
jump to subroutine within a fast interrupt routine forms a long interrupt. A
long interrupt routine is terminated with an RTI instruction to restore the PC
and SR from the System Stack and return to normal program execution.
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 9

Virtuoso on the Motorola 96K DSP
29.4. Relevant documentation

1. “DSP96002 IEEE Floating-Point Dual-Port Processor User’s Manual”,
Motorola Inc., 1989

2. “Intertools Toolkit User’s Manual 96002 Release 1.1 for the PC”, Inter-
metrics Inc., 1991, Document Version 3.7, C Compiler / Assembler
Version 1.1

29.5. C calling conventions and use of registers

This section contains following topics:

■ Storage Allocation

■ Segmentation Model

■ Register Usage

■ Subroutine Linkage

■ Stack Layout

29.5.1. Storage Allocation

The basic C data types are implemented as follows:

char 32 bits, unsigned

short 32 bits, signed

int 32 bits, signed

unsigned 32 bits, unsigned

long 32 bits, signed

float 32 bits

double 64 bits in L memory

pointer (address) 32 bits (absolute address)

29.5.2. Segmentation model

User variables are allocated storage in one of the following places:

1. The run time stack.

2. The D3, D4, D5, D6, R1, R2, R3 and R5 registers.

3. The global data area (idata_y, ildata_L, udata_Y and uldata_L seg-
ments) referenced using absolute addressing.

4. Separate segments.
M3 - 10 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
29.5.3. Register usage

The compiler reserves the following machine registers for particular uses:

Register Use

D0 Integer and float return values, first parameter value

D1 Second parameter value

D3.l-D6.l Integer and character register variables

D3.m-D6.m

D3.h-D6.h

D3-D6 Floating point register variables

R1-R3 and R5 Pointer register variables

R6 Frame pointer register (FP)

R7 Memory stack pointer (MSP)

29.5.4. Subroutine linkage

Preserved registers

Every procedure is responsible for preserving the following registers:D3, D4,
D5, D6, R1, R2, R3, R5, R6 and R7. This rule also applies to any assembly
language routines called from compiled code.

Register Return Values

The compiler expects function return values in registers under the following
circumstances:

■ Pointer values are returned in D0.

■ All non-structure variables are returned in D0.

Parameter Passing

The first two parameters are passed in D0 and D1 and the remaining param-
eters are pushed on the stack unless the called routine accepts a variable
number of arguments. In this case, the variable length portion of the parame-
ter list is always pushed on the stack. Other parameters are pushed as one
word.

Double parameters are pushed as one word in L memory. If the first parame-
ter is a structure, all parameters get pushed on the stack. If the first parame-
ter is not a structure but the second one is, the first parameter will be passed
in D0 and the remaining parameters will be pushed.
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 11

Virtuoso on the Motorola 96K DSP
Calling Sequence

The generated code for a procedure call has the following form:

1. Determine if the function return value will be returned in a register. If
not, allocate space for a function return on the stack.

2. Load the first two arguments into registers D0 and D1.

3. Push the remaining arguments onto the stack. The arguments are
pushed as words in reverse order, i.e., the last argument is pushed
first.

4. If a function return temporary was allocated, push its address.

5. Call the function.

6. Pop off any stack arguments.

7. If a function return temporary was allocated, deallocate it after it is
used.

Procedure Prologue and Epilogue

No prologue and epilogue code is generated for leaf routines that have no
local variables. A leaf routine is one which makes no procedure calls.

For routines which have local variables packed in registers, a move instruc-
tion will be generated to save the register upon entry and restore it before
exiting.

For all non-leaf routines, a move must be emitted to save SSH on the stack.
When local variables exist that couldn’t be packed in registers, code must be
emitted to save and restore the frame pointer (R6) and the stack pointer
(R7).

Example of a leaf procedure with all locals packed to registers:

- Prologue:

move <reg>,y:(R7)+ ; 1 move for each preserved

; register word

- Epilogue:

move (R7)- ; 2 moves for first preserved

; register

move y:(R7),<reg> ; note, however, that if there

; are any other registers to be

; restored, the decrement of R7

; may be coalesced onto the
M3 - 12 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
; previous move

Example of a leaf procedure with stack labels:

- Prologue:

move #n,N7 ; n is the size of the new frame

move R6,x:(R7) ; save FP in X side of stack

move R7,R6 ; set up new FP from SP

move (R7)+N7 ; update SP to restore space for

; the new frame

move <reg>,y:(R7)+ ; 1 move for each preserved

; register to be saved

- Epilogue:

move (R7)- ; moves to restore preserved

move y:(R7),<reg> ; registers

move R6,R7 ; restore old stack pointer

move x:(R6),R6 ; restore old frame pointer

Example of a non-leaf procedure with stack labels:

This is the same as leaf prologue and epilogue with 2 extra moves to save
and restore the SSH.

Extra prologue instruction:

movec SSH,y:(R7)+N7

Extra epilogue instruction:

move y:(R6),SSH

29.5.5. Stack layout

Interfacing C and Assembly allows the user to utilize the benefits of both lan-
guages in programming tasks. When interfacing C and Assembly, it is essen-
tial that Assembly language, that is called from C, must match the compiler’s
conventions. Although not strictly required, it is recommended that all
assembly language routines used the standard stack usage conventions, so
that these routines can be called from within C code or vice versa.

Here is an example of a C program calling an assembly language routine:

extern int asmsub ();

main () {
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 13

Virtuoso on the Motorola 96K DSP
int i, arg1, arg2, arg3;

i = asmsub (arg1, arg2, arg3);

...

}

The assembly language routine is declared as an ordinary external C rou-
tine. According to the compiler’s naming conventions, the C code will contain
a call to a global symbol named Fasmsub. That is, the compiler prepends an
upper case letter F to each C procedure name. Therefore the assembly lan-
guage must define a global symbol of this name, that is:

XDEF Fasmsub

Fasmsub:

< entry code (prologue) >

< body of routine >

< exit code (epilogue) >

Before the call the C compiler processes the parameters according to C con-
ventions. In particular, the first two arguments are placed in registers D0 and
D1, and the remaining argument is placed on the stack.

After the entry code (or prologue) in the assembly routine is executed, the
stack configuration is as shown below:

FIGURE 20 Stack usage

Y memory

Parameter n
.
.
.

Parameter 3
Return Address

Local Variables

Register saves

- lower addresses -
X memory

Parameter n
.
.
.

Parameter 3
old Frame Pointer

Local Variables

Register saves

(negative offsets from the
 Frame Pointer)

<- Frame Pointer ->
(positive offsets from the
 Frame Pointer)

<- Memory Stack Pointer ->

- higher addresses -
M3 - 14 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
29.6. Interrupt Service Routines (ISR)

The two ISR levels that are normally supported by Virtuoso (ISR0 and ISR1)
are not present in the version for the DSP96002 processor, since the
DSP96002 supports multiple interrupt levels on its own. For more details on
the different interrupts supported by the DSP96002, see section 29.3.4. of
this manual, or, even more in detail, the DSP96002 User’s Guide from Motor-
ola.

29.6.1. ISR conventions

When using self-written ISRs in conjunction with the Virtuoso kernel, there
are certain conventions to follow:

■ Registers that must be preserved in an ISR.

■ Interrupts that must be disabled at certain sections in the ISR code.

Saving or preserving registers

There are two sorts of ISRs that can be written:

1. ISRs that stand on their own and do not make use of the kernel to give
signals

2. ISRs giving signals to the kernel

In both cases, the Stack Pointer (R7) must first be incremented, prior to sav-
ing any register at the start of an ISR. This is because a critical section exists
in the epilogue code of a procedure:

move (R7)-

move y:(R7),<reg>

This instruction sequence restores a previously saved register. If an interrupt
occurs in between these two instructions, the Stack Pointer points to the
address where the value of the preserved register is written and the first
move in the ISR to save a register will overwrite that value, if no prior incre-
ment of R7 is done. The same goes for the preservation of SSH.

Keeping this potential danger in mind, the following prologue code must be
used for an ISR of the first class (no kernel interaction):

move (R7)+ ; prior increment of the SP

move <reg>,y:(R7)+ ; repeat this instruction for

; every register that must be

; saved

At the end of the ISR, right before the RTI instruction, following epilogue
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 15

Virtuoso on the Motorola 96K DSP
code must be used:

move (R7)-

move y:(R7)-,<reg> ; repeat this instruction for

; every register that is saved

; in the prologue code of the

; ISR

Note, that this epilogue code is not critical anymore, provided the prologue of
all ISRs start with an increment of the Stack Pointer (R7).

Which registers have to be preserved by an ISR depends on the class of ISR
an on which registers are used in the ISR. If the ISR stands on its own (no
signal is made to the kernel), only those registers must be preserved that are
used by the ISR. In this case, the prologue and epilogue code just described
are to be used. In the case the ISR gives a signal to the kernel, all registers
that are used by the ISR must be preserved, except the registers D0.L, D1.L
and R0: these registers must always be saved at the start of a signalling ISR,
regardless if they are used by the ISR or not, because the kernel is relying
on the fact that they are saved. The kernel expects in register D0.L the event
signal number, which can range from 0 to 63 inclusive. So, for a signalling
ISR, next conventions must be followed:

1. First increment the Stack Pointer R7.

2. Save registers D0.L, D1.L and R0 in this sequence.

3. Save all other registers used by the ISR.

4. Do whatever has to be done (body of ISR).

5. Restore all registers except R0, D1.L and D0.L. Note, however, that
the last register restore may NOT contain a decrement of the Stack
Pointer, because this decrement would be one too much.

6. Load register D0.L with the event signal number (value 0 - 63).

7. Jump to label Fkernel_sign_entry , to give the signal.

An example is given for each class of ISR.

Example 1 : a non-signalling ISR uses registers D2.L, D4.L, R0 and R1.

move (R7)+ ; prior increment of R7

move D2.L,y:(R7)+ ; save D2.L

move D4.L,y:(R7)+ ; save D4.L

move R0,y:(R7)+ ; save R0

move R1,y:(R7)+ ; save R1

<body of ISR>

move (R7)- ; post-decrements are faster

move y:(R7)-,R1 ; restore R1
M3 - 16 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
move y:(R7)-,R0 ; restore R0

move y:(R7)-,D4.L ; restore D4.L

move y:(R7)-,D2.L ; restore D2.L

rti ; finito

Example 2 : a signalling ISR using R4 and M4 as extra registers.

move (R7)+ ; prior increment of R7

move D0.L,y:(R7)+ ; save D0.L

move D1.L,y:(R7)+ ; save D1.L

move R0,y:(R7)+ ; save R0

move R4,y:(R7)+ ; save R4

move M4,y:(R7)+ ; save M4

<body of ISR>

move (R7)- ; post-decrements are faster

move y:(R7)-,M4 ; restore M4

move y:(R7),R4 ; restore R4 - NO DECREMENT!

move #SIGNUM,D0.L ; load D0.L with event signal

; number

jmp Fkernel_sign_entry ; signal the kernel

If a C procedure is called from an ISR, all registers that are not preserved
across a procedure call (see paragraph 29.5.4. Subroutine Linkage for a list
of preserved registers), have to be saved. However, for a signalling ISR, it is
not advised to make a subroutine jump to a C function from within the ISR as
this would introduce needless overhead of context saving. The kernel, when
jumped to by label Fkernel_sign_entry , will perform a context save for
all non-preserved registers. In this case, it is advised to make a task that
waits on an event, with kernel service KS_EventW(n) , and that calls this C
function after it is waked up by a signal to event number n.

Interrupt disabling times.

For the release of Virtuoso for the DSP96002 processor, it is not needed to
disable interrupts in the code of an ISR. Because it is advised to disable
interrupts in a period as short as possible, no interrupt disabling should be
done in an ISR.

There are, however, certain sections in the kernel code where interrupts
must be disabled, because these sections are critical and may not be inter-
rupted. The longest period in the kernel code that interrupts are disabled is:

52 + 29*wp + 7*wy clock cycles
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 17

Virtuoso on the Motorola 96K DSP
whereby wp and wy are the memory wait states for external program and Y-
data memory respectively. Taking a clock frequency of 33 MHz and zero wait
state external memory into account, the longest interrupt disabling time in
the kernel is 52 clock cycles, or 1.58 microseconds.
M3 - 18 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
29.7. Alphabetical list of ISR related services

Fkernel_sign_entry

/* for entering the kernel from within an ISR */

/* single processor version only */

KS_EventW()

/* for waiting on an interrupt at the task level */

KS_EnableISR()

/* for installing an ISR */

KS_DisableISR()

/* for removing an ISR */
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 19

Virtuoso on the Motorola 96K DSP
29.8.1. Fkernel_sign_entry

• Synopsis Label jumped to when entering the kernel from within an ISR

• Brief

This service gives a signal to the kernel with an event code numbered
between 0 and 63 inclusive. A task can wait on the occurrence of such a sig-
nal by using kernel service KS_EventW(n) .

• Example

• See also KS_EventW

• Special Notes The kernel signalling service assumes that certain conventions are followed
by the ISR:

1. Stack Pointer R7 must be incremented at the very start of the ISR

2. Registers D0.L, D1.L and R0 have to be saved at the start of the ISR,
after the prior increment of R7, with the sequence as indicated (see
also previous paragraph)

3. Prior to jumping to the entry Fkernel_sign_entry , register D0.L
must be loaded with the event number (between 0 and 63 inclusive)

4. A JMP instruction must be used to jump to the entry
Fkernel_sign_entry , not a JSR instruction. The System Stack of
the processor will be managed by the kernel, so that, when returning
from interrupt, the correct program address will be loaded in the Pro-
gram Counter

This kernel service is only callable from an ISR written in assembly when
used with the single processor version (with no nanokernel).
M3 - 20 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
29.9.2. KS_DisableISR

• BRIEF Disables to ISR to be triggered by interrupt

• SYNOPSYS

void KS_DisableISR (int IRQ);

• DESCRIPTION . . .

This C-callable service disables an ISR by writing an ILLEGAL instruction at
the appropriate place in the interrupt vector table. Also, for the following inter-
rupts, the corresponding bits in the IPR register of the processor will be
changed accordingly:

■ IRQA

■ IRQB

■ IRQC

■ DMA Channel 1

■ DMA Channel 2

■ Host A Command

■ Host B Command

Other interrupts can also be disabled by this service, but only in the sense
that the JSR instruction at the corresponding place in the interrupt vector
table will be overwritten by an ILLEGAL instruction.

• RETURN VALUE . . NONE

• EXAMPLE

KS_DisableISR (9);

• See also

KS_EnableISR

• Special notes
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 21

Virtuoso on the Motorola 96K DSP
29.10.3. KS_EnableISR

• BRIEF Enables an ISR to be triggered by an interrupt

• SYNOPSYS

void KS_EnableISR (int IRQ,

void (*ISR)(void),

int PrioLevel,

int Mode);

• DESCRIPTION . . . This C-callable kernel service installs an ISR by writing a JSR instruction at
the appropriate place in the interrupt vector table and setting the IPR register
of the processor with the correct bit-values for the actual interrupt. This ser-
vice may be used to install following interrupts, together with their priority
level and interrupt mode (if appropriate):

■ IRQA

■ IRQB

■ IRQC

■ DMA Channel 1

■ DMA Channel 2

■ Host A Command

■ Host B Command

Other interrupts can also be installed by this service, but for them the priority
level and interrupt mode is not applicable and the arguments PrioLevel and
Mode are not used.

• RETURN VALUE . . NONE

• EXAMPLE

extern void ISRDMACh1(void);

KS_EnableISR (9, ISRDMACh1, 2, 0);

29.11. The Nanokernel

No description, since the Nanokernel is not yet completed for the DSP96002
release of Virtuoso.
M3 - 22 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
29.12.1. KS_EventW

• Brief Waits on event associated with ISR

• Synopsis

KS_EventW(int IRQ)

• Description. This C-callable kernel service can be used by a an application task to wait
for a signal, given by an ISR. It forms a pair with kernel service
Fkernel_sign_entry.

• Example.

• See also Fkernel_sign_entry

• Special Notes
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 23

Virtuoso on the Motorola 96K DSP
29.13. Developing ISR routines

When developing Interrupt Service Routines, the ISR conventions, described
in paragraph 29.6.1., have to be followed.

The best place to install and enable an ISR, is in procedure main() , where
predefined drivers, like the driver for the timer interrupt, are installed and
enabled.

It is possible that additional initialization of registers and/or peripheral I/O
has to be done. The best way to do this, is writing a C-callable procedure,
that does the necessary additional initializations, and call this procedure
after the call to KS_EnableISR() . An example of this method is the installa-
tion of the timer ISR in procedure main() :

#include “iface.h”

extern void timer0_irqh (void);

extern void timer0_init (void);

...

int main (void)

{

...

KS_EnableISR (4, timer0_irqh, IPLEVEL2, IPMNEDGE);

timer0_init();

...

}

29.14. The nanokernel on the 96002

Section in preparation.

29.15. Predefined drivers

Two devices drivers are already added to this release of the Virtuoso kernel.
They are:

■ the timer device driver

■ the host interface device driver

The timer device driver is needed for time-out features of some kernel ser-
vices and for kernel timer services. The host interface device driver is written
to be able to communicate between the host server program and the
DSP96002 target board.
M3 - 24 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
29.15.1. The timer device driver

The timer driver is already installed and enabled in procedure main() of the
examples that accompany the release of the Virtuoso kernel. If the timer ISR
is installed and enabled, the application programmer can read out the timer
in high and in low resolution.

In low resolution, the number of kernel ticks are returned. As this value is a
32 bit wraparound value, it is more interesting to calculate the difference
between two values read out consecutively. However, to facilitate this, kernel
service KS_Elapse() is written for this purpose.

In high resolution, the number of timer counts are returned. However, if no
timer device is present on the DSP96002 application board, the timer inter-
rupts will be generated by the host server program and there is no possibility
of reading out the timer counter in high resolution. In this case the high reso-
lution timer value will be equal to the low resolution value.

The two procedures to read out the timer value are:

■ KS_LowTimer ()

■ KS_HighTimer ()

See the Alphabetical List of Virtuoso kernel services earlier in this manual
for a full description of these kernel services.

The timer device driver reserves event signal number 4 for its use.

29.15.2. The host interface device driver

The host interface driver is installed by calling procedure init_server() .
In the examples that accompany the release of the Virtuoso kernel, the
installation of the host interface is done in procedure main() .

The host interface driver can be used on two levels. The lowest level needs
only one kernel resource, HOSTRES, which secures the use of the low level
host interface. This kernel resource must always be locked by the task that
wants to make use of the host interface, and unlocked if this task has fin-
ished using the host interface. A list of low level procedures are at the dis-
posal of the application programmer to do simple character-oriented I/O:

■ server_putch()

■ server_pollkey()

■ server_terminate()

■ server_pollesc()
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 25

Virtuoso on the Motorola 96K DSP
These procedures will do the locking and unlocking of HOSTRES, so that
HOSTRES is transparent to the application programmer, using the low level
host interface.

Also installed in the examples is an easy-to-use character-oriented I/O inter-
face, based on two tasks, conidrv and conodrv , two queues, CONIQ and
CONOQ, two resources, HOSTRES and CONRES, and a procedure called
printl() . This higher level interface driver makes use of the low level inter-
face procedures.

It is possible to use an even lower level of the host interface. Doing this, the
application programmer can build other host interfaces that do more than
character-oriented I/O. The minimum that is needed to make use of the low-
est level host interface, is the kernel resource HOSTRES, to secure the use
of the interface, and the procedure, named call_server() . Note, how-
ever, that HOSTRES is not needed if only one task makes use of the lowest
level host interface and if the Task Level Debugger is not present. It is not the
intention of this manual to lay out the internals of the host interface and the
communication protocol between the host server program and the target
board(s). Please contact Eonic Systems if more information is wanted on
this topic.

For more details on the different levels of the host interface, see “Host server
low level functions” and “Simple terminal oriented I/O” in the chapter of
“Runtime libraries”.

The host interface device driver reserves event signal number 6 for its own
use.

29.16. Task Level Timings

Following is a list of task level timings of some of the kernel services pro-
vided by Virtuoso. These timings are the result of timing measurement on a
DSP96002 board with a clock speed of 33MHz and zero wait state program-
and data-memory.

All timings are in microseconds. The C compiler used for the DSP96002
environment, is the Intertools C Compiler v.1.1 from Intermetrics.

Minimum Kernel call

Nop (1) 9

Message transfer

Send/Receive with wait

Header only (2) 59

16 bytes (2) 62
M3 - 26 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
128 bytes (2) 68

1024 bytes (2) 123

Queue operations

Enqueue 1 byte (1) 17

Dequeue 1 byte (1) 17

Enqueue 4 bytes (1) 18

Dequeue 4 bytes (1) 18

Enqueue/Dequeue (with wait) (2) 56

Semaphore operations

Signal (1) 12

Signal/Wait (2) 46

Signal/WaitTimeout (2) 56

Signal/WaitMany (2) 64

Signal/WaitManyTimeout (2) 73

Resources

Lock or Unlock (1) 12

Note :

One byte is one 32-bit word on the DSP96002.

(1): involves no context switch

(2): involves two context switches. Timing is round-
trip time.

29.17. Application development hints.

The easiest way to start is to copy and modify one of the supplied examples.
Some of the necessary files have fixed names, so each application should
be put in a separate directory.

The following files will be needed for each application:

SYSDEF:

The VIRTUOSO system definition file. The SYSGEN utility will read this file
and generate NODE1.C and NODE1.H.

MAIN1.C:

This contains some more configuration options, and the C ‘main’ function.
Copy from one of the examples.

A number of configuration options are defined in this file, so they can be
changed without requiring recompilation of all sources (this would be neces-
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 27

Virtuoso on the Motorola 96K DSP
sary if SYSDEF is modified).

CLCKFREQ : this should be defined to be the clock frequency of the hard-
ware timer used to generate the TICKS time.

TIICKTIME : the TICK period in microseconds.

TIICKUNIT:the TICK period in CLCKFREQ units.

TICKFREQ:the TICK frequency in Hertz.

The number of available timers, command packets and multiple wait packets
are also defined in this file. How much you need of each depends on your
application, but the following guidelines may be followed:

Timers are used to implement time-outs (at most one per task), and can also
be allocated by a task.

A command packet will be needed for each timer allocated by a task. Com-
mand packets used for calling a kernel service are created on the caller’s
stack and should not be predefined.

A multiple wait packet will be needed for each semaphore in a KS_WaitM
service call (for as long as it remains waiting).

MAIN1.C also defines some variables used by the console driver tasks, the
clock system, the debugger task, and the graphics system. These are
included automatically if you use the standard names for the required kernel
objects.

PMAIN.ASM:

start-up assembly code

MAKEFILE:

The makefiles supplied in the EXAMPLES directory can easily be modified
for your application. They also show how to organize things so you can
optionally include the task level debugger. If you want to include the task
level debugger, put the corresponding definitions out of comment:

VIRTLIB = $(LIBS)\virtosd.lib

DD = -dDEBUG

DDD = -P “DEBUG”

and put the other definition in comment:

VIRTLIB = $(LIBS)\virtos.lib
M3 - 28 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 96K DSP

PA
R

T
 3
whereby # is the comment sign. Then remake the application, just by doing:

MAKE <Enter>.

LINKFILE:

List of the object versions of all source files to be linked along.

LOCAT.CMD:

Locator command file. Change the memory reservations in this file, accord-
ing to your memory needs. If the locator pass of the linker finds it has not
enough Y: memory to place the data sections, it starts locating sections in
the YR: memory space from address 7ff on (or right after the reservation for
the ROM space - #400 to #7ff). This very annoying locator problem results in
data sections being placed in nonexisting memory. The only known way to
circumvent this problem is to change the other reservations so that every
section can be placed in existing memory spaces.

YOUR SOURCE FILES :

In the examples, this is just test.c

After you have done make-ing your application, you should run the batch file
MAKESYM.BAT, contained in the BIN subdirectory, from the directory where
your application is built. This batch file makes the necessary symbol files
.ADR and .SYM, starting from the .MAP file. The server program will not
start your application if you omit this step.
Copyright 1996 Eonic Systems Virtuoso Binding Manual M3 - 29

Virtuoso on the Motorola 96K DSP
M3 - 30 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 68HC11.

PA
R

T
 3
30. Virtuoso on the Motorola 68HC11.

Chapter in preparation
Copyright 1996 Eonic Systems Virtuoso Binding Manual M4 - 1

Virtuoso on the Motorola 68HC11.
M4 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Motorola 68HC16 microcontroller.

PA
R

T
 3
31. Virtuoso on the Motorola 68HC16 microcontroller.

Chapter in preparation
Copyright 1996 Eonic Systems Virtuoso Binding Manual M5 - 1

Virtuoso on the Motorola 68HC16 microcontroller.
M5 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Mips R3000 systems.

PA
R

T
 3
32. Virtuoso on the Mips R3000 systems.

Chapter in preparation
Copyright 1996 Eonic Systems Virtuoso Binding Manual R1 - 1

Virtuoso on the Mips R3000 systems.
R1 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T2xx, T4xx, T8xx.

PA
R

T
 3
33. Virtuoso on the INMOS T2xx, T4xx, T8xx.

33.1. Introduction

This section contains many parts taken from the manual of one of the first
real-time kernels Eonic Systems developed. This provided for the first time
preemptive scheduling on the INMOS transputer. For this reason, this chap-
ter was more or less kept in its original form and contains the unusual part
that explains why one needs a real-time kernel on the transputer. At that
time, this was almost a religious issue. Many low level features you need to
know on traditional processors are not needed on the transputer because
they are solved in hardware, but the drawback is that one only has FIFO-
based scheduling.

33.2. The transputer : an example component for distributed
processing

When INMOS launched the transputer on the market, the goal of it was
manyfold but primarily to provide cost-effective parallel processing. A sec-
ond, but certainly as important aspect was the software methodology behind
the transputer. People at INMOS were aware of the immense problems
posed by large sequential programs as they are used for more and more
complex systems, especially as for reasons of performance more than one
processor is needed. Therefore, the software concept was developed first
and the transputer afterwards.

The idea was simple : in order to manage complexity, one has to divide the
whole up in smaller manageable components with well defined interfaces.
They derived this idea from the so called CSP computing paradigm. CSP
stands for Communicating Sequential Processes and describes programs as
consisting of a number of processes that interact exclusively through com-
munication. The point is that a lot of the problems programmers need to
solve by writing a computer program reflect this paradigm very well. Exam-
ples range from a dataprocessing application (pipelined transformation of
generated data) to finite element programs where each subspace can be
calculated upon independently while interchanging intermediate values with
the other subspaces. In process control, the parallel nature is even more
apparent. For example, a data-sampler reads some data in and passes it on
for further processing, while still another process processes the results for
acting upon the controlled system.

The use of processes is not new for people who are familiar with operating
systems or real-time applications. Their use is the only way to manage the
Copyright 1996 Eonic Systems Virtuoso Binding Manual T8 - 1

Virtuoso on the INMOS T2xx, T4xx, T8xx.
complexity. The main reason normal application programmers were not
“allowed” to use this mechanism is that most processors have no provisions
to support processes and data-communication. The only way out is a soft-
ware based implementation, resulting in important performance losses. In
addition, no languages were available that supported real parallel constructs
in the language itself.

INMOS changed all that by designing in a first step a simple parallel lan-
guage, called occam, and in a second step by building the transputer as a
virtual occam machine. What this means in hardware terms is that the trans-
puter is a classic 32bit processor (10 Mips at 20 MHz) with some novel fea-
tures :

1. Instructions for process creation and termination;

2. Instructions for data-communication;

3. A microcoded FIFO-scheduler;

4. Two priority levels supported in microcode;

Four high speed communication links also enable to spread very easily pro-
cesses over different processors for more performance.

In a nutshell, the transputer is a fast single chip computer with networking
and parallel processing capabilities, requiring very simple interface logic to
the outside world. Using the transputer is using computers as components.

33.3. Process control with transputers

The transputer as a virtual occam machine exhibits very well the CSP model
on which its design was based. This CSP model is often found in the archi-
tecture of process control applications. As a result, the transputer has intrin-
sic features making it an attractive building block for process control
applications, especially if these are distributed.

If no hard real-time constraints are to be satisfied, the overhead due to the
use of communicating processes is relatively low as the transputer provides
support in microcode for process scheduling and for communication. If how-
ever hard real-time constraints are to be satisfied, the designer is faced with
a major difficulty, since the microcoded scheduler is a FIFO scheduler.
Whereas this scheme was chosen for simplicity and performance in terms of
throughput, a FIFO scheduler cannot guarantee the scheduling of a process
within a known time interval. With the FIFO scheduler, a process can be
worst case delayed for a time-interval equal to :

(2*N - 2)*TS + TSCH. TS being the timeslice (1 ms), N the number of pro-
cesses in the low priority queue and TSCH being the time interval to the next
descheduling point. [2],[3],[9]. The net result is that the transputer FIFO
T8 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T2xx, T4xx, T8xx.

PA
R

T
 3
scheduler enables fast throughput but results in unpredictable interrupt ser-
vice response intervals. This problem has been identified by various authors.
See [3],[4],[10]. In addition, even if we were able to start a task upon
demand, we are still faced with the problem of timely execution. Indeed, once
a critical (higher priority) task has started, we need to be sure that it will run
until completion. In figure 2 this problem is made explicit by graphically rep-
resenting two instances of the process queue.

Table 1 represents typical lower and upper limits of the interrupt service
response interval (ISRI) in microseconds when 5 respectively 10 processes
are in the FIFO queue. For TSCH, it was assumed that a normal distribution
was valid with an upper bound of 100 microseconds. These figures are to be
compared with the results obtained when using Virtuoso. A second problem
concerns the timely termination of a interrupt service request. Even if the
programmer were able to start up a critical process within a known (and suf-
ficiently short) interval, the time slicing mechanism will intervene to allow the
other processes to continue.

Without Virtuoso With Virtuoso

(FIFO-queue) (multiple priority queue)

ISRI limits lower/upper lower/ upper

5 processes 1 / 8100 20 / 140

in queue

10 processes 1 / 18100 20 / 140

in queue

direct context switch : 6

TABLE 1 Typical ISRI limit values (in microseconds)

33.4. A solution based on process priority

To be correct, the transputer has features that enable it to meet hard real-
time constraints, provided one is willing to give up most of the benefits of the
CSP model. The transputer knows two priority levels, each with its own pro-
cess queue. Whereas a low priority process will be descheduled by a higher
priority process at the next instruction, a high priority process cannot be
interrupted. A feasible design methodology is then to let a high priority pro-
cess accept the interrupt (“interrupt handling”) and forward the actual han-
dling to a low priority process for “interrupt servicing”. However to achieve
Copyright 1996 Eonic Systems Virtuoso Binding Manual T8 - 3

Virtuoso on the INMOS T2xx, T4xx, T8xx.
timely execution, the resulting program will consist of a short high priority
process with at most one low priority process. The unpredictable timing of
the multi-tasking program is avoided by implementing a single-task program.
Hence, the designer is back at sequential programming and processor
cycles will be wasted. More complex programming techniques are possible,
such as the artificially shortening of the hardware fixed timeslice using a
cyclic timer. The net result is once again more complex programs. The worst
side-effect however is that the problem is solved in an application dependent
manner. In addition, this results in a high overhead. See [12], [13] for an
example.

A general solution consists in using multiple priorities. This was demon-
strated by various authors. See [4], [5], [6], [7]. The use of multiple priorities
and the use of an appropriate scheduling algorithm can guarantee, under the
right conditions, the timely execution of all processes. As such, the determi-
nation of the priority of each process is application dependent. On a single
processor a rate monotonic scheduler where the priorities are inversely
related to the periodicity of the processes, will result in a feasible scheduling
order if the workload is under 70 %. An algorithm that better deals with ape-
riodic events is the earliest deadline. This can guarantee the scheduling of
all processes even if the workload is close to 100 %. [7]. In general, the prob-
lem in known to be NP-complete, especially if all factors such as aperiodic
events and common resources are taken into account. In these cases, a pri-
ority inheritance mechanism is advisable [5],[11]. Fortunately, the general
case is often an exception so that most applications can be implemented
using simpler algorithms.

33.5. Modifying the FIFO scheduler on the transputer

For the processor dependent low level routines, written in assembler, two
major obstacles had to be overcome. The first was to find the algorithm that
converted the FIFO scheduling mechanism into a preemptive scheduling
mechanism. The second was how to implement the kernel in such a way that
user tasks could safely interact with the special I/O hardware of the trans-
puter. Both problems were solved in a satisfactory way using occam and C
with a minor amount of assembler inserts. In addition we were happily sur-
prised to find that the implementation on the transputer is one of the fastest
available when compared with other processors running at the same speed.

In order to understand the importance of this key issue, it is worthwhile to
have a closer look at the FIFO transputer scheduler mechanism.

On the transputer, the compiler will generate for each user defined process a
“startp” instruction. In order to start, a process needs to be initialized with its
Workspace Pointer (Wptr) and its Instruction pointer (Iptr). Whenever a new
process is started (normally from within the first started process), a FIFO
T8 - 4 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T2xx, T4xx, T8xx.

PA
R

T
 3
process queue, implemented as a linked list, is build up. This is achieved by
adding the new process at the back of the queue.

Once started, a process can be descheduled for the following reasons :

1. Because it has to wait on a communication with another process via an
external link, via a soft channel in memory, or via the event pin

2. Because it has to wait on a timer event

3. Because of an interrupt from a high priority process which is ready to exe-
cute

4. Because its timeslice has expired and a descheduling point has been
reached

In both queues all processes are executed in the order they were when
placed in the queue. Parallel processing on a single transputer is then emu-
lated through the time-slicing mechanism. Note that not all processes are
present in the queue at all times. Only those processes that are ready to exe-
cute will be.

Hence to completely know the state of an executable process on the trans-
puter, one needs to know the following elements [2]:

1. Wptr

2. Iptr

3. Areg, Breg, Creg

4. Ereg and the process status, if appropriate

5. FAreg, FBreg, FCreg

6. the place in the queue

Fortunately, these elements can be known by exploiting the fact that when a
low priority process is interrupted by a high priority process, its elements are
saved in the lower memory locations. Once these elements are known, it is
possible to rearrange the linked list of the process queue such that, using a
look-up table, the highest priority process is always in front of the queue.
Care has to be taken that the linked list structure is not broken at any
moment, especially as the transputer may start to manipulate the queue,
independently of the currently executing instruction [8].

The final result is the capability of preemptive scheduling, meaning that the
process with the highest priority, when in a runable state is always scheduled
first and will be executing until it no longer can.

33.6. The Virtuoso implementation

In practice, Virtuoso is programmed as a set of high priority processes. Note
that the kernel is the only process allowed to run at the transputer high prior-
Copyright 1996 Eonic Systems Virtuoso Binding Manual T8 - 5

Virtuoso on the INMOS T2xx, T4xx, T8xx.
ity and it is the only process allowed to talk directly to the external hardware,
such as the links and the event pin. This means that all drivers and compo-
nent processes of the microkernel are in fact Virtuoso nanokernel pro-
cesses. The difference with the implementation on other classical
processors is that the nanokernel is implemented by hardware and that only
the channel primitives are available for communication and synchronization.

The application tasks run at transputer low priority, with a user defined
(lower) priority.

The Virtuoso kernel will start up the tasks in order as defined by the user.
Afterwards, the normal preemptive scheduling algorithm takes over.

Within each task the user can still use the normal FIFO scheduling mecha-
nism as long as his actions are restricted to the boundaries of the task. So
multiple subtasks can be run at the same priority with hardware support from
the transputer.

When an application task needs to access the external hardware, the kernel
will execute this as a service, using a small driver process. Memory mapped
peripherals can be accessed directly by the application tasks.

Some of the communication links are not available to the application tasks.
For example links that are purely used for building the network. The routing
layer of the Virtuoso kernel uses these links to transfer data as well as
remote service calls from one processor to another.

33.7. Requirements for embedded real-time systems

Various real-time kernels are on the market that provide preemptive schedul-
ing services. In addition the application tasks need to be able to communi-
cate in a synchronous and asynchronous way. They need to be able to
synchronize and the kernel needs to be able to allocate memory, protect
common resources and provide timer related services. In an era where pro-
cessing technology is changing at a very rapid pace, a portable kernel, writ-
ten in a high-level language, is essential. The result was RTXC/MP, the first
true real-time kernel for the transputer. The second generation of this devel-
opment was called virtuoso, because it is more than a real-time kernel, it is a
programming system. It is the basis of a series of real-time dedicated prod-
ucts.

Embedded real-time systems have a number of characteristics that enable
the designer to relax some of the conditions to be met :

1. Often the application will be static

2. Input and controlling actions are known in great detail, including their dura-
T8 - 6 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T2xx, T4xx, T8xx.

PA
R

T
 3
tion as well as their timing

3. Most of the code will be cyclic

4. The application is often stand-alone

As such, most of the program will be spent in a periodic loop, while aperiodic
events (such as alarm conditions) are relatively rare. however when the latter
occur, the designer needs to be sure that these will be handled immediately
and without being interrupted.

Hence, such a control program will consist of a number of tasks, each with its
own static priority. The designer will assign highest priority to the critical ape-
riodic tasks, while the periodic tasks receive an application dependent prior-
ity, eventually started by a master timer process. Note that by using a
preemptive task scheduler, tasks that require no attention, will not consume
any CPU time, resulting in an overall efficient use of processor resources.

These requirements are illustrated in Figure 2 that shows how a critical task
will start immediately and stay running until termination when using a pre-
emptive scheduler.

33.8. Small grain versus coarse grain parallelism

In essence there is no difference between a user task communicating with
the outside world or with a process having a different priority. Both will result
in a process being removed from the current process queue, hence breaking
the linked list continuity as known by the kernel. Therefore, all tasks are
implemented as low priority processes while these tasks can communicate
among each other via the kernel running at high priority.

For this reason, Virtuoso contains some transputer specific calls, such as
KS_linkinW() and KS_LinkoutW() . On the other hand, if within a user
defined task of a given priority several processes that communicate with
each other are started, the transputer hardware still takes care of the linked
list continuity. The final result is that at each priority level, the normal inter-
process communication facilities are available. This is primarily of interest as
it simplifies the software design. The kernel itself is not resident but forms an
integral part of the application program that is linked with the task code. As
such a system designed with Virtuoso exhibits a two-layer structure. At the
highest level, each task has an unique priority, while at the lowest level the
basic hardware supported transputer mechanisms are still available. Figure
3 gives a schematic overview of Virtuoso running on a single transputer.
Note that during program development, there is little difference for the pro-
grammer as to writing normal applications on the transputer. This is achieved
by way of a system generation utility that generates automatically all kernel
tables based on the information provided by the programmer.
Copyright 1996 Eonic Systems Virtuoso Binding Manual T8 - 7

Virtuoso on the INMOS T2xx, T4xx, T8xx.
33.9. Additional benefits from Virtuoso on the transputer

As was already indicated, the user can still use the normal transputer mech-
anisms within each priority level. We exercise complete control over the
transputer from within the Virtuoso kernel. As such, we are able to provide
programming services usually not available for the transputer programmer.
First of all, we are able to monitor each scheduling event, so that the pro-
grammer knows exactly what has happened during the execution of his pro-
gram. In addition, we are now in a position to manipulate the execution of the
tasks at the instruction level and at the task level. This enables us to single
step through the user tasks while providing a direct link with the original
source code. At the time of writing, the latter development under the form of
a single step debugger was not finished yet.

Nevertheless, the capability of preemptive scheduling provides a lot of real
benefits for the transputer programmer. First of all, the FIFO queue latency is
eliminated. This means that communication processes now can start as
soon as a message arrives on the links. The net result is more throughput for
short as well as for long messages. Secondly, the error flag is now task spe-
cific and the kernel will detect it. This simply means more security for the
application. Thirdly, if a link is now disconnected or too noisy so that the nor-
mal synchronization protocol will result in a hanging communication, the ker-
nel can detect this as well. While most transputer would then simply display
all symptoms of classical deadlock, the kernel is able to continue to execute
all other tasks and eventually reset and reinitiate the communication.

33.10. Device drivers with Virtuoso on the INMOS transputer

Although on the transputer, every communication acts as an interrupt by acti-
vating a process, the transputer itself does not know the traditional interrupt
mechanism. Nevertheless, all interrupts can be handled, be it with a different
hardware and software methodology. In general you will see that interfacing
to peripheral devices can be simpler than on most traditional processors.

Only remember that the links, timers, and the event pin must be accessed
through the kernel services if Virtuoso is running on the processor. The
driver itself can be written at the Virtuoso microkernel task level using the
kernel provided interfacing routines or the user can write a driver as a high
priority process. Be aware that the driver is scheduled in FIFO order and
must be kept short in order not to monopolize the CPU too long.

Below, we outline various schemes :

a. Use a separate transputer

(For example the 16 bit T225) to interface to the peripheral device and com-
T8 - 8 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T2xx, T4xx, T8xx.

PA
R

T
 3
municate with it through a link.

This solution is fast and simple. It assumes that you will run only one single I/
O process on the separate processor and that you pass along the com-
mands or data as soon as possible to minimize the communication delay. In
addition as the T225 has a demultiplexed bus interfacing with it through
memory is very simple. Some people have build a prototype A/D card with it
in a single day and using only a minimum of components.

b. Interface the peripheral device through a link adaptor

A link adaptor converts between a serial link protocol and a parallel 8 bit sys-
tem. This enables to read and to write to the peripheral device as a normal
channel. Various transputer modules (such as DACs, ADCs and graphics
TRAMs) that exploit this scheme are available from transputer board ven-
dors.

c. Memory map the device

This means that you set up a dataregister at a certain memory location (pref-
erably outside the normal memory space) and that you read from it or write
to it as a normal memory location. In order to activate the handling process
and to avoid expensive polling loops, you will probably need an ‘interrupt’,
provided for example by the event pin. The equivalent of vectorising inter-
rupts can be achieved by using an additional memory mapped register that
holds some “status” or “address” related to the peripheral device. You can
safely read or write to memory mapped registers from within your Virtuoso
tasks.

33.11. Performance results

33.11.1. Single processor version. (v.3.0.)

The native transputer interrupt response can be fast (typically 1 to 3 micro-
seconds) [9], but in reality this is the lower limit as to the actual scheduling of
a specific process, one has to take account of the queue “latency”, often
resulting in tens of milliseconds of reaction times. In the occam version and
in the C version, we obtained basic switching times of 6 microseconds on a
transputer running at 25 MHz and using the internal RAM. This means that
the actual penalty is less than 5 microseconds, while we gain the certainty
that the process will be scheduled within a known interval. The actual Virtu-
oso call takes longer since the kernel has to verify all pending messages,
timers and the priority. Typically, a kernel service will take a minimum of 20
microseconds on a 30 MHz transputer using 3 cycle external memory and in
absence of floating point code. When the FPU is in use, the times obtained
Copyright 1996 Eonic Systems Virtuoso Binding Manual T8 - 9

Virtuoso on the INMOS T2xx, T4xx, T8xx.
are increased with 16 microseconds (64 bit reals). Below, a summarizing
table taken from the provided demo program, gives performance details for
the version 3.0. of Virtuoso. These compare favorably with the figures
obtained on other processors. Note that the times for the buffered communi-
cation calls (enqueue, dequeue) are essentially set-up times, which compare
very favorably with other systems, available for the transputer. All times were
measured in the kernel service originating task, which entails sometimes an
extra context switch. Timings were made with the Logical Systems compiler
and with the monitor disabled.

Minimum Virtuoso kernel call 13 us

Average allocate or deallocate 17 us

enqueue 1 byte 22 us

dequeue 1 byte 29 us

enqueue 4 bytes 23 us

dequeue 4 bytes 23 us

signal semaphore 17 us

average lock and unlock of a resource 17 us

enqueue 1 byte to waiting higher priority task

+ dequeue in waiting task 83 us

send message to higher priority task

+ wait for acknowledgment 83 us

send message to lower priority task

+ wait for acknowledgment 85 us

signal/wait and wait/signal handshake

between two tasks 71 us

TABLE 2 Table 2.: Performance Figures for Virtuoso v.3.0. calls (at 30 MHz)

33.11.2. The distributed version

The benchmarks indicate that the interrupt response times are only slightly
increased by the fact that a service is located on a remote processor, even if
the call is forwarded using an intermediate node. As such each intermediate
node adds less than 50 microseconds to the interrupt response times. How-
ever different dynamic effects can have an importance, such as :

1. - communication latency

2. - time-varying workloads

3. - lack of buffers to store suspended calls

In the design of the distributed version, which mainly consisted in adding an
embedded router to the kernel, special care was taking to minimize above
mentioned effects. For this reason all kernel resources (tasks, semaphores,
T8 - 10 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T2xx, T4xx, T8xx.

PA
R

T
 3
queues, etc) are defined system wide. Hence in the whole system, each of
these resources is uniquely identified. For example, there is only one task
with the highest priority, although on each node in the network, the task with
the highest local priority will be scheduled first by the kernel. The main
advantage of this system lies in the fact that, by making the datastructures
more dynamic, it has become possible to handle the messages in order of
priority of the task that generated it. Hence the communication latency is
reduced to a minimum. Below, the key performance figures for Virtuoso are
summarized :

1. hop-delay : 50 us

2. task-to-task throughput rate : 1.5 MB/s (one link) to 4.6 MB/s (3 links)

3. message set-up time : < 25 us

4. synchronization delay for two tasks in a cluster of 1000 processors : around
600 us.

The main conclusion is that small clusters of transputers using Virtuoso, act
as a single processing unit but with increased performance as compared to
the same program running on a single transputer. In addition, it is now feasi-
ble to have several high priority tasks running at the same time. This is
important if several high priority tasks are needed and when timely termina-
tion is a design criterium.

33.12. Using the compiler libraries with Virtuoso

The use of a real-time kernel brings you many advantages, compared to the
standard operating environment. However, to support real-time operations,
the user must refrain from using certain runtime functions. In general it can
be stated that all operations which influence the scheduling should be per-
formed through the provided kernel functions. If the user performs actions
such as for example link I/O or timer_wait(), the proper working of the kernel
can not be guaranteed. It is the users responsibility to assure that the rules
below are followed.

33.13. Specific Parallel C routines not to be used by the tasks

The programmer must not use any 3L call that can activate the hardware
scheduler from outside the task’s boundary. In particular, this means any call
that directly accesses the links, the event pin or the timer. Also, starting up
threads at high priority is not permitted. Use the equivalent Virtuoso calls.

a. Timer functions which can cause a descheduling operation:

timer_delay();

timer_wait();

alt_wait();
Copyright 1996 Eonic Systems Virtuoso Binding Manual T8 - 11

Virtuoso on the INMOS T2xx, T4xx, T8xx.
alt_wait_vec();

The other functions timer_now() and timer_after() can be freely used.

Equivalent Virtuoso functions are provided.

b. Thread functions interfering with Virtuoso

thread_create();

/* Uses par_malloc which is not protected under
Virtuoso*/

thread_deschedule();

/* Uses the timer functions */

Within each Virtuoso task it is however perfectly save to start up new threads
using thread_start().

The other thread functions, thread_priority(), thread_restart(), thread_stop()
are allowed.

Equivalent Virtuoso functions are provided.

c. Channel I/O to threads which are not generated from the same master
task.

For external links use KS_LinkinW() and KS_LinkoutW(). For reading the
event pin use KS_EventW(). For intertask communication you can use mes-
sage calls.

d. Semaphore functions within threads which are not generated from the
same master task

For intertask synchronization you can use the Virtuoso semaphore functions.

All standard file I/O routines like printf(), scanf(), etc. In some cases this will
work, but the use of it is not advised. Use the supplied I/O library functions
instead.

33.14. Specific routines of the INMOS C Toolset not to be used by the
tasks.

a. Timer functions which can cause a descheduling operation.

ProcTimerAlt ()

ProcTimerAltList ()

ProcAfter ()
T8 - 12 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T2xx, T4xx, T8xx.

PA
R

T
 3
ProcWait ()

Equivalent Virtuoso functions are provided.

b. Thread functions interfering with Virtuoso.

ProcReschedule ()

ProcRunHigh ()

ProcPriPar ()

ProcAlloc ()

ProcAllocClean ()

Within each Virtuoso task it is however perfectly save to start up new threads
although no tasks should be started up in the transputer high priority queue.

c. Channel I/O

to threads which are not generated from the same master task.

ChanAlloc ()

ChanOutTimeFail ()

ChanInTimeFail ()

For external links use KS_LinkinW() and KS_LinkoutW().

For reading the event pin use KS_EventW(). For intertask communication
you can use message calls.

d. Semaphore functions within threads which are not generated from the
same master task.

For intertask synchronization you can use the Virtuoso semaphore functions.
Note the differences between the types.

SemAlloc ()

e. Memory allocation.

malloc ()

calloc ()

realloc ()

free ()

e. All standard file I/O routines like printf(), scanf(), etc. They don’t work as
they require that the server program that comes with the compiler is used.
Use the supplied I/O library functions.
Copyright 1996 Eonic Systems Virtuoso Binding Manual T8 - 13

Virtuoso on the INMOS T2xx, T4xx, T8xx.
33.15. Specific routines of the Logical Systems compiler not to be used
by the tasks.

a. LSC Timer functions which can cause a descheduling operation.

ProcTimerAlt ()

ProcTimerAltList ()

ProcAfter ()

ProcWait ()

Equivalent Virtuoso functions are provided.

b. Thread functions interfering with Virtuoso.

ProcReschedule ()

ProcRunHigh ()

ProcPriPar ()

PForkHigh ()

ProcAlloc ()

ProcFree ()

SetHiPriQ ()

SetLoPriQ ()

ProcToHigh()

ProcToLow()

Within each Virtuoso task it is however perfectly save to start up new threads
although no tasks should be started up in the transputer high priority queue.

c. LSC channel I/OChannel I/O to threads which are not generated from the
same master task.

ChanOutTimeFail ()

ChanInTimeFail ()

ChanAlloc ()

ChannelFree ()

For external links use KS_LinkinW() and KS_LinkoutW(). For reading the
event pin use KS_EventW(). For intertask communication you can use mes-
sage calls.

malloc ()

calloc ()

realloc ()

free ()
T8 - 14 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T2xx, T4xx, T8xx.

PA
R

T
 3
d. LSC semaphore functions.

Semaphore functions within threads which are not generated from the same
master task.

SemAlloc ()

SemFree ()

For intertask synchronization you can use the Virtuoso semaphore functions.
Note the differences between the types.

e. All standard file I/O routines like printf(), scanf(), etc. Use the supplied I/O
library functions instead.
Copyright 1996 Eonic Systems Virtuoso Binding Manual T8 - 15

Virtuoso on the INMOS T2xx, T4xx, T8xx.
T8 - 16 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the INMOS T9000 transputer

PA
R

T
 3
34. Virtuoso on the INMOS T9000 transputer

In the mean time the T9000, the transputer of the second generation is com-
ing to the market (announced end of 1992). It features a tenfold increase in
performance in computing and in communication performance as compared
to the T800 series. For process control and fault tolerant applications the
T9000 has a lot of options. In addition there is now a protected mode and
T9000 local mode as well, including traphandlers.

Besides these interesting features the T9000 has 16 Kb on chip RAM, still
has two priority FIFO based queues and has an on chip Virtual Channel Pro-
cessor. The latter enables, in conjunction with a link switch very fast commu-
nication between any processor of the network.

As you can see, a lot of the features of Virtuoso will even be faster on the
T9000 while we will be able to implement the critical part of the kernel with
more on chip support. The main thing is that the programmers interface to
Virtuoso will be almost identical, delivering on the promise of portability
across different technologies.
Copyright 1996 Eonic Systems Virtuoso Binding Manual T9 - 1

Virtuoso on the INMOS T9000 transputer
T9 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C30 & C31

PA
R

T
 3
35. Virtuoso on the Texas Instruments TMS320C30 & C31

35.1. Virtuoso versions on TMS320C30/C31

At this moment, we support the microkernel level and one ISR level on the
TMS320C30/C31. A port of the nanokernel as well as of the two level ISRs is
undertaken and wil be released shortly.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI1 - 1

Virtuoso on the Texas Instruments TMS320C30 & C31
35.2. TMS320C30 Chip Architecture

Local
Memory
Port

Global
Memory
Port

Cache
(64 words)

RAM Block0
(1K Bytes)

RAM Block1
(1K Bytes)

ROM Block
(Reserved)

2 Program and Data Buses
3 Program and Data Address Buses
1 DMA Address Bus
1 DMA Data Bus

(8 MBByte)(8 MByte)

2 32bit CPU busses
2 40bit register busses

Multiplier 32bit Barrel

Shifter

ALU

40bit registers (R0-R11)

Aux Registers (AR0-7)

Other Registers (14)

DMA Controller

ALU

1 Peripheral Data Bus

1 Peripheral Address Bus

2 Serial ports

Ctl Registers

Timer0

Timer1

Port Control

Address & Disp Registers

Reg IN

Reg OUT
TI1 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C30 & C31

PA
R

T
 3
35.3. TMS320C30 Software Architecture

The TMS320C30 has a register based CPU architecture. The CPU contains
following components :

■ A Floating Point & Integer multiplier;

■ ALU for floating point, integer and logical operators;

■ 32bit barrel shifter

■ Internal buses (CPU1/CPU2 and REG1/REG2)

■ Auxiliary Register Arithmetic Units (ARAU)

■ CPU register file

We will only list the CPU registers as these are the most important ones for
the applications programmer.

Asm Symbol Assigned Function Name

R0 .. R7 Extended Precision Registers

AR0 .. AR7 Auxiliary Registers

DP Data Page Register

IR0 Index Register 0

IR1 Index Register 1

BK Block Size Register

SP System Stack Pointer

ST Status Register

DIE DMA Coprocessor Interrup Enable Register

IIE Internal Interrupt Enable Register

IIF IIOF Flag Register

RS Repeat Address Register

RE Repeat End Address Register

RC Repeat Counter

PC Program Counter

IVTP Interrupt Vector Table Pointerr

TVTP Trap Vector Table Pointer
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI1 - 3

Virtuoso on the Texas Instruments TMS320C30 & C31
35.3.1. Addressing Modes

The TMS320C40 addressing modes can be partioned into 4 groups. In each
group two or more addressing types are provided.

1. General Addressing modes

■ Register Operand is register

■ Immediate Operand is 16bit immediate value

■ Direct Operand is 24bit address

■ Indirect Addres is in 24bit Auxilairy Register

2. Three Operand Addressing Mode

■ Register (see above)r

■ Indirect (see above)

■ Immediate (see above)

3. Parallel Addressing Modes

■ Register Operand is extended precision register

■ Indirect (see above)

4. Long-immediate adressing mode

■Operand is 24-bit immediate value

5. Branch Adddressing Modes

■ Register (see above)

■ PC-relative A signed 16bit displacement is added to the PC

35.4. Relevant documentation

It is highly recommended to read carefully the following documentation avail-
able from Texas Instruments. In this manual we only outline the main

TMS320C3x User’s Guide (Texas Instruments, 1991 Edition)

TMS320 Floating Point DSP Assembly Language Tools (Texas Instruments,
1991)

TMS320 Floating Point DSP Optimizing C Compiler (Texas Instruments,
1991

35.5. Application development hints

The easiest way to start is to copy and modify one of the supplied examples.
Some of the necessary files have fixed names, so each application should
be put in a separate directory.

The following files will be needed for each application :
TI1 - 4 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C30 & C31

PA
R

T
 3
SYSDEF : the Virtuoso system definition file. The SYSGEN utility will read
this file and generate NODE1.C and NODE1.H.

MAIN1.C : this contains some more configuration options, and the ‘main’
function.

A number of configuration options are defined in this file, so they can be
changed without requiring recompilation of all sources (this would be neces-
sary if SYSDEF is modified).

CLCKFREQ : this should be defined to be the clock frequency of the hard-
ware timer used to generate the TICKS time. For a C30, this is 1/4 of the
CPU clock frequency.

TICKTIME : the TICK period in microseconds.

TICKUNIT : the TICK period in CLCKFREQ units.

TICKFREQ : the TICK frequency.

The number of available timers, command packets and multiple wait packets
are also defined in this file. How much you need of each depends on your
application, but the following guidelines may be followed :

- Timers are used to implement timeouts (at most one per task), and can
also be allocated by a task.

- A command packet will be needed for each timer allocated by a task.

Command packets used for calling a kernel service are allocated on the
caller’s stack and should not be predefined.

 - A multiple wait packet will be needed for each semaphore in a
KS_WaitMservice call (for as long as it remains waiting).

 MAIN1.C also defines some variables used by the console driver tasks, the
debugger task, and the graphics system. These are included automatically if
you use the standard names for the required kernel objects. Finally, the main
function is the obvious place to install ISR’s. This should be done AFTER the
kernel_init () call. Note that at this point interrupts are already enabled, so
you should disable them while initializing the hardware used by your ISR’s
(use TRAP 0 in assembly, or the DISABLE macro in C code).
KS_EnableISR0 disables interrupts while it is executing, and enables them
(unconditionally) on return.

BOOTLSI.OBJ : can be copied from the LIB directory. It replaces the boot-
module in the compiler library. The processor memory bus configuration is
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI1 - 5

Virtuoso on the Texas Instruments TMS320C30 & C31
also defined in this file.

MAKEFILE : the makefiles supplied in the EXAMPLES directory can easily
be modified for your application. They also show how to organize things so
you can optionally include the task level debugger.

*.CMD FILES : copy from the examples and modify as necessary. In the
examples, LSIC30.CMD defines the memory layout and section placement,
and TEST.CMD contains linker commands and object filenames.

YOUR SOURCE FILES : in the examples, this is just test.c

The pc host program

Type LSIHOST <ENTER> to obtain a help screen.

The default port address can be changed if you recompile the host program.
The server requires Borland BGI screen drivers if the graphics output func-
tions are used. The EGA-VGA driver is required to run some of the example
programs, and is supplied on this disk(s). A path to the directory holding the
BGI files should be defined as an environment variable

‘BGIPATH’ (e.g. SET BGIPATH=C:\VIRTUOSO\C30).

5. Recompiling the PC programs

All PC executables have been developed using BORLAND C and TASM, but
they should be quite portable.

6. Using the serial links as a host interface

It is possible to use the TI EVM board to connect a stand-alone C30 board to
the PC. A simple program running on the EVM passes the host protocol
packets from the target board to the EVMHOST running on the PC and back.
Serial port 0 on the target board should be connected to serial port 1 on the
EVM. The clock for the serial link is generated on the target board. The cable
should be wired as shown below :

EVM TARGET

 R Data ---<-------------- X Data

 R Sync ---<-------------- X Sync

 X Data -------->--------- R Data

 X Sync -------->--------- R Sync

 R Clock |----<----------| X CLock (out)

 X Clock | not connected | R Clock (in)
TI1 - 6 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C30 & C31

PA
R

T
 3
To use this host interface, link with SERH.LIB instead of LSIH.LIB (modify
the TEST.CMD file and re-MAKE). The interface program on the EVM should
be running before the application is booted on the target board. It is not nec-
essary to reload it each time, but a reset will be required.

You can test the interface using the LSI board and only one PC as follows :

1. remake one of the examples, as described above

2. Type EVML to boot the EVM

Type ERUN TEST to reset the EVM, boot the LSI board and restart the EVM
server.

35.6. Interrupt handlers and device drivers for Virtuoso on the
TMS320C3x.

35.6.1. Interrupt handling in Virtuoso.

This section describes how interrupts are handled in Virtuoso. It will be of
interest to users who need to write their own interrupt handlers and device
drivers.

Interrupt handling is easily the most processor specific part of any piece of
software. Some of today’s processors are able to accept interrupts at fre-
quencies well into the megahertz range. It is virtually impossible for a soft-
ware kernel to support task swapping at anything approaching this speed.
Therefore, interrupt handlers cannot always be implemented as a task.

The interrupt processing mechanism implemented in Virtuoso is designed to
separate interrupt handling into two distinct parts.

The first part is done entirely in the background, without any support from
the kernel. This would typically be the code required to service the hardware
that generated the interrupt, or to buffer data generated by high frequency

interrupts. The second part is the one that is not related to the hardware, but
to the logic of an application. As an example, special action may be required
when a received message is complete. Virtuoso encourages the application
writer to do this part of interrupt processing at the task level, by providing a
fast and easy to use mechanism to transfer control from an ISR to the kernel,
and indirectly, to a task. If an interrupt occurs at a frequency that can be han-
dled at the task level, then only a very simple ISR (an example is supplied) is
necessary to transfer control to a task.

This approach has a number of important advantages :
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI1 - 7

Virtuoso on the Texas Instruments TMS320C30 & C31
- When the thread of execution of an ISR enters the kernel, it is no longer an
ISR. The interrupt service routine has effectively ended. This is so because
the kernel entry point used by ISR’s is fully reentrant, and processing inside
the kernel is performed with interrupts enabled. In this way, the kernel pro-
vides automatic reentrancy for long-winded ISR’s. This could be difficult to
achieve otherwise.

- In most cases the hardware related processing can be done using very few
instructions, and only a small subset of the processor registers. Therefore,
this type of interrupt handler can be very short, and latency will be minimal.

- Separating the ‘hardware’ and the ‘system’ part makes is possible to opti-
mize each of them individually. Inside the ISR, full use can be made of any
processor specific features. When control moves to the task level, the full
power of the kernel is at the disposal of the user.

In order to understand how control is passed from an ISR to the kernel, we
should have a look at how the kernel operates in the first place.

The kernel maintains a FIFO buffer of ‘things to do’. It reads and handles
entries in this FIFO the one after the other. When the FIFO becomes empty,
the kernel determines which task should run next, and releases the CPU.

Each ‘thing to do’ is represented by a single word. When this word is a small
integer, (typically 64) it is interpreted as an event number. Some events (i.e.
from the TICKS timer, or from the routing layer in an MP system) are handled
internally by the kernel. The others can be waited for by a task, using
KS_EventW. If the FIFO entry is not a small integer, it is assumed to be a
pointer to a command packet. There are three routines that will put a ‘thing to
do’ into the kernel FIFO. These routines are in fact the entry points of the
kernel. The first two can be called as C functions, while the third is just a
label to jump to.

void kernel_task_entry (void *);

This is called when a task requests a kernel service. A command packet is
assembled and the entry point is called with a pointer to the command
packet as the parameter (see IFACE.C for examples). The pointer is put into
the FIFO and control is given to the kernel. This call ‘returns’ when the call-
ing task resumes execution - the task may have been swapped out in
between.

void kernel_call_entry (void *);

This is used to put a new element in the kernel FIFO from within the kernel
itself. This is the opposite of the previous one - it puts the pointer into the
FIFO, assumes the kernel is already running, and returns immediately. It is
TI1 - 8 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C30 & C31

PA
R

T
 3
used by the timer system and the routing layer to put timed or remote com-
mand packets into the FIFO.

kernel_sign_entry;

This is the entry point for an ISR that wants to hand over an interrupt to the
kernel. This is done by branching to this entry point from within the ISR.
When the jump is performed, it is assumed that the ISR return address and a
small (implementation defined) subset of CPU registers are still pushed on
the stack of the interrupted process. One of the saved registers contains an
entry to be put into the kernel FIFO. Since an interrupt may occur at any
time, there are two cases to consider:

- A task was interrupted. This means the ISR has been using the task’s
stack, and has already partially saved its context. In this case the rest of the
task’s context is saved and control is given to the kernel. Note that the regis-
ters pushed onto the task’s stack by the ISR have become part of the task’s
saved context. This means that for all practical purposes, the ISR has ended.
Allowing the ISR to continue when the task is rescheduled would be useless
anyway.

- The kernel itself was interrupted, and the ISR has been using the kernel’s
stack. In the case, the kernel will jump to an ISR exit sequence to restore its
registers, and continue. Again, the ISR has ended.

For the TI C30 and C40 implementations of Virtuoso the following conditions
should be satisfied when an ISR branches to kernel_sign_entry :

- interrupts are disabled

- the return address and the saved ST and R0 registers are still on the stack.

The following sequence would perform a normal interrupt return :

POPF R0

POP R0

POP ST

RETI

with R0 = event number.

As an example, this is the ISR used to maintain the TICKS time. The inter-
rupt is generated by a hardware timer. The ISR updates a local variable
‘hitime’, and then passes an event to the kernel. In the final version, a
delayed branch

should be used of course.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI1 - 9

Virtuoso on the Texas Instruments TMS320C30 & C31
= _timer1_irqh

push ST ; save minimal register set

push R0

pushf R0

ldi @timer1divd, R0 ; hitime += timer1divd

addi @hitime, R0

sti R0, @hitime

ldi TIMER1SIG, R0 ; signal the TIMER1SIG event

b kernel_sign_entry

This is a very simple ISR - it does a minimum of local processing and always
hands over the interrupt the kernel. A more complex example can be found
at the end of the next section.

35.6.2. Parts of a device driver.

To implement a device driver in the Virtuoso environment, in general three
pieces of code will be needed :

(1). An application interface at the task level,

These are the procedures called directly by the application code. In most
cases, these functions should :

1. Protect the device by locking a resource.

2. Issue a number of device commands,

3. For each command, deschedule the caller until the command has been exe-
cuted. This is done by calling KS_EventW ().

4. Unlock the device for other users.

These routines are not needed if the device is used by the kernel only, e.g.
for internal routing.

(2). One or more low-level device control procedures,

These are used to send commands and parameters to the low-level interrupt
handlers in a structured way.

(3). An interrupt handler for each interrupt used by the device.

These are the routines that are called via the hardware interrupt vector table
when an enabled interrupt is raised. There are discussed in the previous
chapter.

As an example, we will describe a simple device driver used to transmit data
TI1 - 10 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C30 & C31

PA
R

T
 3
packets over the C30 serial link. Each packet is an array of 32 bit words. The
lower eight bits of the first word indicate the packet length. We assume that
the hardware has already been initialized.

(1). Task level interface

void sendpacket (int *P)

{

KS_LockW (SERIAL1); /* protect the device from other
users */

serial1_send (P); /* start the transmission */

KS_EventW (6); /* deschedule until packet transmitted */

KS_Unlock (SERIAL1); /* release device to other users */

}

(2). Device control function

This could have been written in C as well, but putting it in the same .ASM file
as the ISR really simplifies the interface and minimizes the number of global
variables.

SP1BASE .set 000808050h ; hardwarebase address

GLBCTL .set 0 ; register offsets

TXPCTL.set 2

RXPCTL.set 3

TIMCTL.set 4

TIMCNT.set 5

TIMPER.set 6

TXDATA.set 8

RXDATA.set 12

TX1INT.set 6 ; kernel signal codes (IE bitnumber)

RX1INT.set 7

.data

port1base .word SP1BASE ; hardware base address

tx_data.word0 ; pointer to tx data buffer

tx_count.word 0 tx word counter

; void serial1_send (void *P)

;

; Set up tx_data and tx_count and send the first word.

; The ISR will be called to handle the rest

.text
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI1 - 11

Virtuoso on the Texas Instruments TMS320C30 & C31
_serial1_send:

ldiSP, AR2 ; get first argument on stack

ldi*-AR2, AR0 ; pointer to packet

ldi*AR0++, AR1 ; get first word, point to next

sti AR0, @tx_data ;save pointer for isr

ldi AR1, R0 ; extract length

and 0FFh, R0

subi 1, R0 ; number of word remaining

sti R0, @tx_count ; save length for isr

ldi @port1base, AR0 ;transmit first word

sti AR1, *+AR0(TXDATA)

rets

(3). Interrupt handler

An interrupt will be generated for each transmitted
word. Send a signal to the kernel if all words have
been transmitted, otherwise send next word and
return from interrupt.

.text

_ser1tx_irqh:

push ST ; save minimal register set

push R0

pushf R0

ldi @tx_count, R0 ; get word count, test if zero

bz tx1_1 ; last word transmitted, signalkernel

subi 1, R0 ; decrement word count

sti R0, @tx_count ; and write it back

push AR0 ; save some more registers

push AR1

ldi @tx_data, AR0 ; pointer to next word

ldi *AR0++, AR1 ; read word, increment pointer

sti AR0, @tx_data ; store updated pointer

ldi @port1base, AR0 ; address of tx port

sti AR1, *+AR0(TXDATA) ; transmit word

pop AR1 ; not done yet, just end ISR
TI1 - 12 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C30 & C31

PA
R

T
 3
pop AR0 ; continue whatever process

popf R0 ; was interrupted

pop R0

pop ST

reti

tx1_1: bd_kernel_sign_entry

; send signal TX1INT tokernel

ldi TX1INT, R0 ; R0, ST and return address

nop ; are still pushed on the stack

nop ; the kernel will clean this up
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI1 - 13

Virtuoso on the Texas Instruments TMS320C30 & C31
TI1 - 14 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C40

PA
R

T
 3
36. Virtuoso on the Texas Instruments TMS320C40

36.1. Brief description of the processor architecture

This section contains a brief description of the TMS320C40 processor archi-
tecture. It is not intended to be a replacement of the Processor’s User Man-
ual, but as a quick look-up for the application programmer. Detailed
information can be found in the “TMS320C40 User’s Guide” from Texas
Instruments.

The TMS320C40 has a Harvard-like architecture (separated program- and
data-addressing capability) with multiple internal buses. The interface to the
outside world is done via two programmable memory ports. Two 4K bytes
internal RAM blocks are available as well as a small cache of 512 bytes.

The C40 has 6 FIFO buffered communication ports, each offering up to 20
MBytes/s and two memory interface ports (100 MB/s), providing a total peak
bandwidth of up to 320 MB/s. As the links are 8 bit parallel, and run at 20
MHz, they provide for a very high bandwidth. The communication ports can
also directly be interfaced to peripheral devices.

Internally there is a six-channel DMA coprocessor that permits to execute
memory operations while the CPU is handling computational tasks.

The CPU is upwards binary compatible with the CPU of the TMS320C30. It
contains a single cycle floating point and integer multiplier and permits the
parallel execution of instructions. Most instructions are single cycle. The
floating point operations operate on 40bit floating point numbers.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 1

Virtuoso on the Texas Instruments TMS320C40
36.1.1. TMS320C40 Chip Architecture

Local
Memory
Port

Global
Memory
Port

Cache
(128 words)

RAM Block0
(4K Bytes)

RAM Block1
(4K Bytes)

ROM Block
(Reserved)

2 Program and Data Buses
3 Program and Data Address Buses
1 DMA Address Bus
1 DMA Data Bus

(2 GByte)(2 GByte)

2 32bit CPU busses
2 40bit register busses

Multiplier 32bit Barrel

Shifter

ALU

40bit registers (R0-R11)

Aux Registers (AR0-7)

Other Registers (14)

DMA Coprocessor

(6 channels)

ALU

1 Peripheral Data Bus

1 Peripheral Address Bus

6 Comports

Ctl Registers

FIFO IN

FIFO OUT PAU

Timer0

Timer1

Port Control

Address & Disp Registers
TI2 - 2 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C40

PA
R

T
 3
36.1.2. TMS320C40 Software Architecture

The TMS320C40 has a register based CPU architecture. The CPU contains
following components :

■ A Floating Point & Integer multiplier;

■ ALU for floating point, integer and logical operators;

■ 32bit barrel shifter

■ Internal buses (CPU1/CPU2 and REG1/REG2)

■ Auxiliary Register Arithmetic Units (ARAU)

■ CPU register file

We will only list the CPU registers as these are the most important ones for
the applications programmer.

Asm Symbol Assigned Function Name

R0..R11 Extended Precision Registers, 40 bits

These registers are used for 40 bit floating point, or for

 32 bit integer operations. They cannot be used as

pointers for indirect addressing.

AR0..AR7 Auxiliary Registers, 32 bits

These registers can be used for integer operations, or

for indirect addressing (pointers)

DP Data Page Register

Provides the upper 16 bits of a direct memory address

IR0, IR1 Index Registers

Used for some of the indirect addressing modes

BK Block Size Register

Used for circular and bit-reversed addressing

SP System Stack Pointer

The C40 uses a full ascending stack, i.e. a push

operation pre-increments the stack pointer

ST Status Register

DIE DMA Coprocessor Interrupt Enable Register

IIE Internal Interrupt Enable Register

IIF IIOF Flag Register
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 3

Virtuoso on the Texas Instruments TMS320C40
RS Repeat Address Register

RE Repeat End Address Register

RC Repeat Counter

Above 3 registers are used by the hardware looping

instructions RPTS and RPTB

PC Program Counter

IVTP Interrupt Vector Table Pointer

TVTP Trap Vector Table Pointer

36.1.3. Addressing Modes

The TMS320C40 has a rich set of addressing modes. The major classes
are:

Register

Direct, using the DP register

Indirect, with many variations

Circular

Bit-reversed

Immediate

PC-relative

Most data processing instructions fall into one of three categories:

2 operands: one of these is always a register

3 operands: two of these are always a register

Parallel

36.1.4. Relevant documentation

It is highly recommended to read carefully the following documentation avail-
able from Texas Instruments. In this manual we only outline the main points.

TMS320C4x User’s Guide (Texas Instruments, 1992 Edition)

TMS320 Floating Point DSP Assembly Language Tools (Texas Instruments,
1991)

TMS320 Floating Point DSP Optimizing C Compiler (Texas Instruments,
1991
TI2 - 4 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C40

PA
R

T
 3
36.2. Programming in C and assembly

This section introduces some implementation defined features of the Texas
Instruments C compiler system. Please refer to the Compiler and Assembly
Tools Manuals for full details.

36.2.1. Data representation

All integer based types (including characters) are represented as 32 bit
words. This has the unusual consequence that sizeof (char) = sizeof (short)
= sizeof (long) = 1.

All floating point types are represented using an internal format with an 8 bit
exponent and a 24 bit mantissa. A floating point value stored in a register
has a 32 bit mantissa, but this will be truncated when stored to memory. The
full 40 bits can be read or written using assembly language, but this requires
two memory words for each value.

All pointer types are represented as a 32 bit memory address. The C40 has
two external memory interfaces and a large number of internal buses, but
they all use a separate address space. As a consequence, every data item in
memory can be referenced by a unique pointer.

36.2.2. Big and Small Models

The compiler supports two memory models. The only difference between
these is in the way static data are accessed.

With the small model the DP (data page pointer register) is only initialized
once. All static data references are made using single instructions, assuming
the value of DP is valid. The means that the .bss section cannot span any
64K address boundaries.

With the big model, the C compiler explicitly loads the correct value in the DP
register whenever a variable is accessed. Assembly language programs
must do the same. In most cases, three cycles will be required to access a
static data object, but the size of .bss is not limited to 64 K.

The Virtuoso system uses the small model for speed. Please note that this
imposes a 64 K word limit on static data only. Data objects accessed via
pointers can be of any size.

36.2.3. Parameter passing conventions

The compiler supports two methods for passing parameters to C subrou-
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 5

Virtuoso on the Texas Instruments TMS320C40
tines.

The standard method in C is to push parameters on the stack in reverse
order. The called function initializes its frame pointer from the stack pointer
value at entry, and finds the arguments at constant offsets from the frame
pointer.

Using the register parameter model (-mr option), the first few (up to six) argu-
ments are passed using a subset of the available registers. The exact
assignment depends on the types of the arguments, and is fully documented
in the Compiler Manual.

Virtuoso uses the register method for optimal performance. Mixing both
models is normally not possible, so all application code must be compiled
using the -mr option.

36.2.4. Memory sections for the C compiler and Virtuoso

The following sections are created by the C compiler:

.text program code and string literals

.cinit initial values, see remark below

.const string literals and switch tables

.data not used, see remark below

.bss global and static variables

.stack system stack (argument passing and local variables)

.sysmem dynamic allocation memory pool

Contrary to normal COFF conventions, the C compiler does not use the
.data section for initialized data. This is placed instead in .bss, and initialized
at load time (ram model) or at run time (rom model) from data tables in the
.cinit section. All assembly language modules in the Virtuoso system use the
same method to allocate static data objects.

In addition to the standard sections listed above, the Virtuoso system cre-
ates some special sections. These are used to enable placement of critical
pieces of code or data in fast internal RAM, to enhance performance. The
Virtuoso special sections are:

nanok_code nanokernel code

nanok_idle process control structure for the low priority process

minik_code microkernel swapper code

minik_stck stack for the microkernel process

minik_args microkernel input channel
TI2 - 6 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Virtuoso on the Texas Instruments TMS320C40

PA
R

T
 3
system_vec interrupt and trap vector table

Of these, nanok_code and minik_stck have the most profound effect on sys-
tem performance. Some of the other special sections may be removed in
future versions.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 7

Programming the nanokernel
37. Programming the nanokernel

37.1. Introduction

The nanokernel provides the lowest level of functionality in the Virtuoso sys-
tem. It is designed to perform extremely fast communication and context
swapping for a number of processes. It also provides the entry points neces-
sary to integrate interrupt handlers with the rest of the system. The price to
pay for speed is that nanokernel processes and interrupt handlers must
observe very strict rules regarding their use of CPU registers and the way
they interact with each other.

From the point of view of the nanokernel, an application program consists of
a collection of three types code modules:

■ a single low priority (PRLO) process

■ any number of high priority (PRHI) processes

■ any number of interrupt handlers

It is important to understand what exactly is meant by a ‘process’. A process
is a thread of execution that has both an identity and a private workspace.
These two properties (which are logically equivalent) make it possible for a
process to be swapped out, and wait for an external event while another pro-
cess is allowed to continue. Interrupt handlers in contrast, do not have a pri-
vate workspace.

The PRHI processes are scheduled in strict FIFO order, and must observe
the special register conventions mentioned above. The PRLO process is
assumed to be a C function (using the compiler register conventions), and
must always be ready to execute - it is in fact the IDLE process of the nanok-
ernel.

All communication inside the nanokernel is performed using channels. Sev-
eral types of channel exist. The simplest type is used for synchronization
only, and corresponds to a counting semaphore. Other types can be used to
transfer data. Given a good understanding of how the nanokernel operates,
a user could add his own channel types.

The Virtuoso microkernel (managing the TASKs), is build as an application
on top of the nanokernel. The main component is a PRHI process that exe-
cutes commands it receives from a channel. When the channel is empty, the
microkernel process finds the next TASK to run, replaces the nanokernel
IDLE process by that TASK and performs the additional register swappings
required for C tasks. So when the nanokernel swaps in its IDLE process, it
TI2 - 8 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Programming the nanokernel

PA
R

T
 3
actually executes one of the microkernel TASKs.

The nanokernel is not ‘aware’ of the manipulations performed by the micro-
kernel. As far as it concerned, there is only one PRLO process, which it exe-
cutes whenever no PRHI process is ready to continue. This makes it
possible to use the nanokernel on its own.

37.2. Internal data structures

The user does not normally need to access the internal data structures used
by the nanokernel. The documentation in this section is provided only for a
better understanding of how the nanokernel operates.

A process is represented by a pointer to a Process Control Structure (PCS).
For PRHI processes, the PCS occupies the first eight words of its stack. A
static PCS is used for the IDLE process. The first word of a PCS is a pointer
to another PCS, or NULL. This is used to build linked lists of processes.
More details of the PCS will be introduced in the section on process man-
agement.

A channel is represented by a pointer to a Channel Data Structure (CDS).
The first word of a CDS is a pointer to the PCS of a process waiting on that
channel, or NULL. Other fields depend on the type of the channel and will be
introduced in the section on nanokernel communications.

The following static variables are used by the nanokernel to keep track of the
state of the system:

NANOK_PRHI :

Pointer to the PCS of the current PRHI process, or NULL if there is
none.

NANOK_HEAD, NANOK_TAIL :

Head and tail pointers for a linked list of PRHI processes that are ready
to run. When a process becomes ready to execute, it is added to the tail
of the list. When the current PRHI process is swapped out, the process
at the head of the list is removed, and becomes the current process. If
the list is empty, the PRLO process is swapped in.

NANOK_PRLO :

Pointer to the PCS of the PRLO process. This is a constant as far as
the nanokernel is concerned. The microkernel modifies this pointer
‘behind the scenes’.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 9

Programming the nanokernel
NANOK_CRIT : the critical level.

This is the number of interrupt handlers running with global interrupts
enabled that have not yet terminated. All process swapping is disabled
while this value is not zero. Since the C40 does not support hardware
interrupt levels, some cooperation is required from interrupt handlers in
order to keep this value up to date.

These five variables, together with the IDLE process PCS, actually represent
al l the global information maintained by the nanokernel (all other static vari-
ables are effectively constants). In other words, the nanokernel only knows
about processes that are ready to execute. It does not maintain a list of all
processes or channels.

Symbolic constants for accessing kernel variables and elements of a PCS
are defined in NANOK.INC.

37.3. Process management.

The nanokernel variables are initialized as follows :

NANOK_PRHI = 0;

NANOK_HEAD = 0;

NANOK_TAIL = &(NANOK_HEAD);

NANOK_PRLO = &(PCS for IDLE process);

NANOK_CRIT = 0;

In other words, when an application is started, the single thread of execution
that exists at that time will be adopted by the nanokernel as its low priority
IDLE process.

In the current version of the nanokernel, all PRHI processes must be created
and started by the PRLO process (it is possible to do this from within another
PRHI process, but no services are provided to support this).

Three steps are required to create a process:

■ create a stack for the process.

■ initialize the PCS.

■ start the process.

The stack can be placed anywhere in memory. It can be a C array of inte-
gers, a memory block allocated by malloc () or (or even KS_Alloc ()), or a
pointer to the start of a named section.
TI2 - 10 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Programming the nanokernel

PA
R

T
 3
The function _ in it_process (s tack, entry, ar4, a r5) is used to initial-
ize the PCS. It writes the following values to the first 8 words of the stack:

0 PR_LINK 0 link pointer

1 PR_SSTP stack + 7 saved stack pointer

2 PR_PAR3 0 saved AR3, not used for PRHI

3 PR_PAR4 ar4 initial / saved value of AR4

4 PR_PAR5 ar5 initial / saved value of AR5

5 PR_BITS 0 flags, not used for PRHI

6 PR_PEND NANOK_TRMP pointer to terminate code

7 PR_PRUN entry pointer to entry point

Calling _start_process (stack) starts the process. As the caller is the PRLO
process, there can be no other PRHI processes and the new process will
start execution immediately. Control returns to the caller when the new pro-
cess terminates or deschedules by waiting on a channel.

The first time a PRHI process is swapped in, it ‘continues’ from its entry
point. The stack pointer will point to the PR_PEND field in the PCS (SP =
stack + 6). A process terminates by ‘returning’ to the address in this field.
The code at NANOK_TRMP invokes the nanokernel swapper to switch to the
next process. To restart a terminated process, repeat the calls to
_init_process () and _start_process ().

When a PRHI process is swapped in, AR3 points to the start of the PCS. A
process can create local variables by incrementing the initial stack pointer by
the number of words required. The first available word is the entry point field,
at AR3 + 7.

37.4. Nanokernel communications

A channel type is defined by a data structure and a number of nanokernel
services that operate on it. Each instance of the data structure is called a
channel. Channels can provide both process synchronization and data com-
munication.

The nanokernel does not itself use or create channels. However, the ser-
vices that operate on channels should be considered part of the nanokernel,
as they may modify the process FIFO or invoke the nanokernel swapper.

All channels have an internal state. What exactly is represented by the state
depends on the type of the channel - typically this will be the occurrence of
an event or the availability of data.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 11

Programming the nanokernel
An operation on a channel can consist of any combination of the following
action types:

Wait :

A channel operation has a waiting action if the calling process can be
descheduled as a result of the call. The process is then said to ‘wait on
the channel’.

Signal :

A channel operation has a signaling action if a waiting process can be
rescheduled as a result of the call. If the current process is the PRLO
process, a process swap will be performed.

Test & modify :

A test & modify action modifies the state of a channel and returns infor-
mation about it, without changing the execution state of any process.

Three channel types are predefined in the current nanokernel implementa-
tion. It is possible to create new channel types if necessary; an example will
be given at the end of this chapter. A full description of the nanokernel ser-
vices for each of these channel types can be found in the alphabetical listing
in the next chapter.

37.4.1. C_CHAN - Counting channel

This is an implementation of a counting semaphore. It is typically used by
interrupt handlers to reschedule a process that was waiting for the interrupt.
The C_CHAN structure has two fields:

0 CH_PROC pointer to the PCS of a waiting process, or NULL

1 CH_NSIG event counter.

Two nanokernel services are available for this channel type:

PRHI_WAIT wait action

PRHI_SIG signal action

37.4.2. L_CHAN - List channel

This type of channel maintains a linked list of memory blocks, using the first
word in each block as a link pointer. The microkernel uses this type to imple-
ment its free lists of command packets, data packets and timers. If used for
data communication, it behaves as a LIFO buffer.
TI2 - 12 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Programming the nanokernel

PA
R

T
 3
The L_CHAN structure has two fields:

0 CH_PROC pointer to the PCS of a waiting process, or NULL

1 CH_LIST pointer to first element of the linked list, or NULL

The nanokernel services that operate on this type are:

PRHI_GETW wait action

PRHI_GET test & modify action

PRHI_PUT signal action

37.4.3. S_CHAN - St ack channel

This type of channel uses a memory block as a data stack. The microkernel
uses a stack channel to input commands from tasks and the network drivers,
and to receive events from interrupt handlers.

The S_CHAN structure has three fields:

0 CH_PROC pointer to the PCS of a waiting process, or NULL

1 CH_BASE pointer to base of the stack

2 CH_NEXT pointer to the next free word on the stack

The nanokernel services that operate on this type are:

PRHI_POPW wait action

PRHI_POP test & modify action

PRHI_PSH signal action

37.5. Register conventions

In order to understand the register conventions adopted by the Virtuoso
nanokernel, the following register sets should be introduced:

CSAVE = R4-R8, AR3-AR7, DP, SP

CFREE = ST, R0-R3, R9-R11, AR0-AR2, IR0, IR1, BK, RC, RE, RS

NSWAP = AR3-AR5, SP

SYSSET = DIE, IIE, IIF, IVTP, TVTP

INTSET = ST, R11, AR0-AR2

The CSAVE and CFREE sets are defined by the procedure calling standard
of the C compiler. CSAVE is the set of registers that are preserved across a
subroutine call - if a function uses any of these, it must restore the initial
value on return. CFREE is the set of registers that are freely available to all
functions - the caller of a subroutine is responsible for preserving them if
necessary. The definition of these two sets largely determine what the micro-
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 13

Programming the nanokernel
kernel is expected to do when swapping tasks. When a task is swapped out
as a result of calling a kernel service (which to the task is just a C function),
only the CSAVE set need be saved. When a task is preempted (which
means that an interrupt handler has woken up the kernel), the CFREE set
must be saved as well. Actually, since most of the microkernel is written in C,
the CFREE set must be saved before the actual service requested by the
interrupt handler is called.

Note : ST is included in the CFREE set because it contains the flags tested
by the conditional instructions (bits 0 - 6). Other bits in ST have system con-
trol functions, and should be treated as part of SYSSET. In particular, for cor-
rect operation of the nanokernel, the SET COND flag (bit 15) must remain
reset at all times.

The SYSSET registers are used for system and peripheral control only. They
are never swapped, and should be regarded as global resources. Only very
low level routines (such as hardware drivers) will ever need to access these
registers.

The INTSET registers are those that must have been pushed on the stack
when an interrupt handler terminates and wakes up the kernel by calling one
of the ENDISR services (this is discussed in more detail in the section on
interrupt handling below). At that point, the nanokernel needs some registers
to work with. It would be a waste of time to pop all registers saved by the
ISR, only to have to push them again when entering the kernel.

The registers in NSWAP are saved and restored by the nanokernel when
swapping processes. For the PRLO process (assumed to be a C function,
using AR3 as its frame pointer) the nanokernel will save and restore AR3 in
the normal way. When a PRHI process is swapped in, AR3 will be set to
point to its process control structure. A PRHI process can use AR3 to access
local variables created in its workspace, and should normally not modify this
register. If it does, the initial value can always be reloaded from
NANOK_PRHI. AR3 must point to the PCS whenever the process calls a
nanokernel service, and when it terminates.

Given these definitions, it is now possible to determine which registers can
be used by a PRHI process, and how it should call C functions if this is
required.

The NSWAP set is always available, but note the special use of AR3.

If a PRHI process is swapped in as the result of a C function call by the
PRLO process, then the CFREE set is available for use by the PRHI pro-
cess. This means that the process can safely call any C function. It should of
course save those registers in CFREE that it wants to preserve across the
TI2 - 14 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Programming the nanokernel

PA
R

T
 3
call.

If a PRHI process is swapped in as the result of an interrupt handler calling
an ENDISR service, then the INTSET registers are available to the PRHI
process. Before calling a C function, the process must save the set CFREE -
INTSET, and it must restore the same registers before it is swapped out (this
is always possible, since a PRHI process is never preempted).

Note that INTSET is a subset of CFREE, so the minimal register set that is
always available is INTSET + NSWAP. Also, NSWAP is a subset of CSAVE.
In fact NSWAP and INTSET have the same meaning to the nanokernel level
that CSAVE and CFREE have to the C level. The two set inclusions men-
tioned above also mean that the nanokernel is already doing part of the job
of swapping microkernel tasks. This is, of course, no coincidence.

37.6. Interrupt handling

In the Virtuoso system model, interrupt handlers are the interface between
asynchronous events and the processes that are waiting for them. To be use-
ful, most interrupt handlers will have to interact with the rest of the system at
some time. Using flags to be ‘polled’ by the foreground process is usually not
an acceptable practice in a real-time system. This method introduces a
‘superloop’ structure into the application, with all its inherent problems.

In a system using the nanokernel, interrupt handlers can communicate with
processes using the same channel operations that are available to pro-
cesses. There are, however, some restrictions.

In contrast to a process, an interrupt service routine does not have a private
workspace - it executes on the stack of whatever process was interrupted.
Even if a processor supports a separate interrupt mode stack (the C40
doesn’t), this will be shared by all interrupt handlers. An ISR of course can
itself be interrupted by another one, so any number of interrupt handlers can
be piled on top of each other on the same stack, owned by the current pro-
cess. This has some important consequences:

1. If an ISR calls a channel service that has a SIGNAL action, any process
swap that results from this call must be delayed until all interrupt handlers
have terminated. These implies that only the PRHI_ type of channel opera-
tions can be used, as these do not invoke the swapper for a SIGNAL action
(there is no need to swap, as the caller already has highest priority). When
the last stacked interrupt terminates, the swapper must be called to verify if a
swap from the PRLO process to a PRHI process is necessary.

2. An ISR must never call any channel service that has a WAIT action. Doing
so would also block all other interrupt handlers that are stacked below it, as
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 15

Programming the nanokernel
well as the current process. Another way of seeing this is that an ISR cannot
wait for something because it doesn’t have a separate identity - the producer
of the external event (another ISR) has no means of representing who is
waiting for it.

The C40 does not support a separate ‘interrupt mode’ - an ISR cannot deter-
mine whether it interrupted a foreground process or another ISR by examin-
ing the processor state only. The Virtuoso nanokernel defines a software
protocol, that must be observed by all interrupt handlers, to implement the
logic described above. In this system, an interrupt handler can run at either
of two ‘execution levels’:

The ISR0 level

All interrupt handlers are entered at this level. Interrupts are disabled globally
(GIE = 0), and the ISR is not allowed to re-enable them. Consequently, at
any time there can be only one ISR running at this level. It runs entirely in the
background and remains unknown to the kernel until it terminates by calling
the ENDISR0 service. At that point, the nanokernel will verify if a process
swap is required and allowed. The condition tested is the logical AND of

■ NANOK_PRHI = 0 the current process is PRLO

■ NANOK_HEAD != 0 a PRHI process is ready to execute

■ NANOK_CRIT = 0 no other ISR stacked below this one

If the interrupt handler did not call a channel operation with a SIGNAL action,
the condition above can never be satisfied, so in this case the ISR is allowed
to terminate by a normal ISR exit sequence (popping all saved registers and
RETI).

The ISR1 level

An interrupt handler running at the ISR1 level is known to the kernel, and is
allowed to modify the global interrupt enable state. Calling the SETISR1 ser-
vice moves an interrupt handler from the ISR0 to the ISR1 state. The kernel
increments NANOK_CRIT and returns with interrupts enabled (GIE = 1).
After having called SETISR1, the ISR is allowed to directly modify the GIE bit
as often as required. It must always terminate by calling the ENDISR1 ser-
vice. The kernel decrements NANOK_CRIT and then performs the same test
as for ENDISR0.

SETISR1 is implemented so that it can be called very early in an ISR. Only
the ST and R11 registers are modified, and must have been saved.

Sophisticated interrupt priority schemes can be set up by manipulating indi-
vidual interrupt enable bits before calling SETISR1. If this is done, the origi-
TI2 - 16 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Programming the nanokernel

PA
R

T
 3
nal state of the IIE and IIF registers must be restored before terminating the
ISR.

The ENDISR0 and ENDISR1 calls never return to the caller. When calling
these services, the ISR should leave the stack in a defined state, so that the
following code would perform a correct return to the interrupted context :

 pop ar2

 pop ar1

 pop ar0

 popf r11

 pop r11

 pop st

 reti

If no process swap is performed, the kernel will actually perform the interrupt
exit sequence listed above. If the current process is swapped out, the return
address and the INTSET registers remain on the stack of the interrupted
process until it is swapped in again.

The code fragment below show the skeleton of an interrupt handler running
at the ISR1 level. Please note that the three instructions following an LAT are
actually executed before the LAT itself.

 push st ; push the INTSET registers

 push r11

 pushf r11

 lat SETISR1 ; re-enable interrupts ASAP

 push ar0 ; continue saving INTSET, or

 push ar1 ; modify IIE, IIF

 push ar2 ;

 ; body of ISR, interrupts are enabled

; st, r11, ar0, ar1, ar2 available

 lat ENDISR1

 nop ; any three useful instructions

 nop ; e.g. pop registers not in INTSET,

 nop ; or restore IIE, IIF

37.7. Communicating with the microkernel

As mentioned before, the Virtuoso microkernel is implemented as a PRHI
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 17

Programming the nanokernel
process. It uses a single stack based channel to receive commands from the
tasks, the network drivers, other PRHI processes and interrupt handlers. A
pointer to this channel is exported in the C variable K_ArgsP.

Two types of data can be pushed onto this channel:

1. Small integers (0 - 63) are interpreted as events. Events are simple binary
signals that a task can wait for using the KS_EventW () service. Most events
will be generated by interrupt handlers and driver processes. For the C40
version, event numbers have been assigned as follows:

0 - 31 interrupts enabled in the IIE register

32 - 35 external interrupts iiof0 - iiof3

36 - 47 used by the raw link drivers

48 - 55 reserved for Virtuoso internal use

56 - 63 free

Event numbers 0 - 35 should be used to represent interrupts. This conven-
tion makes the event number the same as the interrupt number used in
KS_EnableISR ().

The remaining numbers are used for events that do not directly correspond
to an interrupt. For example, the dma based raw link drivers install an ISR
that accepts a DMA interrupt, reads the DMA status, and generates the
receiver ready and / or transmitter ready events.

The interrupt handlers installed by timer0_driver () and timer1_driver gener-
ate event 48. This is used within the kernel to increment the TICKS time.

The code fragment below shows how to send an event from an ISR or a
PRHI process:

 .ref _K_ArgsP

 .def _my_isr

 ...

_my_isr

 ...

 lat PRHI_PSH ; send event to microkernel

 ldi @_K_ArgsP, ar1 ; microkernel input channel

 ldi EVENT_NUM, ar2 ; event number

 nop

 ...

2. All other values pushed onto the microkernel input channel are interpreted
as a pointer to a command packet. Command packets are the primary form
of communication used within the Virtuoso system. They are used by the
TI2 - 18 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Programming the nanokernel

PA
R

T
 3
tasks to request microkernel services, sent across the Virtuoso network to
implement remote kernel calls, and put on waiting lists to represent a task
that is waiting for something. It is outside the scope of this manual to present
a complete description of the command packet data format. The basic struc-
tures and the command codes are defined in K_STRUCT.H.

The microkernel maintains a list of free command packets, implemented as a
list based channel. A pointer to this channel is exported in the C variable
K_ArgsFreeP. Other PRHI processes can get command packets from this
pool, but they must never wait on the channel (i.e. always use PRHI_GET). If
the list is empty, correct behavior is to call YIELD and try again later.

In the Virtuoso network, the Srce field of a command packet identifies the
sending node, and it is used as a return path for reply messages. The same
field also has a secondary function: since all packets sent or received
through the network are allocated from the K_ArgsFree list, they should be
deallocated after use. The network transmitters always free a packet after it
has been sent. The microkernel deallocates a packet if the Srce field is not
zero. Consequently, command packets not allocated from the free list must
have their Srce field set to zero to prevent deallocation.

Note: we are aware of the fact that this logic is a bit confusing. Future ver-
sions of the microkernel will probably use a separate flag to indicate if a
packet was dynamically allocated.

Interrupt handlers and PRHI processes can request a microkernel service by
building a command packet, and pushing a pointer to it on the microkernel
input channel. The only services that can be safely called are the equivalents
of KS_Signal and KS_SignalM, and the DRIVER_ACK service. Also note
that using events will be faster than signals.

The code fragments below show how to perform a KS_Signal () or
KS_SignalM () call from within an ISR. In this example the command packet
is created and initialized in C, but the same thing could be done entirely in
assembly language.

The function install_my_isr () is called to initialize the command packet and
install the ISR:

K_ARGS CP1, *CP1P; /* command packet for use by my_isr */

K_SEMA SLIST1 [] = { SEMA1, SEMA2, SEMA3, ..., ENDLIST };

extern void my_isr (void);

void install_my_isr (...)

 {

 ...
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 19

Programming the nanokernel
 /* create a pointer to the command packet */

 CP1P = &CP1;

 /* initialize CP1 for a KS_Signal (SEMA1) service */

 CP1.Srce = 0;

 CP1.Comm = SIGNALS;

 CP1.Args.s1.sema = SEMA1;

 /* or for a KS_SignalM (SLIST1) service */

 CP1.Srce = 0;

 CP1.Comm = SIGNALM;

 CP1.Args.s1.list = SLIST1;

 /* install the ISR */

 KS_EnableISR (..., my_isr);

 ...

 }

For the ISR, something like the code listed below will be required:

 .ref _CP1P

 .ref _K_ArgsP

 .def _my_isr

 ...

_my_isr

 ...

 lat PRHI_PSH ; signal semaphore(s)

 ldi @_K_ArgsP, ar1 ; microkernel input channel

 ldi @_CP1P, ar2 ; pointer to command packet

 nop

 ...

37.8. Virtuoso drivers on TMS320C40

Drivers are the interface between the processor and peripheral hardware,
and the application program. They normally serve two purposes: data com-
munication, and synchronization. As polling is not a recommended practice
in a real-time system, most drivers will use interrupts in one way or another.

The Virtuoso system does not provide a standard interface to drivers - this
allows the application writer to optimize this important part of their implemen-
tation. Some basic services, that will be required for almost all drivers, are
provided.

Most low-level details have already been described in the previous sections
on interrupt handling and communication with the microkernel. At a higher
level, a typical driver can usually be divided into three functional parts:
TI2 - 20 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Programming the nanokernel

PA
R

T
 3
1. The first component is a function to install the driver. This should initialize
the hardware and any data structures used, and install interrupt handlers for
the driver. A call to this function is usually placed inside a DRIVER statement
in the system definition file. The SYSGEN utility copies this call into a func-
tion named init_drivers () it generates in the node#.c files. The init_drivers ()
subroutine is called by kernel_init () just before it returns.

2. Most drivers will provide one or more subroutines that can be called from
the task level, and that implement the actual functionality of the driver. At
some point, these functions will call KS_EventW () or KS_Wait () to make the
calling task wait for the completion of the driver action.

3. One or more interrupt handlers are required to generate the events or sig-
nals waited for by these subroutines.

In the simplest case, the only actions required from the ISR will be to service
the hardware and to reschedule a waiting task, and all data handling and
protocol implementation can be done at the task level. This method can be
used if the interrupt frequency is not too high (< 1000Hz).

For higher data rates, some of the task code should be moved to the ISR, in
order to reduce the number of task swaps. In most cases, the actions
required from the interrupt handler will not be the same for each interrupt,
and some form of state machine will have to be implemented into the ISR.

If the number of possible states grows, it is often much easier to use one or
more PRHI processes to implement the protocol. Processes can wait for
interrupts at any number of places in their code, and each of these points
represents a state of the system. As an example, the Virtuoso network driv-
ers have been designed using this method.

The microkernel provides the DRIVER_REQ and DRIVER_ACK services to
interface tasks to drivers based on PRHI processes. At the time of writing,
these services are the subject of further development. They will be docu-
mented in a separate application note, and in the next release of this man-
ual.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 21

Alphabetical List of nanokernel entry points
38. Alphabetical List of nanokernel entry points

In the pages to follow, all Virtuoso nanokernel entry points are listed in
alphabetical order. Most of these are C40 trap routines, some are C callable.

• BRIEF Brief functional description

• CLASS One of the Virtuoso nanokernel service classes of which it is a member.

• SYNOPSIS The ANSI C prototype (C callable), or

Assembly language calling sequence (Traps)

• RETURN VALUE . . The return value, if any (C callable only).

• ENTRY CONDITIONSRequired conditions before call (Traps only)

• EXIT CONDITIONS. Conditions upon return of the call (Traps only)

• DESCRIPTION . . . A description of what the Virtuoso nanokernel service does when invoked
and how a desired behavior can be obtained.

• EXAMPLE One or more typical Virtuoso nanokernel service uses.

• SEE ALSO. List of related Virtuoso nanokernel services that could be examined in con-
junction with the current Virtuoso nanokernel service.

• SPECIAL NOTES . . Specific notes and technical comments.
TI2 - 22 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.1. _init_process

• BRIEF Initialize a nanokernel process

• CLASS. Process management

• SYNOPSIS void _init_process (void *stack, void entry(void), int ar4, int ar5);

• DESCRIPTION . . . This C function initializes the process control structure of a process. It must
be called before the process is started using start_process (). The entry
point, the initial values for AR4 and AR5 and some internal variables are writ-
ten to the PCS.

• RETURN VALUE . . none

• EXAMPLE In this example, two processes using the same code but different parameters
are initialized and started.

int adc1[100]; /* stack for first process */

int adc2[100]; /* stack for second process */

extern void adc_proc (void); /* process code */

extern struct adc_pars ADC_Params [2]; /* parameter structs */

_init_process (adc1, adc_proc, &ADC_Params [0], 0);

_init_process (adc2, adc_proc, &ADC_Params [1], 0);

_start_process (adc1)

_start_process (adc2)

• SEE ALSO. _start_process

• SPECIAL NOTES . .
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 23

Alphabetical List of nanokernel entry points
38.2. _start_process

• BRIEF Starts a nanokernel process from the low priority context

• CLASS Process management

• SYNOPSIS void _start_process (void *stack);

• DESCRIPTION . . . Starts a nanokernel process by making it executable. The process must
have been initialized before. The process will start executing immediately.
This call returns when the started process deschedules or terminates.

• RETURN VALUE . . none

• EXAMPLE

int wsp1[100]

int wsp2[100]

extern void proc1 (void);

extern void proc2 (void);

int N = 1000;

_init_process (wsp1, proc1, 0, N)

_init_process (wsp2, proc2, 0, N)

_start_process (wsp1)

_start_process (wsp2)

• SEE ALSO. _init_process ()

• SPECIAL NOTES . . This function cannot be used from within a high priority nanokernel process.
It must be called from the C main () function or by a microkernel task only.
TI2 - 24 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.3. ENDISR0

• BRIEF Terminates a level 0 ISR and conditionally invokes the process swapper

• CLASS. Interrupt service management

• SYNOPSYS LATcond ENDISR0

ENDISR0 is defined in TRAPS.INC

• DESCRIPTION . . . This is the normal way to terminate an ISR running at level 0 (global inter-
rupts disabled). It must be called if the ISR has previously used any nanoker-
nel service that can reschedule a process, e.g. PRHI_SIG. If the ISR did not
interact with the kernel, a normal ISR exit sequence (popping saved regis-
ters and RETI) can be used instead.

A nanokernel process swap will be performed IFF

■ the calling ISR interrupted the nanokernel low priority process

■ a high priority process is ready to execute

• ENTRY CONDITIONSThe ISR should have saved the interrupted context so that the exit sequence
listed below would correctly terminate the ISR.

pop ar2

pop ar1

pop ar0

popf r11

pop r11

pop st

reti

• EXIT CONDITIONS . This call terminates the ISR and does not return.

• EXAMPLE This ISR accepts the IIOF0 external interrupt and sends EVENT 32 to the
microkernel.

.include “traps.inc”

.ref _K_ArgsP

.def __iiof0_isr

.text

__iiof0_isr

push st

push r11

pushf r11

push ar0

push ar1
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 25

Alphabetical List of nanokernel entry points
push ar2

....acknowledge interrupt if necessary

lat PRHI_PSH

ldi @_K_ArgsP, ar1 ; pointer to microkernel input channel

ldi 32, ar2 ; event number

nop

lat ENDISR0 ; terminate the ISR

nop

nop

nop

• SEE ALSO. ENDISR1, SETISR1
TI2 - 26 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.4. ENDISR1

• BRIEF Terminates a level 1 ISR and conditionally invokes the process swapper

• CLASS. Interrupt service management

• SYNOPSYS LATcond ENDISR1

ENDISR1 is defined in TRAPS.INC

DESCRIPTIONThis entry point must be called to terminate an ISR running
at level 1 (global interrupts enabled). It decrements the level 1 interrupt
counter and preforms a nanokernel process swap IFF

■ the calling ISR interrupted the PRLO process

■ a high priority process is ready to execute

• ENTRY CONDITIONSThe ISR should have saved the interrupted context so that the exit sequence
listed below would correctly terminate the ISR.

pop ar2

pop ar1

pop ar0

popf r11

pop r11

pop st

reti

• EXIT CONDITIONS . This call terminates the ISR and does not return.

• EXAMPLE This ISR accepts the IIOF0 external interrupt and sends a signal to two hi-
priority processes.

.include “traps.inc”

.ref _chan1_ptr

.ref _chan2_ptr

.def __iiof0_isr

.text

__iiof0_isr

push st

push r11

pushf r11

lat SETISR1 ; move to ISR level 1

push ar0

push ar1

push ar2
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 27

Alphabetical List of nanokernel entry points
; ... interrupts are enabled from this point

; ... any other useful code

lat PRHI_SIG ; send signal on chan1

ldi @_chan1_ptr, ar1

nop ; or other useful instructions

nop ; executed before the PRHI_SIG

; ...

lat PRHI_SIG ; send signal on chan2

ldi @_chan2_ptr, ar1

nop

nop

; ...

lat ENDISR1 ; terminate the ISR

nop

nop

nop

• SEE ALSO. SETISR1

• SPECIAL NOTES . . A normal interrupt exit (popping saved registers and RETI) is not allowed for
an ISR running at level 1.
TI2 - 28 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.5. K_taskcall

• BRIEF Send a command packet to the microkernel process

• CLASS. Process communication

• SYNOPSYS void K_taskcall (K_ARGS *A);

• DESCRIPTION . . . This C-callable function is used by all KS_... services to send command
packets to the microkernel process.

• RETURN VALUE . . none

• EXAMPLE

• SEE ALSO. PRLO_PSH

• SPECIAL NOTES . . This function must be called by microkernel tasks only.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 29

Alphabetical List of nanokernel entry points
38.6. KS_DisableISR()

• BRIEF Remove an ISR from the interrupt vector table

• CLASS Interrupt service management

• SYNOPSYS void KS_DisableISR (int isrnum);

• DESCRIPTION . . . This C function is equivalent to KS_EnableISR (isrnum, NULL). The interrupt
is disabled, and the corresponding entry in the interrupt vector table is
cleared.

• RETURN VALUE . . none

• EXAMPLE

KS_DisableISR (34) ; /* remove the IIOF2 handler */

• SEE ALSO. KS_EnableISR, SYSVEC

• SPECIAL NOTES . . Interrupt numbers are:

■ 0..31 for interrupts enabled in the IIE register

■ 32..35 for IIOF0..IIOF3
TI2 - 30 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.7. KS_EnableISR

• BRIEF Install an ISR and enable the corresponding interrupt.

• CLASS. Interrupt service management

• SYNOPSYS void KS_EnableISR (int isrnum. void isr (void));

• DESCRIPTION . . . This C function is used to install, remove, or replace an interrupt handler. It
takes two parameters: an interrupt number, and a pointer to an ISR. The
pointer is entered into the interrupt vector table, and if it is not zero, the corre-
sponding interrupt enable bit is set in the IIE or IIF register. If the pointer is
NULL, the interrupt is disabled.

• RETURN VALUE . . none

• EXAMPLE

extern void _iiof2_isr (void);

KS_EnableISR (34, _iiof2_isr);

• SEE ALSO. KS_DisableISR, SYSVEC

• SPECIAL NOTES . . Interrupt numbers are:

■ 0..31 for interrupts enabled in the IIE register

■ 32..35 for IIOF0..IIOF3
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 31

Alphabetical List of nanokernel entry points
38.8. PRHI_GET

• BRIEF Remove next packet from linked list channel

• CLASS Process communication

• SYNOPSIS LATcond PRHI_GET

PRHI_GET is defined in TRAPS.INC

• DESCRIPTION . . . If the channel is not empty, the first packet is removed from the linked list, the
Z flag is reset, and a pointer to the packet is returned. If the channel is empty,
the Z flag is set and a NULL pointer is returned. The calling process is never
swapped out as a result of calling this service.

• ENTRY CONDITIONS

AR1 = pointer to linked list channel struct

• EXIT CONDITIONS. If the list is not empty:

AR0 and R11 are corrupted

AR2 = pointer to removed list element

the Z flag is cleared

If the list is empty

AR0 and R11 are corrupted

AR2 = 0

the Z flag is set

• EXAMPLE

.include “traps.inc”

; assume AR5 points to a parameter struct

; obtain a free packet

lat PRHI_GET

ldi *+ar5(FREE_LIST), ar1

nop

nop

bz list_empty ; test if call failed

; use packet pointed to by AR2

• SEE ALSO. PRHI_GETW, PRHI_PUT

• SPECIAL NOTES . . This service must not be called from the low priority context.
TI2 - 32 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.9. PRHI_GETW

• BRIEF Get next packet from linked list channel, or deschedule

• CLASS. Process communication

• SYNOPSIS LATcond PRHI_GETW

PRHI_GETW is defined in TRAPS.INC

• DESCRIPTION . . . If the channel is not empty, the first packet is removed from the linked list and
a pointer to it is returned. If the channel is empty, the calling process is
swapped out and set to wait on the channel. It will be rescheduled by the
next call to the PRHI_PUT service on the same channel.

• ENTRY CONDITIONS

AR1 = pointer to linked list channel struct

AR3 = pointer to PCS of calling process

• EXIT CONDITIONS .

AR4 = pointer to list element

AR0, AR1, AR2, R11 and ST are corrupted

• EXAMPLE

.include “traps.inc”

; assume AR5 points to a parameter struct

; obtain next packet from free_list

lat PRHI_GETW

ldi *+ar5(FREE_LIST), ar1 ; pointer to free list channel

nop

nop

; use packet pointed to by AR4

• SEE ALSO. PRHI_GET, PRHI_PUT

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 33

Alphabetical List of nanokernel entry points
38.10. PRHI_POP

• BRIEF Remove next element from a stack channel

• CLASS Process communication

• SYNOPSIS LATcond PRHI_POP

PRHI_POP is defined in TRAPS.INC

• DESCRIPTION . . . If the stack is not empty, the top element is removed and returned to the
caller. The Z flag is reset. If the stack is empty, the Z flag is set and an unde-
fined value is returned. The calling process is never swapped out as a result
of calling this service.

• ENTRY CONDITIONS

AR1 = pointer to stack channel struct

• EXIT CONDITIONS. If the stack is not empty:

AR0 and R11 are corrupted

AR2 = the element removed from the stack

the Z flag is cleared

If the stack is empty:

AR0 and R11 are corrupted

AR2 = undefined

the Z flag is set

• EXAMPLE

.include “traps.inc”

; assume AR5 points to a parameter struct

; obtain top of stack element

lat PRHI_POP

ldi *+ar5(INPUT_CHAN), ar1

nop

nop

bz stack_empty ; test if call failed

; use stack element in AR2

• SEE ALSO. PRHI_POPW, PRHI_PSH

• SPECIAL NOTES . . This service must not be called from the low priority context.
TI2 - 34 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.11. PRHI_POPW

• BRIEF Remove next element from a stack channel, or deschedule

• CLASS. Process communication

• SYNOPSIS LATcond PRHI_POPW

PRHI_POPW is defined in TRAPS.INC

• DESCRIPTION . . . If the stack is not empty, the top element is removed and returned to the
caller. If the stack is empty, the calling process is swapped out and set to wait
on the channel. It will be rescheduled by the next call to the PRHI_PSH ser-
vice on the same channel.

• ENTRY CONDITIONS

AR1 = pointer to stack channel struct

AR3 = pointer to PCS of calling process

• EXIT CONDITIONS .

AR4 = element removed from the stack

AR0, AR1, AR2, R11 and ST are corrupted

• EXAMPLE

.include “traps.inc”

; assume AR5 points to a parameter struct

; obtain element at top of stack

lat PRHI_POPW

ldi *+ar5(INPUT_CHAN), ar1

nop

nop

; use stack element in AR4

• SEE ALSO. PRHI_POP, PRHI_PSH

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 35

Alphabetical List of nanokernel entry points
38.12. PRHI_PUT

• BRIEF Add a packet to a linked list channel

• CLASS Process communication

• SYNOPSIS LATcond PRHI_PUT

PRHI_PUT is defined in TRAPS.INC

• DESCRIPTION . . . If a process is waiting on the channel, the pointer to the packet is passed on,
and the waiting process is rescheduled. Otherwise the packet is linked in at
the head of the list. In either case, control returns to the caller.

• ENTRY CONDITIONS

AR1 = pointer to channel

AR2 = pointer to packet to add to the list

• EXIT CONDITIONS.

AR0, AR1, R11 and ST are corrupted

All other registers are preserved

• EXAMPLE

.include “traps.inc”

; assume AR5 points to a parameter struct

; assume AR0 points to packet to add to the list

lat PRHI_PUT

ldi *+ar5(FREE_LIST), ar1

ldi ar0, ar2

nop

; the packet is added to the list

• SEE ALSO. PRHI_GET, PRHI_GETW

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.

The first word of the packet is used as a link pointer, and will be overwritten.
TI2 - 36 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.13. PRHI_PSH

• BRIEF Push a word on a stack channel

• CLASS. Process communication

• SYNOPSIS LATcond PRHI_PSH

PRHI_PSH is defined in TRAPS.INC

• DESCRIPTION . . . If a process is waiting on the channel, the data word is passed on, and the
waiting process is rescheduled. Otherwise the data word is pushed on the
stack. In either case, control returns to the caller.

• ENTRY CONDITIONS

AR1 = pointer to channel

AR2 = data word to push

• EXIT CONDITIONS .

AR0, AR1, R11 and ST are corrupted

All other registers are preserved

• EXAMPLE

.include “traps.inc”

.ref _K_ArgsP ; microkernel input stack

; send a command packet to the microkernel

; assume ar0 points to the command packet

lat PRHI_PSH

ldi @_K_ArgsP, ar1

ldi ar0, ar2

nop

• SEE ALSO. PRHI_POP, PRHI_POPW

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 37

Alphabetical List of nanokernel entry points
38.14. PRHI_SIG

• BRIEF Send an event on a signal channel

• CLASS Process communication

• SYNOPSIS LATcond PRHI_SIG

PRHI_SIG is defined in TRAPS.INC

• DESCRIPTION . . . If a process is waiting on the channel, it is rescheduled (put at the tail of the
process FIFO). Otherwise the event count is incremented. In either case,
control returns to the caller.

• ENTRY CONDITIONS

AR1 = pointer to channel

• EXIT CONDITIONS.

AR0, AR1, R11 and ST are corrupted

All other registers are preserved

• EXAMPLE

.include “traps.inc”

; assume AR5 points to a parameter struct

; signal an event on SYNC_CHAN

lat PRHI_SIG

ldi *+ar5(SYNC_CHAN), ar1

nop ; or other useful instructions

nop ; executed before the LAT

• SEE ALSO. PRHI_WAIT

• SPECIAL NOTES . . This entry point must not by called from the low priority context, but it can be
used by interrupt handlers.
TI2 - 38 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.15. PRHI_WAIT

• BRIEF Consume an event from a signal channel, or deschedule

• CLASS. Process communication

• SYNOPSIS LATcond PRHI_WAIT

PRHI_WAIT is defined in TRAPS.INC

• DESCRIPTION . . . If the event counter is not zero, it is decremented an control returns to the
caller. If the event counter is zero, the calling process is swapped out and set
to wait on the channel. It will be rescheduled by the next call to the
PRHI_SIG service on the same channel.

• ENTRY CONDITIONS

AR1 = pointer to signal channel struct

AR3 = pointer to PCS of calling process

• EXIT CONDITIONS .

AR0, AR1, AR2, R11 and ST are corrupted

• EXAMPLE

.include “traps.inc”

; assume AR5 points to a parameter struct

; wait for event on SYNC_CHAN

lat PRHI_WAIT

ldi *+ar5(SYNC_CHAN), ar1

nop

nop

; the event has happened

• SEE ALSO. PRHI_SIG

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 39

Alphabetical List of nanokernel entry points
38.16. PRLO_PSH

• BRIEF This call is for internal use only, and is not exactly the equivalent of
PRHI_PSH for the PRLO process. This call assumes that a PRHI process is
waiting on the channel, and will crash the system if there isn’t. PRLO_PUSH
is used by the K_taskcall function to send command packets from a task to
the microkernel process.
TI2 - 40 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.17. SETISR1

• BRIEF Moves an ISR to level 1, setting the global interrupt enable bit

• CLASS. Interrupt service management

• SYNOPSYS LATcond SETISR1

SETISR1 is defined in TRAPS.INC

• DESCRIPTION . . . This call increments the level 1 ISR counter, and returns with the global inter-
rupt enable bit set. It should be used by ISRs that may take a longer time
than allowed by the interrupt latency requirements of the application.

• ENTRY CONDITIONS

ST and R11 are saved on the stack

• EXIT CONDITIONS . .

The global interrupt enable bit in ST is set

R11 is corrupted

all other registers are preserved

• EXAMPLE This ISR disables the timer0 interrupt while processing the IIOF3 interrupt
with global interrupts enabled.

This is an example only; it is not normally necessary within Virtuoso to dis-
able the timer interrupts within an ISR.

.include “traps.inc”

.def __iiof3_isr

.text

__iiof3_isr

push st

push r11

pushf r11

push ar0

push ar1

; ... acknowledge interrupt if necessary

lat SETISR1 ; move to ISR level 1

push ar2

push iie ; save current IIE register

andn 0001h, iie ; disable timer0 interrupt

; ... interrupts are enabled from this point

; ... process the IIOF3 interrupt

lat ENDISR1 ; terminate the ISR
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 41

Alphabetical List of nanokernel entry points
pop iie ; first restore the IIE register

nop

nop

• SEE ALSO. ENDISR1
TI2 - 42 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.18. SYSDIS

• BRIEF Disable global interrupts

• CLASS. Interrupt service management

• SYNOPSYS TRAPcond SYSDIS

SYSDIS is defined in TRAPS.INC

• DESCRIPTION . . . This entry point provides a convenient and safe way to reset the GIE bit in
the ST register.

• ENTRY CONDITIONSnone

• EXIT CONDITIONS . The GIE bit in ST is reset.

• EXAMPLE

; ...

trap SYSDIS

; ... code to run with interrupts disabled

trap SYSENA

; ...

• SEE ALSO. SYSENA, SYSVEC

• SPECIAL NOTES . . This trap can be used inside a C function by using the inline assembly state-
ment.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 43

Alphabetical List of nanokernel entry points
38.19. SYSENA

• BRIEF Enable global interrupts

• CLASS Interrupt service management

• SYNOPSYS TRAPcond SYSENA

SYSENA is defined in TRAPS.INC

• DESCRIPTION . . . This entry point provides a convenient and safe way to set the GIE bit in the
ST register.

• ENTRY CONDITIONSnone

• EXIT CONDITIONS. The GIE bit in ST is set.

• EXAMPLE

; ...

trap SYSDIS

; ... code to run with interrupts disabled

trap SYSENA

; ...

• SEE ALSO. SYSDIS, SYSVEC

• SPECIAL NOTES . . This trap can be used inside a C function by using the inline assembly state-
ment.
TI2 - 44 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.20. SYSVEC

• BRIEF Install or remove an interrupt handler

• CLASS. Interrupt service management

• SYNOPSYS TRAPcond SYSVEC

SYSVEC is defined in TRAPS.INC

• DESCRIPTION . . . This entry point provides a convenient and safe way to install, remove, or
replace an interrupt handler. It takes two parameters: an interrupt number,
and a pointer to an ISR. The pointer is entered into the interrupt vector table,
and if it is not zero, the corresponding interrupt enable bit is set in the IIE or
IIF register. If the pointer is NULL, the interrupt is disabled.

• ENTRY CONDITIONS

AR0 = interrupt number

AR1 = pointer to ISR or 0

• EXIT CONDITIONS .

AR0, AR1, AR2 and ST corrupted

IIE or IIF register modified as described

all other registers are preserved

• EXAMPLE

.include “traps.inc”

.ref __iiiof2_isr

; create a variable pointing to the isr

.bss __iiof2_isr_ptr, 1

.sect “.cinit”

.word 1, __iiof2_isr_ptr, __iiof2_isr

.text

; install the ISR

ldi 34, ar0

ldi @__iiof2_isr_ptr, ar1

trap SYSVEC

; __iiof2_isr is installed and enabled

• SEE ALSO. KS_EnableISR, KS_DisableISR

• SPECIAL NOTES . . This entry point is for assembly language programming only. The
KS_EnableISR and KS_DisableISR services use this trap, and are C- call-
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 45

Alphabetical List of nanokernel entry points
able.

• SPECIAL NOTES . . Interrupt numbers are:

■ 0..31 for interrupts enabled in the IIE register

■ 32..35 for IIOF0..IIOF3
TI2 - 46 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Alphabetical List of nanokernel entry points

PA
R

T
 3
38.21. YIELD

• BRIEF Yield CPU to next nanokernel process

• CLASS. Process management

• SYNOPSIS LATcond YIELD

YIELD is defined in TRAPS.INC

• DESCRIPTION . . . The calling process is swapped out and added to the tail of the process
FIFO. The process at the head of the FIFO is swapped in. This may be the
same process, if it was the only one ready to execute.

• ENTRY CONDITIONS

AR3 = pointer to PCS of calling process

• EXIT CONDITIONS .

AR0, AR1, AR2, R11 and ST are corrupted

• EXAMPLE This example shows how to avoid a redundant YIELD operation, by testing
the process FIFO

.include “nanok.inc”

.include “traps.inc”

;

ldi @NANOK_HEAD, r11 ; test head of process FIFO

nop ; avoid possible silicon bug

latnz YIELD ; yield if there is another process

nop ; 3 nops or useful instructions

nop ; executed before the yield

nop

• SPECIAL NOTES . . This service must not be called from the low priority context or by an isr.
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 47

Predefined drivers
39. Predefined drivers

A number of devices drivers are provided as standard with the C40 release
of the Virtuoso kernel. These are:

■ the timer device drivers

■ the netlink drivers

■ the rawlink drivers

■ the host interface device drivers

The default drivers are declared in iface.h and must be declared as a
DRIVER object in the sysdef file in order to use them.

39.1. The timer device drivers

void Timer0_Driver (unit);

void Timer1_Driver (unit);

These drivers create an interface to the C40 on-chip timer peripherals. One
one of them should be installed on each node.

They provide two services to the kernel:

1. The function timer_read () returns a 32 bit value incrementing at 1/4 of the
CPU clock frequency (10 MHz for a 40 MHz C40). This permits very precise
time measurements. It is used by the workload monitor, by the task level
monitor to timestamp events, and by the KS_HighTimer () service.

2. Both drivers also generate EVENT 48, with a period determined by the
‘unit’ argument. This is used internally by the kernel to maintain the TICKS
time. The TICKS time in turn is used for implementing time-outs, and by the
KS_Elapse (), KS_LowTime and KS_Sleep () services.

The variable ‘tickunit’ is defined in the MAIN?.C files. This should be used for
the ‘unit’ argument (see examples).

39.2. Host interface device drivers

One of these is required on the ROOT node if the host services are to be
used (not for booting the network). The following are provided:

void HostLinkDma (inlink #, outlink #, prio); /* HLDMA.LIB */

DMA based driver for all boards using one or two C40 comports to imple-
TI2 - 48 Virtuoso Binding Manual Copyright 1996 Eonic Systems

Predefined drivers

PA
R

T
 3
ment the PC interface. The link number to use are:

■ 0, 3 for Hema DSP1

■ 0, 0 for Sang Megalink

■ 3, 3 for Hunt Engineering HEPC2

The ‘prio’ parameter sets the relative priority of the CPU and the DMA
engines when accessing memory. Use one of the symbolic constants
#defined in IFACE.H

void HLxx_Driver (void); /* HLxx.LIB, xx = 03, 00 or 33 */

Interrupt driven PC to comports interface, not using DMA. You can use one
of these in place of HostLinkDma () if you want to keep the DMA engines
free for other purposes.

void DPCC40_Driver (void); /* DPCC40.LIB */

Host driver for the LSI DPCC40 board.

void VmeHostV (void); /* HYDRA1.LIB */

Host driver for the ARIEL HYDRA1 board.

void SP40Host (void); /* SP40.LIB */

Host driver for the SONITECH SPIRIT40 board.

39.3. Netlink drivers

Two drivers, both using the C40 comports, are provided:

void NetLinkDma (link, prio); /* NLDMA.LIB */

void Netlink(link); /* LINK.LIB */

The second parameter determines the relative priority of the CPU and the
DMA engines. See fileIFACE.H for possible options.

39.4. Raw link drivers

RawLinkDma (link #, prio) : (dma.lib)

Raw communication port driver. This provides the KS_Linkin () and
KS_Link# ID LOCATION LBCR GBCR IACK FILE
Copyright 1996 Eonic Systems Virtuoso Binding Manual TI2 - 49

Predefined drivers
39.5. Task Level Timings

Following is a list of task level timings of some of the kernel services pro-
vided by Virtuoso. These timings are the result of timing measurement on a
TMS320C40 board with a clock speed of 40MHz and zero wait state pro-
gram- and data-memory.

All timings are in microseconds. The C compiler used was TI C v.4.4.

Minimum Kernel call

Nop (1) 9

Message transfer

Send/Receive with wait

Header only (2) 59

16 bytes (2) 62

128 bytes (2) 68

1024 bytes (2) 123

Queue operations

Enqueue 1 byte (1) 17

Dequeue 1 byte (1) 17

Enqueue 4 bytes (1) 18

Dequeue 4 bytes (1) 18

Enqueue/Dequeue (with wait)(2)56

Semaphore operations

Signal (1) 12

Signal/Wait (2) 46

Signal/WaitTimeout (2) 56

Signal/WaitMany (2) 64

Signal/WaitManyTimeout(2)73

Resources

Lock or Unlock (1) 12

Note, that one char is one 32-bit word on the TMS320C40.

(1): involves no context switch

(2): involves two context switches. Timing is round-trip time.
TI2 - 50 Virtuoso Binding Manual Copyright 1996 Eonic Systems

PA
R

T
 3
Glossary

Abort (task) To halt a task’s execution, and put it in a state
where it can be started. A task in a waiting state
should not be aborted.

API Application Programming Interface

Class A category of microkernel service.

Debugger The task-level debugger used to inspect the
state of microkernel objects. Not to be confused
with the source-level debugger or emulator.

Driver Low-level code used to interface to peripheral
hardware. Often implemented using interrupt
handlers and nanokernel processes.

Event A synchronization signalled by an interrupt han-
dler or nanokernel process to a waiting micro-
kernel task.

FIFO Queue

Group A collection tasks.

Hard Real-time A system subject to detailed and rigid timing
constraints.

High Precision Timer A clock that can be read with higher resolution
than the microkernel timer, often provided by
hardware.

Interrupt An asynchronous event triggered by hardware
outside the CPU, to which the processor has to
respond.

ISR Interrupt Service Routine. Code to respond to
an interrupt

Level (programming) An application programming interface (API).
Lower levels offer reduced functionality and
smaller overheads.

Link Communication medium between processors
(e.g., Comport on the C40)
Copyright 1996 Eonic Systems Virtuoso User Manual GLO - 1

Mailbox A rendezvous point for microkernel message
passing, to synchronize sending and receiving
tasks. No data is stored or buffered in the mail-
box.

Memory A class of microkernel service. In addition to the
standard system heap, real-time memory allo-
cation of fixed size blocks is provided.

Message Information used with a mailbox. Consists of the
header structure, and the data to be communi-
cated.

Microkernel High-level API for real-time programming. Also
refers to the system-provided process that
implements microkernel services.

Move Data Copy memory from any address on one proces-
sor to any address on another processor, with-
out synchronizing with any other task.

/MP Multi-processor. A product version that provides
the full range of services within one processor,
plus raw link drivers to communicate with other
processors. Also appropriate for single-proces-
sor systems where the links may be used to
communicate with peripherals.

Nanokernel An multi-tasking API between the microkernel
and interrupt handlers, providing simplified
functionality for lower overheads.

Node Processor containing a single CPU, with asso-
ciated memory and peripherals. Each node
runs a separate instance of the kernel.

Object A structure on which microkernel services act.
Objects are declared in the system definition
file.

Priority The integer value that controls the order of
scheduling of microkernel tasks. A smaller
value indicates a higher priority, and the valid
range is 1 to 64.
GLO - 2 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3
Process A thread of execution, with its own stack, using
the nanokernel API. The difference between a
process and an ISR is that the process may
block, or wait, whereas the ISR must continue
executing until it returns.

Queue A structure providing buffered, asynchronous
communication between microkernel tasks.
Data is communicated in fixed size blocks.
Items are dequeued (received) in the same
order that they were enqueued (sent).

Resource A microkernel object that is used to sequential-
ize operations of several tasks. When a tasks
locks a resource, no other task may lock the
same resource until the first task unlocks it.

Semaphore A flexible means of synchronization of between
tasks. A task signals a semaphore to wake up a
task that may be waiting on the semaphore.
Semaphores are counting, allowing several
tasks to signal and wait on one semaphore.

/SP Single-processor. A product version that pro-
vides the full range of services within one pro-
cessor.

Suspend (task) Temporarily halt the execution of a microkernel
task, and prevent it from being rescheduled
until it has been Resumed. A task in a waiting
condition may be suspended.

System definition Declaration of the target hardware, and of
microkernel objects and device drivers. The
specification of each object includes which
node it is placed upon.

Task A thread of execution, with its own stack, using
the microkernel API.

Timer A microkernel clock providing timing information
to tasks and services. Time-outs and elapsed
time can be used without declaring a separate
timer. Timed semaphore signalling (one-shot or
periodic) is provided by a timer declared in the
system definition file.
Copyright 1996 Eonic Systems Virtuoso User Manual GLO - 3

Yield A task or process voluntarily gives the CPU to
other tasks or processes. In the microkernel,
execution will only be passed to tasks of equal
priority.

Virtuoso A family of tools for real-time programming.

/VSP Virtual Single Processor. A product version that
provides the full range of services in a way that
is transparently distributed over multiple pro-
cessors.
GLO - 4 Virtuoso User Manual Copyright 1996 Eonic Systems

PA
R

T
 3

Index
Numerics
21020 relevant documentation ADI - 10, ADI

- 1
96002 relevant documentation M3 - 10

A
Abort GLO - 1
abuse of semaphores P2 - 174
ADSP-21020 addressing modes ADI - 4
Alphabetical list of ISR related services ADI

- 18, ADI - 6
Application development hints. ADI - 51, ADI

- 42
Applications P1 - 46
arc P2 - 137
Arithmetic status register (ASTAT) ADI - 6
Assembly language interface ADI - 12
assumptions P1 - 9
auxiliary development tools P1 - 37

B
bar P2 - 138
bar3d P2 - 138

C
call_server P2 - 126
circle P2 - 137
Class GLO - 1
Class Memory P1 - 27
Class Message P1 - 30
Class processor specific P1 - 33
Class Queue P1 - 32
Class Resource P1 - 29
Class Semaphore P1 - 29
Class Special P1 - 33
Class Task P1 - 23
Class Timer P1 - 26
cleardevice P2 - 140

clearviewport P2 - 140
closegraph P2 - 133
Command packets, C40 TI2 - 18
CompControl M2 - 3
compilation symbols P1 - 5
Confidence test P1 - 4
Customized versions P2 - 176

D
Data types ADI - 10
Debugger GLO - 1
Debugger commands P2 - 156
Debugger concepts P2 - 154
detectgraph P2 - 132
Developing ISR routines on the 21020 ADI -

15, ADI - 3
Digital Signal Processors P1 - 21
Drawing filled forms P2 - 138
Drawing pixels and lines P2 - 136
drawpoly P2 - 137
Driver GLO - 1
Driver and mode selection P2 - 132
Driver description P2 - 145
Drivers P2 - 18
DSP 96002 Addressing Modes M3 - 7
DSP-21020 chip architecture ADI - 1
DSP96002 Chip Architecture M3 - 1
DSP96002 Software Architecture M3 - 3

E
ellipse P2 - 137
end_isr0, C40 TI2 - 25
end_isr1, C40 ADI - 33, ADI - 21, TI2 - 27, TI2

- 41
Entry into the debugger P2 - 154
Event GLO - 1
Events, C40 TI2 - 18
execution trace P1 - 16
Copyright 1996 Eonic Systems IX - 1

F
fclose P2 - 128
feof P2 - 129
ferror P2 - 129
fflush P2 - 129
fgetc P2 - 128
fgetpos P2 - 129
fgets P2 - 129
FIFO GLO - 1
fileno P2 - 130
fillellipse P2 - 138
fillpoly P2 - 138
floodfill P2 - 138
fopen P2 - 128
fprintf P2 - 130
fputc P2 - 129
fputs P2 - 129
fread P2 - 129
freeimage P2 - 140
freopen P2 - 128
fseek P2 - 130
fsetpos P2 - 129
fstat P2 - 130
ftell P2 - 130
Functional support P1 - 18
fwrite P2 - 129

G
getallpalette P2 - 134
getarccoords P2 - 140
getcurrcoords P2 - 136
getfillstyle P2 - 135
getimage P2 - 139
getmodepars P2 - 134
getpixel P2 - 136
gets P2 - 129
getuserpars P2 - 135
getviewport P2 - 134
Glossary GLO - 1
graphdefaults P2 - 133
graphresult P2 - 134
Group GLO - 1

H
hard real time P1 - 20
High Precision Timer GLO - 1
Host server P2 - 121
Host server low level functions P2 - 125

I
Implementation limits, stdio P2 - 128
init_process, C40 ADI - 31, ADI - 20, TI2 - 23
initgraph P2 - 132
installation P1 - 3
Installing an ISR routine ADI - 15, ADI - 5
installuserfont P2 - 139
Interrupt handling, C40 TI2 - 15
Interrupt latch (IRPTL) and Interrupt Mask

(IMASK) ADI - 8
ISR levels P1 - 35
ISR0 level P1 - 13
ISR1 level P1 - 14

K
Kernel libraries P1 - 4
Kernel objects P2 - 141
kernel objects P1 - 23
KS_Abort P2 - 26
KS_Aborted P2 - 28
KS_AbortG P2 - 27
KS_Alloc P2 - 29
KS_AllocTimer P2 - 32
KS_AllocW P2 - 30
KS_AllocWT P2 - 31
KS_Dealloc P2 - 33
KS_DeallocTimer P2 - 34
KS_Dequeue P2 - 35
KS_DequeueW P2 - 36
KS_DequeueWT P2 - 37
KS_DisableISR P2 - 39
KS_DisableISR, C40 ADI - 36, ADI - 23, TI2 -

30
KS_Elapse P2 - 40
KS_EnableISR P2 - 41
KS_EnableISR, C40 ADI - 37, ADI - 24, TI2 -

31
IX - 2 Copyright 1996 Eonic Systems

PA
R

T
 3
KS_Enqueue P2 - 42
KS_EnqueueW P2 - 44
KS_EnqueueWT P2 - 46
KS_EventW P2 - 48
KS_GroupId P2 - 49
KS_HighTimer P2 - 50
KS_InqMap P2 - 51
KS_InqQueue P2 - 52
KS_InqSema P2 - 53
KS_JoinG P2 - 54
KS_LeaveG P2 - 55
KS_Linkin P2 - 56
KS_LinkinW P2 - 58
KS_LinkinWT P2 - 59
KS_Linkout P2 - 61
KS_LinkoutW P2 - 63
KS_LinkoutWT P2 - 64
KS_Lock P2 - 65
KS_LockW P2 - 66
KS_LockWT P2 - 67
KS_LowTimer P2 - 68
KS_MoveData P2 - 69
KS_NodeId P2 - 72
KS_Nop P2 - 71
KS_PurgeQueue P2 - 73
KS_Receive P2 - 74
KS_ReceiveData P2 - 76
KS_ReceiveW P2 - 78
KS_ReceiveWT P2 - 79
KS_ResetSema P2 - 81
KS_ResetSemaM P2 - 82
KS_RestartTimer P2 - 83
KS_Resume P2 - 84
KS_ResumeG P2 - 85
KS_Send P2 - 86
KS_SendW P2 - 88
KS_SendWT P2 - 89
KS_SetEntry P2 - 91
KS_SetPrio P2 - 92
KS_SetWlper P2 - 93
KS_Signal P2 - 95
KS_SignalM P2 - 96

KS_Sleep P2 - 97
KS_Start P2 - 98
KS_StartG P2 - 99
KS_StartTimer P2 - 100
KS_StopTimer P2 - 101
KS_Suspend P2 - 102
KS_SuspendG P2 - 103
KS_TaskId P2 - 104
KS_TaskPrio P2 - 105
KS_Test P2 - 106, P2 - 114
KS_TestM P2 - 115
KS_TestMW P2 - 107
KS_TestMWT P2 - 108, P2 - 116
KS_TestW P2 - 110
KS_TestWT P2 - 111, P2 - 118
KS_Unlock P2 - 112
KS_User P2 - 113
KS_Workload P2 - 119
KS_Yield P2 - 120

L
Levels supported by the Virtuoso products

P1 - 37
license P1 - 6
line P2 - 136
linerel P2 - 136
lineto P2 - 136
Link descriptions. P2 - 146
Links GLO - 1
Low level support P1 - 34

M
Mailbox GLO - 2
Mailbox definitions P2 - 151
Manual Format INT - 9
manual format INT - 8
Memory GLO - 2
Memory definitions P2 - 151
Memory Management P2 - 18
Memory maps P2 - 10
Message GLO - 2
Message services P2 - 14
messages P2 - 170
Copyright 1996 Eonic Systems IX - 3

Messages and Mailboxes P2 - 6
Microkernel GLO - 2
microkernel level P1 - 15
microkernel services P1 - 11, P2 - 11
Microkernel types P2 - 3, P2 - 177
MODE1-register and MODE2-register ADI -

5
Motorola 68030 M2 - 1
Motorola 96K DSP M3 - 1
Move Data GLO - 2
moverel P2 - 136
moveto P2 - 136
multi-level approach P1 - 13
multiple processor operation P1 - 39
multi-tasking P1 - 10

N
nanok_yield, C40 ADI - 47, ADI - 34, TI2 - 47
Nanokernel GLO - 2
Nanokernel ISR management P2 - 24
nanokernel level P1 - 14
Nanokernel linked list based services P2 - 24
Nanokernel process management P2 - 23
Nanokernel processes and channels P2 - 21
Nanokernel semaphore based services P2 -

24
Nanokernel services P2 - 23
Nanokernel stack based services P2 - 24
Network file P2 - 122
Node GLO - 2
Node description P2 - 145

O
Object GLO - 2
Objects P2 - 141
Once-only synchronization P1 - 32
Other graphical calls P2 - 139
outtext P2 - 139
outtextxy P2 - 139

P
Parallel processing P1 - 18
parallel processing P1 - 22

PC interrupt drivers I1 - 1
PC stack (PCSTK) and PC stack pointer

(PCSTKP) ADI - 9
pieslice P2 - 138
Predefined drivers ADI - 48, ADI - 35
prhi_get, C40 ADI - 38, ADI - 25, TI2 - 32
prhi_getw, C40 ADI - 39, ADI - 26, TI2 - 33
prhi_pop, C40 ADI - 40, ADI - 27, TI2 - 34
prhi_popw, C40 ADI - 41, ADI - 28, TI2 - 35
prhi_psh, C40 ADI - 43, ADI - 30, TI2 - 37
prhi_put, C40 ADI - 42, ADI - 29, TI2 - 36
prhi_sig, C40 ADI - 44, ADI - 31, TI2 - 38
prhi_wait, C40 ADI - 45, ADI - 32, TI2 - 39
printf P2 - 130
printl P2 - 127
Priority GLO - 2
Priority and scheduling P1 - 24
prlo_psh, C40 ADI - 46, ADI - 33, TI2 - 40
Process GLO - 3
Processes P1 - 14
processor specific services P2 - 18
Program memory / Data memory interface

control registers ADI - 9
putimage P2 - 140
putpixel P2 - 136
puts P2 - 129

Q
Queue GLO - 3
Queue definitions P2 - 150
Queue services P2 - 15
Queues P2 - 8

R
Read or write graphics parameters and con-

text P2 - 134
rectangle P2 - 136
release notes September 1992 INT - 3
rename P2 - 130
Resource GLO - 3
Resource definitions P2 - 150
Resource management P2 - 17
Resources P2 - 8
IX - 4 Copyright 1996 Eonic Systems

PA
R

T
 3
restorecrtmode P2 - 133
routing tables P2 - 148
Runtime Environment ADI - 10
Runtime header (interrupt table) ADI - 12
Runtime libraries P2 - 128

S
savescreen P2 - 133
sector P2 - 138
Semaphore GLO - 3
Semaphore definitions P2 - 150
Semaphore services P2 - 13
Semaphores P2 - 5
server_exit P2 - 125
server_getarg P2 - 125
server_getenv P2 - 125
server_pollesc P2 - 126
server_pollkey P2 - 126
server_putchar P2 - 125, P2 - 126
server_system P2 - 126
server_terminate P2 - 125
setactivepage P2 - 133
setallpalette P2 - 134
setbkcolor P2 - 135
setcolor P2 - 135
setfillstyle P2 - 135
setgraphmode P2 - 133
setlinestyle P2 - 135
setpalette P2 - 134
setrgbpalette P2 - 134
settextjustify P2 - 135
settextstyle P2 - 135
setusercharsize P2 - 139
setvbuf P2 - 130
setviewport P2 - 134
setvisualpage P2 - 133
setwritemode P2 - 135
short overview P1 - 8
Single processor operation P1 - 38
size parameters P2 - 151
Special purpose registers on the ADSP-

21020 ADI - 5
Special services P2 - 18

sprintf P2 - 130
Standard I/O P2 - 128
Standard I/O functions P2 - 128
start_process, C40 ADI - 32, TI2 - 24
stat P2 - 130
Status Stack ADI - 9
Sticky arithmetic status register (STKY ADI -

7
Support for parallel processing P1 - 37
Suspend GLO - 3
System Configuration P2 - 141
system configuration P2 - 175
System definition GLO - 3
system definition file format P2 - 142
system initialization P2 - 152

T
Target Environment P1 - 37
Task GLO - 3
Task Abort Handler P2 - 5
Task Context P2 - 5
Task control services P2 - 12
Task definitions P2 - 149
Task Entry Point P2 - 5
Task execution management P1 - 25
Task group P2 - 4
Task Identifier & Priority P2 - 4
Task Level Timings ADI - 50, ADI - 40
Task Stack P2 - 5
Task State P2 - 4
Tasks P2 - 3
tasks P1 - 15
Text plotting P2 - 139
textdimensions P2 - 139
The Architecture file ADI - 11
The host interface device driver ADI - 49,

ADI - 37
The nanokernel on the 21020 ADI - 18, ADI -

7
The timer device driver ADI - 48, ADI - 36
Timer GLO - 3
Timer management P2 - 16
Timers P2 - 9
Copyright 1996 Eonic Systems IX - 5

TMS320C40 TI2 - 1
TMS320C40 Chip Architecture TI1 - 2, TI2 - 2
TMS320C40 Software Architecture TI1 - 3,

TI2 - 3
Tracing monitor P2 - 160
trademarks INT - 6
tutorial P1 - 18

U
ungetc P2 - 129
unit of distribution P1 - 11
unlink P2 - 130
USTAT ADI - 10

V
Version of the compiler ADI - 10, ADI - 1
vfprintf P2 - 130
Virtuoso history INT - 7
Virtuoso implementations on the 21020 ADI

- 1
Virtuoso on the Analog Devices 21020 DSP

ADI - 1
vsprintf P2 - 131

W
Workload Monitor P2 - 168
Writing an ISR routine ADI - 15, ADI - 4

Y
Yield GLO - 4
IX - 6 Copyright 1996 Eonic Systems

	Introduction
	Release notes
	V.3.01 September 1992
	V.3.05 January 1993
	V.3.09 September 1993
	V.3.09.1 November 1993
	V.3.11 September 1996

	Implementation-Specific Features
	Trademark Notices
	The history of Virtuoso
	Milestones

	Manual Format
	License agreement
	OWNERSHIP AND CONDITIONS :
	1. OWNERSHIP :
	2. FEES :
	4. CUSTOMER’S PRIVILEGES :
	5. CUSTOMER OBLIGATIONS :
	6. CUSTOMER PROHIBITIONS :
	7. LIMITED WARRANTY :
	8. GENERAL :

	Part 1. The concepts
	1. Installation
	1.1. Installing the software
	1.2. Kernel libraries provided
	1.3. Confidence test
	1.4. Virtuoso compilation symbols
	1.5. The license agreement
	1.5.1. Site developers license and runtimes
	1.5.2. Support and maintenance

	1.6. Cross development capability
	1.7. The final reference

	2. A short introduction
	2.1. The one page manual
	2.2. Underlying assumptions when programming

	3. Virtuoso : an overview
	3.1. Requirements for a programming system
	3.2. The high level view : a portable set of servi...
	3.2.1. A multi-tasking real-time microkernel as th...
	3.2.2. Classes of microkernel services
	3.2.3. The object as the unit of distribution

	3.3. A multi-level approach for speed and flexibil...
	3.4. An execution trace illustrated
	3.5. Processor specific support

	4. Functional support from Virtuoso
	4.1. Introduction
	4.2. Parallel processing : the next logical step
	4.3. What is (hard) real-time ?
	4.4. The high demands of Digital Signal Processing...
	4.5. A first conclusion
	4.6. Parallel programming : the natural way
	4.7. About objects and services
	4.7.1. The Virtuoso microkernel objects and the re...
	4.7.2. Class Task
	4.7.2.a. The task as a unit of execution
	4.7.2.b. Priority and scheduling
	4.7.2.c. Task execution management

	4.7.3. Class Timer
	4.7.4. Class Memory
	4.7.5. Class Resource
	4.7.6. Class Semaphore
	4.7.7. Class Message
	4.7.7.a. Once-only synchronization : the KS_MoveDa...

	4.7.8. Class Queue
	4.7.9. Class Special
	4.7.10. Class Processor Specific

	4.8. Low level support with Virtuoso
	4.8.1. The ISR levels

	4.9. Levels supported by the Virtuoso products.
	4.10. Support for parallel processing
	4.11. Target Environment
	4.12. Virtuoso auxiliary development tools
	4.13. Single processor operation
	4.14. Virtual Single Processor operation
	4.15. Heterogeneous processor systems

	5. Simple Examples
	5.1. Hello, world
	5.2. Use of a Queue

	6. Applications
	6.1. Scalable embedded systems
	6.2. Complex control systems
	6.3. Simulation in the control loop
	6.4. Fault tolerant systems
	6.5. Communication systems

	PART 2: Reference Manual
	7. Virtuoso microkernel types & data structures
	7.1. Microkernel types
	7.2. Tasks
	7.2.1. Task Identifier & Priority
	7.2.2. Task group set
	7.2.3. Task State
	7.2.4. Task Entry Point
	7.2.5. Task Abort Handler
	7.2.6. Task Stack
	7.2.7. Task Context

	7.3. Semaphores
	7.4. Mailboxes
	7.5. Queues
	7.6. Resources
	7.7. Timers
	7.8. Memory maps

	8. Virtuoso microkernel services
	8.1. Short overview
	8.2. Important note
	8.3. Task control microkernel services
	8.4. Semaphore microkernel services
	8.5. Mailbox microkernel services
	8.6. Queue microkernel services
	8.7. Timer management microkernel services
	8.8. Resource management microkernel services
	8.9. Memory management microkernel services
	8.10. Special microkernel services
	8.11. Drivers and processor specific services

	9. Nanokernel types and datastructures
	9.1. Nanokernel processes and channels
	9.2. Nanokernel channels

	10. Nanokernel services
	10.1. Process management
	10.2. ISR management
	10.3. Semaphore based services
	10.4. Stack based services
	10.5. Linked list based services

	11. Alphabetical List of Virtuoso microkernel serv...
	11.1. KS_Abort
	11.2. KS_AbortG
	11.3. KS_Aborted
	11.4. KS_Alloc
	11.5. KS_AllocW
	11.6. KS_AllocWT
	11.7. KS_AllocTimer
	11.8. KS_Dealloc
	11.9. KS_DeallocTimer
	11.10. KS_Dequeue
	11.11. KS_DequeueW
	11.12. KS_DequeueWT
	11.13. KS_DisableISR
	11.14. KS_Elapse
	11.15. KS_EnableISR
	11.16. KS_Enqueue
	11.17. KS_EnqueueW
	11.18. KS_EnqueueWT
	11.19. KS_EventW
	11.20. KS_GroupId
	11.21. KS_HighTimer
	11.22. KS_InqMap
	11.23. KS_InqQueue
	11.24. KS_InqSema
	11.25. KS_JoinG
	11.26. KS_LeaveG
	11.27. KS_Linkin
	11.28. KS_LinkinW
	11.29. KS_LinkinWT
	11.30. KS_Linkout
	11.31. KS_LinkoutW
	11.32. KS_LinkoutWT
	11.33. KS_Lock
	11.34. KS_LockW
	11.35. KS_LockWT
	11.36. KS_LowTimer
	11.37. KS_MoveData
	11.38. KS_Nop
	11.39. KS_NodeId
	11.40. KS_PurgeQueue
	11.41. KS_Receive
	11.42. KS_ReceiveData
	11.43. KS_ReceiveW
	11.44. KS_ReceiveWT
	11.45. KS_ResetSema
	11.46. KS_ResetSemaM
	11.47. KS_RestartTimer
	11.48. KS_Resume
	11.49. KS_ResumeG
	11.50. KS_Send
	11.51. KS_SendW
	11.52. KS_SendWT
	11.53. KS_SetEntry
	11.54. KS_SetPrio
	11.55. KS_SetSlice
	11.56. KS_SetWlper
	11.57. KS_Signal
	11.58. KS_SignalM
	11.59. KS_Sleep
	11.60. KS_Start
	11.61. KS_StartG
	11.62. KS_StartTimer
	11.63. KS_StopTimer
	11.64. KS_Suspend
	11.65. KS_SuspendG
	11.66. KS_TaskId
	11.67. KS_TaskPrio
	11.68. KS_Test
	11.69. KS_TestMW
	11.70. KS_TestMWT
	11.71. KS_TestW
	11.72. KS_TestWT
	11.73. KS_Unlock
	11.74. KS_User
	11.75. KS_Wait
	11.76. KS_WaitM
	11.77. KS_WaitMT
	11.78. KS_WaitT
	11.79. KS_Workload
	11.80. KS_Yield

	12. Hostserver and netloader
	12.1. Host server functionality
	12.1.1. Resetting and booting the target

	12.2. Network file
	12.2.1. Host interface definition.
	12.2.2. List of boards
	12.2.3. List of nodes.
	12.2.4. Root node definition.
	12.2.5. List of comport links available for bootin...

	12.3. Host server interface
	12.4. Host interface low level driver
	12.5. Higher level drivers
	12.5.0.a. Console input and output
	12.5.0.b. Standard I/O driver
	12.5.0.c. Graphics driver

	13. Runtime libraries
	13.1. Standard I/O functions
	13.1.1. Implementation limits
	13.1.2. Standard I/O functions

	13.2. PC graphics I/O
	13.2.1. Overview
	13.2.2. Driver and mode selection
	13.2.3. Read or write graphics parameters and cont...
	13.2.4. Drawing pixels and lines
	13.2.5. Drawing filled forms
	13.2.6. Text plotting
	13.2.7. Other graphical calls

	14. System Configuration
	14.1. System configuration concepts
	14.1.1. Kernel objects

	14.2. Sysdef : system definition file format
	14.2.1. Description requirements for the kernel ob...
	14.2.2. Node description

	14.3. Driver description
	14.3.1. Link descriptions
	14.3.2. The routing tables

	14.4. Task definitions
	14.5. Semaphore definitions
	14.6. Resource definitions
	14.7. Queue definitions
	14.8. Mailbox definitions
	14.9. Memory map definitions
	14.10. Note on the size parameters
	14.11. Other system information and system initial...

	15. Debugging environment under Virtuoso
	15.1. Task level debugger concepts
	15.2. Entry into the debugger
	15.2.1. Invoking the debugger from the keyboard
	15.2.2. Invoking the debugger from within your pro...
	15.2.3. Differences at system generation time
	15.2.4. Debugger commands
	15.2.5. Tasks
	15.2.6. Queues
	15.2.7. Semaphores
	15.2.8. Resources
	15.2.9. Memory Partitions
	15.2.10. Tracing monitor
	15.2.11. Mailboxes
	15.2.12. Network buffers
	15.2.13. Clock/Timers
	15.2.14. Stack Limits
	15.2.15. Zero Queue/Map/Resource Statistics
	15.2.16. Other processor
	15.2.17. Task Manager
	15.2.18. Suspend
	15.2.19. Resume
	15.2.20. Abort
	15.2.21. Start
	15.2.22. Exit $TLDEBUG
	15.2.23. Exit TLDEBUG
	15.2.24. Help

	15.3. The Workload Monitor

	16. Practical hints for correct use
	16.1. Flexible use of the messages
	16.1.1. General features
	16.1.2. Mailboxes
	16.1.3. Using messages

	16.2. On the abuse of semaphores
	16.3. On using the single processor versions for m...
	16.4. Hints on system configuration
	16.5. Customized versions and projects

	17. Microkernel C++ interface
	17.1. Microkernel C++ classes
	17.2. Kernel object generation by sysgen
	17.3. KTask
	17.4. KActiveTask
	17.5. KTaskGroup
	17.6. KSemaphore
	17.7. KMailBox
	17.8. KMessage
	17.9. KQueue
	17.10. KMemoryMap
	17.11. KResource
	17.12. KTimer
	17.13. A sample C++ application
	17.13.1. Sysgen generated files
	17.13.2. Changes to the program files

	17.14. Traps and Pitfalls of C++

	Part 3: Binding Manual
	18. Virtuoso on the Analog Devices 21020 DSP
	18.1. Virtuoso implementations on the 21020
	18.2. DSP-21020 chip architecture
	18.3. ADSP-21020 addressing modes
	18.4. Special purpose registers on the ADSP-21020
	18.4.1. MODE1-register and MODE2-register
	18.4.2. Arithmetic status register (ASTAT)
	18.4.3. Sticky arithmetic status register (STKY)
	18.4.4. Interrupt latch (IRPTL) and Interrupt Mask...
	18.4.5. Program memory / Data memory interface con...
	18.4.6. PC stack (PCSTK) and PC stack pointer (PCS...
	18.4.7. Status Stack
	18.4.8. USTAT

	18.5. Relevant documentation
	18.6. Version of the compiler
	18.7. Runtime Environment
	18.7.1. Data types
	18.7.2. The Architecture file
	18.7.3. Runtime header (interrupt table)

	18.8. Assembly language interface
	18.9. Developing ISR routines on the 21020
	18.9.1. Installing an ISR routine
	18.9.2. Writing an ISR routine
	18.9.3. Alphabetical list of ISR related services

	18.10. The nanokernel on the 21020
	18.10.1. Introduction
	18.10.2. Internal data structures
	18.10.3. Process managment.
	18.10.4. Nanokernel communications
	18.10.5. C_CHAN - counting channel
	18.10.6. L_CHAN - List channel
	18.10.7. S_CHAN - Stack channel
	18.10.8. REGISTER CONVENTIONS
	18.10.9. Interrupt handling
	18.10.10. The ISR-level
	18.10.11. Communicating with the microkernel
	18.10.12. Virtuoso drivers on the 21020

	19. Alphabetical List of nanokernel entry points
	19.1. _init_process
	19.2. _start_process
	19.3. ENDISR1
	19.4. K_taskcall
	19.5. KS_DisableISR()
	19.6. KS_EnableISR
	19.7. PRHI_GET
	19.8. PRHI_GETW
	19.9. PRHI_POP
	19.10. PRHI_POPW
	19.11. PRHI_PUT
	19.12. PRHI_PSH
	19.13. PRHI_SIG
	19.14. PRHI_WAIT
	19.15. PRLO_PSH
	19.16. YIELD

	20. Predefined drivers
	20.0.1. The timer device driver
	20.0.2. The host interface device driver
	20.0.3. Shared memory driver
	20.1. Task Level Timings
	20.2. Application development hints.

	21. Virtuoso on the ADSP 2106x SHARC
	21.1. Virtuoso implementations on the 21060
	21.2. SHARC chip architecture
	21.3. Relevant documentation
	21.4. Version of the compiler
	21.5. SHARC silicon revisions
	21.6. Developing ISR routines on the SHARC
	21.6.1. General principles
	21.6.2. Writing an ISR routine
	21.6.3. Installing an ISR routine
	21.6.4. List of ISR related services

	21.7. The nanokernel on the 21060
	21.7.1. Introduction
	21.7.2. Internal data structures
	21.7.3. Process management.
	21.7.4. Nanokernel communications
	21.7.5. SEMA_CHAN - counting or semaphore channel
	21.7.6. LIFO_CHAN - List channel
	21.7.7. STACK_CHAN - Stack channel
	21.7.8. Register conventions
	21.7.9. Interrupt handling
	21.7.10. The ISR-level
	21.7.11. Communicating with the microkernel

	21.8. Additional microkernel features on the 21060...
	21.8.1. Use of the PC stack and the counter stack
	21.8.2. Extended context

	22. Alphabetical List of nanokernel entry points
	22.1. start_process
	22.2. ENDISR1
	22.3. K_taskcall
	22.4. KS_DisableISR
	22.5. KS_EnableISR
	22.6. PRHI_GET
	22.7. PRHI_GETW
	22.8. PRHI_POP
	22.9. PRHI_POPW
	22.10. PRHI_PUT
	22.11. PRHI_PSH
	22.12. PRHI_SIG
	22.13. PRHI_WAIT
	22.14. PRLO_PSH
	22.15. YIELD

	23. Predefined drivers
	23.1. Virtuoso drivers on the 21060
	23.1.1. The timer device driver
	23.1.2. The host interface device driver
	23.1.3. Netlink drivers
	23.1.4. Raw Link drivers
	23.1.5. Common remark for all link drivers

	24. Task Level Timings
	25. Application development hints.
	26. Virtuoso on the Intel 80x86
	26.1. Notes over PC interrupt drivers
	26.2. Warning when using Virtuoso on a PC

	27. Virtuoso on the Motorola 56K DSP
	27.1. Virtuoso versions on 56K
	27.2. DSP 56001 Chip Architecture
	27.3. DSP56001 software architecture
	27.3.1. Addressing Modes
	27.3.2. I/O Memory
	27.3.3. Exceptions

	27.4. Relevant documentation
	27.5. C calling conventions and use of registers
	27.5.1. Storage Allocation
	27.5.2. Register Usage
	27.5.3. Subroutine Linkage
	27.5.4. Procedure Prologue and Epilogue
	27.5.5. Stack Layout

	27.6. Interrupt Service Routines (ISR)
	27.6.1. ISR Conventions

	27.7. Alphabetical list of ISR related services
	27.8. Developing ISR routines
	27.9. The nanokernel on the 56002
	27.10. Predefined drivers
	27.10.1. The timer device driver
	27.10.2. The host interface device driver

	27.11. Task Level Timings
	27.12. Application development hints.

	28. Virtuoso on the Motorola 68030 systems
	28.1. Source files of the Virtuoso kernel
	28.2. Building an application executable
	28.3. Configuration of the processor boards CC-112...
	28.4. Additional information about the modules
	28.5. Server program for CompControl VME system bo...
	28.5.1. Purpose of the server program
	28.5.2. Source files for the server program
	28.5.3. Use of the server program

	29. Virtuoso on the Motorola 96K DSP
	29.1. Virtuoso versions on 96K
	29.2. DSP 96002 chip architecture
	29.3. DSP 96002 software architecture
	29.3.1. DSP 96002 addressing modes
	29.3.2. I/O memory and special registers
	29.3.3. Expansion ports control
	29.3.4. Exceptions

	29.4. Relevant documentation
	29.5. C calling conventions and use of registers
	29.5.1. Storage Allocation
	29.5.2. Segmentation model
	29.5.3. Register usage
	29.5.4. Subroutine linkage
	29.5.5. Stack layout

	29.6. Interrupt Service Routines (ISR)
	29.6.1. ISR conventions

	29.7. Alphabetical list of ISR related services
	29.8.1. Fkernel_sign_entry
	29.9.2. KS_DisableISR
	29.10.3. KS_EnableISR

	29.11. The Nanokernel
	29.12.1. KS_EventW

	29.13. Developing ISR routines
	29.14. The nanokernel on the 96002
	29.15. Predefined drivers
	29.15.1. The timer device driver
	29.15.2. The host interface device driver

	29.16. Task Level Timings
	29.17. Application development hints.

	30. Virtuoso on the Motorola 68HC11.
	31. Virtuoso on the Motorola 68HC16 microcontrolle...
	32. Virtuoso on the Mips R3000 systems.
	33. Virtuoso on the INMOS T2xx, T4xx, T8xx.
	33.1. Introduction
	33.2. The transputer : an example component for di...
	33.3. Process control with transputers
	33.4. A solution based on process priority
	33.5. Modifying the FIFO scheduler on the transput...
	33.6. The Virtuoso implementation
	33.7. Requirements for embedded real-time systems
	33.8. Small grain versus coarse grain parallelism
	33.9. Additional benefits from Virtuoso on the tra...
	33.10. Device drivers with Virtuoso on the INMOS t...
	33.11. Performance results
	33.11.1. Single processor version. (v.3.0.)
	33.11.2. The distributed version

	33.12. Using the compiler libraries with Virtuoso
	33.13. Specific Parallel C routines not to be used...
	33.14. Specific routines of the INMOS C Toolset no...
	33.15. Specific routines of the Logical Systems co...

	34. Virtuoso on the INMOS T9000 transputer
	35. Virtuoso on the Texas Instruments TMS320C30 & ...
	35.1. Virtuoso versions on TMS320C30/C31
	35.2. TMS320C30 Chip Architecture
	35.3. TMS320C30 Software Architecture
	35.3.1. Addressing Modes

	35.4. Relevant documentation
	35.5. Application development hints
	35.6. Interrupt handlers and device drivers for Vi...
	35.6.1. Interrupt handling in Virtuoso.
	35.6.2. Parts of a device driver.

	36. Virtuoso on the Texas Instruments TMS320C40
	36.1. Brief description of the processor architect...
	36.1.1. TMS320C40 Chip Architecture
	36.1.2. TMS320C40 Software Architecture
	36.1.3. Addressing Modes
	36.1.4. Relevant documentation

	36.2. Programming in C and assembly
	36.2.1. Data representation
	36.2.2. Big and Small Models
	36.2.3. Parameter passing conventions
	36.2.4. Memory sections for the C compiler and Vir...

	37. Programming the nanokernel
	37.1. Introduction
	37.2. Internal data structures
	37.3. Process management.
	37.4. Nanokernel communications
	37.4.1. C_CHAN - Counting channel
	37.4.2. L_CHAN - List channel
	37.4.3. S_CHAN - Stack channel

	37.5. Register conventions
	37.6. Interrupt handling
	37.7. Communicating with the microkernel
	37.8. Virtuoso drivers on TMS320C40

	38. Alphabetical List of nanokernel entry points
	38.1. _init_process
	38.2. _start_process
	38.3. ENDISR0
	38.4. ENDISR1
	38.5. K_taskcall
	38.6. KS_DisableISR()
	38.7. KS_EnableISR
	38.8. PRHI_GET
	38.9. PRHI_GETW
	38.10. PRHI_POP
	38.11. PRHI_POPW
	38.12. PRHI_PUT
	38.13. PRHI_PSH
	38.14. PRHI_SIG
	38.15. PRHI_WAIT
	38.16. PRLO_PSH
	38.17. SETISR1
	38.18. SYSDIS
	38.19. SYSENA
	38.20. SYSVEC
	38.21. YIELD

	39. Predefined drivers
	39.1. The timer device drivers
	39.2. Host interface device drivers
	39.3. Netlink drivers
	39.4. Raw link drivers
	39.5. Task Level Timings

	Glossary
	Index

